270,334 research outputs found

    Mass Extinction in Progress

    Get PDF

    Deriving physical parameters of unresolved star clusters. I. Age, mass, and extinction degeneracies

    Full text link
    Context. Stochasticity and physical parameter degeneracy problems complicate the derivation of the parameters (age, mass, and extinction) of unresolved star clusters when using broad-band photometry. Aims. We develop a method to simulate stochasticity and degeneracies, and to investigate their influence on the accuracy of derived physical parameters. Then we apply it to star cluster samples of M31 and M33 galaxies. Methods. Age, mass and extinction of observed star clusters are derived by comparing their broad-band UBVRI integrated magnitudes to the magnitudes of a large grid of star cluster models with fixed metallicity Z=0.008. Masses of stars for a cluster model are randomly sampled from the initial mass function. Models of star clusters from the model grid, which have all of their magnitudes located within 3 observational errors from the magnitudes of the observed cluster, are selected for the computation of its age, mass, and extinction. Results. In the case of the M31 galaxy, the extinction range is wide and the age-extinction degeneracy is strong for a fraction of its clusters. Because of a narrower extinction range, the age-extinction degeneracy is weaker for the M33 clusters. By using artificial cluster sample, we show that age-extinction degeneracy can be reduced significantly if the range of intrinsic extinction within the host galaxy is narrow.Comment: 10 pages, 8 figure

    Predicting dust extinction from the stellar mass of a galaxy

    Full text link
    We investigate how the typical dust extinction of H-alpha luminosity from a star-forming galaxy depends upon star formation rate (SFR), metallicity and stellar mass independently, using a sample of ~90,000 galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS). We measure extinctions directly from the Balmer decrement of each source, and while higher values of extinction are associated with an increase in any of the three parameters, we demonstrate that the fundamental property that governs extinction is stellar mass. After this mass-dependent relationship is removed, there is very little systematic dependence of the residual extinctions with either SFR or metallicity, and no significant improvement is obtained from a more general parameterisation. In contrast to this, if either a SFR-dependent or metallicity-dependent extinction relationship is applied, the residual extinctions show significant trends that correlate with the other parameters. Using the SDSS data, we present a relationship to predict the median dust extinction of a sample of galaxies from its stellar mass, which has a scatter of ~0.3 mag. The relationship was calibrated for H-alpha emission, but can be more generally applied to radiation emitted at other wavelengths. These results have important applications for studies of high-redshift galaxies, where individual extinction measurements are hard to obtain but stellar mass estimates can be relatively easily estimated from long-wavelength data.Comment: Accepted for publication in MNRAS. 12 pages. Dedicated to the memory of Timothy Gar

    Climate change and the selective signature of the Late Ordovician mass extinction

    Get PDF
    Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia

    Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids

    Get PDF
    Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade's final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety

    Deriving physical parameters of unresolved star clusters. II. The degeneracies of age, mass, extinction, and metallicity

    Full text link
    This paper is the second of a series that investigates the stochasticity and degeneracy problems that hinder the derivation of the age, mass, extinction, and metallicity of unresolved star clusters in external galaxies when broad-band photometry is used. While Paper I concentrated on deriving age, mass, and extinction of star clusters for one fixed metallicity, we here derive these parameters in case when metallicity is let free to vary. The results were obtained using several different filter systems (UBVRIUBVRI, UBVRIJHKUBVRIJHK, GALEX+UBVRIUBVRI), which allowed to optimally reduce the different degeneracies between the cluster physical parameters. The age, mass, and extinction of a sample of artificial star clusters were derived by comparing their broad-band integrated magnitudes with the magnitudes of a large grid of cluster models with various metallicities. A large collection of artificial clusters was studied to model the different degeneracies in the age, mass, extinction, and metallicity parameter space when stochasticity is taken into account in the cluster models. We show that, without prior knowledge on the metallicity, the optical bands (UBVRIUBVRI) fail to allow a correct derivation of the age, mass, and extinction because of the strong degeneracies between models of different metallicities. Adding near-infrared information (UBVRIUBVRI+JHKJHK) slightly helps in improving the parameter derivation, except for the metallicity. Adding ultraviolet data (GALEX+UBVRIUBVRI) helps significantly in deriving these parameters and allows constraining the metallicity when the photometric errors have a Gaussian distribution with standard deviations 0.05 mag for UBVRIUBVRI and 0.15 mag for the GALEX bands.Comment: 8 pages, 9 figure

    The fate of the homoctenids (Tentaculitoidea) during the Frasnian-Famennian mass extinction (Late Devonian)

    Get PDF
    The homoctenids (Tentaculitoidea) are small, conical-shelled marine animals which are amongst the most abundant and widespread of all Late Devonian fossils. They were a principal casualty of the Frasnian-Famennian (F-F, Late Devonian) mass extinction, and thus provide an insight into the extinction dynamics. Despite their abundance during the Late Devonian, they have been largely neglected by extinction studies. A number of Frasnian-Famennian boundary sections have been studied, in Poland, Germany, France, and the United States. These sections have yielded homoctenids, which allow precise recognition of the timing of the mass extinction. It is clear that the homoctenids almost disappear from the fossil record during the latest Frasnian “Upper Kellwasser Event”. The coincident extinction of this pelagic group, and the widespread development of intense marine anoxia within the water column, provides a causal link between anoxia and the F-F extinction. Most notable is the sudden demise of a group, which had been present in rock-forming densities, during this anoxic event. One new species, belonging to Homoctenus is described, but is not formally named here

    Biogeochemical modeling at mass extinction boundaries

    Get PDF
    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations
    corecore