13 research outputs found

    Is there a Moore's law for quantum computing?

    Full text link
    There is a common wisdom according to which many technologies can progress according to some exponential law like the empirical Moore's law that was validated for over half a century with the growth of transistors number in chipsets. As a still in the making technology with a lot of potential promises, quantum computing is supposed to follow the pack and grow inexorably to maturity. The Holy Grail in that domain is a large quantum computer with thousands of errors corrected logical qubits made themselves of thousands, if not more, of physical qubits. These would enable molecular simulations as well as factoring 2048 RSA bit keys among other use cases taken from the intractable classical computing problems book. How far are we from this? Less than 15 years according to many predictions. We will see in this paper that Moore's empirical law cannot easily be translated to an equivalent in quantum computing. Qubits have various figures of merit that won't progress magically thanks to some new manufacturing technique capacity. However, some equivalents of Moore's law may be at play inside and outside the quantum realm like with quantum computers enabling technologies, cryogeny and control electronics. Algorithms, software tools and engineering also play a key role as enablers of quantum computing progress. While much of quantum computing future outcomes depends on qubit fidelities, it is progressing rather slowly, particularly at scale. We will finally see that other figures of merit will come into play and potentially change the landscape like the quality of computed results and the energetics of quantum computing. Although scientific and technological in nature, this inventory has broad business implications, on investment, education and cybersecurity related decision-making processes.Comment: 32 pages, 24 figure

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Online learning of physics during a pandemic: A report from an academic experience in Italy

    Get PDF
    The arrival of the Sars-Cov II has opened a new window on teaching physics in academia. Frontal lectures have left space for online teaching, teachers have been faced with a new way of spreading knowledge, adapting contents and modalities of their courses. Students have faced up with a new way of learning physics, which relies on free access to materials and their informatics knowledge. We decided to investigate how online didactics has influenced students’ assessments, motivation, and satisfaction in learning physics during the pandemic in 2020. The research has involved bachelor (n = 53) and master (n = 27) students of the Physics Department at the University of Cagliari (N = 80, 47 male; 33 female). The MANOVA supported significant mean differences about gender and university level with higher values for girls and master students in almost all variables investigated. The path analysis showed that student-student, student-teacher interaction, and the organization of the courses significantly influenced satisfaction and motivation in learning physics. The results of this study can be used to improve the standards of teaching in physics at the University of Cagliar

    Mapping scientific applications on a large-scale data-path accelerator implemented by single-flux quantum (SFQ) circuits

    No full text
    Abstract — To overcome issues originating from the CMOS technology, a large-scale reconfigurable data-path (LSRDP) processor based on single-flux quantum circuits is introduced. LSRDP is augmented to a general purpose processor to accelerate the execution of data flow graphs (DFGs) extracted from scientific applications. Procedure of mapping large DFGs onto the LSRDP is discussed and our proposed techniques for reducing area of the accelerator within the design procedure will be introduced as well. Keywords- Reconfigurable accelerator; single-flux quantum circuit; data flow graph; placement and routing I

    Mapping Scientific Applications on a Large-Scale Data-Path Accelerator Implemented by Single-Flux Quantum (SFQ) Circuits

    Get PDF
    Design, Automation & Test in Europe : 8-12 March, 2010 : Dresden, GermanyTo overcome issues originating from the CMOS technology, a large-scale reconfigurable data-path (LSRDP) processor based on single-flux quantum circuits is introduced. LSRDP is augmented to a general purpose processor to accelerate the execution of data flow graphs (DFGs) extracted from scientific applications. Procedure of mapping large DFGs onto the LSRDP is discussed and our proposed techniques for reducing area of the accelerator within the design procedure will be introduced as well

    Mapping Scientific Applications on a Large-Scale Data-Path Accelerator Implemented by Single-Flux Quantum (SFQ) Circuits

    No full text
    To overcome issues originating from the CMOS technology, a large-scale reconfigurable data-path (LSRDP) processor based on single-flux quantum circuits is introduced. LSRDP is augmented to a general purpose processor to accelerate the execution of data flow graphs (DFGs) extracted from scientific applications. Procedure of mapping large DFGs onto the LSRDP is discussed and our proposed techniques for reducing area of the accelerator within the design procedure will be introduced as well.Design, Automation & Test in Europe : 8-12 March, 2010 : Dresden, German

    Mapping Scientific Applications on a Large-Scale Data-Path Accelerator Implemented by Single-Flux Quantum (SFQ) Circuits

    No full text
    Design, Automation & Test in Europe : 8-12 March, 2010 : Dresden, GermanyTo overcome issues originating from the CMOS technology, a large-scale reconfigurable data-path (LSRDP) processor based on single-flux quantum circuits is introduced. LSRDP is augmented to a general purpose processor to accelerate the execution of data flow graphs (DFGs) extracted from scientific applications. Procedure of mapping large DFGs onto the LSRDP is discussed and our proposed techniques for reducing area of the accelerator within the design procedure will be introduced as well

    References, Appendices & All Parts Merged

    Get PDF
    Includes: Appendix MA: Selected Mathematical Formulas; Appendix CA: Selected Physical Constants; References; EGP merged file (all parts, appendices, and references)https://commons.library.stonybrook.edu/egp/1007/thumbnail.jp
    corecore