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Preface 

 This is a series of lecture notes and problems on “Essential Graduate Physics”, consisting of the 
following four parts: 

    CM: Classical Mechanics (for a 1-semester course),  
    EM: Classical Electrodynamics (2 semesters), 
    QM: Quantum Mechanics (2 semesters), and 
    SM: Statistical Mechanics (1 semester).  

The parts share a teaching style, structure, and (with few exceptions) notation, and are interlinked by 
extensive cross-referencing. I believe that due to this unity, the notes may be used for teaching these 
courses not only in the (preferred) sequence shown above, but in almost any order – or in parallel.  

 Each part is a two-component package consisting of: 

(i) Lecture Notes chapter texts,2 with a list of exercise problems in the end of each chapter, and  
(ii) Exercise and Test Problems with Model Solutions files.  

The series also includes two brief reference appendices, MA: Selected Mathematical Formulas (16 pp.) 
and CA: Selected Physics Constants (2 pp), and a list of references. 

The series is a by-product of the so-called core physics courses I taught at Stony Brook 
University from 1991 to 2013. Reportedly, most physics departments require their graduate students to 
either take a set of similar courses or pass comprehensive exams based on an approximately similar 
body of knowledge. This is why I hope that my notes may be useful for both instructors and students of 
such courses, as well as for individual learners. 

The motivation for composing the lecture notes (which had to be typeset because of my horrible 
handwriting) for Stony Brook students was my desperation to find textbooks I could actually use for 
teaching. First of all, the textbooks I could find, including the most influential Theoretical Physics series 
by L. Landau and E. Lifshitz, did not match my classes, which included experiment-oriented students, 
some PhD candidates from other departments, US college graduates with insufficient undergraduate 
background, and a few advanced undergraduates. Second, for the rigid time restrictions imposed on the 
core physics courses, most available textbooks are way too long, and using them would mean hopping 
from one topic to another, picking up a chapter here and a section there, at a high risk of losing the 
necessary background material and logical connections between course components - and students’ 
interest with them. On the other hand, many textbooks lack even brief discussions of several traditional 
and modern topics that I believe are necessary parts of every professional physicist’s education.3,4 

2 The texts are saved as separate .pdf files of each chapter, optimized for two-page viewing and double-side 
printing; merged files for each part and the series as a whole, convenient for search purposes, are also provided. 
3 To list just a few: statics and dynamics of elastic and fluid continua, basic notions of physical kinetics, 
turbulence and deterministic chaos, physics of reversible and quantum computation, relaxation and dephasing of 
open quantum systems, the van der Pol method, a.k.a. the Rotating-Wave Approximation (RWA), in classical and 
quantum mechanics, physics of electrons and holes in semiconductors, weak-potential and tight-binding 
approximations in the energy band theory, optical fiber electrodynamics, macroscopic quantum effects in Bose-
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 The main goal of my courses was to make students familiar with the basic notions and ideas of 
physics (hence the series’ title), and my main effort was to organize the material in a logical sequence 
the students could readily follow and enjoy, at each new step understanding why exactly they need to 
swallow the next knowledge pill. As a back side of such a minimalistic goal, I believe that my texts may 
be used by advanced undergraduate physics students as well. Moreover, I hope that selected parts of the 
series may be useful for graduate students of other disciplines, including astronomy, chemistry, 
mechanical engineering, electrical, computer and electronic engineering, and material science. 

At least since Confucius and Sophocles, i.e. for the last 2,500 years, teachers have known that 
students can master a new concept or method only if they have seen its application to at least a few 
particular problems. This is why in my notes, the range of theoretical physics methods is limited to the 
approaches that are indeed necessary for solution of the problems I had time to discuss, and the 
introduction of every new technique is always accompanied by an application example or two. 
Additional exercise problems are listed in the end of each chapter of the lecture notes, and may be used 
for homeworks. Individual readers are strongly encouraged to solve as many of these problems as 
possible. 5  

Detailed model solutions of the exercise problems (some with additional expansion of the lecture 
material), and several shorter problems suitable for tests (also with model solutions), are gathered in 6 
separate files - one per semester. These files are available for both university instructors and individual 
readers – free of charge, but in return for a signed commitment to avoid unlimited distribution of the 
solutions - see p. vii below. For instructors, these files are available not only in the Adobe Systems’ 
Portable Document Format (*.pdf), but also in the Microsoft Office 1997-2003 format (*.doc) free of 
macros, so that the problem assignments and solutions may be readily grouped, edited, etc., before their 
distribution to students, using either virtually any version of Microsoft Word or independent software 
tools - e.g., the public-domain OpenOffice.org.  

 I know that that my texts are far from perfection. In particular, some sacrifices made at the topic 
selection, always very subjective, were extremely painful. (Most regretfully, I could not find time for 
even a brief introduction to the general relativity.6) Moreover, it is very probable that despite all my 
effort and the great help from SBU students and teaching assistants, not all typos/errors have been 
weeded out. This is why all remarks (however candid) and suggestions by the readers would be highly 
appreciated. All significant contributions will be gratefully acknowledged – both online and in possible 
future editions of the series.7  

Einstein condensates, Bloch oscillations and Landau-Zener tunneling, cavity QED, and the Density Functional 
Theory (DFT). All these topics are discussed, if only concisely, in these notes. 
4 Recently several high-quality, graduate-level teaching materials became freely available online, including R. 
Fitzpatrick’s text on Classical Electromagnetism (farside.ph.utexas.edu/teaching/jk1/Electromagnetism.pdf), B. 
Simons’ “lecture shrunks” on Advanced Quantum Mechanics (www.tcm.phy.cam.ac.uk/~bds10/aqp.html), and D. 
Tong’s lecture notes on several topics (www.damtp.cam.ac.uk/user/tong/teaching.html). 
5 The problems that require either more bulky calculations, or more creative approaches (or both :-), are marked 
by asterisks.  
6 For an introduction to the subject, I can recommend either a review by S. Carroll, Spacetime and Geometry, 
Addison-Wesley, 2003,  or a longer text by A. Zee, Einstein Gravity in a Nutshell, Princeton U. Press, 2013. 
7 Note added in June 2019: Revised versions of these lecture notes, and of model solutions of the exercise 
problems, are now published by the IOP – see the references on the title page of each part. However, in the view 
of possible future editions, the kind request formulated above remains very much valid. 
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Disclaimer 

 Since these materials are available free of charge, it is hard to imagine that somebody would 
blame their author for deceiving “customers” for his commercial gain. Still, I would like to go a little bit 
beyond the usual litigation-avoiding claims,8 and offer a word of caution to the potential reader, in order 
to preempt his or her possible later disappointment. 

 
This is NOT a course of theoretical physics – at least in the contemporary sense of the term 

Though much of the included material is similar to that in textbooks on “theoretical physics” 
(most notably in the famous series by L. Landau and E. Lifshitz), this lecture note series is different 
from them by its emphasis on the basic concepts and ideas of physics, their relation to experimental 
data, and most important applications - rather than on sophisticated theoretical techniques. Indeed, the 
set of theoretical methods discussed in the notes is limited to the minimum necessary for quantitative 
understanding of the key notions of physics and for solving a few (or rather about a thousand :-) core 
problems. Moreover, because of the notes’ shortness, I have not been able to cover some key fields of 
theoretical physics, most notably the general relativity and quantum field theory - beyond some 
introductory elements of quantum electrodynamics in QM Chapter 9. If you want to work in modern 
theoretical physics, you need to know much more than these lectures! 

 
Moreover, this is NOT a textbook – at least not the usual one 

 A usual textbook tries (though most commonly fails) to cover virtually all aspects of the 
addressed field. As a result, it is typically way too long for being fully read and understood by students 
during the time allocated for the corresponding course, so that the instructors are forced to pick up 
selected chapters and sections, frequently loosing narrative’s logic lines. In contrast, these notes are 
much shorter (about 200 pages per semester), enabling their thorough reading – perhaps with just a few 
later sections dropped, depending on reader’s interests. I have tried to mitigate the losses due to this 
minimalistic approach by providing extensive further reading recommendations on the topics I had no 
time to cover. The reader is highly encouraged to use these sources (and/or the corresponding chapters 
of more detailed textbooks) on any topic(s) of his or her special interest. 

 
Then, what these notes ARE and why you may like to use them (I think) 

 By tradition, graduate physics education consists of two main components: research experience 
and advanced physics courses. Unfortunately, the latter component is currently under pressure in many 
physics departments, apparently because of two reasons. On one hand, the average knowledge level of 
students entering graduate school is not improving, so that bringing them up to the level of 
contemporary research becomes increasingly difficult. On the other hand, the research itself is becoming 
more fragmented, so that the students frequently do not feel an immediate need for a broad physics 

8 Yes Virginia, these notes represent only my personal opinions, not necessarily those of the Department of 
Physics and Astronomy of Stony Brook University, the SBU at large, the SUNY system, the Empire State of New 
York, the federal agencies and private companies that funded my group’s research, etc. No dear, I cannot be hold 
responsible for any harm, either bodily or mental, their reading  may (?) cause. 
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knowledge base for their PhD project success. Some thesis advisors, trying to maximize the time they 
could use students as a cheap laboratory workforce, do not help.  

 I believe that this trend toward the reduction of a broad physics education in graduate school is 
irresponsible. Experience shows that during his or her future research career, a typical current student 
will change research fields several times. Starting from scratch in a new field is hard - terribly hard in an 
advanced age (believe me :-). However, physics is fortunate to have a hard core of knowledge, that 
many other sciences lack. With this knowledge, the student will always feel in physics at home, while 
without it, he or she may not be able even to understand research literature in the new field, and would 
risk being reduced to auxiliary work roles – if any. 

 I have seen the main objective of my Stony Brook courses to give an introduction to this hard 
core of physics knowledge, at the same time trying to convey my own enchantment by the unparalleled 
beauty of the concepts and ideas of this science, and the remarkable logic of their fusion into a 
wonderful single construct. Let me hope that these notes relay not only the knowledge as such, but also 
at least a part of my enchantment. 

      
 
 

Versions and Acknowledgements 

 This is a preliminary (“Beta”) version of the series. My plans are to publish, in a few years, its 
final version. Until that has happened, I commit to keeping the Beta stable. The only changes still to be 
made in it will be corrections of the typos noticed by the readers and myself, and minor stylistic edits. 

 I am extremely grateful to my faculty colleagues and other readers who commented on certain 
sections  of the notes; here is their list (in the alphabetic order):9  

 A. Abanov, P. Allen, D. Averin, S. Berkovich, P.-T. de Boer, M. Fernandez-Serra, R. F. 
Hernandez, T. Konstantinova, A. Korotkov, V. Semenov, F. Sheldon, E. Tikhonov, X. Wang.  

 (Evidently, these kind people are not responsible for the remaining deficiencies.) 

 The Department of Physics and Astronomy of the Stony Brook University was very responsive 
to my requests of certain time ordering of my teaching assignments, that was beneficial for note writing 
and editing. The department, and the university as the whole, also provided a very friendly general 
environment for my work during the past 25 years. 

 A large part of my scientific background and experience, reflected in these materials, came from 
my education (and then research work) in the Department of Physics of Moscow State University. 

 And last but not least, I would like to thank my wife Lioudmila for several good advices on 
aesthetic aspects of note typesetting, and for all her love, care, and patience – without them, this project 
would be impossible.  

        Konstantin.Likharev@StonyBrook.edu 

              

9 I am very much sorry that I have not kept proper records from the beginning of my lectures at Stony Brook, so I 
cannot list all the numerous students and TAs who had kindly attracted my attention to typos in earlier versions of 
these notes. Needless to say, I am very grateful to them all as well. 
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Problem Solution Request Templates  
 
 
Requests should be sent to konstantin.likharev@stonybrook.edu in either of the following forms: 

- an e-mail from a valid university address,  

- a scanned copy of a signed letter – as an e-mail attachment. 

 

Approximate contents: 

 

A. Request from a Prospective Instructor  

Dear Dr. Likharev, 

My plans are to use your lecture notes and/or problems of the Essential Graduate Physics series, 
part <select: CM, EM, QM, SM>, in my course <title> during <semester, year> in the <department, 
university>. I would appreciate sending me file Exercise and Test Problems with Model Solutions of that 
part of the series in the <select: .pdf, both .doc and .pdf> format(s). 

I will avoid unlimited distribution of the solutions, in particular their posting on externally 
searchable Web sites. If I distribute the solutions among my students, I will ask them to adhere to the 
same restraint. 

I will let you know of any significant typos / deficiencies I may find. 

Sincerely, <signature, full name, university position, work phone number>  

 

B. Request from an Individual Learner 

Dear Dr. Likharev, 

My plans are to use your lecture notes and problems of the Essential Graduate Physics series, 
part(s) <select: CM, EM, QM, SM>, for my personal education. I would appreciate sending me file(s) 
Exercise and Test Problems with Model Solutions of that part(s) of the series. 

I will not share the material with anyone, and will not use it for passing courses that are officially 
based on your series.  

I will let you know of any significant typos / deficiencies I may find. 

 Sincerely, <signature, full name, present home address (in English), acting phone number>  
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Notation  

 
Abbreviations    Fonts    Symbols    

Eq. any formula (e.g., equation) F, F  scalar variables10    time differentiation operator (d/dt)  

Fig. figure    F, F  vector variables   spatial differentiation vector (del)  

Sec. section    F̂,F̂  scalar operators   approximately equal to   

c.c. complex conjugate  F̂,F̂  vector operators  ~ of the same order as    

h. c. Hermitian conjugate  F matrix    proportional  to    

     Fjj’ matrix element   equal to by definition (or evidently) 

Parts of the series         scalar (“dot-”) product 

 CM: Classical Mechanics      vector (“cross-”) product 

 EM: Classical Electrodynamics     time averaging 

 QM: Quantum Mechanics         statistical averaging 

 SM: Statistical Mechanics     [  ,  ] commutator 

         {  ,  } anticommutator 

Appendices 

 MA: Selected Mathematical Formulas  

 CA: Selected Physical Constants 
  
Prime signs 

 The prime signs (′, ″, etc) are used to distinguish similar variables or indices (such as j and j′ in 
the matrix element above), rather than to denote derivatives. 
 
Formulas 

 The most general and/or important formulas are highlighted with blue frames and short titles on 
the margins. 
 
Numbering 

 Chapter numbers are dropped in all references to formulas, figures, footnotes, and problems 
within the same chapter. 

10 The same letter, typeset in different fonts, typically denotes different variables. 
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Chapter 1. Review of Fundamentals 

After elaborating a bit on the title and contents of the course, this short introductory chapter lists the 
basic notions and facts of the classical mechanics, that are supposed to be known to the reader from 
undergraduate studies.1 Due to this reason, the  explanations are very brief.  

 

1.1. Mechanics and dynamics 

 A more fair title of this course would be Classical Mechanics and Dynamics, because the notions 
of mechanics and dynamics, though much intertwined, are still somewhat different. Term mechanics, in 
its narrow sense, means deriving the equations of motion of point-like particles and their systems 
(including solids and fluids), solution of these equations, and interpretation of the results. Dynamics is a 
more ambiguous term; it may mean, in particular: 

 (i) the part of mechanics that deals with motion (in contrast to statics); 
 (ii) the part of mechanics that deals with reasons for motion (in contrast to kinematics); 
 (iii) the part of mechanics that focuses on its two last tasks, i.e. the solution of the equations of 
motion and discussion of the results.  

 The last definition invites a question. It may look that mechanics and dynamics are just two 
sequential steps of a single process; why should they be considered separate disciplines? The main 
reason is that the many differential equations of motion, obtained in classical mechanics, also describe 
processes in different systems, so that their analysis may reveal important features of these systems as 
well. For example, the famous ordinary differential equation  

       02
0  xx        (1.1) 

describes sinusoidal 1D oscillations not only of a mass on a spring, but also of an electric or magnetic 
field in a resonator, and many other systems. Similarly, the well-known partial differential equation 

         0),(
1 2

2

2

2














tf
tv

r ,     (1.2) 

where v is a constant and 2 is the Laplace operator,2 describes not only acoustic waves in an elastic 
mechanical continuum (solid or fluid), but also electromagnetic waves in a non-dispersive media, 
certain chemical reactions, etc. Thus the results of analysis of the dynamics described by these equations 
may be reused for applications well beyond mechanics. 

1 The reader is advised to perform a self-check by solving a few problems of the dozen listed in Sec. 1.7. If the 
results are not satisfactory, it may make sense to start from some remedial reading. For that, I could recommend, 
for example (in the alphabetical order): G. R. Fowles and G. L. Cassiday, Analytical Mechanics, 7th ed., Brooks 
Cole, 2004; K. R. Symon, Mechanics, 3rd ed., Addison-Wesley, 1971; or J. B. Marion and S. T. Thornton, 
Classical Dynamics of Particles and Systems, 4th ed., Saunders, 1995. 
2 This series assumes reader’s familiarity with the basic calculus and vector algebra. The formulas most important 
for this series are listed in the Selected Mathematical Formulas appendix, referred below as MA. In particular, a 
reminder of the definition and the basic properties of the Laplace operator may be found in MA Sec. 9. 
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 To summarize, term “dynamics” is so ambiguous3 that, after some hesitation, I have opted to 
using for this course the traditional name Classical Mechanics, implying its broader meaning, which 
includes (similarly to Quantum Mechanics and Statistical Mechanics) studies of dynamics of some non-
mechanical systems. 

  

1.2. Kinematics: Basic notions 

 The basic notions of kinematics may be defined in various ways, and some mathematicians pay a 
lot of attention to analyzing such systems of axioms and relations between them. In physics, we 
typically stick to less rigorous ways (in order to proceed faster to particular problems), and end debating 
a definition as soon as everybody in the room agrees that we are all speaking about the same thing. Let 
me hope that the following notions used in classical mechanics do satisfy this criterion: 

(i) All the Euclidean geometry notions, including the geometric point (the mathematical 
abstraction for the position of a very small object), straight line, etc. 

(ii) The orthogonal, linear (“Cartesian”) coordinates4 rj of a geometric point in a particular 
reference frame – see Fig. 1.5  

 

 

 

 

 

 

The coordinates may be used to define the point’s radius-vector6 

3 Another important issue is: Definition (iii) of dynamics is suspiciously close to the part of mathematics devoted 
to the differential equation analysis; what is the difference? To answer, we have to dip,  for just a second, into the 
philosophy of physics. Physics may be described as an art (and a bit of science :-) of description of Mother Nature 
by mathematical means; hence in many cases the approaches of a mathematician and a physicist to a problem are 
very similar. The main difference is that physicists try to express the results of their analysis in terms of system’s 
motion rather than function properties, and as a result develop some sort of intuition (“gut feeling”) about how 
other, apparently similar, systems may behave, even if their exact equations of motion are somewhat different - or 
not known at all. The intuition so developed has an enormous heuristic power, and most discoveries in physics 
have been made through gut-feeling-based insights rather than by plugging one formula into another one. 
4 In these notes the Cartesian coordinates are denoted either as either {r1, r2, r3} or {x, y, z}, depending on 
convenience in the particular case. Note that axis numbering is important for operations like the vector (“cross”) 
product; the “correct” (meaning generally accepted) numbering order is such that rotation n1  n2  n3  n1… 
looks counterclockwise if watched from a point with all ri > 0 – see Fig. 1. 
5 In references to figures, formulas, problems and sections within the same chapter of these notes, the chapter 
number is dropped for brevity. 
6 From the point of view of the tensor theory (in which the physical vectors like r are considered the rank-1 
tensors), it would be more natural to use superscripts in the components rj and other “contravariant” vectors. 
However, the superscripts may be readily confused with the power signs, and I will postpone this notation (as 
well as the implied summation over the repeated indices) until the discussion of relativity in EM Chapter 9. 

Fig. 1.1. Cartesian coordinates and 
radius-vector of a point/particle. 1n 2n
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3

1j
jj rnr ,    (1.3) 

where 321 ,, nnn  are the unit vectors along coordinate axis directions, with the Euclidean metric:  

         



3

1

22

j
jrr .      (1.4) 

which is independent, in particular, of the distribution of matter in space.  

 (iii) The time – as described by a continuous scalar variable (say, t), typically considered an 
independent argument of various physical observables, in particular the point’s radius-vector r(t). By 
accepting Eq. (4), and an implicit assumption that time t runs similarly in all reference frames, we 
subscribe to the notion of the absolute (“Newtonian”) space/time, and hence abstain from a discussion 
of relativistic effects.7 

 (iv) The (instant) velocity of the point, 

                  r
r

v 
dt

d
t)( ,     (1.5) 

and its acceleration: 

rv
v

a  
dt

d
t)( .        (1.6)     

Since the above definitions of vectors r, v, and a depend on the chosen reference frame (are 
“reference-frame-specific”), there is a need to relate those vectors as observed in different frames. 
Within the Euclidean geometry, for two reference frames with the corresponding axes parallel in the 
moment of interest (Fig. 2), the relation between the radius-vectors is very simple:  

           O'OOO' in in in rrr  .     (1.7) 

 

 

 

 

 

 

  

7 Following tradition, an introduction to special relativity is included into the Classical Electrodynamics (“EM”) 
part of these notes. The relativistic effects are small if all particles velocities are much lower than the speed of 
light, c  3.00108 m/s, and all distances are much larger then the system’s Schwarzschild radius rs  2Gm/c2, 
where G  6.6710-11 SI units (m3/kgs) is the Newtonian gravity constant, and m is system’s mass. (More exact 
values of c,  G, and some other physical constants may be found in appendix CA: Selected Physical Constants.) 

Fig. 1.2. Coordinate transfer between two 
reference frames.
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 If the frames move versus each other by translation only (no mutual rotation!), similar relations 
are valid for velocity and acceleration as well: 

          O'OOO' in in in vvv  ,     (1.8) 

          O'OOO' in in in aaa  .     (1.9) 

 In the case of mutual rotation of the reference frames, notions like vOin O’  are not well defined. 
(Indeed, different points of a rigid body connected to frame O may have different velocities in frame 
O’.) As a result, the transfer laws for velocities and accelerations are more complex than those given by 
Eqs. (8) and (9). It will be more natural for me to discuss them in the end of Chapter 5 that is devoted to 
rigid body motion. 

 (v) The particle: a localized physical object whose size is negligible, and shape unimportant for 
the given problem. Note that the last qualification is extremely important. For example, the size and 
shape of a Space Shuttle are not too important for the discussion of its orbital motion, but are paramount 
when its landing procedures are being developed. Since classical mechanics neglects the quantum 
mechanical uncertainties,8 particle’s position, at any particular instant t, may be identified with a single 
geometric point, i.e. one radius-vector r(t). Finding the laws of motion r(t) of all particles participating 
in the given problem is frequently considered the final goal of classical mechanics. 

 

1.3. Dynamics: Newton laws 

 Generally, the classical dynamics is fully described (in addition to the kinematic relations given 
above) by three Newton laws.9 In contrast to the impression some textbooks on theoretical physics try to 
create, these laws are experimental in nature, and cannot be derived from purely theoretical arguments.10 

 I am confident that the reader of these notes is already familiar with the Newton laws, in one or 
another formulation. Let me note only that in some formulations the 1st Newton law looks just as a 
particular case of the 2nd law - for the case of zero net force acting on a particle. In order to avoid this 
duplication, the 1st law may be formulated as the following postulate: 

- There  exists at least one reference frame, called inertial, in which any free particle (i.e. a 
particle isolated from the rest of the Universe) moves with v = const, i.e. with a = 0.  

According to Eq. (9), this postulate immediately means that there is also an infinite number of 
inertial frames, because all frames O’ moving without rotation or acceleration relative to the postulated 
inertial frame O (i.e. having aOin O’ = 0) are also inertial. 

8 This approximation is legitimate, crudely, when the product of the coordinate and momentum scales of the 
particle motion is much larger than the Planck’s constant   1.05410-34 Js. A more exact formulation may be 
found, e.g., in the Quantum Mechanics (“QM”) part of these note series.  
9 Due to the genius of Sir Isaac Newton, these laws were formulated as early as in 1687, far ahead of the science 
of that time. 
10 Some laws of Nature (including the Newton laws) may be derived from certain more general postulates, such as 
the Hamilton (or “least action”) principle - see Sec. 10.2 below. Note, however, that such derivations are only 
acceptable because all known corollaries of the postulates comply with all known experimental results. 

1st Newton  
law 
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 On the other hand, the 2nd and 3rd Newton laws may be postulated together in the following 
elegant way. Each particle, say number k, may be characterized by a scalar constant (called mass mk), 
such that at any interaction of N particles (isolated from the rest of the Universe), in any inertial system, 

            const. 
1




N

k
kkm vP      (1.10) 

(Each component of this sum,  

        ,kkk m vp         (1.11) 

is called the mechanical momentum of the corresponding particle, and the whole sum P, the total 
momentum of the system.)  

 Let us apply this postulate to just two interacting particles. Differentiating Eq. (10), written for 
this case, over time, we get 

           .21 pp          (1.12) 

Let us give the derivative 1p  (i.e., a vector) the name of force F1 excerted on particle 1. In our current 
case, when the only possible source of force is particle 2, the force may be denoted as F12. Similarly, 

221 pF  , so that we get the 3rd Newton law 

           2112 FF  .      (1.13) 

 Now, returning to the general case of several interacting particles, we see that an additional (but 
very natural) assumption that all partial forces Fkk’ acting on particle k add up as vectors, leads to the 
general form of the 2nd Newton law11 

        k
kk

kkkkkm FFpa  
'

' ,     (1.14) 

that allows a clear interpretation of the mass as a measure of particle’s inertia. 

 As a matter of principle, if the dependence of all pair forces Fkk’ of particle positions (and 
generally maybe of time as well) is known, Eq. (14) augmented with kinematic relations (4) and (5), 
allows the calculation of the laws of motion rk(t) of all particles of the system. For example, for one 
particle the 2nd law (14) gives the ordinary differential equation of the second order, 

       ),( tm rFr  ,      (1.15) 

that may be integrated – either analytically or numerically.  

For certain cases, this is very simple. As an elementary example, the Newton’s gravity field 

                RF
3R

mm'
G      (1.16a) 

(where R  r – r’ is the distance between particles of masses m and m’)12, is virtually uniform and may 
be approximated as 

11 Of course, for composite bodies of varying mass (e.g., rockets emitting jets, see Problem 11), momentum’s 
derivative may differ from ma. 

Total 
momentum  

and its 
conservation 

 

Particle’s 
momentum 

3rd Newton 
 law 

2nd Newton 
 law 

Newton’s 
gravity law 



Essential Graduate Physics       CM: Classical Mechanics    

Chapter 1  Page 6 of 14 

           ,gF m       (1.16b) 

with the vector g  (Gm’/r’3)r’ being constant, for local, relatively small-scale motions, with r << r’.13 
As a result, m in Eq. (15) cancels, it is reduced to just gr  , and may be easily integrated twice: 

       ),0()0( )()(
0

vgvgvr   tdt'tt
t

     (1.17) 

      )0()0(
2

)0( )()(
2

0

rvgrvr   t
t

dt't't
t

 ,   (1.18) 

thus giving the full solution of all those undergraduate problems on the projectile motion, which should 
be so familiar to the reader. 

 All this looks (and indeed is) very simple, but in most other cases leads to more complex 
calculations. As an example, let us consider another simple problem: a bead of mass m sliding, without 
friction, along a round ring of radius R in a gravity field obeying Eq. (16b) – see Fig. 3.  

 

 

 

 

 

 

 

  

 Suppose we are only interested in bead’s velocity v in the lowest point, after it has been dropped 
from the rest at the rightmost position. If we want to solve this problem using only the Newton laws, we 
have to do the following steps: 

 (i) consider the bead in an arbitrary intermediate position on a ring, described, for example by 
the angle θ shown in Fig. 3; 
 (ii) draw all the forces acting on the particle - in our current case, the gravity force mg and the 
reaction force N exerted by the ring; 

12 Note that the fact that the masses participating in Eqs. (14) and (16) are equal, the so-called weak equivalence 
principle, is highly nontrivial, but has been verified experimentally to the relative accuracy of at least 10-13. Due 
to its conceptual significance of the principle, new space experiments, such as MISCROSCOPE 
(http://smsc.cnes.fr/MICROSCOPE/), are being planned for a substantial, nearly 100-fold accuracy improvement. 
13 Of course, the most important particular case of Eq. (1.16b) is the motion of objects near Earth’s surface. In this 
case, using the fact that (1.16a) remains valid for the gravity field created by a heavy sphere, we get g = GME/RE

2, 
where ME and RE are the Earth mass and radius. Plugging in their values, ME  5.971024 kg, RE  6.37106 m, we 
get g  9.82 m/s2. The effective value of g varies from 9.78 to 9.83 m/s2 at various locations on Earth’s surface 
(due to the deviations of Earth’s shape from a sphere, and the location-dependent effect of the centrifugal “inertial 
force” – see Sec. 6.5 below), with an average value of g  9.807 m/s2 . 

Fig. 1.3. Bead moving on a vertical ring. 
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 (iii) write the 2nd Newton law for two nonvanishing components of the bead acceleration, say for 
its vertical  and horizontal components ax and ay; 
 (iv) recognize that in the absence of friction, the force N should be normal to the ring, so that we 
can use two additional equations, Nx = -N sin  and Ny = N cos ; 
 (v) eliminate unknown variables N, Nx, and Ny from the resulting system of four equations, thus 
getting a single second-order differential equation for one variable, for example ; 
 (vi) integrate this equation once to get the expression relating the velocity   and the angle  ; 
and, finally, 
 (vii) using our specific initial condition ( 0 at 2/  ), find the final velocity as Rv   at 

0 . 

 All this is very much doable, but please agree that the procedure it too cumbersome for such a 
simple problem. Moreover, in many other cases even writing equations of motion along relevant 
coordinates is very complex, and any help the general theory may provide is highly valuable. In many 
cases, such help is given by conservation laws; let us review the most general of them. 

 

1.4. Conservation laws 

 (i) Energy conservation is arguably the most general law of physics, but in mechanics it takes a 
more humble form of mechanical energy conservation that has limited applicability. To derive it, we 
first have to define the kinetic energy of a particle as 

          2

2
v

m
T  ,        (1.19) 

and then recast its differential as14 

       .
22

2 r
prv

vvvv d
dt

d

dt

dd
mdm

m
dv

m
ddT 









 






   (1.20) 

Now plugging in the momentum’s derivative from the 2nd Newton law, dp/dt = F, where F is the full 
force acting on the particle, we get relation dT = Fdr. Its integration along particle’s trajectory between 
some points A and B gives the relation that is sometimes called the work-energy principle: 

      
B

A

AB dTTT rFrr )()(Δ  ,    (1.21) 

where the integral in the right-hand part is called the work of the force F on the path from A to B. 

 The further step may be made only for potential (also called “conservative”) forces that may be 
presented as (minus) gradients of some scalar function U(r), called the potential energy.15 The vector 
operator  (called either del or nabla) of spatial differentiation16 allows a very compact expression of 
this fact: 

14 Symbol ab denotes the scalar (or “dot-”) product of vectors a and b - see, e.g., MA Eq. (7.1). 
15 Note that because of its definition via the gradient, the potential energy is only defined to an arbitrary additive 
constant.  
16 Its basic properties are listed in MA Sec. 8. 
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         UF .      (1.22) 

For example, for the uniform gravity field (16b), 

                const,  mghU      (1.23) 

where h is the vertical coordinate directed “up” - opposite to the direction of the vector g.  

 Integrating the tangential component F of the vector F, given by Eq. (22), along an arbitrary 
path connecting points A and B, we get 

            )()( BA

B

A

B

A

UUddrF rrrF    ,    (1.24) 

i.e. work of potential forces may be presented as the difference of values of function U(r) in the initial 
and final point of the path. (Note that according to Eq. (24), work of a potential force on any closed 
trajectory, with rA = rB, is zero.) 

 Now returning to Eq. (21) and comparing it with Eq. (24), we see that 

     )()()()( BAAB UUTT rrrr  ,    (1.25) 

so that the total mechanical energy E, defined as 

         UTE  ,      (1.26) 

is indeed conserved: 

               )()( BA EE rr  ,     (1.27) 

but for conservative forces only. (Non-conservative forces, e.g., friction, typically transfer energy from 
the mechanical form into some other form, e.g., heat.) 

 The mechanical energy conservation allows us to return for a second to the problem shown in 
Fig. 3 and solve it in one shot by writing Eq. (27) for the initial and final points:17 

      .0
2

0 2  v
m

mgR      (1.28) 

Solving Eq. (28) for v immediately gives us the desired answer. Let me hope that the reader agrees that 
this way of problem solution is much simpler, and I have got his or her attention to discuss other 
conservation laws – which may be equally effective. 

 (ii) Momentum. Actually, the conservation of the full momentum of any system of particles 
isolated from the rest of the world, has already been discussed and may serve as the basic postulate of 
classical dynamics – see Eq. (10). In the case of one free particle the law is reduced to a trivial result p = 
const, i.e. v = const. If the system of N particles is affected by external forces F(ext), we may write   

               



N

k
kkkk

1
'

)(ext FFF .     (1.29) 

17 Here the arbitrary constant in Eq. (32) is chosen so that the potential energy is zero in the final point. 

Potential 
energy 

Total 
mechanical 
energy 

Mechanical 
energy 
conservation 



Essential Graduate Physics       CM: Classical Mechanics    

Chapter 1  Page 9 of 14 

If we sum up the resulting Eqs. (14) for all particles of the system then, due to the 3rd Newton law (13), 
the contributions of all internal forces to this double sum in the right-hand part cancel, and we get the 
equation 

           ,  where,
1

(ext))(ext)( 



N

k
k

ext FFFP      (1.30) 

which tells us that the translational motion of the system as the whole is similar to that of a single 
particle, under the effect of the net external force F(ext). As a simple sanity check, if the external forces 
have a zero sum, we return to postulate (10). Just one reminder: Eq. (30), just as its precursor Eq. (14),  
is only valid in an inertial reference frame. 

 (iii) Angular momentum of a particle18 is defined as the following vector: 

          ,prL        (1.31) 

where ab means the vector (or “cross-“) product of the vector operands.19 Now, differentiating Eq. (31) 
over time, we get 

      .prprL        (1.32) 

In the first product, r is just the velocity vector v which is parallel to the particle momentum p = mv, so 
that this product vanishes, since the vector product of any two parallel vectors is zero. In the second 
product, p  equals the full force F acting on the particle, so that Eq. (32) is reduced to 

                      ,τL        (1.33) 

where vector 

          ,Frτ        (1.34) 

is called the torque of force F. (Note that the torque is evidently reference-frame specific - and again, 
the frame has to be inertial for Eq. (33) to be valid.) For an important particular case of  a central force 
F that is parallel to the radius vector r of a particle (as measured from the force source point), the torque 
vanishes, so that (in that particular reference frame only!) the angular momentum is conserved: 

          const. L       (1.35) 

 For a system of N particles, the total angular momentum is naturally defined as   

          .
1




N

k
kLL       (1.36) 

Differentiating this equation over time, using Eq. (33) for each ,kL  and again partitioning each force in 

a accordance with Eq. (29), we get 

18 Here we imply that the internal motions of the particle, including its rotation about its own axis, are negligible. 
(Otherwise it could not be represented by a geometrical point, as was postulated in Sec. 1.) For a body with 
substantial rotation (see Chapter 6 below), vector L retains its definition (32), but is only a part of the total 
angular momentum and is called the orbital momentum – even if the particle does not move along a closed orbit. 
19 See, e.g., MA Eq. (7.3). 
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          .       where,
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kkk FrττFrL    (1.37) 

The first (double) sum may be always divided into pairs of the type (rkFkk’ + rk’Fk’k). With a natural 
assumption of the central forces (Fkk’  rk – rk’), each of these  pairs equals zero. Indeed, in this case both 
components of the pair are vectors perpendicular to the plane passed through positions of both particles 
and the reference frame origin, i.e. to the plane of drawing of Fig. 4. Also, due to the 3rd Newton law 
(13) the two forces are equal and opposite, and the magnitude of each term in the sum may be presented 
as Fkk’hkk’, with equal “lever arms” hkk’ = hk’k. As a result, each sum (rkFkk’ + rk’Fk’k), and hence the 
whole double sum in Eq. (37) vanish, and it is reduced to a very simple result, 

          (ext)τL  ,      (1.38) 

that is similar to Eq. (33) for a single particle, and is the angular analog of Eq. (30). In particular, Eq. 
(38) shows that if the full external torque (ext) vanishes by some reason (e.g., if the system of particles is 
isolated from the rest of the Universe), the conservation law (35) is valid for the full angular momentum 
L, even if its individual components Lk are not conserved due to inter-particle interactions. 

 

 

 

 

 

 

 

 

  From the mathematical point of view, most conservation laws present the first integrals of 
motion which sometimes liberate us from the necessity to integrate the second-order differential 
equations of motion, following from the Newton laws, twice. 

 

1.5. Potential energy and equilibrium 

 Another important role of the potential energy U, especially for dissipative systems whose total 
mechanical energy E is not conserved because it may be drained to the environment, is finding the 
positions of equilibrium (sometimes called the fixed points of the system under analysis) and analyzing 
their stability with respect to small perturbations. For a single particle, this is very simple: force (22) 
vanishes at each extremum (minimum or maximum) of the potential energy.20 Of those fixed points, 
only the minimums of U(r) are stable – see Sec. 3.2 below for a discussion of this point.  

20 Assuming that the additional, non-conservative forces (such as viscosity) responsible for the mechanical energy 
drain, vanish at equilibrium – as they typically do. (Static friction is one counter-example.) 
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Fig. 1.4. Internal and external forces, and 
the internal torque cancellation in a system 
of two particles. 
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 A slightly more subtle case is a particle with potential energy U(r), subjected to an additional 
external force F(ext)(r). In this case, the stable equilibrium is reached at the minimum of not function 
U(r), but of what is sometimes called the Gibbs potential energy 

               ,ext
G  

r
rrFrr 'd'UU     (1.39) 

which is defined, just as U(r) is, to an arbitrary constant.  The proof of Eq. (39) is very simple: in an 
extremum of this function, the total force acting on the particle, 

                G
extexttot U'd'U   

r
rrFFFF ,   (1.40) 

vanishes, as it should.21 For the simplest (and very frequent) case  of the applied force independent on 
particle’s position, the Gibbs potential energy is just 

           constext
G  rFrr UU .    (1.41) 

 This is all very straightforward, but since the notion of UG  is not well known to some students, 22 
let me offer a very simple example. Consider a 1D deformation of the usual elastic spring providing the 
returning force (-x), where x is the deviation from spring’s equilibrium. In order for the force to comply 
with Eq. (22), its potential energy should equal to U = x2/2 + const, so that its minimum corresponds to 
x = 0. This works fine until the spring comes under effect of a nonvanishing external force F, say 
independent of x. Then the equilibrium deformation of the spring, x0 = F/, evidently corresponds not to 
the minimum of U but rather to that of the Gibbs potential energy (41): UG = U – Fx = x2/2 - Fx + 
const. 

  

1.6. OK, we’ve got it - can we go home now? 

 Not yet. In many cases the conservation laws discussed above provide little help, even in 
systems without dissipation. Consider for example a generalization of the bead-on-the-ring problem 
shown in Fig. 3, in which the ring is rotated by external forces, with a constant angular velocity  , 
about its vertical diameter (Fig. 5).23 In this problem (to which I will repeatedly return below, using it as 

21 Physically, the difference UG – U specified by Eq. (39) may be considered the r-dependent part of the potential 
energy U(ext) of the external system responsible for the force F(ext), so that UG is just the total potential energy U + 
U(ext), besides the part of U(ext) which does not depend on r and hence is irrelevant for the fixed point analysis. 
According to the 3rd Newton law, the force exerted by the particle  on the external system equals (-F(ext)), so that 
its work (and hence the change of U(ext) due to the change of r) is given by the second term in the right-hand part 
of Eq. (39).  Thus the condition of equilibrium, -UG = 0, is just the condition of an extremum of the total 
potential energy,  U + U(ext), of the two interacting systems. 
22 Unfortunately, in most physics teaching plans the introduction of UG is postponed until a course of statistical 
mechanics and/or thermodynamics - where it is a part of the Gibbs free energy, in contrast to U, which is a part of 
the Helmholtz free energy - see, e.g., Sec. 1.4 of the Statistical Mechanics (“SM”) part of my notes. However, the 
reader should agree that the difference between UG and U, and hence that between the Gibbs and Helmholtz free 
energies, has nothing to do with statistics or thermal motion, and belongs to the basic mechanics. 
23 This is essentially a simplified model of the famous mechanical control device called the centrifugal (or 
“flyball, or “centrifugal flyball”) governor – see, e.g., http://en.wikipedia.org/wiki/Centrifugal_governor. 
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an analytical mechanics “testbed”), none of the three conservation laws listed in the last section, holds. 
In particular, bead’s energy,  

      mghv
m

E  2

2
,     (1.42) 

is not constant, because the external forces rotating the ring may change it. Of course, we still can solve 
the problem using the Newton laws, but this is even more complex than for the above case of the ring at 
rest, in particular because the force N exerted on the bead by the ring now may have three rather than 
two Cartesian components, which are not simply related. One can readily see that if we could exclude 
the so-called reaction forces such as N, that ensure external constraints of the particle motion, in 
advance, that would help a lot. Such an exclusion may be provided by analytical mechanics, in 
particular its Lagrangian formulation, which will be discussed in the next chapter. 

 

 

 

 

   

  

 

 An even more important motivation for analytical mechanics is given by dynamics of “non-
mechanical” systems, for example, of the electromagnetic field – possibly interacting with charged 
particles, conducting bodies, etc. In many such systems, the easiest (and sometimes the only practicable) 
way to find the equations of motion is to derive then from the Lagrangian or Hamiltonian function of the 
system. In particular, the Hamiltonian formulation of the analytical mechanics (to be discussed in 
Chapter 10) offers a direct pathway to deriving Hamiltonian operators of systems, which is the standard 
entry point for analysis of their quantum-mechanical properties. 

 

1.7. Self-test problems 
 1.1. A bicycle, ridden with velocity v on a wet pavement, has no mudguards on its wheels. How 
far behind should the following biker ride to avoid being splashed over? Neglect the air resistance 
effects. 
 
 1.2. Two round disks of radius R are firmly connected with a coaxial 
cylinder of a smaller radius r, and a thread is wound on the resulting spool. 
The spool is placed on a horizontal surface, and thread’s end is being pooled 
out at angle  - see Fig. on the right. Assuming that the spool does not slip on 
the surface, what direction would it roll? 
 
  

(Sometimes the device is called the “Watt’s governor”, after the famous engineer J. Watts who used it in 1788 in 
one of his first steam engines, though it had been used in European windmills at least since the 1600s.) 

Fig. 1.5. Bead sliding along a rotating ring. 
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 1.3. Calculate the equilibrium shape of a flexible, heavy rope of 
length l, with a constant mass  per unit length, if it is hung in a 
uniform gravity field between two points separated by a horizontal 
distance d – see Fig. on the right.  
 
 
 1.4. A uniform, long, thin bar is placed horizontally on two similar round cylinders rotating 
toward each other with the same angular velocity  and displaced 
by distance d – see Fig. on the right. Calculate the laws of relatively 
slow horizontal motions of the bar within the plane of drawing for 
both  possible directions of cylinder rotation, assuming that the 
friction force between the slipping surfaces of the bar and each 
cylinder obeys the usual simple law F = N, where N is the normal 
pressure force between them, and   is a constant (velocity-
independent) coefficient. Formulate the condition of validity of your result.  
 
  
 1.5. A small block slides, without friction, down a smooth slide 
that ends with a round loop of radius R – see Fig. on the right. What 
smallest initial height h allows the block to make its way around the 
loop without dropping from the slide, if it is launched with negligible 
initial velocity? 
 
 
 1.6. A satellite of mass m is being launched from height H over the 
surface of a spherical planet with radius R and mass M >> m - see Fig. on 
the right. Find the range of initial velocities v0 (normal to the radius) 
providing closed orbits above the planet’s surface. 
  
 
  
 1.7. Prove that the thin-uniform-disk model of a galaxy describes 
small harmonic oscillations of stars inside it along the direction normal to the disk, and calculate the 
frequency of these oscillations in terms of the Newton’s gravitational constant G and the average density 
 of the star/dust matter of the galaxy. 
 
 
 1.8. Derive the differential equations of motion for small 
oscillations of two similar pendula coupled with a spring (see Fig. on the 
right), within the vertical plane. Assume that at the vertical position of both 
pendula, the spring is not stretched (L = 0). 
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 1.9. One of popular futuristic concepts of travel is  digging a straight railway tunnel through the 
Earth and letting a train go through it, without initial velocity - driven only by gravity. Calculate train’s 
travel time through such a tunnel, assuming that the Earth’s density  is constant, and neglecting the 
friction and planet rotation effects. 
 
 1.10. A  small bead of mass m may slide, without friction, 
along a light string, stretched with a force T >> mg between two 
points separated by a horizontal distance 2d – see Fig. on the right. 
Calculate  the frequency of horizontal oscillations of the bead about 
its equilibrium position.    
 
 1.11. Find the acceleration of a rocket due to the working jet motor, and explore the resulting 
equation of rocket’s motion. 

 Hint: For the sake of simplicity, you may consider a 1D motion. 
 
 1.12. Prove the following virial theorem:24 for a set of N particles performing a periodic motion, 





N

k
kkT

12

1
rF , 

where (as everywhere in these notes), the top bar means time averaging – in this case over the motion 
period. What does the virial theorem say about: 

 (i) the 1D motion of a particle in a confining potential U(x) = ax2s, with a > 0 and s > 0, and  
 (ii) the orbital motion of a particle moving in a central potential U(r) = - C/r? 

 Hint: Explore the time derivative of the following scalar function of time:   



N

k
kktG

1

rp . 

24 It was first stated by R. Clausius in 1870.  
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Chapter 2. Lagrangian Formalism 

The goal of this chapter is to describe the Lagrangian formulation of analytical mechanics, which is 
extremely useful  for obtaining the differential equations of motion (and sometimes their first integrals) 
not only for mechanical systems with holonomic constraints, but also other dynamic systems. 

 

2.1. Lagrange equations 

 In many cases, the constraints imposed on 3D motion of a system of N particles may be 
described by N vector (i.e. 3N scalar) algebraic equations 

       ,1),,,...,,...,,( 21 Nktqqqq Jjkk  rr     (2.1) 

where qj are certain generalized coordinates which (together with constraints) completely define the 
system position, and J ≤ 3N  is the number of the actual degrees of freedom. The constraints that allow 
such description are called holonomic. 1  

 For example, for our testbed, bead-on-rotating-ring problem (see Fig. 1.5 and Fig. 1 below) J  = 
1, because taking into account the constraints imposed by the ring, bead’s position may be uniquely 
determined by just one generalized coordinate – for example, its polar angle  . Indeed, selecting the 
reference frame as shown in Fig. 1 and using the well-known formulas for the spherical coordinates,2 we 
see that in this case Eq. (1) in Cartesian coordinates has the form 

                const  where,cos,sinsin,cossin,,  tRRRzyx r , (2.2) 

where the constant depends on the exact selection of axes x and y and the time origin. Since (t) is a 
fixed function of time, and R is a fixed constant, the position of particle in space at any instant t is 
indeed completely determined by the value of its only generalized coordinate . Note that the 
dimensionality of the generalized coordinate may be different from that of Cartesian coordinates 
(meters)! 

 

 

 

 

 

 

 

1 Possibly, the simplest example of a non-holonomic constraint is a set of inequalities describing the hard walls 
confining the motion of particles in a closed volume. Non-holonomic constraints are better dealt with other 
methods, e.g., by imposing proper boundary conditions on the (otherwise unconstrained) motion. 
2 See, e.g., MA Eq. (10.7). 

 

Fig. 2.1. Bead on a rotating ring as a 
example of the system with just one degree 
of freedom: J = 1. 
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 Now returning to the general case of J degrees of freedom, let us consider a set of small 
variations (alternatively called “virtual displacements”) qj allowed by the constraints. Virtual 
displacements differ from the actual small displacements (described by differentials dqj proportional to 
time variation dt) in that qj describes not the system’s motion as such, but rather its possible variation – 
see Fig. 1.  

 

 

 

 

 

  

 

 Generally, operations with variations are the subject of a special field of mathematics, the 
calculus of variations.3 However, the only math background necessary for our current purposes is the 
understanding that operations with variations are similar to those with the usual differentials, though we 
need to watch carefully what each variable is a function of. For example, if we consider the variation of 
the radius-vectors (1), at a fixed time t, as a function of independent variations qj, we may use the usual  
formula for the differentiation of a function of several arguments:4 

      .j
j j

k
k q

q
  




r
r      (2.3) 

 Now let us break the force acting upon the k-th particle into two parts: the frictionless, 
constraining part Nk of the reaction force and the remaining part Fk – including the force components 
from other sources and possibly the friction part of the reaction force. Then the 2nd Newton law for k-th 
particle of the system may be presented as 

      .kkkkm NFv        (2.4) 

Since any variation of the motion has to be allowed by the constraints, its 3N-dimensional vector with N 
3D-vector components rk has to be perpendicular to the 3N-dimensional vector of the constraining 
forces, also with N 3D-vector components Nk. (For example, for the problem shown in Fig. 2.1, the 
virtual displacement vector rk may be directed only along the ring, while the constraining force N, 
exerted by the ring, has to be perpendicular to that direction.) This condition may be expressed as 

      0
k

kk rN  ,     (2.5) 

3 For a concise introduction to the field see, e.g., I. Gelfand and S. Fomin, Calculus of Variations, Dover, 2000 or 
L. Elsgolc, Calculus of Variations,  Dover, 2007. An even shorter review may be found in Chapter 17 of Arfken 
and Weber - see MA Sec. 16. For a more detailed discussion, using many examples from physics, see R. 
Weinstock , Calculus of Variations, Dover, 2007. 
4 See, e.g., MA Eq. (4.2). In all formulas of this section, all summations over index j are from 1 to J, while those 
over the particle number k are from 1 to N. 

Fig. 2.2. Actual displacement dqj vs. the 
virtual one (i.e. variation) qj. 

actual 
motion 
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where the scalar product of 3N-dimensional vectors is defined exactly as that of 3D vectors, i.e. as the 
sum of the products of the corresponding components of the operands. The substitution of Eq. (4) into 
Eq. (5) results in the so-called D’Alembert principle:5 

         0)( 
k

kkkkm rFv  .     (2.6) 

Now we may plug Eq. (3) into Eq. (6) to get 

              0















  j

j k
j

j

k
kk q

q
m F

r
v     (2.7) 

where scalars Fj , called generalized forces, are defined as follows:6 

                . 



k j

k
kj q

r
FF      (2.8) 

 Now we may use the standard argument of the calculus of variations: in order for the left-hand 
part of Eq. (7) to be zero for an arbitrary selection of independent variations qj, the expressions in the 
curly brackets, for every j, should equal zero. This gives us a set of J equations 

0




k
j

j

k
kk q

m F
r

v ;     (2.9)

let us present them in a more convenient form. First, using the differentiation by parts to calculate the 
following time derivative:  

          ,
































j

k
k

j

k
k

j

k
k qdt

d

qqdt

d r
v

r
v

r
v      (2.10) 

we may notice that the first term in the right-hand part is exactly the scalar product in the first term of 
Eq. (9).  

Second, let us use another key fact of the calculus of variations (which is, essentially, evident 
from  Fig. 3): the differentiation of a variable over time and over the generalized coordinate variation (at 
fixed time) are interchangeable operations.  

 

 

 

 

 

5 It had been spelled out in a 1743 work by J.-B. le Rond d’Alembert, though the core of this result has been 
traced to an earlier work by J. Bernoulli (1667 – 1748). 
6 Note that since the dimensionality of generalized coordinates may be arbitrary, that of generalized forces may 
also differ from the newton. 

D’Alembert 
principle 

 

Fig. 2.3. Variation of the differential (of any 
function f) equals the differential of its 
variation. 
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As a result, in the second term on the right-hand part of Eq. (10) we may write 

     .
j
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jj

k

qdt

d

qqdt
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 vrr

    (2.11) 

 Finally, let us differentiate of Eq. (1) over time: 

      
t

q
qdt

d k
j

j j

kk
k 







  rrr
v  .     (2.12) 

This equation shows that particle velocities vk may be considered as linear functions of the generalized 
velocities jq  considered as independent variables, with proportionality coefficients 

        .
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      (2.13) 

 With the account of Eqs. (10), (11), and (13), Eq. (9) turns into 

             0
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    (2.14) 

This result may be further simplified by making, for the total kinetic energy of the system, 

     k
k

kk
k

k
k mv

m
T vv   2

1

2
2 ,    (2.15) 

the same commitment as for vk, i.e. considering T a function of not only the generalized coordinates qj 
and time t, but also of the generalized velocities iq  - as variables independent of qj and t. Then we may 

calculate the partial derivatives of T as 

             ,,  
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T


v
v

v
v     (2.16) 

and notice that they are exactly the two sums participating in Eq. (14). As a result, we get a system of J 
Lagrange equations,7  

                    Jj
q

T

q

T

dt

d
j

jj

,...,2,1for ,0 







F


.    (2.17) 

Their big advantage over the initial Newton law equations (4) is that the Lagrange equations do not 
include the constraining forces Nk. 

 This is as far as we can go for arbitrary forces. However, if all the forces may be expressed in the 
form similar but somewhat more general than Eq. (1.31), Fk = -kU(r1, r2,…,rN, t), where U is the 

7 They were derived in 1788 by J.-L. Lagrange who pioneered the whole field of analytical mechanics - not to 
mention his key contributions to number theory and celestial mechanics. 

General 
Lagrange 
equations 
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effective potential energy of the system,8 and sign k denotes differentiation over coordinates of k-th 
particle, we may recast Eq. (8) into a simpler form:  

        .
jk j
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FF   (2.18) 

Since we assume that U depends only on particle coordinates (and possibly time), but not velocities, 
,0/  jqU   with the substitution of Eq. (18), the Lagrange equation (17) may be presented in its 

canonical form 

          .  where,0 UTL
q

L

q

L

dt

d

jj










    (2.19a) 

where L is called the Lagrangian function (or just the “Lagrangian”), defined as 

         UTL  .      (2.19b) 

It is crucial to distinguish this function from the mechanical energy (1.26), E = T + U. 

 Using the Lagrangian formalism in practice, the reader should always remember that: 

 (i) Each system has only one Lagrange function L, but is described by J 1 Lagrange equations 
of motion (for j = 1, 2,…, J). 

 (ii) Differentiating T, we have to consider the generalized velocities jq  as independent variables, 

ignoring the fact they are actually the time derivatives of jq . 

 

2.2. Examples 

 As the first, simplest example, consider a particle constrained to move along one axis (say, x): 

                  ).,(,
2

2 txUUx
m

T        (2.20) 

In this case, it is natural to consider x as the (only) generalized coordinate, and x  as the generalized 
velocity, so that 

       ).,(
2

2 txUx
m

UTL        (2.21) 

Considering x  an independent variable, we get xmxL   / , and xUxL  // , so that the 
Lagrange equation of motion (only one equation in this case of the single degree of freedom!) yields 

            ,0











x

U
xm

dt

d
      (2.22) 

8 Note that due to the possible time dependence of U, Eq. (17) does not mean that forces Fk have to be 
conservative – see the next section for more discussion. With this understanding, I will still use for function U the 
convenient name of “potential energy”. 

Canonical 
Lagrange 
equations 

Lagrangian 
function 

 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 2           Page 6 of 14 

evidently the same result as the x-component of the 2nd Newton law with Fx = -U/x. This is a good 
sanity check, but we see that the Lagrange formalism does not provide too much advantage in this 
particular case. 

 This advantage is, however, evident for our testbed problem – see Fig. 1. Indeed, taking the polar 
angle  for the (only) generalized coordinate,  we see that in this case the kinetic energy depends not 
only on the generalized velocity, but also on the generalized coordinate:9 

          
 

  .constcossin
2

const,cos-const,sin
2

2222

2222









mgRR
m

UTL

mgRmgzUR
m

T





  (2.23) 

Here it is especially important to remember that at substantiating the Lagrange equation,   and   have 
to be treated as independent arguments of L, so that 

          ,sincossin, 222 
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    (2.24) 

giving us the following equation of motion: 

                 .0sincossin222   mgRmRmR
dt

d     (2.25) 

 As a sanity check, at  = 0, Eq. (25) is reduced to the correct equation of the usual pendulum: 

           
2/1

2 Ω  where,0sinΩ 







R

g .    (2.26) 

We will explore the full dynamic equation (25) in more detail later, but please note how simple its 
derivation was - in comparison with writing the Newton laws and then excluding the reaction force. 

 Next, though the Lagrangian formalism was derived from the Newton law for mechanical 
systems, the resulting equations (19) are applicable to other dynamic systems, especially those for which 
the kinetic and potential energies may be readily expressed via some generalized coordinates. As the 
simplest example, consider the well-known connection (Fig. 4) of a capacitor with capacitance C to an 
inductive coil with self-inductance L.10 (Electrical engineers frequently call it the LC tank circuit.)  

 

 

 

 

9 This expression for ))(2/( 222 zyxmT    may be readily obtained either by the formal differentiation of Eq. 

(2) over time, or just by noticing that the velocity vector has two perpendicular components: one along the ring 

(with magnitude R ) and another one normal to the ring plane (with magnitude  sinR  - see Fig. 1). 
10 Let me hope that this traditional notation would not lead to the confusion between the inductance and the 
Lagrange function. 

Fig. 2.4. LC tank circuit. 
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 As the reader certainly knows, at relatively low frequencies we may use the so-called lumped-
circuit approximation, in which the total energy of the system as the sum of two components, the electric 
energy EC localized inside the capacitor, and the magnetic energy EL localized inside the inductance coil 

           .
2

,
2

22 LI
E

C

Q
E LC       (2.27) 

Since the electric current I through the coil and the electric charge Q on the capacitor are connected by 
the charge continuity equation dQ/dt = I (evident from Fig. 4), it is natural to declare the charge a 
generalized coordinate, and the current, the generalized velocity. With this choice, the electrostatic 
energy EC (Q) may be treated as the potential energy U of the system, and the magnetic energy EL(I), as 
its kinetic energy T. With this attribution, we get 

          ,,0,
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  (2.28) 

so that the Lagrange equation of motion is 

               0







C

Q
QL

dt

d  .     (2.29) 

 Note, however, that the above choice of the generalized coordinate and velocity is not unique. 
Instead, one can use as the generalized coordinate the magnetic flux  through  the inductive coil, 
related to the common voltage V across the circuit (Fig. 4) by Faraday’s induction law V = - d/dt. With 
this choice, (-V) becomes the generalized velocity, EL = 2/2L should be understood as the potential 
energy, and EC = CV2/2 treated as the kinetic energy. It is straightforward to verify that for this choice, 
the resulting Lagrange equation of motion is equivalent to Eq. (29). If both parameters of the circuit, L 
and C, are constant in time, Eq. (29) is just the harmonic oscillator equation similar to Eq. (1.1), and 
describes sinusoidal oscillations with frequency 

       
  2/10

1

LC
 .     (2.30) 

 This is of course a very well known result that may be derived in the more standard way by 
equating the voltage drops across the capacitor (V = Q/C) and the inductor (V = –LdI/dt = -Ld2Q/dt2). 
However, the Lagrangian approach is much more convenient for more complex systems, for example, 
for the description of electromagnetic field and its interaction with charged relativistic particles.11 

 

2.3. Hamiltonian function and energy 

 The canonical form (19) of the Lagrange equation has been derived using Eq. (18), which is 
formally similar to Eq. (1.22) for a potential force. Does this mean that the system described by Eq. (19) 
always conserves energy? Not necessarily, because the “potential energy” U, that participates in Eq. 
(18), may depend not only on the generalized coordinates, but on time as well. Let us start the analysis 
of this issue with the introduction of two new (and very important!) notions: the generalized momenta 
corresponding to each generalized coordinate qj,  

11 See, e.g., EM Sec. 9.8. 
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and the Hamiltonian function12 
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 In order to see whether the Hamiltonian function is conserved, let us differentiate its definition 
(32) over time: 
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If we want to make use of the Lagrange equation (19), the last derivative has to be calculated 
considering L as a function of independent arguments jq , jq , and t: 
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     (2.34) 

where the last term is the derivative of L as an explicit function of time. We see that the last term in the 
square brackets of Eq. (33) immediately cancels with the last term in the parentheses of Eq. (34). 
Moreover, using the Lagrange equation (19) for the first term in the square brackets of Eq. (33), we see 
that it cancels with the first term in the parentheses of Eq. (34). Thus we arrive at a very simple and 
important result: 

        .
t

L

dt

dH




       (2.35) 

The most important corollary of this formula is that if the Lagrangian function does not depend 
on time explicitly ( ),0/  tL the Hamiltonian function is an integral of motion:  

         const.H        (2.36) 

Let us see how it works, using the first two examples discussed in the previous section. For a 1D 
particle, definition (31) of the generalized momentum yields 

      mv
v

L
px 




 ,     (2.37) 

so that it coincides with the usual momentum - or rather with its x-component. According to Eq. (32), 
the Hamiltonian function for this case (with just one degree of freedom) is 

    Ux
m

Ux
m

xmLxpH 





  222

22
 ,   (2.38) 

12 It is sometimes called just the “Hamiltonian”, but it is advisable to use the full term “Hamiltonian function” in 
classical mechanics, in order to distinguish it from the Hamiltonian operator used in quantum mechanics. (Their 
relation will be discussed in Sec. 10.1.) 

Generalized 
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evolution 
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and coincides with particle’s mechanical energy E = T + U. Since the Lagrangian does not depend on 
time explicitly, both H and E are conserved.  

 However, it is not always that simple! Indeed, let us return again to our testbed problem (Fig. 1). 
In this case, the generalized momentum corresponding to the generalized coordinate   is 

               ,2





mR
L
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      (2.39) 

and Eq. (32) yields: 
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This means that (as soon as 0 ), the Hamiltonian function differs from the mechanical energy 

            constcossin
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UTE  .   (2.41) 

The difference, E - H = mR22sin2  (besides an inconsequential constant), may change at bead’s motion 
along the ring, so that although H is an integral of motion (since L/t = 0), energy E is not conserved.  

 Let us find out when do these two functions, E and H, coincide. In mathematics, there is a notion 
of a homogeneous function ,...),( 21 xxf of degree  , defined in the following way: for an arbitrary 
constant a , 

     ,...).,(,...),( 2121 xxfaaxaxf      (2.42) 

Such functions obey the following Euler theorem:13 

                 , 
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f       (2.43) 

that may be readily proven by differentiating both parts of Eq. (42) over a and then setting this 
parameter to the particular value a = 1. Now, consider the case when the kinetic energy is a quadratic 
form of all generalized velocities jq : 

      ,),...,,(
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with no other terms. It is evident that such T satisfies the definition of a homogeneous function of the 
velocities with  = 2,14 so that the Euler theorem (43) gives 
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13 This is just one of many theorems bearing the name of the mathematics genius L. Euler (1707-1783). 
14 Such functions are called quadratic-homogeneous. 
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But since U is independent of the generalized velocities, jj qTqL   // , and the left-hand part of 

Eq. (45) is exactly the first term in the definition (32) of the Hamiltonian function, so that in this case 

       .)(22 EUTUTTLTH      (2.46) 

 So, for the kinetic energy of the type (44), for example a free particle with the kinetic energy 
considered as a function of its Cartesian velocities, 

             222

2 zyx vvv
m

T  ,     (2.47) 

the notions of the Hamiltonian function and mechanical energy are identical. (Indeed, some textbooks, 
very regretfully, do not distinguish these notions at all!) However, as we have seen from our bead-on-
the-rotating-ring example, this is not always true. For that problem, the kinetic energy, in addition to the 
term proportional to 2 , has another, velocity-independent term – see the first of Eqs. (23) - and hence 
is not a quadratic-homogeneous function of the angular velocity.  

Thus, Eq. (36) expresses a new conservation law, generally different from that of the mechanical 
energy conservation. 

 

2.4. Other conservation laws 

 Looking at the Lagrange equation (19), we immediately see that if L  T – U as a whole is 
independent of some generalized coordinate qj, L/qj = 0,15 then the corresponding generalized 
momentum is an integral of motion:16 
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For example, for a 1D particle with Lagrangian (21), momentum px is conserved if the potential 
energy is constant (the x-component of force is zero) – of course. As a less obvious example, let us 
consider a 2D motion of a particle in the field of central forces. If we use polar coordinates r and   in 
the role of the generalized coordinates, the Lagrangian function,17 
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222 rUrr
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is independent of   and hence the corresponding generalized momentum,  
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 ,     (2.50) 

15 Such coordinates are frequently called cyclic, because in some cases (like in the second example considered 
below) they represent periodic coordinates such as angles. However, this terminology is misleading, because 
some “cyclic” coordinates (e.g., x in our first example) have nothing to do with rotation.  
16 This fact may be considered a particular case of a more general mathematical statement called the Noether 
theorem (named after its author, A. E. Nöther, sometimes called the “greatest woman mathematician ever lived”). 
For its discussion see, e.g., Sec. 13.7 in H. Goldstein et al., Classical Mechanics, 3rd ed. Addison Wesley, 2002. 
17 Note that here 2r is just the square of the scalar derivative r , rather than the square of vector r = v. 
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is conserved. This is just a particular (2D) case of the angular momentum conservation – see Eq. (1.24). 
Indeed, for the 2D motion within the [x, y] plane, the angular momentum vector,  

       

zmymxm

zyx
zyx



nnn

prL  ,     (2.51) 

has only one nonvanishing component, perpendicular to the motion plane: 

            ).()( xmyymxLz        (2.52) 

Differentiating the well-known relations between the polar and Cartesian coordinates, 

         ,sin,cos  ryrx       (2.53) 

over time, and plugging the result into Eq. (52), we see that .2
 pmrLz    

 Thus the Lagrangian formalism provides a powerful way of searching for non-evident integrals 
of motion. On the other hand, if such conserved quantity is evident or known a priori, it is helpful for 
the selection of the most appropriate generalized coordinates, giving the simplest Lagrange equations. 
For example, in the last problem, if we have known in advance that p had to be conserved, this could 
provide a motivation for using angle  as one of generalized coordinates. 

 

2.5. Exercise problems 

 In each of Problems 2.1-2.10: 
  (i) introduce a set of convenient generalized coordinate(s) qj of the system, 
  (ii) write down Lagrangian L as a function of ,j jq q , and (if appropriate) time, 

  (iii) write down the Lagrangian equation(s) of motion, 
  (iv) calculate the Hamiltonian function H; find out whether it is conserved, 
  (v) calculate energy E; is E = H?; is energy conserved? 
  (vi) any other evident integrals of motion? 

  

 2.1. Double pendulum – see Fig. on the right. Consider only the motion 
confined to a vertical plane containing the suspension point. 

 

 
  
 2.2. Stretchable pendulum (i.e. a mass hung on an elastic cord that exerts force F 
= -(l - l0), where  and l0 are positive constants), confined to a vertical plane: 
 
 
  
  

m g 

l 

m' g 

m 
l 

l' 
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 2.3. Fixed-length pendulum hanging from a horizontal support whose motion law 
x0(t) is fixed. (No vertical plane constraint here.) 
 
  
  
 2.4. A pendulum of mass m hung on another point mass m’ that may slide, 
without friction, along a straight horizontal rail (see Fig. on the right). Its motion is 
confined to the vertical plane that contains the rail.  
 

 
 2.5. A bead of mass m, sliding without friction along a light 
string stretched by fixed force T, between two horizontally displaced 
points – see Fig. on the right. Here, in contrast to the similar Problem 
1.10, string tension T  may be comparable with bead’s weight mg, and 
the motion is not restricted to the vertical plane. 
 
  
 2.6. A bead of mass m, sliding without friction along a light string of 
fixed length 2l, which is hung between two points, horizontally displaced by 
distance 2d < 2l – see Fig. on the right. As in the previous problem, the motion 
is not restricted to the vertical plane. 
 
  
 2.7. A block of mass m that can slide, without friction, along the 
inclined plane surface of a heavy wedge with mass m’. The wedge is free to 
move, also without friction, along a horizontal surface – see Fig. on the right. 
(Both motions are within the vertical plane containing the steepest slope line.) 

  
 
 2.8. The two-pendula system that was the subject of Problem 1.8 – 
see Fig. on the right. 
   
 
  
  
 2.9. A system of two similar, inductively-coupled LC 
circuits – see Fig. on the right. 
 
  

 
2.10.* A small Josephson junction, i.e. a system of two superconductors 

coupled by Cooper-pair tunneling through a thin insulating layer that separates 
them (see Fig. on the right). 

x0(t) 

g m 
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 Hints:   

 (i) At not very high frequencies (whose quantum  is lower than the binding energy 2 of the 
Cooper pairs), the Josephson effect may be described by coupling energy  

  constcosJ   EU , 

where constant EJ describes the coupling strength, and variable  (called the Josephson phase 
difference) is related to voltage V across the junction via the famous frequency-to-voltage relation 

   ,
2

V
e

dt

d





 

where e  1.610-19 C is the fundamental electric charge and   1.05410-34 Js is the Planck constant.18  
 (ii) The junction (as any system of two close conductors) has a substantial electric capacitance C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 More discussion of the Josephson effect and the physical sense of the variable  may be found, for example, in 
EM Sec. 6.4 and QM Secs. 2.3 and 2.8 of this lecture note series. 
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Chapter 3. A Few Simple Problems 

In this chapter, I will review the solutions of a few simple but very important problems of particle 
motion, that may be reduced to one dimension, including the famous “planetary” problem of two 
particles interacting via a spherically-symmetric potential. In the process, we will discuss several 
methods that will be useful for the analysis of more complex systems.  

   

3.1. One-dimensional and 1D-reducuble systems 

 If a particle is confined to motion along a straight line (say, axis x), its position, of course, is 
completely defined by this coordinate. In this case, as we already know, particle’s Lagrangian is given 
by Eq. (2.21): 

                  2

2
),,( x

m
xTtxUxTL   ,     (3.1) 

so that the Lagrange equation of motion (2.22) 

      
x

txU
xm





),(

      (3.2) 

is just the x-component of the 2nd Newton law.  

 It is convenient to discuss the dynamics of such really 1D systems in the same breath with that of 
effectively 1D systems whose position, due to holonomic constraints and/or conservation laws, is also 
fully determined by one generalized coordinate q, and whose Lagrangians may be presented in a form 
similar to Eq. (1): 

          2ef
efefef 2

),,()( q
m

TtqUqTL   ,    (3.3) 

where mef is some constant which may be considered as the effective mass of the system, and the 
function Uef its effective potential energy. In this case the Lagrange equation (2.19) describing the 
system dynamics has a form similar to Eq. (2): 

              .
),(ef

ef q

tqU
qm




      (3.4) 

 As an example, let us return again to our testbed system shown in Fig. 1.5. We have already seen 
that for that system, having one degree of freedom, the genuine kinetic energy T, expressed by the first 
of Eqs. (2.23), is not a quadratically-homogeneous function of the generalized velocity. However, the 
system’s Lagrangian (2.23) still may be presented in form (3), 

            ,const  cossin
22 efef

22222 UTmgRR
m

R
m

L     (3.5) 

if we take 

   .const  cossin
2

,
2

222
ef

22
ef   mgRR

m
UR

m
T    (3.6)

Effectively- 
1D system 
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In this new partitioning of function L, which is legitimate because Uef depends only on the generalized 
coordinate , but not on the corresponding generalized velocity, Tef includes only a part of the full 
kinetic energy T of the bead, while Uef includes not only the real potential energy U of the bead in the 
gravity field, but also an additional term related to ring rotation. (As we will see in Sec. 6.6, this term 
may be interpreted as the effective potential energy due to the inertial  centrifugal “force”.) 

 Returning to the general case of effectively 1D systems with Lagrangian (3), let us calculate their 
Hamiltonian function, using its definition (2.32): 

    .)( efefefef
2

ef UTUTqmLq
q

L
H 




 


   (3.7) 

So, H is expressed via Tef and Uef exactly as the mechanical energy E is expressed via genuine T and U. 

 

3.2. Equilibrium and stability 

 Autonomous systems are defined as the dynamic systems whose equations of motion do not 
depend on time. For 1D (and effectively 1D) systems obeying Eq. (4), this means that their function Uef, 
and hence the Lagrangian function (5) should not depend on time explicitly. According to Eqs. (2.35), in 
such systems the Hamiltonian function (7), i.e. the sum Tef + Uef, is an integral of motion. However, be 
careful! This may not be true for system’s mechanical energy E; for example, as we already know from 
Sec. 2.2, for our testbed problem, with the generalized coordinate q =  (Fig. 2.1), H  E. 

 According to Eq. (4), an autonomous system, at appropriate initial conditions, may stay in 
equilibrium at one or several stationary (alternatively called fixed) points qn, corresponding to either the 
minimum or a maximum of the effective potential energy (see Fig. 1): 

        .0ef nq
dq

dU
      (3.8) 

  

 

 

 

 

 

 In order to explore the stability of such fixed points, let us analyze the dynamics of small 
deviations 

      nqtqtq  )()(~      (3.9) 

from the equilibrium. For that, let us expand function Uef(q)  in the Taylor series at a fixed point, 

        ...~)(
2

1~)()()( 2
2
ef

2
ef

efef  qq
dq

Ud
qq

dq

dU
qUqU nnn .   (3.10) 

Fig. 3.1. Effective potential energy profile 
near stable (q0, q2) and unstable (q1) fixed 
points, and its quadratic approximation (10) 
near point q0 – schematically. 
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The first term in the right-hand part, Uef(qn), is arbitrary and does not affect motion. The next term, 
linear in deviation q~ , is equal zero – see the fixed point definition (8). Hence the fixed point stability is 
determined by the next term, quadratic in q~ , more exactly by its coefficient, 

               )(
2
ef

2

ef nq
dq

Ud
      (3.11) 

which plays the role of the effective spring constant. Indeed, neglecting the higher terms of the Taylor 
expansion (10),1 we see that Eq. (4) takes the familiar form - cf. Eq. (1.1): 

               .0~~
efef  qqm       (3.12) 

 I am confident that the reader of these notes knows everything about this equation, but since we 
will soon run into similar but more complex equations, let us review the formal procedure of its 
solution. From the mathematical standpoint, Eq. (12) is an ordinary, linear differential equation of the 
second order, with constant coefficients. The theory of such equations tells us that its general solution 
(for any initial conditions) may be presented as 

           
tt

ecectq 



  

)(~ ,     (3.13) 

where constants c are determined by initial conditions, while the so-called characteristic exponents  
are completely defined by the equation itself. In order to find the exponents, it is sufficient to plug just 
one partial solution, exp{t}, into the equation.  In our simple case (12), this yields the following 
characteristic equation: 

                0ef
2

ef m .     (3.14) 

 If the ratio kef/mef is positive,2 i.e. the fixed point corresponds to the minimum of potential energy 
(e.g., points q0 and q2 in Fig. 1), the characteristic equation yields  

                
2/1

ef

ef
00 , 








 m

i


 ,     (3.15) 

(where i is the imaginary unit, i2 = -1), so that Eq. (13) describes sinusoidal oscillations of the system,  

        ,sincos)(~
00

00 tctcecectq sc

titi   
    (3.16) 

with eigenfrequency (or “own frequency”) 0, about the fixed point which is thereby stable. On the 
other hand, at the potential energy maximum (kef < 0, e.g., at point q1 in Fig. 1), we get 

           .)(~,,

2/1

ef

ef tλt ecectq
m


 

 







    (3.17) 

Since the solution has an exponentially growing part,3 the fixed point is unstable. 

1 Those terms may be important only in the very special case then ef is exactly zero, i.e. when a fixed point is an 
inflection point of function Uef(q). 
2 In what follows, I will assume that the effective mass mef is positive, which is true in most (but not all!) dynamic 
systems. The changes necessary if it is negative are obvious. 
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 Note that the quadratic expansion of function Uef(q), given by Eq. (10), is equivalent to a linear 
expansion of the effective force: 

      ,~
ef

ef
ef q

dq

dU
F

nqq        (3.18) 

immediately resulting in the linear equation (12). Hence, in order to analyze the stability of a fixed point 
qn, it is sufficient to linearize the equation of motion in small deviations from that point, and study 
possible solutions of the resulting linear equation.  

 As an example, let us return to our testbed problem (Fig. 2.1) whose function Uef we already 
know – see the second of Eqs. (6). With it, the equation of motion (4) becomes 

       ,sinΩcos  i.e.,sinΩcos 22222ef2 


   mR
d

dU
mR  (3.19) 

where   (g/R)1/2 is the frequency of small oscillations of the system at  = 0 - see Eq. (2.26).4 From 
requirement (8), we see that on any 2-long segment of angle ,5 the system may have four fixed points: 

          ,00    ,1    ,
Ω

cos
2

2
1

3,2 
     (3.20) 

The last two fixed points, corresponding to the bead rotating on either side of the ring, exist only if the 
angular velocity  of ring rotation exceeds . (In the limit of very fast rotation,  >> , Eq. (20) yields 
2,3  /2, i.e. the stationary positions approach the horizontal diameter of the ring - in accordance 
with physical intuition.)  

 In order to analyze the fixed point stability, similarly to Eq. (9), we plug  ~
 n  into Eq. 

(19) and Taylor-expand the trigonometric functions of   up to the first term in ~ : 

             ~
cossin

~
sincos

~ 22
nnnn  .   (3.21) 

Generally, this equation may be linearized further by purging its right-hand part of the term proportional 

to 2~ ; however in this simple case, Eq. (21) is already convenient for analysis. In particular, for the 
fixed point 0 = 0 (corresponding to the bead position at the bottom of the ring), we have cos 0 = 1 and 
sin0 = 0, so that Eq. (21) is reduced to a linear differential equation 

               ~
Ω-

~ 22  ,     (3.22) 

whose characteristic equation is similar to Eq. (14) and yields 

        0
222 for ,Ω-   .     (3.23a) 

3 Mathematically, the growing part vanishes at some special (exact) initial conditions which give c+ = 0. However, 
the futility of this argument for real physical systems should be obvious for anybody who had ever tried to 
balance a pencil on its sharp point. 
4 Note that Eq. (19) coincides with Eq. (2.25). This is a good sanity check illustrating that the procedure (5)-(6) of 
moving of a term from the potential to kinetic energy within the Lagrangian function is indeed legitimate. 
5 For this particular problem, the values of   that differ by a multiple of 2, are physically equivalent.
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This result shows that if  < , when both roots  are imaginary, this fixed point is stable. However, as 
the rotation speed  is increased beyond , the roots become real,  = (2 - 2)1/2, with one of them 
positive, so that the fixed point becomes unstable beyond this threshold, i.e. as soon as fixed points 2,3 
exist. An absolutely similar calculations for other fixed points yield   

                     1
222 for ,0Ω   ,    (3.23b) 

                    3,2
222 for ,Ω   .    (3.23c) 

These results show that fixed point 1 (bead on the top of the ring) is  always unstable – just as we could 
foresee, while the side fixed points 2,3 are stable as soon as they exist (at  > ). 

 Thus, our fixed-point analysis may be summarized in a simple way: an increase of the ring 
rotation speed   beyond a certain threshold value, equal to  (2.26), causes the bead to move on one of 
the ring sides, oscillating about one of the fixed points 2,3. Together with the rotation about the vertical 
axis, this motion yields quite a complex spatial trajectory as observed from a lab frame, so it is 
fascinating that we could analyze it qualitatively in such a simple way. 

 Later in this course we will repeatedly use the linearization of the equations of motion for the 
analysis of stability of  more complex systems, including those with energy dissipation. 

 

3.3. Hamiltonian 1D systems 

 The autonomous systems that are described by time-independent Lagrangians, are frequently 
called Hamiltonian, because their Hamiltonian function H (again, not necessarily equal to the genuine 
mechanical energy E!) is conserved. In our current 1D case, described by Eq. (3),  

     const)(
2 ef

2ef  qUq
m

H  .    (3.24) 

This is the first integral of motion. Solving Eq. (24) for q , we get the first-order differential equation, 

       
2/1

ef
ef

)(
2









 qUH
mdt

dq
,    (3.25) 

which may be readily integrated: 

        
  0

0

2/1
ef

2/1

ef

)(

)( )(2
tt

q'UH

dq'm
tq

tq









  .    (3.26) 

Since constant H (as well as the proper sign before the integral – see below) is fixed by initial 
conditions, Eq. (26) gives the reciprocal form, t = t(q), of the desired law of system motion, q(t). Of 
course, for any particular problem the integral in Eq. (26) still has to be worked out, either analytically 
or numerically, but even the latter procedure is typically much easier than the numerical integration of 
the initial, second-order differential equation of motion, because at addition of many values (to which 
the numerical integration is reduced6) the rounding errors are effectively averaged out. 

6 See, e.g., MA Eqs. (5.2) and (5.3). 
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 Moreover, Eqs. (24)-(25) also allow a general classification of 1D system motion. Indeed: 

 (i) If H > Uef(q) in the whole range of interest, the effective kinetic energy Tef (3) is always 
positive. Hence derivative dq/dt cannot change sign, so that the effective velocity retains the sign it had 
initially. This is the unbound motion in one direction (Fig. 2a). 

 (ii) Now let the particle approach a classical turning point A where H = Uef(x)  - see Fig. 2b.7 
According to Eqs. (25), (26), at that point the particle velocity vanishes, while its acceleration, 
according to Eq. (4), is still finite. Evidently, this corresponds to the particle reflection from the 
“potential wall”, with the change of velocity sign. 

 (iii) If, after the reflection from point A, the particle runs into another classical turning point B 
(Fig. 2c), the reflection process is repeated again and again, so that the particle is bound to a periodic 
motion between two turning points. 

   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 The last case of periodic oscillations presents large practical interest, and the whole next chapter 
will be devoted to a detailed analysis of this phenomenon and numerous associated effects. Here I will 
only note that Eq. (26) immediately enables us to calculate the oscillation period: 

             ,
)]([2

2
2/1

ef

2/1

ef  








A

B qUH

dqm
T     (3.27) 

7 This terminology comes from quantum mechanics which shows that actually a particle (or rather its 
wavefunction) can, to a certain extent, penetrate the “classically forbidden range” where H < Uef(x). 

Fig. 3.2. Graphical representation of Eq. (25) for three different cases: (a) unbound motion, with the 
velocity sign conserved, (b) reflection from the “classical turning point”, accompanied with the velocity 
sign change, and (c) bound, periodic motion between two turning points – schematically. (d) Effective 
potential energy (6) of the bead on the rotating ring (Fig. 1.5) for  > , in units of 2mgR.
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where the additional upfront factor 2 accounts for two time intervals: for the motion from B to A and 
back (Fig. 2c). Indeed, according to Eq. (25), in each classically allowed point q the velocity magnitude 
is the same, so that these time intervals are equal to each other.8 

 Now let us link Eq. (27) to the fixed point analysis carried out in the previous section. As Fig. 2c 
shows, if H is reduced to approach Umin, the oscillations described by Eq. (27) take place at the very 
bottom of “potential well”, about  a stable fixed point q0. Hence, if the potential energy profile is smooth 
enough, we may limit the Taylor expansion (10) by the quadratic term. Plugging it into Eq. (27), and 
using the mirror symmetry of this particular problem about the fixed point q0, we get 

             
    

,
1

with  ,
4

2/~
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2
4

1

0
2/12
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2/12

efmin

2/1

ef 


















d
II

qUH

qdm A

T   (3.28) 

where   Aq /~ , with A  (2/ef)
1/2[H – Umin]

1/2 being the classical turning point, i.e. the oscillation 

amplitude, and 0 is the eigenfrequency given by Eq. (15). Taking into account that the elementary 
integral I in that equation equals /2,9 we finally get 

           ,
2

0


T       (3.29) 

as it should be for harmonic oscillations (16). Note that the oscillation period does not depend on the 
oscillation amplitude A, i.e. on the difference (H - Umin) - while it is small. 

 

3.4. Planetary problems 

Leaving a more detailed study of oscillations for the next chapter, let us now discuss the so-
called planetary systems10 whose description, somewhat surprisingly, may be also reduced to an 
effectively 1D problem. Consider two particles that interact via a conservative, central force F21 = - F12 
= nrF(r), where r  and nr are, respectively, the magnitude and direction of the distance vector r  r1 – r2 
connecting the two particles (Fig. 3).  

 

 

 

 

 

8 Note that the dependence of points A and B on the “energy” H is not necessarily continuous. For example, for 
our testbed problem, whose effective potential energy is plotted in Fig. 2d (for a particular value of  > ), a 
gradual increase of H  leads to a sudden jump, at H = H1, of point B to position B’, corresponding to a sudden 
switch from oscillations about one fixed point 2,3 to oscillations about two adjacent fixed points (before the 
beginning of a persistent rotation along the ring at H > H2). 
9 Introducing a new variable   by relation   sin , we get d = cos  d = (1 - 2)1/2 d , so that  the function 
under the integral is just d. 
10 This name is very conditional, because this group of problems includes, for example, charged particle scattering 
(see Sec. 3.7 below). 

Fig. 3.3. Vectors in the “planetary” problem. 
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Generally, two particles moving without constrains in 3D space, have 3 + 3 = 6 degrees of 
freedom that may be described, e.g., by their Cartesian coordinates {x1, y1, z1, x2, y2, z2} However, for 
this particular form of interaction, the following series of tricks allows the number of essential degrees 
of freedom to be reduced to just one. 

First, the central, conservative force of particle interaction may be described by time-
independent potential energy )(rU . Hence the Lagrangian of the system is 

           ).(
22

2
2

22
1

1 rU
mm

rUTL  rr      (3.30) 

Let us perform the transfer from the initial six scalar coordinates of the particles to six generalized 
coordinates: three Cartesian components of the distance vector  

      r  r1 – r2,      (3.31) 

and three components of vector 

             ,, 21
2211 mmM

M

mm





rr
R     (3.32) 

which defines the position of the center of mass of the system. Solving the system of two linear 
equations (31) and (32) for the r1 and r2, we get  

     ., 1
2

2
1 rRrrRr

M

m

M

m
     (3.33) 

Plugging these relations into Eq. (30), we may reduce it to 

         ),(
22

22 rU
mM

L  rR       (3.34) 

where m is the so-called reduced mass: 

           
21

21 111
 that  so, 

mmmM

mm
m  .    (3.35) 

Note that according to Eq. (35), the reduced mass is lower than that of the lightest component of the 
two-body system. If one of m1,2 is much less that is counterpart (like it is in most star-planet or planet-
satellite systems), then with a good precision m  min [m1, m2]. 

 Since the Lagrangian function (34) depends only on R  rather than R  itself, according to our 
discussion in Sec. 2.4, the Cartesian components of R are cyclic coordinates, and the corresponding 
generalized momenta are conserved: 

        3. 2, 1,const, 



 jRM
R

L
P j

j
j




    (3.36) 

Physically, this is just the conservation law for the full momentum P  MR of our system, due to 
absence of external forces. Actually, in the axiomatics used in Sec. 1.3 this law is postulated – see Eq. 
(1.10) – but now we may attribute momentum P to a certain geometric point, the center of mass R. In 
particular, since according to Eq. (36) the center moves with constant velocity in the inertial reference 

Center of 
mass 

Reduced  
mass 
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frame used to write Eq. (30), we may create a new inertial frame with the origin at point R. In this new 
frame, R  0, so that vector r (and hence scalar r) remain the same as in the old frame (because the 
frame transfer vector adds equally to r1 and r2, and cancels in r = r1 – r2), and the Lagrangian (34) is 
now reduced to 

                ).(
2

2 rU
m

L  r      (3.37) 

 Thus our initial problem has been reduced to just three degrees of freedom - three scalar 
components of vector r. Moreover, Eq. (37) shows that dynamics of vector r of our initial, two-particle 
system is identical to that of the radius-vector of a single particle with the effective mass m, moving in 
the central potential field ).(rU   

 

3.5. 2nd Kepler law 

 Two more degrees of freedom may be excluded from the planetary problem by noticing that 
according to Eq. (1.35), the angular momentum L = rp of our effective particle is also conserved, both 
in magnitude and direction. Since the direction of L is, by its definition, perpendicular to both of r and v 
= p/m, this means that particle’s motion is confined to a plane (whose orientation in space is determined 
by the initial directions of vectors r and v). Hence we can completely describe particle’s position by just 
two coordinates in that plane, for example by distance r to the center, and the polar angle    In these 
coordinates, Eq. (37) takes the form identical to Eq. (2.49): 

  )(
2

222 rUrr
m

L   .     (3.38) 

Moreover, the latter coordinate, polar angle , may be also eliminated by using the conservation of 
angular momentum’s magnitude, in the form of Eq. (2.50): 11 

             .const2  mrLz      (3.39) 

 A direct corollary of this conservation is the so-called 2nd Kepler law:12 the radius-vector r 
sweeps equal areas A in equal times. Indeed, in the linear approximation in dA << A, the area differential 
dA equals to the area of a narrow right triangle with the base being the arc differential rd, and the 
height equal to r - see Fig. 4. As a result, according to Eq. (39), the time derivative of the area, 

             ,
22

12/)( 2

m

L
r

dt

rdr

dt

dA z 
     (3.40) 

remains constant. Integration of this equation over an arbitrary (not necessarily small!) time interval 
proves the 2nd Kepler law. 

 

11 Here index z stands for the coordinate perpendicular to the motion plane. Since other components of the angular 
momentum are equal zero, the index is not really necessary, but I will still use it, just to make a clear distinction 
between the angular momentum Lz and the Lagrangian function L. 
12 One of three laws deduced almost exactly 400 years ago by J. Kepler (1571 – 1630), from the extremely 
detailed astronomical data collected by T. Brahe (1546-1601). In turn, the set of three Kepler laws were the main 
basis for Isaac Newton’s discovery of the gravity law (1.16). That’s how physics marched on… 
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Now note that since 0/  tL , the Hamiltonian function H  is also conserved, and since, 
according to Eq. (38), the kinetic energy of the system is a quadratic-homogeneous function of the 
generalized velocities r and  , EH  , so that the system energy E, 

)(
22

222 rUr
m

r
m

E   ,     (3.41) 

is also a first integral of motion.13 But according to Eq. (39), the second term of Eq. (41) may be 
presented as 

         ,
22 2

2
22

mr

L
r

m z      (3.42) 

so that energy (41) may be expressed as that of a 1D particle moving along axis r, 

            ),(
2 ef

2 rUr
m

E        (3.43) 

in the following effective potential: 

        
2

2

ef 2
)()(

mr

L
rUrU z .     (3.44) 

So the planetary motion problem has been reduced to the dynamics of an effectively 1D system.14  

 Now we may proceed just like we did in Sec. 3, with due respect for the very specific effective 
potential (44) which, in particular, diverges at r  0 - possibly besides the very special case of an 
exactly radial motion, Lz = 0. In particular, we may solve Eq. (43) for dr/dt to get 

          .
)]([2 2/1

ef

2/1

rUE

drm
dt








      (3.45) 

The integration of this relation allows us not only to get a direct relation between time t and distance r, 
similar to Eq. (26), 

13 One may claim that this fact should have been evident from the very beginning, because the effective particle 
of mass m moves in a potential field U(r) which conserves energy. 
14 Note that this reduction has been done in a way different from that used for our testbed problem 
(shown in Fig. 2.1) in Sec. 2 above. (The reader is encouraged to analyze this difference.) In order to 
emphasize this fact, I will keep writing E instead of H here, though for the planetary problem we are 
discussing now these two notions coincide.  

0

r

rd


dA

Fig. 3.4. Area differential in the polar 
coordinates.

Effective 
potential 
energy 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 3           Page 11 of 20 

             

















2/122

2/1

2/1
ef

2/1

]2/)([2)]([2 mrLrUE

drm

rUE

drm
t

z

,  (3.46) 

but also do a similar calculation of angle  . Indeed, integrating Eq. (39), 

         .
2 

r

dt

m

L
dt z       (3.47) 

and plugging dt from Eq. (45), we get an explicit expression for particle’s trajectory  (r):  
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m
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zz  (3.48) 

Note that according to Eq. (39), derivative d/dt does not change sign at the reflection from any 
classical turning point r  0, so that, in contrast to Eq. (46), the sign in the right-hand part of Eq. (48) is 
uniquely determined by the initial conditions and cannot change during the motion.  

Let us use these results, valid for any interaction law U(r), for the planetary motion’s 
classification. The following cases should be distinguished. (Following a good tradition, in what follows 
I will select the arbitrary constant in the potential energy in the way to provide Uef  0 at r  .) 

If the particle interaction is attractive, and the divergence of the attractive potential at r  0 is 
faster than 1/r2, then Uef(r)  - at r  0, so that at appropriate initial conditions (E < 0) the particle 
may drop on the center even if Lz  0 – the event called the capture. On the other hand, with U(r) either 
converging or diverging slower than 1/r2 at r  0, the effective energy profile Uef(r) has the shape 
shown schematically in Fig. 5. This is true, in particular, for the very important case   

       ,0,)(  
r

rU      (3.49) 

which describes, in particular, the Coulomb (electrostatic) interaction of two particles with electric 
charges of the opposite sign, and Newton’s gravity law (1.16a). This particular case will be analyzed in 
the following section, but now let us return to the analysis of an arbitrary attractive potential U(r) < 0 
leading to the effective potential shown in Fig. 5, when the angular-momentum term dominates at small 
distances r. 

 

 

 

 

 

 

 

  

Fig. 3.5. Effective potential profile of, and two 
types of motion in an attractive central field. 

0
r

)(rU

)(ef rU

0E

0E

0r
maxr

minr

Attractive 
Coulomb 
potential 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 3           Page 12 of 20 

 According to the analysis of Sec. 3, such potential profile, with a minimum at some distance r0, 
may sustain two types of motion, depending on the energy E (which is of course determined by the 
initial conditions):  

 (i) If E > 0, there is only one classical turning point where E = Uef, so that distance r either grows 
with time from the very beginning, or (if the initial value of r  was negative) first decreases and then, 
after the reflection from the increasing potential Uef, starts to grow indefinitely. The latter case, of 
course, describes scattering.  

  (ii) On the opposite, if the energy is within the range 

      ,0)( 0ef  ErU      (3.50) 

the system moves periodically between two classical turning points rmin and rmax. These oscillations of 
distance r correspond to the bound orbital motion of our effective particle about the attracting center. 15  

 Let us start with the discussion of the bound motion, with energy within the range (50). If energy 
has its minimal possible value, 

      )],([min)( ef0ef rUrUE       (3.51) 

the distance cannot change, r = r0 = const, so that the orbit is circular, with the radius r0 satisfying the 
condition dUef/dr = 0. Let us see whether this result allows for an elementary explanation. Using Eq. 
(44) we see that the condition for r0 may be written as 

        .
03

0

2

rr
z

dr

dU

mr

L
      (3.52) 

Since in a circular motion, velocity v is perpendicular to the radius vector r, Lz is just mr0v, the left-hand 
part of Eq. (52) equals mv2/r0, while its right-hand part is just the magnitude of the attractive force, so 
that this equation expresses the well-known 2nd Newton law for the circular motion. Plugging this result 
into Eq. (47), we get a linear law of angle change, ,const t  with angular velocity 

      
0

2
0 r

v

mr

Lz   ,     (3.53) 

and hence the rotation period T   2/ obeys the elementary relation 

                
v

r02
 T .      (3.54) 

 Now, let the energy be above its minimum value. Using Eq. (46) just as in Sec. 3, we see that 
distance r now oscillates with period  

         


max

min

.
]2/)([

2
2/122

2/1
r

r z
r mrLrUE

dr
mT     (3.55) 

15 In the opposite case when the interaction is repulsive, U(r) > 0, the addition of the positive angular energy term 
only increases the trend, and only the scattering scenario is possible. 
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This period is, in general, different from T.  Indeed, the change of angle  between two sequential 
points of the nearest approach, that follows from Eq. (48), 

             
     ,

2/)(2
2
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nmir
2/12222/1 
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z

mrLrUEr

dr

m

L
    (3.56) 

is generally different from 2 . Hence, the general trajectory of the bound motion has a spiral shape – 
see, e.g., an illustration in Fig. 6. 

 

  

 

 

 

 

 

 

3.6. 1st and 3rd Kepler laws 

 The situation is special, however, for a very important particular case, namely that of the 
Coulomb potential  described by Eq. (49). Indeed, plugging this potential into Eq. (48), we get 
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 .   (3.57) 

This is a table integral,16 equal to 
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z     (3.58) 

The reciprocal function, r(), is 2 - periodic:  

         
)constcos(1 


e

p
r ,      (3.59) 

so that at E < 0, the orbit a closed line,17 characterized with the following parameters: 

              
2/1

2

22 2
1, 










 m

EL
e

m

L
p zz .    (3.60) 

16 See, e.g., MA Eq. (6.3a). 
17 It may be proved that for the power-law interaction, U  r, the orbits are closed line only if  = -1 (i.e. our 
current case of the Coulomb potential) or  = +2 (the 3D harmonic oscillator) – the so-called Bertrand theorem. 
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0
Fig. 3.6. Typical open orbit of a particle 
moving in a non-Coulomb central field. 
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 The physical meaning of these parameters is very simple. Indeed, according to the general Eq. 
(52), in the Coulomb potential, for which dU/dr = /r2, we see that p is just the circular orbit radius18 for 
given Lz: r0 = Lz

2/m    p, and    

       ,
2

)()(min
2

2

0efef
zL

m
rUrU


     (3.61) 

Using this equality, parameter e (called eccentricity) may be presented just as 

             .
)]([min
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ef 








rU

E
e      (3.62) 

  Analytical geometry tells us that Eq. (59), with e < 1, is one of canonical forms for presentation 
of an ellipse, with one of its two focuses located at the origin. This fact is known as the 1st Kepler law. 
Figure 7 shows the relation between the main dimensions of the ellipse and parameters p and e.19  

 

 

 

 

 

 

 

 In particular, the major axis a and minor axis b are simply related to p and e and hence, via Eqs. 
(60), to the motion integrals E and Lz: 
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   (3.63)

 As was mentioned above, at E  min [Uef(r)] the orbit is almost circular, with r()  r0 = p. On 
the contrary, as E is increased to approach zero (its maximum value for the closed orbit), then e  1, so 
that the aphelion point rmax = p/(1 - e) tends to infinity, i.e. the orbit becomes extremely extended. If the 
energy is exactly zero, Eq. (59) (with 1e ) is still valid for all values of   (except for one special point 

  =   where r becomes infinite) and describes a parabolic (i.e. open) trajectory. At E > 0, Eq. (59) is 
still valid within a certain sector of angles  (in that it yields positive results for r), and describes an 
open, hyperbolic trajectory - see the next section. 

 For E < 0, the above relations also allow a ready calculation of the rotation period T  Tr = T. . 
(In the case of a closed trajectory, Tr and T  have to coincide.) Indeed, it is well known that the ellipse 

area A = ab. But according to the 2nd Kepler law (40), dA/dt = Lz/2m = const. Hence 

18 Mathematicians prefer a more solemn terminology: parameter 2p is called the latus rectum of the elliptic 
trajectory – see Fig. 7. 
19 In this figure, the constant participating in Eqs. (58)-(59) is assumed to be zero. It is evident that a different 
choice of the constant corresponds just to a constant turn of the ellipse about the origin. 

Fig. 3.7. Ellipse, and its special 
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Using Eqs. (60) and (63), this result may be presented in several other forms: 
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 Since for the Newtonian gravity (1.16a),  = Gm1m2 = GmM, at m1 << m2 (i.e. m << M) this 
constant is proportional to m, and the last form of Eq. (64b) yields the 3rd Kepler law: periods of motion 
of different planets in the same central field, say that of our Sun, scale as T   a3/2. Note that in contrast 
to the 2nd Kepler law (that is valid for any central field), the 1st and 3rd Kepler laws are potential-
specific. 

  

3.7. Classical theory of elastic scattering 

 If E > 0, the motion is unbound for any interaction potential. In this case, the two most important 
parameters of the particle trajectory are the scattering angle   and impact parameter b  (Fig. 8), and the 
main task for theory is to find the relation between them in the given potential U(r). For that, it is 
convenient to note that b is related to two conserved quantities, particle’s energy20 E and its angular 
momentum zL , in a simple way:21 

        .2 2/1mEbLz       (3.65) 

Hence the angular contribution to the effective potential (44) may be presented as 

      .
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2

r

b
E

mr

Lz       (3.66) 

Second, according to Eq. (48), the trajectory sections from infinity to the nearest approach point (r = 
rmin), and from that point to infinity, have to be similar, and hence correspond to equal angle changes 0  
- see Fig. 8.  

 

 

 

 

  

  

  

20 The energy conservation law is frequently emphasized by calling this process elastic scattering.  
21 Indeed, at r >> b, the definition L = r(mv) yields Lz= bmv, where v = (2E/m)1/2 is the initial (and hence the 
final) velocity of the particle. 

Fig. 3.8. Main geometric parameters of the scattering problem. 
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 Hence we may apply the general Eq. (48) to just one of the sections, say [rmin, ], to find the 
scattering angle: 
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In particular, for the Coulomb potential (49), now with an arbitrary sign of , we can apply the same 
table integral as in the previous section to get22 
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      (3.68a) 

This result may be more conveniently rewritten as 

        .
22

tan
Eb


      (3.68b) 

Very clearly, the scattering angle’s magnitude increases with the potential strength , and decreases as 
either the particle energy or the impact parameter (or both) are increased. 

 The general equation (67) and the Coulomb-specific relations (68) present a formally complete 
solution of the scattering problem. However, in a typical experiment on elementary particle scattering 
the impact parameter b of a single particle is random and unknown. In this case, our results may be used 
to obtain statistics of the scattering angle , in particular the so-called differential cross-section23 

       ,
1




 d

dN

nd

d
      (3.69) 

where n is the average number of the incident particles per unit area, and dN  is the average number of 
particles scattered into a small solid angle range d. For a spherically-symmetric scattering center, 
which provides an axially-symmetric scattering pattern, d/d may be calculated by counting the 
number of incident particles within a small range db of the impact parameter: 

      .2 bdbndN       (3.70) 

and hence scattered into the corresponding small solid angle range d = 2 sin d. Plugging these 
relations into Eq. (69), we get the following general geometric relation: 

      .
sin 


d

dbb
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     (3.71) 

 In particular, for the Coulomb potential (49), a straightforward differentiation of Eq. (68) yields 
the so-called Rutherford scattering formula 

22 Alternatively, this result may be recovered directly from Eq. (59) whose parameters, at E >0, may be expressed 
via the same dimensionless parameter (2Eb/): p = b(2Eb/), e = [1 + (2Eb/)2]1/2 > 1. 
23 This terminology stems from the fact that an integral of d/d over the full solid angle, called the full cross-
section  , has the dimension of area:  = N/n, where N is the total number of scattered particles. 

Differential 
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This result, which shows very strong scattering to small angles (so strong that the integral that 
expresses the full cross-section  is formally diverging at   0),24 and weak backscattering (scattering 
to angles   ) was historically extremely significant: in the early 1910s its good agreement with -
particle scattering experiments carried out by E. Rutherford’s group gave a strong justification for  
“planetary” models of atoms, with electrons moving about very small nuclei. 

 Note that elementary particle scattering is frequently accompanied with electromagnetic 
radiation and/or other processes leading to the loss of the initial mechanical energy of the system, 
leading to inelastic scattering, that may give significantly different results. (In particular, a capture of an 
incoming particle becomes possible even for a Coulomb attracting center.) Also, quantum-mechanical 
effects may be important at scattering, so that the above results should be used with caution. 

 

3.8. Exercise problems 

 3.1. For the system considered in Problem 2.5 (a bead sliding 
along a string with fixed tension T, see Fig. on the right), analyze 
small oscillations of the bead near the equilibrium. 

 

  
 3.2. Calculate the functional dependence of period T  of oscillations of a 1D particle of mass m in 

potential U(q) = q2n (where  > 0, and n is a positive integer) on energy E. Explore the limit n  .  

 
 3.3. Explain why the term 2/22mr , recast in accordance with Eq. (42), cannot be merged with 
U(r) in Eq. (38), to form an effective 1D potential energy U(r) – Lz

2/2mr2, with the second term’s sign 
opposite to that given by Eq. (44). We have done an apparently similar thing for our testbed, bead-on-
rotating-ring problem in the very end of Sec. 1 – see Eq. (3.6); why cannot the same trick work for the 
planetary problem? Besides a formal explanation, discuss the physics behind this difference. 
 
  
 3.4. A dumbbell, consisting of two equal masses m on a light rod of length 
l, can slide without friction along  a vertical ring of radius R, rotated about its 
vertical diameter with constant angular velocity  - see Fig. on the right. Derive 
the condition of stability of the lower horizontal position of the dumbbell. 
 
 
  

24 This divergence, which persists at the quantum-mechanical treatment of the problem, is due to particles with 
large values of b, and disappears at an account, for example, of a finite concentration of the scattering centers. 
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 3.5.25 Analyze the dynamics of the so-called spherical pendulum - a point mass hung, in a 
uniform gravity field g, on a light cord of length l, with no motion’s confinement to a vertical plane. In 
particular:  

(i) find the integrals of motion and reduce the problem to a 1D one, 
(ii) calculate the time period of the possible circular motion around the vertical axis,  
(iii) explore small deviations from the circular motion. (Are the pendulum orbits closed?) 

 
 3.6. The orbits of Mars and Earth around the Sun may be well approximated as circles, with a 
radii ratio of 3/2. Use this fact, and the Earth year duration (which you should know :-), to calculate the 
time of travel to Mars spending least energy, neglecting the planets' size and the effects of their 
gravitational fields on the spacecraft. 
 
 3.7. Derive first-order and second-order differential equations for u  1/r as a function of , 
describing the trajectory of particle’s motion in a central potential U(r). Spell out the latter equation for 
the particular case of the Coulomb potential (3.49) and discuss the result. 
  
 3.8. For motion in the central potential 

,)(
2rr

rU


   

 (i) find the orbit r(), for positive  and , and all possible ranges of energy E;  
 (ii) prove that in the limit   0, and for energy E < 0, the orbit may be represented as a slowly 
rotating ellipse; 
 (iii) express the angular velocity of this slow orbit rotation via parameters  and  of the 
potential, particle’s mass m, its energy E, and the angular momentum Lz.  
  

3.9. A particle is moving in the field of an attractive central force, with potential 

  0  where,  n
r

rU
n


. 

For what values of n is a circular orbit stable? 

3.10. Determine the condition for a particle of mass m, moving under the effect of a central 
attractive force 









R

r

r
exp

3

r
F  , 

where  and R are positive constants, to have a stable circular orbit. 
 

3.11. A particle of mass m, with angular momentum Lz, moves in the field of an attractive central 
force with a distance-independent magnitude F. If particle's energy E is slightly higher than the value 
Emin corresponding to the circular orbit of the particle, what is the time period of its radial oscillations? 
Compare the period with that of the circular orbit at E = Emin. 
 

25 Solving this problem is a very good preparation for the analysis of symmetric top rotation in Sec. 6.5. 
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 3.12. For particle scattering in a repulsive Coulomb field, calculate the minimum approach 
distance rmin and velocity vmin at that point, and analyze their dependence on the impact parameter b (see 
Fig. 3.8 of the lecture notes) and the initial velocity v of the particle. 
 
 3.13. A particle is launched from afar, with impact parameter b, toward an attracting center with 
central potential  

.0,2with,)(  
n

r
rU

n
 

 (i) Express the minimum distance between the particle and the center via b, if the initial kinetic 
energy E of the particle is barely sufficient for escaping the capture by the attracting center. 
 (ii) Calculate capture’s full cross-section; explore the limit n  2. 

 
3.14. A meteorite with initial velocity v approaches an atmosphere-free planet of mass M and 

radius R.  

(i) Find the condition on the impact parameter b for the meteorite to hit planet’s surface. 
(ii) If the meteorite barely avoids the collision, what is its scattering angle? 
 
3.15. Calculate the differential and full cross-sections of the classical, elastic scattering of small 

particles by a hard sphere of radius R. 
 
3.16. The most famous26 confirmation of Einstein’s general relativity theory has come from the 

observation, by A. Eddington and his associates,  of light’s deflection by the Sun, during the May 1919 
solar eclipse. Considering light photons as classical particles propagating with the light speed v0  c  
2.998108m/s, and the astronomic data for Sun’s mass, MS  1.991030kg, and radius, RS  
0.6957109m, calculate the nonrelativistic mechanics’ prediction for the angular deflection of the light 
rays grazing the Sun’s surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26 It was not the first confirmation, though. The first one came 4 years earlier from A. Einstein himself, who 
showed that his theory may qualitatively explain the difference between the rate of Mercury orbit’s precession, 
known from earlier observations, and the nonrelativistic theory of this effect. 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 3           Page 20 of 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is 
intentionally left  

blank 



Essential Graduate Physics       CM: Classical Mechanics 

    
©  K. Likharev

 

Chapter 4. Oscillations 

In this course, oscillations in 1D (and effectively 1D) systems are discussed in detail, because of their 
key importance for physics and engineering. We will start with the so-called “linear” oscillator whose 
differential equation of motion is linear and hence allows the full analytical solutions, and then proceed 
to “nonlinear” and parametric systems whose dynamics may be only explored by either approximate 
analytical or numerical methods. 

 

4.1. Free and forced oscillations 

 In Sec. 3.2 we briefly discussed oscillations in a very important Hamiltonian system - a 1D 
harmonic oscillator described by a simple 1D Lagrangian1 

                              ,
22

)()( 22 qq
m

qUqTL


      (4.1) 

whose Lagrangian equation of motion, 

           0 with ,0 i.e.,0 2
0

2
0 

m
qqqqm

  ,   (4.2) 

is a linear homogeneous differential equation. Its general solution is presented by Eq. (3.16), but it is 
frequently useful to recast it into another, amplitude-phase form: 

                    tAtvtutq 000 cossincos)( ,    (4.3a) 

where A is the amplitude and   the phase of the oscillations, which are determined by the initial 
conditions. Mathematically, it is frequently easier to work with sinusoidal functions as complex 
exponents, by rewriting Eq. (3a) in one more form:2 

      







  titi

aeAetq 00 ReRe)(
)( 

,    (4.3b) 

where a is the complex amplitude of the oscillations: 

            .sinIm,cosRe,, vAauAaAaAea i     (4.4) 

 Equations (3) represent the so-called free oscillations of the system, that are physically due to 
the initial energy of the system. At an account for dissipation, i.e. energy leakage out of the system, such 
oscillations decay with time. The simplest model of this effect is represented by an additional linear 
friction (“drag”) force that is proportional to the generalized velocity and directed opposite to it:

1 For the notation simplicity, in this chapter I will drop indices “ef” in the energy components T and U, and 
parameters like m, , etc. However, the reader should still remember that T and U do not necessarily coincide with 
the real kinetic and potential energies (even if those energies may be uniquely identified) – see Sec. 3.1. 
2 Note that this is the so-called physics convention. Most engineering texts use the opposite sign in the imaginary 
exponent, exp{-it}  exp{it}, with the corresponding sign implications for intermediate formulas, but (of 
course) similar final results for real variables. 
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          qFv  ,      (4.5) 

where constant  is called the drag coefficient.3 The inclusion of this force modifies the equation of 
motion (2) to become 

               0 qqqm   .     (4.6a) 

 This equation is frequently presented in the form 

            
m

qqq
2

with  ,02 2
0

   ,    (4.6b) 

where parameter  is called the damping coefficient. Note that Eq. (6) is still a linear homogeneous 
second-order differential equation, and its general solution still has the form of the sum (3.13) of two 
exponents of the type exp{t}, with arbitrary pre-exponential coefficients. Plugging such an exponent 
into Eq. (4), we get the following algebraic characteristic equation for :  

      .02 2
0

2        (4.7) 

Solving this quadratic equation, we get 

        ,  where,
2/122

000   ''i    (4.8) 

so that for not very high damping ( < 0)4 we get the following generalization of Eq. (3): 

                      .cossincos)( 0000000free    
 'teAe'tv'tuecectq tttt

 (4.9) 

The result shows that, besides a certain correction to the free oscillation frequency (which is very small 
in the most interesting case of low damping,  << 0), the energy dissipation leads to an exponential 
decay of oscillation amplitude with time constant  = 1/: 

            


 m
eAA t 21

  where,/
0   .    (4.10) 

 A convenient, dimensionless measure of damping is the so-called quality factor Q (or just Q-
factor ) which is defined as 0/2, and may be rewritten in several other useful forms: 

3 Here I treat Eq. (5) as a phenomenological model, but in statistical mechanics such dissipative term may be 
derived as an average force exerted on a body by its environment whose numerous degrees of freedom are in 
random, though possibly thermodynamically-equilibrium states. Since such environmental force also has a 
random component, the dissipation is fundamentally related to fluctuations, and the latter effects may be 
neglected (as they are in this course) only if the oscillation energy is much higher than the energy scale of random 
fluctuations of the environment - in the thermal equilibrium at temperature T, the larger of  kBT and 0/2 - see, 
e.g., SM Chapter 5 and QM Chapter 7. 
4 Systems with very high damping ( > 0) can hardly be called oscillators, and though they are used in 
engineering and physics experiment (e.g., for the shock, vibration, and sound isolation), for their discussion I have 
to refer the interested reader to special literature – see, e.g., C. Harris and A. Piersol, Shock and Vibration 
Handbook, 5th ed., McGraw Hill, 2002. Let me only note that at very high damping,  >> 0, the system may be 
adequately described with just one parameter: the relaxation time 1/+  2/0

2 >> 0. 
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Q     (4.11) 

where T = 2π/0 is the oscillation period in the absence of damping – see Eq. (3.29). Since the 

oscillation energy E is proportional to their amplitude squared, i.e. decays as exp{-2t/}, with time 
constant /2, the last form of Eq. (11) may be used to rewrite the Q-factor in one more form: 

               P
E

E

E
Q 00  





,     (4.12) 

where P  is the dissipation power. (Two other useful ways to measure Q will be discussed in a minute.) 
The range of Q-factors of important oscillators is very broad, all the way from Q ~ 10 for a human leg 
(with relaxed muscles), to Q ~ 104 of the quartz crystals used in “electronic” clocks and watches, all the 
way up to Q ~ 1012  for microwave cavities with superconducting walls. 

 In contrast to the decaying free oscillations, the forced oscillations, induced by an external force 
F(t), may maintain their amplitude infinitely, even at nonvanishing damping.  This process may be 
described by a still linear but now inhomogeneous differential equation  

           ),(tFqqqm         (4.13a) 

or, more conveniently, by the following generalization of Eq. (6b): 

             mtFtftfqqq /)()(  where),(2 2
0    .   (4.13b) 

For a particle of mass m, confined to a straight line, Eq. (12a) is just an expression of the 2nd Newton 
law (or rather one of its Cartesian component). More generally, according to Eq. (1.41), Eq. (13) is valid 
for any dissipative 1D system whose Gibbs potential energy (1.39) has the form UG(q, t) = κq2/2 – F(t)q. 

 The forced-oscillation solutions may be analyzed by two mathematically equivalent methods 
whose relative convenience depends on the character of function f(t). 

 (i) Frequency domain. Let us present function f(t) as a Fourier sum of sinusoidal harmonics:5 

               



tieftf )(  .       (4.14) 

Then, due to linearity of Eq. (13), its general solution may be presented as a sum of the decaying free 
oscillations (9) with frequency 0’, independent of function F(t), and forced oscillations due to each of 
the Fourier components of the force:6  

                                tieatqtqtqtq 




 )(),()()( forcedforcedfree .    (4.15) 

Plugging Eq. (15) into Eq. (13), and requiring the factors before each e-it in both parts to be equal, we 
get 

5 Operator Re, used in Eq. (3), may be dropped here, because for any physical (real) force, the imaginary 
components of the sum compensate each other. This imposes the following condition on the complex Fourier 
amplitudes: f- = f*, where the star means the complex conjugation. 
6 In physics, this mathematical property of linear equations is frequently called the linear superposition principle. 
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                  ),( fa       (4.16) 

where complex function (), in our particular case equal to 

         ,
2

1
)(

22
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i

      (4.17) 

is called either the response function or (especially for non-mechanical oscillators) the generalized 
susceptibility. From here, the real amplitude of oscillations under the effect of a sinusoidal force that 
may be represented by just one Fourier harmonic of the sum (15), is 

              2/12222
0 )2()(

1
)(with  ,)(





 faA .  (4.18)  

 This formula describes, in particular, an increase of the oscillation amplitude A  at   0 - see 
Fig. 1. At the exact resonance, 

               


 
0

0 2

1
)(  ,     (4.19) 

so that, according to Eq. (11), the ratio of the oscillator response magnitudes at  = 0 and at  = 0 
(()=0 = 1/0

2) is exactly equal to the Q-factor. Thus, the response increase is especially strong in the 
low damping limit ( << 0, i.e. Q >> 1); moreover at Q   and   0 the response diverges. (This 
fact is very useful for the approximate methods to be discussed later in this chapter.) This is of course 
the classical description of the famous phenomenon of resonance, so ubiquitous in physics.  

  

 

 

 

 

 

 

 

 

 

Due to the increase of the resonance peak height, its width is inversely proportional to Q. 
Quantitatively, in the most interesting low-damping limit, Q >> 1, the reciprocal Q-factor gives the 
normalized value of the so-called FWHM (“full-width at half-maximum”) of the resonance curve: 

           .
1

0 Q






      (4.20) 

Indeed,  is defined as the difference (+ - -) between the two values of  at that the square of 
oscillator response function, ()2 (proportional to the oscillation energy), equals a half of its 

Fig. 4.1. Resonance in a harmonic oscillator 
(13), for several values of the Q-factor. 
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resonance value (19). In the low damping limit, both these points are very close to 0, so that in the first 
(linear) approximation in ( - 0) << 0,   we can take (0

2 - 2)  -( +0)( - 0)  (-2)  (-20), 
where  

        0        (4.21) 

is a convenient parameter called detuning. (We will repeatedly use it later in this chapter.) In this 
approximation, the second of Eqs. (18) is reduced to 

          222

2

4

1
)(





 .     (4.22) 

As a result, points  correspond to 2 = δ2, i.e. ω = ω0 ± δ = ω0(1 ± 1/2Q), so that    ω+ – ω- = 
ω0/Q,  thus proving Eq. (20). 

 (ii) Time domain. Returning to the general problem of linear oscillations, one may argue that 
Eqs. (9), (15)-(17) provide a full solution of the forced oscillation problem. This is formally correct, but 
this solution may be very inconvenient if the external force is far from sinusoidal function of time. In 
this case, we should first calculate the complex amplitudes f participating in the Fourier sum (14). In 
the general case of non-periodic f(t), this is actually the Fourier integral,  

            




 dteftf ti
)( ,     (4.23) 

so that f should be calculated using the reciprocal Fourier transform, 

          




 dt'et'ff t'i
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1
.     (4.24) 

Now we can use Eq. (16) for each Fourier component of the resulting forced oscillations, and rewrite the 
last of Eqs. (15) as 
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 (4.25) 

with the response function (ω) given, in our case, by Eq. (17). Besides requiring two integrations, Eq. 
(25) is conceptually uncomforting: it seems to indicate that the oscillator’s coordinate at time t depends 
not only on the external force exerted at earlier times t’ < t, but also in future times. This would 
contradict one of the most fundamental principles of physics (and indeed, science as a whole), the 
causality: no effect may precede its cause. 

 Fortunately, a straightforward calculation (left for reader’s exercise) shows that the response 
function (17) satisfies the following rule:7 

7 This is true for all systems in which f(t) represents a cause, and q(t) its effect. Following tradition, I discuss the 
frequency-domain expression of this causality relation (called the Kramers-Kronig relations) in the Classical 
Electrodynamics part of this lecture series – see EM Sec. 7.3. 
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   de i (4.26) 

This fact allows the last form of Eq. (25) to be rewritten in either of the following equivalent forms: 

            dGtfdt't'tGt'ftq
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 ,   (4.27) 

where G(τ), defined as the Fourier transform of the response function, 

  




 


  deG iω)(
2

1
,    (4.28) 

is called the (temporal) Green’s function of the system. According to Eq. (26), G(τ) = 0 for all τ < 0. 

  While the second form of Eq. (27) is more convenient for calculations, its first form is more clear 
conceptually. Namely, it expresses the linear superposition principle in time domain, and may be 
interpreted as follows: the full effect of force f(t) on an oscillator (actually, any linear system8) may be 
described as a sum of effects of short pulses of duration dt’ and magnitude f(t’): 

         .Δ)()(lim)(
'

0Δforced 


 
t

t
t' t't'ft'tGtq     (4.29) 

- see Fig. 2. The Green’s function )(G  thus describes the oscillator response to a unit pulse of force, 
measured at time τ = t – t’ after the pulse.  

 

 

 

 

 

 

 Mathematically, it is more convenient to go to the limit dt’  0 and describe the elementary, 
unit-area pulse by Dirac’s δ-function,9 thus returning to Eq. (27). This line of reasoning also gives a 
convenient way to calculate the Green’s function. Indeed, for the particular case, 

     ,with ),()( 00 tttttf        (4.30) 

Eq. (27) yields q(t) = G(t – t0). In particular, if t > 0, we may take t0 = 0; then  q(t) = G(t). Hence the 
Green’s function may be calculated as a solution of the differential equation of motion of the system, in 
our case, Eq. (13), with the δ-functional right-hand part: 

         ),()(
)(
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02

2








 G
d

dG

d

Gd
    (4.31) 

8 This is a very unfortunate, but common jargon, meaning “the system described by linear equations of motion”. 
9 For a reminder of the basic properties of the δ-function, see MA Sec. 14. 

Fig. 4.2. Presentation of the force as a 
function of time as a sum of short pulses. 
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and zero initial conditions: 

          ,0)0()0( 
d

dG
G       (4.32) 

where t = -0 means the instant immediately preceding t = 0.  

 This calculation may be simplified even further. Let us integrate both sides of Eq. (31) over a 
infinitesimal interval including the origin, e.g. [-d /2, +d /2], and then follow the limit d  0. Since 
Green’s function has to be continuous because of its physical sense as the (generalized) coordinate, all 
terms in the left hand part but the first one vanish, while the first term yields dG/d+0 – dG/d-0. Due 
to the second of Eqs. (32), the last of these two terms equals zero, while the right-hand part yields 1. 
Thus, G() may be calculated for   > 0 (i.e. for all times when G()  0) by solving the homogeneous 
version of system’s equation of motion for   > 0, with the following special initial conditions: 

          .1)0(,0)0( 
d

dG
G      (4.33) 

 This approach gives us a convenient way for calculation of Green’s functions of linear systems. 
In particular for the oscillator with not very low damping ( > 0, i.e. Q > ½), imposing boundary 
conditions (33) on the general free-oscillation solution (9), we immediately get10 

         


  'e
'

G 0
0

sin
1

)(  .     (4.34) 

 Equations (27) and (34) provide a very convenient recipe for solving most forced oscillations 
problems. As a very simple example, let us calculate the transient process in an oscillator under the 
effect of a constant force being turned on at 0t : 
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tf      (4.35) 

provided that at t < 0 the oscillator was at rest, so that qfree(t)  0. Then the second form of Eq. (27) 
yields 
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The simplest way to work out such integrals is to present the sine function as the imaginary part of 
exp{i0’t}, and merge the two exponents, getting 
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 This result, plotted in Fig. 3, is rather natural: it describes nothing more than the transient from 
the initial equilibrium position q = 0 to the new equilibrium position q0 = f0/0

2 = F0/, accompanied by 

10 The same result may be obtained from Eq. (28) with the response function () given by Eq. (19). This, more 
cumbersome, way is left for reader’s exercise. 
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decaying  oscillations. For this particular simple function f(t), the same result might be also obtained by 
introducing a new variable  tq~   q(t) - q0 and solving the resulting homogeneous equation for q~  (with 
appropriate initial condition q~ (0) = - q0), but for more complicated functions f(t) the Green’s function 
approach is irreplaceable.  

  

 

 

 

 

 

 

 

 Note that for any particular linear system, its Green’s function should be calculated only once, 
and then may be repeatedly used in Eq. (27) to calculate the system response to various external forces - 
either analytically or numerically. This property makes the Green’s function approach very popular in 
many other fields of physics - with the corresponding generalization or re-definition of the function.11 

 

4.2. Weakly nonlinear oscillations  

 In comparison with systems discussed in the last section, which are described by linear 
differential equations with constant coefficients and thus allow a complete and exact analytical solution, 
oscillations in nonlinear systems generally present a complex and, generally, analytically intractable 
problem. Let us start a discussion of such nonlinear oscillations12 from an important case that may be 
explored analytically. In many important 1D oscillators, higher terms in the potential expansion (3.10) 
cannot be neglected, but are small and may be accounted for approximately. If, in addition, damping is 
low (or negligible), the equation of motion may be presented as a slightly modified Eq. (13): 

            ,...),,(2 qqtfqq   ,     (4.38) 

where   0 is the anticipated frequency of oscillations (whose choice is to a certain extent arbitrary – 
see below), and the right-hand part f  is small (say, scales as some small dimensionless parameter  << 
1), and may be considered as a perturbation.  

 Since at    = 0 this equation has the sinusoidal solution given by Eq. (3), one might naïvely think 
that at nonvanishing but small ,  the approximate solution to Eq. (38) should be sought in the form 

    nnqqqqtq  )()2()1()0(   where...,)( ,      (4.39) 

with q(0) = A cos (0t - )  0. This is a good example of an apparently impeccable mathematical 
reasoning that would lead to a very inefficient procedure. Indeed, let us apply it to the problem we 

11 See, e.g., EM Sec. 2.7, and QM Sec. 2.2. 
12 Again, “nonlinear oscillations” is a generally accepted slang term for oscillations in systems described by  
nonlinear equations of motion.     
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already know the exact solution for, namely the free oscillations in a linear but damped oscillator, for 
this occasion assuming the damping to be very low, /0 ~  << 1. The corresponding equation of 
motion, Eq. (6), may be presented in form (38) if we take  = 0 and 

                 ,2 qf  .     (4.40) 

The naïve approach described above would allow us to find small corrections, of the order of , to the 
free, non-decaying oscillations Acos(0t - ). However, we already know from Eq. (9) that the main 
effect of damping is a gradual decrease of the free oscillation amplitude to zero, i.e. a very large change 
of the amplitude, though at low damping,   << 0, this decay takes large time t ~   >> 1/0. Hence, if 
we want our approximate method to be productive (i.e. to work at all time scales, in particular for forced 
oscillations with established, constant amplitude and phase), we need to account for the fact that the 
small right-hand part of Eq. (38) may eventually lead to essential changes of oscillation amplitude A 
(and sometimes, as we will see below, also of oscillation phase ) at large times, because of the slowly 
accumulating effects of the small perturbation.13  

 This goal may be achieved by the account of these slow changes already in the “0th 
approximation”, i.e. the basic part of the solution in expansion (39): 

         0at 0,with )],(cos[)()0(   AtttAq .   (4.41) 

The approximate methods based on Eqs. (39) and (41) have several varieties and several names,14 but 
their basic idea and the results in the most important approximation (41) are the same. Let me illustrate 
this approach on a particular, simple but representative example of a dissipative (but high-Q) pendulum 
driven by a weak sinusoidal external force with a nearly-resonant frequency: 

     ,cossin2 0
2
0 tfqqq        (4.42) 

with |ω – ω0|, δ << ω0, and the force amplitude f0 so small that |q| << 1 at all times. From what we know 
about the forced oscillations from Sec. 1, it is natural to identify  in the left-hand part of Eq. (38) with 
the force frequency. Expanding sin q into the Taylor series in small q, keeping only the first two terms 
of this expansion, and moving all the small terms to the right-hand part, we can bring Eq. (42) to the 
canonical form (38):15 

         ),,(cos22 0
32 qqtftfqqqqq    .   (4.43) 

Here  = 0
2/6 in the case of the pendulum (though the calculations below will be valid for any α), and   

the second term in the right-hand part was obtained using the approximation already employed in Sec. 1: 

13 The same flexible approach is necessary to approximations used in quantum mechanics.  The method discussed 
here is close in spirit (but not identical) to the WKB approximation (see, e.g., QM Sec. 2.4) rather to the 
perturbation theory varieties (QM Ch. 6). 
14 In various texts, one can meet references to either the small parameter method or  asymptotic methods. The list 
of scientists credited for the development of this method and its variations notably includes J. Poincaré, B. van der 
Pol, N. Krylov, N. Bogolyubov, and Yu. Mitroplolsky. Expression (41) itself is frequently called the Rotating-
Wave Approximation - RWA. (The origin of the term will be discussed in Sec. 6 below.) In the view of the 
pioneering role of B. van der Pol in the development of this approach, in some older textbooks the rotating-wave 
approximation is called the “van der Pol method”. 
15 This equation is frequently called the Duffing equation (or the equation of the Duffing oscillator), after G. 
Duffing who was the first one to carry out its (rather incomplete) analysis in 1918. 
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(2 - 0
2)q  2( - 0)q = 2q, where    - 0 is the detuning parameter that was already used 

earlier – see Eq. (21).  

 Now, following the general recipe expressed by Eqs. (39) and (41), in the 1st approximation in f 
 ,16 we may look for the solution to Eq. (43) in the form 

      ~,Ψ  where),(Ψcos)( )1()1( qttqAtq  .   (4.44) 

Let us plug this assumed solution into both parts of Eq. (43), leaving only the terms of the first order in 
. Thanks to our (smart :-) choice of  in the left-hand part of that equation, the two zero-order terms in 
that part cancel each other. Moreover, since each term in the right-hand part of Eq. (43) is already of the 
order of  , we may drop q(1)    from the substitution into that part at all, because this would give us 
only terms O(2) or higher. As a result, we get the following approximate equation: 

          .coscoscos2)cos(2 0
3)0()1(2)1( tfAAA

dt

d
fqq    (4.45) 

 According to Eq. (41), generally A and  should be considered as (slow) functions of time. 
However, let us leave the analyses of transient process and system stability until the next section, and 
use Eq. (45) to find stationary oscillations in the system, that are established after the initial transient.  
For that limited task, we may take A = const,  = const, so that q(0) presents sinusoidal oscillations of 
frequency . Sorting the terms in the right-hand part according to their time dependence,17 we see that it 
has terms with frequencies  and 3: 

                  .Ψ3cos
4

1
Ψsin)sin2(Ψcos)cos

4

3
2( 3

00
3)0( AfAfAAf     (4.46) 

 Now comes the main trick of the rotating-wave approximation: mathematically, Eq. (45) may be 
viewed as the equation of oscillations in a linear, dissipation-free harmonic oscillator of frequency  
(not 0!) under the action of an external force represented by the right-hand part of the equation. In our 
particular case, it has three terms: two quadrature components at that very frequency , and the third 
one at frequency 3. As we know from our analysis of this problem in Sec. 1, if any of the first two 
components is nonvanishing, q(1) grows to infinity – see Eq. (19) with  = 0. At the same time, by the 
very structure of the rotating-wave approximation, q(1) has to be finite - moreover, small! The only way 
out of this contradiction is to require that amplitudes of both quadrature components of f(0) with 
frequency  are equal to zero: 

       .0sin2,0cos
4

3
2 00

3   fAfAA    (4.47) 

 These two harmonic balance equations enable us to find both parameters of the forced 
oscillations: their amplitude A and phase . In particular, the phase may be readily eliminated from this 

16 For a mathematically rigorous treatment of the higher approximations, see, e.g., Yu. Mitropolsky and N. Dao, 
Applied Asymptotic Methods in Nonlinear Oscillations, Springer, 2004. A more laymen (and somewhat verbose) 
discussion of various oscillatory phenomena may be found in the classical text A. Andronov, A. Vitt, and S. 
Khaikin, Theory of Oscillators, Dover, 2011. 
17 Using the second of Eqs. (44), cos t may be rewritten as cos ( + )   cos  cos   - sin sin . Then using 
the trigonometric identity cos3 = (3/4)cos  + (1/4)cos 3 - see, e.g., MA Eq. (3.4) results in Eq. (46). 
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system (most easily, by expressing sin and cos from the corresponding equations, and then requiring 
the sum sin2 + cos2 to equal 1), and the solution for amplitude A presented in the following implicit 
but convenient form: 
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This expression differs from Eq. (22) for the linear resonance in the low-damping limit only by the 
replacement of the detuning  with its effective amplitude-dependent value (A) or, equivalently, of the 
eigenfrequency 0 of the resonator with its effective, amplitude-dependent value 

             .
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A       (4.49) 

The physical meaning of  0(A) is simple: this is just the frequency of free oscillations of amplitude A in 
a similar nonlinear system, but with zero damping. Indeed, for  = 0 and f0 = 0 we could repeat our 
calculations, assuming that  is an amplitude-dependent eigenfrequency 0(A), to be found. Then the 
second of Eqs. (47) is trivially satisfied, while the second of them gives Eq. (49). 

 Expression (48) allows one to draw the curves of this nonlinear resonance just by bending the 
linear resonance plots (Fig. 1) according to the so-called skeleton curve expressed by Eq. (49). Figure 4 
shows the result of this procedure. Note that at small amplitude, (A)  0, and we return to the usual, 
“linear” resonance (22). 

 

 

 

 

 

 

 

 

 

 

 To bring our solution to its logical completion, we should still find the first perturbation q(1)(t) 
from what is left of Eq. (45). Since the structure of this equation is similar to Eq. (13) with the force of 
frequency 3  and zero damping, we may use Eqs. (16)-(17) to obtain 

     ).(3cos
32

1
)( 3

2
)1( 


 tAtq     (4.50) 

Adding this perturbation (note the negative sign!) to the sinusoidal oscillation (41), we see that as the 
amplitude A of oscillations in a system with  > 0 (e.g., a pendulum) grows, their waveform become a 
bit more “blunt” near the maximum deviations from the equilibrium.  

Fig. 4.4. Nonlinear resonance in the Duffing 
oscillator, as described by the rotating-wave 
approximation result  (48), for the particular 
case  = 0

2/6, / = 0.01 (i.e. Q = 50), and 
seven values of parameter f0/0
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Expression (50) also allows an estimate of the range of validity of the rotating-wave 
approximation: since it has been based on the assumption |q(1)| << |q(0)| ≤ A, for this particular problem 
we have to require αA2/32ω2 << 1. For a pendulum (with  = 0

2/6), this condition becomes A2 << 192. 
Though numerical coefficients in such strong inequalities should be taken with a grain of salt, the large 
magnitude of this particular coefficient gives a good hint that the method should give very good results 
even for relatively large oscillations with A ~ 1. In Sec. 7 below, we will see that this is indeed the case. 

 From the mathematical viewpoint, the next step would be to calculate the next approximation 

    ,~),()(cos)( 2)2()2()1( qtqtqAtq     (4.51) 

and plug it into the Duffing equation (43), which (thanks to our special choice of q(0) and q(1)) would 
retain only )2(2)2( qq   in its left-hand part. Again, requiring that amplitudes of two quadrature 

components of frequency  in the right-hand part to be zero, we may get the second-order corrections to 
A and . Then we may use the remaining part of the equation to calculate q(2), and then go after the 
third-order terms, etc. However, for most purposes the sum q(0) + q(1), and sometimes even just the 
crudest approximation q(0) alone, are completely sufficient. For example, according to Eq. (50), for a 
simple pendulum (  = 0

2/6) swinging as much as between the opposite horizontal positions (A = /2), 
the 1st order correction q(1) is of the order of  0.5%. (Soon beyond this value, completely new dynamic 
phenomena start  – see Sec. 7 below, but these phenomena cannot be covered by the rotating-wave 
approximation, at least in our current form.) Due to this reason, higher approximations are rarely 
pursued either in physics or engineering.  

  

4.3. RWA equations 

 A much more important issue is the stability of solutions described by Eq. (48). Indeed, Fig. 4 
shows that within a certain range of parameters, these equations give three different values for the 
oscillation amplitude (and phase), and it is important to understand which of these solutions are stable. 
Since these solutions are not the fixed points in the sense discussed in the Sec. 3.2 (each point in Fig. 4 
represents a nearly-sinusoidal oscillation), their stability analysis needs a more general approach that 
would be valid for oscillations with amplitude and phase slowly evolving in time. This approach will 
also enable the analysis of non-stationary (especially the initial transient) processes that are of key 
importance for some dynamic systems. 

First of all, let us formalize the way the harmonic balance equations, such as Eqs. (47), are 
obtained for the general case (38) – rather than for the particular Eq. (43) considered in the last section. 
After plugging in the 0th approximation (41) into the right-hand part of equation (38) we have to require 
the amplitudes of its both quadrature components of frequency   to be zero. From the standard Fourier 
analysis we know that these requirements may be presented as 

              ,0cos,0sin )0()0(  ff     (4.52) 

where symbol ... means time averaging – in our current case, over the period 2/ of the right-hand part 
of Eq. (52), with the arguments calculated in the 0th  approximation: 

               tAAtfqqtff Ψwith  ,,...Ψsin,Ψcos,,...),,( )0()0()0(  .  (4.53) 

Harmonic 
balance 
equations 
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 Now, for a transient process the contribution of q(0) to left-hand part of Eq. (38) is not zero any 
longer, because both amplitude and phase may be slow functions of time – see Eq. (41). Let us calculate 
this contribution. The exact result would be 
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qq




  (4.54) 

However,  in the first approximation in , we may neglect the second derivative of A, and also the 
squares and products of the first derivatives of A and  (that are all of the second order in ), so that Eq. 
(54) is  reduced to 

        )sin(2)cos(2)0(2)0(   tAtAqq  .   (4.55) 

In the right-hand part of Eq. (52), we can neglect the time derivatives of the amplitude and phase at all, 
because this part is already proportional to the small parameter. Hence, in the first order in , Eq. (38) 
becomes 

          Ψsin2Ψcos2)0(0
ef

)1(2)1(  AAffqq   .   (4.56) 

 Now, applying Eqs. (52) to function fef
(0), and taking into account that the time averages of sin2 

and cos2 are both equal to ½, while the time average of the product sincos vanishes, we get a pair 
of so-called RWA equations (alternatively called “the reduced equations” or sometimes “the van der Pol 
equations”) for the time evolution of the amplitude and phase: 

        Ψcos
1

,Ψsin
1 )0()0( f

A
fA





  .    (4.57a) 

Extending the definition (4) of the complex amplitude of oscillations to their slow evolution in time, a(t) 
 A(t)exp{i(t)}, and differentiating this relation, we see that two equations (57a) may be also re-written 
in the form of either one equation for a: 

             tii ef
i

ef
i

a 


)0()0( )Ψ(   ,    (4.57b) 

or two equations for the real and imaginary parts of a(t) = u(t) + iv(t): 

        tfvtfu 





cos
1

,sin
1 )0()0(   .    (4.57c) 

The first-order harmonic balance equations (52) are evidently just the particular case of the RWA 
equations (57) for stationary oscillations ( 0 A ).18 

 Superficially, the system (57a) of two coupled, first-order differential equations may look more 
complex than the initial, second-order differential equation (38), but actually it is usually much simpler. 

18 One may ask why cannot we stick to the just one, most compact, complex–amplitude form (57b) of the RWA 
equations. The main reason is that when function ),,( tqqf   is nonlinear, we cannot replace its real arguments, 

such as q = Acos(t - ), with their complex-function representations like aexp{-it} (as could be done in the 
linear problems considered in Sec. 4.1), and need to use real variables, such as either {A, } or {u, v}, anyway. 

Alternative  
forms of 

RWA 
equations 
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For example, let us spell them out for the easy case of free oscillations a linear oscillator with damping. 
For that, we may reuse the ready Eq. (46) with  = f0 = 0, turning Eqs. (4.57a) into 

         ,Ψsin)Ψsin2Ψcos2(
1

Ψsin
1 )0( AAAfA 


   (4.58a) 

         .Ψcos)Ψsin2Ψcos2(
1

Ψcos
1 )0( 


  AA

A
f

A
    (4.58b) 

 The solution of Eq. (58a) gives us the same “envelope” law A(t) = A(0)e-t as the exact solution 
(10) of the initial differential equation, while the elementary integration of Eq. (58b) yields (t) =  t + 
(0) = t - 0t + (0). This means that our approximate solution, 

           ,)0(cos)0()(cos)()( 0
)0(     teAtttAtq t    (4.59) 

agrees with the exact Eq. (9), and misses only correction (8)  to the oscillation frequency, that is of the 
second order in , i.e. of the order of 2 – beyond the accuracy of our first approximation. It is 
remarkable how nicely do the RWA equations recover the proper frequency of free oscillations in this 
autonomous system - in which the very notion of   is ambiguous. 

 The situation is different at forced oscillations. For example, for the (generally, nonlinear) 
Duffing oscillator described by Eq. (43) with f0  0, Eqs. (57a) yield the RWA equations, 

         





 cos
2

)(,sin
2

00 f
AAA

f
AA   ,   (4.60) 

which are valid for an arbitrary function (A), provided that the nonlinear detuning remains much 
smaller than the oscillation frequency. Here (after a transient), the amplitude and phase tend to the 
stationary states described by Eqs. (47). This means that  becomes a constant, so that q(0)  Acos(t - 
const), i.e. the RWA equations again automatically recover the correct frequency of the solution, in this 
case equal to that of the external force. 

 Note that each stationary oscillation regime, with certain amplitude and phase, corresponds to a 
fixed point of the RWA equations, so that the stability of those fixed points determine that of the 
oscillations. In what follows, we will carry out such an analysis for several simple systems of key 
importance for physics and engineering. 

 

4.4. Self-oscillations and phase locking 

 The rotating-wave approximation was pioneered by B. van der Pol in the late 1920s for analysis 
of one more type of oscillatory motion: self-oscillations. Several systems, e.g., electronic rf amplifiers 
with positive feedback, and optical media with quantum level population inversion, provide convenient 
means for the compensation, and even over-compensation of the intrinsic energy losses in oscillators. 
Phenomenologically, this effect may be described as the change of sign of the damping coefficient   
from positive to negative. Since for small oscillations the equation of motion is still linear, we may use 
Eq. (9) to describe its general solution. This equation shows that at  < 0, even infinitesimal deviations 
from equilibrium (say, due to unavoidable fluctuations) lead to oscillations with exponentially growing 
amplitude. Of course, in any real system such growth cannot persist infinitely, and shall be limited by 
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this or that effect - e.g., in the above examples, respectively, by amplifier saturation or electron 
population exhaustion.  

 In many cases, the amplitude limitation may be described reasonably well by nonlinear 
damping: 

               322 qqq    ,     (4.61) 

with  > 0. Let us analyze this phenomenon, applying the rotating-wave approximation to the 
corresponding homogeneous differential equation: 

         .02 2
0

3  qqqq        (4.62) 

Carrying out the dissipative and detuning terms to the right hand part as f, we can readily calculate the 
right-hand parts of the RWA equations  (57a), getting19 

            22

8

3
)(  where,)( AAAAA   ,   (4.63a) 

         AA   .      (4.63b) 

The second of these equations has exactly the same form as Eq. (58b) for the case of decaying 
oscillations and hence shows that the self-oscillations (if they happen, i.e. if A  0) have frequency 0 of 
the oscillator itself – see Eq. (59). Equation (63a) is more interesting. If the initial damping  is positive, 
it has only the trivial fixed point, A0 = 0 (that describes the oscillator at rest), but if  is negative, there is 
also another fixed point, 

               ,
3

8
2/1

21 












A       (4.64) 

which describes steady self-oscillations with a non-zero amplitude.  

 Let us apply the general approach discussed in Sec. 3.2, the linearization of equations of motion, 
to this RWA equation. For the trivial fixed point A0 = 0, the linearization of Eq. (63a) is reduced to 
discarding the nonlinear term in the definition of the amplitude-dependent damping (A). The resulting 
linear equation evidently shows that the system’s equilibrium point, A = A0 = 0,  is stable at  > 0 and 
unstable at  < 0. (We have already discussed this self-excitation condition above.)  The linearization of 
Eq. (63a) near the non-trivial fixed point A1 requires a bit more math: in the first order in 

0
~

1  AAA , we get 
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1    , (4.65) 

where Eq. (64) has been used to eliminate A1. We see that fixed point A1 (and hence the whole process) 
is stable as soon as it exists ( 0 ) - similar to the situation in our “testbed problem” (Fig. 2.1). 

 Now let us consider another important problem: the effect of a external sinusoidal force on a 
self-excited oscillator. If the force is sufficiently small, its effects on the self-excitation condition and 
the oscillation amplitude are negligible. However, if frequency  of such weak force is close to the 

19 For that, one needs to use the trigonometric identity sin3 = (3/4)sin - (1/4)sin3 - see, e.g., MA Eq. (3.4). 
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eigenfrequency 0 of the oscillator, it may lead to a very important effect of phase-locking (also called 
“synchronization”). At this effect, oscillator’s frequency deviates from 0, and becomes exactly equal to 
the external force’s frequency , within a certain range 

       0 .     (4.66) 

 In order to prove this fact, and also to calculate the phase locking range width 2, we may repeat 
the calculation of the right-hand parts of the RWA equations (57a), adding term f0cos t to the right-
hand part of Eq. (62) – cf. Eqs. (42)-(43). This addition modifies Eqs. (63) as follows:20 

                    ,sin
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)( 0 



f

AAA       (4.67a) 

          .cos
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f

AA       (4.67b) 

If the system is self-excited, and the external force is weak, its effect on the oscillation amplitude is 
small, and in the first approximation in f0 we can take A to be constant and equal to the value A1 given 
by Eq. (64). Plugging this approximation into Eq. (67b), we get a very simple equation21  

                            cosΔ ,     (4.68) 

where in our current case  

         .
2

Δ
1

0

A

f


       (4.69) 

Within the range -  <  < + , Eq. (68) has two fixed points on each 2-segment of variable : 

         n 2cos 1 








 

 .     (4.70) 

 It is easy to linearize Eq. (68) near each point to analyze their stability in our usual way; 
however, let me this case to demonstrate another convenient way to do this in 1D systems, using the so-
called phase plane – the plot of the right-hand part of Eq. (68) as a function of  - see Fig. 5. 

  

 

 

 

 

 

 

 

20 Actually, this result should be evident, even without calculations, from the comparison of Eqs. (60) and (63). 
21 This equation is ubiquitous in phase locking systems, including even some digital electronic circuits used for 
that purpose. 

Fig. 4.5. Phase plane of a phase-
locked oscillator, for the particular 
case  = /2, f0 > 0.
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 Since the positive values of this function correspond to the growth of  in time, and vice versa, 
we may draw the arrows showing the direction of phase evolution. From this graphics, it is clear that 
one of these fixed points (for f0 >0, +) is stable, while its counterpart is unstable. Hence the magnitude 
of  given by Eq. (69) is indeed the phase locking range (or rather it half) that we wanted to find. Note 
that the range is proportional to the amplitude of the phase locking signal - perhaps the most important 
feature of phase locking. 

 In order to complete our simple analysis, based on the assumption of fixed oscillation amplitude, 
we need to find the condition of validity of this assumption. For that, we may linearize Eq. (67a), for the 
stationary case, near value A1, just as we have done in Eq. (65) for the transient process. The stationary 
result, 
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Δ
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22
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0
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f
AAA ,    (4.71) 

shows that our assumption,  A
~
 << A1. and hence the final result (69), are valid if the phase locking 

range, 2, is much smaller than 4 . 

 

4.5. Parametric excitation 

 In both problems solved in the last section, the stability analysis was easy because it could be 
carried out for just one slow variable, either amplitude or phase. Generally, such analysis of the RWA 
equations involves both these variables. The classical example of such situation is provided by one 
important physical phenomenon – the parametric excitation of oscillations. An elementary example of 
such oscillations is given by a pendulum with an externally-changed parameter, for example length l(t) - 
see Fig. 6. Experiments (including those with playground swings :-) and numerical simulations show 
that if the length is changed (modulated) periodically, with frequency 2 that is close to 20 and a 
sufficiently large swing l, the equilibrium position of the pendulum becomes unstable, and it starts 
swinging with frequency   equal exactly to the half of the length modulation frequency (and hence only 
approximately equal to the average eigenfrequency 0 of the oscillator). 

 

 

 

 

 

 

 For an elementary analysis of this effect we may consider the simplest case when the oscillations 
are small. At the lowest point (  = 0), where the pendulum moves with the highest velocity vmax, 
string’s tension T  is higher than mg by the centripetal force: Tmax = mg + mvmax

2/l. On the contrary, at 
the maximum deviation of the pendulum from the equilibrium, the force is weakened by string’s tilt: Tmin 

= mgcosmax. Using the energy conservation, E = mvmax
2/2 = mgl(1 - cosmax), we may express these 

values as Tmax = mg + 2E/l and Tmin = mg – E/l. Now, if during each oscillation period the string is pulled 

Fig. 4.6. Parametric excitation of pendulum oscillations. 
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up sharply and slightly by l (l << l) at each of its two passages through the lowest point, and is let to 
go down by the same amount at each of two points of the maximum deviation, the net work of the 
external force per period is positive: 

                    ,
Δ

6Δ)(2 minmax E
l

l
lW  TT     (4.72) 

and hence results in an increase of the oscillator’s energy. If the so-called modulation depth l/2l  is 
sufficient, this increase may be sufficient to overcompensate the energy drained out by damping. 
Quantitatively, Eq. (10) shows that low damping (  << 0) leads to the following energy decrease, 

      EE
0

4

 ,     (4.73) 

per oscillation period. Comparing Eqs. (72) and (73), we see that the net energy flow into the 
oscillations is positive, W + E > 0, i.e. oscillation amplitude has to grow if22 

      .
33

2Δ

0 Ql
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      (4.74) 

Since this result is independent on E, the growth of energy and amplitude is exponential (for sufficiently 
low E), so that Eq. (74) is the condition of parametric excitation - in this simple model. 

 However, this result does not account for the possible difference between the oscillation 
frequency  and the eigenfrequency 0, and also does not clarify whether the best phase shift between 
the parametric oscillations and parameter modulation, assumed in the above calculation, may be 
sustained automatically. In order to address these issues, we may apply the rotating-wave approximation 
to a simple but reasonable linear equation 

     ,0)2cos1(2 2
0  qtqq       (4.75) 

describing the parametric excitation for a particular case of sinusoidal modulation of 0
2(t). Rewriting 

this equation in the canonical form (38), 

          ,2cos22),,( 2
0

2 tqqqqqtfqq       (4.76) 

and assuming that the dimensionless ratios /ω and /, and the modulation depth  are all much less 
than 1, we may use general Eqs. (57a) to get the following RWA equations:  
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     (4.77) 

 These equations evidently have a fixed point A0 = 0, but its stability analysis (though possible) is 
not absolutely straightforward, because phase   of oscillations is undetermined at that point. In order to 

22 A modulation of pendulum’s mass (say, by periodic pumping water in and out of a suspended bottle) gives a 
qualitatively similar result. Note, however, that parametric oscillations cannot be excited by modulating any 
oscillator’s parameter – for example, oscillator’s damping coefficient (at least if it stays positive at all times), 
because its does not change system’s energy, just the energy drain rate. 
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avoid this (technical rather than conceptual) difficulty, we may use, instead of the real amplitude and 
phase of oscillations, either their complex amplitude a = A exp{i}, or its Cartesian components u and v 
– see Eqs. (4). Indeed, for our function  f, Eq. (57b) gives 

        *
4

)( aiaia
  ,     (4.78) 

while Eqs. (57c) yield 
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     (4.79) 

 We see that in contrast to Eqs. (77), in Cartesian coordinates {u, v} the trivial fixed point a0 = 0 
(i.e. u0 = v0 = 0) is absolutely regular. Moreover, equations (78)-(79) are already linear, so they do not 
require any additional linearization. Thus we may use the same approach as was already used in Secs. 
3.2 and 4.1, i.e. look for the solution of Eqs. (79) in the exponential form exp{t}. However, now we are 
dealing with two variables, and should allow them to have, for each value of , a certain ratio u/v. For 
that, we should take the partial solution in the form 

            ., tt ecvecu vu
       (4.80) 

where constants cu and cv are frequently called the distribution coefficients. Plugging this solution into 
Eqs. (79), we get for them the following system of two linear algebraic equations: 
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 The characteristic equation of this system, 
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has two roots:  
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       (4.83) 

Requiring the fixed point to be unstable, 0Re  , we get the parametric excitation condition 

                .
4

2/122 
      (4.84) 

Thus the parametric excitation may indeed happen without any artificial phase adjustment: the arising 
oscillations self-adjust their phase to pick up energy from the external source responsible for the 
parameter variation. 

RWA 
equations 

for  
parametric 
excitation 
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 Our key result (84) may be compared with two other calculations. First, in the case of negligible 
damping ( = 0), Eq. (84) turns into condition /4 >  . This result may be compared with the well-
developed theory of the so-called Mathieu equation whose canonical form is 

         .02cos2
2

2

 yvba
dv

yd
     (4.85) 

It is evident that with the substitutions y  q, v  t, a  (0/)2
,  b  -/2, this equation is just a 

particular case of Eq. (75) for  = 0. In terms of Eq. (85), the result of our approximate analysis may be 
re-written just as b > a – 1 , and is supposed to be valid for b  << 1. This condition is shown in Fig. 7 
together with the numerically calculated23 stability boundaries of the Mathieu equation.   

 

 

 

 

 

 

 

  

  

  

 

 

 

 
One can see that the rotating-wave approximation works just fine within its applicability limit 

(and beyond :-), though it fails to predict some other important features of the Mathieu equation, such as 
the existence of higher, more narrow regions of parametric excitation (at a  n2, i.e. 0  /n, for all 
integer n), and some spill-over of the stability region into the lower half-plane a < 0.24 The reason of 
these failures is the fact that, as can be seen in Fig. 7, these phenomena do not appear in the first 
approximation in the parameter modulation amplitude   q, that is the RWA applicability realm. 

 In the opposite case of finite damping but exact tuning ( = 0,   0), Eq. (84) gives  

       .
24

0 Q



       (4.86) 

23 Such calculations may be substantially simplified by the use of the so-called Floquet theorem, which is also  
the mathematical basis for the discussion of wave propagation in periodic media – see the next chapter.  
24 This region describes, for example, the counter-intuitive stability of an inverted pendulum with the periodically 
modulated length, within a limited range of the modulation depth . 

0 0.2 0.4 0.6 0.8 1
1

0

1

2

3

4

5

a

b

Fig. 4.7. Stability boundaries of the Mathieu 
equation (85), as calculated: numerically 
(curves) and using the rotating-wave 
approximation (dashed straight lines). In the 
regions numbered by various n the trivial 
solution y = 0 of the equation is unstable,  i.e. its 
general solution y(v) includes an exponentially  
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This condition may be compared with Eq. (74), taking l/l = 2.. The comparison shows that though the 
structure of these conditions is similar, the numerical coefficients are different by a factor close to 2. 
The first reason of this difference is that the instant parameter change at optimal moments of time is 
more efficient then the smooth, sinusoidal variation described by (75). Even more significantly, the 
change of pendulum’s length modulates not only its eigenfrequency 0, as Eq. (75) implies, but also its 
mechanical impedance Z  (gl)1/2 – the notion to be discussed in detail in the next chapter. (Due to the 
time restrictions, I have to leave the analysis of the general case of the simultaneous modulation of 0 
and Z for reader’s exercise.) 

 Before moving on, let me summarize the most important differences between the parametric and 
forced oscillations: 

  (i) Parametric oscillations completely disappear outside of their excitation range, while the 
forced oscillations have a non-zero amplitude for any frequency and amplitude of the external force – 
see Eq. (18).  

 (ii) Parametric excitation may be described by a linear homogeneous equation - e.g., Eq. (75) - 
which cannot predict any finite oscillation amplitude within the excitation range, even at finite damping. 
In order to describe stationary parametric oscillations, some nonlinear effect has to be taken into 
account. (Again, I am leaving analyses of such effects for reader’s exercises.)  

 One more important feature of the parametric oscillations will be discussed in the end of the next 
section. 

 

4.6. Fixed point classification 

 RWA equations (79) give us a good pretext for a brief discussion of fixed points of a dynamic 
system described by two time-independent, first-order differential equations.25 After their linearization 
near a fixed point, the equations for deviations can always be presented in the form similar to Eq. (79): 
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where Mjj’ (with j, j’ = 1, 2) are some real scalars that may be understood as elements of a 22 matrix M. 
Looking for an exponential solution of the type (80),  
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we get a more general system of two linear equations for the distribution coefficients c1,2: 
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These equations are consistent if 

25 Autonomous systems described by a single second-order differential equation, say 0),,( qqqF  , also belong 

to this class, because we may treat velocity vq   as a new variable, and use this definition as one first-order 

differential equation, and the initial equation, in the form 0),,( vvqF  , as the second first-order equation. 
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giving us a quadratic characteristic equation 
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Its solution,26 
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shows that  the following situations are possible: 

 A. The expression under the square root, (M11- M22)
2 + 4M12M21, is positive. In this case, both 

characteristic exponents   are real, and we can distinguish three sub-cases: 

  (i) Both + and - are negative. In this case, the fixed point is evidently stable. Because of 
generally different magnitudes of exponents , the process presented on the phase plane [ 21

~,~ qq ] (Fig. 

8a) may be seen as consisting of two stages: first, a faster (with rate -) relaxation to a linear 
asymptote,27 and then a slower decline, with rate +, along this line, i.e. at the virtually fixed ratio of the 
variables. Such fixed point is called the stable node.  

  (ii) Both + and - are positive. This case (rarely met in actual physical systems) of the 
unstable node differs from the previous one only by the direction of motion along the phase plane 
trajectories (see dashed arrows in Fig. 8a). Here the variable ratio is also approaching a constant soon, 
but now the one corresponding to + > -. 

  (iii) Finally, in the case of a saddle (+ > 0, - < 0) the system dynamics is  different (Fig. 
8b): after the rate-- relaxation to the +-asymptote, the perturbation starts to grow, with the rate +, 
along one of two opposite directions. (The direction is determined on which side of another straight line, 
called separatrix, the system has been initially.)  It is evident that the saddle28 is an unstable fixed point. 

 B. The expression under the square root, (M11- M22)
2 + 4 M12M21, is negative. In this case the 

square root in Eq. (92) is imaginary, making the real parts of both roots equal, Re = (M11 + M22)/2, 
and their imaginary parts equal but sign-opposite. As a result, here there can be just two types of fixed 
points: 

  (i) Stable focus, at (M11 + M22) < 0. The phase plane trajectories are spirals going to the 
center (i.e. toward the fixed point) – see Fig. 8c with solid arrow. 

  (ii) Unstable focus, taking place at (M11 + M22) > 0, differs from the stable one only by 
the direction of motion along the phase trajectories – see the dashed arrow in Fig. 8c. 

26 In terms of linear algebra,  are the eigenvalues, and the corresponding sets [c1, c2] , the eigenvectors of 
matrix M with elements Mjj’. 
27 The asymptote direction may be found by plugging the value + back into Eq. (89) and finding the 
corresponding ratio c1/c2. 
28 The term “saddle” is due to the fact that system’s dynamics in this case is qualitatively similar to those of 
particle’s motion in the 2D potential U( 21

~,~ qq ) having the shape of a horse saddle (or a mountain pass). 

Characteristic 
equation of  
system (87) 
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 C. Sometimes the border case, M11 + M22 = 0, is also distinguished, and the corresponding fixed 
point is refereed to as the center (Fig. 8d). Considering centers a special category makes sense because 
such fixed points are typical for Hamiltonian systems whose first integral of motion may be frequently 
presented as the distance of the from a fixed point. For example, a harmonic oscillator without 
dissipation may be described by the system 

           ,, 2
0 qmp

m

p
q        (4.94) 

Fig. 4.8. Typical trajectories on the phase plane [ 21
~,~ qq ] near fixed points of various types: (a) node, 

(b) saddle, (c) focus, and (d) center. The particular values of the matrix M used in the first three 
panels correspond to the RWA equations (81) for parametric oscillators with  = , and three 
different values of parameter /4: (a) 1.25, (b) 1.6 and (c) 0.
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that is evidently a particular case of Eq. (87) with M11 = M22 = 0, M12M21 = - 0
2 < 0, and hence (M11- 

M22)
2 + 4M12M21 = -40

2 < 0, and M11 + M22 = 0. The phase plane of the system may be symmetrized by 
plotting q vs. the properly normalized momentum p/m0. On the symmetrized plane, sinusoidal 
oscillations of amplitude A are represented by a circle of radius A about the center-type fixed point A = 
0. Such a circular trajectory correspond to the conservation of the oscillator’s energy 

    .
222
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   (4.95) 

 This is a convenient moment for a brief discussion of the so-called Poincaré (or “slow-variable”, 
or “stroboscopic”) plane.29 From the point of view of the rotating-wave approximation, sinusoidal 
oscillations q(t) = Acos(t - ), in particular those described by a circular trajectory on the real (or 
“fast”) phase plane (Fig. 8c) correspond to a fixed point {A, }, which may conveniently presented by a 
steady geometrical point on a plane with these polar coordinates (Fig. 9a). (As follows from Eq. (4), the 
Cartesian coordinates on that plane are u and v.) The quasi-sinusoidal process (41), with slowly 
changing A and , may be represented by a slow motion of that point on this Poincaré plane.  

 

 

 

 

 

 

 

 

 

  

 Figure 9b shows one possible way to visualize the relation between the “real” phase plane of an 
oscillator, with symmetrized Cartesian coordinates q and p/m0, and the Poincaré plane with Cartesian 
coordinates u and v: the latter reference frame rotates relative to the former one about the origin 
clockwise, with angular velocity .30 Another, “stroboscopic” way to generate the Poincaré plane 
pattern is to have a fast glance at the “real” phase plane just once during the oscillation  period T = 2/.   

 In many cases, such presentation is more convenient than that on the “real” phase plane. In 
particular, we have already seen that the RWA equations for such important phenomena as phase 
locking and parametric oscillations, whose original differential equations include time explicitly, are 
time-independent – cf., e.g., (75) and (79) describing the latter effect. This simplification brings the 

29 Named after J. H. Poincaré (1854-1912) who is credited, among many other achievements, for his contributions 
to special relativity (see, e.g., EM Chapter 9) and the idea of deterministic chaos (to be discussed in Chapter 9 
below). 
30 This notion of phase plane rotation is the basis for the rotating-wave approximation’s name. (Word “wave” has 
sneaked in from this method’s wide application in classical and quantum optics.) 

(a)     (b) 
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0

Fig. 4.9. (a) Presentation of a 
sinusoidal oscillation (point) and a 
slow transient (line) on the Poincaré 
plane, and (b) transfer from the “fast” 
phase plane to the “slow” (Poincaré) 
plane. 

q

u

v


 t0

t
A

m

p



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 4           Page 25 of 34 

equations into the category considered in this section, and enables the classification of their fixed points, 
which may shed additional light on their dynamic properties.    

 In particular, Fig. 10 shows the classification of the trivial fixed point of a parametric oscillator, 
which follows from Eq. (83). As the parameter modulation depth  is increased, the type of the trivial 
fixed point A1 = 0 on the Poincaré plane changes from a stable focus (typical for a simple oscillator with 
damping) to a stable node and then to a saddle describing the parametric excitation. In the last case, the 
two directions of the perturbation growth, so prominently featured in Fig. 8b, correspond to the two 
possible values of the oscillation phase , with the phase choice determined by initial conditions. 

 

 

 

 

 

 

 

 

 This double degeneracy of the parametric oscillation’s phase could already be noticed from Eqs.  
(77), because they are evidently invariant with respect to replacement    + . Moreover, the 
degeneracy is not an artifact of the rotating-wave approximation, because the initial Eq. (75) is already 
invariant with respect to the corresponding replacement q(t)  q(t - /). This invariance means that all 
other characteristics (e.g., the amplitude) of the parametric oscillations excited with either of two phases 
are absolutely similar. At the dawn of the computer age (in the late 1950s and early 1960s), there were 
substantial attempts, especially in Japan, to use this property for storage and processing digital 
information coded in the phase-binary form. 

 

4.7. Numerical approach 

 If the amplitude of oscillations, by whatever reason, becomes so large that the nonlinear terms in 
the equation describing a system are comparable to its linear terms, numerical methods are virtually the 
only avenue available for their study. In Hamiltonian 1D systems, such methods may be applied directly 
to integral (3.26), but dissipative and/or parametric systems typically lack first integrals of motion 
similar to Eq. (3.24), so that the initial differential equation has to be solved.  

 Let us discuss the general idea of such methods on the example of what mathematicians call the  
Cauchy problem (finding the solution for all moments of time, starting from known initial conditions) 
for first-order differential equation 

      ).,( qtfq        (4.96) 

(The generalization to a set of several such equations is straightforward.) Breaking the time axis into 
small, equal steps h (Fig. 11) we can reduce the equation integration problem to finding the function 
value in the next time point, qn+1  q(tn+1) = q(tn + h) from the previously found value qn = q(tn) - and, if 

Fig. 4.10. Types of the trivial fixed 
point of a parametric oscillator. 0
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necessary, the values of  q at other previous time steps. In the generic approach (called the Euler 
method), qn+1 is found using the following formula: 

      
).,(

,1

nn

nn

qtfhk

kqq


      (4.97) 

It is evident that this approximation is equivalent to the replacement of the genuine function q(t), on the 
segment [tn, tn+1], with the two first terms of its Taylor expansion in point tn:  

    ).,()()()()( nnnnnn qthftqhtqtqhtq      (4.98) 

  

 

 

 

  

  

 Such approximation has an error proportional to h2. One could argue that making the step h  
sufficiently small the Euler’s method error might be done arbitrary small, but even with the number-
crunching power of modern computers, the computation time necessary to reach sufficient accuracy may 
be too high for large problems.31 Besides that, the increase of the number of time steps, which is 
necessary at 0h , increases the total rounding errors, and eventually may cause an increase, rather 
than the reduction of the overall error of the computed result. 

 A more efficient way is to modify Eq. (97) to include the terms of the second order in h. There 
are several ways to do this, for example using the 2nd-order Runge-Kutta method: 
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    (4.99) 

One can readily check that this method gives the exact result if function q(t) is a quadratic polynomial, 
and hence in the general case its errors are of the order of h3. We see that the main idea here is to first 
break the segment [tn, tn+1] in half (Fig. 11), then evaluate the right-hand part of the differential equation 
(96) at the point intermediate (in both t and q) between points n and (n + 1), and then use this 
information to predict qn+1.   

 The advantage of the Runge-Kutta approach is that it can be readily extended to the 4th order, 
without an additional breaking of the interval [tn, tn+1].: 

31 In addition, the Euler method is not time-reversible - the handicap which may be essential for integration of 
Hamiltonian systems described by systems of second-order differential equations. However, this drawback may 
be readily overcome by the so-called leapfrogging – the overlap of time steps h for a generalized coordinate and 
the corresponding generalized velocity. 

Fig. 4.11. The basic notions used at numerical 
integration of ordinary differential equations. 
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 (4.100) 

This method reaches much lower error, O(h5), without being not too cumbersome. These features have 
made the 4th-order Runge-Kutta the default method in most numerical libraries. Its extension to higher 
orders is possible but requires more complex formulas and is justified only for some special cases, e.g., 
very abrupt functions q(t).32 The most frequent enhancement of the method is the automatic adjustment 
of step h to reach the specified accuracy.  

 Figure 12 shows a typical example of application of that method to the very simple problem of a 
damped linear oscillator, for two values of fixed time step h (expressed in terms of the number N of such 
steps per oscillation period). Black lines connect the points obtained by the 4th-order Runge-Kutta 
method, while the points connected by green straight lines present the exact analytical solution (22). A 
few-percent errors start to appear only at as few as ~10 time steps per period, so that the method is 
indeed very efficient. I will illustrate the convenience and handicaps of the numerical approach to the 
solution of dynamics problems on the discussion of the following topic. 

  

 

 

 

 

 

 

 

 

  

 

 

4.8. Higher harmonic and subharmonic oscillations 

 Figure 13 shows the numerically calculated33 transient process and stationary oscillations in a 
linear oscillator and a very representative nonlinear system, the pendulum described by Eq. (42), both 
with the same resonance frequency 0 for small oscillations.  Both systems are driven by a sinusoidal 

32 The most popular approaches in such cases are the Richardson extrapolation, the Bulirsch-Stoer algorithm, and 
a set of prediction-correction techniques, e.g. the Adams-Bashforth-Moulton method – see the literature 
recommended in MA Sec. 16 (iii). 
33 All numerical results shown in this section have been obtained by the 4th-order Runge-Kutta method with the 
automatic step adjustment which guarantees the relative error of the order of 10-4 – much smaller than the pixel 
size in the plots. 

Fig. 4.12. Results of the fixed-point Runge-Kutta solution to the equation of linear oscillator with damping 
(with /0 = 0.03) for: (a) 30 and (b) 6 points per oscillation period. The results are shown by points; lines 
are only the guide for the eye. 
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external force of the same amplitude and frequency - in this illustration, equal to the small-oscillation 
eigenfrequency 0 of both systems. The plots show that despite a very substantial amplitude of the 
pendulum oscillations (an angle amplitude of about one radian) their waveform remains almost exactly 
sinusoidal.34 On the other hand, the nonlinearity affects the oscillation amplitude very substantially. 
These results illustrate that the validity of the small-parameter method and its RWA extension far 
exceeds what might be expected from the formal requirement q << 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The higher harmonic contents in the oscillation waveform may be sharply increased35 by 
reducing the external force frequency to ~0/n, where integer n is the number of the desirable harmonic. 
For example, Fig. 14a shows oscillations in a pendulum described by the same Eq. (42), but driven at 
frequency 0/3. One can see that the 3rd harmonic amplitude may be comparable with that of the basic 
harmonic, especially if the external frequency is additionally lowered (Fig. 14b) to accommodate for the 
deviation of the effective frequency ω0(a) of own oscillations from its small-oscillation value ω0 – see 
Eq. (49), Fig. 4 and their discussion in Sec. 2 above. 

 Generally, the higher harmonic generation by nonlinear systems might be readily anticipated. 
Indeed, the Fourier theorem tells us that any non-sinusoidal periodic function of time, e.g., an initially 
sinusoidal waveform of frequency , distorted by nonlinearity, may be presented as a sum of its basic 
harmonic and higher harmonics with frequencies n.  Note that an effective generation of higher 

34 In this particular case, the higher harmonic contents is about 0.5%, dominated by the 3rd harmonic whose 
amplitude and phase are in a very good agreement with Eq. (50). 
35 This method is used in practice, for example, for the generation of electromagnetic waves with frequencies in 
the terahertz range (1012-1013 Hz) which still lacks efficient electronic self-oscillators.   

Fig. 4.13. Oscillations induced by a similar sinusoidal external force (turned on at t = 0) in two 
systems with the same small-oscillation frequency ω0 and low damping – a linear oscillator (two 
top panels) and a pendulum (two bottom panels). δ/ω0 = 0.03, f0 = 0.1, and ω = ω0.  
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harmonics is only possible with adequate nonlinearity of the system. For example, consider the 
nonlinear term q3 used in equations explored in Secs. 2 and 3. If the waveform q(t) is approximately 
sinusoidal, such term can create only the basic and 3rd harmonics. The “pendulum nonlinearity” sinq 
cannot produce, without a constant component is process q(t), any even (e.g., the 2nd) harmonic. The 
most efficient generation of harmonics may be achieved using systems with the sharpest nonlinearities – 
e.g., semiconductor diodes whose current may follow an exponential dependence on the applied voltage 
through several orders of magnitude. 

 

    

 

 

 

 

 

 

 

 

 

 

 

  

 However, numerical modeling of nonlinear oscillators, as well as experiments with their physical 
implementations, bring more surprises. For example, the bottom panel of Fig. 15 shows oscillations in a 
pendulum under effect of a strong sinusoidal force with a frequency close to 30. One can see that at 
some parameter values and initial conditions the system’s oscillation spectrum is heavily contributed 
(almost dominated) by the 3rd subharmonic, i.e. a component  that is synchronous with the driving force 
of frequency 3, but has the frequency  that is close to the eigenfrequency 0 of the system. 

This counter-intuitive phenomenon may be explained as follows. Let us assume that the 
subharmonic oscillations of frequency   0 have somehow appeared, and coexist with the forced 
oscillations of frequency 3:  

  .Ψ,3Ψ  where,ΨcosΨcos)( subsubsubsub   ttAAtq                  (4.101) 

Then, the first nonlinear term q3 of the Taylor expansion of pendulum’s nonlinearity sin q yields 

        
.ΨcosΨcosΨcos3ΨcosΨcos3Ψcos
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  (4.102) 

Fig. 4.14. Oscillations induced in a pendulum with damping δ/ω0 = 0.03, driven by a sinusoidal 
external force of amplitude f0 = 0.75, and frequency ω0/3 (top panel) and 0.8ω0/3 (bottom panel).  
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 While the first and the last terms of this expression depend only of amplitudes of the individual 
components of oscillations, the two middle terms are more interesting because they produce so-called 
combinational frequencies of the two components. For our case, the third term, 

            ...)Ψ2Ψcos(
4

3
ΨcosΨcos3 sub

2
ubsub

22
ub  ss AAAA ,    (4.103) 

of a special importance, because it produces, besides other combinational frequencies, the subharmonic 
component with the total phase 

       subsub 22   t .     (4.104) 

Thus, within a certain range of the mutual phase shift between the Fourier components, this nonlinear 
contribution is synchronous with the subharmonic oscillations, and describes the interaction that can 
deliver to it the energy from the external force, so that the oscillations may be self-sustained. Note, 
however, that the amplitude of the term (103) describing this energy exchange is proportional to the 
square of Asub, and vanishes at the linearization of the equations of motion near the trivial fixed point. 
This means that the point is always stable, i.e., the 3rd subharmonic cannot be self-excited and always 
need an initial “kick-off” – compare the two panels of Fig. 15. The same is evidently true for higher 
subharmonics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Only the second subharmonic presents a special case. Indeed, let us make a calculation similar to 
Eq. (102), by replacing Eq. (101) with 

      ,Ψ,2Ψ  where,ΨcosΨcos)( subsubsubsub   ttAAtq   (4.105) 

Fig. 4.15. Oscillations induced in a pendulum with δ/ω0 = 0.03 by a sinusoidal external force of 
amplitude f0 = 3 and frequency 3ω00.8, with initial conditions q(0) = 0 (the top row) and q(0) = 1 
(the bottom row). 
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for a nonlinear term proportional to q2: 

     .ΨcosΨcosΨcos2Ψcos)ΨcosΨcos( sub
22

subsubsub
222

subsub
2 AAAAAAq   (4.106) 

Here the combinational-frequency term capable of supporting the 2nd subharmonic, 

       ...cosΨΨcosΨcosΨcos2 subsubsubsubsubsub  tAAAAAA ,  (4.107) 

is linear in the subharmonic amplitude, i.e. survives the equation linearization near the trivial fixed 
point. This mean that the second subharmonic may arise spontaneously, from infinitesimal fluctuations. 
 Moreover, such excitation of the second subharmonic is very similar to the parametric excitation 
that was discussed in detail in Sec. 5, and this similarity is not coincidental. Indeed, let us redo 
expansion (4.106) at a somewhat different assumption that the oscillations are a sum of the forced 
oscillations at the external force frequency 2, and an arbitrary but weak perturbation: 

       AqtqtAtq  ~),(~)2cos()(  .    (4.108) 

Then, neglecting the small term proportional to 2~q , we get 

    ).2cos()(~2)2(cos222   tAtqtAq    (4.109) 

Besides the inconsequential phase , the second term in the last formula is exactly similar to the term 
describing the parametric effects in Eq. (75). This fact means that for a weak perturbation, a system with 
a quadratic nonlinearity in the presence of a strong “pumping” signal of frequency 2 is equivalent to a 
system with parameters changing in time with frequency 2 . This fact is broadly used for the 
parametric excitation at high (e.g., optical) frequencies where the mechanical means of parameter 
modulation (see, e.g., Fig. 5) are not practicable. The necessary quadratic nonlinearity at optical 
frequencies may be provided by a noncentrosymmetric nonlinear crystal, e.g., the -phase barium borate 
(BaB2O4). 

 Before finishing this chapter, let me elaborate a bit on a general topic: the relation between the 
numerical and analytical approaches to problems of dynamics (and physics as a whole). We have just 
seen that sometimes numerical solutions, like those shown in Fig. 15b, may give vital clues for 
previously unanticipated phenomena such as the excitation of subharmonics. (The phenomenon of 
deterministic chaos, which will be discussed in Chapter 9 below, presents another example of  such 
“numerical discoveries”.) One might also argue that in the absence of exact analytical solutions, 
numerical simulations may be the main theoretical tool for the study of such phenomena. These hopes 
are, however, muted by the problem that is frequently called the curse of dimensionality,36 in which the 
last word refers to the number of input parameters of the problem to be solved.37   

 Indeed, let us have another look at Fig. 15. OK, we have been lucky to find a new phenomenon, 
the 3rd subharmonic generation, for a particular set of parameters - in that case, five of them: /0 = 
0.03, 3/0 = 2.4, f0  = 3, q(0) = 1, and dq/dt (0) = 0. Could we tell anything about how common this 
effect is? Are subharmonics with different n possible in the system? The only way to address these 

36 This term had been coined in 1957 by R. Bellman in the context of the optimal control theory (where the 
dimensionality typically means the  number of parameters affecting the system under control), but gradually has 
spread all over quantitative sciences using numerical methods. 
37 In EM Sec. 1.2, I discuss implications of the curse implications for a different case, when both analytical and 
numerical solutions to the same problem are possible. 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 4           Page 32 of 34 

questions computationally is to carry out similar numerical simulations in many points of the d-
dimensional (in this case, d = 5) space of parameters. Say, we have decided that breaking the reasonable 
range of each parameter to N = 100 points is sufficient. (For many problems, even more points are 
necessary – see, e.g., Sec. 9.1.) Then the total number of numerical experiments to carry out is Nd = 
(102)5 = 1010 – not a simple task even for the powerful modern computing facilities. (Besides the pure 
number of required CPU cycles, consider storage and analysis of the results.) For many important 
problems of nonlinear dynamics, e.g., turbulence, the parameter dimensionality d is substantially larger, 
and the computer resources necessary for one numerical experiment, are much greater. 

 In the view of the curse of dimensionality concerns, approximate analytical considerations, like 
those outlined above for the subharmonic excitation, are invaluable. More generally, physics used to 
stand on two legs, experiment and (analytical) theory. The enormous progress of computer performance 
during a few last decades has provided it with one more point of support (a tail? :-) – numerical 
simulation. This does not mean we can afford to cut and throw away any of the legs we are standing on. 

 

4.9. Exercise problems 

 4.1.* Prove Eq. (26) for the response function given by Eq. (17). 

 Hint: You may like to use the Cauchy integral theorem for analytical functions of complex 
variable.38 
 
 4.2. A square-wave pulse of force (see Fig. on the right) is exerted on a 
linear oscillator with eigenfrequency 0 (no damping), initially at rest. Calculate 
the law of motion q(t), sketch it, and interpret the result. 
 
 4.3. At t = 0, a sinusoidal external force F(t) = F0cos t, with constant A 
and , is applied to a linear oscillator with eigenfrequency 0 and damping , which was at rest at t  0. 

  (i) Calculate the general expression for the time evolution of the oscillator’s coordinate, and 
interpret the result. 
 (ii) Spell out your result for the case of the resonance ( = 0) in a system with low damping ( 
<< 0), and, in particular, explore the limit   0. 
 
 4.4. A pulse of external force F(t), with a finite duration T, is exerted on a harmonic oscillator, 
initially at rest in the equilibrium position. Neglecting dissipation, calculate the change of oscillator’s 
energy, using two different methods, and compare the results. 
  
 4.5.* For a system with the following Lagrangian function:  

2222

222
qqqq

m
L 


 , 

calculate the frequency of free oscillations as a function of their amplitude A, at A  0, using two 
different approaches. 
  

38 See, e.g., MA Eq. (15.1). 
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4.6. For a system with the Lagrangian function  

422

22
qqq

m
L  

 , 

with small parameter , use the rotating-wave approximation to find the frequency of free oscillations as 
a function of their amplitude. 
 
 4.7. Find the regions of real, time-independent parameters a1 and a2, in which the fixed point of 
the following system of equations, 

,

),(

2122

1211

qqaq

qqaq







 

is unstable. On the [a1, a2] plane, sketch the regions of each fixed point type - stable and unstable nodes, 
focuses, etc. 
 
 4.8. Solve Problem 4.3(ii) using the rotating-wave approximation, and compare the result with 
the exact solution.  
 
 4.9.  Use the rotating-wave approximation to analyze forced oscillations in an oscillator with 
weak nonlinear damping, described by equation 

,cos2 0
32

0 tfqqqq     

with   0; ,  > 0; and A2 << 1. In particular, find the stationary amplitude of forced oscillations 
and analyze their stability. Discuss the effect(s) of the nonlinear term on the resonance. 
 
 4.10.* Analyze stability of the forced nonlinear oscillations described by Eq. (43). Relate the 
result to the slope of resonance curves (Fig. 4). 

 
4.11. Use the rotating-wave approximation to analyze parametric excitation of an oscillator with 

weak nonlinear damping, described by equation 

  ,02cos12 2
0

3  qtqqq    

with   0; ,  > 0; and , A2 << 1. In particular, find the amplitude of stationary oscillations and 
analyze their stability. 
 
 4.12. Adding nonlinear term q3 to the left-hand part of Eq. (76),  

  (i) find the corresponding addition to the RWA equations, 
 (ii) find the stationary amplitude A of parametric oscillations, 
 (iii) sketch and discuss the A() dependence, 
 (iv) find the type and stability of each fixed point of the RWA equations, 

  (v) sketch the Poincaré phase plane of the system in main parameter regions. 
  
 4.13. Use the rotating-wave approximation to find the conditions of parametric excitation in an 
oscillator with weak modulation of both the effective mass m(t) = m0(1 + mcos 2t) and spring constant 
(t) = 0[1 + cos(2t -)], with the same frequency 2  20, but arbitrary modulation depths ratio 
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m/k and phase shift . Interpret the result in terms of modulation of the instantaneous frequency (t)  
[(t)/m(t)]1/2 and mechanical impedance Z(t)   [(t)m(t)]1/2 of the oscillator. 
 
 4.14.* Find the condition of parametric excitation of a nonlinear oscillator described by equation 

,2cos2 0
22

0 tfqqqq     

with sufficiently small , ,  f0, and     - 0. 
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Chapter 5. From Oscillations to Waves 

In this chapter, the discussion of oscillations is extended to systems with two and more degrees of 
freedom. This extension naturally leads to another key notion - waves. The discussion of waves (at this 
stage, in 1D systems) is focused at such key phenomena as their dispersion and reflection from 
interfaces/boundaries. 

 
5.1. Two coupled oscillators  

Let us  move on to discuss oscillations in systems with more than one degree of freedom, starting 
from the simplest case of two linear, dissipation-free oscillators. If the Lagrangian of the system may be 
presented as a sum of those for two harmonic oscillators, 

         ,
22

, 2
2,1

2,12
2,1

2,1
2,12,12,121 qq

m
UTLLLL


     (5.1) 

(plus arbitrary, inconsequential constants if you like), then according to Eq. (2.19), the equations of 
motion of the oscillators are independent of each other, and each one is similar to Eq. (1.1), with its 
partial frequency 1,2 equal to 

        
2,1

2,12
2,1 m


 .      (5.2) 

This means that in this simplest case, the arbitrary motion of the system is just a sum of independent 
sinusoidal oscillations at two frequencies equal to the partial frequencies (2). 

 Hence, in order to describe the oscillator coupling (i.e. interaction), the full Lagrangian L should 
contain an additional mixed term Lint depending on both generalized coordinates q1 and  q2 and/or 
generalized velocities. The simplest, and most frequently met type of such interaction term is the 
following bilinear form Uint = - q1q2, where  is a constant, giving Lint = -Uint = q1q2. Figure 1 shows 
the simplest example of system with such interaction.1  In it, three springs, keeping two massive 
particles between two stiff walls, have generally different spring constants.  

 

 

 

   

 

Indeed, in this case the kinetic energy is still separable, T = T1 + T2, but the total potential 
energy, consisting of elastic energies of three springs, is not: 

           2
2

2
21

2
1 2

)(
22

qqqqU RML 
 ,    (5.3a)

1 Here it is assumed that the particles are constrained to move in only one dimension (shown horizontal). 

Fig. 5.1. Simple system of two 
coupled harmonic oscillators.

1m 2mL M R
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where q1.2 are the horizontal displacements of particles from their equilibrium positions. It is convenient 
to rewrite this expression as   

    MMRMLqqqqU 


 ,,  where,
22 2121

2
2

22
1

1 , (5.3b) 

showing that the Lagrangian L = T – U of this system indeed contains a bilinear interaction term: 

               21intint21 , qqLLLLL  .    (5.4) 

The resulting Lagrange equations of motion are  

           
.

,

12
2
2222

21
2
1111

qqmqm

qqmqm












     (5.5) 

Thus the interaction energy describes effective generalized force q2 exerted on subsystem 1 by 
subsystem 2, and the reciprocal effective force q1. Note that in contrast to real physical forces (such as 
F12 = - F21 = M(q2 – q1) for the system shown in Fig. 1) the effective forces in the right-hand part of 
Eqs. (5) do not obey the 3rd Newton law. Note also that they are proportional to the same coefficient ; 
this feature is a result of the general bilinear structure (4) of the interaction energy rather than of any 
special symmetry. 

  We already know how to solve Eqs. (5), because it is still a system of linear and homogeneous 
differential equations, so that its general solution is a sum of particular solutions of the form similar to 
Eqs. (4.88),  

        ., 2211
tt ecqecq        (5.6) 

for all possible values of . These values may be found by plugging Eq. (6) into Eqs. (5), and requiring 
the resulting system of two linear algebraic equations for the distribution coefficients c1,2, 
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     (5.7) 

to be self-consistent. In our particular case, we get a characteristic equation, 
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that is quadratic in 2, and thus allows a simple solution: 
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   (5.9) 

According to Eqs. (2) and (3b), for any positive values of spring constants, product 12 = (L + M)(R 
+ M)/(m1m2)

1/2 is always larger than  /(m1m2)
1/2 = M/(m1m2)

1/2, so that the square root in Eq. (9) is 
always less than (1

2+2
2)/2. As a result, both values of 2 are negative, i.e. the general solution to Eq. 

Linearly 
coupled 
oscillators 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 5           Page 3 of 22 

(5) is a sum of four terms, each proportional to exp{it}, where both eigenfrequencies   i are 
real: 

           
2/1

21

2
22

2
2
1

2
2

2
1

22

4

1

2

1








  mm

 .   (5.10) 

 A plot of these eigenfrequencies as a function of one of the partial frequencies  (say, 1), with 
the other partial frequency fixed, gives the famous anticrossing (also called “avoided crossing” or non-
crossing”) diagram (Fig. 2). One can see that at weak coupling, frequencies  are close to the partial 
frequencies everywhere besides a narrow range near the anticrossing point 1 = 2. Most remarkably, at 
passing through this region, +  smoothly “switches” from following 2 to following 1 and vice versa. 

 

   

 

 

 

 

 

 

 

 

 

 The reason for this counterintuitive behavior may be found by examining the distribution 
coefficients c1,2 corresponding to each branch of the diagram, which may be obtained by plugging the 
corresponding  value of  = -i back into Eqs. (7). For example, at the anticrossing point 1 = 2  , 
Eq. (10) is reduced to  
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    (5.11) 

Plugging this expression back into any of Eqs. (7), we see that for the two branches of the anticrossing 
diagram, the distribution coefficient ratio is the same by magnitude but opposite by sign: 2 
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  .    (5.12) 

In particular, if the system is symmetric (m1 = m2, L = R), then at the upper branch, corresponding to 
+ > -, c1 = - c2. This means that in this hard mode,3 masses oscillate in anti-phase: q1(t)  -q2(t). The 

2 It is useful to rewrite Eq. (12) as Z1c1 = Z2c2, where Z1,2  (1,2m1,2)
1/2 are of the partial oscillator impedances - 

the notion already mentioned in Chapter 4, and to be discussed in more detail in Sec. 4 below. 

Anticrossing 
description 

Fig. 5.2. Anticrossing diagram for two values of  
the oscillator coupling strength /(m1m2)

1/22
2: 

0.3 (red lines) and 0.1 (blue lines). In this plot,  
1 is assumed to be changed by varying 1 
rather than m1, but in the opposite case the 
diagram is qualitatively similar. 
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resulting substantial extension/compression of the middle spring yields additional returning force which 
increases the oscillation frequency. On the contrary, on the lower branch, corresponding to -, the 
particle oscillations are in phase: c1 = c2, q1(t)  q2(t), so that the middle spring is never stretched at all. 
As a result, the soft mode oscillation frequency - is lower than + and does not depend on :  

         
mmm

RL  
22  .     (5.13) 

Note that for both modes, the oscillations equally engage both particles.   

 Far from the anticrossing point, the situation is completely different. Indeed, an absolutely 
similar calculation of c1,2 shows that on each branch of the diagram, one of the distribution coefficients 
is much larger (by magnitude) than its counterpart. Hence, in this limit any particular mode of 
oscillations involves virtually only one particle. A slow change of system parameters, bringing it 
through the anticrossing, results, first, in a maximal delocalization of each mode, and then in the 
restoration of the localization, but in a different partial degree of freedom. 

 We could readily carry out similar calculations for the case when the systems are coupled via 
their velocities, 21int qqmL  , where m is a coupling coefficient – not necessarily a certain physical mass. 

(In mechanics, with q1,2 standing for actual particle displacements, such coupling is hard to implement, 
but there are many dynamic systems of non-mechanical nature in which such coupling is the most 
natural one.) The results are generally similar to those discussed above, again with the maximum level 
splitting at 1 = 2  : 
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 ,   (5.14) 

the last relation being valid for weak coupling. The generalization to the case of both coordinate and 
velocity coupling is also straightforward - see the next section. 

 The anticrossing diagram shown in Fig. 2 may be met not only in classical mechanics. It is even 
more ubiquitous quantum mechanics, because, due to the time-oscillatory character of the Schrödinger 
equation solutions, weak coupling of any two quantum states leads to a qualitatively similar behavior of 
eigenfrequencies  and hence of the eigenenergies (“energy levels”) E = .4 

 

5.2. N coupled oscillators 

 The calculations of the previous section may be readily generalized to the case of arbitrary 
number (say, N) coupled harmonic oscillators, with arbitrary type of coupling. It is evident that in this 
case Eq. (4) should be replaced with 

3 In physics, term “mode” is typically used for a particular type of variable distribution in space (in our current 
case, a certain set of distribution coefficients c1,2), that sustains oscillations at a single frequency. 
4 One more property of weakly coupled oscillators, a periodic slow transfer of energy from one oscillator to the 
other and back, is more important for quantum rather than for classical mechanics. This is why I refer the reader 
to QM Secs. 2.5 and 5.1 for a detailed discussion of this phenomenon. 
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Moreover, we can generalize the above relations for the mixed terms Ljj’, taking into account their 
possible dependence not only on the generalized coordinates, but on the generalized velocities, in a 
bilinear form similar to Eq. (4). The resulting Lagrangian may be presented in a compact form, 
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     (5.16) 

where the off-diagonal terms are index-symmetric: mjj’ = mj’j, jj’ = j’j, and the factors ½ compensate the 
double counting of each term with j  j’, taking place at the summation over two independently running 
indices. One may argue that Eq. (16) is quite general if we still want the equations of motion to be linear 
- as they have to be if the oscillations are small enough. 

 Plugging Eq. (16) into the general form (2.19) of the Lagrange equation, we get N equations of 
motion of the system, one for each value of index  j’= 1, 2,…, N: 

            .0
1




N

j
jjj'jjj' qqm        (5.17) 

Just as in the previous section, let us look for a particular solution to this system in the form 

         .tecq jj
       (5.18) 

As a result, we are getting a system of N linear, homogeneous algebraic equations, 
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j
jj'jj' cm  ,     (5.19) 

for the set of N distribution coefficients cj. The condition that this system is self-consistent is that the 
determinant of its matrix equals zero: 

             .0 Det '
2

'  jjjjm       (5.20) 

This characteristic equation is an algebraic equation of degree N for 2, and so has N roots (2)n. For any 
Hamiltonian system with stable equilibrium, matrices mjj’ and jj’ ensure that all these roots are real and 
negative. As a result, the general solution to Eq. (17) is the sum of 2N terms proportional to exp {int}, 
n = 1, 2,…, N, where all N eigenfrequencies ωn are real. 

 Plugging each of these 2N values of  = in back into the set of linear equations (17), one can 
find the corresponding set of distribution coefficients cj. Generally, the coefficients are complex, but in 
order to keep qj(t) real, the coefficients cj+ corresponding to  = +in and cj- corresponding to  = -in 
have to be complex conjugate of each other. Since the sets of the distribution coefficients may be 
different for each n, they should be marked with two indices, j and n. Thus, at general initial conditions, 
the time evolution of  j-th coordinate may be presented as 
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 This formula shows very clearly again the physical sense of the distribution coefficients cjn: a set 
of these coefficients, with different values of index j but the same n, gives the complex amplitudes of 
oscillations of the coordinates for the special choice of initial conditions, that ensures purely sinusoidal 
motion of the system, with frequency n. Moreover, these coefficients show how exactly such special 
initial conditions should be selected – within a common constant factor. 

 Calculation of the eigenfrequencies and distribution coefficients of a coupled system with many 
degrees of freedom from Eq. (20) is a task that frequently may be only done numerically.5 Let us discuss 
just two particular but very important cases. First, let all the coupling coefficients be small (mjj’  << mj  

 mjj and jj’ << j  jj, for all j  j), and all partial frequencies j  (j/mj)
1/2  be not too close to each 

other: 
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,    for all j  j’.    (5.22) 

(Such situation frequently happens if parameters of the system are “random” in the sense that they do 
not follow any special, simple rule.)  Results of the previous section imply that in this case the coupling 
does not produce a noticeable change of oscillation frequencies: {ωn}  {j}. In this situation, 
oscillations at each eigenfrequency are heavily concentrated in one degree of freedom, i.e. in each set of 
the distribution coefficients cjn (for a given n), one coefficient’s magnitude is much larger than all 
others. 

 Now let the conditions (22) be valid for all but one pair of partial frequencies, say 1 and 2, 
while these two frequencies are so close that coupling of the corresponding partial oscillators becomes 
essential. In this case the approximation {ωn}  {j} is still valid for all other degrees of freedom, and 
the corresponding terms may be neglected in Eqs. (19) for j = 1 and 2. As a result, we return to Eqs. (7) 
(perhaps generalized for velocity coupling) and hence to the anticrossing diagram (Fig. 2) discussed in 
the previous section.  As a result, an extended change of only one partial frequency (say, 1) of a 
weakly coupled system produces a series of eigenfrequency anticrossings – see Fig. 3. 

 

 

 

 

 

 

 

 

 

 

5 Fortunately, very effective algorithms have been developed for this matrix diagonalization task – see, e.g., 
references in MA Sec. 16(iii)-(iv). For example, the popular MATLAB package was initially created for this 
purpose. (“MAT” in its name stands for “matrix” rather than “mathematics”.) 
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Fig. 5.3. Level anticrossing in a system of N 
weakly coupled oscillators – schematically.  



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 5           Page 7 of 22 

5.3. 1D waves in periodic systems 

 For coupled systems with considerable degree of symmetry, the general results of the last section 
may be simplified, some with very profound implications. Perhaps the most important of them are 
waves. Figure 4 shows a classical example of a wave-supporting system – a long 1D chain of massive 
particles, with the elastic next-neighbor coupling. 

 

 

 

 

  

 

 Let us start from the case when the system is so long (formally, infinite) that the boundary 
effects may be neglected; then its Lagrangian may be represented by an infinite sum of similar terms, 
each including the kinetic energy of j-th particle, and the potential energy of the spring on one (say, 
right) side of it: 
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 .    (5.23) 

From here, the Lagrange equations of motion (2.19) have the same form for each particle: 

           0)()( 11   jjjjj qqqqqm  .    (5.24) 

Apart from the (formally) infinite size of the system, this is evidently just a particular case of Eq. (17), 
and thus its particular solution may be looked in the form (18), with 2  -2 < 0. With this 
substitution,  Eq. (24) gives the following simple form of the general system (17) for the distribution 
coefficients cj: 

             02 11
2   jjj cccm  .    (5.25) 

 Now comes the most important conceptual step toward the wave theory: the translational 
symmetry of Eq. (23), i.e. its invariance to the replacement j  j + 1, allows it to have a particular 
solution of the following form: 

                  jiaec j
 ,      (5.26) 

where coefficient   may depend on  (and system’s parameters), but not on the particle number j. 
Indeed, plugging Eq. (26) into Eq. (25) and cancelling the common factor eij, we see that it is 
identically satisfied, if  obeys the following algebraic equation: 

               022     ii eem .    (5.27) 

The physical sense of solution (26) becomes clear if we use it and Eq. (18) with  = i to write 

Fig. 5.4. Uniform 1D chain of 
elastically coupled particles. 
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where  wave number  k is defined as k  /d,  and  zj = jd  is the equilibrium position of j-th particle - the 
notion that should not be confused with particle’s displacement qj  from that equilibrium position – see 
Fig. 4. Relation (28) describes nothing else than a sinusoidal traveling wave of particle displacements 
(and hence of spring extensions/constrictions), that propagates, depending on the sign before vph,  to the 
right or to the left along the particle chain with phase velocity 

           
k

v


ph .      (5.29) 

Perhaps the most important characteristic of a wave is the so-called dispersion relation, i.e. the 
relation between its frequency   and wave number k – essentially between the temporal and spatial 
frequencies of the wave. For our current system, this relation is given by Eq. (27) with   kd. Taking 
into account that (2 - e+i - e-i) = 2(1 - cos) = 4sin2(/2), it may be rewritten in a simpler form: 

       .2  where,
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kd      (5.30) 

This result, frequently called the Debye dispersion relation,6 is sketched in Fig. 5, and is rather 
remarkable in several aspects. 

 

 

 

 

 

 

 First, if the wavelength   2/k is much larger than the spatial period a of the structure, i.e. if 
kd << 1 (so that  << 0), the dispersion relation is approximately linear: 

             ,
20 vk

kd
       (5.31) 

where parameter v is frequency-independent: 
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Comparison of Eq. (31) with Eq. (28) shows that this constant plays, in the low-frequency region, the 
role of phase velocity for any frequency component of a waveform created in the system - say, by initial 
conditions. As a result, low-frequency waves of arbitrary form can propagate in the system without 

6 Named after P. Debye who developed this theory in 1912, in the context of specific heat of solids at low 
temperatures (beating nobody else than A. Einstein on the way :-) – see, e.g., SM Sec. 2.6. 

Fig. 5.5. The Debye 
dispersion relation.kd0 2
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deformation (called dispersion). Such waves are called acoustic,7 and are the general property of any 
elastic continuous medium. 

 Indeed, the limit kd << 1 means that distance d between adjacent particles is much smaller than 
wavelength  = 2/k, i.e. that the differences qj+1(t) - qj(t) and qj(t) - qj-1(t), participating in Eq. (24), are 
relatively small and may be approximated with q/j = q/(z/d) = d(q/z), with the derivatives taken 
at middle points between the particles: respectively, z+  (zj+1 - zj)/2 and z- (zj - zj-1)/2. Here z is now 
considered as a continuous argument (and hence the system, as a 1D continuum), and q(z,t), as a 
continuous function of space and time. In this approximation, the sum of the last two terms of Eq. (24) is 
equal to -d[q/z(z+)-q/z(z-)], and may be similarly approximated by  –d2(2q/z2), with the second 
derivative taken at point (z+ - z-)/2 = zj, i.e. exactly at the same point as the time derivative. As the result, 
the ordinary differential equation (24) is reduced to a partial differential equation 
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Using Eqs. (30) and (32), we may present this equation in a more general form 
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,     (5.33b) 

which describes a scalar acoustic wave (of any physical nature) in a 1D linear, dispersion-free 
continuum – cf. Eq. (1.2). In our current simple model (Fig. 4), direction z of the wave propagation 
coincides with the direction of particle displacements q; such acoustic waves are called longitudinal. 
However, in Chapter 7 we will see that 3D elastic media may also support different, transverse waves 
that also obey Eq. (33b), but with a different acoustic velocity v. 

 Second, when the wavelength is comparable with the structure period d (i.e. the product kd is not 
small), the dispersion relation is not linear, and the system is dispersive. This means that as a wave, 
whose Fourier spectrum has several essential components with frequencies of the order of 0, travels 
along the structure, its waveform (which may be defined as the shape of a snapshot of all qj, at the same 
time) changes.8 This effect may be analyzed by presenting the general solution of Eq. (24) as the sum 
(more generally, an integral) of components (28) with different complex amplitudes a: 

                
 

dkeatq
tkkzi j

kj

)(
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 .    (5.34) 

 This notation emphasizes the dependence of the partial wave amplitudes ak and  frequencies on 
the wave number k. While the latter dependence is given by the dispersion relation, in our current case 
by Eq. (30), function ak is determined by the initial conditions. For applications, the case when ak is 
substantially different from zero only is a narrow interval, of width k  << k0 around some central value 
k0, is of special importance. (The Fourier transform reciprocal to Eq. (34) shows that this is true, in 
particular for a so-called wave packet - a sinusoidal wave modulated by an envelope with a large width 

7 This term is purely historical. Though the usual sound waves in air belong to this class, the waves we are 
discussing may have frequency both well below and well above human ear’s sensitivity range. 
8 The waveform deformation due to dispersion (which we are considering now) should be clearly distinguished 
from its possible change due to attenuation, i.e. energy loss - which is not taken into account is our energy-
conserving model (23) – cf. Sec. 5 below. 

1D wave 
equation 
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z ~ 1/k >> 1/k0 – see Fig. 6.) Using that strong inequality, the wave packet propagation may be 
analyzed by expending the dispersion relation (k) into the Taylor series at point k0, and, in the first 
approximation in k/ k0, restricting the expansion by its first two terms: 
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In this approximation, Eq. (34) yields 
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Comparing this expression with the initial form of the wave packet,  
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and taking into account that the phase factors before the integrals in the last forms of Eqs. (36) and (37) 
do not affect its envelope, we see that in this approximation9 the envelope sustains its initial form and 
propagates along the system with the so-called group velocity 

      
0

gr kkdk

d
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.     (5.38) 

Note that, with the exception of the acoustic wave limit (31), this velocity (that characterizes the 
propagation of waveform’s envelope), is different from the phase velocity (28) that describes the 
propagation of the “carrier” sine wave – for example, one of its zeros – see Fig. 6.  

 

 

 

 

 

 

  

 Next, at the Debye dispersion law (30), the difference between vph and vgr increases as the 
average  frequency  approaches 0, with the group velocity tending to zero, while the phase velocity 
staying virtually constant. The existence of such a maximum for the wave propagation frequency 

9 Taking into account the next term in the Taylor expansion of function (q), proportional to d2/dq2, we would 
find that actually the dispersion leads to a gradual change of the envelope form. Such changes play an important 
role in quantum mechanics, so that I discuss them in that part of my notes (see  
QM Sec. 2.1). 
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Fig. 5.6. Phase and group 
velocities of a wave packet. 
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presents one more remarkable feature of this system.  It physics may be readily understood by noticing 
that according to Eq. (30), at  = 0, the wave number k equals n/d, where n is an odd integer, and 
hence the phase shift   kd is an odd multiple of . Plugging this value into Eq. (28), we see that at the 
Debye frequency, oscillations of two adjacent particles are in anti-phase, for example: 

  ).(}exp{)}(exp{)(},exp{)( 010 tqtiatiatqtiatq     (5.39) 

It is clear from Fig. 4 that at such phase shift, all the springs are maximally stretched/compressed (just as 
in the hard mode of the two coupled oscillators analyzed in Sec. 1), so that it is natural that this mode 
has the highest frequency. 

 This invites a natural question what happens with the system if it is excited at a frequency  > 
0, say by an external force applied at the system’s boundary. While the boundary phenomena will be 
considered in the next section, the most essential part of the answer may be obtained immediately from 
Eqs. (26) and (30). Indeed, reviewing the calculations that have led to these results, we see that they are 
valid not only for real but also any complex values of  . In particular, at  > 0 the dispersion relation 
(30) gives 

       ./cosh2
Λ  where,

Λ 0
1- 

 dd
in      (5.40) 

Plugging this relation into Eq. (26), we see that the wave’s amplitude becomes an exponential function 
of position: 

     
 

/Im j
j

zj eeaq  .     (5.41) 

Physically this means that the wave decays penetrating into the structure (from the excitation point), 
dropping by a factor of e  3 on the so-called penetration depth . (According to Eq. (40), this depth 
decreases with frequency, but rather slowly, always remaining of the order of the distance between the 
adjacent particles.) Such a limited penetration is a very common property of various waves, including 
the electromagnetic waves in plasmas and superconductors, and quantum-mechanical “de Broglie 
waves” (wavefunctions) in the classically-forbidden regions. Note that this effect of “wave expulsion” 
from the media they cannot propagate in does not require any energy dissipation. 

 Finally, one more fascinating feature of the dispersion relation (30) is that if it is satisfied by 
some wave number k0(), it is also satisfied at any kn() = k0() + 2n/d, where n is any integer. This 
property is independent of the particular dynamics of the system: it follows already from Eq. (27), 
before its substitution into Eq. (25), because such a wave number translation by 2/d, i.e. the addition of 
2 to phase shift , is equivalent to the multiplication of qj(t) by exp{i2} = 1. Thus, such (2/d)-
periodicity in the wave number space is a common property of all systems that are d-periodic in the 
usual (“direct”) space.10  

 Besides dispersion, one more key characteristic of any wave-supporting system is its wave 
impedance - the notion strangely missing from many physics (but not engineering) textbooks. It may be 

10 This property has especially important implications for quantum properties of periodic structures, e.g., crystals. 
It means, in particular, that the product k cannot present the actual momentum of the particle (which is not 
conserved in periodic systems), but rather serves as its quasi-momentum (or “crystal momentum”) – see, e.g., QM 
Sec. 2.5. 
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revealed by calculating the forces in the sinusoidal wave (28). For example, the force exerted by j-th 
particle on its right neighbor, given by the second term in Eq. (24), equals 
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where the last form is valid in the most important acoustic wave limit, kd  0. Let us compare this 
expression for the wave of forces with that for the corresponding wave of particle velocities: 
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We see that these two waves have the same phase, and hence their ratio does not depend on either time 
or the particle number. Moreover, this ratio, 
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     (5.44) 

is a real constant independent even on wave’s frequency. Its magnitude is called the wave impedance: 
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d
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 ,     (5.45) 

and characterizes the dynamic “stiffness” of the system for the propagating waves.  

 In particular, the impedance scales the power carried by the wave. Indeed, the direct time 
averaging of the instantaneous power Pj (t)  Fj(t)dqj/dt transferred through particle j to the subsystem 
on the right of it, using Eqs. (42)-(43), yields a position-independent result 
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 P    (5.46) 

where A  a is the real amplitude of the wave, and, as before, the positive sign corresponds to the wave 
propagating to the right (and vice versa). Note that P  is the power flow in the acoustic wave, and its 
spatial and temporal independence means that wave’s energy is conserved - as could be expected from 
our Hamiltonian system we are considering.11 Hence, the wave impedance Z characterizes the energy 
transfer along the system rather than its dissipation. 

 

5.4. Interfaces and boundaries 

 The importance of the wave impedance notion becomes even more evident when we consider 
waves in non-uniform and finite-size systems. Indeed, our previous analysis assumed that the 1D system 
supporting the waves (Fig. 4) is exactly periodic, i.e. macroscopically uniform, and extends all the way 
from - to +. Now let us examine what happens when this is not true. The simplest (and very 
important) example of such nonuniform systems is an interface, i.e. a point at which system parameters 
experience a change. Figure 7 shows a simple and representative example of such a sharp interface, for 
the same 1D wave system that was analyzed in the last section.  

11 The direct calculation of the energy (per unit length) is a simple but useful exercise, left for the reader. 
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Since the parameters   and m are still constant on each side of the interface (put, for 
convenience, at zj = 0), equations of motion (24) are is still valid for  j < 0 and j > 0 (in the latter case, 
with the primed parameters), and show that at a fixed frequency , they can sustain sinusoidal waves of 
the type (28). However, the final jump of parameters at the interface (m’  m, ’  ) leads to a partial 
reflection of the incident wave from the interface, so that at least on the side of incidence (say, zj  0), 
we need to assume two such waves, one describing the incident wave and another, the reflected wave: 
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 In order to obtain boundary conditions for “stitching” these waves (i.e. getting relations between 
their complex amplitudes) at j = 0, i.e. zj = 0, we need to take into account, first, that  displacement q0(t) 
of the interface particle has to be the same whether it is considered a part of the left or right sub-system, 
and hence participates in Eqs. (24) for both j  0 and j  0. This gives us the first boundary condition, 

          a'aa .     (5.48) 

Second, writing the equation of motion for the special particle with j = 0,  

           0)()( 100100  qqqq'qm  .    (5.49) 

and plugging into it the solution (47), we get the second boundary condition    

   01110
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 The system of two linear equations (48) and (50) allows one to express both a and a’ via 
amplitude a of the incident wave, and hence find the reflection (R)  and transmission (T) coefficients 
of the interface:12 

             






 
a

a'
T

a

a
R , .     (5.51) 

The general result for R and T is a bit bulky, but may be simplified in the most important acoustic wave 
limit: k’d, kd  0. Indeed, in this limit all three parentheses participating in Eq. (50) may be 
approximated by the first terms of their Taylor expansions, e.g., exp{ik’d} – 1  ik’d, etc. Moreover, in 
this limit, the first term of Eq. (50) is of the second order in small parameter /0 ~ ka  << 1 (unless the 

12 Sorry, one more traditional usage of letter T. I do not think there any chance to confuse it with the kinetic 
energy. 

Fig. 5.7. 1D system with a sharp 
interface at z = 0, and the wave 
components at the partial 
reflection of a wave incident from 
the left.
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interface particle mass m0 is much larger than both m and m’), and hence may be neglected. As a result, 
Eq. (50) takes a very simple form13 

               'k'a'aak  .     (5.52a) 

According to Eqs. (31), (32) and (45), in the acoustic limit the ratio of factors k of the waves (with the 
same frequency !) propagating at z < 0 and z > 0 is equal to that of the wave impedances Z of the 
corresponding parts of the system, so that Eq. (52a) may be rewritten as 

                  Z'a'aaZ .     (5.52b) 

Now, solving the simple system of linear equations (48) and (52a), we get very important formulas, 
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which are valid for any waves in 1D continua - with the corresponding re-definition of impedance.14 
Note that coefficients R and T characterize the ratios of wave amplitudes rather than their power. Using 
Eq. (46), for the time-averaged power flows we get relations 
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(Note that P + P’ = P, again reflecting the energy conservation.)  

 The first important result of this calculation that wave is fully transmitted through the interface if 
the so-called impedance matching condition  Z’ = Z is satisfied, even if the wave velocities v (32) are 
different on the left and the right sides of the interface. On the contrary, the equality of the acoustic 
velocities in two media does not guarantee the full transmission of their interface. Again, this is a very 
general result. 

 Now let us consider the two limits in which Eq. (53) predicts a total wave reflection, P /P  

0: Z’/Z   (when R = - 1) and Z’/Z  0 (when R = 1). According to Eq. (45), the former limit 
corresponds to the infinite product ’m’, so that particles on the right side of the interface cannot move 
at all. This means that this particular case also describes a perfectly rigid boundary (Fig. 8a) for arbitrary 
, i.e. not necessarily in the acoustic wave limit. The negative sign of R in the relation R = -1 means that 
in the reflected wave, the phase of particle oscillations is shifted by   relative to the initial wave, a = a 
= -a, so that the sum of these two traveling waves may be also viewed as a single standing wave  
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jj

j kztAkziaeaeaetq titkzitkzi
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 , (5.55) 

where a  a = A ei . At the boundary (zj = 0) this expression yields q0(t)  0, i.e., a node of particle 
displacements. On the contrary, the corresponding standing wave of spring forces, described by Eq. 
(42), has a maximum at  z = 0.  

13 This equation could be also obtained using Eq. (42), as the condition of balance of the forces exerted on the 
interface particle with j = 0 from the left and right - again, neglecting the inertia of that particle. 
14 See, e.g., corresponding parts of my lecture notes: QM Sec. 2.3 and EM Sec. 7.4. In 2D and 3D systems, Eqs. 
(53) are valid for the normal wave incidence only, otherwise they have to be modified – see, e.g., EM Sec. 7.4. 
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 A similar standing wave forms in the opposite limit Z’/Z  0, that describes an “open” boundary 
shown in Fig. 8b. However, in this limit (with R = + 1), the standing wave of displacements has a 
maximum at zj = 0, 

        jj
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 , (5.56) 

while the corresponding wave of forces has a node at that point. Most importantly, for both boundaries 
shown in Fig. 8, the standing waves are formed at any ratio /0. 

   

 

 

 

  

  

 If the opposite boundary of a finite-length chain also provides a total wave reflection, the system 
may only support standing waves with certain wave numbers kn, and hence certain eigenfrequencies n 
that may be found from the set of kn and the dispersion relation n  (kn), in our case given by Eq. 
(30). For example, if both boundaries of a chain with length L are rigid (Fig. 8a), then the standing wave 
(54) should have nodes at them both, giving the wave number quantization condition15 

                     ,  i.e.,0sin
L

n
kLk nn


     (5.57a) 

where n is an integer. In order to count the number of different modes in a chain with a finite number N 
of oscillating particles, let us take into account, first, that adding one period  k = 2/d of the dispersion 
relation to any kn leads to the same mode. Moreover, changing the sign of kn in standing wave (55) is 
equivalent to changing the sign of its amplitude. Hence, there are only N different modes, for example 
with 
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     (5.57b) 

This fact is of course just a particular case of the general result obtained in Sec. 2.  

 According to Eq. (56), if both boundaries are open (Fig. 8b), the oscillation modes are different, 
but their wave numbers form the same set (57). Finally, if the types of boundary conditions on the 
chain’s ends are opposite, the wave number set is somewhat different, 
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     (5.58) 

15 This result should be very familiar to the reader from freshmen-level “guitar string”-type problems. 
Note, however, that  Eqs. (54)-(56) are valid not only for continuous 1D systems like a string, but also 
for (uniform) chains with a finite and arbitrary number N of particles – the fact we will use below. 

Fig. 5.8. (a) Rigid and (b) open 
boundaries of a 1D chain.

(a) 
 
 
 
 
(b) 
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but since the distance between the adjacent values of kn is still the same (/Nd), the system still has 
exactly N such values within each period 2/d of the dispersion law, and hence, again, exactly N 
different oscillation modes.   

 This insensitivity of the number of modes and their equal spacing (called equidistance) on the k 
axis, enables the following useful (and very popular) trick. In many applications, it is  preferable to 
speak about the number of different traveling, rather than standing waves in a system of a large but 
finite size, with coordinates z0 and zN describing the same particle. One can plausibly argue that the local 
dynamics of the chain of N >> 1 particles should not be affected if it is gradually bent into a large closed 
loop of length L = Nd >> d. Such a loop may sustain traveling waves, if they satisfy the following 
periodic  Born-Karman condition: q0(t)  qN(t). (A popular vivid image is that the wave “catches its own 
tail with its teeth”.)  According to Eq. (27), this condition is equivalent to 

     n
L

ke n
n Lik 2

  i.e.         ,1  .    (5.59) 

 This equation gives a set of wave numbers twice more sparse than that described by Eqs. (57). 
However, now we can use N values of n, giving kn, for example, from –N  to +N (strictly speaking, 
excluding one of the boundary values to avoid double counting of the identical modes with n = N), 
because traveling waves (28) with equal but opposite values of kn propagate in opposite directions and 
hence present different modes. As a result, the total number of different traveling-wave modes is the 
same (N) as that of different standing-wave modes, and they are similarly (uniformly) distributed along 
the wave number axis. Since for N >> 1 the exact values of kn are not important, the Born-Carman 
boundary conditions and  the resulting set (59) of wave numbers are frequently used even for multi-
dimensional systems whose bending into a ring along each axis is hardly physically plausible. 

 

5.5. Dissipative, parametric, and nonlinear phenomena 

 In conclusion, let us discuss more complex effects in oscillatory systems with more than one 
degree of freedom. Starting from linear systems, energy dissipation may be readily introduced, just as 
for a single oscillator, by adding terms proportional to jj q , to the equations of motion such as Eqs. (5), 

(17), or (24). In arbitrary case, viscosity coefficients j are different for different particles; however, in 
many uniform systems like that shown in Fig. 4, the coefficients are naturally equal, turning Eq. (24) 
into 

              0)()( 11   jjjjjj qqqqqqm    .   (5.60) 

In the most important limit of acoustic waves, we may now repeat the arguments that have led to the 
wave equation (33) to get its generalization 
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 Such dissipative equation may describe two major particular effects. First, it describes the decay 
in time of  the standing waves in an autonomous wave system (say, of a finite length L) that have been 
caused by some initial push, described by non-trivial initial conditions, say, q(z,0)  0. In order to 
analyze these decaying oscillations, one may look for the solution of Eq. (61) in the form of a sum of 
standing wave modes (that satisfy the given boundary conditions), each with its own, time-dependent 
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amplitude An(t).  For example, for rigid boundary conditions (q = 0) at z = 0 and z = L, we can use Eq. 
(55) as a hint to write 
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where the set of qn is given by Eq. (57). Plugging this solution into Eq. (61),16 we get 
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Since functions sin knz are mutually orthogonal, Eq. (63) may be only satisfied if all N expressions in 
parentheses are equal to zero. As the result, the amplitude of each mode satisfies an ordinary differential 
equation absolutely similar to that studied in Sec. 4.1, with a similar solution describing the free 
oscillation decay with the relaxation constant (4.23). Here the wave character of the system gives 
nothing new, besides that different modes have different Q-factors: Qn = n/2.  

 More wave-specific is a different situation when the waves are due to their persisting excitation 
by some actuator at one of the ends (say, z = 0) of a very long structure. In this case, an initial transient 
process settles to a wave with a time-independent waveform limited by certain envelope A(z) that decays 
at z  . In order to find the envelope, for the simplest case of sinusoidal excitation of frequency , one 
may look for a particular solution to Eq. (61) in a form very different from Eq. (60): 

                    



  tiezatzq )(Re),( ,     (5.64) 

generally with complex a(z). Plugging this solution into Eq. (61), we see that this is indeed a valid 
solution, provided that q(0,t) = a(0)exp{-it} satisfies the boundary condition (now describing the wave 
excitation), and a(z) obeys an following ordinary differential equation that describes wave’s evolution in 
space rather than in time:17 
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The general solution to such differential equation is 

         ,)( ikzikz eaeaxa 
       (5.66) 

with k now having both real and imaginary parts, k = k’ + ik”, so that the wave (64) is 

            .),( )()( zk"tzk'izk"tzk'i eeaeeatzq  
     (5.67) 

If our boundary conditions correspond to the wave propagating to the right, we have to keep only the 
first term of this expression, with positive k”. The first exponent of that term describes the wave 
propagating from the boundary into the system (at low damping, with velocity virtually equal to v), 
while the second exponent describes an exponential decay of the wave’s amplitude in space: 

16 Actually, this result may be also obtained from Eq. (60) and hence is valid for an arbitrary ratio n/0. 
17 Equation (65), as well as its multi-dimensional generalizations, is frequently called the Helmholtz equation, 
named after H. von Helmholtz (1821-1894). 
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where the last, approximate relation is valid in the weak damping limit ( << , i.e. /v << k’). Constant 
 is called the attenuation coefficient, and in more general wave systems may depend on frequency . 
Physically, 2/ is the scale of wave penetration into a dissipative system.18 Note that our simple solution 
(68) is only valid if the system length L is much larger than 2/; otherwise we would need to use the 
second term in Eq. (67) to describe wave reflection from the second end. 

 Now let me discuss (because of the lack of time, on a semi-quantitative level only), nonlinear 
and parametric phenomena in oscillatory systems with more than one degree of freedom. One important 
new effect here is the mutual phase locking of (two or more) weakly coupled self-excited oscillators 
with close frequencies: if the eigenfrequencies of the oscillators are sufficiently close, their oscillation 
frequencies “stick together” to become exactly equal. Though its dynamics of this process is very close 
to that of the phase locking of a single oscillator by external signal, that was discussed in Sec. 4.4, it is 
rather counter-intuitive in the view of the results of Sec. 1, and in particular the anticrossing diagram 
shown in Fig. 2. The analysis of the effect using the rotating-wave approximation (that is highly 
recommend to the reader) shows that the origin of the difference is oscillator’s nonlinearity, which 
makes oscillation amplitude virtually independent of phase evolution – see Eq. (4.68) and its discussion. 

 One more new effect is the so-called non-degenerate parametric excitation. It may be illustrated 
of the example of just two coupled oscillators – see Sec. 1 above. Let us assume that the coupling 
constant , participating in Eqs. (5), is not constant, but oscillates in time - say with frequency p. In 
this case the forces acting on each oscillator from its counterpart, described by the right-hand parts of 
Eqs. (5), will be proportional to q2,1(1 +  cospt). Assuming that oscillations of q1 and q2 are close to 
sinusoidal, with frequencies 1,2, we see that the force acting on each oscillator will contain the so-
called combinational frequencies 

           1,2 p .      (5.69) 

If one of these frequencies in the right-hand part of each equation coincides with its own oscillation 
frequency, we can expect a substantial parametric interaction between the oscillators (on the top of the 
constant coupling effects discussed in Sec. 1). According to Eq. (69), this may happen in two cases: 

                  ,21  p      (5.70) 

 The quantitative analysis (also highly recommended for reader’s exercise) shows that in the 
positive sign case, the parameter modulation indeed leads to energy “pumping” into oscillations. As a 
result, sufficiently large , at sufficiently low damping coefficients 1,2 and effective detuning 

             ),( 21  p      (5.71) 

may lead to the simultaneous excitation of two frequency components 1,2. These frequencies, while 
being close to corresponding eigenfrequencies of the system, are related to the pumping frequency p by 
exact relation (70), but otherwise are arbitrary, e.g., incommensurate (Fig. 9a), thus justifying the term 

18 In engineering, the attenuation coefficient of wave-carrying systems is most frequently characterized by a 
logarithmic measure called decibel per meter (or just dB/m): dB/m  10 log10 . 
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non-degenerate parametric excitation. (The parametric excitation of a single oscillator, that was 
analyzed in Sec. 4.5, is a particular, degenerate case of such excitation, with 1 = 2 = p/2.) On the 
other hand, for the case described by Eq. (70) with the negative sign, parameter modulation always 
pumps energy from the oscillations, effectively increasing system’s damping.  

 Somewhat counter-intuitively, this difference between two cases (70) may be simpler interpreted 
using the notions of quantum mechanics. Namely, equality p = 1 + 2 enables a decay of an external 
photon of energy p into two photons of energies 1 and 2 going into the oscillatory system. (The 
complementary relation, 1 = p + 2, results in the oscillation photon decay.) 

 

  

 

 

 

 

  

 

 Proceeding to nonlinear phenomena, let us note, first of all, that the simple reasoning, that 
accompanied Eq. (4.109), is also valid in the case when oscillations consist of two (or more) sinusoidal 
components with incommensurate frequencies. Replacing notation 2 for p, we see that non-
degenerate parametric excitation of the type (70a) is possible to implement in a system of two coupled 
oscillators with a quadratic nonlinearity (of the type q2), “pumped” by an intensive external signal at 
frequency p  1 + 2. In optics, it is often more convenient to have all signals within the same, 
relatively narrow frequency range. A simple calculation, similar to the one made in Eqs. (4.108)-(4.109), 
shows that this may be done using the cubic nonlinearity19 of the type q3, which allows the similar 
parametric energy exchange at frequency relation (Fig. 9b) 

       2121 with  ,2   .    (5.72a) 

 This process is often called the four-wave mixing (FWM), because it may be interpreted 
quantum-mechanically as the transformation of two externally-delivered photons, each with energy p, 
into two other photons of energies 1 and 2. Word “wave” in this term stems from the fact that at 
optical frequencies, it is hard to couple a sufficient volume of a nonlinear medium with lumped-type 
resonators. It is easier to implement the parametric excitation of light (as well as other nonlinear 
phenomena like the higher harmonic generation) in distributed systems of a linear size much larger than 
the involved wavelengths. In such systems, the energy transfer from the incoming wave of frequency  
to generated waves of frequencies 1 and 2 is gradually accumulated at their joint propagation along 
the system. From the analogy between Eq. (65) (describing the evolution of wave’s amplitude in space), 
and the usual equation of the harmonic oscillator (describing its evolution in time), it is clear that this 

19 In optics, the nonlinearity is implemented using transparent crystals such as lithium niobate (LiNbO3), with the 
cubic-nonlinear dependence of the electric polarization as a function of the applied electric field: P  E + E 3. 

Four- 
wave 

mixing 

Fig. 5.9. Spectra of oscillations at (a) the non-degenerate parametric excitation, and (b) four-
wave mixing. The arrow directions symbolize the power flows into and out of the system. 
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energy transfer accumulation requires not only the frequencies , but also wave numbers k be in similar 
relations. For example, the four-wave mixing requires that not only the frequency balance (72a), but also 
a similar relation 

         ,2 21 kkk       (5.72b) 

to be exactly fulfilled. Since all three frequencies are close, this is easy to arrange if the dispersion 
relation (k) of the media is not too steep. Unfortunately, due to the lack of time/space, for more 
discussion of this interesting subject, nonlinear optics, I have to refer the reader to special literature.20 

 Note that even if the frequencies 1 and 2 of the parametrically excited oscillations are 
incommensurate, the oscillations are highly correlated. Indeed, the quantum mechanical theory of this 
effect21 shows that the generated photons are entangled.  This fact makes the parametric excitation very 
popular for a broad class of experiments in several currently active fields including quantum 
computation and encryption, and Bell inequality / local reality studies.22  

 It may look like a dispersion-free media, with /k = v = const, is the perfect solution for 
arranging the parametric interaction of waves, because in such media, for example, Eq. (72b) 
automatically follows from Eq. (72a). However, in such media not only the desirable three 
parametrically interacting waves, but also all their harmonics, have the same velocity. At these 
conditions, energy transfer rates between all harmonics are of the same order. Perhaps the most 
important result of such multi-harmonic interaction is that intensive waves, interacting with nonlinear 
media, may develop sharply non-sinusoidal waveforms, in particular those with an almost instant change 
of the field at a certain moment. Such shock waves, especially those of mechanical nature, present large 
interest for certain applications - some not quite innocent, e.g., the explosion of usual and nuclear 
bombs. I will only briefly return to shock waves in Sec. 8.5.23  

  

5.6. Exercise problems 

 5.1. For the system of two elastically coupled pendula, confined to a 
vertical plane, with the parameters shown in Fig. on the right (cf. Problem 1.3), 
find possible frequencies of small sinusoidal oscillations and the corresponding 
distribution coefficients. Sketch the oscillation modes. 
 
 
 5.2. The same task as in Problem 1, for the double pendulum, confined to the 
vertical plane containing the support point (considered in Problem 2.1), with m’ = m 
and l = l’ - see Fig. on the right. 

20 See, e.g.,  the classical monograph by N. Bloembergen, Nonlinear Optics,  4th ed., World Scientific, 1996, or a 
more modern treatment by R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, 2008. 
21 Which is, surprisingly, not much more complex than the classical theory – see, e.g., QM Sec.5.5. 
22 See, e.g., QM Secs. 8.5 and 10.1, correspondingly. 
23 The classical (and perhaps still the best) monograph on the subject is Ya. Zeldovich, Physics of Shock Waves 
and High-Temperature Phenomena, Dover, 2002.  
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 5.3.* The same tasks as in Problem 5.1, for the triple pendulum shown in 
Fig. on the right, with the motion confined to a vertical plane containing the support 
point. 

 Hint: You may use any (e.g., numerical) method to calculate the 
characteristic equation roots. 
  
  
 5.4.*  

 (i) Explore an approximate way to analyze waves in a continuous 1D system with 
parameters slowly varying along its length.24 
 (ii) Apply this method to calculate eigenfrequencies of transverse standing waves 
on a freely hanging heavy rope of length L, with constant mass per unit length – see Fig. 
on the right. 
 (iii) For three lowest standing wave modes, compare the results with those 
obtained in the solution of Problem 5.3 for the triple pendulum. 
  
 5.5. The same tasks as in Problem 1, for a linear, symmetric system 
of 3 particles, shown in Fig. on the right. Assume that the connections 
between the particles not only act as usual elastic springs   (as described by 

their potential energies 2/
~ 2lU  ), but also resist system’s bending, 

giving an additional potential energy 2/22 l'U'  , where   is the 
(small) bending angle.25  
 
 5.6. Three similar beads, which may slide along a circle of radius R 
without friction, are connected with similar springs with elastic constants  
and equilibrium lengths l0 – see Fig. on the right. Analyze stability of the 
symmetric stationary state of the system, and calculate the frequencies and 
modes of its small oscillations about this state. 

 
  

 5.7. An external force F(t) is applied to the 
right particle of system of shown in Fig. 5.1 of the 
lecture notes, with L = R = ’ and m1 = m2  m (see 
Fig. on the right), and the response q1(t) of the left 
particle to this force is being measured.  
 
 5.8. Calculate the spatial distributions of the kinetic and potential energies in a standing, 
sinusoidal, 1D acoustic wave, and analyze its evolution in time. 

24 The reader familiar with the WKB approximation in quantum mechanics (see, e.g., QM Sec. 2.4) is welcome to 
adapt it for this classical application. Another possible starting point is the rotating-wave approximation (RWA), 
discussed in Sec. 4.3 above, which should be translated from the time domain to the space domain.  
25 This is a good model for small oscillations of linear molecules such as CO2 (for which the values of elastic 
constants  and ’ are well known). 
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 5.9. Calculate the dispersion law (k) and the maximum 
frequency of small longitudinal waves in an infinite line of 
similar, spring-coupled pendula - see Fig. on the right. 
 

 
 
5.10. Calculate and analyze the dispersion relation 

(k) for longitudinal waves in an infinite 1D chain of 
coupled oscillators with alternating masses - see Fig. on the 
right. In particular, find and discuss dispersion relation’s 
period k.  
  
 5.11. Calculate the longitudinal wave reflection 
from a “point inhomogeneity”: a single particle with a 
different mass m0  m, in an otherwise uniform 1D chain - 
see Fig. on the right. Analyze the result. 
 
 5.12.* Use the rotating-wave approximation to analyze the mutual phase locking of two weakly 
coupled self-oscillators with the dissipative nonlinearity, for the cases of: 

 (i) direct coordinate coupling, described by Eq. (5.5) of the lecture notes, and 
 (ii) linear but otherwise arbitrary coupling of two similar oscillators. 
 
 5.13.* Extend the second task of the previous problem to the mutual phase locking of N similar 
oscillators. In particular, explore the in-phase mode’s stability for the case of the so-called global 
coupling via a single force F contributed equally by all oscillators. 
 
 5.14.* Find the condition of non-degenerate parametric excitation in a system of two coupled 
oscillators, described by Eqs. (5) with time-dependent coupling:   (1 + cos pt), with p  1 + 
2, and 2 - 1 >> k/m. 

 Hint: Assuming the modulation depth , static coupling , and detuning   p – (1+ 2) 
sufficiently small, use the rotating-wave approximation for each of the coupled oscillators. 
 
 5.15. Show that the cubic nonlinearity of the type q3 indeed enables the parametric interaction 
(“four-wave mixing”) of oscillations with incommensurate frequencies related by Eq. (72a). 
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Chapter 6. Rigid Body Motion 

This chapter discusses the motion of rigid bodies, with a focus on their rotation. Some byproduct results 
of this analysis will enable us to discuss, in the end of the chapter, the description of motion of point 
particles in non-inertial reference frames.  

 

6.1. Angular velocity vector 

 Our study of 1D waves in the past chapter has prepared us to for a discussion of 3D systems of 
particles. We will start it with a (relatively :-) simple limit when the changes of distances rkk’  rk –rk’ 
between particles of the system are negligibly small. Such an abstraction is called the (absolutely) rigid 
body, and is a reasonable approximation in many practical problems, including the motion of solids. In 
this model we neglect deformations - that will be the subject of the next two chapters. 

 The rigid body approximation reduces the number of degrees of freedom of the system from 3N 
to just 6 - for example, 3 Cartesian coordinates of one point (say, O), and 3 angles of the system rotation 
about 3 mutually perpendicular axes passing through this point. (An alternative way to arrive at the 
same number 6 is to consider 3 points of the body, which uniquely define its position. If movable 
independently, the points would have 9 degrees of freedom, but since 3 distances rkk’ between them are 
now fixed, the resulting 3 constraints reduce the number of degrees of freedom to 6.) 

 Let us show that an arbitrary elementary displacement of such a rigid body may be always 
considered as a sum of a translational motion and a rotation. Consider a “moving” reference frame, 
firmly bound to the body, and an arbitrary vector A – see Fig. 1. 

 

 

 

 

 

 

 

 

 The vector may be represented by its Cartesian components Aj in that reference frame: 

 



3

1j
jjA nA .      (6.1) 

Let us calculate its time derivative in an arbitrary, possibly different (“lab”) frame, taking into account 
that if the body rotates relative to this frame, then the directions of the unit vectors nj change in time. 
Hence, we have to differentiate both operands in each product contributing to sum (1): 
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Fig. 6.1. Deriving Eq. (8). 
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In this expression, the first sum evidently describes the change of vector A as observed from the moving 
frame. Each of the infinitesimal vectors dnj participating in the second sum may be presented by its 
Cartesian components in the moving frame: 

   



3

1j'
j'jj'j dd nn  .     (6.3) 

In order to find more about the set of scalar coefficients djj’, let us scalar-multiply each part of this 
relation by an arbitrary unit vector nj”, and take into account the evident orthogonality condition: 

        j'j"j"j' nn .     (6.4) 

As a result, we get 

j"jjj" dd nn  .     (6.5) 

Now let us use Eq. (5) to calculate the first differential of Eq. (4): 

  022   ,particularin ;0  jjjjj"j'j'j"j"j'j"j' dddddd  nnnnnn . (6.6) 

These relations, valid for any choice of indices  j,  j’, and j” of the set {1, 2, 3}, mean that the matrix of 
elements djj’ is antisymmetric; in other words, there are not 9, but just 3 independent coefficients djj’, 
all with j  j’. Hence it is natural to renumber them in a simpler way: djj’ = - dj’j   dj”, where indices 
j, j’, and j” follow in a “correct” order -  either {1,2,3}, or {2,3,1}, or {3,1,2}. Now it is easy to check 
(say, just by a component-by-component comparison) that in this new notation, Eq. (3) may be 
presented just as a vector product: 

 jj dd nφn  ,      (6.7) 

where d is the infinitesimal vector defined by its Cartesian components dj (in the moving frame). 

 Relation (7) is the basis of all rotation kinematics. Using it, Eq. (2) may be rewritten as 

            .  where,
3

1
movin movin  labin dt
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dt
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ωAω
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  (6.8) 

In order to interpret the physical sense of vector , let us apply Eq. (8) to the particular case when A is 
the radius-vector r of a point of the body, and the lab frame is selected in a special way: its origin moves 
with the same velocity as that of the moving frame in the particular instant under consideration. In this 
case the first term in the right-hand part of Eq. (8) is zero, and we get  

         rω
r

frame lab specialin dt

d
,     (6.9) 

were vector r is the same in both frames. According to the vector product definition, the particle 
velocity described by this formula has a direction perpendicular to vectors  and r (Fig. 2), and 
magnitude rsin . As Fig. 2 shows, this expression may be rewritten as , where  = rsin is the 
distance from the line that is parallel to vector  and passes through point O. This is of course just the 
pure rotation about that line (called the instantaneous axis of rotation), with angular velocity . Since, 
according to Eqs. (3) and (8), the angular velocity vector  is defined by the time evolution of the 
moving frame alone, it is the same for all points r, i.e. for the rigid body as a whole. Note that nothing in 

Elementary 
rotation 
 

Vector’s  
evolution 
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Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 6           Page 3 of 30 

our calculations forbids not only the magnitude but also the direction of vector , and thus of the 
instantaneous axis of rotation, to change in time (and in many cases it does); hence the name. 

 

 

 

 

 

 

 

 Now let us generalize our result a step further, considering two laboratory reference frames that 
do not rotate versus each other: one arbitrary, and another one selected in the special way described 
above, so that for it Eq. (9) is valid in it. Since their relative motion of these two reference frames is 
purely translational, we can use the simple velocity addition rule given by Eq. (1.8) to write 

         ,labin frame  lab  specialin  labin labin rωvvvv  OO    (6.10) 

where r is the radius-vector of a point is measured in the body-bound (“moving”) frame O.  

 

6.2. Inertia tensor 

Since the dynamics of each point of a rigid body is strongly constrained by conditions rkk’ = 
const, this is one of the most important fields of application of the Lagrangian formalism that was 
discussed in Chapter 2. The first thing we need to know for using this approach is the kinetic energy of 
the body in an inertial reference frame. It is  just the sum of kinetic energies of all its points, so that we 
can use Eq. (10) to write:1 

    .)(
2

)(
222

2222    rωrωvrωvv
m

mv
mmm

T OOO  (6.11) 

Let us apply to the right-hand part of Eq. (11) two general vector analysis formulas, listed in the Math 
Appendix: the operand rotation rule MA Eq. (7.6) to the second term, and MA Eq. (7.7b) to the third 
term. The result is 

          2222 )(
2

)(
2

rωωvr r
m

mv
m

T OO  .   (6.12) 

This expression may be further simplified by making a specific choice of point O (from the radius-
vectors r of all particles are measured), namely if we use for this point the center of mass of the body. 
As was already mentioned in Sec. 3.4, radius-vector R of this point is defined as 

          mMmM ,rR ,     (6.13) 

1 Actually, all symbols for particle masses, coordinates and velocities should carry the particle index, say k, over 
which the summation is carried out. However, for the sake of notation simplicity, this index is just implied. 

Fig. 6.2. Instantaneous  axis of rotation. 
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where M  is just the total mass of the body. In the reference frame centered as that point, R = 0, so that 
in that frame the second sum in Eq. (12) vanishes, so that the kinetic energy is a sum of two terms: 

                 222
rot

2
tranrottran )(

2
,

2
, rωr

m
TV

M
TTTT  ,  (6.14) 

where V  dR/dt is the center-of-mass velocity in our inertial reference frame, and all particle positions 
r have to be measured in the center-of-mass frame. Since the angular velocity vector  is common for 
all points of a rigid body, it is more convenient to rewrite the rotational energy in a form in which the 
summation over the components of this vector is clearly separated from the summation over the points 
of the body: 

             



3

1',
''rot ,

2

1

jj
jjjjIT       (6.15) 

where the 33 matrix with elements 

             ''
2

' jjjjjj rrrmI       (6.16) 

is called the inertia tensor of the body.  

 Actually, the term “tensor” for the matrix has to be justified, because in physics this name 
implies a certain reference-frame-independent notion, so that its elements have to obey certain rules at 
the transfer between reference frames. In order to show that the inertia tensor deserves its title, let us 
calculate another key quantity, the total angular momentum L of the same body.2 Summing up the 
angular momenta of each particle, defined by Eq. (1.31), and using Eq. (10) again, in our inertial 
reference frame we get 

               rωrvrrωvrvrprL mmmm OO . (6.17) 

 We see that the momentum may be presented as a sum of two terms. The first one, 

      ,OOO Mm vRvrL       (6.18) 

describes possible rotation of the center of mass about the inertial frame origin. This term evidently 
vanishes if the moving reference frame’s origin O is positioned at the center of mass. In this case we are 
left with only the second term, which describes the rotation of the body about its center of mass: 

          rωrLL mrot .     (6.19) 

Using one more vector algebra formula, the “bac minis cab” rule,3 we may rewrite this expression as  

            ωrrωL 2rm .     (6.20) 

Let us spell out an arbitrary Cartesian component of this vector:  

2 Hopefully, there is a little chance of confusion between the angular momentum L (a vector) and its Cartesian 
components Lj (scalars with an index) on one hand, and the Lagrange function L (a scalar without an index) on the 
other hand. 
3 See, e.g., MA Eq. (7.5). 
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j'
j'

j'
j'j'jjj rrrmrrrmL  2
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1

3

1

2 .   (6.21) 

Changing the order of summations, and comparing the result with Eq. (16), we see that the angular 
momentum may be conveniently expressed via the same matrix elements Ijj’ as the rotational kinetic 
energy: 

      



3

1'
'

j
j'jjj IL  .     (6.22) 

 Since L and  are both legitimate vectors (meaning that they describe physical vectors 
independent on the reference frame choice), their connection, the matrix of elements Ijj’, is a legitimate 
tensor. This fact, and the symmetry of the tensor (Ijj’ = Ij’j), which is evident from its definition (16), 
allow the tensor to be further simplified. In particular, mathematics tells us that by a certain choice of 
the axis orientation, any symmetric tensor may be reduced to a diagonal form 

         ,'' jjjjj II       (6.23) 

where, in our case 

           22222
jj"j'jj mrrmrrmI  ,    (6.24) 

j being the distance of the particle from the j-th axis, i.e. the length of the perpendicular dropped from 
the point to that axis. The axes of such special coordinate system are called the principal axes, while 
the diagonal elements Ij given by Eq. (24), the principal moments of inertia of the body. In such a 
special reference frame,  Eqs. (15) and (22) are reduced to very simple forms: 

      



3

1

2
rot 2j

j
jI

T  ,     (6.25) 

         .jjj IL        (6.26) 

Both these results remind the corresponding relations for the translational motion, Ttran = MV2/2 and P = 
MV, with the angular velocity  replacing the “linear” velocity V, and the tensor of inertia playing the 
role of scalar mass M. However, let me emphasize that even in the specially selected coordinate system, 
with axes pointing in principal directions, the analogy is incomplete, and rotation is generally more 
complex than translation, because the measures of inertia, Ij, are generally different for each principal 
axis.  

 Let me illustrate this fact on a simple but instructive system of three  similar massive particles 
fixed in the vertices of an equilateral triangle (Fig. 3).  

 

 

 

 

  Fig. 6.3. Principal moments of 
inertia: a simple case study. 
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 Due to symmetry of the configuration, one of the principal axes has to pass through the center of 
mass O, perpendicular to the plane of the triangle. For the corresponding principal moment of inertia, 
Eq. (24) readily yields I3 = 3m2. If we want to express the result in terms of the triangle side a, we may 
notice that due to system’s symmetry, the angle marked in Fig. 3 equals /6, and from the corresponding 
right triangle, a/2 = cos(/6)  3/2, giving  = a/3, so that, finally, I3 = ma2. 

 Another way to get the same result is to use the following general axis shift theorem, which may 
be rather useful - especially for more complex cases. Let us relate the inertia tensor components Ijj’ and 
I’jj’, calculated in two reference frames - one in the center of mass O, and another one displaced by a 
certain vector d (Fig. 4a), so that for an arbitrary point, r’ = r + d. Plugging this relation into Eq. (16), 
we get 

           
     
    .2 '''''

22

'''
2








jjjjjjjjjj

jjjjjjjj'

dddrdrrrdrm

drdrmI'





dr

dr
  (6.27) 

Since in the center-of-mass frame, all sums mrj equal zero, we may use Eq. (16) to finally obtain 

               )( '
2

'' jjjjjjjj' dddMII'   .    (6.28) 

In particular, this equation shows that if the shift vector d is perpendicular to one (say, j-th) of the 
principal axes (Fig. 4b), i.e. dj = 0, then Eq. (28) is reduced to a very simple formula: 

                        .2MdII' jj       (6.29) 

 

 

 

 

 

 

 

 Returning to the system shown in Fig. 3, let us perform such a shift so that the new (“primed”) 
axis passes through the location of one of the particles, still perpendicular to particles’ plane. Then the 
contribution of that particular mass to the primed moment of inertia vanishes, and I’3 = 2ma2. Now, 
returning to the center of mass and applying Eq. (29), we get I3 = I’3 - M2 = 2ma2 – (3m)(a/3)2 = ma2, 
i.e. the same result as above. 

 The symmetry situation inside the triangle plane is somewhat less evident, so let us start with 
calculating the moments of inertia for the axes shown vertical and horizontal in Fig. 3. From Eq. (24) we 
readily get: 
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  ,    (6.30) 

Fig. 6.4. (a) General reference 
frame shift from the center of mass, 
and (b) a shift perpendicular to one 
of the principal axes.  
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where I have taken into account the fact that the distance h from the center of mass and any side of the 
triangle is h = sin (/6) = /2 = a/23. We see that I1 = I2, and mathematics tells us that in this case any 
in-plane axis (passing through the center of mass O) may be considered as principal, and has the same 
moment of inertia. A rigid body with this property, I1 = I2  I3, is called the symmetric top. (The last 
direction is called the main principal axis of the system.)  

 Despite the name, the situation may be even more symmetric in the so-called spherical tops, i.e.  
highly symmetric systems whose principal moments of inertia are all equal, 

                IIII  321 ,     (6.31) 

Mathematics says that in this case the moment of inertia for rotation about any axis (but still passing 
through the center of mass) is equal to the same I. Hence Eqs. (25) and (26) are further simplified for 
any direction of vector : 

            ωL I
I

T  ,
2

2
rot  ,     (6.32) 

thus making the analogy of rotation and translation complete. (As will be discussed in the next section, 
the analogy is also complete if the rotation axis is fixed by external constraints.)   

 An evident example of a spherical top is a uniform sphere or spherical shell; a less obvious 
example is a uniform cube - with masses either concentrated in vertices, or uniformly spread over the 
faces, or uniformly distributed over the volume. Again, in this case any axis passing through the center 
of mass is principal, and has the same principal moment of inertia. For a sphere, this is natural; for a 
cube, rather surprising – but may be confirmed by a direct calculation. 

 

6.3. Fixed-axis rotation 

 Now we are well equipped for a discussion of rigid body’s rotational dynamics. The general 
equation of this dynamics is given by Eq. (1.38), which is valid for dynamics of any system of particles 
– either rigidly connected or not: 

           τL  ,       (6.33) 

where  is the net torque of external forces. Let us start exploring this equation from the simplest case 
when the axis of rotation, i.e. the direction of vector , is fixed by some external constraints. Let us 
direct axis z along this vector; then x = y = 0. According to Eq. (22), in this case, the z-component of 
the angular momentum,  

         ,zzzz IL        (6.34) 

where Izz, though not necessarily one of the principal momenta of inertia, still may be calculated using 
Eq. (24): 

        222 yxmmI zzz  ,    (6.35) 

with z being the distance of each particle from the rotation axis z. According to Eq. (15), the rotational 
kinetic energy in this case is just 
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                  2
rot 2 z

zzI
T  .      (6.36) 

 Moreover, it is straightforward to use Eqs. (12), (17), and (28) to show that if the rotation axis is 
fixed, Eqs. (34)-(36) are valid even if the axis does not pass through the center of mass – if only 
distances z are now measured from that axis. (The proof is left for reader’s exercise.) 

 As a result, we may not care about other components of vector L,4 and use just one component 
of Eq. (33), 

           ,zzL        (6.37) 

because it, when combined with Eq. (34), completely determines the dynamics of rotation: 

                 ,  i.e., zzzzzzzz II         (6.38) 

where z is the angle of rotation about the axis, so that z = . Scalar relations (34), (36) and (38), 
describing rotation about a fixed axis, are completely similar to the corresponding formulas of 1D 
motion of a single particle, with z corresponding to the usual (“linear”) velocity,  the angular 
momentum component Lz - to the linear momentum, and Iz - to particle’s mass. 

 The resulting motion about the axis is also frequently similar to that of a single particle. As a 
simple example, let us consider what is called the physical pendulum (Fig. 5) - a rigid body free to rotate 
about a fixed horizontal axis A that does not pass through the center of mass O, in the uniform gravity 
field g.  

 

 

 

 

 

 

 

 

 Let us drop a perpendicular from point O to the rotation axis, and call the corresponding vector l 
(Fig. 5). Then the torque (relative to axis A) of the forces exerted by the axis constraint is zero, and the 
only contribution to the net torque is due to gravity alone:  

              glgrglgrlFrτ   Mmmm OOAA in in in in . (6.39) 

(For the last transition, I have used the facts that point O is the center of mass, and that vectors l and g 
are the same for all particles of the body.) This result shows that the torque is directed along the rotation 

4 Note that according to Eq. (22), other Cartesian components of the angular momentum, Lx = Ixzz and  Ly = Iyzz 
may be different from zero, and even evolve in time. (Indeed, if axes x and y are fixed in lab frame, Ixz and  Iyz 
may change due to body’s rotation.) The corresponding torques x

(ext) and y
(ext), which obey Eq. (33), are 

automatically provided by external forces which keep the rotation axis fixed. 

Fig. 6.5. Physical pendulum. The 
fixed (horizontal) rotation axis A is 
perpendicular to the plane of drawing. 
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axis, and its (only) component z is equal to -Mglsin, where   is the angle between vectors l and g, i.e. 
the angular deviation of the pendulum from the position of equilibrium. As a result, Eq. (38) takes the 
form,  

                ,sin MglI A       (6.40) 

where, IA  is the moment of inertia for rotation about axis A rather about the center of mass. This 
equation is identical to that of the point-mass (sometimes called “mathematical”) pendulum, with the 
small-oscillation frequency 

      .Ω
2/1











AI

Mgl
      (6.41) 

As a sanity check, in the simplest case when the linear size of the body is much smaller than the 
suspension length l, Eq. (35) yields IA = Ml2, and Eq. (41) reduces to the well-familiar formula  = 
(g/l)1/2 for the mathematical pendulum. 

 Now let us discuss the situations when a body not only rotates, but also moves as the whole. As 
we already know from our introductory chapter, the total momentum of the body, 

                rrvP m
dt

d
mm  ,    (6.42) 

satisfies the 2nd Newton law in the form (1.30). Using the definition (13) of the center of mass, the 
momentum may be presented as  

                VRP MM   ,     (6.43) 

so Eq. (1.30) may be rewritten as  

           FV M ,      (6.44) 

where F is the vector sum of all external forces. This equation shows that the center of mass of the body 
moves exactly as a point particle of mass M, under the effect of the net force F. In many cases this fact 
makes the translational dynamics of a rigid body absolutely similar to that of a point particle.  

 The situation becomes more complex if some of the forces contributing to the vector sum F 
depend on rotation of the same body, i.e. if its rotational and translational motions are coupled. Analysis 
of such coupled motion is rather straightforward if the direction of the rotation axis does not change in 
time, and hence Eqs. (35)-(36) are still valid. Possibly the simplest example is a round cylinder (say, a 
wheel) rolling on a surface without slippage (Fig. 6).  
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 The no-slippage condition may be presented as the requirement of zero net velocity of the 
particular wheel point A that touches the surface – in the reference frame connected to the surface. For 
the simplest case of plane surface (Fig. 6a), the application of Eq. (10) shows that this requirement gives 
the following relation between the angular velocity   of the wheel and the linear velocity V of its 
center: 

         .0 rV       (6.45) 

 Such kinematic relations are essentially holonomic constraints, which reduce the number of 
degrees of freedom of the system. For example, without condition (45) the wheel on a plane surface has 
to be considered as a system with two degrees of freedom, so that its total kinetic energy (14) is a 
function of two independent generalized velocities, say V  and  : 

                22
rottran 22

I
V

M
TTT  .    (6.46) 

Using Eq. (45) we may eliminate, for example, the linear velocity and reduce Eq. (46) to  

         .   where,
222

2
ef

2ef22 MrII
II

r
M

T      (6.47) 

This result may be interpreted as the kinetic energy of pure rotation of the wheel about the instantaneous 
axis A, with Ief  being the moment of inertia about that axis, satisfying Eq. (29). 

 Kinematic relations are not always as simple as Eq. (45). For example, if the wheel is rolling on 
a concave surface (Fig. 6b), we need relate the angular velocities of the wheel rotation about its axis O 
(denoted ) and that of its axis’ rotation about the center O’ of curvature of the surface (). A popular 
error here is to write  = -(r/R) [WRONG!]. A prudent way to get the correct relation is to note that 
Eq. (45) holds for this situation as well, and on the other hand the same linear velocity of wheel’s center 
may be expressed as V = (R – r). Combining these equations, we get a (not quite evident) relation 

      .
rR

r


      (6.48) 

 Another famous example of the relation between the translational and rotational motion is given 
by the “sliding ladder” problem (Fig. 7). Let us analyze it for the simplest case of negligible friction, and 
ladder’s thickness small in comparison with its length l . 

 

 

 

 

 

  

 

 In order to use the Lagrangian formalism, we may write the kinetic energy of the ladder as the 
sum (14) of the translational and rotational parts: 

Fig. 6.7. Sliding ladder problem. 
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             ,
22

222  I
YX

M
T       (6.49) 

where X and Y are the Cartesian coordinates of its center of mass in an inertial reference frame, and I is 
the moment of inertia for rotation about the z-axis passing through the center of mass. (For the 
uniformly-distributed mass, an elementary integration of Eq. (35) yields I = Ml2/12). In the reference 
frame with the center in the corner O, both YX  and may be simply expressed via angle  : 

       .sin
2

,cos
2

 l
Y

l
X       (6.50) 

(The easiest way to obtain these relations is to notice that the dashed line in Fig. 7 has slope  and 
length l/2.) Plugging these expressions into Eq. (49), we get 
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  .    (6.51) 

Since the potential energy of the ladder in the gravity field may be also expressed via the same angle, 

        ,sin
2

l
MgMgYU       (6.52) 

 may be conveniently used as the (only) generalized coordinate of the system. Even without writing the 
Lagrangian equation of motion for that coordinate explicitly, we may notice that since the Lagrangian 
function (T – U) does not depend on time explicitly, and the kinetic energy (51) is a quadratic-
homogeneous function of the generalized velocity  , the full mechanical energy, 
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 ,   (6.53) 

is conserved and gives us the first integral of motion. Moreover, Eq. (53) shows that the system’s energy 
(and hence dynamics) is identical to that of a physical pendulum with an unstable fixed point 1 = /2, 
stable fixed point at  2  = -/2, and frequency  

         
2/1

2

3








l

g
     (6.54) 

of small oscillations near the latter point. (Of course, that fixed point cannot be reached in the simple 
geometry shown in Fig. 7, where ladder’s hitting the floor would change its equations of motion). 

 

6.4. Free rotation 

 Now let us proceed to more complex case when the rotation axis is not fixed. A good illustration 
of the complexity arising is this case comes from the simplest case of a rigid body left alone, i.e. not 
subjected to external forces and hence its potential energy U is constant. Since in this case, according to 
Eq. (44), the center of mass moves (as measured from any inertial reference frame) with a constant 
velocity, we can always use an convenient inertial reference frame with the center at that point. From 
the point of view of such frame, the body’s motion is a pure rotation, and Ttran = 0. Hence, the system’s 
Lagrangian equals just the rotational energy (15), which is, first, a quadratic-homogeneous function of 
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components j (that may be taken for generalized velocities), and, second, does not depend on time 
explicitly. As we know from Chapter 2, in this case the energy is conserved. For the components of 
vector  in the principal axes, this means  

          



3

1

2
rot const 

2j
j

jI
T  .     (6.55) 

 Next, as Eq. (33) shows, in the absence of external forces the angular momentum L of the body 
is conserved as well. However, though we can certainly use Eq. (26) to present this fact as  

          const 
3

1

 
j

jjjI nL  ,     (6.56) 

where nj are the principal axes of inertia, this does not mean that components j of the angular velocity 
vector  are constant, because the principal axes are fixed relative to the rigid body, and hence may 
rotate with it. 

 Before going after these complications, let us briefly mention two conceptually trivial, but 
practically very important, particular cases. The first is a spherical top (I1 = I2 = I3 = I). In this case Eqs. 
(55) and (56) imply that all components of  vector  = L/I, i.e. both the magnitude and the direction of 
the angular velocity are conserved, for any initial spin. In other words, the body conserves its rotation 
speed and axis direction, as measured in an inertial frame.  

The most obvious example is a spherical planet. For example, our Mother Earth, rotating about 
its axis with angular velocity  = 2/(1 day)  7.310-5 s-1, keeps its axis at a nearly constant angle of 
2327’ to the ecliptic pole, i.e. the axis normal to the plane of its motion around the Sun. (In Sec. 6 
below, we will discuss some very slow motions of this axis, due to gravity effects.) 

 Spherical tops are also used in the most accurate gyroscopes, usually with gas or magnetic 
suspension in vacuum. If done carefully, such systems may have spectacular stability. For example, the 
gyroscope system of the Gravity Probe B satellite experiment, flown in 2004-2005, was based on quartz 
spheres - round with precision of about 10 nm and covered by superconducting thin films (which have 
enabled their magnetic suspension and SQUID monitoring). The whole system was stable enough to 
measure that the so-called geodetic effect in general relativity (essentially, the space curving by Earth’s 
mass), resulting in the axis precession by just  6.6 arcseconds per year, i.e. with a precession frequency 
of just ~10-11s-1, agrees with theory with a record ~0.3% accuracy.5 

 The second simple case is that of the “symmetric top” (I1 = I2  I3), with the initial vector L 
aligned with the main principal axis. In this case,  = L/I3 = const, so that the rotation axis is 
conserved.6 Such tops, typically in the shape of a flywheel (rotor) supported by a “gimbal” system (Fig. 
8), are broadly used in more common gyroscopes, core parts of automatic guidance  systems, for 

5 Such beautiful experimental physics does not come cheap: the total Gravity Probe B project budget was about 
$750M. Even at this price tag, the declared main goal of the project, an accurate measurement of a more subtle 
relativistic effect, the so-called frame-dragging drift (or “the Schiff precession”), predicted to be about 0.04 arc 
seconds per year, has not been achieved. 
6 This is also true for an asymmetric top, i.e. an arbitrary body (with, say, I1 < I2 < I3), but in this case the 
alignment of vector L with axis n2, corresponding to the intermediate moment of inertia, is unstable.   

Rotational 
energy’s 
conservation 

Angular 
momentum’s 
conservation 
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example, in ships, airplanes, missiles, etc. Even if the ship’s hull wobbles, the suspended gyroscope 
sustains its direction relative to Earth (which is sufficiently inertial for these applications).7  

  

   

 

 

 

 

 

 However, in the general case with no such special initial alignment, the dynamics of symmetric 
tops is more complex. In this case, vector L is still conserved, including its direction, but vector  is not. 
Indeed, let us direct axis n2 perpendicular to the common plane of vectors L and the instantaneous 
direction n3 of the main principal axis (in Fig. 9, the plane of drawing); then, in that  particular instant, 
L2 = 0. Now let us recall that in a symmetric top, axis n2 is a principal one. According to Eq. (26) with j 
= 2, the corresponding component 2 has to be equal to L2/I2, so it vanishes. This means that vector  
lies in this plane (the common plane of vectors L and n3) as well – see Fig. 9a. 

    

 

 

 

  

 

 

 

  

 Now consider any point of the body, located on axis n3, and hence within plane [n3, L]. Since  
is the instantaneous axis of rotation, according to Eq. (9), the point has instantaneous velocity v = r 
directed normally to that plane. Since this is true for each point of the main axis (besides only one, with 
r = 0, i.e. the center of mass, which does not move), this axis as a whole has to move perpendicular to 
the common plane of vectors L, , and n3. Since such conclusion is valid for any moment of time, it 
means that vectors  and n3 rotate about the space-fixed vector L together, with some angular velocity 
pre, at each moment staying in one plane. This effect is usually called the free precession (or “torque-

7 Much more compact (and much less accurate) gyroscopes used, e.g., in smartphones and tablet computers, are 
based on the effect of rotation on oscillator frequency, and implemented as micro-electromechanical systems 
(MEMS) on silicon chip surface – see, e.g., Chapter 22 in V. Kaajakari, Practical MEMS, Small Gear Publishing, 
2009.  

Fig. 6.8. Typical gyroscope. (Adapted from 
http://en.wikipedia.org/wiki/Gyroscope.) 

Fig. 6.9. Free rotation of a symmetric top: (a) 
the general configuration of vectors, and (b) 
calculating the free precession frequency. 
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free”, or “regular”) precession, and has to be clearly distinguished it from the completely different effect 
of the torque-induced precession which will be discussed in the next section. 

In order to calculate pre, let us present the instant vector  as a sum of not its Cartesian 
coordinates (as in Fig. 9a), but rather of two non-orthogonal vectors directed along n3 and L (Fig. 9b):  

     .,pre3rot LLL

L
nnnω       (6.57) 

It is clear from Fig. 9b that rot has the meaning of the angular velocity of body rotation of the body 
about its main principal axis, while pre is the angular velocity of rotation of that axis about the constant 
direction of vector L, i.e. the frequency of precession. Now the latter frequency may be readily 
calculated from the comparison of two panels of Fig. 9, by noticing that the same angle   between 
vectors L and n3 participates in two relations: 

               .sin
pre

11




 
L

L
     (6.58) 

Since axis n1 is principal, we may use Eq. (26) for j = 1, i.e. L1 = I11, to eliminate 1 from Eq. (58), and 
get a very simple formula 

          
1

pre I

L
 .      (6.59) 

This result shows that the precession frequency is constant and independent of the alignment of vector L 
with the main principal axis n3, while the amplitude of this motion (characterized by angle  ) does 
depend on the alignment, and vanishes if L is parallel to n3.8 Note also that if all principal moments of 
inertia are of the same order, pre  is of the same order  as the total angular velocity  =  of rotation. 

 Now, let us briefly discuss the free precession in the general case of an “asymmetric top”, i.e. a 
body with I1  I2  I3. In this case the effect is more complex because here not only the direction but 
also the magnitude of the instantaneous angular velocity  may evolve in time. If we are only interested 
in the relation between the instantaneous values of j and Lj, i.e. the “trajectories” of vectors  and L as 
observed from the reference frame {n1,n2,n3} of the principal axes of the body (rather than an explicit 
law of their time evolution), they may be found directly from the conservation laws. (Let me emphasize 
again that vector L, being constant in an inertial frame, generally evolves in the frame rotating with the 
body.) Indeed, Eq. (55) may be understood as the equation of an ellipsoid in Cartesian coordinates {1, 
2, 3}, so that for free body, vector  has to stay on the surface of that ellipsoid.9  On the other hand, 
since the reference frame rotation preserves the length of any vector, the magnitude (but not direction!) 
of vector L is also an integral of motion in the moving frame, and we can write 

     const 
3

1

22
3

1

22  
 j

jj
j

j ILL  .    (6.60) 

8 For Earth, the free precession amplitude it so small (below 10 m of linear displacement on the Earth surface) that 
this effect is of the same order as other, irregular motions of the rotation axis, resulting from the turbulent fluid 
flow effects in planet’s interior and its atmosphere. 
9 It is frequently called the Poinsot ellipsoid, after L. Poinsot (1777-1859) who has made several pioneering 
contributions to the rigid body mechanics. 

Free 
precession 
frequency 
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Hence the trajectory of vector    follows the closed curve formed by the intersection of two ellipsoids, 
(55) and (60). It is evident that this trajectory is generally “taco-edge-shaped”, i.e. more complex than a 
plane circle but never very complex either. 

 The same argument may be repeated for vector L, for whom the first form of Eq. (60) descries a 
sphere, and Eq. (55), another ellipsoid: 
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On the other hand, if we are interested in the trajectory of vector  in an inertial frame (in which 
vector L stays still), we may note that the general relation (15) for the same rotational energy Trot may 
also be rewritten as 
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''rot 2
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But according to the Eq. (22), the second sum in the right-hand part is nothing more than Lj, so that 

       Lω  
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1
rot

j
jj LT  .     (6.63) 

This equation shows that for a free body (Trot = const, L = const), even is vector  changes in time, its 
end point should stay within a plane perpendicular to angular momentum L. (Earlier, we have seen that 
for the particular case of the symmetric top – see Fig. 9b, but for an asymmetric top, the trajectory of the 
end point may not be circular.) 

 If we are interested not only in the trajectory of vector , but also its explicit evolution in time, it 
may be calculated using the general Eq. (33) presented in principal components j. For that, we have to 
recall that Eq. (33) is only valid in an inertial reference frame, while the frame {n1, n2, n3} may rotate 
with the body and hence is generally not inertial. We may handle this problem by applying to vector L 
the general relation (8): 

       .movin labin Lω
LL


dt

d

dt

d
     (6.64) 

Combining it with Eq. (33), in the moving frame we get 

      τLω
L


dt

d
,     (6.65) 

where  is the external torque. In particular, for the principal-axis components Lj, related to components 
j by Eq. (26), Eq. (65) is reduced to a set of three scalar Euler equations 

                 jjjjjjj III   "''" )( ,     (6.66) 

where the set of indices { j, j’ , j” } has to follow the usual “right” order - e.g., {1, 2, 3}, etc.10   

10 These equations are of course valid in the simplest case of the fixed rotation axis as well. For example, if  = 
nz, i.e. x = y = 0, Eq. (66) is reduced to Eq. (38). 

Euler 
equations 
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 In order to get a feeling how do the Euler equations work, let us return to the case of a free 
symmetric top (1 = 2 = 3 = 0, I1 = I2  I3). In this case, I1 – I2 = 0, so that Eq. (66) with j = 3 yields 3 
= const, while the equations for j = 1 and j = 2 take the simple form 

     ,Ω,Ω 1pre22pre1         (6.67) 

where pre is a constant determined by the system parameters and initial conditions:   

                        
1

13
3preΩ

I

II 
  .     (6.68) 

Obviously, Eqs. (67) have a sinusoidal solution with frequency pre, and describe uniform rotation of 
vector , with that frequency, about the main axis n3. This is just another presentation of the torque-free 
precession analyzed above, this time as observed from the rotating body. Evidently, pre is substantially 
different from the frequency pre (59) of the precession as observed from the lab frame; for example, the 
former frequency vanishes for the spherical top (with I1 = I2 = I3), while the latter frequency tends to the 
rotation frequency.  

 Unfortunately, for the rotation of an asymmetric top (i.e., an arbitrary rigid body), when no 
component j is conserved, the Euler equations (66) are strongly nonlinear even in the absence of the 
external torque, and a discussion of their solutions would take more time than I can afford.11 

 

 6.5. Torque-induced precession 

 The dynamics of rotation becomes even more complex in the presence of external forces. Let us 
consider the most important and counter-intuitive effect of torque-induced precession, for the simplest 
case of an axially-symmetric body (which is a particular case of the symmetric top, I1 = I2  I3) rapidly 
spinning about his symmetry axis, and supported at some point A of that axis, that does not coincide 
with the center of mass O – see Fig. 10. Without external forces, such top would retain the direction of 
its rotation axis that would always coincide with the direction of the angular momentum: 

                .3rot33 nωL II       (6.69) 

 

 

 

 

 

   

  

 

  

11 Such discussion may be found, e.g. in Sec. 37 of L. Landau and E. Lifshitz, Mechanics, 3rd ed., Butterworth-
Heinemann, 1976. 

Fig. 6.10. Symmetric top in the gravity field: 
(a) a side view at the system and (b) the top 
view at the evolution of the horizontal 
component of the angular momentum vector. 
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 The uniform gravity field creates bulk-distributed forces that, as we know from the analysis of 
the physical pendulum in Sec. 3, are equivalent to a single force Mg applied in the center of mass – in 
Fig. 10, point O. The torque of the force relative to the support point A is  

     gngrτ  3in MlMAO .     (6.70) 

Hence the general equation (33) of the angular momentum (valid in the inertial “lab” frame, in which 
point A rests) becomes 

       gnL  3Ml .     (6.71) 

Despite the apparent simplicity of this (exact!) equation, its analysis is straightforward only in 
the limit of relatively high rotation velocity rot or, alternatively, very small torque. In this limit, we 
may, in the 0th approximation, still use Eq. (69) for L. Then Eq. (71) shows that vector L is 
perpendicular to both n3 (and hence L) and g, i.e. lies within the horizontal plane, and is perpendicular 
to the horizontal component Lxy of vector L – see Fig. 10b. Since the magnitude of this vector is 
constant,  L  = mgl sin, vector L (and hence the body’s main axis) rotates about the vertical axis with 
angular velocity 

            
rot3

pre sin
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.    (6.72) 

 Thus, very counter-intuitively, the fast-rotating top “does not want to” follow the external, 
vertical force and, in addition to fast spinning about the symmetry axis n3, also performs a revolution, 
called the torque-induced precession, about the vertical axis. Note that, similarly to the free-precession 
frequency (59), the torque-induced precession frequency (72) does not depend on the initial (and 
sustained) angle  . However, the torque-induced precession frequency is inversely (rather than directly) 
proportional to , and is typically much lower. This relative slowness is also required for the validity of 
our simple theory of this effect. Indeed, in our approximate treatment we have used Eq. (69), i.e. 
neglected precession’s contribution to the angular momentum vector L. This is only possible if the 
contribution is relatively small, Ipre << I3rot, where I is a certain effective moment of inertia for the 
precession (to be worked out later). Using our result (72), this condition may be rewritten as 

                           .

2/1

2
3

rot 









I

MglI      (6.73) 

For a body of not too extreme proportions, i.e. with all linear dimensions of the order of certain length l, 
all inertia moments are of the order of Ml2, so that the right-hand part of Eq. (73) is of the order of 
(g/l)1/2, i.e. comparable with the eigenfrequency of the same body as the physical pendulum, i.e. at the 
absence of fast rotation. 

 In order to develop a qualitative theory that could take us beyond such approximate treatment, 
the Euler equations (66) may be used, but are not very convenient. A better approach, suggested by the 
same L. Euler, is to introduce a set of three independent angles between the principal axes {n1,n2,n3} 
bound to the rigid body, and axes {nx,ny,nz} of an inertial reference frame (Fig. 11), and then express the 
basic equation (33) of rotation, via these angles. There are several possible options for the definition of 

Precession: 
equation 

Precession: 
frequency 
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such angles;12 Fig. 11 shows the set of Euler angels, most convenient for discussion of fast rotation. As 
one can see at the figure, the first Euler angle, , is the usual polar angle measured from axis nz to axis 
n3. The second one is the azimuthal angle , measured from axis nx to the so-called line of nodes formed 
by the intersection of planes [nx,ny] and [n1,n2]. The last Euler angle, , is measured within plane 
[n1,n2], from the line of nodes to axis n1. In the simple picture of the force-induced precession of a 
symmetric top, which was derived above, angle  is constant, angle  changes very rapidly, with the 
rotation velocity rot, while angle  grows with the precession frequency pre (72). 

 

 

 

 

 

 

 

 

  

 Now we can express the principal-axes components of the instantaneous angular velocity vector, 
1, 2, and 3, as measured in the lab reference frame, in terms of the Euler angles.  It may be easily 
done calculating, from Fig. 11, the contributions to the change of Euler angles to each principal axis, 
and then adding them up. The result is 
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     (6.74)   

 These formulas allow the expression of the kinetic energy of rotation (25) and the angular 
momentum components (26) in terms of the generalized coordinates , , and , and use then powerful 
Lagrangian formalism to derive their equations of motion. This is especially simple to do in the case of 
symmetric tops (with I1 = I2), because plugging Eqs. (74) into Eq. (25) we get an expression, 

        232221
rot cos

2
sin

2
  

II
T ,    (6.75) 

which does not include explicitly either  or .  (This reflects the fact that for a symmetric top we can 
always select axis n1 to coincide with the line of nodes, and hence take   = 0 at the considered moment 
of time. Note that this trick does not mean we can take 0 , because axis n1, as observed from the 
inertial reference frame, moves!) Now we should not forget that at the torque-induced precession, the 
center of mass moves as well (see Fig. 10), so that according to Eq. (14), the total kinetic energy of the 
body is the sum of two terms, 

12 Of the several choices more convenient in the absence of fast rotation, the most common is the set of so-called 
Tait-Brian angles (called the yaw, pitch, and roll) that are broadly used in airplane and maritime navigation.  

Fig. 6.11. Definition of 
the Euler angles. 
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while the potential energy is just 

           constcos  MglU .     (6.77) 

 Now we could readily write the Lagrangian equations of motion for the Euler angles, but it is 
better to immediately notice that according to Eqs. (75)-(77), the Lagrangian function, T – U, does not 
depend explicitly on “cyclic” coordinates   and , so that the corresponding generalized momenta are 
conserved:  

       const,cos)cos(sin 3
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where, according to Eq. (29), IA  I1 +Ml2 is just the body’s moment of inertia for rotation about a 
horizontal axis passing through the support point A. According to the last of Eqs. (74), p is just L3, the 
angular momentum’s component along the rotating axis n3. On the other hand, by its definition p  is Lz, 
the same vector L’s component along  the static axis z. (Actually, we could foresee in advance the 
conservation of both these components of L, because vector (70) of the external torque is perpendicular 
to both n3 and nz.) Using these notions, and solving the simple system of linear equations (78)-(79) for 
the angle derivatives, we get 
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 One more conserved quantity in this problem is the full mechanical energy13  
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Plugging Eqs. (80) into Eq. (81), we get a first-order differential equation for angle , which may be 
presented in the following physically transparent form: 
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 Thus, similarly to the planetary problems considered in Sec. 3.5, the symmetric top precession 
has been reduced (without any approximations!) to a 1D problem of motion of one of its degrees of 
freedom, the polar angle  , in an effective potential Uef(), which is the sum of the real potential energy 
U (77) and a contribution from the kinetic energy of  motion along two other angles. In the absence of 
rotation about axes nz and n3 (i.e., Lz = L3 = 0), Eq. (82) is reduced to the first integral of the equation 
(40) of motion of a physical pendulum. If the rotation is present, then (besides the case of special initial 

13 Indeed, since the Lagrangian does not depend on time explicitly, H = const, and since the full kinetic energy  T 
is a quadratic-homogeneous function of the generalized velocities, E = H. 
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conditions when (0) = 0 and Lz = L3),14 the first contribution to Uef() diverges at   0 and , so that 
the effective potential energy has a minimum at some finite value 0 of the polar angle  .  

 If the initial angle  (0) equals this 0, i.e. if the initial effective energy is equal to its minimum 
value Uef(0), the polar angle remains constant through the motion: (t) = 0. This corresponds to the 
pure torque-induced precession whose angular velocity is given by the first of Eqs. (80): 
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The condition for finding 0, dUef/d = 0, is a transcendent algebraic equation that cannot be solved 
analytically for arbitrary parameters. However, in the high spinning speed limit (73), this is possible. 
Indeed, in this limit the potential energy contribution to Uef is small, and we may analyze its effect by 
successive approximations. In the 0th approximation, i.e. at Mgl = 0, the minimum of Uef is evidently 
achieved at cos0  = Lz/L3, giving zero precession frequency (83). In the next, 1st approximation, we may 
require that at  = 0, the derivative of first term in the right-hand part of Eq. (82) for Uef over cos, 
equal to -Lz(Lz – L3cos)/IAsin2,15 is cancelled with that of the gravity-induced term, equal to Mgl. This 
immediately yields pre = (Lz – L3cos0)/IAsin20  = Mgl/L3, so that taking L3 = I3rot (as we may in the 
high spinning speed limit), we recover the simple expression (72).  

 The second important result that readily follows from Eq. (82) is the exact expression the 
threshold value of the spinning speed for a vertically rotating top ( = 0, Lz = L3). Indeed, in the limit  

 0 this expression may be readily simplified:  
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This formula shows that if 3 = L3/I3 (i.e. the angular velocity that was called rot in the approximate 
theory) is higher than the following threshold value,  
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then the coefficient at  2 in Eq. (84) is positive, so that Uef has a stable minimum at 0 = 0. On the other 
hand, if 3 is decreased below th, the fixed point becomes unstable, so that the top falls down. Note 
that if we take I = IA in condition (73) of the approximate treatment, it acquires a very simple sense: rot 
>> th. 

 Finally, Eqs. (82) give a natural description of one more phenomenon. If the initial energy is 
larger than Uef(0), angle  oscillates between two classical turning points on both sides of the fixed 
point 0. The law and frequency of these oscillations may be found exactly as in Sec. 3.3 – see Eqs. 
(3.27) and (3.28). At 3 >> th, this motion is a fast rotation of the symmetry axis n3 of the body about 
its average position performing the slow precession. These oscillations are called nutations, but 

14 In that simple case the body continues to rotate about the vertical symmetry axis: (t) = 0. Note, however, that 
such motion is stable only if the spinning speed is sufficiently high – see below.  
15 Indeed, the derivative of the fraction 1/2IAsin2 , taken at the point cos  = Lz/L3, is multiplied by the numerator, 
(Lz – L3cos)2, which at this point vanishes. 
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physically they are absolutely similar to the free precession that was analyzed in the previous section, 
and the order of magnitude of their frequency is still given by Eq. (59). 

 It may be proved that small energy dissipation (not taken into account in our analysis) leads first 
to a decay of nutations, then to a slower drift of the precession angle 0 to zero and, finally, to a gradual 
decay of the spinning speed 3 until it reaches the threshold (85) and the top falls down.  

 

6.6. Non-inertial reference frames 

 Before moving on to the next chapter, let us use the results of our discussion of rotation 
kinematics in Sec. 1 to complete the analysis of transfer between two reference frames, started in the 
introductory Chapter 1 – see Fig. 1.2. Indeed, the differentiation rule described by Eq. (8) and derived 
for an arbitrary vector A enables us to relate not only radius-vectors, but also the velocities and 
accelerations of a particle as measured in two reference frames: the “lab” frame O’ (which will be later 
assumed inertial) and the “moving” (possibly rotating) frame O  – see Fig. 12. 

 

 

 

 

 

 

 

 As this picture shows, even if frame O rotates relative to the lab frame, the  radius-vectors are 
still related, at any moment of time, by the simple Eq. (1.7). In the notation of Fig. 12 it reads 

          labin labin labin rrr  O' .     (6.86) 

However, as was discussed in Sec. 1, for velocities the general addition rule is already more complex. In 
order to find it, let us differentiate Eq. (86) over time: 

             .labin labin labin rrr
dt

d

dt

d
'

dt

d
O      (6.87) 

The left-hand part of this relation is evidently particle’s velocity as measured in the lab frame, and the 
first term in the right-hand part of Eq. (87) is the velocity of point O, as measured in the same frame. 
The last term is more complex: we need to differentiate vector r that connects point O with the particle 
(Fig. 12), considering how its evolution looks from the lab frame. Due to the possible mutual rotation of 
frames O and O’, that term may not be zero even if the particle does not move relative to frame O. 
 Fortunately, we have already derived the general Eq. (8) to analyze situations exactly like this 
one. Taking A = r, we may apply it to the last term of Eq. (87), to get  

      ),(labin labin rωvvv  O      (6.88) 

Fig. 6.12. General case of transfer 
between two reference frames.
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where  is the instantaneous angular velocity of an imaginary rigid body connected to the moving 
reference frame (or we may say, of the frame as such), an v is dr/dt, as measured in the moving frame O, 
(Here and later in this section, all vectors without indices imply their observation from the moving 
frame.) Relation (88), on one hand, is a natural generalization of Eq. (10) for v  0; on the other hand, if 
 = 0, it is reduced to simple Eq. (1.8) for the translational motion of frame O.  

 Now, in order to calculate acceleration, me may just repeat the trick: differentiate Eq. (88) over 
time, and then use Eq. (8) again, now for vector A = v + r. The result is 

            ).()(labin labin rωvωrωvaa 
dt

d
O    (6.89) 

Carrying out the differentiation in the second term, we finally get the goal equation, 

            )(2labin labin rωωvωrωaaa  O ,   (6.90) 

where a is particle’s acceleration, as measured in the moving frame. Evidently, Eq. (90) is a natural 
generalization of the simple Eq. (1.9) to the rotating frame case. 

 Now let the lab frame O’ be inertial; then the 2nd Newton law for a particle of mass m is 

        Fa labin m ,      (6.91) 

where F is the vector sum of all forces action on the particle. This is simple and clear; however, in many 
cases it is much more convenient to work in a non-inertial reference frames. For example, describing 
most phenomena on Earth’s surface, in is rather inconvenient to use a reference frame resting on the Sun 
(or in the galactic center, etc.). In order to understand what we should pay for the convenience of using 
the moving frame, we may combine Eqs. (90) and (91) to write 

       .2)(labin rωvωrωωaFa  mmmmm O     (6.92) 

This result may be interpreted in the following way: if we want to use the 2nd Newton law’s analog in a 
non-inertial reference frame, we have to add, to the real net force F acting on a particle, four pseudo-
force terms, called inertial forces, all proportional to particle’s mass. Let us analyze them, while always 
remembering that these are just mathematical terms, not real forces. (In particular, it would be futile to 
seek for the 3rd Newton law’s counterpart for an inertial force.)  

 The first term, -maOin lab, is the only one not related to rotation, and is well known from the 
undergraduate mechanics. (Let me hope the reader remembers all these weight-in-the-moving-elevator 
problems.) Despite its simplicity, this term has subtle and interesting consequences. As an example, let 
us consider a planet, such as our Earth, orbiting a star and also rotating about its own axis – see Fig. 13. 
The bulk-distributed gravity forces, acting on a planet from its star, are not quite uniform,  because they 
obey the 1/r2 gravity law (1.16a), and hence are equivalent to a single force applied to a point A slightly 
offset from the planet’s center of mass O toward the star. For a spherically-symmetric planet, points O 
and A would be exactly aligned with the direction toward the star. However, real planets are not 
absolutely rigid, so that, due to the centrifugal “force” (to be discussed shortly), their rotation about their 
own axis makes them slightly elliptic – see Fig. 13. (For our Earth, this equatorial bulge is about 10 km 
in each direction.) As a result, the net gravity force does create a small torque relative to the center of 
mass O. On the other hand, repeating all the arguments of this section for a body (rather than a point), 
we may see that, in the reference frame moving with the planet, the inertial “force” –MaO (which is of 
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course equal to the total gravity force and directed from the star) is applied exactly to the center of mass 
and does not create a torque. As a result, this pair of forces creates a torque  perpendicular to both the 
direction toward the star and the vector connecting points O and A. (In Fig. 13, the torque vector is 
perpendicular to the plane of drawing). If angle  between the planet’s “polar” axis of rotation and the 
direction towards the star was fixed, then, as we have seen in the previous section, this torque would 
induce a slow axis precession about that direction. However, as a result of orbital motion, angle  
oscillates in time much faster (once a year) between values (/2 + ) and  (/2 - ), where  is the axis 
tilt, i.e. angle between the polar axis (direction of vectors L and rot) and the normal to the ecliptic plane 
of the planet’s orbit. (For the Earth,   23.4.) A straightforward averaging over these fast oscillations16 
shows that the torque leads to the polar axis precession about the axis perpendicular to the ecliptic 
plane, keeping angle  constant. For the Earth, the period,  Tpre = 2/pre, of this precession of the 
equinoxes (or “precession of the equator”), corrected to the substantial effect of Moon’s gravity, is close 
to 26,000 years. 

 

  

 

 

 

 

 

 

  

 Returning to Eq. (92), the direction of the second term of its right-hand part, Fc = -m(r), 
called the centrifugal force, is always perpendicular to, and directed out of the instantaneous rotation 
axis – see Fig. 14.  

 

 

 

 

 

 

 Indeed, vector r is perpendicular to both   and r (in Fig. 14, normal to the picture plane and 
directed from the reader) and has magnitude rsin = , where  is the distance of the particle from 
the rotation axis. Hence the outer vector product, with the account of the minus sign, is normal to the 
rotation axis , directed out from the axis, and equal to 2rsin  = 2. The “centrifugal force” is of 

16 Details of this calculation may be found, e.g., in Sec. 5.8 of the textbook by H. Goldstein, C. Poole, and J. 
Safko, Classical Mechanics, 3rd ed., Addison Wesley, 2002. 

Fig. 6.14. Centrifugal “force”. 
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course just the result of the fact that the centripetal acceleration 2, explicit in the inertial reference 
frame, disappears in the rotating frame. For a typical location of the Earth ( ~ RE  6106 m), with its 
angular velocity E  10-4 s-1,  the acceleration is rather considerable, of the order of 3 cm/s2, i.e. ~0.003 
g, and is responsible, in particular, for the largest part of the equatorial bulge mentioned above. 

 As an example of using the centrifugal “force” concept, let us return again to our “testbed” 
problem on the bead sliding along a rotating ring – see Figs. 1.5 and 2.1. In the non-inertial reference 
frame attached to the ring, we have to add, to real forces mg and N acting on the bead, the horizontal 
centrifugal “force”17 directed out of the rotation axis, with magnitude m2. In the notations of Fig. 2.1, 
its component tangential to the ring equals m2cos = m2Rsincos , and hence the Cartesian 
component of Eq. (92) along  this direction is 

             cossinsin 2 Rmmgma  .    (6.93) 

With Ra  , this gives us the equation of motion equivalent to Eq. (2.25), which had been derived in 
Sec. 2.2 (in the inertial frame) using the Lagrangian formalism.  

 The third term in the right-hand part of Eq. (92) is the so-called Coriolis force,18 which exists 
only if the particle moves in the rotating reference frame. Its physical sense may be understood by 
considering a projectile fired horizontally, say from the North Pole. From the point of view of the Earth-
based observer, it will a subject of an additional Coriolis force FC = -2mv, directed westward, with 
magnitude 2mEv, where v is the main, southward component of the velocity. This force would cause 
the westward acceleration a = 2Ev, and the resulting eastward deviation growing with time as d = at2/2 
= Evt2 – see Fig. 15.  (This formula is exact only if d is much smaller than the distance r = vt passed by 
the projectile.) On the other hand, from the point of view of the inertial-frame observer, the projectile 
trajectory in the horizontal plane is a straight line, but during the flight time t, the Earth surface slips 
eastward from under the trajectory by distance d = r = (vt)(Et) = Evt2 where  = Et is the azimuthal 
angle of the Earth rotation during the flight). Thus, both approaches give the same result. 

 

 

 

 

 

 

 

 Hence, the Coriolis “force” is just a fancy (but frequently very convenient) way of description of 
a purely geometric effect pertinent to rotation, from the point of view of the observer participating in it. 
This force is responsible, in particular, for the higher right banks of rivers in the Northern hemisphere, 
regardless of the direction of their flow – see Fig. 16. Despite the smallness of the Coriolis force (for a 

17 For this problem, all other inertial “forces”, besides the Coriolis force (see below) vanish, while the latter force 
is directed perpendicular to the ring and does not affect the bead’s motion along it. 
18 Named after G.-G. Coriolis (1792-1843), who is also credited for the first unambiguous definitions of 
mechanical work and kinetic energy. 

Fig. 6.15. Trajectory of a projectile fired 
horizontally from the North Pole, from the 
point of view of an Earth-bound observer 
looking down. Circles show parallels, 
straight lines mark meridians. 
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typical velocity of the water in a river,  v ~ 1 m/s, it is equivalent to acceleration aC ~ 10-2 cm/s2 ~ 10-5 
g), its multi-century effects may be rather prominent.19  

 

  

 

 

 

  

  

 

  

  

 The last, fourth term of Eq. (92), rω m , exists only when the rotation frequency changes in 
time, and may be interpreted as a local-position-specific addition to the first term. 

 Equation (92), derived above from the Newton equation (91), may be alternatively obtained from 
the Lagrangian approach, which also gives some important insights on energy at rotation. Let us use Eq. 
(88) to present the kinetic energy of the particle in an inertial frame in terms of v and r measured in a 
rotating frame: 

      2labin )(
2

rωvv  O

m
T ,    (6.94) 

and use this expression to calculate the Lagrangian function. For the relatively simple case of particle 
motion in the field of potential forces, measured from a reference frame that performs pure rotation (so 
that vOin lab = 0) with a constant angular velocity , the result is 

             ef
222 )(

22
)(

2
Umv

m
U

m
mv

m
UTL  rωvrωrωv , (6.95) 

where the effective potential energy,20 

                ,
2

2
ef rω

m
UU      (6.96) 

is just the sum of the real potential energy U of the particle and the so-called centrifugal potential 
energy associated with the centrifugal “inertial force”: 

19 The same force causes also the counter-clockwise circulation inside our infamous “Nor’easter” storms, in 
which velocity v, caused by lower atmospheric pressure in the middle of the cyclone, is directed toward its center. 
20 Note again the difference between the negative sign before the (always positive) second term, and the positive 
sign before the similar positive second term in Eq. (3.44). As was already discussed in Chapter 3, this difference 
hinges on different background physics: in the planetary problem, the angular momentum (and hence its 
component Lz) is fixed, while the corresponding angular velocity   is not. On the opposite, in our current 

discussion, the angular velocity  (of the reference frame) is fixed, i.e. is independent on particle’s motion.  

Fig. 6.16. Coriolis “forces” due to 
Earth’s rotation, in the Northern 
hemisphere. 
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  rωrωωF

m
mc       (6.97) 

 Of course, the Lagrangian equations of motion derived from Eq. (95), considering the Cartesian 
components of r and v as generalized coordinates and velocities, coincide with Eq. (92) (with aOin lab = 
ω  = 0, and F = -U), but it is very informative to have a look at a by-product of this derivation, the 
generalized momentum corresponding to particle’s coordinate r as measured in the rotating reference 
frame,21 

            rωv
v





 m
L

p .     (6.98) 

According to Eq. (88), with vOin lab = 0, the expression in parentheses is just mvin lab.  However, from the 
point of view of the moving frame, i.e. not knowing about the physical sense of vector p = mvin lab, we 
would have a reason to speak about two different momenta of the same particle, the so-called kinetic 
momentum p = mv and the canonical momentum p = p + mr. 22   

 Now let us calculate the Hamiltonian function H and energy E as functions of the same moving-
frame variables: 
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rωvrωvvvp , (6.99) 
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UTE . (6.100) 

These expressions clearly show that E and H are not equal. In hindsight, this is not surprising, because 
the kinetic energy (94), expressed in the moving-frame variables, includes a term linear in v, and hence 
is not a quadratic-homogeneous function of this generalized velocity. The difference of these functions 
may be presented as 

      )()()( labin 
2 rωvrωrωvrωrωv  mmmmHE .  (6.101)  

Now using the operand rotation rule again, we may transform this expression into a even simpler form:23 

                      labin labin Lωrωvrω  pmHE .   (6.102) 

 Let us evaluate this difference for our testbed problem – see Fig. 2.1. In this case, vector  is 
aligned with axis z, so that of all Cartesian components of vector L, only component Lz is important for 
the scalar product (102). This component evidently equals Iz = m2 = mR2sin2, so that 

          222 sinRmHE  ,     (6.103) 

21 L/v is just a shorthand for a vector with Cartesian components L/vj. In a different language, this is the 
gradient of L in the velocity space. 
22 A very similar situation arises at the motion of a particle with electric charge q in magnetic field B. In that case 
the role of the additional term p – p = mr is played by product qA, where A is the vector-potential of the field 
(B = A) – see, e.g., EM Sec. 9.7, and in particular Eqs. (9.183) and (9.192). 
23 Note that by definition (1.36), angular momenta L of particles merely add up. As a result, Eq. (102) is valid for 
an arbitrary system of particles. 
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i.e. the same result that follows from the direct subtraction of Eqs. (2.40) and (2.41).  

 The last form of Eq. (99) shows that in the rotating frame, the Hamiltonian function of a particle 
has a very simple physical sense. It is conserved, and hence may serve as an integral of motion, in many 
important situations when L, and hence E, are not –  our testbed problem is again a very good example. 

 

6.7. Exercise problems 

 6.1. Calculate the principal moments of inertia for the following rigid bodies: 
 
 
 
 
 
 
  
 
 (i) a thin, plane round hoop, 
 (ii) a flat uniform round disk, 
 (iii) a thin spherical shell, and 
 (iv) a uniform solid sphere. 

Compare the results assuming that all the bodies have the same radius R and mass M.  
 
 6.2. Calculate the principal moments of inertia for the following rigid bodies (see Fig. below): 

 
 
 
 
 
 
 
 
(i) an equilateral triangle made of thin rods with a uniform linear mass density , 

 (ii) a thin plate in the shape of an equilateral triangle, with a uniform areal mass density  , and 
(iii) a tetrahedral pyramid made of a heavy material with a uniform bulk mass density  . 

Assuming that the total mass of the three bodies is the same, compare the results and give an 
interpretation of their difference. 
 
 6.3. Prove that Eqs. (34)-(36) are valid for rotation about a fixed axis, even if it does not pass 
through the center of mass, if all distances z are measured from that axis. 
 
  6.4. The end of a uniform, thin, heavy rod of length 2l and mass m, 
initially at rest, is hit by a bullet of mass m', flying with velocity v0, which gets 
stuck in the stick - see Fig. on the right. Use two different approaches to calculate 
the velocity of the opposite end of the rod right after the collision. 
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6.5. A uniform ball is placed on a horizontal plane, while rotating with an angular velocity 0, 
but having no initial linear velocity. Calculate the angular velocity after ball’s slippage stops, assuming 
the usual simple approximation of the kinetic friction force: Ff  = N, where N is a pressure between the 
surfaces, and  is a velocity-independent coefficient.  
  
 6.6. A body may rotate about fixed horizontal axis A - see Fig. 5. Find the frequency of its small 
oscillations, in a uniform gravity field, as a function of distance l of the axis from body’s center of mass 
O, and analyze the result. 
 
 6.7. A thin uniform bar of mass M  and length l is hung on a light thread of 
length l’ (like a “chime” bell – see Fig. on the right). Find: 

(i) the equations of motion of the system (within the plane of drawing); 
(ii) the eigenfrequencies of small oscillations near the equilibrium; 
(iii) the distribution coefficients for each oscillation mode. 

Sketch the oscillation modes for the particular case l = l’. 
 
  
 6.8. A solid, uniform, round cylinder of mass M can roll, 
without slipping, over a concave, round cylindrical surface of a block 
of mass M’, in a uniform gravity field – see Fig. on the right. The 
block can slide without friction on a horizontal surface. Using the 
Lagrangian formalism, 

(i) find the frequency of small oscillations of the system near 
the equilibrium, and 

(ii) sketch the oscillation mode for the particular case M’ = M, R’ = 2R. 
  

6.9. A uniform solid hemisphere of radius R is placed on a 
horizontal plane – see Fig. on the right. Find the frequency of its small 
oscillations within a vertical plane, for two ultimate cases: 

 (i) there is no friction between the hemisphere and plane surfaces, 
and  
 (ii) the static friction is so strong that there is no slippage between 
these surfaces. 
 
 6.10. For the “sliding ladder” problem started in Sec. 3 (see Fig. 7), find the critical value c of 
angle  at which the ladder loses contact with the vertical wall, assuming that it starts sliding from the 
vertical position with a negligible initial velocity.  
 
 
 6.11.* A rigid, straight, uniform rod of length l, with the lower end on a pivot, falls 
in a uniform gravity field – see Fig. on the right. Neglecting friction, calculate the 
distribution of the bending torque  along its length, and analyze the result. 
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 6.12. Six similar, uniform rods of length l and mass m are connected by 
light joints so that they may rotate, without friction, versus each other, forming 
a planar polygon. Initially, the polygon was at rest, and had the correct hexagon 
shape - see Fig. on the right. Suddenly, an external force F is applied to the 
middle of one rod, in the direction of hexagon’s symmetry center. Calculate the 
accelerations: of the rod to which the force is applied (a), and of the opposite 
rod (a’), immediately after the application of the force. 
  
 
 6.13. A rectangular cuboid (parallelepiped) with sides a1, a2, and a3, 
made of a material with constant density , is rotated, with a constant 
angular velocity , about one of its space diagonals – see Fig. on the right. 
Calculate the torque  necessary to sustain such rotation.  
 
 
 6.14. One end of a light shaft of length l is firmly 
attached to the center of a uniform solid disk of radius R << l 
and mass M, whole plane is perpendicular to the shaft. Another 
end of the shaft is attached to a vertical axis (see Fig. on the 
right) so that the shaft may rotate about the axis without friction. 
The disk rolls, without slippage, over a horizontal surface, so 
that the whole system rotates about the vertical axis with a constant angular velocity . Calculate the 
(vertical) supporting force exerted on the disk by the surface. 
 
 6.15. An air-filled balloon is placed inside a container filled with water that moves in space, in a 
negligible gravity field. Suddenly, force F is applied to the container, pointing in a certain direction. 
What direction would the balloon move relative to the container? 
 
 6.16. Calculate the height of solar tides on a large ocean, using the following  simplifying 
assumptions: the tide period (½ of Earth's day) is much longer than the period of all ocean  waves, the 
Earth (of mass ME) is a sphere of radius RE, and its distance rS from the Sun (of mass MS) is constant and 
much larger than RE.  
 
 6.17.* A satellite is on a circular orbit, of radius R, around the Earth.  

 (i) Write the equations of motion of a small body as observed from the satellite, and simplify 
them for the case when body’s motion is limited to a close vicinity of the satellite. 
 (ii) Use the equations to prove that at negligible external forces (in particular, negligible 
gravitational attraction to the satellite) the body may be placed on an elliptical trajectory around 
satellite’s center of mass, within its plane of rotation about Earth. Calculate the ellipse’s orientation and 
eccentricity. 
  
 6.18.* A non-spherical shape of an artificial satellite may ensure its stable angular orientation 
relative to Earth’s surface, advantageous for many practical goals. Modeling the satellite as a strongly 
elongated, axially-symmetric body, moving around the Earth on a circular orbit of radius R, find its 
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stable orientation, and analyze possible small oscillations of the satellite’s symmetry axis around this 
equilibrium position. 
  
 6.19. A thin coin of radius r is rolled, with velocity V, on a horizontal surface 
without slippage. What should be coin's tilt angle  (see Fig. on the right) for it to roll 
on a circle of radius R >> r ? Modeling the coin as a very thin, uniform disk, and 
assuming that angle  is small, solve this problem in: 

 (i) an inertial ("lab") reference frame, and 
 (ii) the non-inertial reference frame moving with coin's center of mass (but not rotating with it). 
 
 6.20. Two planets are on the circular orbit around their common center of mass. Calculate the 
effective potential energy of a much lighter mass (say, a spaceship) rotating with the same angular 
velocity, on the line connecting the planets. Sketch the plot of function the radial dependence of Uef and 
find out the number of so-called Lagrange points is which the potential energy has local maxima. 
Calculate their position approximately in the limit when one of the planets is much more massive than 
the other one. 
 
 6.21. A small body is dropped down to the surface of Earth from height h << RE, without initial 
velocity. Calculate the magnitude and direction of its deviation from the vertical, due to the Earth 
rotation. Estimate the effect’s magnitude for a body dropped from the Empire State Building. 
 
 6.22. Use Eq. (94) to calculate the generalized momentum and derive the Lagrange equation of 
motion of a particle, considering L a function of r and v as measured in a non-inertial but non-rotating 
reference frame. 
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Chapter 7. Deformations and Elasticity 

The objective of this chapter is a brief discussion of small deformations of 3D continuous media, with a 
focus on elastic properties of solids. The reader will see that deformation of  solids is nontrivial even in 
the absence of motion, so that several key problems of statics will need to be discussed before 
proceeding to such dynamic phenomena as elastic waves in infinite media and thin rods. 

 

7.1. Strain 

 Rigid bodies discussed in the previous chapter are just a particular case of continuous media. As 
has already been mentioned, these are systems of particles so close to each other that the system 
discreteness may be neglected, so that the particle displacement q may be considered as a continuous 
function of space and time. The subject of this chapter is small deviations from the rigid-body 
approximation discussed in Chapter 6, i.e. small deformations. The deformation smallness allows one to 
consider the displacement vector q as a function of the initial (pre-deformation) position of the particle 
r, and time t – just as was done in the Secs. 5.3-5.5 for 1D waves. 

 The first task of the deformation theory is to exclude from consideration the types of motion 
considered in Chapter 6, namely the translation and rotation unrelated to deformations. This means, first 
of all, the variables describing deformations should not depend on the part of displacement q that does 
not depend on position r (i.e. is common for the whole media), because that part corresponds to a 
translational shift rather than to a deformation (Fig. 1a). Moreover, even certain non-uniform 
displacements do not contribute to deformation. For example, Eq. (6.7) (with dr replaced with dq to 
comply with our current notation) shows that a small displacement of the type  

                dqrotation = dr,      (7.1) 

where d = dt is an infinitesimal vector common for the whole continuum, corresponds to its rotation 
about the direction of that vector, and has nothing to do with the body deformation (Fig. 1b). 

 

 

 

 

 

  

   

 

 

 This is why in order to develop an adequate quantitative characterization of deformation, we 
should start with finding suitable appropriate functions of the spatial distribution of displacements, q(r), 
that exist only due to deformations. One of such measures is the change of distance dl = dr  between 
two close points: 

Fig. 7.1. Two types of 
displacement vector 
distributions that are 
unrelated to deformation: 
(a) translation and (b) 
rotation. 

constntranslatio q

(a)        (b) 

O
  dqrotation  = dr
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where dqj is the jth Cartesian component of the difference dq between the displacements q of the two 
points. If the deformation is small in the sensedq<< dr = dl, we may keep in Eq. (2) only the 
terms proportional to the first power of  the infinitesimal vector dq: 
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Since qj is a function of 3 independent scalar arguments rj,  its differential may be presented as 
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Coefficients qj/rj’ may be considered as elements of a tensor1 providing a linear relation between 
vectors dr and dq. Plugging Eq. (4) into Eq. (2), we get 
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 A convenience of tensor qj/rj’ for characterizing deformations is that it automatically excludes 
the translation displacement (Fig. 1a) that is independent of rj. Its drawback is that its particular 
components are still affected by the rotation of the body (though the sum (5) is not). Indeed, according 
to the vector product definition, Eq. (1) may be presented in Cartesian coordinates as 

                         jj'j"jjj"j'j rdrddq  '"rotation  ,    (7.6) 

where jj’j” is the Levi-Civita symbol2 equal to (+1) if all indices j, j’, and j” are different and run in a 
“right” order - {1, 2, 3}, etc., and (-1) otherwise, so that for any order of non-equal indices, jj’j” = -j’jj”. 
Differentiating Eq. (6) over a particular Cartesian coordinate of vector r, and taking into account that 
this partial differentiation () is independent of (and hence may be swapped with) the differentiation (d) 
over the rotation angle , we get the amounts, 
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which may differ from 0. However, notice that the sum of these two differentials equals zero for any d, 
which is possible only if 
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,    (7.8) 

1 Since both dq and dr are legitimate physical vectors (whose Cartesian components are properly transformed as 
the transfer between reference frames), the 33 matrix with elements qj/rj’ is indeed a legitimate physical tensor 
– see the discussion in Sec. 6.2.   
2 See, e.g., MA Eq. (13.2). 
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so that the full sum (5), that includes 3 such partial sums, is not affected by rotation – as we already 
know. This is why it is convenient to rewrite Eq. (5) in a mathematically equivalent form 
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where sjj’ are the elements of the so-called symmetrized strain tensor defined as 
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(Note that this modification does not affect the diagonal elements: sjj = qj/rj.). The advantage of 
symmetrized tensor (9b) over the initial tensor qj/rj’ is that according to Eq. (8), at pure rotation all 
elements of the symmetrized strain tensor vanish. 

 Now let us discuss the physical meaning of this tensor. At was already mentioned in Sec. 6.2,  
any symmetric tensor may be diagonalized by an appropriate selection of the reference frame axes. In 
such principal axes, sjj’ = sjjjj’, so that Eq. (4) takes the simple form 
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      (7.10) 

We may use this expression to calculate the change of each side of an infinitesimal cuboid 
(parallelepiped) with sides dqj parallel to the principal axes: 

    jjjjjj drsdqdrdr   ndeformatio beforendeformatioafter ,   (7.11) 

and of cuboid’s volume dV = dr1dr2dr3: 
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Since all our analysis is only valid in the linear approximation in small sjj’, Eq. (12) is reduced to 
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where Tr (trace)3 of any matrix (in particular, tensor) is the sum of its diagonal elements; in our case4 
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 So, the diagonal components of the tensor characterize medium’s compression/extension; then 
what is the meaning of the off-diagonal components of the tensor? It may be illustrated on the simplest 
example of a purely shear deformation, shown in Fig. 2 (the geometry is assumed to be uniform along 
axis z). In this case, all displacements (assumed small) have just one Cartesian component, in Fig. 2 

3 The traditional European notation for Tr is Sp (from German Spur meaning “trace” or “track”). 
4 Actually, the tensor theory shows that the trace does not depend on the particular choice of the coordinate axes. 

Strain  
tensor 
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along axis x: q = nxy (with  << 1), so that the only nonvanishing component of the initial strain tensor 
qj/rj’ is qx/y =  , and the symmetrized tensor (9b) is   
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.     (7.15) 

Evidently, the change (13) of volume vanishes in this case. Thus, off-diagonal elements of tensor s 
characterize shear deformations. 

 

 

 

 

 

 

 To conclude this section, let me note that Eq. (9) is only valid in Cartesian coordinates. For the 
solution of some important problems, especially those with a spherical or axial symmetry, it is 
frequently convenient to express six different components of the symmetric strain tensor via three 
components of the displacement vector q in either spherical or cylindrical coordinates. A 
straightforward differentiation, using the definition of such coordinates,5 yields, in particular, the 
following formulas for the diagonal elements of the tensor in the local mutually orthogonal coordinates 
that are directed along unit vectors – either {nr, n, n } or  {n, n, nz } - at the given point: 

 (i) in the spherical coordinates: 
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 (ii) in the cylindrical coordinates: 
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 These expressions, that will be used below for solution of some problems for symmetrical 
geometries, may be a bit counter-intuitive. Indeed, Eq. (16) shows that even for a purely radial, axially-
symmetric deformation, q = nrq(r), diagonal angular components of strain do not vanish: s = s = q/r. 
(According to Eq. (17), in cylindrical coordinates, the same effect is exhibited by the only angular 
component of the tensor.) Note, however, that these relations describe a very simple geometric effect: 
the change of the lateral distance rd << r between two close points with the same distance r from a 
central point, at a small change of r that keeps the angle d between their radius-vectors r constant. 

 

 

5 See, e.g., MA Eqs. (10.1) and (10.7).  

Fig. 7.2. Example of a pure shear. x
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7.2. Stress 

 Now let us discuss the forces that cause deformations. Internal forces acting inside (i.e. between 
arbitrarily defined parts of) a continuous media may be also characterized by a tensor. This stress 
tensor,6 with elements jj’, relates components of the elementary vector dF of the force acting on an 
elementary area dA of an (possibly, imaginary) interface between two parts of a continuous media with 
elementary vector dA = ndA normal to the area (Fig. 3): 

               



3

1j'
j'jj'j dAdF  .     (7.18) 

The usual sign convention here is to take the outer normal dn, i.e. to direct dA out of “our” part of the 
continuum, i.e. the part on which the calculated force dF is exerted. 

 

 

 

 

 

 

 In some cases the stress tensor’s structure is very simple. For example, as will be discussed in 
detail in the next chapter, static or frictionless fluids may only provide a force normal to any surface and 
usually directed toward “our” part of the body, so that 

               , i.e., jj'jj' PPdd   AF      (7.19) 

where scalar P (in most cases positive) is called pressure, and generally depends on both the spatial 
position and time. This type of stress, with P > 0, is frequently called the hydrostatic compression - even 
if it takes place in solids.  

 However, in the general case the stress tensor also has off-diagonal terms, which characterize 
shear stress. For example, if the shear strain shown in Fig. 2 is caused by a pair of forces F, they create 
internal forces Fxnx, with Fx > 0 if we speak about the force acting upon a part of the sample below the 
imaginary horizontal interface we are discussing. In order to avoid horizontal acceleration of each 
horizontal slice of the sample, the forces should not depend on y, i.e. Fx = const = F. Superficially, it 
may look that this is the only nonvanishing component of the stress tensor is dFx/dAy = F/A = const, so 
that tensor is asymmetric, in contrast to the strain tensor (15) of the same system. Note, however, that 
the pair of forces F creates not only the shear stress, but also a nonvanishing rotating torque  = -Fhnz 
= -(dFx/dAy)Ahnz = -(dFx/dAy)Vnz, where V = Ah is sample’s volume. So, if  we want to perform a static 
stress experiment, i.e. avoid sample’s rotation, we need to apply some other forces, e.g., a pair of 
vertical forces creating an equal and opposite torque ’ = (dFy/dAx)Vnz, implying that dFy/dAx = dFx/dAy 
= F/A. As a result, the stress tensor becomes symmetric, and similar in structure to the symmetrized 
strain tensor (15): 

6 It is frequently called the Cauchy stress tensor, partly to honor A.-L. Cauchy (1789-1857) who introduced it, 
and partly to distinguish it from and other possible definitions of the stress tensor, including the 1st and 2nd Piola-
Kirchhoff tensors. (For the infinitesimal deformations discussed in this course, all these notions coincide.) 

Fig. 7.3. Definition of vectors dA and dF. 
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 In many situations, the body may be stressed not only by forces applied to their surfaces, but also 
by some volume-distributed (bulk) forces dF = fdV, whose certain effective bulk density f. (The most 
evident example of such forces is gravity. If its field is uniform as described by Eq. (1.16b), then f = g, 
where  is the mass density.) Let us derive the key formula describing the correct summation of the 
surface and bulk forces. For that, consider again an infinitesimal cuboid with sides drj parallel to the 
corresponding coordinates axes (Fig. 4) - now not necessarily the principal axes of the stress tensor.  

 

 

 

 

 

 

 If elements jj’ of the tensor do not depend on position, the force dF(j’) acting on j’-th face of the 
cuboid is exactly balanced by the equal and opposite force acting on the opposite face, because vectors 
dA(j’) of these faces are equal and opposite. However, if jj’ is a function of r, then the net force d(dF(j’)) 
does not vanish. Using the expression for to the j’ th contribution to sum (18), in the first order in dr, the 
jth  components of this vector is 
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where cuboid’s volume dV = drj’dAj’  does not depend on j’. The addition these force components for all 
three pairs of cuboid faces, i.e. the summation of Eqs. (21) for all 3 values of the upper index j’, yields 
the following relation for the jth component of the net force exerted on the cuboid: 
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Since any volume may be broken into such infinitesimal cuboids, Eq. (22) shows that the space-varying 
stress is equivalent to a volume-distributed force dFef = fefdV, whose effective (not real!) bulk density fef  
has the following Cartesian components 
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,     (7.23) 

so that in the presence of genuinely bulk forces dF = fdV, densities fef and f just add up. 

 Let us use this addition rule to spell out the 2nd Newton law for a unit volume of a continuous 
medium: 

Fig. 7.4. Deriving Eq. (23). 
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Using Eq. (23), the jth Cartesian component of Eq. (24) may be presented as 
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This is the key equation of medium’s dynamics, which will be repeatedly used below. 

 For solution of some problems, it is also convenient to have a general expression for work W of 
the stress forces at a virtual deformation q - understood in the same variational sense as the virtual 
displacement r in Sec. 2.1. Using the equivalence between the stress forces and the effective bulk 
forces with density fef, for any volume V of the media we may write 
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Let us take this integral by parts for a volume so large that deformations qj on its surface are negligible. 
Then, swapping the operations of variations and spatial differentiation (just like it was done with the 
time derivative in Sec. 2.1), we get 
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Assuming that tensor jj’ is symmetric, we may rewrite this expression as 
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Now, swapping indices j and j’ in the second expression, we finally get  
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where sjj’ are the components of strain tensor (9b). It is natural to rewrite this important formula as       
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and interpret the locally-defined scalar function w(r) as the work of stress forces per unit volume, due 
to the small variation of the deformation. 

 

7.3. Hooke’s law 

 In order to form a complete system of equations describing media dynamics, one needs to 
complement Eq. (25) with an appropriate material equation describing the relation between the stress 
tensor jj’ and the deformation q described (in the small deformation limit) by the strain tensor sjj’. This 

Medium 
dynamics 
equation 
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stress  
forces 
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relation depends on the medium, and generally may be rather complex. Even leaving alone various 
anisotropic solids (e.g., crystals) and macroscopically-inhomogeneous materials (like ceramics or sand), 
strain typically depends not only on the current value of stress (possibly in a nonlinear way), but also on 
the previous history of stress application. Indeed, if strain exceeds a certain plasticity threshold, atoms 
(or nanocrystals) may slip to their new positions and never come back even if the strain is reduced. As a 
result, deformations become irreversible – see Fig. 5.  

  

 

 

 

 

 

  

 

 Only below the thresholds of nonlinearity and plasticity (which are typically close to each other), 
strain is nearly proportional to stress, i.e. obeys the famous Hooke’s law.7 However, even in this elastic 
range the law is not quite simple, and even for an isotropic medium is described not by one but by two 
constants, called elastic moduli. The reason for that is that most elastic materials resist the strain 
accompanied by the volume change (say, the hydrostatic compression) differently from how they resist 
the shear deformation. In order to describe this difference, let us first present the symmetrized strain 
tensor (9b) in the mathematically equivalent form 

            .sTr 
3

1
sTr 

3

1
'''' 













  jjjjjjjj ss      (7.33) 

 According to Eq. (13), the traceless tensor in the first parentheses of Eq. (33) does not give any 
contribution to the volume change, e.g., may be used to characterize purely shear deformation, while the 
second one describes the hydrostatic compression alone. Hence we may expect that the stress tensor 
may be presented (again, in the elastic deformation range only!) as 

                 












  '''' sTr 
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2 jjjjjjjj Ks  ,   (7.34) 

where K and  are some constants.8 Indeed, experiments show that Hooke’s law in this form is followed, 
at small strain, by all isotropic elastic materials. In accordance with the above discussion, constant  (in 
some texts, denoted as G) is called the shear modulus, while constant K (sometimes called B), the bulk 
modulus. Two columns of Table 1 below show the approximate values of these moduli for typical 
representatives of several major classes of materials.9  

7 Named after R. Hooke (1635-1703) who was first to describe the law in its simplest, 1D version.  
8 The inclusion of coefficients 2 and 3 into Eq. (34) is justified by the simplicity of some of  its corollaries – see, 
e.g., Eqs. (38) and (43) below. 
9 Since the strain tensor elements, defined by Eq. (5), are dimensionless, while the strain defined by Eq. (18) has 
the dimensionality of pressure (force by unit area), so do the elastic moduli K and . 

Fig. 7.5. Typical relation between stress 
and strain in solids (schematically). 
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 To better appreciate these values, let us first discuss the physical meaning of K and , using two 
simple examples  of elastic deformation. For that it is convenient first to solve the set of 9 (or rather 6 
different) linear equations (34) for sjj’. This is easy to do, due to the simple structure of these  equations: 
they relate components jj’ and sjj’ with the same indices, besides the involvement of the tensor trace. 
This slight complication may be readily overcome by noticing that according to Eq. (34), 

                 σTr
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sTr    i.e.,sTr 3σTr
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1
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 .   (7.35) 

Plugging this result into Eq. (34) and solving it for sjj’, we readily get the reciprocal relation, which may 
be presented in a similar form:  
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Table 7.1. Elastic moduli, density, and sound velocities of a few representative materials (approximate values) 

Material K (GPa) μ (GPa) E (GPa)   (kg/m3) vl (m/s) vt (m/s) 

Diamond(a) 600 450 1,100 0.20 3,500 1,830 1,200 

Hardened steel 170 75 200 0.30 7,800 5,870 3,180 

Water(b) 2.1 0 0 0.5 1,000 1,480 0 

Air(b) 0.00010 0 0 0.5 1.2 332 0 

  (a) Averages over crystallographic directions (~10% anisotropy). 
 (b) At the so-called ambient conditions (T = 20C, P = 1 bar  105 Pa). 

 

 Now let us apply Hooke’s law, in the form of Eqs. (34) or (36), to two simple situations in which 
the strain and stress tensors may be found without formulating the exact differential equations of the 
elasticity theory and boundary conditions for them. (That will be the subject of the next section.) The 
first experiment is the hydrostatic compression when the stress tensor is diagonal, and all its diagonal 
components are equal – see Eq. (19).10 For this case Eq. (36) yields 

      ,
3 '' jjjj K

P
s       (7.37) 

which means that regardless of the shear modulus, the strain tensor is also diagonal, with all diagonal 
components equal. According to Eqs. (11) and (13), this means that all linear dimensions of the body are 
reduced by a similar fraction, so that its shape is preserved, while the volume is reduced by 

10 It may be proved that such situation may be implemented not only in a fluid with pressure P, but also by 
placing a solid sample of an arbitrary shape into a compressed fluid. 



Essential Graduate Physics       CM: Classical Mechanics 

 

 

Chapter 7           Page 10 of 38 

             .
Δ 3

1 K

P
s

V

V

j
jj  



     (7.38) 

This equation clearly shows the physical sense of the bulk modulus K as the reciprocal compressibility.  

 As Table 1 shows, the values of K  may be dramatically different for various materials, and that 
even for such “soft stuff” as water this modulus in actually rather high. For example, even at the bottom 
of the deepest, 10-km ocean well (P  103 bar  0.1 GPa), water density increases by just about 5%. As 
a result, in most human-scale experiments, water may be treated as incompressible – a condition that 
will be widely used in the next chapter. Many solids are even much less compressible – see the first two 
rows of Table 1. 

 The most compressible media are gases. For a gas, certain background pressure P is necessary 
just for containing it within certain volume V, so that Eq. (38) is only valid for small increments of 
pressure, P: 
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      (7.39) 

Moreover, gas compression also depends on thermodynamic conditions. (For most condensed media, the 
temperature effects are very small.) For example, at ambient conditions most gases are reasonably well 
described by the equation of state for the model called the ideal classical gas: 
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where N is the number of molecules in volume V, and kB  1.3810-23 J/K is the Boltzmann constant.11  
For a small volume change V at constant temperature, this equation gives 
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  const2const  i.e., .  (7.41) 

Comparing this expression with Eq. (37), we get a remarkably simple result for the isothermal 
compression of gases, 

           ,const PK T       (7.42) 

which means in particular that the bulk modulus listed in Table 1 is actually valid, at the ambient 
conditions, for almost any gas. Note, however, that the change of thermodynamic conditions (say, from 
isothermal to adiabatic12) may affect gas’ compressibility. 

 Now let us consider the second, rather different, fundamental experiment: a pure shear 
deformation shown in Fig. 2. Since the traces of matrices (15) and (20), which describe this experiment, 
are equal to 0, for their off-diagonal elements Eq. (34) gives simply jj’ = 2sjj’, so that the deformation 
angle   (see Fig. 2) is just 
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F


 1
 .      (7.43) 

11 For the derivation and detailed discussion of Eq. (40) see, e.g., SM Sec. 3.1 
12 See, e.g., SM Sec. 1.3. 
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Notice that the angle does not depend on thickness h of the sample, though of course the maximal linear 
deformation qx = h is proportional to the thickness. Naturally, as Table 1 shows, for all fluids (liquids 
and gases) μ = 0, because they cannot resist static shear stress.  

 However, not all experiments, even the apparently simple ones, involve just either K or . Let us 
consider stretching a long elastic rod of a small and uniform cross-section of area A – the so-called 
tensile stress experiment shown in Fig. 6.13  

 

 

 

 

Though the deformation of the rod near its clamped ends depends on the exact way forces F are applied 
(we will discuss this issue later on), we may expect that over most of its length the tension forces are 
directed virtually along the rod, dF = Fznz, and hence, with the coordinate choice shown in Fig. 6, xj = 
yj = 0 for all j, including the diagonal elements xx and yy. Moreover, due to the open lateral surfaces, 
on which, evidently, dFx = dFy = 0, there cannot be an internal stress force of any direction, acting on 
any elementary internal boundary parallel to these surfaces. This means that zx = zy = 0. So, of all 
components of the stress tensor only one, zz, is not equal to zero, and for a uniform sample, zz = const 
= F/A. For this case, Eq. (36) shows that the strain tensor is also diagonal, but with different diagonal 
elements:  
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  Since the tensile stress is most common in engineering (and physical experiment) practice, both 
combinations of the elastic moduli participating in these two relations have deserved their own names. 
In particular, the constant in Eq. (44) is usually denoted as 1/E (but in many texts, as 1/Y), where E is 
called the Young’s modulus: 
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As Fig. 6 shows, in the tensile stress geometry  szz  qz/z = L/L, so that the Young’s modulus scales 
the linear relation between the relative extension of the rod and the force applied per unit area:14 
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.      (7.47) 

13 Though the analysis of compression in this situation gives similar results, in practical experiments a strong  
compression may lead to the loss of horizontal stability – the so-called buckling - of the rod. 
14 According to Eq. (47), E may be thought of as the force per unit area, which would double sample’s length, if 
only our theory was valid for deformations that large. 

Fig. 7.6. Tensile stress experiment. 
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The third column of Table 1 shows the values of this modulus for two well-known solids: diamond (with 
the highest known value of E of all bulk materials15) and the steel (physically, a solid solution of ~10% 
of carbon in iron) used in construction. Again, for fluids the Young’s modulus vanishes - as it follows 
from Eq. (46) with  = 0. 

 I am confident that the reader of these notes has been familiar with Eq. (44), in the form of Eq. 
(47), from his or her undergraduate studies. However, most probably this cannot be said about its 
counterpart, Eq. (45), which shows that at the tensile stress, rod’s cross-section dimension also change. 
This effect is usually characterized by the following dimensionless Poisson’s ratio: 
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 According to this formula, for realistic materials with K > 0,   0, values of  may vary from (-
1) to (+½) , but for the vast majority of materials,16 they are between 0 and ½ - see Table 1. The lower 
limit is reached in porous materials like cork whose lateral dimensions almost do not change at the 
tensile stress. Some soft materials like rubber present the opposite case:   ½. Since according to Eqs. 
(13), (44) and (45), the volume change is 

      ,21
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sss
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V
zzyyxx     (7.49) 

such materials virtually do not change their volume at the tensile stress. The ultimate limit of this trend, 
V/V = 0, is provided by fluids and gases, because their Poisson ratio   is exactly equal to ½. (This 
follows from Eq. (48) with  = 0.) However, for most practicable construction materials such as steel 
(see Table 1) the change (49) of volume is as high as ~40% of that of the length. 

 Due to the clear physical sense of coefficients E and , they are frequently used as a pair of 
independent elastic moduli, instead of K and  . Solving Eqs. (46) and (48) for K and  , we get 
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Using these formulas, the two (equivalent) formulations of Hooke’s law, expressed by Eqs. (34) and 
(36), may be rewritten as 
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 The linear relation between the strain and stress tensor allows one to calculate the potential 
energy U of an elastic medium due to its elastic deformation. Indeed, to each infinitesimal part of this 

15 It is probably somewhat higher (up to 2,000 GPa) in such nanostructures as carbon nanotubes and monoatomic 
sheets (graphene), though there is still a substantial uncertainty in experimental values of elastic moduli of these 
structures – see, e.g., C. Lee et al, Science 321, 5887 (2008) and J.-U. Lee et al., Nano Lett. 12, 4444 (2012).  
16 The only known exceptions are certain exotic media with very specific internal microstructure – see, e.g., R. 
Lakes, Science 235, 1038 (1987) and references therein. 
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strain increase, we may apply Eq. (32), with the work W of the surface forces equal to -U. Let us 
slowly increase the deformation from a completely unstrained state (in which we may take U = 0) to a 
certain strained state, in the absence of bulk forces f, keeping the deformation type, i.e. the relation 
between the elements of the stress tensor intact. In this case, all elements of tensor jj’ are proportional 
to the same single parameter characterizing the stress (say, the total applied force), and according to 
Hooke’s law, all elements of tensor sj’j are proportional to that parameter as well. In this case, 
integration over the variation yields the final value17 
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Evidently, u(r) may be interpreted as the volume density of the potential energy of the elastic 
deformation. 

 

7.4. Equilibrium 

 Now we are fully equipped to discuss dynamics of elastic deformations, but let us start with 
statics. The static (equilibrium) state may be described by requiring the right-hand part of Eq. (25) to 
vanish. In order to find the elastic deformation, we need to plug jj’ from the Hooke’s law (51a), and 
then express elements sjj’ via the displacement distribution – see Eq. (9). For a uniform material, the 
result is18  
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Taking into account that the first sum in Eq. (53) is just the jth component of  2q, while  the second sum 
is the jth component of (q), we see that all three equations (53) for three Cartesian components (j = 
1, 2 and 3) of the deformation vector q, may be conveniently merged into one vector equation  

            .0)(
)21)(1(2)1(2
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   (7.54) 

For some applications, it is more convenient to recast this equation to another form, using vector 
identity19 2q =(q) - (q). The result is 
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 It is interesting that in problems without volume-distributed forces (f = 0), the Young’s modulus 
E cancels! Even more fascinating, in this case the equation may be re-written in a form not involving the 
Poisson ratio   either. Indeed, acting by operator  on the remaining terms of Eq. (55), we get a 
surprisingly simple equation  

17 For clarity, let me reproduce a similar integration for the 1D motion of a particle on a spring. In this case, U =  
-W = -Fx, and if spring’s force is elastic, F = -x, the integration yields U = x2/2 = Fx/2.  
18 As follows from Eqs. (50), the coefficient before the first sum in Eq. (53) is just the shear modulus , while that 
before the second sum is equal to (K + /3). 
19 See, e.g., MA Eq. (11.3). 
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       .0)(2  q      (7.56) 

 A natural question here is how do the elastic moduli affect the deformation distribution if they do 
not participate in the differential equation describing it. The answer is two-fold. If what is fixed at the 
body boundary are deformations, then the moduli are irrelevant, because the deformation distribution 
through the body does not depend on them. On the other hand, if the boundary conditions fix stress (or a 
combination of stress and strain), then the elastic constants creep into the solution via the recalculation 
of these conditions into the strain.  

 As a simple but representative example, let us find the deformation distribution in a (generally, 
thick) spherical shell under the effect of different pressures fixed inside and outside it (Fig. 7a).  

 

 

 

  

 

 

 

 Due to the spherical symmetry of the problem, the deformation is obviously spherically-
symmetric and radial, q = q(r)nr, i.e. is completely described by one scalar function q(r). Since the curl 
of such a radial vector field is zero,20 Eq. (55) is reduced to  

        ,0)( q       (7.57) 

This equation means that the divergence of function q(r) is constant within the shell. In spherical 
coordinates this means21 

              .const 
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Naming this constant 3a (with the numerical factor chosen for later notation convenience), and 
integrating Eq. (58), we get its solution,  

      
2
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b
arrq  ,     (7.59) 

that also includes another integration constant b .  

To complete the analysis, we have to determine constants a and b from the boundary conditions. 
According to Eq. (19), 
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20 If this is not immediately evident, have a look at MA Eq. (10.11) with f = fr(r)nr. 
21 See, e.g., MA Eq. (10.10) with f = q(r)nr 

Fig. 7.7. Spherical shell problem: 
(a) the general case and (b) the thin 
shell limit. 
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In order to relate this stress to strain, let us use Hooke’s law, but for that, we first need to calculate the 
strain tensor components for the deformation distribution (59). Using Eqs. (16), we get 
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so that Tr (s) = 3a. Plugging these relations into Eq. (51a) for rr, we get 
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Now plugging this relation into Eqs. (60), we get a system of two linear equations for coefficients a and 
b. Solving  this system, we get: 
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   (7.63) 

 Formulas (59) and (63) give a complete solution of our problem. It is rich in contents and 
deserves at least some analysis. First of all, note that according to Eq. (50), coefficient (1 - 2)/E in the 
expression for a is just 1/3K, so that the first term in Eq. (59) for deformation is just the hydrostatic 
compression. In particular, the second of Eqs. (63) shows that if R1 = 0, then b = 0. Thus for a solid 
sphere we have only the hydrostatic compression that was discussed in the previous section. Perhaps 
less intuitively, making two pressures equal gives the same result (hydrostatic compression) for arbitrary 
R2 > R1. 

 However, in the general case 0b , so that the second term in the deformation distribution (59),  
which describes the shear deformation,22 is also substantial. In particular, let us consider the important 
thin-shell limit R2 – R1  t  << R1,2  R - see Fig. 7b. In this case, q(R1)  q(R2) is just the change of the 
shell radius R, for which Eqs. (59) and (63) (with R2

3 – R1
3  3R2t) give 
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 Naively, one could think that at least in this limit the problem could be analyzed by elementary 
means. For example, the total force exerted by the pressure difference (P1 - P2) on the diametrical cross-
section of the shell (see, e.g., the dashed line in Fig. 7b) is F = πR2(P1 - P2), giving the stress,  
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directed along shell’s walls. One can check that this simple formula may be indeed obtained, in this 
limit, from the strict expressions for   and , following from the general treatment carried out 
above. However, if we try now to continue this approach by using the simple relation (47) to find the 
small change Rszz of sphere’s radius, we would arrive at a result with the structure of Eq. (64), but 
without factor (1 - ) < 1 in the numerator. The reason for this error (which may be as significant as 
~30% for typical construction materials – see Table 1) is that Eq. (47), while being valid for thin rods of 
arbitrary cross-section, is invalid for thin broad sheets, and in particular the thin shell in our problem. 

22 Indeed, according to Eq. (50), the material-dependent factor in the second of Eqs. (63) is just 1/4. 
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Indeed, while at the tensile stress both lateral dimensions of a thin rod may contract freely, in our 
problem all dimensions of the shell are under stress – actually, under much more tangential stress than 
the radial one.23 

 
7.5. Rod bending 

 The general approach to the static deformation analysis, outlined in the beginning of previous 
section, may be simplified not only for symmetric geometries, but also for the uniform thin structures 
such as thin plates (“membranes” or “sheets”) and thin rods. Due to the shortage of time, in this course I 
will demonstrate typical approaches to such systems only on the example of thin rods. (The theory of 
membrane deformation is very much similar.) Besides the tensile stress analyzed in Sec. 3, two other 
major deformations of rods are bending and torsion. Let us start from a “local” analysis of bending 
caused by a pair of equal and opposite external torques  = nyy perpendicular to the rod axis z (Fig. 8), 
assuming that the rod is “quasi-uniform”, i.e. that on the scale of this analysis (comparable with linear 
scale a of the cross-section) its material parameters and cross-section A do not change substantially. 

  

 

 

 

 

 

 

 Just as in the tensile stress experiment (Fig. 6), at bending the components of the stress forces 
dF, normal to the rod length, have to equal zero on the surface of the rod. Repeating the arguments made 
for the tensile stress discussion, we arrive at the conclusion that only one diagonal component of the 
tensor (in Fig. 8, zz) may differ from zero: 

        .' zzjzjj         (7.66) 

However, in contrast to the tensile stress, at pure static bending the net force along the rod has to vanish: 

              ,02 
A

zzz rdF       (7.67)  

so that zz has to change sign at some point of axis x (in Fig. 8, selected to lay in the plane of the bent 
rod). Thus, the bending deformation may be viewed as a combination of stretching some layers of the 
rod (bottom layers in Fig. 8) with compression of other (top) layers. 

 Since it is hard to find more about the stress distribution from these general considerations, let us 
turn over to strain, assuming that the rod’s cross-section is virtually constant on the length of the order 
of its cross-section size. From the above presentation of bending as a combination of stretching and 
compression, it evident that the longitudinal deformation qz has to vanish along some neutral line on the 

23 Strictly speaking, this is only true if the pressure difference is not too small, namely, if P1 – P2 >> P1,2t/R. 

(a)        (b) 

Fig. 7.8. This rod bending, in a local reference frame (specific for each cross-section). 
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rod’s cross-section - in Fig. 8, represented by the dashed line.24 Selecting the origin of coordinate x on 
this line, and expanding the relative deformation in the Taylor series in x, due to the cross-section 
smallness, we may limit ourselves to the linear term: 

      .
R

x

dz

dq
s z

zz       (7.68) 

Here constant R has the sense of the curvature radius of the bent rod. Indeed, on a small segment dz the 
cross-section turns by a small angle dy = - dqz/x (Fig. 8b). Using Eq. (68), we get dy = dz/R, which is 
the usual definition of the curvature radius R in the differential geometry, for our special choice of the 
coordinate axes.25 

 Expressions for other components of the strain tensor are harder to guess (like at the tensile 
stress, not all of them are equal to zero!), but what we already know about zz and szz is already 
sufficient to start formal calculations. Indeed, plugging Eq. (66) into the Hooke’s law in the form (51b), 
and comparing the result for szz with Eq. (68), we find 

        .
R

x
Ezz        (7.69) 

From the same Eq. (51b), we could also find the transverse components of the strain tensor, and see that 
they are related to szz exactly as at the tensile stress: 

               zzyyxx sss  ,     (7.70) 

and then, integrating these relations along the cross-section of the rod, find the deformation of the cross-
section shape. More important for us, however, is the calculation of the relation between rod’s curvature 
and the net torque acting on a given cross-section (of area A and orientation dAz > 0): 
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where Iy is a geometric constant defined as 

                   
A

y dxdyxI 2 .      (7.72) 

Note that this factor, defining the bending rigidity of the rod, grows as fast as a4 with the linear scale a 
of the cross-section.26 

In these expressions, x has to be counted from the neutral line. Let us see where exactly does this 
line pass through rod’s cross-section. Plugging result (69) into Eq. (67), we get the condition defining 
the neutral line: 

24 Strictly speaking, that dashed line is the intersection of the neutral surface (the continuous set of such neutral 
lines for all cross-sections of the rod) with the plane of drawing. 
25 Indeed, for (dx/dz)2 << 1, the general formula MA Eq. (4.3) for curvature (with the appropriate replacements f 
 x and x z) is reduced to 1/R = d2x/dz2 = d(dx/dz)/dz = d(tany)/dz  dy/dz. 
26 In particular, this is the reason why the usual electric wires are made not of a solid copper core, but rather a 
twisted set of thinner sub-wires, which may slip relative to each other, increasing the wire flexibility. 
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         .0 
A

xdxdy       (7.73) 

This condition allows a simple interpretation. Imagine a thin sheet of some material, with a constant 
mass density   per unit area, cut in the form of rod’s cross-section. If we place a reference frame into its 
center of mass, then, by its definition, 

                    .0 
A

dxdyr      (7.74) 

Comparing this condition with Eq. (73), we see that one of neutral lines has to pass through the center of 
mass of the sheet, which may be called the “center of mass of the cross-section”. Using the same 
analogy, we see that integral Iy (72) may be interpreted as the moment of inertia of the same imaginary 
sheet of material, with  formally equal to 1, for its rotation about the neutral line – see Eq. (6.24).  This 
analogy is so convenient that the integral is usually called the moment of inertia of the cross-section and 
denoted similarly – just as has been done above. So, our basic result (71) may be re-written as 
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 This relation is only valid if the deformation is small in the sense R >> a. Still, since the 
deviations of the rod from its unstrained shape may accumulate along its length, Eq. (75) may be used 
for calculations of global deviations arbitrary on the scale of a. In order to describe such deformations, 
this equation has to be complemented by conditions of balance of the bending forces and torques. 
Unfortunately, this requires a bit more of differential geometry than I have time for, and I will  only 
discuss this procedure for the simplest case of relatively small deviations q  qx of the rod from its initial 
straight shape, which will be used for axis z (Fig. 9a), by some bulk-distributed force f = nxfx(z). (The 
simplest example is a uniform gravity field, for which fx = -g = const.)  Note that in the forthcoming 
discussion the reference frame will be global, i.e. common for the whole rod, rather than local 
(pertaining to each cross-section) as in the previous analysis – cf. Fig. 8. 

 

 

 

   

       

  

 

 

 

 

 First of all, we may write an evident differential equation for the average vertical force F = 
nxFx(z) acting of the part of the rod located to the left of its cross-section located at point z. This 
equation expresses the balance of vertical forces acting on a small fragment dz of the rod (Fig. 9a), 
necessary for the absence of its linear acceleration: Fx(z + dz) – Fx(z) + fx(z)Adz = 0, giving 

Fig. 7.9. Global picture of rod bending: (a) forces acting on a small fragment of a rod and 
(b) two bending  problem examples, each with two typical, different boundary conditions.  
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       Af
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Note that this vertical component of the internal forces has been neglected at our derivation of Eq. (75), 
and hence our final results will be valid only if the ratio Fx/A is much less than the magnitude of zz 
described by Eq. (69). However, these lateral forces create the very torque  = nyy that causes the 
bending, and thus have to be taken into account at the analysis of the global picture. This re-calculation 
is expressed by the balance of torque components acting on the same rod fragment of length dz, 
necessary for the absence of its angular acceleration: 

          .x
y F

dz
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      (7.77) 

These two equations of dynamics (or rather statics) should be complemented by two geometric 
relations. The first of them is dy/dz = 1/R, which has already been discussed. We may immediately 
combine it with the basic result (75) of the local analysis, getting: 
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The final equation is the geometric relation evident from Fig. 9a: 
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       (7.79) 

which is (as all expressions of our simple analysis) only valid for small bending angles, y  << 1.  

 Four differential equations (76)-(79) are sufficient for the full solution of the weak bending 
problem, if complemented by appropriate boundary conditions. Figure 9b shows four most frequently 
met conditions. Let us solve, for example, the problem shown on the top panel of Fig. 9b: bending of a 
rod, clamped in a wall on one end, under its own weight. Considering, for the sake of simplicity, a 
uniform rod,27 we may integrate equations (70), (72)-(74) one by one, each time using the appropriate 
boundary conditions. To start, Eq. (76), with  fx = - g, yields 

 ,const LzgAgAzFx       (7.80) 

where the integration constant has been selected to satisfy the right-end boundary condition: Fx = 0 at z 
= L. As a sanity check, at the left wall (z = 0), Fx = -gAL = - mg, meaning that the whole weight of the 
rod is exerted on the wall – fine.  

Next, plugging Eq. (80) into Eq. (77) and integrating, we get  
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 ,  (7.81) 

where the integration constant’s choice ensures the second right-boundary condition: y = 0 at z = L. 
Proceeding in the same fashion to Eq. (78), we get  

27 As clear from their derivation, Eqs. (76)-(79) are valid for any distribution of  parameters A, E, I, and  over the 
rod’s length, provided that the rod is quasi-uniform, i.e. its parameters’ changes are so slow that the local relation 
(78) is still valid at any point. 
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where the integration constant is selected to satisfy the clamping condition at the left end of the rod:  y 

= 0 at z = 0. (Note that this is different from the support condition, illustrated on the lower panel of Fig. 
9b, which allows the angle at z = 0 to be finite but requires the torque to vanish.) Finally, integrating Eq. 
(79) with y given by Eq. (82), we get rod’s global deformation law, 
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where the integration constant is selected to satisfy the second left-boundary condition: q = 0 at z = 0. 
So, the bending law is sort of complex even in this very simple problem. It is also remarkable how fast 
does the end’s displacement grow with the increase of rod’s length: 
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      (7.84) 

 To conclude the solution, let us discuss the validity of this result. First, the geometric relation 
(79) is only valid if y (L) << 1, and hence if qx(L) << L. Next, the local formula Eq. (78) is valid if 
1/R = (L)/EIy  << 1/a ~ A-1/2. Using results (81) and (84), we see that the latter condition is equivalent to 
qx(L) << L2/a, i.e. is weaker, because all our analysis has been based on the assumption that L >> a. 

 Another point of concern may be that the off-diagonal stress component xz ~ Fx/A, that is 
created by the vertical gravity forces, has been ignored in our local analysis. For that approximation to 
be, this component must be much smaller than the diagonal component zz ~ aE/R = a/Iy  taken into 
account in that analysis. Using Eqs. (80) and (81), we are getting the following estimates: xz ~ gL, zz 

~ agAL2/Iy ~ a3gL2/Iy. According to its definition (72), Iy may be crudely estimated as a4, so that we 
finally get the following simple condition: a << L, which has been assumed from the very beginning. 

 

7.6. Rod torsion 

 One more class of analytically solvable elasticity problems is torsion of quasi-uniform, straight 
rods by a couple of axially-oriented torques  = nzz (Fig. 10).   

 

 

 

 

 

 

Here the main goal of the local analysis is to relate torque z  to parameter  in the relation  
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Fig. 7.10. Rod torsion. 
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If the deformation is elastic and small (in the sense a << 1, where a is again the characteristic size of 
rod’s cross-section),  is proportional to z, and their ratio, 
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 ,     (7.86) 

is called the torsional rigidity of the rod. Our task is to calculate the rigidity. 

 As the first guess (as we will see below, of a limited validity), one may assume that the torsion 
does not change the shape or size of the cross-section, but leads just to the mutual rotation of cross-
sections about certain central line. Using a reference frame with the origin on that line, this assumption 
immediately allows the calculation of  components of the displacement  vector dq, by using Eq. (6) with 
d = nzdz: 

       .0,,  zzyzx dqxdzxddqydzyddq     (7.87) 

From here, we can calculate all Cartesian components (9) of the strain tensor: 

     xssysssssss zyyzzxxzyxxyzzyyxx 2
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2
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 .   (7.88) 

The first of these equalities means that volume does not change, i.e. we are dealing with a pure shear 
deformation. As a result, all nonvanishing components of the stress tensor, calculated from Eqs. (34),28 
are proportional to the shear modulus alone: 

             .,,0,0 xy zyyzzxxzyxxyzzyyxx    (7.89) 

 Now it is straightforward to use this result to calculate the full torque as an integral over the 
cross-section area A:  
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Using Eq. (89), we get z = Iz, i.e.  
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zz   )(   where, 22 .    (7.91) 

 Again, just as in the case of thin rod bending, we have got an integral similar to a moment of 
inertia, this time for rotation about axis z passing through a certain point of the cross-section. For any 
axially-symmetric cross-section, this evidently should be the central point. Then, for example, for the 
practically important case of a round pipe with internal radius R1 and external radius R2,  Eq. (91) yields 
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 In particular, for the solid rod of radius R this gives torsional rigidity C = (/2)R4, while for a 
hollow pipe of small thickness t  << R, Eq. (92) is reduced to  

28 For this problem, with purely shear deformation, using alternative elastic moduli E and  would be rather 
unnatural. If needed, we may always use the second of Eqs. (50):  = E/2(1 + ).  
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          tRC 32 .     (7.93) 

Note that per unit cross-section area A (and hence per unit mass) this rigidity is twice higher that of a 
solid rod:  

    2
rod  round  solid

2
pipe  roundthin  2

1
R

A

C
R

A

C    .   (7.94) 

This fact is the basis of a broad use of thin pipes in construction. 

 However, for rods with axially-asymmetric cross-sections, Eq. (91) gives wrong results. For 
example, for a narrow rectangle of area A = wt with t << w, it yields C = tw3/12 [WRONG!], even 
functionally different from the correct result – cf. Eq. (106) below. The reason of the failure of the above 
analysis is that does not describe possible bending qz of rod’s cross-section in the direction along the 
rod. (For axially-symmetric rods, such bending is evidently forbidden by the symmetry, so that Eq. (91) 
is valid, and results (92)-(94) are absolutely correct.) Let us describe29 this, rather counter-intuitive 
effect by taking  

      ),,( yxqz       (7.95) 

(where   is some function to be determined), but still keeping Eq. (87) for two other components of the 
displacement vector. The addition of   does not change the equality to zero of the diagonal components 
of the strain tensor, as well as of sxy = syx, but contributes to other off-diagonal components: 
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and hence to the corresponding elements of the stress tensor: 
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 Now let us find the requirement imposed on function (x,y) by the fact that the stress force 
component parallel to rod’s axis, 
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has to vanish at rod’s surface(s), i.e. at each border of its cross-section. Coordinates {x, y} of points at a 
border may be considered functions of the arc l of that line – see Fig. 11. As this figure shows, the 
elementary area ratios participating in Eq. (98) may be readily expressed via derivatives of functions x(l) 
and y(l): dAx/dA = sin  = dy/dl , dAy/dA = cos  = -dx/dl, so that we may write 
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   (7.99) 

Introducing, instead of , a new function (x,y), defined by its derivatives as 

29 I would not be terribly shocked if the reader skipped the balance of this section at the first reading. Though the 
following calculation is very elegant and instructive, its results will not be used in other parts of these notes. 
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we may rewrite condition (99) as 
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so that function  should be constant at each border of the cross-section. 

 

  

 

 

 

 

 

 

 In particular, for a singly-connected cross-section, limited by just one continuous border line, the 
constant is arbitrary, because according to Eqs. (100), its choice does not affect the longitudinal 
deformation function (x,y) and hence the deformation as the whole. Now let use the definition (100) of 
function   to calculate the 2D Laplace operator of this function: 
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This a 2D Poisson equation (frequently met, for example, in electrostatics), but with a very simple, 
constant right-hand part. Plugging Eqs. (100) into Eqs. (97), and those into Eq. (90), we may express 
torque , and hence the torsional rigidity C, via the same function: 
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             (7.103a) 

Sometimes, it is easier to use this result in one of its two different forms. The first of them may 
be readily obtained from Eq. (103a) using integration by parts: 
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while the proof of one more form,  
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Fig. 7.11. Deriving Eq. (101). 
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is left for reader’s exercise.  

 Thus, if we need to know rod’s rigidity alone, it is sufficient to calculate function (x,y) from Eq. 
(102) with boundary condition (101), and plug it into any of Eqs. (103). Only if we are also curious 
about the longitudinal deformation (95) of the cross-section, we may continue by using Eq. (100) to find 
function (x,y). Let us see how does this general result work for the two examples discussed above. For 
the round cross-section of radius R, both the Poisson equation (102) and the boundary condition,   = 
const at x2 + y2 = R2, are evidently satisfied by the axially-symmetric function 

        .const)(
4

1 22  yx      (7.104) 

For this case, either of Eqs. (103) yields 
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i.e. the same result (91) that we had for   = 0. Indeed, plugging Eq. (104) into Eqs. (100), we see that in 
this case /x = /y = 0, so that (x,y) = const, i.e. the cross-section is not bent. (As we have 
discussed in Sec. 1, a uniform translation dqz =   = const does not give any deformation.)  

 Now, turning to a rod with a narrow rectangular cross-section wt with  t  << w, we may use this 
strong inequality to solve the Poisson equation (102) approximately, neglecting the derivative along the 
wider dimension (say, y). The remaining 1D differential equation d2/d2x = -1, with boundary conditions 
x = +t/2 = x = -t/2  has an evident solution  = -x2/2 + const. Plugging this expression into any form of Eq. 
(103), we get  the correct result for the torsional rigidity: 
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Now let us have a look at the cross-section bending law (95) for this particular case. Using Eqs. (100), 
we get 
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    (7.107) 

Integrating these differential equations over the cross-section, and taking the integration constant (again, 
not contributing to the deformation) for zero, we get a beautifully simple result: 

           xyqxy z    i.e., .     (7.108) 

It means that the longitudinal deformation of the rod has a “propeller bending” form: while the regions 
near the opposite corners (sitting on the same diagonal) of the cross-section bend toward one direction 
of axis z, corners on the other diagonal bend in the opposite direction. (This qualitative conclusion 
remains valid for rectangular cross-sections with any aspect ratio t/w.)  

 For rods with several surfaces, i.e. with cross-sections limited by several boundaries (say, hollow 
pipes), the boundary conditions for function (x, y) require a bit more care, and Eq. (103b) has to be 
modified, because the function may be equal to a different constant at each boundary. Let me leave the 
calculation of the torsional rigidity for this case for reader’s exercise.  
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7.7. 3D acoustic waves 

 Now moving to elastic dynamics, we may start with Eq. (24) that may be transformed into the 
vector form exactly as this was done for the static case in the beginning of Sec. 4. Comparing Eqs. (24) 
and (54), we immediately see that the result may be presented as 
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 Let us use this general equation for analysis of probably the most important type of time-
dependent deformations: elastic waves. First, let us address the simplest case of a virtually infinite, 
uniform elastic medium, without any external forces f. In this case, due to the linearity and homogeneity 
of the resulting equation of motion, and in clear analogy with the 1D case (see Sec. 5.3), we may look 
for a particular time-dependent solution in the form of a sinusoidal, linearly-polarized,  plane wave 
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arq Re),( ,     (7.110) 

where a is the constant complex amplitude of a wave (now a vector!), and k is  the wave vector whose 
magnitude is equal to the wave number k. The direction of these two vectors should be clearly 
distinguished: while a determined wave’s polarization, i.e. the direction of the particle displacements, 
vector k is directed along the spatial gradient of the full phase of the wave  

             at argΨ  rk ,     (7.111) 

i.e. along the direction of the wave front propagation. 

 The importance of the angle between these two vectors may be readily seen from the following 
simple calculation. Let us point axis z of an (inertial) reference frame along the direction of vector k, 
and axis x in such direction that vector q, and hence a lie within the {x, z} plane. In this case, all 
variables may change only along that axis, i.e.  = nz(/z), while the amplitude vector may be 
presented as the sum of just two Cartesian components: 

      .zzxx aa nna       (7.112) 

 Let us first consider a longitudinal wave,30 with the particle motion along the wave direction: ax 
= 0, az = a. Then vector q in Eq. (109), describing that wave, has only one (z) component, so that q = 
dqz/dz and (q) =  nz(2q/z2), and the Laplace operator gives the same expression: 2q = nz(2q/z2). 
As a result, Eq. (109), with f = 0, yields 
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   (7.113) 

Plugging the plane-wave solution (110) into this equation, we see that it is indeed satisfied if the wave 
number and wave frequency are related as 

30 In geophysics, the longitudinal waves are known as P-waves (with letter P standing for  “primary”), because 
due to their higher velocity (see below) they arrive at the detection site (from a distant earthquake or explosion) 
before waves of other types. 
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 This expression allows a simple interpretation. Let us consider a static experiment, similar to the 
tensile test experiment shown in Fig. 6, but with a sample much wider than L in both directions 
perpendicular to the force. Then the lateral contraction is impossible, and we can calculate the only 
finite stress component, zz, directly from Eq. (34) with Tr (s) = szz: 

           .
3

4

3

1
3

3

1
2 zzzzzzzzzz sKsKss 






 













      (7.115) 

We see that the numerator in Eq. (114) is nothing more than the static elastic modulus for such a 
uniaxial deformation, and it is recalculated into the velocity exactly as the spring constant in the 1D 
waves considered in Sec. 5.3 – cf. Eq. (5.32).31 Thus, the longitudinal acoustic waves are just simple 
waves of uniaxial extension/compression along the propagation axis. Formula (114) becomes especially 
simple in fluids, where  = 0, and the wave velocity is described by well-known expression 
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Note, however, that for gases, with their high compressibility and temperature sensitivity, the value of K 
participating in this formula may differ, at high frequencies, from that given by Eq. (42), because the 
fast compressions/extensions of gas are nearly adiabatic rather than isothermal. This difference is 
noticeable in Table 1 which, in particular, lists the values of vl for some representative materials. 

 Now let us consider an opposite case of transverse waves with ax = a, az = 0. In such a wave, the 
displacement vector is perpendicular to z, so that q = 0, and the second term in the right-hand part of 
Eq. (109) vanishes. On the contrary, the Laplace operator acting on such vector still gives the same non-
zero contribution, 2q = nz(2q/z2), to Eq. (109), so that the equation yields 
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and instead of Eq. (114) we now get 
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 We see that the speed of transverse waves depends exclusively from the shear modulus  of the 
medium.32 This is also very natural: in such waves, the particle displacements q = nxq are perpendicular 
to the elastic forces dF = nzdF, so that the only one component xz of the stress tensor is involved. Also, 

31 Actually, we can identify these results even qualitatively, if we consider a medium consisting of n parallel, 
independent 1D chains per unit area. Extension of each chain fragment, of length d, by d << d gives force F = 
kd,  so that the total longitudinal stress, zz  Fn, is related to strain szz  d/d, as zz/szz = kn/d. Multiplying both 
parts of Eq. (5.33a) by n/d, and noticing that (mn/d) is nothing more than the average mass density , we make 
that equation absolutely similar to Eq. (113), just with a different notation for the longitudinal rigidity zz/szz. 
32 Because of that, one can frequently meet term shear waves. In geophysics, they are also known as S-waves, S 
standing for “secondary”, again in the sense of arrival time. 
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the strain tensor sjj’ has no diagonal components, Tr (s) = 0, so that  is the only elastic modulus actively 
participating in the Hooke’s law (34).  

 In particular, fluids cannot carry transverse waves at all (formally, their velocity (118) vanishes), 
because they do not resist shear deformations. For all other materials, longitudinal waves are faster than 
the transverse ones. Indeed, for all known materials the Poisson ratio is positive, so that the velocity 
ratio that follows from Eqs. (114) and (118), 
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is above 2  1.4. For the most popular construction materials, with   0.3, the ratio is about 2 – see 
Table 1. 

 Let me emphasize again that for both longitudinal and transverse waves the relation between the 
wave number and frequency is linear:  = vk.  As has already been discussed in Sec. 5.3, in this case of 
acoustic waves (or just “sound”) there is no dispersion, i.e. a transverse or longitudinal wave of more 
complex form, consisting of several (or many) Fourier components of the type (110), preserves its form 
during propagation:33 

             )0,(),( vtztz  qq .     (7.120) 

As one may infer from the analysis in Sec. 5.3, the dispersion would be back at very high (hypersound) 
frequencies where the wave number k becomes of the order of the reciprocal distance between the 
particles of the medium (e.g., atoms or molecules), and hence the approximation of the medium as a 
continuum, used through this chapter, became invalid.    

 As we already know from Sec. 5.3, besides the velocity, an important parameter characterizing 
waves of each type is the wave impedance Z of the medium, for acoustic waves frequently called the 
acoustic impedance. Generalizing Eq. (5.44) to the 3D case, we may define the impedance as the ratio of 
the force per unit area (i.e. the corresponding component of the stress tensor) exerted by the wave, to 
particles’ velocity. For example, for the longitudinal waves, propagating in the positive/negative 
direction along z axis, 
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Plugging in Eqs. (110), (114), and (115), we get 
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in a clear analogy with Eq. (5.45). Similarly, for the transverse wave, the appropriately modified 
definition, Zt  xz/(qx/z), yields 

         .2/1tZ       (7.123) 

33 However, if the initial wave is an arbitrary mixture (109) of longitudinal and transverse components, these 
components, propagating with different velocities, will “run from each other”.  
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 Just like in the 1D waves, one role of impedance is to scale the power carried by the wave. For 
plane 3D waves in infinite media, with their infinite wave front area, it is more appropriate to speak it is 
more appropriate to speak about power density, i.e. power p  = dP/dA per unit area of the front, and 
characterize it by not only its magnitude, 
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tdA

d
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p       (7.124) 

but also the direction of the energy propagation, that (for a plane wave in an isotropic medium) 
coincides with the direction of the wave vector k: p  pnk. Using definition (18) of the stress tensor, we 
may present the Cartesian components of this Umov vector34 as 
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Returning to plane waves propagating along axis z, and acting exactly like in Sec. 5.3, for both the 
longitudinal and transverse waves we arrive at the following 3D analog Eq. (5.46),  
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with Z being the corresponding impedance – either Zl or Zt. 

 Just as in 1D case, one more important effect in which the notion of impedance is crucial is wave 
reflection from at an interface between two media. The two boundary conditions, necessary for the 
analysis of these processes, may be obtained from the continuity of vectors q and dF. (The former 
condition is evident, while the latter one may be obtained by applying the 2nd Newton law to the 
infinitesimal volume dV = dAdz, where segment dz straddles the boundary.) Let us start from the 
simplest case of the normal incidence on a plane interface between two uniform media with different 
elastic moduli and mass densities. Due to the symmetry, it is evident that the incident 
longitudinal/transverse wave may only excite longitudinal/transverse reflected and transferred waves, 
but not the counterpart wave type. Thus we can literally repeat all the calculations of Sec. 5.4, again 
arriving at the fundamental relations (5.53) and (5.54), with the only replacement of Z and Z’ with the 
corresponding values of either Zl (121) or  Zt (123). Thus, at the normal incidence the wave reflection is 
determined solely by the acoustic impedances of the media, while the sound velocities are not involved.  

 The situation, however, becomes more involved at a nonvanishing incidence angle (i) (Fig. 12), 
where the transmitted wave is generally also refracted, i.e. propagates under a different angle, (r)  (i), 
to the interface. Moreover, at (i) 

   0 the directions of particle motion (vector q) and of the stress forces 
(vector dF) in the incident wave are neither exactly parallel nor exactly perpendicular to the interface, 
and thus this wave serves as an actuator for reflected and refracted waves of both types – see Fig. 12. (It 
shows the particular case when the incident wave is transverse.) The corresponding four angles, t

(r), 
t

(r), l
’, t’

 , may be readily related to (i) by the “kinematic” condition that the incident wave, as well as 

34 Named after N. Umov who introduced this concept in 1874. Ten years later, a similar concept for 
electromagnetic waves (see, e.g., EM Sec. 6.4) was suggested by J. Poynting, so that some textbooks use the term 
“Umov-Poynting vector”. In a dissipation-free, elastic medium, the Umov vector obeys the following continuity 

equation,   ,0/2/2  ptuv  with u given by Eq. (52), which expresses the conservation of the total 

(kinetic plus potential) energy of elastic deformation. 
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the reflected and refracted waves of both types should have the same spatial distribution along the 
interface plane, i.e. for the material particles participating in all five waves. According to Eq. (110), the 
necessary boundary condition is the equality of the tangential components (in Fig. 12, kx), of all five 
wave vectors: 
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Since the acoustic wave vectors, at fixed frequency, are inversely proportional to the corresponding 
wave velocities, we immediately get the following relations: 
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so that generally all 4 angles are different. (In optics, the latter relation, reduced to just one equality for 
the only possible, transverse waves, is known as the Snell law.)  These relations show that, just like in 
optics, the direction of a wave propagating into a medium with lower velocity is closer to the normal 
(axis z). In particular, this means that if v’ > v, the acoustic waves, at larger angles of incidence, may 
exhibit the effect of total internal reflection, so well known from optics35, when the refracted wave 
vanishes.  In addition, Eqs. (128) show that in acoustics, a reflected longitudinal wave, with velocity vl > 
vt, may vanish at sufficiently large angles of transverse wave incidence. 

 

 

 

 

 

 

 

  

 

 All these fact automatically follow from general expressions for amplitudes of the reflected and 
refracted waves via the amplitude of the incident wave. These relations are straightforward to derive 
(again, from the continuity of vectors q and dF), but since they are much more bulky then those in the 
electromagnetic wave theory (where they are called the Fresnel formulas36), I would not have 
time/space for spelling them up. Let me only note that, in contrast to the case of normal incidence, these 
relations involve 8 media parameters: the values of impedances Z, Z’, and velocities v, v’ on both sides 
of the interface, and for both the longitudinal and transverse waves. 

 There is another factor that makes boundary acoustic effects more complex. Within certain 
frequency ranges, interfaces (and in particular surfaces) of elastic solids may sustain so-called surface 

35 See, e.g., EM Sec. 7.5. 
36 Their discussion may be also found in EM Sec. 7.5. 
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acoustic waves (SAW), in particular, the Rayleigh waves and Love waves.37 The main feature that 
distinguishes such waves from their bulk (longitudinal and transverse) counterparts is that the particle 
displacement amplitude is maximal at the interface and decays exponentially into the bulk of both  
adjacent media. The characteristic depth of this penetration is of the order of, though not exactly equal 
to the wavelength. 

 In the Rayleigh waves, the particle displacement vector q has two components: one longitudinal 
(and hence parallel to the interface along which the wave propagates) and another transverse 
(perpendicular to the interface). In contrast to the bulk waves discussed above, the components are 
coupled (via their interaction with the interface) and as a result propagate with a single velocity vR. As a 
result, the trajectory of each particle in the Rayleigh wave is an ellipse in the plane perpendicular to the 
interface. A straightforward analysis38 of the Rayleigh waves on the surface of an elastic solid (i.e. its 
interface with vacuum) yields the following equation for vR: 
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According to this formula, and Eqs. (114) and (118), for realistic materials with 0 <   < ½, the Rayleigh 
waves are slightly (by 4 to 13%) slower than the bulk transverse waves - and hence substantially slower 
than the bulk longitudinal waves. 

 In contrast, the Love waves are purely transverse, with vector q oriented parallel to the interface. 
However, the interaction of these waves with the interface reduces their velocity vL in comparison with 
that (vt) of the bulk transverse waves,  keeping it in the narrow interval between vt and vR:  

               lt vvvv  LR .     (7.130) 

 The practical importance of surface acoustic waves is that their amplitude decays very slowly 
with distance r from their point-like source: a  1/r1/2, while any bulk waves decay much faster, as a  
1/r. (Indeed, in the latter case power P  a2, emitted by such source, is distributed over a spherical 
surface area proportional to r2, while in the former case all the power goes into a thin surface circle 
whose length scales as r.) At least two areas of applications of the surface acoustic waves have to be 
mentioned: in geophysics (for earthquake detection and Earth crust seismology), and electronics (for 
signal processing, with a focus on frequency filtering). Unfortunately, I cannot dwell on these 
interesting topics and I have to refer the reader to special literature.39 

 

7.8. Elastic waves in restricted geometries 

 From what we have discussed in the end of the last section, it should be pretty clear that 
generally the propagation of acoustic waves in elastic bodies of finite size may be very complicated. 
There is, however, one important limit in which several important results may be readily obtained. This 
is the limit of  (relatively) low frequencies, where the wavelength is much larger than at least one 

37 Named, respectively, after Lord Rayleigh (born J. Strutt, 1842-1919) who has theoretically predicted the very 
existence of surface acoustic waves, and A. Love (1863-1940). 
38 See, e.g., Sec. 24 in L. Landau and E. Lifshitz, Theory of Elasticity, 3rd ed., Butterworth-Heinemann, 1986. 
39 See, for example, K. Aki and P. G. Richards, Quantitative Seismology, 2nd ed., University Science Books, 2002, 
and D. Morgan, Surface Acoustic Waves, 2nd ed., Academic Press, 2007. 



Essential Graduate Physics       CM: Classical Mechanics 

 

 

Chapter 7           Page 31 of 38 

dimension of a system. Let us consider, for example, various waves that may propagate along thin rods, 
in this case “thin” meaning that the characteristic size a of rod’s cross-section is much smaller than not 
only the length of the rod, but also the wavelength  = 2/k. In this case there is a considerable range of 
distances z along the rod,  

         za ,     (7.131) 

in which we can neglect the dynamic effects due to medium inertia, and apply results of our earlier static 
analyses.  

 For example, for a longitudinal wave of stress, which is essentially a wave of periodic tensile 
extensions  and compressions of the rod, within range (131) we can use the static relation (44): 

          .zzzz Es       (7.132) 

For what follows, it is easier to use the general equation of elastic dynamics not in its vector form (109), 
but rather in the precursor, Cartesian-component form (25), with fj = 0. For plane waves propagating 
along axis z, only one component (with j’  z) of the sum in the right-hand part of this equation is non-
vanishing, and it is reduced to 
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In our current case of longitudinal waves, all components of the stress tensor but zz are equal to zero. 
With zz from Eq. (132), and using the definition szz = qz/z = qz/z, Eq. (133) is reduced to a very 
simple wave equation, 
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which shows that the velocity of such tensile waves is 
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Comparing this result with Eq. (114), we see that the tensile wave velocity, for any medium with   > 0, 
is lower than the velocity vl of longitudinal waves in the bulk of the same material. The reason for this 
difference in simple: in thin rods, the cross-section is free to oscillate (e.g., shrink in the longitudinal 
extension phase of the passing wave),40 so that the effective force resisting the longitudinal deformation 
is smaller than in a border-free space. Since (as clearly visible from the wave equation), the scale of the 
force gives the scale of v2, this difference translates into slower waves in rods. Of course as wave 
frequency is increased, at ka ~ 1 there is a (rather complex and cross-section-depending) crossover from 
Eq. (135) to Eq. (114). 

 Proceeding to transverse waves in rods, let us first have a look at long bending waves, with 
vector q = nxqx (with axis x along the bending direction – see Fig. 8) being approximately constant in the 
whole cross-section. In this case, the only component of the stress tensor contributing to the net 
transverse force Fx is xz, so that the integral of Eq. (133) over the cross-section is 

40 Due to this reason, the tensile waves can be called longitudinal only in a limited sense: while the stress wave is 
purely longitudinal xx = yy = 0, the strain wave is not: sxx = syy = -szz  0, i.e. q(r, t)  nzqz,.

Tensile  
waves:  
velocity 



Essential Graduate Physics       CM: Classical Mechanics 

 

 

Chapter 7           Page 32 of 38 

              .,
2

2








A

xzx
xx dAF

z

F

t

q
A      (7.136) 

Now, if Eq. (131) is satisfied, we again may use static local relations (77)-(79), with all derivatives d/dz 
duly replaced with their partial form /z, to express force Fx via the bending deformation qx. Plugging 
these relations into each other one by one, we arrive at a very unusual differential equation 
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Looking for its solution in the form of a sinusoidal wave (110), we get a nonlinear dispersion relation:41 
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Such relation means that the bending waves are not acoustic at any frequency, and cannot be 
characterized by a single velocity that would be valid for all wave numbers k, i.e. for all spatial Fourier 
components of a waveform. According to our discussion in Sec. 5.3, such strongly dispersive systems 
cannot pass non-sinusoidal waveforms too far without changing their waveform very considerably.  

 This situation changes, however, if the rod has an initial uniform longitudinal stress zz = T/A 
(where force T is usually called tension), on whose background the transverse waves propagate. To 
analyze its effect, let us redraw Fig. 6, for a minute neglecting the bending stress – see Fig. 13.  

 

 

 

 

 

 

 

 Still sticking to the limit of small angles , the additional vertical component dT x of the net force 

acting on a small rod fragment of length dz is T x(z - dz) – T x(z) = T y(z + dz) - T y(z)  T (y/z)dz, so 

that Fx/z = T (y/z). With the geometric relation (79) in its partial-derivative form qx/z = y, this 

additional term becomes T (2qx/z2). Adding it to the right-hand part of into Eq. (137), we get the 
following dispersion relation  

           242 1
kkEI

A y T


 .     (7.139) 

41 Note that since the “moment of inertia” Iy , defined by Eq. (72), may depend on the bending direction (unless 
the cross-section is sufficiently symmetric), the dispersion relation (138) may give different results for different 
directions of the bending wave polarization. 
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Fig. 7.13. Additional forces in a thin rod 
(“string”), due to background tension T. 
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At low k (and hence low frequencies), it describes acoustic waves with the “guitar string” velocity that 
should be well known to the reader from undergraduate courses: 
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v
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2 ,      (7.140) 

where the denominator is nothing else than the linear mass density. However, as the frequency grows, 
Eq. (139) describes a crossover to highly-dispersive bending waves (138). 

  Now let us consider the so-called torsional waves that are essentially the dynamic propagation of 
the torsional deformation discussed in Sec. 6. The easiest way to describe these waves, again within the 
limits given by Eq. (131), is to write the equation of rotation of a small segment dz of the rod about axis 
z, passing through the “center of mass” of its cross-section, under the difference of torques  = nzz 

applied on its ends – see Fig. 10:  
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where Iz is the “moment of inertia” defined by Eq. (91), which now, after its multiplication by dz, i.e. 
by the mass per unit area, has turned into the real moment of inertia of a dz-thick slice of the rod. 
Dividing both parts by dz, using the static local relation (86), z  = C = C(z/z), we get the following 
differential equation 
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Just as Eqs. (114), (118), (135) and (140), this equation describes an acoustic (dispersion-free) wave that 
propagates  with frequency-independent velocity 
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As we have seen in Sec. 6, for rods with axially-symmetric cross-sections, the torsional rigidity C is 
described by the simple equation (91), C = Iz, so that expression (143) is reduced to Eq. (118) for the 
transverse waves in infinite media. The reason for this similarity is simple: in a torsional wave, particles 
oscillate along small arcs  (Fig. 14a), so that if the rod’s cross-section is round, the stress-free surface 
does not perturb or modify the motion in any way, and hence does not affect the transverse velocity. 

 

 

 

 

 

 

 

 

Fig. 7.14. Particle trajectories in two 
different transverse waves with the same 
velocity: (a) torsional waves in a thin 
round rod and (b) circularly-polarized 
waves in an infinite (or very broad) 
sample. 

(a)      (b) 
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 This fact raises an interesting issue of the relation between the torsional and circularly-polarized 
waves. Indeed, in Sec. 7, I have not emphasized enough that Eq. (118) is valid for a transverse wave 
polarized in any direction perpendicular to vector k (in our notation, directed along axis z). In particular, 
this means that such waves are doubly-degenerate: any isotropic elastic medium can carry 
simultaneously two non-interacting transverse waves propagating in the same direction with the same 
velocity (118), with mutually perpendicular linear polarizations (directions of vector a), for example, 
directed along axes x and y. If both waves are sinusoidal (110), with the same frequency, each point of 
the medium participates in two simultaneous sinusoidal motions within the [x,y] plane: 

             ,ΨcosRe,ΨcosRe )()(  







 

yyyxxx AeaqAeaq tkzitkzi  (7.144) 

where   kz - t + x, and   y - x. Trigonometry tells us that the trajectory of such motion on the 
[x, y] plane is an ellipse (Fig. 15), so that such waves are called elliptically-polarized. The most 
important particular cases of such polarization are: 

 (i)   = 0 or : a linearly-polarized wave, with vector a turned by angle   = tan-1(Ay/Ax) from 
axis x; and 

 (ii)   =  /2 and Ax = Ay: circularly polarized waves, with the right or left polarization, 
respectively.  

 The circularly polarized waves play an important role in quantum mechanics, where such waves 
may be most naturally quantized, with elementary excitations (in the case of mechanical waves we are 
discussing, called phonons) having either positive or negative angular momentum Lz = . 

 Now comparing the trajectories of particles in the torsional wave in a thin round rod (or pipe) 
and the circularly-polarized wave in a broad sample (Fig. 14), we see that, despite the same wave 
propagation velocity, these transverse waves are rather different. In the former case (Fig. 14a) each 
particle moves back and forth along an arc, with the arc length different for different particles (and 
vanishing at rod’s center). On the other hand, in a circularly-polarized, plane wave all particles move 
along similar, circular trajectories. 

 

 

 

 

 

 

 

 

 In conclusion, let me briefly mention the opposite limit, when the size of the body, from whose 
boundary are completely reflected,42 is much larger than the wavelength. In this case, the waves 

42 For acoustic waves, such condition is easy to implement. Indeed, from Sec. 7 we already know that the strong 
inequality of wave impedances Z is sufficient for such reflection. The numbers of Table 1 show that, for example, 

Fig. 7.15. Trajectory of a particle of an infinite 
medium with elliptically-polarized transverse 
wave, within the plane perpendicular to the 
direction of wave propagation. 

xA

xq

yq



yA

0

)(tq



Essential Graduate Physics       CM: Classical Mechanics 

 

 

Chapter 7           Page 35 of 38 

propagate almost as in an infinite 3D medium (Sec. 7), and the most important new effect is the finite 
numbers of wave modes in the body. Repeating 1D analysis of Sec. 5.4 for each dimension of a 3D 
cuboid of volume V = L1L2L3 (for example, using the Born-Karman boundary conditions in each 
dimension), we obtain Eq. (5.59) for the spectrum of components of wave vector k along each side. This 
means that all possible wave vectors are located in nodes of a rectangular 3D mesh with steps 2/Lj in 
each direction, and hence with the k-space (“reciprocal space”) volume 

        .
)2(222 3

321 VLLL
Vk


      (7.145) 

per each vector. It is possible (though not quite as straightforward as it is sometimes assumed) to prove 
that this relation is valid regardless of the shape of volume V. Hence the number of different wave 
vectors within the reciprocal space volume d3k >> Vk is  
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In quantum mechanics, this relation takes the form of the density of quantum states in k-space: 

            
 33 2

gV

kd

dN
ggk  ,                (7.146b) 

where g is the number of possible different quantum states with the same de Broglie wave vector k. In 
this form, Eq. (146) is ubiquitous in physics.43 For phonons, formed from quantization of one 
longitudinal mode, and two transverse modes with different polarizations, g = 3. 

 

7.9. Exercise problems 

 7.1. A uniform thin sheet of an isotropic, elastic material is 
compressed, along its thickness t, by two plane, parallel, broad (of area 
A >> t2) rigid surfaces – see Fig. on the right. Assuming no slippage 
between the sheet and the surfaces, calculate the relative compression (-
t/t) as a function of the compressing force. Compare the result with 
that for the tensile stress, given by Eq. (47). 
 
 7.2. A thin, wide sheet of an isotropic, elastic material is clamped in two rigid, plane, parallel 
surfaces that are pulled apart with force F. Find the relative extension L/L of the sheet in the direction 
of the force, and its relative compression t/t in the perpendicular direction, and compare the results 
with Eqs. (47)-(48) for the tensile stress, and the solution of Problem 1. 

the impedance of a longitudinal wave in a typical metal (say, steel) is almost two orders of magnitude higher than 
that in air, ensuring their virtually full reflection from the surface.  
43 See, e.g., EM Secs. 7.7 and 7.9, and QM Sec. 1.5. 
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 7.3. Calculate the radial extension R of a thin, long, round 
cylindrical pipe under the effect of its rotation with a constant angular 
velocity   about its symmetry axis (see Fig. on the right), in terms of the 
elastic moduli E and , assuming that pressure both inside and outside the 
pipe is negligible. 
 
 
 7.4. A long, uniform rail with the cross-section shown in Fig. on 
the right, is being bent with the same (small) torque twice: first within 
plane xz and then within plane yz. Assuming that t << L, find the ratio of 
rail deformations in these two cases. 
 
 
 7.5. Two thin rods of the same length and mass have 
been made of the same elastic, isotropic material. The cross-
section of one of them is a circle, while another one is an 
equilateral triangle - see Fig. on the right. Which of the rods 
is more stiff for bending along its length? Quantify the 
relation. Does the result depend on the bending plane 
orientation? 
 
 7.6. A  thin, elastic, uniform, initially straight beam is placed on 
two point supports at the same height - see Fig. on the right. What 
support point placement minimizes the largest deviation of the beam 
from the horizontal line, under its own weight? 
 

7.7. Calculate the largest compression force T  that may be 
withstood by a thin, straight, elastic rod without bucking (see Figs. 
on the right) for two shown cases: 

 (i) rod’s ends are clamped, and 
 (ii) the rod it free to rotate about the support points. 
 
 
 7.8. Calculate the potential energy of a small and slowly changing, but otherwise arbitrary 
bending deformation of a uniform, elastic, initially straight rod. Can the result be used to derive the 
dispersion relation (7.138)? 
 
 
 7.9.* Calculate the spring constant dF/dL of a coil 
spring made of a uniform, elastic wire, with circular cross-
section of diameter d, wound as a dense round spiral of N 
>> 1 turns of diameter D >> d - see Fig. on the right. 
Comment on the type of material’s deformation. 

R t << R
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7.10. The coil discussed in Problem 9 is now used as what is 

sometimes called the torsion spring - see Fig. on the right. Find the 
corresponding spring constant d/d, where  is the torque of external forces F 
relative the center of the coil (point O). 
 
 
 7.11. Use Eqs. (101) and (102) to recast Eq. (103b) for the torsional rigidity C into the form 
given by Eq. (103c). 
 
 7.12.* Generalize Eq. (103b) to the case of rods with more than one cross-section boundary. Use 
the result to calculate the torsional rigidity of a thin round pipe, and compare it with Eq. (93). 
 
 7.13. Calculate the potential energy of a small but otherwise arbitrary torsional deformation z(z) 
of a uniform, straight, elastic rod. 
 
 7.14. A steel wire with the circular cross-section of a 3-mm diameter is stretched with a constant 
force of 10 N and excited at frequency 1 kHz by an actuator that excites all modes of  longitudinal and 
transverse waves. Which wave has the highest group velocity? Accept the following parameters for steel 
(see Table 7.1): E = 170 GPa, σ = 0.30, ρ = 7.8 g/cm3.  
 
 7.15. Define and calculate appropriate wave impedances for (i) tensile 
and (ii) torsional waves in a thin rod. Use the results to calculate what fraction 
of each wave’s power is reflected from the connection of a long rod with 
round cross-section to a similar rod, but with twice larger diameter – see Fig. 
on the right.  
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Chapter 8. Fluid Mechanics 

This chapter describes the basic notions of mechanics of fluids, discusses a few core problems of statics 
and dynamics of ideal and viscous fluids, and gives a very brief review of such a complex phenomenon  
as turbulence. Also, the viscous fluid flow is used to give an elementary introduction to numerical 
methods of partial differential equation solution - whose importance extends well beyond this particular 
field. 

 

8.1. Hydrostatics 

The mechanics of fluids (the class of materials that includes both liquids and gases) is both more 
simple and more complex than that of the elastic solids, with the simplicity falling squarely to the 
domain of statics - often called hydrostatics, because water has always been the main fluid for the 
human race and hence for science and engineering. Indeed, fluids are, by definition, the media that 
cannot resist static shear deformations. There are two ways to express this fact. First, we can formally 
take the shear modulus , describing this resistance, to be equal zero. Then the Hooke’s law (7.34) 
shows that the stress tensor is diagonal: 

      .jjjj'jj'         (8.1) 

Alternatively, the same conclusion may be reached by looking at the stress tensor definition (7.19) and 
saying that in the absence of shear stress, the elementary interface dF has to be perpendicular to the area 
element dA, i.e. parallel to vector dA. 

 Moreover, in fluids at equilibrium, all three diagonal components jj of the stress tensor have to 
be equal. To prove that, it is sufficient to single out (mentally rather than physically) from a fluid a small 
volume in the shape of a right prism, with mutually perpendicular faces normal to the two directions we 
are interested in (Fig. 1, along axes x and y). 

 

 

 

 

 

 

 The prism is in equilibrium if each Cartesian component of the total force acting on all its faces 
nets to zero. For the x-component this balance is xxdAx - (dA)cos = 0. However, from the geometry 
(Fig. 1), dAx = dAcos, and the above balance condition yields   = xx. A similar argument for the 
vertical forces gives   = yy, so that xx  = yy .Since such equality holds for any pair of diagonal 
components of the stress tensor, jj, all three of them have to be equal. This common component is 
usually represented as (-P), because in the vast majority of cases, parameter P, called pressure, is 
positive. Thus we arrive at the key relation (which has already been mentioned in Ch. 7): 

       jj'jj' P  .      (8.2)

Fig. 8.1. Proving the pressure isotropy. 
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 In the absence of bulk forces, pressure should be constant through the volume of fluid, due to 
symmetry. Let us see how this result is affected by bulk forces. With the simple stress tensor (2), the 
general condition of equilibrium of a continuous medium, expressed by Eq. (7.25) with zero left-hand 
part, becomes just 

      0



 j
j

f
r

P
,     (8.3) 

and may be re-written in a convenient vector form: 

       .0 fP       (8.4) 

In the simplest case of a heavy fluid, with mass density , in a uniform gravity field, f = g,  and the 
equation of equilibrium becomes, 

      0 gP ,     (8.5) 

with only one nonvanishing component (vertical, near the Earth surface). If, in addition, the fluid may 
be considered incompressible, with its density  constant,1 this equation may be readily integrated to 
give the so-called Pascal equation:2  

               ,const gyP       (8.6) 

where y is the vertical coordinate, with the direction opposite to that of vector g. 

 Let me hope that this equation, and its simple applications (including buoyant force calculations 
using the Archimedes principle), are well familiar to the reader from his or her  undergraduate physics 
courses, so that I may save time by skipping their discussion. I would only like to note, that the 
integration of Eq. (4) may be more complex in the case if the bulk forces f depend on position,3 and/or if 
the fluid is substantially compressible. In the latter case, Eq. (4) should be solved together with the 
media-specific equation of state  = (P) describing the compressibility law – whose example is given 
by Eq. (7.40) for ideal gases:   mN/V = mP/kBT, where m is the mass of one gas molecule. 

 

8.2. Surface tension effects 

 Besides the bulk (volume-distributed) forces, one more possible source of pressure is surface 
tension. This effect results from the difference between the potential energy of atomic interactions on 
the interface between two different fluids and that in their bulks, and thus may be described by an 
additional potential energy  

           AUi  ,      (8.7) 

1 As was discussed in Sec. 7.3 in the context of Table 7.1, this is an excellent approximation, for example, for 
human-scale experiments with water. 
2 The equation, and the SI unit of pressure 1 Pa = 1N/m2, are named after B. Pascal (1623-1662) who has not only 
pioneered hydrostatics, but also invented the first mechanical calculator and made several other important 
contributions to mathematics - and Christian philosophy! 
3 An example of such a problem is given by fluid equilibrium in coordinate systems rotating with a constant 
angular velocity. Here the real bulk forces should be complemented by the centrifugal “force” - the only inertial 
force which does not vanish at constant  and r – see Eq. (6.92). 
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where A is the interface area, and  is called the surface tension constant (or just the “surface tension”), 
evidently of the dimensionality of J/m2, i.e. N/m. For a stable interface of any two fluids,  is always 
positive.4 In the absence of other forces, the surface tension makes a liquid drop spherical to minimize 
its surface area at fixed volume.  

 For the analysis of the surface tension effects in the presence of other forces, it is convenient to 
reduce it to a certain additional effective pressure drop Pef at the interface. In order to calculate Pef, 
let us consider the condition of equilibrium of a small part dA of a smooth interface between two fluids 
(Fig. 2), in the absence of bulk forces.  

 

 

 

 

 

 

 

 

 If pressures P1,2 on two sides of the interface are different, the work of stress forces on fluid 1 at 
a small virtual displacement r = nr of the interface (where n = dA/dA is the unit vector normal to the 
interface) equals5 

              21 PPrdAW   .     (8.8) 

For equilibrium, this work has to be compensated by an equal change of the interface energy, Ui = 
(dA). Differential geometry tells us that in the linear approximation in r, the relative change of the 
elementary surface area, corresponding to a fixed solid angle d, may be expressed as 

                
 

21 R

r
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r

dA

dA 
 ,     (8.9) 

where R1,2 are the so-called principal radii of the interface curvature.6 Combining Eqs. (7)-(9), we get 
the Young-Laplace formula7 

4 If   of the interface of certain two fluids is negative, it self-reconfigures to decrease Us by the interface area, i.e. 
fragments the system into a solution.  
5 This equality readily follows from the general Eq. (7.32), with the stress tensor elements expressed by Eq. (2), 
but in this simple case of the net stress force dF = (P1 – P2)dA parallel to the interface element vector dA, it may 
be even more simply obtained just from the definition of work W = dFr at the virtual displacement r = nr. 
6 This general formula may be verified by elementary means for a sphere of radius r (for which R1 = R2 = r and dA 
= r2d, so that (dA)/dA =  (r2)/r2 = 2r/r), and a round cylindrical interface of radius R (for which R1 = r, R2 = 
, and dA = rddz, so that (dA)/dA =  r/r). 
7 This formula (not to be confused with Eq. (12), called the Young’s equation) was derived in 1806 by P.-S. 
Laplace (of the Laplace operator/equation fame) on the basis of the first analysis of the surface tension effects by 
T. Young a year earlier.  

2P

1P

2,1R r
dA

 dAdA 

Fig. 8.2. Deriving the Young-Laplace 
formula (10). 
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 In particular, this formula shows that the additional pressure created by surface tension inside a 
spherical drop of a liquid, of radius R, equals 2/R, i.e. decreases with R. In contrast, according to Eqs. 
(5)-(6), the effects of bulk forces, for example gravity, grow as gR. The comparison of these two 
pressure components shows that if the drop radius (or more generally, the characteristic linear size of a 
fluid sample) is much larger than the so-called capillary length 

       
2/1
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,     (8.11) 

the surface tension may be safely ignored – as will be done in the following sections of this chapter, 
besides a brief discussion of Eq. (48). For the water surface, or more exactly its interface with air at 
ambient conditions,   0.073 N/m, while   1,000 kg/m3, so that ac  4 mm. 

 On the other hand, in very narrow tubes, such as blood capillary vessels with radius a ~ 1 m, 
i.e. a << ac, the surface tension effects are very important. The key notion for the analysis of these 
effects is the equilibrium contact angle c (also called the “wetting angle”) at the edge of a liquid 
wetting a solid - see Fig. 3.  

 

 

 

 

 

 

 According to its definition (7), constant  may be interpreted as a force (per unit length of the 
interface boundary) directed along the interface and trying to reduce its area. As a result, the balance of 
horizontal components of the three such forces, shown in Fig. 3, immediately yields  

            sgclgsl cos   ,     (8.12) 

where the indices at constants  correspond to three possible interfaces between the liquid, solid and gas. 
For the so-called hydrophilic surfaces that “like to be wet” by this particular liquid (not necessarily 
water), meaning that sl < sg, this relation yields cosc  > 0, i.e. c  < /2 – the situation shown in Fig. 3a. 
On the other hand, for hydrophobic surfaces with sl > sg, Young’s equation (12) yields larger contact 
angles, c  > /2 – see Fig. 3b. 

 Let us use this notion to solve the simplest but perhaps the most important problem of this field - 
find the height h of the fluid column in a narrow vertical tube made of a hydrophilic material, lifted by 
the surface tension forces, assuming its internal surface to be a round cylinder of radius a – see Fig. 4. 
Inside an incompressible fluid, pressure drops with height according to the Pascal equation (6), so that 
just below the surface, P  P0 - gh, where P0 is the background (e.g., atmospheric) pressure. This 
means that at a << h the pressure variation along the concave surface (called the meniscus) of the liquid 
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Fig. 8.5. Contact angles 
for (a) hydrophilic  and 
(b) hydrophobic surfaces. 
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is negligible, so that according to the Young-Poisson equation (10) the sum (1/R1 + 1/R2) has to be 
virtually constant along the surface. Due to the axial symmetry of the problem, this means that the 
surface has to be a part of a sphere.8 From the contact angle definition, radius R of the sphere is equal to 
a/cosc – see Fig. 4.  

 

  

 

 

 

 

 

 

  

 Plugging this relation into Eq. (10) with P1 – P2 = gh, we get the following equation for h: 

               
a

gh ccos2 
  .     (8.13a) 

In hindsight, this result might be obtained more directly – by requiring the total weight gV = g(a2h) 
of the lifted liquid’s column to be equal to the vertical component Fcosc of the full surface tension 
force F = p acting on the perimeter p = 2a of the meniscus. Using the definition (11) of the capillary 
length ac, Eq. (13a) may be presented as the so-called Jurin rule: 

                
a

a

a

a
h cc

2

c

2

cos   ;     (8.13b) 

according to our initial assumption h >> a, Eq. (13) is only valid for narrow tubes, with radius a << ac.  
This capillary rise is the basic mechanism of lifting water with nutrients from roots to the branches and 
leaves of plants, so that the tallest tree height is practically established by the Jurin rule (13), with cosc 
 1 and the pore radius a limited from below by a few microns, because of the viscosity effects 
restricting the fluid discharge – see Sec. 5 below and in particular the Poiseuille formula (60).  

 

8.3. Kinematics 

 In contrast to the stress tensor, which is useful and simple – see Eq. (2), the strain tensor is not a 
very useful notion in fluid mechanics. Indeed, besides a very few situations,9 typical problems of this 
field involve fluid flow, i.e. a state when velocity of fluid particles has some nonzero time average. This 
means that the trajectory of each individual particle is a long line, and the notion of its displacement q 

8 Note that this is not true for tubes with different shapes of their cross-section. 
9 One of  them is the sound propagation, where particle displacements q are typically small, so that results of Sec. 
7.7 are applicable. As a reminder, they show that in fluids, with  = 0, the transverse sound cannot propagate 
(formally, has zero velocity and impedance), while the longitudinal sound’s velocity is finite – see Eq. (7.116). 

a

Fig. 8.4. Liquid rise in a vertical capillary tube. 
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becomes impracticable. However, particle’s velocity v  dq/dt is a much more useful notion, especially 
if it is considered as a function the observation point r and (generally) time t. In an important class of 
fluid dynamics problem, the so-called stationary (or “steady”, or “static”) flow, the velocity defined in 
this way does not depend on time, v = v(r).  

 There is, however, a price to pay for the convenience of this notion: namely, due to the 
difference between vectors q and r, particle’s acceleration a = d2q/dt2 (that participates, in particular, in 
the 2nd Newton law) cannot be calculated just as a time derivative of velocity v(r, t). This fact is evident, 
for example, for the static flow case, in which the acceleration of individual fluid particles may be very 
significant even if v(r) does not depend on time - just think about the acceleration of a drop of water 
flowing over the Niagara Falls rim, first accelerating fast and then virtually stopping below, while the 
water velocity v at every particular point, as measured from a bank-based reference frame, is nearly 
constant. Thus the main task of fluid kinematics is to express a via v(r,t); let us do this.  

 Since each Cartesian component vj of the velocity has to be considered as a function of four 
independent scalar variables, three Cartesian components rj’ of vector r and time t, its full time 
derivative may be presented as 

         
dt

dr
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v
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jjj '
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 .     (8.14) 

Let us apply this general relation to a specific set of infinitesimal changes {dr1, dr2, dr3} that follows a 
small displacement dq of a certain particular particle of the fluid, dr = dq = vdt, i.e.  

         dtvdr jj  .      (8.15) 

In this case dvj/dt is the j-th component aj of the particle’s acceleration a, so that Eq. (14) yields the 
following key relation of fluid kinematics: 
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Using operator , this result may be rewritten in the following compact vector form:10 

               vv
v

a )( 




t

.     (8.16b) 

This relation already signals the main technical problem of the fluid dynamics: many equations 
involving particle’s acceleration are nonlinear in velocity, excluding such a powerful tool the linear 
superposition principle from the applicable mathematical arsenal.  

 One more basic relation of the fluid kinematics is the so-called continuity equation, which is 
essentially just the differential version of the mass conservation law. Let us mark, inside a fluid flow, an 
arbitrary volume V limited by stationary (time-independent) surface S. The total mass of the fluid inside 
the volume may change only due to its flow though the boundary: 

10 The operator relation d/dt = /t + (v), applicable to an arbitrary (scalar or vector) function, is frequently 
called the convective derivative. (Alternative adjectives, such as “Lagrangian”, “substantial”, or “Stokes”, are 
sometimes used for this derivative as well.) The relation has numerous applications well beyond the fluid 
dynamics – see, e.g., EM Chapter 9 and QM Chapter 1. 
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where the elementary area vector dA is defined just as in Sec. 7.2 – see Fig. 5.  

 

 

 

 

 

 

 

 Using the same the same divergence theorem that has been used several times in this course,11 
the surface integral in Eq. (17a) may be transformed into the integral of (v) over volume V, so that 
this relation may be rewritten as 

           03 





 



 rd
tV

j


,     (8.17b) 

where vector j  v defined is called either the mass flux density or the mass current. Since Eq. (17b) is 
valid for an arbitrary volume, the function under the integral has to vanish at any point: 

                 0



j
t


.       (8.18) 

 Note that such continuity equation is valid not only for mass, but for other conserved physics 
quantities (e.g., the electric charge, quantum-mechanical probability, etc.), with the proper re-definition 
of  and j.12 

 

8.4. Dynamics: Ideal fluids 

 Let us start our discussion of fluid dynamics from the simplest case when the stress tensor obeys 
the simple expression (2) even at the fluid motion. Physically, this means that fluid viscosity effects, 
including  mechanical energy loss, are negligible. (We will discuss the conditions of this assumption in 
the next section.) Then the equation of motion of such an ideal fluid (essentially the 2nd Newton law for 
its unit volume) may be obtained from Eq. (7.25) using the simplifications of its right-hand part, 
discussed in Sec. 1:  

      .fa  P       (8.19) 

Now using the basic kinematic relation (16), we arrive at the following Euler equation:13 

11 If the reader still needs a reminder, see MA Eq. (12.1). 
12 See, e.g., EM Sec. 4.1, QM Sec. 1.4, and SM Sec. 5.6. 
13 It was derived in 1755 by the same L. Euler whose name has already been (reverently) mentioned several times 
in this course. 

Fig. 8.5. Deriving the continuity equation. 
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 Generally this equation has to be solved together with the continuity equation (11) and equation 
of state of the particular fluid,  = (P). However, as we have already discussed, in many situations the 
compressibility of water and other important fluids is very low and may be ignored, so that  may be 
treated as a given constant. Moreover, in many cases the bulk forces f are conservative and may be 
presented as a gradient of a certain potential function u(r) – the potential energy per unit volume:  

            uf ;       (8.21) 

for example, for a uniform gravity field, u = gh. In this case the right-hand part of Eq. (20) becomes  -
(P + u). For these cases, it is beneficial to recast the left-hand of that equation as well, using the 
following well-know identity of vector algebra14 

        vvvv 
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As a result, the Euler equation takes the form  
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    (8.23) 

 In a stationary flow, the first term of this equation vanishes. If the second term, describing fluid’s 
vorticity, is zero as well, then Eq. (23) has the first integral of motion, 

            const
2

2  vuP


,     (8.24) 

called the Bernoulli equation. Numerous examples of application of Eq. (24) to simple problems of 
stationary flow in pipes, in the Earth gravity field (giving u = gh), should be well known to the reader, 
so I hope I can skip their discussion without much harm. 

 In the general case an ideal fluid may have vorticity, so that Eq. (24) is not always valid. 
Moreover, due to absence of viscosity in an ideal fluid, the vorticity, once created, does not decrease 
along the streamline - the fluid particle’s trajectory, to which the velocity is tangential in every point.15 
Mathematically, this fact16 is expressed by the following Kelvin theorem: (v)dA = const along any 
small contiguous group of streamlines crossing an elementary area dA.17  

 In many important cases the vorticity of fluid is negligible. For example, if a solid body of 
arbitrary shape is embedded into an ideal fluid that is uniform (meaning, by definition, that v(r,t) = v0 = 

14 It readily follows, for example, from MA Eq. (11.6) with g = f = v. 
15 Perhaps the most spectacular manifestation of the vorticity conservation are the famous toroidal vortex rings 
(see, e.g., nice photo and movie at https://en.wikipedia.org/wiki/Vortex_ring), predicted in 1858 by H. von 
Helmholtz, and then demonstrated by P. Tait in a series of spectacular experiments with smoke in air. The 
persistence of such a ring, once created, is only limited by fluid’s viscosity – see the next section. 
16 First formulated verbally by H. von Helmholtz. 
17 Its proof may be found, e.g., in Sec. 8 of L. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed., Butterworth-
Heinemann, 1987. 
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const) at large distances, its vorticity is zero everywhere. (Indeed, since v at the uniform flow, the 
vorticity is zero at distant points of any streamline, and according to the Kelvin theorem, should equal 
zero everywhere.) In this case the velocity, as any curl-free vector field, may be presented as a gradient 
of some effective potential function, 

          .v        (8.25) 

Such potential flow may be described by a simple differential equation. Indeed, the continuity equation 
(18) for a steady flow of an incompressible fluid is reduced to v = 0. Plugging Eq. (25) into this 
relation, we get the scalar Laplace equation, 

          02   ,      (8.26) 

which should be solved with appropriate boundary conditions. For example, the fluid flow may be 
limited by solid bodies inside which that the fluid cannot penetrate. Then the fluid velocity at these 
boundaries should not have a normal component:  

             0



n


.      (8.27) 

On the other hand, at large distances from the body in question the fluid flow is known, e.g., uniform: 

            rat ,0v .     (8.28) 

 As the reader may already know (for example, from a course of electrodynamics18), the Laplace 
equation (26) is readily solvable analytically in several simple (symmetric) but important situations. Let 
us consider, for example, the case of a round cylinder, with radius R, immersed into a flow with the 
initial velocity v0 perpendicular to the cylinder axis (Fig. 6).19  

 For this problem, it is natural to use cylindrical coordinates with axis z parallel to cylinder’s axis. 
In this case the velocity distribution is evidently independent of z, so that we may simplify the general 
expression of the Laplace operator in cylindrical coordinates20 by taking /z = 0. As a result, Eq. (26) is 
reduced to21 
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 The general solution of this equation may be obtained using the variable separation method:22 
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18 See, e.g., EM Secs. 2.3 and 2.4. 
19 Evidently, motion of the cylinder, with constant velocity (-v0), in the otherwise stationary fluid leads to exactly 
the same problem - in the reference frame bound to the moving body. 
20 See, e.g., MA Eq. (10.3). 
21 Let me hope that letter , used here for the magnitude 2D radius-vector  = {x, y}, will not be confused with 
fluid’s density – which does not participate in this boundary problem. 
22 See, e.g., EM Eq. (2.112). Note that the most general solution of Eq. (29) also includes a term proportional to 
, but this term should be zero for such a single-valued function as the velocity potential. 
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where coefficients an and bn have to be found from the boundary conditions (27) and (28). Choosing 
axis x = rcos  to be parallel to vector v0 (Fig. 6a) we may rewrite these the conditions in the form 

             ,at ,0 R

 



     (8.31) 

             ,at ,cos 00 Rv        (8.32) 

where 0 is an arbitrary constant, which does not affect the velocity distribution, and may be taken for 
zero. The latter condition is incompatible with all terms of Eq. (30) except the term with n = 1 (with s1 = 
0 and c1a1 = - v0) , so it is reduced to 
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Now, plugging this solution into Eq. (31), we get 2
011 Rvbc  , so that, finally, 
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 Figure 6a shows the surfaces of constant velocity potential . In order to find the fluid velocity, it 
is easier to rewrite result (34) in the Cartesian coordinates x = cos, y = sin: 
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Fig. 8.6. Flow of ideal, incompressible fluid around a round cylinder: (a) equipotential surfaces and 
(b) streamlines. 
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From this equation, we may readily calculate the Cartesian components vx = - /x and vy = - /y of 
the fluid velocity. Figure 6b shows particle streamlines.23 One can see that the largest potential gradient, 
and hence the maximum speed, is achieved at points near the vertical diameter ( = R,  =  /2), where 

         .2 0

0
, v

x
vv

x
rRx 









     (8.36) 

 Now the pressure distribution may now be found from the Bernoulli equation (24). For u(r) = 0, 
it shows that the pressure reaches maximum at the ends of the longitudinal diameter y = 0, while at the 
ends of the transverse diameter x = 0, where the velocity is largest, it is less by 2v0

2 (where  is the 
fluid density again - sorry for the notation jitters!) Note that the distributions of both velocity and 
pressure are symmetric about the transverse axis x = 0, so that the fluid flow does not create any net 
drag force in its direction. This result, which stems from the conservation of the mechanical energy of 
an ideal fluid, remains valid for a solid body of arbitrary shape moving inside an infinite volume of such 
ideal fluid – the so-called D’Alambert paradox. However, if a body moves near ideal fluid’s surface, its 
energy may be transformed into that of surface waves, and the drag becomes possible. 

 Speaking about the surface waves in a gravity field24, their description is one more classical 
problem of the ideal fluid dynamics. Let us consider an open surface of an ideal fluid of density  in a 
uniform gravity field f = g = -gny – see Fig. 7. If the wave amplitude A  is sufficiently small, we can 
neglect the nonlinear term (v)v  A2 in the Euler equation (20) in comparison with the first term, 
v/t, that is linear in A. For a wave with frequency  and wavenumber k, particle’s velocity v = dq/dt is 
of the order of A, so that this approximation is legitimate if 2A  >> k(A)2, i.e. when  

            ,1kA       (8.37)  

i.e. when the wave amplitude is much smaller than its wavelength  = 2/k. By this assumption, we may 
neglect the fluid vorticity effects, and again use Eq. (25) and (for an incompressible fluid) Eq. (26). 

  

 

 

 

 

  

 Looking for the solution of the Laplace equation (26) in the natural form of a 1D sinusoidal 
wave,25  

23 They may be found by integration of the evident equation dy/dx = vy(x,y)/vx(x,y). For our simple problem this 
integration may be done analytically, giving the relation y[1 - R2/(x2 + y2)] = const, where the constant is specific 
for each streamline. 
24 The alternative, historic term “gravity waves” for this phenomenon may nowadays lead to a confusion with the 
relativistic effect of gravity waves (which may propagate in vacuum), whose direct detection is a focus of so 
much current experimental effort. 
25 Such a wave is “plane” only in direction x (perpendicular to the propagation direction z, see Fig. 4).  

Fig. 8.7. Small “plane” surface wave on 
a deep fluid. Dashed lines show fluid 
particle trajectories. (For clarity, the 
displacement amplitude A  (k/)0 is 
strongly exaggerated.) 
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we get a simple equation 
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with an exponential solution (decaying, as it has to, at y  - )  = 0exp{ky}, so that Eq. (38) 
becomes 

               tkzeee kytkziky   



  cosRe 00

)( ,   (8.40) 

where the last form is valid if 0 is real - which may be always arranged by a proper selection of origins 
of z and/or t. Note that the rate of wave decay with depth is exactly equal to the wavenumber of its 
propagation along the surface. Because of that, the trajectories of fluid particles are exactly circular. 
Indeed, using Eqs. (25) and (40) (with amplitude) to calculate velocity components,  
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  (8.41) 

we see that they have equal real amplitudes, and are phase-shifted by /2. This result becomes even 
more clear if we use the velocity definition v = dq/dt to integrate Eqs. (41) over time to recover the 
particle displacement law q(t). Due to the strong inequality (37), the integration may be done at fixed y 
and z: 
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 cos,sin 00 .   (8.42) 

Note that the phase of oscillations of vz coincides with that of qy. It means, in particular, that at wave’s 
top (“crest”), fluid particles are moving in the direction of wave’s propagation – see arrows in Fig. 7. 

 It is remarkable that all this picture follows from the Laplace equation alone! The “only” 
remaining feature to calculate is the dispersion law (k), and for that we need to combine Eq. (40) with 
what remains, in our linear approximation, of the Euler equation (23). In this approximation, and with 
the bulk force potential u = gy, this equation is reduced to 

         0





 




 gyP
t

 .     (8.43) 

This equation means that the function in the parentheses is constant in space; at the surface, it should 
equal to pressure P0 above the surface (say, the atmospheric pressure), that we assume to be constant. 
This means that on the surface, the contributions to P that come from the first and the third term in Eq. 
(43), should compensate each other. Let us take the average surface position for y = 0; then the surface 
with waves is described by relation y = qy – see Fig. 7. Due to the strong relation (37), which means kqy 
<< 1, we can use Eqs. (40) and (42) with y = 0, so that the above compensation condition yields 
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This condition is identically satisfied on the whole surface (and for any 0) as soon as  
Surface 
waves’ 

spersion 
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          gk2 ,      (8.45) 

this equality giving the dispersion relation we were looking for.  

 Looking at this surprisingly simple result (which includes just one constant, g), note, first of all, 
that it does not involved fluid’s density. This is not too much surprising, because due to the weak 
equivalence principle, particle masses always drop out of the results of problems involving gravitational 
forces alone. Second, the dispersion law (45) is strongly nonlinear, and in particular does not have the 
acoustic wave limit. This means that the surface wave propagation is strongly dispersive, with the phase 
velocity /k  1/ diverging at   0. This divergence is an artifact of our assumption of the infinite 
fluid thickness. A rather straightforward generalization of the above calculations to a layer of finite 
thickness h, using the additional boundary condition vyy=-h = 0,  yields the following modified dispersion 
relation, 

                khgk tanh2  .     (8.46) 

It shows that relatively long waves, with  >> h, i.e. with kh << 1, propagate without dispersion (i.e. 
have /k = const  v), with velocity 

            2/1ghv  .      (8.47) 

For the Earth oceans, this velocity is rather high, approaching 300 m/s (!) for h = 10 km. This result 
explains, in particular, the very fast propagation of tsunami waves. 

 In the opposite limit of very short waves (large k), Eq. (45) also does not give a good description 
of experimental data, due to the effects of surface tension (see Sec. 2 above). Using Eq. (8.10), it is easy 
(and hence left for the reader :-) to show that their account leads (at kh >> 1) to the following 
modification of Eq. (45): 

      



3
2 k

gk  .     (8.48) 

According to this formula, the surface tension is important at wavelengths smaller than the capillary 
constant as given by Eq. (11). Much shorter waves, for whom Eq. (48) yields   k3/2, are called the 
capillary waves - or just “ripples”. 

 All these generalizations are still limited to potential forces, and do not allow one to describe 
energy loss, in particular the attenuation of either bulk or surface waves in fluids. For that, as well as for 
the drag force description, we need to proceed to the effects of viscosity. 

 

8.5. Dynamics: Viscous fluids 

 Fluid viscosity of many fluids, at not too high velocities, may be described surprisingly well by 
adding, to the static stress tensor (2), additional components proportional to velocity v  dq/dt: 

            )(~
''' vjjjjjj P   .     (8.49) 

Since the Hooke law (7.34) has taught us about the natural structure of such a tensor in the case of stress 
proportional to displacement q, we may expect a similar expression with replacement q  v = dq/dt: 
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where ejj’ are the elements of the symmetrized strain derivative tensor: 
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Experiment confirms that Eq. (50) gives a good description of the viscosity effects in a broad range of 
isotropic fluids. Coefficient  is called either the shear viscosity, or the dynamic viscosity, or just 
viscosity, while   is called the second (or bulk) viscosity.  

 In the most frequent case of a virtually incompressible fluid, Tr(u) = d[Tr(s)]/dt = (dV/dt)/V = 0, 
so that the term proportional to   vanishes, and  is the only important viscosity parameter.26 Table 1 
shows the approximate values of the viscosity, together with the mass density , for several common 
fluids. One can see that  may vary in extremely broad limits; the extreme cases are glasses (somewhat 
counter-intuitively, these amorphous materials are not stable solids even at room temperature, but rather 
may “flow”, though extremely slowly, until they eventually crystallize) and liquid helium.27 

 
Table 8.1. Important parameters of several representative fluids (approximate values) 

Fluid (all at 300 K, besides the helium)  (mPas)  (kg/m3) 

Glasses 1021-1024 2,200-2,500 

Machine oils (SAE 10W – 40 W) 65-320 900 

Water 0.89 1,000 

Mercury  1.53 13,530 

Liquid helium 4 (at 4.2K, 105 Pa) 0.019 130 

Air (at 105 Pa) 0.018 1.3 

 Incorporating the additional components of jj’ to the equation (20) of fluid motion, absolutely 
similarly to how it was done at the derivation of Eq. (7.109) of the elasticity theory, with the account of 
Eq. (16) we arrive at the famous Navier-Stokes equation:28 

              vvfvv
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 The apparent simplicity of this equation should not mask an enormous range of phenomena, 
notably including turbulence (see the next section), that are described by it, and the complexity of its 

26 Probably the most important effect we miss by neglecting  is the attenuation of (longitudinal) acoustic waves, 
into which the second viscosity makes a major (and in some cases, the main) contribution.  
27 Actually, at even lower temperatures (for He 4, T < T  2.17 K), helium becomes a superfluid, i.e. looses 
viscosity completely, as result of the Bose-Einstein condensation - see, e.g., SM Sec. 3.4. 
28 Named after C.-L. Navier (1785-1836) who had suggested the equation, and G. Stokes (1819-1903) who has 
demonstrated its relevance by solving it for several key situations. 
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solutions even for some simple geometries. In most problems interesting for practice the only option is 
to use numerical methods, but due to the large number of parameters (, , , plus geometrical 
parameters of the involved bodies, plus the distribution of bulk forces f, plus boundary conditions), this 
way is strongly plagued by the “curse of dimensionality” that was discussed in Sec. 4.8.   

 Let us see how does the Navier-Stokes equation work, on several simple examples. As the 
simplest case, let us consider the so-called Couette flow caused in an incompressible fluid layer between 
two wide, horizontal plates (Fig. 8) by mutual sliding of the plates with a constant relative velocity v0. 

 

 

 

 

 

 

 Let us assume a laminar (vorticity-free) fluid flow. (As will be discussed in the next section, this 
assumption is only valid within certain limits.) Then we may use the evident symmetry of the problem, 
to take, in the reference frame shown in Fig. 8, v = nzv(y). Let the bulk forces be vertical, f = nyf , so 
they do not give an additional drive to fluid flow. Then for the stationary flow (v/t = 0), the vertical, 
y-component of the Navier-Stokes equation is reduced to the static Pascal equation (3), showing that the 
pressure distribution is not affected by the plate (and fluid) motion. In the horizontal, z-component of the 
equation only one term, 2v, survives, so that for the only Cartesian component of velocity we get the 
1D Laplace equation 

           .0
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      (8.52) 

 In contract to the ideal fluid (see, e.g., Fig. 6b), the relative velocity of a viscous fluid and a solid 
wall it flows by should approach zero at the wall,29 so that Eq. (52) should be solved with boundary 
conditions 
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Using the evident solution of this boundary problem, v(y) = (y/d)v0, illustrated by arrows in Fig. 8, we 
can now calculate the horizontal drag force acting on a unit area of each plate. For the bottom plate, 
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       (8.54) 

(For the top plate, the derivative v/y has the same value, but the sign of dAy has to be changed to 
reflect the direction of the outer normal to the solid surface, so that we get a similar force but with the 

29 This is essentially an additional experimental fact, but may be readily understood as follows. A solid may be 
considered as an ultimate case of a fluid (with infinite viscosity), and the tangential component of velocity should 
be a continuous an interface between two fluids, in order to avoid infinite stress – see Eq. (50). 

0v

z

y

d

0

)(yv

Fig. 8.8. The simplest problem of 
the viscous fluid flow. 
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negative sign.) The well-known result (54) is often used, in undergraduate courses, for a definition of 
the dynamic viscosity  , and indeed shows its physical meaning very well. 

 As the next, slightly less trivial example let us consider the so-called Poiseuille problem30 of the 
relation between the constant external pressure gradient   -P/z applied along a round pipe with 
internal radius R (Fig. 9) and the so-called discharge Q - defined as the mass of fluid flowing through 
pipe’s cross-section per unit time. 

 

 

 

  

 

 Again assuming a laminar flow, we can involve the problem uniformity along the z axis and its 
axial symmetry to infer that v = nzv(), and P = -z + f(, ) + const (where  = {, } is the 2D radius-
vector rather than fluid density), so that the Navier-Stokes equation (51) for an incompressible fluid 
(with v = 0) is reduced to a 2D Poisson equation  

           v2
2 .      (8.55) 

After spelling out the 2D Laplace operator in polar coordinates for our axially-symmetric case / = 0, 
Eq. (55) becomes a simple ordinary differential equation, 
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that has to be solved at the segment 0    R, with the following boundary conditions: 
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(The latter condition is required by the axial symmetry.) A straightforward double integration yields: 
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so that the integration of the mass flow density over the cross-section of the pipe, 
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immediately gives us the so-called Poiseuille (or “Hagen-Poiseuille”) law for the fluid discharge: 
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      (8.60) 

30 It was solved theoretically by G. Stokes in 1845 in order to explain Eq. (60) that had been formulated by G. 
Hagen and J. Poiseuille in 1839-1840 on the basis of their experimental results. 

Fig. 8.9. The Poiseuille problem. 
z0
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where (sorry!)  is the mass density again. 

 

  

 

 

 

 

 

 

 Of course, not for each cross-section shape the 2D Poisson equation (55) is so readily solvable. 
For example, consider a very simple, square-shape cross-section with side a (Fig. 10). For it, it is natural 
to use the Cartesian coordinates, so that Eq. (55) becomes 

    ,,0for      const,
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    (8.61) 

and has to be solved with boundary conditions 

          ayxv ,0,at  ,0  .     (8.62) 

 For this boundary problem, analytical methods31 give answers in the form of infinite sums 
(series) that ultimately require computers for their plotting and comprehension. Let me use this pretext 
to discuss how explicitly numerical methods may be used for such problems - or any partial differential 
equations involving the Laplace operator. The simplest of them is the finite-difference method32 in 
which the function to be calculated, f(r1,r2,…), is represented by its values in discrete points of a 
rectangular grid (frequently called mesh) of the corresponding dimensionality (Fig. 11).  

 

  

 

 

 

 

 

 In Sec. 4.7, we have already discussed how to use such a grid to approximate the first derivative 
– see Eq. (4.98). Its extension to the second derivative is straightforward – see Fig. 11a: 

31 For example, the Green’s function method (see, e.g., EM Sec. 2.7). 
32 For more details see, e.g., R. J. Leveque, Finite Difference Methods for Ordinary and Partial Differential 
Equations, SIAM, 2007. 

Fig. 8.10. Application of the finite-
difference method with a very coarse 
mesh (with step h = a/2) to the 
problem of viscous fluid flow in a 
pipe with a square cross-section. x
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Fig. 8.11. Idea of the finite-
difference method in (a) one and 
(b) two dimensions. 
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  (8.63) 

The relative error of this approximation is of the order of h24/rj
4, quite acceptable in many cases. As a 

result, the left-hand part of Eq. (61), treated on a square mesh with step h (Fig. 11b), may be presented 
as the so-called 5-point scheme: 
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  .  (8.64) 

(The generalization to the 7-point scheme, appropriate for 3D problems, is straightforward.) 

 Let us apply this scheme to the pipe with the square cross-section, using an extremely coarse 
mesh with step h = a/2 (Fig. 10). In this case the fluid velocity v should equal zero on the walls, i.e. in 
all points of the five-point scheme (Fig. 11b) except for the central point (in which velocity is evidently 
the largest), so that Eqs. (61) and (64) yield33 
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   (8.65) 

 The resulting expression for the maximal velocity is only ~20% different from the exact value. 
Using a slightly finer mesh with h = a/4, which gives a readily solvable system of 3 linear equations for 
3 different velocity values (the exercise highly recommended to the reader), brings us within a couple 
percent from the exact result. This shows that such “numerical” methods may be more efficient 
practically than the “analytical” ones, even if the only available tool is a calculator app on your 
smartphone rather than an advanced computer.  

 Of course, many practical problems of fluid dynamics do require high-performance computing, 
especially in conditions of turbulence (see the next section) with its complex, irregular spatial-temporal 
structure. In these conditions, the finite-difference approach may become unsatisfactory, because is 
implies the same accuracy of derivative approximation through the whole volume. A more powerful (but 
also much more complex for implementation) approach is the finite-element method in which the 
discrete point mesh is based on triangles with uneven sides, and is (in most cases, automatically) 
generated in accordance with the system geometry - see Fig. 12. Unfortunately I do not have time for 
going into the details of that method, so the reader is referred to the special literature on this subject.34 

 Before proceeding to our next topic, let me note one more important problem that is analytically 
solvable using the Navier-Stokes equation (51): a slow motion of a solid sphere of radius R, with a 
constant velocity v0, through an incompressible viscous fluid – or equivalently, a slow flow of the fluid 
(uniform at large distances) around an immobile sphere. Indeed, in the limit v  0, the second term in 
the left-hand part of this equation is negligible (just as at the surface wave analysis in Sec. 3), and the 
equation takes the form 

33 Note that value (65) is exactly the same as given for vmax = v=0 by the analytical formula (58) for the round 
cross-section with radius R = a/2. This is not an occasional coincidence. The velocity distribution given by (58) is 
a quadratic function of both x and y. For such functions, with all derivatives higher than 2/rj

2 being equal to 
zero, equation (64) is exact rather than approximate. 
34 See, e.g., C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, 
Dover, 2009, or T. J. R. Hughes, The Finite Element Method, Dover, 2000. 
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               ,02  vP      (8.66) 

which should be complemented with the incompressibility condition v = 0 and boundary conditions 
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In spherical coordinates, with the polar axis directed along vector v0, this boundary problem has the 
axial symmetry (so that v/ = 0 and v = 0), and allows the following analytical solution: 
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 Calculating pressure from Eq. (66), and integrating it over the surface of the sphere it is now 
straightforward to obtain the famous Stokes formula  for the drag force acting on the sphere: 

       .6 0RvF        (8.69) 

Historically, this formula has played an important role in the first precise (with accuracy better than 1%) 
calculation of the fundamental electric charge e by R. Millikan and H. Fletcher from their famous oil 
drop experiments in 1909-1913. 

 

8.6. Turbulence 

 The Stokes formula (69), whose derivation is limited to low velocities at that the nonlinear term 
(v)v could be neglected, become invalid if the fluid velocity is increased. For example, Fig. 13 shows 
the drag coefficient defined as 

      
2/2

0 Av

F
CD 

      (8.70) 

Fig. 8.12. Typical finite-element mesh generated 
automatically for an object of complex geometry – 
in this case, a plane wing’s cross-section. (Figure 
adapted from www.mathworks.com.) 
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where A is the cross-section of the body as seen from the fluid flow direction, for a sphere of radius R 
(so that A = R2), as a function of the so-called Reynolds number,35 for this particular geometry defined 
as 

          





 DvRv
eR 00 )2(

 .     (8.71) 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

In this notation, the Stokes formula (69) reads CD = 24/Re. One can see this formula is only valid 
at Re << 1, while at larger velocities the drag force becomes substantially higher than that prediction, 
and its dependence on velocity very complicated, so that only its general, semi-quantitative features may 
be readily understood from simple arguments.36 

 The reason for this complexity is a gradual development of very intricate, time-dependent fluid 
patterns, called turbulence, rich with vortices – for an example, see Fig. 14. These vortices are 
especially pronounced in the region behind the moving body (so-called wake), while the region before 
the body is virtually unperturbed. Figure 14 indicates that turbulence exhibits rather different behaviors 
in an extremely broad range of  velocities (i.e. values of Re), and sometimes changes rather abruptly – 
see, for example, the significant drag drop at Re  5105. 

35 This notion was introduced in 1851 by the same G. Stokes, but eventually named after O. Reynolds who 
popularized it three decades later. 
36 For example, Fig. 13 shows that, within a very broad range of Reynolds numbers, from ~102 to ~3105, CD for 
sphere is of the order of (and for a flat disk, remarkably close to) unity. This level, i.e., the approximate equality F 
 v0

2A/2, may be understood (in the picture where the object is moved by an external force F with velocity v0 
through a fluid which is initially at rest) as the equality of force’s power Fv0 and fluid’s kinetic energy (v0

2/2)V  
created in volume V = v0A in unit time. This relation would be exact if the object gave velocity v0 to each and 
every fluid particle its cross-section runs into, for example by dragging all such particles behind itself. In reality, 
much of this kinetic energy goes into vortices – see Fig. 14 and its discussion below. 

Fig. 8.13. The drag coefficient for a sphere and a round thin disk as functions of the Reynolds number. 
Adapted from F. Eisner, Das Widerstandsproblem, Proc. 3rd Int. Cong. On Appl. Mech., Stockholm, 1931. 
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 In order to understand the conditions of this phenomenon, let us estimate the scale of various 
terms in the Navier-Stokes equation (51) for the generic case of a body with characteristic size l moving 
in an otherwise static, incompressible fluid, with velocity v. In this case the characteristic time scale of 
possible non-stationary phenomena is given by the ratio l/v,37 so that we arrive at the following 
estimates: 
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  (8.72) 

(I have skipped term P, because as we saw in the previous section, in typical fluid flow problems it 
balances the viscosity term, and hence is of the same order of magnitude.)  This table shows that relative 
importance of the terms may be characterized by two dimensionless ratios.38  

 The first of them is the so-called Froude number 

              ,
/ 22

gl

v

g

lv
F 




     (8.73) 

37 The time scale of some problems may be different from l/v; for example, for forced oscillations of a fluid flow 
it is given by the reciprocal oscillation frequency f. For such problems, ratio S  f(l/v) serves as another, 
independent dimensionless constant, commonly called either the Strouhal number or the reduced frequency. 
38 For substantially compressible fluids (e.g., gases), the most important additional dimensionless parameter is the 
Mach number M  v/vl,  where vl = (K/)1/2  is the velocity of the longitudinal sound - which is, as we already 
know, the only wave mode possible in an infinite fluid. Especially significant for practice are  supersonic effects 
(including the shock wave in the form of the famous Mach cone with the half-angle M = sin-1M-1) which arise at  
M > 1. For a more thorough discussion of these issues, I have to refer the reader to more specialized texts – e.g., 
Chapter IX of the Landau and Lifshitz volume cited above, or Chapter 15 in I. M. Cohen and P. K. Kundu, Fluid 
Mechanics, 4th ed., Academic Press, 2007 - which is generally a good book on the subject. Another popular, rather 
simple textbook is R. A. Granger, Fluid Mechanics, Dover, 1995. 

uniform 

fluid flow 

Fig. 8.14. Snapshot of the turbulent tail (wake) behind a sphere moving in a fluid with a 
high Reynolds number, showing the so-called von Kármán vortex street. A nice animation 
of such a pattern may be found at http://en.wikipedia.org/wiki/Reynolds_number. 

solid  
sphere 
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which characterizes the relative importance of bulk gravity - or, upon an appropriate modification, other 
bulk forces. In most practical problems (with the important exception of surface waves, see Sec. 4 
above) F >> 1, so that the gravity effects may be neglected.  

 Much more important is another ratio, the Reynolds number (71), in the general case defined as 
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2

/

/
,     (8.74)  

which is a measure of the relative importance of the fluid particle’s inertia in comparison with the 
viscosity effects.39 Thus, it is not quite surprising that for a sphere, the role of the vorticity-creating term 
(v)v becomes noticeable already at Re ~ 1 – see Fig. 13. Much more surprising is the onset of 
turbulence in systems where the laminar (turbulence-free) flow is formally an exact solution to the 
Navier-Stokes equation for any Re. For example, at Re > Ret   2,100 (with l = 2R and v = vmax) the 
laminar flow in a round pipe, described by Eq. (58), becomes unstable, and the resulting  turbulence 
decreases the fluid discharge Q in comparison with the Poiseuille law (60). Even more strikingly, the 
critical value of Re is rather insensitive to the pipe wall roughness.  

 Since Re >> 1 in many real-life situations,40 turbulence is very important for practice. However, 
despite nearly a century of intensive research, there is no general, quantitative analytical theory of this 
phenomenon,41 and most results are still obtained either by rather approximate analytical treatments, or 
by the numerical solution of the Navier-Stokes equations using the approaches discussed in the previous 
section, or in experiments (e.g., on scaled models42 in wind tunnels).  

Unfortunately, due to the time/space restrictions, for a more detailed discussion of these results I 
have to refer the reader to more specialized literature,43 and will conclude the chapter with a brief 
discussion of just one issue: can the turbulence be “explained by a singe mechanism”? (In other words, 
can it be reduced, at least on a semi-quantitative level, to a set of simpler phenomena that are commonly 
considered “well understood”?) Apparently the answer in no,44 though nonlinear dynamics of simpler 
systems may provide some useful insights.  

 At the middle of the past century, the most popular qualitative explanation of turbulence had 
been the formation of an “energy cascade” that would transfer energy from larger to smaller vortices. 
With our background, it is easier to retell that story in the time-domain language (with velocity v serving 

39 Note that the “dynamic” viscosity   participates in this number (and many other problems of fluid dynamics) 
only in the combination /  that thereby has deserved a special name of kinematic viscosity.  
40 For example, the values of  and  for water listed in Table 1 imply that for a few-meter object, Re > 1,000 at 
any speed above just ~1 mm/s.  
41 A rare exception is the relatively recent theoretical result by S. Orszag (1971) for the turbulence threshold in a 
flow of an incompressible fluid through a gap of thickness t between two parallel plane walls: Ret  5,772 (for l = 
t/2, v = vmax). However, this result does not predict the turbulence patterns at Re > Ret. 
42 The crucial condition of correct modeling is the equality of the Reynolds numbers (74) (and if relevant, also of 
the Froude numbers and/or the Mach numbers) of the object of interest and its model. 
43 See, e.g., P. A. Davidson, Turbulence, Oxford U. Press, 2004.  
44 The following famous quote is attributed to W. Heisenberg on his deathbed: “When I meet God, I will ask him 
two questions: Why relativity? And why turbulence? I think he will have an answer for the first question.” 
Though probably inaccurate, this story reflects rather well the understandable frustration of the fundamental 
physics community, known for their reductionist mentality, with the enormous complexity of phenomena which 
obey simple (e.g., Navier-Stokes) equations. 

Reynolds 
number 
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as the conversion factor), using the fact that in a rotating vortex each component of the particle radius-
vector oscillates in time, so that to some extent the vortex plays the role of an oscillatory motion mode. 
Let us consider the passage of a solid body between the two, initially close, small parts of fluid. The 
body pushes them apart, but after its passage these partial volumes are free to return to their initial 
positions. However, the domination of  inertia effects at motion with Re >> 1 means that the volumes 
continue to “oscillate” for a while about those equilibrium positions. (Since elementary volumes of an 
incompressible fluid cannot merge, these oscillations take the form of rotating vortices.)  

Now, from Sec. 4.8 we know that intensive oscillations in a system with quadratic nonlinearity,  
in this case provided by the convective term (v)v, are equivalent, for small perturbations, to the 
oscillation of the system parameters at the corresponding frequency. On the other hand, the discussion in 
Sec. 5.5 shows that in a system with two oscillatory degrees of freedom, a periodic parameter change 
with frequency p  may lead to non-degenerate parametric excitation of oscillations with frequencies 
1,2 satisfying relation 1 + 2 = p. Moreover, the spectrum of oscillations in such system also has 
higher combinational frequencies such as (p + 1),  thus pushing the oscillation energy up the 
frequency scale. In the presence of other oscillatory modes, these oscillations may in turn produce, via 
the same nonlinearity, even higher frequencies, etc. In a fluid, the spectrum of these “oscillatory modes” 
(actually, vortex structures) is essentially continuous, so that the above arguments make very plausible a 
sequential transfer of energy to a broad spectrum of modes - whose frequency spectrum is limited from 
above by the energy dissipation due to viscosity. When excited, these modes interact (in particular, 
phase-lock) through system’s nonlinearity, creating the complex motion we call turbulence.   

 Though not having much quantitative predictive power, such handwaving explanations, which 
are essentially based on the excitation of a large number of effective degrees of freedom, had been 
dominating the fluid dynamics reviews until the mid-1960s. At that point, the discovery (or rather re-
discovery) of quasi-random motion in classical dynamic systems with just a few degrees of freedom 
altered the discussion substantially. Since this phenomenon, called the deterministic chaos, extends well 
beyond the fluid dynamics, and I will devote to it a separate (albeit  short) next chapter, and in its end 
briefly return to the discussion of turbulence. 

 

8.7. Exercise problems 
 
 8.1. A solid round cylinder of radius r is let to float in a water 
inside the glass, also of a round cylindrical form with radius R - see 
Fig. on the right, which shows the water levels before and after the 
submersion, and some vertical dimensions of the system. Calculate the 
buoyant force F exerted by water on the floating body. 

 Hint: This is just a fast check whether the reader understands 
the Archimedes principle correctly. 
  
  
 8.2. Pressure P under a free water surface crudely obeys the Pascal law, Eq. (6). Find the first-
order corrections to this result, due to small compressibility of water. 
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 8.3. Find the stationary shape of the open surface of an incompressible, heavy fluid rotated about 
a vertical axis with a constant angular velocity   – see Fig. on the right. 
 

 
 
 
 
8.4.* Calculate the shape of the surface of an incompressible fluid of 

density  near a vertical plane wall, in a uniform gravity field – see Fig. on the 
right. In particular, find the height h of liquid’s rise at the wall surface as a 
function of the contact angle c. 
 

 
 
8.5.* A soap film with surface tension   is stretched between two 

similar, coaxial, thin, round rings of radius R, separated by distance d – see Fig. 
on the right. Neglecting gravity, calculate the equilibrium shape of the film, and 
the force needed for keeping it stretched. 
 

 
 
8.6. A solid sphere of radius R is kept in a steady, vorticity-free flow of an ideal incompressible 

fluid, with velocity v0. Find the spatial distribution of velocity and pressure, and in particular their 
extremal values. Compare the results with those obtained in Sec. 4 for a round cylinder. 
 

8.7.* A small source, located at distance d from a plane wall of a container 
filled with an ideal, incompressible fluid of density , injects additional fluid 
isotropically, at a constant mass current (“discharge”) Q  dM/dt – see Fig. on the 
right.  Calculate fluid’s velocity distribution, and its pressure on the wall, created 
by the flow. 
 Hint: Recall the charge image method in electrostatics,45 and contemplate 
its possible analog. 
 
  
 8.8. Derive Eq. (46) for surface waves on a finite-thickness layer of a heavy liquid. 
 
 8.9. Derive Eq. (48) for the capillary waves (“ripples”). 

 
 8.10.* Derive a 2D differential equation describing propagation of waves on the surface of a 
broad layer, of constant thickness h, of an ideal, incompressible fluid, and use it to calculate the longest 
standing wave modes and frequencies in a layer covering a spherical planet of radius R >> h. 

45 See, e.g., EM Secs. 2.6, 3.3, and 4.3. 
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 Hint: The second assignment requires some familiarity with the basic properties of spherical 
harmonics.46 

 
8.11. Calculate the velocity distribution and dispersion relation of waves propagating along the 

horizontal interface of two ideal, incompressible fluids of different densities. 
 
8.12. Calculate the energy of a monochromatic, plane surface wave on an, ideal, incompressible, 

deep fluid, and the power it carries (per unit width of wave’s front). 
 

 8.13. Use the finite-difference approximation for the Laplace operator, with mesh h = a/4, to find 
the maximum velocity and total mass flow Q of a viscous, incompressible fluid through a long pipe with 
a square-shaped cross-section of side a. Compare the results with those described in Sec. 4 for: 

(i) the same problem with mesh h = a/2, and  
(ii) a pipe with circular cross-section of the same area. 
 
 
8.14. A layer, of thickness h, of a heavy, viscous, 

incompressible fluid flows down a long and wide incline plane, 
under its own weight – see Fig. on the right. Find the stationary 
velocity distribution profile, and the total fluid discharge (per unit 
width.) 
 
 
 8.15. Calculate the drag torque exerted on a unit length of a solid round cylinder of radius R that 
rotates about its axis, with angular velocity , inside an incompressible fluid with viscosity . 

 
 8.16. Calculate the tangential force (per unit area) exerted by incompressible fluid, with density 
 and viscosity , on a broad solid plane placed over its surface and forced to oscillate, along the 
surface, with amplitude a and frequency . 
 

8.17. A massive barge, with a flat 
bottom of area A,  floats in shallow water, 
with clearance h << A1/2 (see Fig. on the 
right). Calculate the time dependence of 
barge’s velocity V(t), and the water velocity 
profile, after the barge’s engine has been 
turned off. Discuss the limits of large and 
small values of the dimensionless parameter M/Ah. 

 
 8.18.* Derive a general expression for mechanical energy loss rate in a viscous incompressible 
fluid that obeys the Navier-Stokes equation, and use this expression to calculate the attenuation 
coefficient of surface waves, assuming that the viscosity is small (quantify this condition). 

 

46 See, e.g., EM Sec. 2.5(iv) and/or QM Sec. 3.6. 
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 8.19. Use the Navier-Stokes equation to calculate the attenuation coefficient for a plane, 
sinusoidal acoustic wave. 
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Chapter 9. Deterministic Chaos 

This chapter gives a very brief review of chaotic phenomena in deterministic maps and dynamic systems 
with and without dissipation, and an even shorter discussion of the possible role of chaos in fluid  
turbulence.  
 

9.1. Chaos in maps 

Chaotic behavior of dynamic systems1 (sometimes called the deterministic chaos) has become 
broadly recognized2 after the publication of a 1963 paper by E. Lorenz who was examining numerical 
solutions of the following system of three nonlinear, ordinary differential equations, 
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     (9.1) 

as a rudimentary model for heat transfer through a horizontal liquid layer between two solid plates. 
(Experiment shows that if the bottom plate is kept hotter than the top one, the liquid may exhibit 
turbulent convection.) He has found that within a certain range of constants a1,2,3, the solutions of Eq. (1) 
follow complex, unpredictable, non-repeating trajectories in the 3D q-space. Moreover, the resulting 
functions qj(t) (where j = 1, 2,3) are so sensitive to initial conditions qj(0) that at sufficiently large times 
t, solutions corresponding to slightly different initial conditions are completely different.  

 Very soon it was realized that such behavior is typical for even simpler mathematical objects 
called maps, so that I will start my discussion of chaos from these objects. A 1D map is essentially a rule 
for finding the next number qn+1 of a sequence, in the simplest case using only its last known value qn, in 
a discrete series numbered by integer index n. The most famous example is the so-called logistic map:3 

       ).1()(1 nnnn qrqqfq       (9.2) 

 The basic properties of this map may be understood using the (hopefully, self-explanatory) 
graphical presentation shown in Fig. 1.4  One can readily see that at r < 1 (Fig. 1a) the sequence rapidly 
converges to the trivial fixed point q(0) = 0, because each next value of q is less than the previous one. 
However, if r is increased above 1 (as in the example shown in Fig. 1b), fixed point q(0) becomes 
unstable. Indeed, at qn << 1, map (2) yields qn+1 = rqn, so that at r > 1, values qn grow with each 
iteration. Instead of the unstable point q(0) = 0, in the range 1 < r < r1, where r1  3, the map has a stable 
fixed point, q(1), that may be found by plugging this value into both parts of Eq. (2):

1  In this context, this term is understood as “systems described by deterministic differential equations”. 
2 Actually, the notion of quasi-random dynamics due to the exponential divergence of trajectories may be traced 
back at least to (apparently independent) works by J. Poincaré in 1892 and by J. Hadamard in 1898. Citing 
Poincaré, “…it may happen that small differences in the initial conditions produce very great ones in the final 
phenomena. […] Prediction becomes impossible.” 
3 Its chaotic properties were first discussed in 1976 by R. May, though the map itself is one of simple ecological  
models repeatedly discussed earlier, and may be traced back at least to the 1838 work by P. Verhulst.  
4 Since the maximum value of function f(q), achieved at q = ½, equals r/4, the mapping may be limited  by 
segment x = [0, 1], if parameter r is between 0 and 4. Since all interesting properties of the map, including chaos, 
may be found within these limits, I will focus on this range. 
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      ),1( )1()1()1( qrqq       (9.3) 

giving q(1) = (1 – 1/r) – see the left branch of the plot shown in Fig. 2. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 At r > r1 = 3, the plot gets thicker: here the fixed point q(1) also becomes unstable. To prove that, 
let us take nn qqq ~)1(  , assume that deviation nq~  from the fixed point q(1) is small, and linearize map 

(3) in nq~ , just as we repeatedly did for differential equations earlier in this course. The result is 

    nnnqqn qrqqrq
dq

df
q ~)2(~)21(~~ )1(

1 )1( 
 .   (9.4) 

It shows that 0 < 2 – r  < 1, i.e. 1 < r  < 2, deviations nq~ decrease monotonically. At  -1 < 2 – r < 0, i.e. 

in the range 2 < r  < 3, the deviation signs alternate but the magnitude still decreases (as in a stable focus 
– see Sec. 4.6). However, at -1 < 2 – r, i.e. r > r1 = 3, the deviations are growing by magnitude, while 
still changing sign, at each step. Since Eq. (2) has no other fixed points, this means that at n  , values 
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Fig. 9.2. Fixed points and 
chaotic regions of the logistic 
map. The plot is adapted from 
http://en.wikipedia.org/wiki/Lo
gistic_map; a very nice live 
simulation of the map is also 
available on this Web site. 

Fig. 9.1. Graphical analysis of the logistic map for: (a) r  < 1 and (b) r > 1. 
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qn do not converge to one point; rather, within the range r1 < r < r2, they approach a limit cycle of 
alternation of two points, q+

(2) and q-
(2) that satisfy the following system of algebraic equations 

     )( )2()2(
  qfq , )( )2()2(

  qfq .     (9.5) 

(These points are also plotted in Fig. 2, as functions of parameter r.) What has happened at point r1 is 
called the period-doubling bifurcation. The story repeats at r = r2 = 1 + 6  3.45 where the system goes 
from the 2-point limit cycle to a 4-point cycle, then at point r = r3  3.54 at that the limit cycle becomes 
consisting of 8 alternating points, etc. Most remarkably, the period-doubling bifurcation points rn, at that 
the number of points in the limit cycle doubles from 2n-1 points to 2n points, become closer and closer. 
Numerical calculations have shown that these points obey the following asymptotic behavior: 

            ...6692.4...,5699.3  where,   


r
C

rr
nn    (9.6) 

Parameter  is called the Feigenbaum constant; for other maps, and some dynamic systems  (see the 
next section), period-doubling sequences follow a similar law, but with different parameter .  

 More important for us, however, is what happens at r > r. Numerous numerical experiments, 
repeated with increasing precision,5 have confirmed that here the system is fully disordered, with no 
reproducible limit cycle, though (as Fig. 2 shows) at r  r, all sequential values qn are still confined to a 
few narrow regions.6 However, as parameter r is increased well beyond r, these regions broaden and 
merge. This the so-called full, or well-developed chaos, with no apparent order at all.7   

 The most important feature of chaos (in this and any other system) is the exponential divergence 
of trajectories. For a 1D map, this means that even if the initial conditions q1 in two map 
implementations differ by a very small amount q1, the difference qn between the corresponding 
sequences qn is growing (on the average) exponentially with n. Such exponents may be used to 
characterize chaos. Indeed, let us assume that q1 is so small that N first values qn are relatively close to 
each other. Then an evident generalization of the first of Eqs. (4) to an arbitrary point qn is 

     .,ΔΔ 1 nqqnnnn dq

df
eqeq        (9.7) 

Using this result iteratively for N steps, we get 

           



N

n
n

N
N

n
nN e

q

q
eqq

111
1 ln

Δ

Δ
ln that  so,ΔΔ .   (9.8)   

5 The reader should remember that just as the usual (“nature”) experiments, numerical experiments also have 
limited accuracy, due to unavoidable rounding errors. 
6 The geometry of these regions are essentially fractal, i.e. has a dimensionality intermediate between 0 (which 
any final set of geometric points would have) and 1 (pertinent to a 1D continuum). An extensive discussion of 
fractal geometries, and their relation to the deterministic chaos may be found, e.g., in the book by B. B. 
Mandelbrot, The Fractal Geometry of Nature,  W. H. Freeman, 1983. 
7 This does not mean that the chaos development is a monotonic function of r. As Fig. 2 shows, within certain 
intervals of this parameter chaos suddenly disappears, being replaced, typically, with a few-point limit cycle, just 
to resume on the other side of the interval. Sometimes (but not always!) the “route to chaos” on the borders of 
these intervals follows the same Feigenbaum sequence of period-doubling bifurcations.  

Feigenbaum 
bifurcation 
sequence 
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 Numerical experiments show that in most chaotic regimes, at N   such a sum fluctuates about 
an average, which grows as N, with parameter 

         



N

n
ne

NNq
11Δ
ln

1
limlim 0 ,    (9.9) 

called the Lyapunov exponent,8 being independent on the initial conditions. The bottom panel in Fig. 3 
shows it as a function of the parameter r for the logistic map (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Note that at r < r,  is negative, indicating trajectory’s stability, besides points r1, r2, … where 
 would become positive if the limit cycle change had not brought it back to the negative territory. 
However, at r > r,   becomes positive, returning the negative values only in limited intervals of stable 
limit cycles. It is evident that in numerical experiments (which dominate the studies of the deterministic 
chaos) the Lyapunov exponent may be used as a good measure of chaos’ “depth”.9 

 Despite all the abundance of results published for particular maps,10 and several interesting 
general observations (like the existence of the Feigenbaum bifurcation sequences), to the best of my 
knowledge nobody can yet predict the patterns like those shown in Fig. 2 and 3, from just looking at the 
map rule itself, i.e. without carrying out actual numerical experiments with in. Unfortunately the 
situation with chaos in other systems is not much better. 

 

8 After A. Lyapunov (1857-1918), famous for his studies of stability of dynamic systems.  
9 N-dimensions maps, which relate N-dimensional vectors rather than scalars, may be characterized by N 
Lyapunov exponents rather than one. In order to have chaotic behavior, it is sufficient for just one of them to 
become positive. For such systems, another measure of chaos, the Kolmogorov entropy, may be more relevant. 
This measure, and its relation with the Lyapunov exponents, are discussed, e.g., in SM Sec. 2.2. 
10 See, e.g., Chapters 2-4 in H. G. Schuster and W. Just, Deterministic Chaos, 4th ed., Wiley-VCH, 2005, or 
Chapters 8-9 in J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos, 2nd ed., Wiley, 2002. 

Fig. 9.3. The Lyapunov exponent for 
the logistic map. Adapted from the 
monograph by Schuster and Just (cited 
below). © WileyVCH Verlag GmbH & 
Co. KGaA. 
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9.2. Chaos in dynamic systems 

 Proceeding to the discussion of chaos in dynamic systems, it is more natural, with our 
background,  to illustrate this discussion not with the Lorenz’ system Eqs. (1), but with the system of 
equations describing a dissipative pendulum driven by a sinusoidal external force, which was repeatedly 
discussed in Chapter 4. Introducing two new variables, the normalized momentum 0/qp   and the 

external force’s full phase   t, we may rewrite Eq. (4.42) describing the pendulum, 

                 tfqqq  cossin2 0
2
0   ,    (9.10a) 

in a form similar to Eq. (1), i.e. as a system of three first-order ordinary differential equations:  

             

.

,cos)/(2sin 000

0

















fpqp

pq ,
    (9.10b) 

 Figure 4 several results of numerical solution of Eq. (10).11 In all cases, the internal parameters 
  and 0 of the system, and the external force amplitude  f0 are fixed, while the external frequency  is 
gradually changed. For the case shown on the top panel, the system still tends to a stable periodic 
solution, with low contents of higher harmonics. If the external force frequency is reduced by a just few 
percent, the 3rd subharmonic may be excited. (This effect has already been discussed in Sec. 4.8 – see, 
e.g., Fig. 4.15.) The next panel shows that just a very small further reduction of frequency leads to a new 
tripling of the period, i.e. the generation of a complex waveform with the 9th subharmonic. Finally, even 
a minor further change of parameters leads to oscillations without any visible period, e.g., chaos. 

 In order to trace this transition, direct observation of the oscillation waveforms q(t) is not very 
convenient, and trajectories on the phase plane [q, p] also become messy if plotted for many periods of 
the external frequency. In situations like this, the Poincaré (or “stroboscopic”) plane, already discussed 
in Sec. 4.6, is much more useful. As a reminder, this is essentially just the phase plane [q, p], but with 
the points highlighted only once a period, e.g., at   = 2n,  with n = 1, 2, …  On this plane, periodic 
oscillations of frequency   are presented just as one fixed point – see, e.g. the top panel in the right 
column of Fig. 4. The beginning of the 3rd subharmonic generation, shown on the next panel, means 
tripling of the oscillation period, and is reflected on the Poincaré plane by splitting the fixed point into 
three. It is evident that this transition is similar to the period-doubling bifurcation in the logistic map, 
besides the fact (already discussed in Sec. 4.8) that in systems with an asymmetric nonlinearity, such as 
the pendulum (10), the 3rd subharmonic is easier to excite. From this point, the 9th harmonic generation 
(shown on the 3rd panel of Fig. 4), i.e. one more splitting of the points on the Poincaré plane, may be 
understood as one more step on the Feigenbaum-like route to chaos – see the bottom panel of that figure. 

So, the transition to chaos in dynamic systems may be at least qualitatively similar to than in 1D 
maps, with the similar law (6) for the critical values of some parameter r of the system (in Fig. 4, 
frequency ), though generally with a different value of exponent . Moreover, it is evident that we can 
always consider the first two differential equations of system (10b) as a 2D map that relates the vector 
{qn+1, pn+1} of the coordinate and velocity, measured at   = 2(n + 1), with the previous value {qn, pn} 

11 In the actual simulation, a small term q, with  << 1, has been added to the left-hand part of this equation. This 
term slightly somewhat tames the trend of the solution to spread along q axis, and makes the presentation of 
results easier, without affecting the system dynamics too much. 
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of that vector (reached at    = 2n). Unfortunately this similarity also implies that chaos in  dynamical 
systems is at least as complex, and it as little understood, as in maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.4. Oscillations in a pendulum with weak damping, δ/ω0 = 0.1, driven by a sinusoidal external 
force with a fixed effective amplitude f0/0

2 = 1, and several close values of the frequency (listed on 
the panels). Left column: oscillation waveforms q(t) recorded after certain initial transient intervals. 
Right column: representations of the same processes on the Poincaré plane of variables [p, q]. 
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 For example, Fig. 5 shows (a part of) the state diagram of the externally-driven pendulum, with 
the red bar marking the route to chaos traced in Fig. 4, and shading/hatching styles marking different 
regimes. One can that the pattern is at least as complex as that shown in Figs. 2 and 3, and besides a few 
features,12 is equally unpredictable from the form of the equation. 

 

 

 

 

 

 

 

 

 

 

 

  

 Are there any valuable general results concerning chaos in dynamic systems? The most 
important (though an almost evident) result is that this phenomenon is impossible in any system 
described by one or two first-order differential equations with right-hand parts independent of time. 
Indeed, let us start with a single equation 

          ),(qfq        (9.11) 

where f(q) is any single-valued function. This equation may be directly integrated to give 

            const,
)(
 

q

q'f

dq'
t      (9.12) 

showing that the relation between q and t is unique and hence does not leave place for chaos.  

 Now, let us explore the system of two such equations: 

      
).,(

),,(

2122

2111

qqfq

qqfq







     (9.13) 

Consider its phase plane shown schematically in Fig. 6. In a “usual” system, the trajectories approach 
either some fixed point (Fig. 6a) describing static equilibrium, or a limit cycle (Fig. 6b) describing 
periodic oscillations. (Both notions are united by the term attractor, because they “attract” trajectories 
launched from various initial conditions.) However, phase plane trajectories of a chaotic system of 

12 In some cases, it is possible to predict a parameter region where chaos cannot happen, due to lack of any 
instability-amplification mechanism. Unfortunately, typically the analytically predicted boundaries of such region 
form a rather loose envelope of the actual (numerically simulated) chaotic regions. 

Fig. 9.5. Phase diagram of an externally-driven pendulum with 
δ/0 = 0.1. Regions of oscillations with the basic period are not 
shaded. The notation for other regions is as follows. Doted: 
subharmonic generation; cross-hatched: chaos; hatched: chaos 
or basic period (depending on the initial conditions); hatch-
dotted: basic period or subharmonics. Solid lines show 
boundaries of single-regime regions, while dashed lines are 
boundaries of regions in which several types of motion are 
possible, depending on history. (Figure courtesy V. Kornev.) 
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equations that  describe real physical variables (which cannot tend to infinity), should be confined to a 
limited phase plane area, and simultaneously cannot start repeating each other. (This topology is 
frequently called the strange attractor.) For that, 2D trajectories need to cross – see, e.g., point A in Fig. 
6c.  

 

 

 

 

 

 

 

 

 However, in the case described by Eqs. (13), this is clearly impossible, because according to 
these equations, the tangent slope on the phase plane is a unique function of point coordinates{q1, q2}: 

      .
),(

),(

212

211

2

1

qqf

qqf

dq

dq
      (9.14) 

Thus, in this case the deterministic chaos is impossible.13 It becomes, however, readily possible if the 
right-hand parts of a system similar to Eq. (13) depend either on other variables of the system or time. 
For example, if we consider the first two differential equations of system (10b), in the case f0 = 0 they 
have the structure of the system (13) and hence chaos is impossible, even at δ < 0 when (as we know 
from Sec. 4.4) the system allows self-excitation of oscillations – leading to a limit-cycle attractor. 
However, if  f0  0, this argument does not work any longer and (as we have already seen) the system 
may have a strange attractor – which is, for dynamic systems, a synonym for the deterministic chaos. 
Thus, chaos is possible in dynamic systems that may be described by three or more differential 
equations of the first order.14  

 

9.3. Chaos in Hamiltonian systems 

 The last analysis is of course valid for Hamiltonian systems, which are just a particular type of 
dynamic systems. However, one may wonder whether these systems, that feature at least one first 
integral of motion, H = const, and hence are more “ordered” than the systems discussed above, can 
exhibit chaos at all. The question is yes, because such systems still can have mechanisms for an 
exponential growth of a small initial perturbation.  

13 A mathematically-strict formulation of this statement is called the Poincaré-Bendixon theorem, which was 
proved by I. Bendixon as early as in 1901. 
14 Since a typical dynamic system with one degree of freedom is described by two such equations, the number of 
the first-order equations describing a dynamic system is sometimes called the number of half-degrees of freedom. 
This notion is very useful and popular in statistical mechanics – see, e.g., SM Sec. 2.2 and on. 
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Fig. 9.6. Attractors in dynamical systems: (a) a fixed point, (b) a limit cycle, and (c) a strange attractor. 
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 As the simplest way to show it, let us consider a so-called mathematical billiard, i.e. a ballistic 
particle (a “ball”) moving freely by inertia on a horizontal plane surface (“table”) limited by rigid 
impenetrable walls. In this idealized model of the usual game of billiards, ball’s velocity v is conserved 
when it moves on the table, and when it runs into a wall, the ball is elastically reflected from it as from a 
mirror,15 with the reversal of the sign of the normal velocity vn, and conservation of the tangential 
velocity v, and hence without any loss of its kinetic (and hence the full) energy 

               222

22  nv
m

v
m

THE .    (9.15) 

This model, while being a legitimate 2D dynamic system,16 allows geometric analyses for several simple 
table shapes. The simplest case is a rectangular billiard of area ab (Fig. 7), whose analysis may be 
readily carried out by the replacement of each ball reflection event with the mirror reflection of the table 
in that wall – see dashes lines in panel (a).  

 

 

 

 

 

 

  

  

 Such analysis (left for reader’ pleasure :-) shows that if the tangent of the ball launching angle  
is commensurate with the side length ratio,  

            ,tan
a

b

n

m
      (9.16) 

where n and m are non-negative integers without common integer multipliers, the ball returns exactly to 
the launch point O, after bouncing m times from each wall of length a, and n times from each wall of 
length b. (Red lines in Fig. 7a show an example of such trajectory for n = m = 1, while blue lines, for m 
= 3, n = 1.) Thus the larger is the sum (m + n), the more complex is such closed trajectory - “orbit”.  

 Finally, if (n + m)  , i.e. tan  and b/a are incommensurate (meaning that their ratio is an 
irrational number), the trajectory covers all the table area, and the ball never returns exactly into the 
launch point. Still, this is not the real chaos. Indeed, a small shift of the launch point shifts all the 
trajectory fragments by the same displacement. Moreover, at any time t, each of Cartesian components 
vj(t) of the ball’s velocity (with coordinate axes parallel to the table sides) may take only two values, 
vj(0), and hence may vary only as much as the initial velocity is being changed.  

15 A more scientific-sounding name for such a reflection is specular (from Latin “speculum” meaning a metallic 
mirror). 
16 Indeed, it is fully described by Lagrangian function L = mv2/2 – U(), with U() = 0 for 2D radius-vectors  
belonging to the table area, and U() = + outside of the area. 

a

b

0


O O

(a)          (b) 

Fig. 9.7. Ball motion on 
a rectangular billiard at 
(a) a commensurate, and 
(b) an incommensurate 
launch angle.  
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 In 1963, Ya. Sinai showed that the situation changes completely if an additional wall, in the 
shape of a circle, is inserted into the rectangular billiard (Fig. 8). For most initial conditions, ball’s 
trajectory eventually runs into the circle (see the red line on panel (a) as an example), and the further 
trajectory becomes essentially chaotic. Indeed, let us consider ball’s reflection from the circle-shaped 
wall – Fig. 8b. Due to the conservation of the tangential velocity, and the sign change of the normal 
velocity component, the reflection obeys the mechanical analog of the Snell law (cf. Fig. 7.12 and its 
discussion): r = i. Figure 8b shows that as the result, a small difference   between the angles of two 
close trajectories (as measured in the lab system), doubles by magnitude at each reflection from the 
curved wall. This means that the small deviation grows along the ball trajectory as 

        2ln)0(2)0(~)( NeN N   ,    (9.17) 

where N is the number of reflections from the convex wall.17  As we already know, such exponential 
divergence of trajectories, with a positive Lyapunov exponent, is the sign of deterministic chaos.18 

   

 

 

 

 

 

 

  

 The most important new feature of the dynamic chaos in Hamiltonian systems is its dependence 
on initial conditions. (In the systems discussed in the previous two previous sections, that lack the 
integrals of motion, the initial conditions are rapidly “forgotten”, and the chaos is usually characterized 
after cutting out the initial transient period – see, e.g., Fig. 4.) Indeed, even a Sinai billiard allows 
periodic motion, along closed orbits, at certain initial conditions – see the blue and green lines in Fig. 8a 
as examples. Thus the chaos “depth” in such systems may be characterized by the “fraction”19 of the 
phase space of initial parameters (for a 2D billiard, the 3D space of initial values of x, y, and ) resulting 
in chaotic trajectories. 

 This conclusion is also valid for Hamiltonian systems that are met in experiments more 
frequently than the billiards, for example, coupled nonlinear oscillators without damping. Perhaps, the 

17 Superficially, Eq. (17) is also valid for a plane wall, but as was discussed above, a billiard with such walls 
features a full correlation between sequential reflections, so that angle  always returns to its initial value. In a 
Sinai billiard, such correlation disappears. Because of that, concave walls may also make a billiard chaotic. A 
famous example is the stadium billiard, suggested by L. Bunimovich, with two straight, parallel walls connecting 
two semi-circular, concave walls. Another example, which allows a straightforward analysis, is the Hadamard 
billiard: an infinite (or rectangular) table with non-horizontal surface of negative curvature. 
18 Billiards are also a convenient platform for a discussion of a conceptually important issue of quantum 
properties of classically chaotic systems (sometimes improperly named “quantum chaos”). 
19 Actually, quantitative characterization of the fraction is not trivial, because it may have fractal dimensionality. 
Unfortunately, due to lack of time I have to refer the reader interested in this issue to special literature, e.g., the 
monograph by B. Mandelbrot (cited above) and references therein. 

(a)         (b) 

Fig. 9.8. (a) Motion on a Sinai 
billiard table, and (b) the 
mechanism of the exponential 
divergence of close trajectories. 
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earliest and the most popular example is the so-called Hénon-Heiles system,20 which may be descrbed 
by the following Lagrangian function: 

           2
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It is straightworward to use Eq. (18) to derive the Lagrangian equations of motion, 
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and find its first integral of motion (physically, the energy conservation law): 
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 In the conext of our discussions in Chapter 4 and 5, Eqs. (19) may be readily interpreted as those 
describing two oscillators, with small-oscillation eigenfrequencies 1 and 2, nonlinearly coupled only 
as described by the terms in the right-hand parts of the equations. This means that as the oscillation 
amplitudes A1,2, and hence the total energy E of the system, tend to zero, the oscillator subsystems are 
virtually independent, each performing sinusoidal oscillations at its own frequency. This observation 
suggestes a convenient way to depict the system motion.21 Let us consider a Poincaré plane for one of 
the oscillators (say, with coordinate q2), similar to that discussed in Sec. 2 above, with the only 
difference is that (because of the absence of an explicit function of time in system’s equations), the 
trajectory on the [ 22 , qq  ] plane is highlighted at the moments when q1 = 0.  

 Let us start from the limit A1,2  0, when oscillations of q2 are virtually sinusoidal.  As we 
already know (see Fig. 4.9 and its discussion), if the representation point highlighting was perfectly 
synchronous with frequency 2 of the oscillations, there would be only one point on the Poincaré plane 
– see, e.g. the right top plane in Fig. 4. However, at the q1 – initiated highlighting, there is not such 
synchronism, so that each period, a different point of the elliptical (at the proper scaling of the velocity, 
circular) trajectory is highlighted, so that the resulting points, for certain initial conditions, reside on a 
circle of radius A2. If we now vary the initial conditions, i.e. redistribute the initial energy between the 
oscillators, but keep the total energy E constant, on the Poincaré plane we get a series of ellipses.  

 Now, if the initial energy is increased, nonlinear interaction of the oscillations start to deform 
these ellipses, causing also their crossings – see, e.g., the top left panel of Fig. 9. Still, below a certain 
threshold value of E, all Poincaré points belonging to a certain initial condition sit on a single closed 

20 It was first studied in 1964 by M. Hénon and C. Heiles as a simple model of star rotation about a gallactic 
center. Most studies of this equation have been carried out for the following particular case: m2 = 2m1, m11

2= 
m22

2. In this case, introducing new variables x  q1,  y  q2,  and   1t, it is possible to rewrite Eqs. (18)-(20) 
in parameter-free forms. All the results shown in Fig. 9 below are for this case. 
21 Generally, it has a trajectory in 4D space, e.g., that of coordinates q1,2 and their time derivatives, although the 
first integral of motion (20) means that for each fixed energy E, the motion is limited to a 3D sub-space. Still, this 
is too much for convenient representation of the motion. 

Hénon- 
Heiles  

system 
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contour. Moreover, these contours may be calculated approximately, but with a pretty good accuracy, 
using a straighforward generalization of the small parameter method discussed in Sec. 4.2.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 However, starting from some value of energy, certain initial conditions lead to series of points 
scattered over final-area parts of the Poincaré plane – see the top right panel of Fig. 9. This means that 
the corresponding oscillations q2(t) do not repeat from one (quasi-) period to the next one – cf. Fig. 4 for 
the dissipative, forced pendulum. This is chaos.23 However, some other initial conditions still lead to 
closed contours.  This feature is similar to Sinai billiards, and is typical for Hamiltonian systems. As the 
energy is increased, the larger and larger part of the Poincaré plane belongs to the chaotic motion, 
signifying deeper and deeper chaos. 

 

22 See, e.g., M. V. Berry, in: S. Jorna (ed.), Topics in Nonlinear Dynamics, AIP Conf. Proc. No. 46, AIP, 1978, 
pp. 16-120. 
23 This fact complies with the necessary condition of chaos, discussed in the end of Sec. 2, because Eqs. (19) may 
be rewritten as a system of four differential equations of the first order. 

Fig. 9.9. Poincaré planes of the Hénon- 
Heiles system (19), in notation y  q2, for three 
values of the dimensionless energy e  E/E0, 
with E0  m11

2/2.  Adapted from M. 
Hénon and C. Heiles, The Astron. J. 69, 73 
(1964). © AAS. 
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9.4. Chaos and turbulence 

 This extremely short section consists of essentially just one statement, extending the discussion 
in Sec. 8.5. The (re-) discovery of the deterministic chaos in systems with just a few degrees of freedom 
in the 1960s changed the tone of debates concerning origins of turbulence very considerably. At first, an 
extreme point of view that equated the notions of chaos and turbulence, became the debate’s favorite.24  
However, after an initial excitement, a significant evidence of the Landau-style mechanisms, involving 
many degrees of freedom, has been rediscovered and could not be ignored any longer. To the best 
knowledge of this author, who is a very distant albeit interested observer of that field, most experimental 
and numerical-simulation data carry features of both mechanisms, so that the debate continues.25 Due to 
the age difference, most readers of these notes have much better chances than the author to see where 
will this discussion end (if it does :-).26 

 

9.5. Exercise problems 

9.1. Generalize the reasoning of Sec. 1 to an arbitrary 1D map qn+1 = f(qn), with function f(q) 
differentiable at all points of interest. In particular, derive the condition of stability of an N-point limit 
cycle q(1)  q(2)  … q(N)  q(1).  
 
 9.2. Use the stability condition, derived in Problem 9.1, to analyze chaos excitation in the so-
called tent map: 
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 9.3. A dynamic system is described by the following system of ordinary differential equations: 
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Can it exhibit chaos at some set of constant parameters a1-a4? 
 
 9.4. A periodic function of time has been added to the right-hand part of the first equation of the 
system  considered in the previous problem. Is chaos possible now? 

24 An important milestone on that way was the work by S. Newhouse et al.,  Comm. Math. Phys. 64, 35 (1978), 
who proved the existence of a strange attractor in a rather abstract model of fluid flow. 
25 See, e.g., U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge U. Press, 1996.  
26 The reader interested in the deterministic chaos as such, may also like to have a look at a very popular book by 
S. Strogatz, Nonlinear Dynamics and Chaos, Westview, 2001. 
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Chapter 10. A Bit More of Analytical Mechanics 

This concluding chapter reviews two alternative approaches to analytical mechanics, whose main 
advantage is a closer parallel to quantum mechanics in general and to its quasiclassical (WKB) 
approximation in particular. One of them, the Hamiltonian formalism, is also used to derive an 
important asymptotic result, the adiabatic invariance, for classical systems with slowly changing 
parameters.  

 

10.1. Hamilton equations 

Throughout this course we have seen how useful the analytical mechanics, in its Lagrangian 
form, may be invaluable for solving various particular problems of classical mechanics. Now let us 
discuss several alternative formulations1 that may not be much more useful for this purpose, but shed 
light on possible extensions of classical mechanics, most importantly to quantum mechanics. 

 As was already discussed in Sec. 2.3, the partial derivative jj qLp  /  participating in the 

Lagrange equations (2.19) 

      ,0







jj q

L

q

L

dt

d


     (10.1) 

may be considered as the generalized momentum corresponding to generalized coordinate qj, and the 
full set of this momenta may be used to define the Hamiltonian function (2.32): 

                
j

jj LqpH  .     (10.2) 

Now let us rewrite the full differential of this function2 in the following form:  
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    (10.3) 

According to the definition of the generalized momentum, the second terms of each sum over j cancel, 
while according to the Lagrange equation (1), the derivative jqL  /  is just jp , so that 

             




j

jjjj dqpdpqdt
t

L
dH  .    (10.4) 

 So far, this is just a universal identity. Now comes the main trick of Hamilton’s approach: let us 
consider H a function of the following independent arguments: time t, the generalized coordinates qj, 

1 Due to not only W. Hamilton (1805-1865), but also and C. Jacobi (1804-1851).  
2 Actually, this differential has already been used in Sec. 2.3 to derive Eq. (2.35). 
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and the generalized momenta pj (rather than generalized velocities). With this commitment, the general 
rule of differentiation of a function of several arguments gives 
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dp
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dt

t

H
dH ,    (10.5) 

where dt, dqj, and dpj are independent differentials. Since Eq. (5) should be valid for any choice of these 
argument differentials, it should hold in particular if the differentials correspond to the real law of 
motion, for which Eq. (4) is valid as well. The comparison of Eqs. (4) and (5) gives us three relations: 
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      (10.6) 
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      (10.7) 

Comparing the first of them with Eq. (2.35), we see that 

          ,
t

H

dt

dH




       (10.8) 

meaning that function H(t, qj, pj) can change in time only via its explicit dependence on t. Eqs. (7) are 
even more substantial: provided that such function H(t, qj, pj) has been calculated, they give us two first-
order differential equations (called the Hamilton equations) for the time evolution of the generalized 
coordinate and generalized momentum of each degree of freedom of the system.3  

Let us have a look at these equations for the simplest case of a system with one degree of 
freedom, with the simple Lagrangian function (3.3): 

           ).,(
2 ef

2ef tqUq
m

L        (10.9) 

In this case, qmqLp  ef/  , and ),(2/ ef
2

ef tqUqmLqpH   . In order to honor our new 

commitment, we need to express the Hamiltonian function explicitly via t, q and p (rather than q ): 

            ).,(
2 ef

ef

2

tqU
m

p
H       (10.10) 

Now we can spell out Eqs. (7) for this particular case: 

      ,
efm

p

p

H
q 




      (10.11) 

3 Of course, the right-hand part of each equation (7) generally can include coordinates and momenta of other 
degrees of freedom as well, so that the equations of motion for different j are generally coupled. 
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              .ef
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      (10.12) 

 While the first of these equations just repeats the definition of the generalized momentum 
corresponding to coordinate q, the second one gives the equation of momentum change. Differentiating 
Eq. (11) over time, and plugging Eq. (12) into the result, we get: 

           .
1 ef

efef q
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mm

p
q







      (10.13) 

So, we have returned to the same equation (3.4) that had been derived from the Lagrangian approach. 

 Thus, the Hamiltonian formalism does not give much new for the solution of most problems of 
classical mechanics. (This is why I have postponed its discussion until the very end of this course.) 
Moreover, since the Hamiltonian function H(t, qj, pj) does nor include generalized velocities explicitly, 
the phenomenological introduction of dissipation in this approach is less straightforward than that in the 
Lagrangian equations whose precursor form (2.17) is valid for dissipative forces as well. However, the 
Hamilton equations (7), which treat the generalized coordinates and momenta in a manifestly symmetric 
way, are aesthetically appealing and heuristically fruitful. This is especially true in the cases where these 
arguments participate in H in a similar way. For example, for the very important case of a dissipation-
free harmonic oscillator, for which Uef = efq

2/2, Eq. (10) gives the famous symmetric form 
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    (10.14) 

The Hamilton equations (7) for this system preserve the symmetry, especially evident if we introduce 
the normalized momentum  Ñ   p/mef0 (already used in Secs. 4.3 and 9.2): 

           ., 00 q
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d
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Ñ      (10.15) 

 More practically, the Hamilton approach gives additional tools for the search for the integrals of 
motion. In order to see that, let us consider the full time derivative of an arbitrary function f(t, qj, pj): 
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Plugging in jq  and jp  from the Hamilton equations (7), we get 
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     (10.17) 

where the last term in the right-hand part is the so-called Poisson bracket4 that is defined, for two 
arbitrary functions f(t, qj, pj) and g(t, qj, pj), as 

               .,  
























j jjjj q
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fg     (10.18) 

4 Named after S. Poisson - of the Poisson equation and the Poisson statistical distribution fame. 
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From this definition, one can readily verify that besides evident relations {f, f} = 0 and {f, g} = - {g, f}, 
the Poisson brackets obey the following important Jacobi identity: 

                  .0,,,,,,  gfhfhghgf     (10.19) 

 Now let us use these relations for a search for integrals of motion. First, equation (17) shows that 
if a function f does not depend on time explicitly, and 

           ,0, fH       (10.20) 

then df/dt = 0, i.e. function f  is an integral of motion. 

 Moreover, if we already know two integrals of motion, say f and g, then function 

          gfF ,       (10.21) 

is also an integral of motion – the so-called Poisson theorem. In order to prove it, we may use the Jacobi 
identity (19) with h = H. Now using Eq. (17) to express the Poisson brackets {g, H}, {H, g}, and {H,{f, 
g}} = {H, F} via the full and partial time derivatives of functions f , g, and F, we get 
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so that if f and g are indeed integrals of motion, i.e., df/dt = dg/dt = 0, then 
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  (10.23) 

Plugging Eq. (21) into the first term of the right-hand part of this equation, and differentiating it by 
parts, we get dF/dt = 0, i.e. F is indeed an integral of motion as well. 

 Finally, one more important role of the Hamilton formalism is that it allows one to trace the 
close connection between the classical and quantum mechanics. Indeed, using Eq. (18) to calculate the 
Poisson brackets of the generalized coordinates and momenta, we readily get  

           .,,0,,0, jj'j'jj'jj'j pqppqq     (10.24) 

In quantum mechanics,5 operators of these quantities (“observables”) obey commutation relations 

            ,ˆ,ˆ,0ˆ,ˆ,0ˆ,ˆ '''' jjjjjjjj ipqppqq      (10.25) 

where the definition of the commutator,   gffgfg ˆˆˆˆˆ,ˆ  , is to a certain extent 6 similar to that (18) of 
the Poisson bracket. We see that the classical relations (24) are similar to quantum-mechanical relations 
(25) if we following parallel has been made: 

                  fg
i

fg ˆ,ˆ,


 .     (10.26) 

5 See, e.g., QM Sec. 2.1. 
6 There is of course a conceptual difference between the “usual” products of function derivatives participating in 
the Poisson brackets, and the operator “products” (meaning their sequential action on a state vector – see, e.g., 
QM Sec. 4.1) forming the commutator.  

CM  QM 
relation 
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 This analogy extends well beyond Eqs. (24)-(25). For example, making replacement (26) in Eq. 
(17), we get 

            Hf
t

f
i

dt

fd
ifH

i
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f

dt

fd ˆ,ˆ
ˆˆ

  i.e.,ˆ,ˆ
ˆˆ









 


,   (10.27) 

which is the correct equation of operator evolution in the Heisenberg picture of quantum mechanics.7 

 This analogy implies, in particular, that the quantum-mechanical operators (and the matrices 
used for their representation in a particular basis) should satisfy the same identities including Eq. (17). 

 

10.2. Adiabatic invariance 

 One more application of the Hamiltonian formalism in classical mechanics is the solution of the 
following problem.8 Earlier in the course, we already studied some effects of time variation of 
parameters of a single oscillator (Sec. 4.5) and coupled oscillators (Sec. 5.5). However, those 
discussions were focused on the case when the parameter variation frequency is comparable with the 
initial oscillation frequency (or frequencies) of the system. Another practically important case is when 
some system’s parameter (let us call it ) is changed much more slowly (adiabatically9), 

         
T
1





,      (10.28) 

where T  is a typical time period of oscillations in the system. Let us consider a 1D system whose 

Hamiltonian H(q, p, ) depends on time only via the slow (28) evolution of parameter  = (t), and 
whose initial energy restricts system’s motion to a finite coordinate interval – see Fig. 3.2c.  

 Then, as we know from Sec. 3.3, if parameter  is constant, the system performs a periodic 
(though not necessarily sinusoidal) motion back and forth axis q, or, in a different language, along a 
closed trajectory on the phase plane [q, p] – see Fig. 1.10 According to Eq. (8), in this case H is constant 
on the trajectory. (In order to distinguish this particular value from the Hamiltonian function as such, I 
will  assume that this constant coincides with the full mechanical energy E, like is does for Hamiltonian 
(10), though this assumption is not necessary for the calculation made below.) 

The oscillation period T  may be calculated as a contour integral along this closed trajectory: 

       dq
q

dq
dq

dt
dt  



1

0

T

T .     (10.29) 

Using the first of the Hamilton equations (7), we may now present this integral as  

7 See, e.g., QM Sec. 4.6. 
8 Various aspects of this problem and its quantum-mechanical extension were first discussed by L. Le Cornu 
(1895), Lord Rayleigh (1902), H. Lorentz (1911), P. Ehrenfest (1916), and M. Born and V. Fock (1928).
9 This term has come from thermodynamics and statistical mechanics, where it implies not only a slow parameter 
variation, but also the thermal insulation of the system - see, e.g., SM Sec. 1.3. Evidently, the latter condition is 
irrelevant in our current context. 
10 In Sec. 4.6, we discussed this plane for the particular case of sinusoidal oscillations – see Fig. 9 
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              dq
pH 


/

1
T .     (10.30) 

At each given point q, H = E is a function of p alone, so that we may flip the partial derivative in the 
denominator just as a full derivative, and rewrite Eq. (30) as 

      dq
E

p
 


T .      (10.31) 

For the particular Hamiltonian (10), this relation is immediately reduced to Eq. (3.27) in the form of a 
contour integral: 
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 Superficially, it looks that these formulas may be also used to find the motion period change 
when parameter  is being changed adiabatically, for example, by plugging known functions mef() and 
Uef(q, ) into Eq. (32). However, there is no guarantee that energy E in that integral would stay constant 
as the parameter change, and indeed we will see below that this is not necessarily the case. Even more 
interestingly, in the most important case of the harmonic oscillator (Uef = efq

2/2), whose oscillation 
period T  does not depend on E (see Eq. (3.29) and its discussion), its variation in the adiabatic limit (28) 

may be readily predicted: T () = 2/0() = 2[mef()/ef()]1/2, but the dependence of the oscillation 

energy E (and hence the oscillation amplitude) on  is not immediately obvious. 

 In order to address this issue, let us use Eq. (8) (with E = H) to present the energy change with 
(t), i.e. in time, as 

             
dt

dH

t

H

dt

dE 








 .     (10.33) 

Since we are interested in a very slow (adiabatic) time evolution of energy, we can average Eq. (33) 
over fast oscillations in the system, for example over one oscillation period T , treating d/dt as a 
constant during this averaging.11 The averaging yields 

11 This is the most critical point of this proof, because at any finite rate of parameter change the oscillations are, 
strictly speaking, non-periodic. Because of the approximate nature of this conjecture (which is very close to the 
assumptions made at the derivation of the RWA equations in Sec. 4.3), new, more strict (but also much more 

q

p

0

EqpH ),,( 

Fig. 10.1. Phase-plane representation of periodic 
oscillations of a 1D Hamiltonian system, for two 
values of energy (schematically). 



Essential Graduate Physics       CM: Classical Mechanics 

 

Chapter 10           Page 7 of 14 

        







T

T 0

1
dt

H

dt

dH

dt

d

dt

dE







.    (10.34) 

Transforming the time integral to the contour one, just as we did at the transition from Eq. (29) to Eq. 
(30), and using Eq. (31) for T , we get 
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.     (10.35) 

 At each point q of the contour, H is a function of not only , but also of p, which may be also -
dependent, so that if E is fixed, the partial differentiation of relation E = H over  yields 
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  i.e.,0 .    (10.36) 

Plugging the last relation into Eq.(35), we get 
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.     (10.37) 

Since the left-hand part of Eq. (37), and the derivative d/dt do not depend on q, we may move them 
into the integrals over q as constants, and rewrite that relation as 

       .0
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     (10.38) 

 Now let us consider the following integral over the same phase-plane contour, 

                  pdqJ
2
1

,      (10.39) 

called the action variable. Just to understand its physical sense, let us calculate J for a harmonic 
oscillator (14). As we know very well from Chapter 4, for such oscillator, q = Acos, p = -mef0Asin 
(with  = 0t + const), so that J may be easily expressed either via oscillations’ amplitude A, or their 
energy E = H = mef0

2A2/2: 
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  (10.40) 

 Returning to a general system with adiabatically changed parameter ,  let us use the definition 
of J, Eq. (39), to calculate its time derivative, again taking into account that at each point q of the 
trajectory, p is a function of E and : 

cumbersome) proofs of Eq. (42) are still being offered in literature – see, e.g., C. Wells and S. Siklos, Eur. J. 
Phys. 28, 105 (2007) and/or A. Lobo et al., Eur. J. Phys. 33, 1063 (2012). 

Action  
variable 
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Within the accuracy of our approximation, in which the contour integrals (38) and (41) are calculated 
along a closed trajectory, factor dE/dt is indistinguishable from its time average, and these integrals 
coincide, so that result (38) is applicable to Eq. (41) as well. Hence, we have finally arrived at a very 
important result: at a slow parameter variation, dJ/dt = 0, i.e. the action variable remains constant: 

          constJ .      (10.42) 

This is the famous adiabatic invariance.12 In particular, according to Eq. (40), in a harmonic oscillator, 
energy of oscillation changes proportionately to the (slowly changed) eigenfrequency. 

Before moving on, let me briefly note that the adiabatic invariance is not the only application of 
the action variable J. Since the initial choice of generalized coordinates and velocities (and hence the 
generalized momenta) in analytical mechanics is arbitrary (see Sec. 2.1), it is almost evident that J may 
be taken for a new generalized momentum corresponding to a certain new generalized coordinate ,13 
and that pair {J, } should satisfy the Hamilton equations (7), in particular, 

                   .
J

H

dt

d







       (10.43) 

Following the commitment of Sec. 1 (made there for the “old” arguments qj, pj), before the 
differentiation in the right-hand part in Eq. (43), H should be expressed as a function of t, J, and . For 
time-independent Hamiltonian systems, H is uniquely defined by J – see, e.g., Eq. (40). Hence the right-
hand part of Eq. (43) does not depend on either t or , so that according to that equation,  (called the 
angle variable) is a linear function of time: 

               const



 t
J

H
.     (10.44) 

For a harmonic oscillator, according to Eq. (40), derivative H/J = E/J = 0 = 2/T, so that  

= 0t + const. It may be shown that a more general form of this relation, 

       
T
2





J

H
,      (10.45) 

is valid for an arbitrary system described by Eq. (10). Thus, Eq. (44) becomes 

               const2Θ 
T
t .     (10.46) 

12 For certain particular oscillators, e.g., a mathematical pendulum, Eq. (42) may be also proved directly – an 
exercise highly recommended to the reader. 
13 This, again, is a plausible argument but not a strict proof. Indeed, though, according to its definition (39), J is 
nothing more than a sum of several (formally, infinite number of) values of momentum p, they are not 
independent, but have to be selected on the same closed trajectory on the phase plane. For more mathematical 
vigor, the reader is referred to Sec. 45 of Mechanics by Landau and Lifshitz (which was repeatedly cited above), 
which discusses the general rules of the so-called canonical transformations from one set of Hamiltonian 
arguments to another one - say from {p, q} to {J, }.  

Adiabatic 
invariance 
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 To summarize, for a harmonic oscillator, the angle variable  is just the full phase  that we 
used so much in Ch. 4, while for an arbitrary (nonlinear) 1D oscillator, this is a convenient 
generalization of that notion. Due to this reason, variables J and  present a convenient tool for 
discussion of certain fine points of dynamics strongly nonlinear oscillators – for whose discussion I, 
unfortunately, do not have time.14 

 

10.3. The Hamilton principle 

 Now let me show that the Lagrangian equations of motion, that have been derived in Sec. 2.1 
from the Newton laws, may be also obtained from the so-called Hamilton principle, namely the 
condition of a minimum (or rather an extremum) of  the integral called action: 

         
fin

ini

t

t
LdtS ,      (10.47) 

where tini and tfin are, respectively, the initial and final moments of time, at which moments all 
generalized coordinates and velocities are considered fixed (not varied) – see Fig. 2. 

 

 

 

 

 

 

 

 

 The proof of that statement is rather simple. Considering, similarly to Sec. 2.1, a possible virtual 
variation of the motion, described by infinitesimal deviations { )(tq j , )(tq j } from the real motion, the 

necessary condition for S to be minimal is 

               0
fin

ini

 
t

t
dtLS  ,     (10.48) 

where S and L are the variations of the action and the Lagrange function, corresponding to the set 
{ )(tq j , )(tq j }. As has been already discussed in Sec. 2.1, we can use the operation of variation just 

as the usual differentiation (but at fixed time, see Fig. 2.1), swapping these two operations if needed – 
see Fig. 2.3 and its discussion. Thus, we may write 
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  (10.49) 

14 See, e.g., Chapter 6 in J. Jose and E. Saletan, Classical Dynamics, Cambridge U. Press, 1998. 

Fig. 10.2. Deriving the Hamilton 
principle. 
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After plugging the last expression into Eq. (48), we can integrate the second term by parts: 
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   (10.50) 

Since the generalized coordinates in the initial and final points are considered fixed (not affected 
by the variation), all qj(tini) = qj(tfin) = 0, the second term in the right-hand part of Eq. (50) vanishes. 
Multiplying and dividing the last term of that part by dt, we finally get 
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 (10.51) 

This relation should hold for an arbitrary set of functions qj(t), and for any time interval, so that it is 
only possible if the expressions in square brackets equal zero for all j, giving us the set of Lagrange 
equations (2.19). So, the Hamilton principle indeed gives the Lagrange equations of motion.  

 It is very useful to make the notion of action S, defined by Eq. (47), more transparent by 
calculating it for the simple case of a single particle moving in a potential field that conserves its energy 
E = T + U. In this case the Lagrangian function L = T – U may be presented as 

             ,2)(2 2 EmvETUTTUTL     (10.52) 

with E = const, so that 

                const.2 EtdtmvLdtS     (10.53) 

Presenting the expression under the remaining integral as mvvdt = p(dr/dt)dt = pdr, we finally get 

                  constconst 0   EtSEtdS rp ,              (10.54) 

where the time-independent integral 

          rp dS0       (10.55) 

is frequently called the abbreviated action.15  

 This expression may be used to establish one more connection between the classical and 
quantum mechanics, now in its Schrödinger picture. Indeed, in the quasiclassical (WKB) approximation 
of that picture16 a particle of fixed energy is described by a De Broglie wave 

           ,constexp),(Ψ   tdit rkr     (10.56) 

15 Please note that despite a close relation between the abbreviated action S0 and the action variable J defined by 
Eq. (39), these notions are not identical. Most importantly, J is an integral over a closed trajectory, while S0 in 
defined for an arbitrary point of a trajectory. 
16 See, e.g., QM Sec. 2.3. 
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where wavevector k is proportional to the particle’s momentum, while frequency , to its energy: 

      .,


E
 p

k      (10.57) 

Plugging these expressions into Eq. (56) and comparing the result with Eq. (54), we see that the WKB 
wavefunction may be presented as 

       ./expΨ iS      (10.58) 

 Hence the Hamilton’s principle (48) means that the total phase of the quasiclassical 
wavefunction should be minimal along particle’s real trajectory. But this is exactly the so-called eikonal 
minimum principle well known from the optics (though valid for any other waves as well), where it 
serves to define the ray paths in the geometric optics limit – similar to the WKB approximation 
condition. Thus, the ratio S/ may be considered just as the eikonal, i.e. the total phase accumulation, of 
the de Broigle waves.17  

 Now, comparing Eq. (55) with Eq. (39), we see that the action variable J is just the change of the 
abbreviated action S0 along a single phase-plane contour (divided by 2). This means that in the WKB 
approximation, J is the number of de Broglie waves along the classical trajectory of a particle, i.e. an 
integer value of the corresponding quantum number. If system’s parameters are changed slowly, the 
quantum number has to stay integer, and hence J cannot change, giving a quantum-mechanical 
interpretation of the adiabatic invariance. It is really fascinating that a fact of classical mechanics may 
be “derived” (or at least understood) more easily from the quantum mechanics’ standpoint.18 

 

10.4. The Hamilton-Jacobi equation 

 Action S, defined by Eq. (47), may be used for one more formulation of classical mechanics. For 
that, we need one more, different commitment: S to be considered a function of the following 
independent arguments: the final time point tfin (which I will, for brevity, denote as t in this section), and 
the set of generalized coordinates (but not of the generalized velocities!) at that point:  

            )(,
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tqtSLdtS j

t

t
  .     (10.59) 

Let us calculate a variation of this (essentially, new!) function, resulting from an arbitrary combination 
of variations of final values qj(t) of the coordinates, while keeping t fixed. Formally this may be done by 
repeating the variation calculations described by Eqs. (49)-(52), besides that now variations qj at the 
finite point (t) do not necessarily equal zero. As a result, we get 
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17 Eq. (58) was the starting point for R. Feynman’s development of his path-integral formulation of quantum 
mechanics – see, e.g., QM Sec. 5.3.   
18 As a reminder, we have run into a similar situation at our discussion of the non-degenerate parametric 
excitation in Sec. 5.5. 
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For the motion along the real trajectory, i.e. satisfying the Lagrange equations of motion, the second 
term of this expression equals zero. Hence Eq. (60) shows that, for (any) fixed time t,  
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      (10.61) 

But the last derivative is nothing else than the generalized momentum pj – see Eq. (2.31), so that 
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(As a reminder, both parts of this relation refer to the final moment t of the trajectory.) As a result, the 
full derivative of action S[t, qj(t)] over time takes the form 
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 Now, by the very definition (59), the full derivative dS/dt is nothing more that the Lagrange 
function L, so that Eq. (63) yields 
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However, according to the definition (2) of the Hamiltonian function H, the right-hand part of Eq. (63) 
is just (-H), so that we get an extremely simply-looking Hamilton-Jacobi equation 
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      (10.65) 

 This simplicity is, however, rather deceiving, because in order to use this equation for the 
calculation of function S(t, qj) for any particular problem, the Hamiltonian function has to be first 
expressed as a function of time t, generalized coordinates qj, and the generalized momenta pj (which 
may be, according to Eq. (62), presented just as derivatives S/qj). Let us see how does this procedure 
work for the simplest case of a 1D system with the Hamiltonian function given by Eq. (10). In this case, 
the only generalized momentum is p = S/q, so that 
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and the Hamilton-Jacobi equation (65) is reduced to a partial differential equation, 

               0),(
2

1
ef

2

ef
















tqU
q

S

mt

S
.    (10.67) 

Its solution may be readily found in the particular case of time-independent potential energy Uef 
= Uef (q). In this case, Eq. (67) is evidently satisfied by a variable-separated solution  

         tqSqtS  const)(),( 0 .     (10.68) 
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Plugging this solution into Eq. (67), we see that since the sum of two last terms in the left-hand part of 
that equation presents the full mechanical energy E, the constant in Eq. (68) is nothing but (-E). Thus for 
function S0 we get an ordinary differential equation 
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Integrating it, we get 

                 const,)(2 2/1
efef0 dqqUEmS    (10.70) 

so that, finally, the action is equal to 

             const.)(2 2/1
efef EtdqqUEmS    (10.71) 

 For the case of 1D motion of a single 1D particle, i.e. for q = x, mef = m, Uef(q) = U(x), this 
solution is just the 1D case of the more general Eqs. (54)-(55), which were obtained by a much more 
simple way. (In particular, S0 is just the abbreviated action.)  

 This particular case illustrates that the Hamilton-Jacobi equation is not the most efficient way for 
solution of most practical problems. However, it may be rather useful for studies of certain mathematical 
aspects of dynamics.19 Moreover, in the 1940s this approach was extended to a completely different 
field – the optimal control theory, in which the role of action S is played by the so-called cost function – 
a certain functional of a dynamic system, that should be minimized by an optical choice of a control 
signal – a function of time that affects system’s dynamics. From the point of view of this mathematical 
theory, Eq. (65) is a particular case of a more general Hamilton-Jacobi-Bellman equation.20  

 

10.5. Exercise problems 

 10.1. Derive the Hamilton equations of motion for our testbed problem (a 
bead on a ring rotating about its vertical diameter – see Fig.  2.1, partly reproduced 
on the right). Check that the equations are equivalent to those derived from the 
Lagrangian formalism. 

 

  
  
 10.2. Perform the same tasks as in Problem 10.1 for the system already 
considered in Problem 2.3, a fixed-length pendulum hanging from a horizontal 
support whose motion law x0(t) is fixed – see Fig. on the right. (No vertical plane 
constraint.) 

19 See, e.g., Chapters 6-9 in I. C. Percival and D. Richards, Introduction to Dynamics, Cambridge U. Press, 1983. 
20 See, e.g., T. P. Bertsekas, Dynamic Programming and Optimal Control, vols. 1 and 2, Aetna Scientific, 2005 
and 2007. The reader should not be deceived by the unnatural term “dynamic programming” that was invented by 
the founding father of this field, R. Bellman, to lure government bureaucrats into funding his research, which had 
been deemed too theoretical at that time, but now has a broad range of important applications. 
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10.3. Perform the same tasks as in Problems 1 and 2, for 
the system already considered in Problem 2.5 - a block of mass m 
that can slide, without friction, along the inclined surface of a 
heavy wedge (mass m’). The wedge is free to move, also without 
friction, along a horizontal surface - see Fig. on the right. (Both 
motions are within the vertical plane containing the steepest slope 
line.) 
 
 10.4. Find and solve equations of motion of a particle with the following Hamiltonian function: 

 2

2

1
rp a

m
H  , 

where a is a constant scalar. 
 
 10.5. Let L be the Lagrange function, and H the Hamilton function, of the same system. What 
three of the following four statements, 

,0  (iv),0  (iii),0  (ii),0  )i( 








t

H

dt

dH

t

L

dt

dL
 

are equivalent? Give an example when those three equalities hold, but the forth one does not. 

10.6. Calculate the Poisson brackets of the Cartesian components of the angular momentum L of 
a particle moving in a central force field and its Hamiltonian function H, and discuss the most important 
implication of the result. 
 
 10.7. After small oscillations had been initiated in a simple pendulum (Fig. on the 
right), the thread is being pulled up slowly, so that the pendulum length l is being 
reduced. Neglecting dissipation,  

 (i) prove by a direct calculation that  the oscillation energy is indeed changing 
proportionately to the oscillation frequency, as it follows from the constancy of the 
corresponding adiabatic invariant (40), and 
 (ii) find the l-dependence of amplitudes of the angular and linear deviations from 
the equilibrium.  
 
 10.8. The mass m of a small body that performs 1D oscillations in potential U(x) = ax2n, with n > 
0, is being changed slowly. Calculate the oscillation energy E as a function of m. 
 
 10.9. A stiff ball is bouncing vertically from the floor of an elevator whose upward acceleration 
changes very slowly. Neglecting energy dissipation, calculate how much does the bounce height h 
change during acceleration’s increase from 0 to g. 
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Chapter 1. Electric Charge Interaction 

This brief chapter describes the basics of electrostatics, the study of interactions between static (or 
slowly moving) electric charges. Much of this material should be known to the reader from his or her 
undergraduate studies; because of that, the explanations will be very succinct.1 

 

1.1. The Coulomb law 

 A serious discussion of the Coulomb law2 requires a common agreement on the meaning of the 
following notions:3 

 - electric charges qk, as revealed, most explicitly, by experimental observation of electrostatic 
interaction between the charged particles;  

 - electric charge conservation, meaning that the algebraic sum of qk  of all particles inside any 
closed volume is conserved, unless the charged particles cross the volume’s border; and 

 - a point charge, meaning the charge of an ultimately small (“point”) particle whose position in 
space may be completely described (in a given reference frame) by its radius-vector r = n1r1 + n2r2 + 
n3r3, where nj (with j = 1, 2, 3) are unit vectors directed along 3 mutually perpendicular axes, and rj are 
the corresponding Cartesian components of r. 

 I will assume that these notions are well known to the reader - though my strong advice is to give 
some thought to their vital importance. Using them, the Coulomb law for the electrostatic interaction of 
two point charges in otherwise free space may be formulated as follows: 

           
3
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'
''

kk

kk
kkkk qq

rr

rr
F




  ,     (1.1) 

where Fkk’ denotes the force exerted on charge number k by charge number k’. This law is certainly very 
familiar to the reader, but several remarks may still be due: 

(i) Flipping indices k and k’, we see that Eq. (1)4 complies with the 3rd Newton law: the 
reciprocal force is equal in magnitude but opposite in direction: Fk’k = -Fkk’. 

 (ii) According to Eq. (1), the magnitude of the force, Fkk’, is inversely proportional to the square 
of the distance between the two charges – the well-known undergraduate-level formulation of the 
Coulomb law. 

1 For remedial reading, virtually any undergraduate text on electricity and magnetism may be used; I can 
recommend either the classical text by I. Tamm, Fundamentals of Theory of Electricity, Mir, 1979, or the more 
readily available textbook by D. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice-Hall, 1999. 
2 Discovered experimentally in the early 1780s, and formulated in 1785 by C.-A. de Coulomb. 
3 On the top of the more general notions of classical Cartesian space, point particles and forces, which are used 
in classical mechanics – see, e.g., CM Sec. 1.1. (Acronyms CM, SM, and QM refer to other three parts of my 
lecture note series. In those parts, this Classical Electrodynamics part is referred to as EM.) 
4 As in all other parts of my lecture notes, chapter numbers are omitted in references to equations, figures, and 
sections within the same chapter. 
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 (iii) Since vector (rk – rk’) is directed from point rk’ toward point rk (Fig. 1), Eq. (1) implies that 
charges of the same sign (i.e. with qkqk’ > 0) repulse, while those with opposite signs (qkqk’ < 0) attract 
each other.  

 

 

 

 

 

 

 

 (iv) Constant  in Eq. (1) depends on the system of units we use. In the Gaussian units,  is set 
to 1, for the price of introducing a special unit of charge (the statcoulomb) that would fit the 
experimental data for Eq. (1), for forces Fkk’ measured in Gaussian units (dynes). On the other hand, in 
the International  System (“SI”) of units, the charge unit is one coulomb (abbreviated C),5 close to 3109 
statcoulombs, and  is different from unity:6 

            27

0
SI 10

4

1
c


 .     (1.2) 

Unfortunately, the continuing struggle between zealot proponents of these two systems bears all 
ugly features of a religious war, with a similarly slim chances for any side to win it in any foreseeable 
future. In my humble view, each of these systems has its advantages and handicaps (to be noted on 
several occasions below), and every educated physicist should have no problem with using any of them. 
Following insisting recommendations of international scientific unions, I will mostly use SI units, but 
for readers’ convenience, duplicate the most important formulas in the Gaussian units.  

Besides Eq. (1), another key experimental law of electrostatics is the linear superposition 
principle: the electrostatic forces exerted on some point charge (say, qk) by other charges do not affect 
each other and add up as vectors to form the net force: 

         



kk

kkk
'

' ,FF      (1.3)  

where the summation is extended over all charges but qk, and the partial force Fkk’ is described by Eq. 
(1).7 The fact that the sum is restricted to k’  k means that a point charge does not interact with itself. 

5 In the formal metrology, one coulomb is defined as the charge carried over by a constant current of one ampere 
(see Ch. 5 for its definition) during one second. 
6 Constant 0 is called either the electric constant or the free space permittivity; from Eq. (2) with the free-space 
speed of light c  3108 m/c, 0  8.8510-12 SI units. For more accurate values of the constants, and their brief 
discussion, see appendix CA: Selected Physical Constants. 
7 Physically this is a very strong statement: it means that Eq. (1) is valid for any pair of charges regardless of 
presence of other charges, i.e. not only in the free space, but in also placed into an arbitrary medium. The apparent 
modification of this relation by conductors (Ch. 2) and dielectrics (Ch. 3) is just the result of appearance of 
additional electric charges within those media. 
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Fig. 1.1. Direction of the Coulomb forces (for qkqk’ > 0). 
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This fact may look trivial from Eq. (1), whose right-hand part diverges at rk  rk’, but becomes less 
evident (though still true) in quantum mechanics where the charge of even an elementary particle is 
effectively spread around some volume, together with particle’s wavefunction.8 

Now we may combine Eqs. (1) and (3) to get the following expression for the net force F acting 
on some charge q located at point r: 
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This equation implies that it makes sense to introduce the notion of the electric field at point r, as an 
entity independent of the probe charge q, characterized by vector 

            
q

F
rE  ,      (1.5) 

formally called the electric field strength – but much more frequently, just the “electric field”. In these 
terms, Eq. (4) becomes 
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This concept is so appealing that Eq. (5) is used well beyond the boundaries of free-space electrostatics. 
Moreover, the notion of field becomes virtually unavoidable for description of time-dependent 
phenomena (such as electromagnetic waves), where the electromagnetic field shows up as a specific 
form of matter, with zero rest mass, and hence different from the usual “material” particles. 

 Many problems involve many point charges qk’, qk”, …, located so closely that it is possible to 
approximate them with a continuous charge distribution. Indeed, for a group of charges within a very 
small volume d3r’, with the linear size satisfying strong condition dr << rk – rk’, the geometrical factor 
in Eq. (6) is essentially the same. As a result, all these charges may be treated as a single charge dQ(r’). 
Since this charge is proportional to d3r’, we can define the local (3D) charge density  (r’) by relation9 

     



'3

'

'
3 )'()(

rdrk

kqdQr'd' rr ,    (1.7) 

and rewrite Eq. (6) as 
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8 Moreover, there are some widely used approximations, e.g., the Kohn-Sham equations in the density functional 
theory of multiparticle systems, which essentially violate this law, thus limiting the accuracy and applicability of 
these approximations - see, e.g., QM Sec. 8.4. 
9 The 2D (areal) charge density  and 1D (linear) density  may be defined absolutely similarly: dQ = d2r, dQ = 
dr. Note that a finite value of  and  means that the volume density  is infinite in the charge location points; 
for example for a plane z = 0, charged with a constant areal density ,  = (z). 
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 i.e. as the integral (over the whole volume containing all essential charges):10 
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    (1.9) 

 It is very convenient that Eq. (9) may be used even in the case of discrete point charges, 
employing the notion of Dirac’s -function,11 which is a mathematical approximation for a very sharp 
function equal to zero everywhere but one point, and still having a finite (unit) integral. Indeed, in this 
formalism, a set of point charges qk’  located in points rk’ may be presented by the pseudo-continuous 
distribution with density  
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kk 'q' rrr       (1.10) 

Plugging this expression into Eq. (9), we come back to the discrete version (6) of the Coulomb law. 

 

1.2. The Gauss law 

 Due to the extension to point (“discrete”) charges, it may seem that Eqs. (5) and (9) is all we 
need for solving any problem of electrostatics. In practice, this is not quite true, first of all because the 
direct use of Eq. (9) frequently leads to complex calculations. Indeed, let us consider a very simple 
example: the electric field produced by a spherically-symmetric charge distribution with density (r’). 
We may immediately use the problem symmetry to argue that the electric field should be also 
spherically-symmetric, with only one component in spherical coordinates: E(r)= E(r)nr where nr  r/r is 
the unit vector in the direction of the field observation point r (Fig. 2).  

 

  

 

 

 

 

 

 Taking this direction as the polar axis of a spherical coordinate system, we can use the evident 
independence of the elementary radial field dE, created by the elementary charge (r’)d3r’ = (r’)r’2sin 
dr’ d’d’, of the azimuth angle ’, and reduce integral (9) to 
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10 Note that for a continuous, smooth charge distribution, integral (9) does not diverge at R  r – r’  0, because 
in this limit the fraction under the integral increases as R-2, i.e. slower than the decrease of the elementary volume 
d3r’, proportional to R3. 
11 See, e.g., Sec. 14 of the Selected Mathematical Formulas appendix, referred below as MA. 

Fig. 1.2. One of the simplest problems of 
electrostatics: electric field produced by a 
spherically-symmetric charge distribution. 
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where  and r” are the geometrical parameters marked in Fig. 2. Since they all may be readily expressed 
via r’ and ’ using auxiliary parameters a and h,  

     ,sin,cos,)cos()(,
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r
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   (1.12) 

integral (11) may be eventually reduced to an explicit integral over r’ and ’.  and worked out 
analytically, but that would require some effort. 

  For more complex problem, integral (8) may be much more complex, defying an analytical 
solution. One could argue that with the present-day abundance of computers and numerical algorithm 
libraries, one can always resort to numerical integration. This argument may be enhanced by the fact 
that numerical integration is based on the replacement of the integral by a sum, and summation is much 
more robust to (unavoidable) discretization and rounding errors than the finite-difference schemes 
typical for the numerical solution of differential equations. 

 These arguments, however, are only partly justified, since in many cases the numerical approach 
runs into a problem sometimes called the curse of dimensionality, in which the last word refers to the 
number of input parameters of the problem to be solved, i.e. the dimensionality of its parameter space. 
Let us discuss this issue, because it is common for most fields of physics and, more generally, any 
quantitative science.12  

 If the number of the parameters of a problem is small, the results of its numerical solution may 
be of the same (and in some sense higher) value than the analytical ones. For example, if a problem has 
no parameters, and its result is just one number (say, 2/4), this “analytical” answer hardly carries more 
information than its numerical form 2.4674011… Now, if a problem has one input parameter (say, a), 
the result of an analytical approach in most cases may be presented as an analytical function f(a). If the 
function is really simple, called elementary, with many properties well known (say, f(a) = sin a), this 
function gives us virtually everything we want to know. However, if the function is complicated, you 
would need to tabulate it numerically for a set of values of parameter a and possibly present the result as 
a plot. The same results (and the same plot) can be calculated numerically, without using analytics at all. 
This plot may certainly be very valuable, but since the analytical form has a potential of giving you 
more information (say, the values of f(a) outside the plot range, or the asymptotic behavior of the 
function), it is hard to say that the numerics completely beat the analytics here. 

 Now let us assume that you have more input parameters. For two parameters (say, a and b), 
instead of one curve you would need a family of such curves for several (sometimes many) values of b. 
Still, the plots sometimes may fit one page convenient for viewing, so it is still not too bad. Now, if you 
have three parameters, the full representation of the results may require many pages (maybe a book) full 
of curves, for four parameters we may speak about several bookshelves, for five parameters something 
like a library, etc. For large number of parameters, typical for many scientific problems, the number of 
points in the parameters space grows exponentially, even the volume of calculations necessary for the 
generation of this data may become impracticable, despite the dirt-cheap CPU time we have now. 

 Thus, despite the current proliferation of numerical methods in physics, analytical results have 
an ever-lasting value, and we should try to get them whenever we can. For our current problem of 
finding electric field generated by a fixed set of electric charges, large help comes from the Gauss law. 

12 Actually, the term “curse of dimensionality” was coined in the 1950s by R. Bellman in the context of the 
optimal control theory, and only later spread to other sciences that heavily rely on numerical calculations. 
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 Let us consider a single point charge q inside a smooth, closed surface A (Fig. 3), and calculate 
product End

2r, where d2r is an infinitesimal element of the surface (which may be well approximated  
with a plane of that area), and En is the component of the electric field  in that point, normal to that 
plane.  

  

 

 

 

 

  

  

 

 

 

 This component may be calculated as Ecos, where   is the angle between vector E and the unit 
vector n normal to the surface. (Equivalently, En may be presented as the scalar product En.) Now let 
us notice that the product cos d2r is nothing more than the area d2r’ of the projection of d2r onto the 
plane perpendicular to vector r connecting charge q with this point of the surface (Fig. 3), because the 
angle between the planes d2r’ and d2r is also equal to . Using the Coulomb law for E, we get 
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1
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      (1.13) 

But the ratio d2r’/r2 is nothing more than the elementary solid angle d under which the areas d2r’ and 
d2r are seen from the charge point, so that End

2r may be presented as just a product of d by a constant 
(q/40). Summing these products over the whole surface, we get 
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q
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q
rdE
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n   ,     (1.14) 

since the full solid angle equals 4. (The integral in the left-hand part of this relation is called the  flux of 
electric field through surface S.)  

Equation (14) expresses the Gauss law for one point charge. However, it is only valid if the 
charge is located inside the volume limited by the surface. In order to find the flux created by a charge 
outside of the volume, we still can use Eq. (13), but to proceed we have to be careful with the signs of 
the elementary contributions EndA. Let us use the common convention to direct the unit vector n out of 
the closed volume we are considering (the so-called outer normal), so that the elementary product End

2r 
= (En)d2r and hence d = End

2r’/r2 is positive if vector E is pointing out of the volume (like in the 
example shown in Fig. 3a and the upper-right area in Fig. 3b), and negative in the opposite case (for 
example, in the lower-left area in Fig. 3b). As the latter figure shows, if the charge is located outside of 
the volume, for each positive contribution d there is always equal and opposite contribution to the 

(a)       (b) 

Fig. 1.3. Deriving the Gauss law: a point charge q is (a) inside volume V and (b) outside of that volume. 
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integral. As a result, at the integration over the solid angle the positive and negative contributions cancel 
exactly, so that 

        .02 
S

n rdE       (1.15) 

 The real power of the Gauss law is revealed by its generalization to the case of many charges 
within volume V. Since the calculation of flux is a linear operation, the linear superposition principle (3) 
means that the flux created by several charges is equal to the (algebraic) sum of individual fluxes from 
each charge, for which either Eq. (14) or Eq. (15) are valid, depending on the charge position (in or out 
of the volume). As the result, for the total flux we get: 
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,   (1.16) 

where QV is the net charge inside volume V. This is the full version of the Gauss law.  

In order to appreciate the problem-solving power of the law, let us return to the problem 
presented in Fig. 2, i.e. a spherical charge distribution. Due to its symmetry, which had already been 
discussed above, if we apply Eq. (16) to a sphere of radius r, the electric field should be perpendicular to 
the sphere at each its point (i.e., En = E), and its magnitude the same at all points: En = E = E(r). As a 
result, the flux calculation is elementary: 

      )(4 22 rErrdEn  .     (1.17) 

Now, applying the Gauss law (16), we get: 
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so that, finally, 

        ,
)(

4

1
)(

1
)(

2
00

2

0
2 r

rQ
dr'r'r'

r
rE

r





      (1.19) 

where Q(r) is the full charge inside the sphere of radius r: 
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In particular, this formula shows that the field outside of a sphere of a finite radius R is exactly 
the same as if all its charge Q = Q(R) was concentrated in the sphere’s center. (Note that this important 
result is only valid for any spherically-symmetric charge distribution.) For the field inside the sphere, 
finding electric field still requires an explicit integration (20), but this 1D integral is much simpler than 
the 2D integral (11), and in some important cases may be readily worked out analytically. For example, 
if charge Q is uniformly distributed inside a sphere of radius R, 
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the integration is elementary: 
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We see that in this case the field is growing linearly from the center to the sphere’s surface, and only at r 
> R starts to decrease in agreement with Eq. (19) with constant Q(r) = Q. Another important observation 
is that the results for r  R and r  R give the same value (Q/40R

2) at the charged sphere’s surface, r = 
R, so that the electric field is continuous. 

 In order to underline the importance of the last fact, let us consider one more elementary but very 
important example of the Gauss law’s application. Let a thin plane sheet (Fig. 4) be charged uniformly, 
with an areal density  = const (see Footnote 9 above). 

 

  

 

 

 

  

 In this case, it is fruitful to use the Gauss volume in the form of a planar “pillbox” of thickness 
2z (where z is the Cartesian coordinate perpendicular to charged plane) and certain area A – see Fig. 4. 
Due to the symmetry of the problem, it is evident that the electric field should be: (i) directed along axis 
z, (ii) constant on each of the upper and bottom sides of the pillbox, (iii) equal and opposite on these 
sides, and (iv) parallel to the side surfaces of the box. As a result, the full electric field flux through the 
pillbox surface is just 2AE(z), so that the Gauss law (16) yields 
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      (1.23)  

and we get a very simple but important formula 

             .const 
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zE      (1.24) 

Notice that, somewhat counter-intuitively, the field magnitude does not depend on the distance 
from the charged plane. From the point of view of the Coulomb law (5), this result may be explained as 
follows, the farther the observation point from the plane, the weaker the effect of each elementary 
charge, dQ = d2r, but the more such elementary charges give contributions to the vertical component of 
vector E. 

 Note also that though the magnitude E  E of the electric field is constant, its vertical 
component Ez changes sign at z = 0 (Fig. 4), experiencing a discontinuity (jump) equal to Ez = /0. 
This jump disappears if the surface is not charged (  = 0). This statement remains true in a more 
general case of finite volume (but not surface!) charge density . Returning for a minute to our charged 

Fig. 1.4. Electric field of a charged plane. 
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sphere problem, very close to its surface it may be considered planar, so that the electric field should 
indeed be continuous, as it is. 

 Admittedly, the integral form (16) of the Gauss law is immediately useful only for highly 
symmetrical geometries, like as in the two problems discussed above. However, it may be recast into an 
alternative, differential form whose field of useful applications is much wider. This form may be 
obtained from Eq. (16) using the divergence theorem that, according to the vector algebra, is valid for 
any space-differentiable vector, in particular E, and for any volume V limited by closed surface S:13 

             
S V

n rdrdE 32 )( E ,     (1.25) 

where  is the del (or “nabla”) operator of spatial differentiation.14 Combining Eq. (25) with the Gauss 
law (16), we get 
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E      (1.26) 

For a given distribution of electric charge (and hence of the electric field), this equation should be valid 
for any choice of volume V. This can hold only if the function under the integral vanishes at each point, 
i.e. if15 

         
0


E .      (1.27) 

 Note that in a sharp contrast with the integral form (16),  Eq. (26) is local: it relates the electric 
field divergence to the charge density at the same point. This equation, being the differential form of the 
Gauss law, is frequently called (the free-space version of) one of Maxwell equations. Another, 
homogeneous Maxwell equation’s “embryo”  may be obtained by noticing that curl of point charge’s 
field, and hence that of any system of charges, equals zero:16 

          0E .      (1.28) 

(We will arrive at two other Maxwell equations, for the magnetic field, in Chapter 5, and then generalize 
all the equations to their full, time-dependent form by the end of Chapter 6. However, Eq. (27) would 
stay the same.) 

 Just to get a better gut feeling of Eq. (27), let us apply it to the same example of a uniformly 
charged sphere (Fig. 2). The vector algebra tells us that the divergence of a spherically symmetric vector 
function E(r) = E(r)nr may be simply expressed in spherical coordinates:17 

13 See, e.g., MA Eq. (12.2). Note that the scalar product under the integral in Eq. (25) is nothing more that the 
divergence of vector E – see, e.g., MA Eq. (8.4). 
14 See, e.g., MA Secs. 8-10. 
15 In the Gaussian units, just as in the initial Eq. (5), 0 has to be replaced with 1/4, so that the Maxwell 
equation (27) looks like E = 4, while Eq. (28) stays the same. 
16 This follows, for example, from the direct application of MA Eq. (10.11) to the spherically-symmetric vector 
function f = E(r) = E(r)nr field of a point charge placed at the origin, giving f = f = 0 and fr/ = fr/ = 0. 
17 See, e.g., MA Eq. (10.10) for this particular case (when / = / = 0). 
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As a result, Eq. (27) yields a linear, ordinary differential equation for the function E(r): 
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that may be readily integrated on each of the segments: 
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In order to determine the integration constant C1, we can use boundary condition E(0) = 0. (It follows 
from problem’s spherical symmetry: in the center of the sphere, electric field has to vanish, because 
otherwise, where would it be directed?)  Constant C2 may be found from the continuity condition E(R - 
0) = E(R + 0), which has already been discussed above. As a result, we arrive at our previous results 
(19) and (22).   

 We can see that in this particular, highly symmetric case, using the differential form of the Gauss 
law is more complex than its integral form. (For our second example, shown in Fig. 4, it would be even 
less natural.) However, Eq. (27) and its generalizations are more convenient for asymmetric charge 
distributions, and invaluable in the cases where the charge distribution (r) is not known a priori and 
has to be found in a self-consistent way. (We will start discussing such cases in the next chapter.) 

 

1.3. Scalar potential and electric field energy 

 One more help for solving electrostatics (and more complex) problems may be obtained from the 
notion of the electrostatic potential, which is just the electrostatic potential energy U of a probe particle, 
normalized by its charge: 

            
q

U
 .      (1.31) 

As we know from classical mechanics,18 the notion of U (and hence ) make sense only for the case of 
potential forces, for example those depending just on particle’s position. Equations (6) and (8) show 
that, in the static situations, the electric field clearly falls into this category. For such a field, the 
potential energy may be defined as a scalar function U(r) that allows the force to be calculated as its 
gradient (with the opposite sign): 

          UF .      (1.32) 

Dividing both sides of this equation by the charge of the probe particle, and using Eqs. (5) and (31), we 
get19 

18 See, e.g., CM Sec. 1.4. 
19 Eq. (28) could be also derived from this relation, because according to vector algebra, any gradient field has 
vanishing curl -  see, e.g., MA Eq. (11.1). 
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          E .      (1.33) 

In order to calculate the scalar potential, let us start from the simplest case of a single point 
charge q placed at the origin. For it, the Coulomb law (5) takes a simple form 
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It is straightforward to check that the last fraction in the right-hand part of this equation is equal to -
(1/r).20 Hence, according to the definition (33), for this particular case 
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  .      (1.35) 

(In the Gaussian units, this result is spectacularly simple:  = q/r.) Note that we could add an arbitrary 
constant to this potential (and indeed to any other distribution of  discussed below) without changing 
the force, but it is convenient to define the potential energy to approach zero at infinity. 

  Before going any further, let us demonstrate how useful the notions of U and  are, on a very 
simple example. Let two similar charges q  be launched from afar, with an initial velocity v0 << c each, 
straight toward each other (i.e. with the zero impact parameter) – see Fig. 5. Since, according to the 
Coulomb law, the charges repel each other with increasing force, they will stop at some minimum 
distance rmin from each other, and than fly back. 

 

 

 

 

 

 We could of course find rmin directly from the Coulomb law. However, for that we would need to 
write the 2nd Newton law for each particle (actually, due to the problem symmetry, they would be 
similar), then integrate them over time once to find the particle velocity v as a function of distance, and 
then recover rmin from the requirement v = 0. The notion of potential allows this problem to be solved in 
one line. Indeed, in the field of potential forces the system’s total energy E = T + U = T + q is 
conserved. In our non-relativistic case, the kinetic energy T is just mv2/2. Hence, equating the total 
energy of two particles in the points r =  and r = rmin, and using Eq. (35) for , we get 
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immediately giving us the final answer: rmin = q2/40mv0
2. 

 Now let us calculate  for an arbitrary configuration of charges. For a single charge in an 
arbitrary position (say, rk’), r in Eq. (35) should be evidently replaced for r – rk’. Now, the linear 

20 This may  be done either by Cartesian components or using the well-known expression f = (df/dr)nr valid for 
any spherically-symmetric scalar function f(r) - see, e.g., MA Eq. (10.8) for the particular case / = / = 0. 

0v 0v

qm, qm,?min r

Fig. 1.5. Simple problem of electric particle motion. 
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superposition principle (3) allows for an easy generalization of this formula to the case of an arbitrary 
set of discrete charges, 
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Finally, using the same arguments as in Sec. 1, we can use this result to argue that in the case of an 
arbitrary  continuous charge distribution 
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Again, the notion of Dirac’s delta-function allows to use the last equation for discrete charges as well, so 
that Eq. (38) may be considered as the general expression for the electrostatic potential. 

For most practical calculations, using this expression and then applying Eq. (33) to the result, is 
preferable to using Eq. (9), because  is a scalar, while E is a 3D vector - mathematically equivalent to 3 
scalars. Still, this approach may lead to technical problems similar to those discussed in Sec. 2. For 
example, applying it to the spherically-symmetric distribution of charge (Fig. 2), we get integral 
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which is not much simpler than Eq. (11). 

The situation may be much improved by re-casting Eq. (38) into a differential form. For that, it is 
sufficient to plug the definition of , Eq. (33), into Eq. (27):   

            .)(
0
         (1.40) 

The left-hand part of this equation is nothing more than the Laplace operator of  (with the minus sign), 
so that we get the famous Poisson equation21 for the electrostatic potential:  

  .
0

2


        (1.41) 

(In the Gaussian units, the Poisson equation looks like 2 = - 4.) This differential equation is so 
convenient for applications that even its particular case for  = 0, 

           02   ,      (1.42) 

has earned a special name – the Laplace equation.22 

 In order to get a feeling of the Poisson equation as a problem solving tool, let us return to the 
spherically-symmetric charge distribution (Fig. 2) with a constant charge density . Using the 

21 Named after S. D. Poisson (1781-1840), also famous for the Poisson distribution – one of the central results of 
the probability theory - see, e.g., SM Sec. 5.2.  
22 After mathematician (and astronomer) P. S. de Laplace (1749-1827) who, together with A. Clairault, is credited 
for the development of the very concept of potential. 
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symmetry, we can present the potential as (r) = (r), and hence use the following simple expression for 
its Laplace operator:23 
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so that for the points inside the charged sphere (r  R) the Poisson equation yields 
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Integrating the last form of the equation over r once, with the natural boundary condition d/drr = 0 = 0 
(because of the condition E(0) =0, which has been discussed above), we get 
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Since this derivative is nothing more than –E(r), in this formula we can readily recognize our previous 
result (22). Now we may like to carry out the second integration to calculate the potential itself: 
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 Before making any judgment on the integration constant c1, let us solve the Poisson equation (in 
this case, just the Laplace equation) for the range outside the sphere (r > R): 
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Its first integral, 
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also gives the electric field (with the minus sign). Now using Eq. (1.45) and requiring the field to be 
continuous at r = R, we get  
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in an evident agreement with Eq. (19). Integrating this result again, 
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we can select c3 = 0, so that () = 0, in accordance with the usual (though not compulsory) convention. 
Now we can finally determine constant c1 in Eq. (46) by requiring that this equation and Eq. (50) give 
the same value of  at the boundary r = R. (According to Eq. (33), if the potential had a jump, the 
electric field at that point would be infinite.) The final answer may be presented as  

23 See, e.g., MA Eq. (10.8) for / = / = 0. 
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We see that using the Poisson equation to find the electrostatic potential distribution for highly 
symmetric problems may be more cumbersome than directly finding the electric field – say, from the 
Gauss law. However, we will repeatedly see below that if the electric charge distribution is not fixed in 
advance, using Eq. (41) may be the only practicable way to proceed. 

Returning now to the general theory of electrostatic phenomena, let us calculate potential energy 
U of an arbitrary system of electric charges qk. Despite the apparently straightforward relation (31) 
between U and  , the calculation is a little bit more complex than one might think. Indeed, let us rewrite 
Eqs. (32), (33) for a single charge in the integral form: 
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where r0 is some reference point. These integrals reflect the fact that the potential energy is just the 
work necessary to move the charge from point r0 to point r, and clearly depend on whether the charge 
motion affects force F (and hence electric field E) or not. If it does not, i.e. if the field is produced by 
some external charges (such fields Eext are also called external), everything is simple indeed: using the 
linearity of relations (31) and (32), for the total potential energy we may write 
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Repeating the argumentation that has led us to Eq. (9), we see that for a continuously distributed charge, 
this sum turns into an integral: 

      rdU 3
extext )()( rr  .     (1.54) 

However, if the electric field is created by the charges whose energy we are calculating, the 
situation is somewhat different. To calculate U for this case, let us use the fact its independence of the 
way the charge configuration has been created, considering the following process. First, let us move one 
charged particle (say, q1) from infinity to an arbitrary point of space (r1) in the absence of other charges. 
During the motion the particle does not experience any force (again, the charge does not interact with 
itself!), so that its potential energy is the same as at infinity (with the standard choice of the arbitrary 
constant, zero): U1 = 0. Now let us fix the position of that charge, and move another charge (q2) from 
infinity to point r2 (with velocity v << c, in order to avoid any magnetic field effects, to be discussed in 
Chapter 5.) This particle, during its motion, does experience the Coulomb force exerted by fixed q1, so 
that according to Eq. (31), its contribution to the final potential energy  

       )( 2122 rqU  .     (1.55) 

Since the first particle was not moving during this process, the total potential energy U of the system is 
equal to just U2. This is exactly the equality used for writing the right-hand part of Eq. (36). (Prescribing 
a similar energy to charge q1 as well would constitute an error – a very popular one, and hence having a 
special name, double-counting.) 
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 Now, fixing the first two charges in points r1 and r2, respectively, and bringing in the third 
charge from infinity, we increment the potential energy by 

 )()( 323133 rr   qU (1.56) 

I believe that at this stage it is already clear how to generalize this result to the contribution from an 
arbitrary (k-th) charge being moved in (Fig. 6): 
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(Notice condition k’ < k, which suppresses erroneous double-counting.) 

 

 

 

 

 

 

 

 

Now, summing up all the increments, for the total electrostatic energy of the system we get: 
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This is our final result in its generic form; it is so important that is worthy of rewriting it in two other 
forms.  First, for its generalization to the continuous charge distribution, we may use Eq. (35) to present 
Eq. (58) in a more symmetric form: 
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The expression under the sum is evidently symmetric with respect to the index swap, so that it may be 
rewritten in a fully symmetric form, 
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which is now easily generalized to the continuous case: 
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(As before, in this case the restriction expressed in the discrete charge case as k  k’ is not important, 
because if the charge density is a continuous function, integral (61) does not diverge at point r = r’.)  
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Fig. 1.6. Deriving the potential energy 
of a system of electric charges. 
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 To present this result in one more form, let us notice that according to Eq. (38), the integral over 
r’ in Eq. (61), divided by 40, is just the full electrostatic potential at point r, and hence 
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For the discrete charge case, this result becomes  
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but now it is important to remember that the “full” potential’s value (rk) should exclude the (infinite) 
contribution of charge k itself. Comparing the last two formulas with Eqs. (52) and (53), we see that the 
electrostatic energy of charge interaction, as expressed via the charge-potential product, is twice less 
than that of charge energy in a fixed (“external”) field. This is evidently the result of the self-consistent 
build-up of the electric field as the charge system is being formed.24 

 Now comes an important conceptual question: can we locate this interaction energy in space? 
Expressions (60)-(63) seem to imply that contributions to U come only from the regions where electric 
charges are located. However, one of the beautiful features of physics is that sometimes completely 
different interpretations of the same mathematical result are possible. In order to get an alternative view 
at our current result, let us write Eq. (62) for a volume V so large that the electric field on the limiting 
surface A is negligible, and plug into it the charge density expressed from the Poisson equation (41): 

             
V

rdU 320

2



.     (1.64) 

This expression may be integrated by parts as25 
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 .    (1.65) 

According to our condition of negligible field E = - on the surface, the first integral vanishes, and we 
get a very important formula 

                            rdErdU 320320

22





 .    (1.66) 

This result certainly invites an interpretation very much different than Eq. (62): it is natural to 
represent it in the following form: 

        ),(
2

)(with  ,)( 203 rrr EurduU


      (1.67) 

24 The nature of this additional factor ½ is absolutely the same as in the well-known formula U = (½)x2 for the 
potential energy of an elastic spring providing returning force F = -x proportional to the deviation x from 
equilibrium. 
25 This transformation follows from the divergence theorem MA (12.2) applied to vector function f = , taking 
into account the 3D differentiation rule MA Eq. (11.4a): () = ()() + () = ()2 + 2. 
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and interpret u(r) as the spatial density of the electric field energy, 26 which is continuously distributed 
over all the space where the field exists - rather than just its part where the charges are located.  

Let us have a look how these two alternative pictures work for our testbed problem, a uniformly 
charged sphere. If we start from Eq. (62), we may limit integration by the sphere volume (0  r  R) 
where   0. Using Eq. (51), and the spherical symmetry of the problem (d3r = 4r2dr), we get  
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On the other hand, if we use Eq. (67), we need to integrate energy everywhere, i.e. both inside 
and outside of the sphere: 
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Using Eqs. (19) and (22) for, respectively, the external and internal regions, we get 
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  (1.70) 

This is (fortunately :-) the same answer as given by Eq. (68), but to some extent it is more informative 
because it shows how exactly the electric field energy is distributed between the interior and exterior of 
the charged sphere.27 

We see that, as we could expect, within the realm of electrostatics, Eqs. (62) and (67) are 
equivalent. However, when we examine electrodynamics in Chapter 6 and on, we will see that the latter 
equation is more general, and that it is more adequate to associate energy with the field itself rather than 
its sources - in our current case, electric charges. 

 

1.4. Exercise problems 

 1.1. Calculate the electric field created by a thin, long, straight filament, electrically charged with 
a constant linear density , using two approaches: 

  (i) directly from the Coulomb law, and 
  (ii) using the Gauss law.  

 
1.2. Two thin, straight parallel filaments, separated by distance , carry 

equal and opposite uniformly distributed charges with linear density  - see Fig. 
on the right. Calculate the electrostatic force (per unit length) of the Coulomb 

26 In the Gaussian units, the standard replacement 0  1/4  turns the last of Eqs. (67) into u(r) = E2/8. 
27 Note that U   at R  0. Such divergence appears at application of Eq. (67) to any point charge. Since it 
does not affect the force acting on the charge, the divergence does not create any technical difficulty for analysis 
of charge statics or non-relativistic dynamics, but it points to a conceptual problem of classical electrodynamics as 
the whole. This issue will be discussed in the very end of the course (Sec. 10.6). 
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interaction between the wires. Compare the result with the Coulomb law for the force between the point 
charges, and interpret their difference. 
 
 1.3. A sphere of radius R, whose volume had been charged with a constant density , is split with 
a very narrow, planar gap passing through its center. Find the Coulomb force between the resulting two 
hemispheres. 
 
 1.4. Calculate the distribution of the electrostatic potential created by a straight, thin filament of 
finite length 2l, charged with  a constant linear density , and explore the result in the limits of very 
small and very large distances from the filament. 

 
 1.5. A thin plane sheet, perhaps of an irregular shape, carries an electric charge distributed over 
the sheet with a constant areal density .  

 (i) Express the electric field component normal to the plane, at a certain distance from it, via the 
solid angle  at which the sheet is visible from the observation point.  
 (ii) Use the result to calculate the field in the center of a cube, with one face charged with 
constant density . 
 

1.6. Can one create electrostatic fields with the Cartesian components proportional to the 
following products of Cartesian coordinates {x, y, z},  

 
   ,,,ii

,,,)i(

yzxyxy

xyxzyz
 

in a finite region of space? 
 
 1.7. Distant sources have been used to create different 
electric fields on two sides of a wide and thin metallic membrane 
with a round hole of radius R in it - see Fig. on the right. Besides 
the local perturbation created by the hole, the fields are uniform: 








 .0at ,

 ,0at ,

2

1

zE

zE
E zRr n  

 Prove that the system may serve as an electrostatic lens for 
charged particles flying along axis z, at distances  << R from it, 
and calculate the focal distance f of the lens. Spell out the 
conditions of validity of your result.  
 
 1.8. By direct calculation, find the average electric potential of the spherical surface of radius R, 
created by a point charge q located at distance r > R from the sphere’s center. Use the result to prove the 
following general mean value theorem: the electric potential at any point is always equal to its average 
value on any spherical surface with the center at that point, and containing no electric charges inside it. 

 
1.9. Calculate the electrostatic energy per unit area of the system of 

two thin, parallel planes with equal and opposite charges of a constant areal 
density , separated by distance d - see Fig. on the right. 




d

z

0 R 
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 1.10. The system analyzed in the previous problem (two thin, 
parallel, oppositely charged planes) is now placed into an external, 
uniform, normal electric field Eext = /0 – see Fig. on the right. Find the 
forces (per unit area) acting on each plane, by two methods: 
 (i) directly from the electric field distribution, and 
 (ii) from the potential energy of the system. 
  
 1.11. A thin spherical shell of radius R, which had been charged with a constant areal density , 
is split into two equal halves by a very narrow, planar cut passing through sphere’s center. Calculate the 
force of electrostatic repulsion between the resulting hemispheric shells.  
 
 1.12. Two similar thin, circular, coaxial disks of radius R, separated 
by distance 2d, are uniformly charged with equal and opposite areal densities 
 - see Fig. on the right. Calculate and sketch the distribution of the 
electrostatic potential and the electric field of the disks along their common 
axis. 
 
 1.13. In a certain reference frame, the electrostatic potential created 
by some electric charge distribution, is 

 


















00

exp
2
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r

r

rr
Cr , 

where C and r0 are constants,  and r  r is the distance from the origin. Calculate the charge distribution 
in space. 
 
 1.14. A thin flat sheet, cut in a form of a rectangle of size ab, is electrically charged with a 
constant areal density . Without an explicit calculation of the spatial distribution (r) of the 
electrostatic potential induced by this charge, find the ratio of its values at the center and at the corners 
of the rectangle. 

 Hint: Consider partitioning the rectangle into several similar parts and using the linear 
superposition principle. 
 
 1.15. Explore the relation between the Laplace equation (42) and the condition of minimum of 
the electrostatic field energy (67). 
 
 1.16. Calculate the energy of electrostatic interaction of two spheres, of radii R1 and R2,  each 
with a spherically-symmetric charge distribution, separated by distance d > R1 + R2. 
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 1.17. Prove the following reciprocity theorem of electrostatics:28 if two spatially-confined charge 
distributions 1(r) and 2(r) create respective distributions 1(r) and 2(r) of the electrostatic potential, 
then 

        rdrd 3
12

3
21 rrrr    . 

 Hint: Consider integral   rd 3
21 EE . 

28 This is only the simplest one of the whole family of reciprocity theorems in electromagnetism. (Sometimes it is 
called "Green's reciprocity theorem", but historically it is more fair to reserve the last name for the generalization 
to surface charges, using Eq. (2.210), to be discussed in Sec. 2. 7 below.)  
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Chapter 2. Charges and Conductors 

In this chapter I will start addressing the (very common) situations when the electric charge distribution 
in space is not known a priori, but rather should be calculated in a self-consistent way together  with the 
electric field it creates. The simplest situations of this kind involve conductors, and lead to the so-called 
boundary problems in which partial differential equations are solved with appropriate boundary 
conditions. Such problems are also broadly used in other parts of electrodynamics (and indeed in other 
fields of physics as well), so that following tradition, I will use this chapter’s material as a playground 
for a discussion of various methods of boundary problem solution, and the special functions most 
frequently encountered on this way. 

 

2.1. Electric field screening 

 The basic principles of electrostatics outlined in Chapter 1 present the conceptually full solution 
for the problem of finding electric field (and hence Coulomb forces) induced by a charge distribution, 
for example, charge density (r). However, in most practical situation this function is not known but 
should be found self-consistently with the field. The conceptually simplest case of this type arises when 
certain point charges qk are placed near a surface of a good conductor, e.g., a metal: the electric field of 
these charges induces additional charges at conductor’s surface, which also contribute to the field. 
Another important type of problems are those without space-positioned charges at all; here only the total 
charges of the involved conductors are fixed, but their spatial distribution inside each conductor has to 
be found. The full solution of such problems, of course, should satisfy Eq. (1.5) for the total field and 
total set of charges.  

 To approach the problems, I need to discuss, if only very briefly,1 the relevant physics of 
conductors. In the simplest macroscopic model, conductors are treated as materials having internal 
charged particles (e.g., electrons in metals) that are free to move under the effect of force – in particular, 
the force F = qE exerted by electric field E. In electrostatics (which specifically excludes the case dc 
current, to be discussed in Chapter 4 below), there should be no such motion, so that everywhere inside 
the conductor the electric field should vanish: 

             .0E       (2.1a) 

This is the electric field screening2 effect. According to Eq. (1.33), this condition may be rewritten in 
another, frequently more convenient form:  

         const ;      (2.1b) 

note, however, that if a problem includes several unconnected conductors, the constant in Eq. (1b) may 
be different for each of them.

1 More detailed discussions may be found, e.g., in Sec. 13.5 of J. Hook and H. Hall, Solid State Physics, 2nd ed., 
Wiley, 1991, or the section on electric field screening in Chapter 17 of N. Ashcroft and N. Mermin, Solid State 
Physics, Brooks Cole, 1976. 
2 This term, used for electric field, should not be confused with shielding – the word used for the description of 
magnetic field reduction by magnetic materials – see Chapter 5 below.   
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Now let us examine what we can say about the electric field outside a conductor, within the same 
macroscopic model. At close proximity, any smooth surface (in our case that of a conductor) looks 
planar. Let us integrate Eq. (1.28) over a narrow (d << l) rectangular loop C encircling a part of such 
plane conductor’s surface (see the dashed line in Fig. 1), and apply to the electric field the well-known 
vector algebra equality - the Stokes theorem3 

          
CS

n drd rEE 2)( ,     (2.2) 

where S is the surface limited by contour C, in our case dominated by two straight lines of length l. This 
means that if l is much smaller that the characteristic scale of field change, the right-hand part of Eq. (2) 
equals [(E)in – (E)out]l, where E is field’s component parallel to the surface. On the other hand, 
according to Eq. (1.28), the left-hand side of Eq. (2) equals zero. Hence, E  should be continuous at the 
surface, and in order to satisfy Eq. (1a) inside the conductor, immediately outside it, E  = 0 as well.  

 

 

 

 

 

 

  

 

 

 Hence, the field just outside the conductor has be normal to its surface. In order to find this 
normal field, let us apply the Gauss law (1.16) to a plane pillbox of area A, similar to the one discussed 
in Sec. 1.2 – see Fig. 1.4.  Due to Eq. (1), the total electric flux through the pillbox walls is now (En)outA, 
so that for this surface field we get   

             
n

E nn 



 00out0  ,    (2.3) 

where  is the areal density of conductor’s surface charge. So, the normal component of the field is 
related to the surface charge density by the universal relation (3).  

For the electrostatic potential the macroscopic model provides an even more simple result. 
Indeed, applying the latter of integrals (1.52) to a short path d across the surface normal to it, we see that 
since En is finite,  the potential change  vanishes as d  0. Hence Eq. (1b) is also valid for potential’s 
value immediately outside conductor’s surface. 

Before starting to use the macroscopic model for solution of particular problems of electrostatics, 
let us briefly discuss its limitations. Since the argumentation leading to Eq. (3) is valid for any thickness 
d of the Gauss pillbox, within the macroscopic model, the surface charge is located within an infinitely 

3 See, e.g., MA Eq. (12.1). 
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Fig. 2.1. Electric field near conductor’s surface: 
E = 0, En = /0. 
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thin surface layer. This is of course impossible physically: for one, this would require an infinite volume 
density  of charge. In reality the charged layer (and hence the region of electric field’s crossover from 
the finite value (3) to zero) has a nonvanishing thickness . At least three effects contribute to : 

 (i) Atomic structure of matter. Within each atom, the electric field does exist and is highly non-
uniform. Thus Eq. (1) is valid only for the spatial average of the field in a conductor, and cannot be 
taken seriously on the atomic scale a0 ~ 10-10 m.4 

 (ii) Thermal excitation. In conductor’s bulk, the number of protons of atomic nuclei (n) and 
electrons (ne) and per unit volume are balanced, so that the net charge density,  = e(n - ne), vanishes.5 
However, if an external electric field penetrates a conductor, electrons can shift in or out of its affected 
part, depending on the field addition to their potential energy, U = qe = -e. (Here the arbitrary 
constant in   is chosen to give  = 0 inside the conductor.) In classical statistics, this change is 
described by the Boltzmann distribution:6 

            ,
)(

exp
B 
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r
r      (2.4) 

where kB  1.3810-23 J/K is the Boltzmann constant, and T is temperature in SI units (kelvins). As a 
result, the net charge density is 
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If the field did not move the atomic nuclei at all, we could plug the last formula directly into the Poisson 
equation (1.49). Actually, the penetrating electric field shifts the average charge of the nuclei as well. As 
will be discusses in the next chapter, this results in the reduction of the electric field by a media-specific 
dimensionless factor r (typically not too different from 1), called the dielectric constant. As a result, the 
Poisson equation takes the form,7  
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    (2.6) 

where we have taken advantage of the 1D geometry of the system to simplify the Laplace operator, with 
axis z normal to the surface. Even with this simplification, Eq. (6) is a nonlinear differential equation 
allowing an analytical but rather bulky solution. Since our current goal is just to estimate of the field 
penetration depth , let us simplify the equation further by considering the low-field limit: e ~ eE  

<< kBT. In this limit we can extend the exponent into the Taylor series, and limit ourselves to the two 
leading terms (of which the first one cancels with the unity). As a result, Eq. (6) becomes linear, 
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4 This scale originates from the quantum-mechanical effects of electron motion, characterized by the Bohr radius 
rB  0.510-10 m – see, e.g., QM Eq. (1.13). 
5 Here e denotes the positive fundamental charge, e  1.610-19 C, so that the electron charge equals (–e). 
6 See, e.g., SM Sec. 3.1. 
7 This equation and/or its straightforward generalization to the case of charged particles (ions) of several kinds is 
frequently (especially in the theories of electrolytes and plasmas) called the Debye-Hückel equation.  
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where constant  in this case is equal to the so-called Debye screening length D, defined by relation 

      
ne

Tkr
2

B02
D


  .     (2.8) 

 Equation (7) is easy to solve: it describes an exponential decrease of the electric potential, with 
the characteristic length D:   exp{-z/D}. Plugging in the fundamental constants 0, e, and kB, we get 
the following estimate: D[m]  70 (r T[K]/n[m-3])1/2. According to this formula, in semiconductors at 
room temperature, the Debye length may be rather substantial. For example, in silicon (r  12) doped to 
the charge carrier concentration n = 31024 m-3 (the value typical for modern integrated circuits),8 D  2 
nm, still well above the atomic size scale a0.  However, for typical good metals (n ~ 1028 m-3, r ~ 10) 
the same formula gives an estimate D ~ 410-11 m, less than a0. In this case Eq. (8) should not be taken 
too literally, because it is based on the assumption of continuous charge distribution. 

 (iii) Quantum statistics. Actually, the last estimate is not valid for good metals (and highly doped 
semiconductors) for one more reason: their free electrons obey quantum (Fermi-Dirac) statistics rather 
that the Boltzmann distribution (4).9 As a result, at all realistic temperatures they form a degenerate 
quantum gas, occupying all available energy states below certain level EF >> kBT called the Fermi 
energy. In these conditions, the screening of relatively low electric field10 may be described by replacing 
Eq. (5) with 

                      ,)())(( F
2

F  EE geUegnne e     (2.9) 

where g(E) is the density of quantum states (per unit volume) at electron’s energy E. At the Fermi 
surface, the density is of the order of n/EF.11 As a result, we again get the second of Eqs. (7), but with a 

different characteristic scale , defined by the following relation: 
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       (2.10) 

and called the Thomas-Fermi screening length. Since for most good metals, n is of the order of 1029 m-3, 
and EF is of the order of 10 eV, Eq. (10) typically gives TF close to a few a0, and makes the Thomas-
Fermi screening theory valid at least semi-quantitatively. 

 To summarize, the electric field penetration into good conductors is limited to a depth  ranging 
from fractions of a nanometer to a few nanometers, so that for problems with the characteristic size 
much larger than that scale, the macroscopic boundary conditions (1) give a very good accuracy, and we 
will use them in the rest of this chapter. However, the reader should remember that in some  situations 

8 There is a good reason for making an estimate of D for this case: the electric field created by the gate electrode 
of a field-effect transistor, penetrating into doped silicon by a depth ~D, controls current in this most important 
electronic device - on whose back all the current information revolution rides. Because of that, D establishes the 
possible scale of semiconductor circuit shrinking which is the basis of the well-known Moore’s law. (Practically, 
the scale is determined by integrated circuit patterning techniques, and Eq. (8) may be used to find the proper 
charge carrier density n and hence the level of silicon doping.) 
9 See, e.g., SM Sec. 2.8. For a more detailed derivation of Eq. (10), see SM Chapter 3. 
10 In good metals this equation is valid up to the fields ~ EF/eTF ~ 109 V/m, very high by the usual standards. For 
example, the electric breakdown threshold for vacuum (or air-filled) gaps is ~3106 V/m. 
11 See, e.g., SM Sec. 3.3.  
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involving semiconductors, as well as at nanoscale experiments with metals, the electric field penetration 
effect should be taken into account. 

 

2.2. Capacitance 

 Let us start with systems consisting of charged conductors alone. Our goal here is calculating the 
distributions of electric field E and potential   in space, and the distribution of the surface charge 
density  over the conductor surfaces. However, before doing that for particular situations, let us see if 
there are any integral measures of these distributions, that should be our primary focus. 

 The simplest case is of course a single conductor in the otherwise free space. According to Eq. 
(1), all its volume should have a constant electrostatic potential , evidently providing one convenient 
global measure of the situation. Another integral measure is evidently provided by the total charge 

           
V S

rdrdQ 23  ,     (2.11) 

where the latter integral is extended over the whole surface S of the conductor. In the general case, what 
we can tell about the relation between Q and ? At Q = 0, there is no electric field in the system, and it is 
natural (though not necessary) to select the arbitrary constant in the electrostatic potential to have  = 0. 
Then, if the conductor is charged with a finite Q, according to the Coulomb law, the electric field in any 
point of space is proportional to Q. Hence the electrostatic potential everywhere, including its value  on 
the conductor, is also proportional to Q: 

           pQ .      (2.12) 

The proportionality coefficient p, that depends on the conductor size and shape but not on Q, is called 
the reciprocal capacitance (or, not too often, “electrical elastance”). Usually, Eq. (12) is rewritten in a 
different form,  

              ,
1

,
p

CCQ        (2.13) 

where C is called self-capacitance. (Frequently, C is called just capacitance, but we will soon see that 
for more complex situations the latter term may be too ambiguous.) 

 Before going to calculation of C, let us have a look at the electrostatic energy of a single 
conductor. In order to calculate it, of the several equations discussed in Chapter 1, Eq. (1.63) is most 
convenient, because all elementary charges qk are now parts of the conductor surface charge, and hence 
sit at the same potential . As a result, the equation becomes very simple: 
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Moreover, using the linear relation (13), the same result may be re-written in two more forms: 
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 We will discuss several ways to calculate C in the next sections, and right now will have a quick 
look at just the simplest example for which we have calculated everything necessary in the previous 
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chapter: a conducting sphere of radius R. Indeed, we already know the electric field distribution: 
according to Eq. (1), E = 0 inside the sphere, while Eq. (1.19), with Q(r) = Q, describes the field 
distribution outside it. Moreover, since the latter formula is exactly the same as for the point charge 
placed in the sphere’s center, the potential distribution in space can be obtained from Eq. (1.35) by 
replacing q with sphere’s full charge Q. Hence, on the surface of the sphere (and, according to Eq. (2), 
through its interior),  

      
R

Q

04

1


  .      (2.16) 

Comparing this result with the definition (13), for the self-capacitance we obtain12 

            RDDRC 2,24 00   .    (2.17) 

This formula, which should be well familiar to the reader, is convenient to get some feeling of 
how large the SI unit of capacitance (1 farad, abbreviated as F) is: the self-capacitance of Earth (RE  
6.34106 m) is below 1 mF! Another important note is that while Eq. (17) is not exactly valid for a 
conductor of arbitrary shape, it implies an important estimate 

          aC 02~        (2.18) 

where a is the scale of the linear size of any conductor.13 

 Now proceeding to a system of two conductors, we immediately see why we should be careful 
with the capacitance definition: one constant C is insufficient to describe such system. Indeed, here we 
have two, generally different conductor potentials, 1 and 2, that may depend on both conductor 
charges, Q1 and Q2. Using the same arguments as for the one-conductor case, we may conclude that the 
dependence is always linear: 
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     (2.19) 

but still has to be described not with one but with four coefficients pjj’ (j, j’ = 1, 2) forming the so-called 
reciprocal capacitance matrix 

                   








2221

1211

pp

pp
.       (2.20) 

Plugging relation (19) into Eq. (1.63), we see that the full electrostatic energy of the system may be 
expressed by a quadratic form: 

12 In the Gaussian units, using the standard replacement 40  1, this relation takes a remarkably simple form: C 
= R, good to remember. Generally, in the Gaussian units (but not in the SI system!) the capacitance has the 
dimensionality of length, i.e. is measured in centimeters. Note also that a convenient fractional SI unit, 1 picofarad 
(10-12 F) is very close to the Gaussian unit: 1 pF = (110-12)/(4010-2)  0.8998 cm. 
13 These arguments are somewhat insufficient to say which size should be used for a in the case of narrow, 
extended conductors, e.g., a thin, long wire of length L and diameter D << L. In the Very soon we will see that in 
such cases the electrostatic energy, and hence C, should mostly depend on the larger size of the conductor. 
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It is evident that the middle term in the right-hand part of this equation describes the electrostatic 
coupling of the conductors. (Without it, the energy would be just a sum of two independent electrostatic 
energies of conductors 1 and 2.) This is why systems with p12, p21<< p11, p22  are called weakly 
coupled, and may be analyzed using approximate methods – see, e.g., Fig. 3 and its discussion below. 

 Before proceeding further, let us use the Lagrangian formalism of analytical mechanics14 to 
argue that the off-diagonal elements of matrix pjj’ are always equal: 

          .2112 pp        (2.22) 

Indeed, charges Q1,2 may be taken for generalized coordinates qj (j = 1,2) of the system; then the 
corresponding generalized forces may be found as  
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Applying this equation to Eq. (21), we see that, for example 
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Now we may argue that dynamics of charge Qj  should only depend on the electrostatic potential j this 
charge “sees”. This means, in particular, that 1  should be a unique function of F1. Comparing Eq. (24) 
with the first of Eqs. (19), we see that for this to be true, Eq. (22) should indeed be valid. 

 Equations (19) and (21) show that for the general case of arbitrary charges Q1 and Q2, the system 
properties cannot be reduced to just one coefficient (“capacitance”). Let us consider three particular 
cases when such a reduction is possible.  

 (i) The system as the whole is electrically neutral: Q1 = -Q2  Q. In this case the most important 
function of Q is the difference of conductor potentials, called voltage:15 

        ,21  V       (2.25) 

For that function, the subtraction of two Eqs. (19) gives  

       21122211

1
with  ,

pppp
C

C

Q
V m

m 
 ,   (2.26) 

where coefficient Cm is called the mutual capacitance between the conductors – or, again, just 
“capacitance”. The same coefficient describes the electrostatic energy of the system. Indeed, plugging 
Eq. (25) into Eq. (21), we see that both forms of Eq. (15) are reproduced if  is replaced with V, Q1 with 
Q, and C with Cm: 

14 See, e.g., CM Chapter 2. 
15 A word of caution: in condensed matter physics, voltage is usually defined differently, as the difference of 
electrochemical rather than electrostatic potentials - see, e.g., SM Sec. 6.4. These two definitions coincide if the 
conductors have equal workfunctions (for example, if they are made of the same material), and in this course their 
difference will be ignored. 

Voltage 

Mutual 
capacitance 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 2           Page 8 of 64 

             .
22

2
2

V
C

C

Q
U m

m

      (2.27) 

 The best known system for which the mutual capacitance Cm may be readily calculated is the 
plane (or “parallel-plate”) capacitor, a system of two conductors separated with a narrow, plane gap 
(Fig. 2). Indeed, since the surface charges, that contribute to the opposite charges Q of the conductors 
in this system, attract each other, in the limit d << a  they sit entirely on the sides of the narrow gap.  

 

 

 

 

 

 

 

 Let us apply the Gauss law to a pillbox volume (shown by dashed line in Fig. 2) whose area is a 
small part of the gap (but nevertheless much larger than d2), with one of the plane lids inside a 
conductor, and another one inside the gap. The result immediately shows that the electric field within 
the gap is E = /0, i.e. is independent of the pillbox thickness. Integrating this field across thickness d 
of the gap, we get V = Ed = d/0, so that  = 0V/d. But this voltage should not depend on the selection 
of the point of the gap area. As a result,  should be also constant over all the gap area A, and hence Q = 
A = 0V/d. Thus we may write V = Q/Cm, with 

         A
d

Cm
0 .      (2.28) 

 Let me offer a few comments on this well-known formula. First, it is valid even if the gap is not 
quite planar, for example if it gently curves on a scale much larger than d. Second, Eq. (28) is only valid 
if A ~ a2 is much larger than d2, because its derivation ignores the electric field deviations from 
uniformity16 at distances ~d near the gap edges. Finally, the same condition (A >> d2) assures that Cm is 
much larger than the self-capacitance of each of the conductors – see Eq. (18). The opportunities given 
by this fact for electronic engineering and experimental physics practice are rather astonishing. For 
example, a very realistic 3-nm layer of high-quality aluminum oxide (which may provide a nearly 
perfect electric insulation between two thin conducting films) with area of 0.1 m2 (which is a typical 
area of silicon wafers used in semiconductor industry) provides Cm ~ 1 mF,17 larger than the self-
capacitance of the whole planet Earth!  

 In the case shown in Fig. 2, the electrostatic coupling of the two conductors is evidently strong. 
As an opposite example of a weakly coupled system, let us consider two conducting spheres of the same 
radius R, separated by a much larger distance d (Fig. 3). 

16 Frequently referred to “fringe” fields resulting in an additional “stray” capacitance Cm’ ~ 0a. 
17 Just as in Sec. 1, in order for the estimate to be realistic, I took into account the additional factor  r (for 
aluminum oxide, close to 10) which should be included into the numerator of Eq. (28) to make it applicable to 
dielectrics – see Chapter 3 below. 

ad 

a

Q

Q

+ + + +
- - - -

Fig. 2.2. Plane capacitor. 
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In this case the diagonal components of matrix pjj’ may be approximately found from Eq. (16), 
i.e. by neglecting the coupling altogether: 

               .
4

1

0
2211 R

pp


      (2.29) 

Now, if we had just one sphere (say, number 1), the electric potential at distance d from its center would 
be given by Eq. (16):  = Q1/40d. Now if we move into this point a small (R << d) sphere without its 
own charge, we may expect that its potential should not be too far from this result, so that 2  Q1/40d. 
Comparing this expression with Eq. (19) (taken for Q2 = 0), we get 

     .,
4

1
2211

0
2112 pp

d
pp 


    (2.30) 

From here and Eq. (26), the mutual capacitance 

         R
pp

Cm 0
2211

2
1 


 .     (2.31) 

We see that (somewhat counter-intuitively), in this case Cm does not depend substantially on the 
distance between the spheres, i.e. does not describe their electrostatic coupling. The off-diagonal 
coefficients of the reciprocal capacitance matrix (20) play this role much better – see Eq. (30). 

 (ii) Now let us consider the case when only one conductor of the two is charged, for example Q1 
 Q, while Q2 = 0. Then Eqs. (19) yield 

          .1111 Qp       (2.32) 

Now, if we follow Eq. (13) and define Cj  1/pjj as the partial capacitance of conductor number j, we 
see that it differs from the mutual capacitance Cm – cf. Eq. (26). For example, in the case shown in Fig. 
3, C1 = C2  40R  2Cm. 

 (iii) Finally, let us consider a popular case when one of the conductors is charged by a certain 
charge (say, Q1 = Q), but the potential of another one is sustained constant, say 2 = 0.18 (This condition 
is especially easy to implement if the second conductor is much larger that the first one. Indeed, as the 
estimate (18) shows, in this case it would take much larger charge Q2 to make potential 2 comparable 
with 1.) In this case the second of equations (19) yields Q2 = - (p21/p22)Q1. Plugging this relation into 
the first of those equations, we get 

18 In electrical engineering, such constant-potential conductor is called the ground. This term stems from the fact 
that in many cases the Earth surface may be considered a good electric ground, because its potential is unaffected 
by laboratory-scale electric charges. 

R R
Rd  Fig. 2.3. A system of two well separated, 

similar conducting spheres. 
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Thus, if we treat the reciprocal of the expression in parentheses, 
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pC      (2.34) 

as the effective capacitance of the first conductor, it is generally different both from Cm and (unless the 
conductors are far apart and their electrostatic coupling is negligible) from C1 = 1/p11. 

 To summarize this section, the potential (and hence the actual capacitance) of a conductor in a 
two-conductor system may be very much dependent on what exactly is being done with the second 
conductor when the first one is charged. This is also true for multi-conductor systems (for whose 
description, Eqs. (19) and (21) may be readily generalized); moreover, in that case even the mutual 
capacitance between two selected conductors may depend on the electrostatics conditions of other 
components of the system. 

 

2.3. The simplest boundary problems 

 In the general case when the electric field distribution in the free space between the conductors 
cannot be readily found from the Gauss law or by any other special methods, the best approach is to try 
to solve the differential Laplace equation (1.42), with boundary conditions (1b):  

                  k
kS   ,02 ,                (2.35) 

where Sk is the surface of the k-th conductor of the system. After such boundary problem has been 
solved, i.e. the spatial distribution (r) has been found in all points outside the conductor, it is 
straightforward to use Eq. (3) to find the surface charge density, and finally the total charge  

      
k

k

S
rdQ 2       (2.36) 

of each conductor, and hence any component of the reciprocal capacitance matrix pjj’. As an illustration, 
let us implement this program for three very simple problems. 

 (i) Plane capacitor (Fig. 2). In this case, the easiest way to solve the Laplace equation is to use 
linear (Cartesian) coordinates with one coordinate axis, say z, normal to the conductor surfaces (Fig. 4). 
     

     

 

 

 

 

Fig. 2.4. Plane capacitor’s geometry used for the 
solution of the boundary problem (35). x

y

z
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In these coordinates, the Laplace operator is just the sum of three second derivatives.19 It is 
evident that due to problem’s translational symmetry in the {x, y} plane, deep inside the gap (i.e. at the 
lateral distance from the edges much larger than d) the electrostatic potential may only depend on the 
coordinate perpendicular to the gap surfaces: (r) = (z). For such a function, derivatives over x and y 
vanish, and the boundary problem (35) is reduced to a very simple ordinary differential equation 

        ,0)(
2

2

z
dz

d 
      (2.37) 

with boundary conditions 

            .)(,0)0( Vd        (2.38) 

(For the sake of notation simplicity, I have used the discretion of adding a constant to the potential to 
make one of the potentials vanish, and also definition (25) of voltage V.) The general solution of Eq. 
(37) is a linear function:  (z) = c1z + c2, whose constant coefficients c1,2 may be found, in an elementary 
way, from the boundary conditions (38). The final solution is 

          .
d

z
V       (2.39) 

From here the only nonvanishing component of the electric field is  

              
d

V

dz

d
Ez 


,     (2.40) 

and the surface charge of the capacitor plates 

     
d

V
EE zn 000    ,     (2.41) 

where the upper and lower sign correspond to the upper and lower plate, respectively. Since   does not 
depend on coordinates x and y, we can get the full charges Q1 = - Q2  Q of the surfaces by its 
multiplication by the gap area A, giving us the again already known result (28) for the mutual 
capacitance Cm  Q/V. I believe that this calculation, though very easy, may serve as a good introduction 
to the boundary problem solution philosophy. 

 (ii) Coaxial-cable capacitor. Coaxial cable is a system of two round cylindrical, coaxial 
conductors, with the cross-section shown in Fig. 5.  

 

 

 

 

 

 

 

19 See, e.g. MA Eq. (9.1). 

ab 

a0

Fig. 2.5. Cross-section of a coaxial capacitor. 
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Evidently, in this case the cylindrical coordinates {, , z}, with axis z along the common axis of 
the cylinders, are most appropriate. Due to the axial symmetry of the problem, in these coordinates E(r) 
= nE(), (r) = (), so that in the general expression for the Laplace operator20 we can take /  = 
/z = 0. As a result, only the first (radial) term of the operator survives, and the boundary problem (35) 
takes the form 

   0)(,)(,0
1









bVa

d

d

d

d 




.    (2.42) 

The sequential integration of this ordinary  differential equation is elementary (and similar to that of the 
Poisson equation in spherical coordinates, performed in Sec. 1.3), giving 

            2121
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.   (2.43) 

Constants c1,2 may be found using boundary conditions (42): 

    212 ln0, c
a

b
ccV  ,      (2.44) 

giving c1 = -V/ln(b/a), so that solution (43) takes the following form 

        









)/ln(

)/ln(
1

ab
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 .     (2.45) 

Next, for our axial symmetry the general expression for the gradient21 is reduced to the radial derivative, 
so that 

   
 ab

V

d

d
E

/ln
  .     (2.46) 

This expression, plugged into Eq. (2), allows us to find the density of conductors’ surface charge. For 
example, for the inner electrode 

     
)/ln(

0
0 aba

V
Eaa


  ,     (2.47) 

so that its full charge (per unit length of the system) is 

      
)/ln(

2
2 0

ab

V
a

L

Q
a


  .     (2.48) 

(It is straightforward to check that the charge of the outer electrode is equal and opposite.) Hence, by  
the definition of the mutual capacitance, its value per unit length is 

        
)/ln(

2 0

abLV

Q

L

Cm 
 .     (2.49) 

20 See, e.g., MA Eq. (10.3). 
21 See, e.g., MA Eq. (10.2). 
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This expression shows that the total capacitance C is proportional to the systems length L (if L 
>> a,b), while being only logarithmically dependent on is the dimensions of its cross-section. Since log 
of a very large argument is an extremely slow function (sometimes called “quasi-constant”), if the 
external conductor is made large (b >> a) the capacitance diverges, but very weakly. Such a logarithmic 
divergence may be cut by any miniscule additional effect, for example by the finite length L of the 
system. This allows one to get a crude but very useful estimate of self-capacitance of a single wire: 

aL
aL

L
C  for ,

)/ln(

2 0
.     (2.50) 

On the other hand, if the gap between the conductors is narrow: b = a + d, with d << a, then ln(b/a) = 
ln(1 + d/a) may be approximated as d/a, and Eq. (49) is reduced to Cm  20aL/d, i.e. to Eq. (28) for the 
plane capacitor, with A = 2aL. 

 (iii) Spherical capacitor. This is a system of two conductors, with the same central cross-section 
as the coaxial cable (Fig. 5), but now with the spherical rather than axial symmetry. This symmetry 
implies that we are better off using spherical coordinates, so that potential  depends only on one of 
them, the distance r from the common center of the conductors: (r) = (r).   As we already know from 
Sec. 1.3, in this case the general expression for the Laplace operator is reduced to its first (radial) term, 
so that the Laplace equation takes a simple form – see Eq. (1.47). Moreover, we have already found the 
general solution to this equation – see Eq. (1.50): 

            ,)( 2
1 c
r

c
r       (2.51) 

Now acting exactly as above, i.e. determining constant c1 from the boundary conditions (a) = V, (b) = 
0, we get 
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Next, we can use the spherical symmetry to find electric field, E(r) = nrE(r), with 
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,    (2.53) 

and hence its values on conductors’ surfaces, and then the surface charge density  from Eq. (2). For 
example, for the inner conductor’s surface, 
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so that, finally, for the full charge of that conductor we get 

  V
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   .    (2.55) 

(Again, the charge of the outer conductor is equal and opposite.) Now we can use the definition of the 
mutual capacitance to get the final result 
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 For b >>a, this result coincides with Eq. (17) for self-capacitance of the inner conductor. On the 
other hand, if the gap between two conductors is narrow, d  b – a << a,  

               ,4
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d

daa
Cm  


     (2.57) 

i.e. the capacitance approaches that of the planar capacitor of area A = 4a2 - as it should. 

 All this seems (and is) very straightforward, but let us contemplate what was the reason for such 
easy successes. We have managed to find such coordinate transformations, for example {x, y, z}  {r, 
, } in the spherical case, that both the Laplace equation and the boundary conditions involve only one 
of the new coordinates (in this case, r). The necessary condition for the former fact is that the new 
coordinates (in this case, spherical ones) are orthogonal. This means that three vector components of 
differential dr, due to small variations of the new coordinates (say, dr, d, and d), are mutually 
perpendicular. If this were not so, the Laplace operator would not fall into the simple sum of three 
independent parts, and could not be reduced, at the proper symmetry of the problem, to just one of these 
components, making it readily integrable. 

 

2.4. Other orthogonal coordinates 

 Since the cylindrical and spherical coordinates are only simplest examples of the orthogonal (or 
“orthogonal curvilinear”) coordinates, this methodology may be extended to other coordinate systems of 
this type. As an example, let us have a look at the following problem: finding the self-capacitance of a 
thin, round conducting disk (and, as solution’s by-products, the distributions of the electric field and 
surface charge) – see Fig. 6. The cylindrical or spherical coordinates would not give too much help here, 
because though they have the appropriate axial symmetry about axis z, they would make the boundary 
condition on the disk too complex (two coordinates, either  and z, or r and ).  

 

 

 

 

 

 

 The relief comes from noting that the disk, i.e. the area z = 0, r < R,  may be thought of as the 
limiting case of an axially-symmetric ellipsoid - the result of rotation of the usual ellipse about one of its 
axes - in our case, the vertical axis z.22 Analytically, such an ellipsoid may be described by the following 
equation: 

22 Alternative names for this surface are “degenerate ellipsoid”, “ellipsoid of rotation”, and “spheroid”. 

Fig. 2.6. The thin conducting disk problem. (The cross-
section of the system by the vertical plane y = 0.) 
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where a and b are the so-called major semi-axes whose ratio determines the ellipse eccentricity (the 
degree of squeezing). For our problem, we will only need oblate ellipsoids with a  b; according to Eq. 
(58), they may be presented as surfaces of constant   in the system of degenerate ellipsoidal (or 
“spheroidal”) coordinates {, , }, which are related to the Cartesian coordinates as follows: 
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     (2.59) 

Such ellipsoidal coordinates are the evident generalization of the spherical coordinates, which 
correspond to the limit   >> 1 (i.e. r >> R). In the opposite limit of small , the surface of constant  = 
0 describes our thin disk of radius R. It is almost evident (and easy to prove) that coordinates (59) are 
also orthogonal, so that the Laplace operator may be expressed as a sum of three independent terms: 
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. (2.60) 

 Though this expression may look a bit intimidating, let us notice that in our current problem, the 
boundary conditions depend only on coordinate :23 

         0,0     V .     (2.61) 

Hence there is every reason to believe that the electrostatic potential in all space is the function of  
alone. (In other words, all ellipsoids  = const are the equipotential surfaces.) Indeed, acting on such 
function () by the Laplace operator (60), we see that the two last terms in the square brackets vanish, 
and the Laplace equation (35) is reduced to a simple ordinary differential equation 

               .0cosh 








 d

d

d

d
     (2.62) 

Integrating it twice, just as we did in the previous problems, we get 
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d
c .     (2.63) 

This integral may be readily taken, for example, using the substitution   sinh (with d  cosh d, 
cosh2 = 1 + sinh2 = 1 +  2): 
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   (2.64) 

23 I have called disk’s potential V, to distinguish it from the potential  at an arbitrary point of space. 
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The integration constants c1,2 are again simply found from boundary conditions, in this case Eqs. (61), 
and we arrive at the final expression for the electrostatic potential: 

                



   )sinh(tan

2
1)( 1 


 V .    (2.65) 

This solution satisfies both the Laplace equation and the boundary conditions. Mathematicians tell us 
that the solution of any boundary problem of the type (35) is unique, so we do not need to look any 
further.  

Now we may use Eq. (3) to find the surface density of electric charge, but in the case of thin 
disk, it is more natural to add up such densities on its top and bottom surfaces at the same distance r = 
(x2 + y2)1/2 from the disk center (which are evidently equal, due to the problem symmetry about plane z = 
0):  = 20Enz=+0. According to Eq. (65), the electric field on the surface is 
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  (2.66) 

and we see that the charge is distributed along the disk very nonuniformly: 
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      (2.67) 

with a singularity at the disk edge. Below we will see that such singularities are very typical for sharp 
edges of conductors.24 Fortunately, in our current case the divergence is integrable, giving a finite disk 
charge: 
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   (2.68) 

Thus, for disk’s self-capacitance we get a very simple result, 

              ,4
2

8 00 RRC 


       (2.69) 

a factor of 2/  0.64 lower than that for the conducting sphere of the same equal radius, but still 
complying with the general estimate (18). 

 Can we always find a “good” system of orthogonal coordinates? Unfortunately, the answer is no, 
even for highly symmetric geometries. This is why the practical value of this approach is limited, and 
other methods of boundary problem solution are clearly needed. Before moving to them, however, let us 
note that in the case of 2D problems (i.e. cylindrical geometries), the orthogonal coordinate method gets 
help from the following conformal mapping approach. 

 Let us consider the pair of Cartesian coordinates {x, y} of the cross-section plane as a complex 
variable z = x + iy,25 where i is the imaginary unity (i2 = -1), and let w(z) = u + iv be an analytic complex 

24 If you seriously worry about the formal infinity of charge density at r  R, please remember that this 
mathematical artifact disappears for any nonvanishing disk thickness.  
25 The complex variable z should not be confused with the (real) 3rd spatial coordinate z! We are considering 2D 
problems now, with the potential independent of z. 
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function of z.26 For our current purposes, the most important property of an analytic function is that its 
real and imaginary parts obey the following Cauchy-Riemann relations:27 
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, .     (2.70) 

For example, for the function 

           w = z2 = (x + iy)2 = (x2 – y2) + 2ixy,    (2.71) 

whose real and imaginary parts are 

        xyvyxu 2Im,Re 22  ww ,    (2.72) 

we immediately see that u/x = 2x = v/y, and  v/x = 2y = -u/y, in accordance with Eq. (70). 

 Let us differentiate the first of Eqs. (70) over x again, then change the order of differentiation, 
and after that use the latter of those equations:  
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,   (2.73) 

and similarly for v. This means that the sum of second-order partial derivatives of each of real functions 
u(x,y) and v(x,y) is zero, i.e. that both functions obey the 2D Laplace equation. This mathematical fact 
opens a nice way of solving problems of electrostatics for (relatively simple) 2D geometries. Imagine 
that for a particular boundary problem we have found a function w(z) for which either u(x, y) or v(x, y) 
is constant on all electrode surfaces. Then all lines of constant u (or v) present equipotential surfaces, i.e. 
the problem of the potential distribution has been essentially solved.  

 As a simple example, consider a practically important problem: the quadrupole electrostatic 
lens- a system of four cylindrical28 electrodes with hyperbolic cross-sections, whose boundaries obey the 
following relations: 

        








,electrodes bottom and  topfor the,

,electrodesright  andleft  for the    ,
2

2
22

a

a
yx    (2.74) 

voltage-biased as shown in Fig. 7a. Comparing these relations with Eqs. (72), we see that each electrode 
surface corresponds to a constant value of  u = a2. Moreover, potentials of both surfaces with u = +a2 
are equal to +V/2, while those with u = -a2 are equal to -V/2. Hence we may conjecture that the 
electrostatic potential at each point is a function of u alone; moreover, a simple linear function,  

     2
22

121 )( cyxccuc  ,    (2.75) 

26 The analytic (or “holomorphic”) function may be defined as the one that may be expanded into the complex 
Taylor series, i.e. is infinitely differentiable in the given point. (Almost all “regular” functions, such as zn, z1/n, 
exp z, ln z, etc. and their combinations are analytic at all z, maybe besides certain special points.) If the reader 
needs to brush up his or her background on this subject, I can recommend a popular (and very inexpensive :-) 
textbook by M. Spiegel et al., Complex Variables, 2nd ed., McGraw-Hill, 2009. 
27 These relations may be, in particular, to prove the famous Cauchy integral formula – see, e.g., MA Eq. (15.1). 
28 Let me remind the reader that in mathematics, term cylindrical describes a surface formed by translation,  along 
a straight line, of an arbitrary curve, and hence more general than the usual circular cylinder. (In this terminology, 
for example, a prism is also a particular form of cylinder, formed by translating  a polygon.)   
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is a valid (and hence the unique) solution of our boundary problem. Indeed, it does satisfy the Laplace 
equation, while its constants c1,2 may be selected in a way to satisfy all the boundary conditions shown 
in Fig. 7a: 
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 .     (2.76) 

so that the boundary problem has been solved. 

 

 

 

  

 

 

 

 

 

 According to Eq. (76), all equipotential surfaces are hyperbolic cylinders, similar to those of the 
electrode surfaces. What remains is to find the electric field at an arbitrary point inside the system: 
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These formulas show that if charged particles (e.g., electrons in an electron optics system) are launched 
to fly ballistically through the lens, along axis z, they experience a force pushing them toward the 
symmetry axis and proportional to particle’s deviation from the axis (and thus equivalent in action to an 
optical lens with positive refraction power) in one direction, and a force pushing them out (negative 
refractive power) in the perpendicular direction. One can show that letting charged particles fly through 
several such lenses, with alternating voltage polarities, in series, enables beam focusing.29 

 Hence, we have reduced the 2D Laplace boundary problem to that of finding the proper analytic 
function w(z). This task may be also understood as that of finding a conformal map, i.e. a 
correspondence between components of any point pair, {x, y} and {u, v}, residing, respectively, on the 
initial Cartesian plane z and the plane w of the new variables. For example, Eq. (71) maps the real 
electrode configuration onto the plane capacitor with infinite area (Fig. 7b), and the simplicity of Eq. 
(75) is due to the fact that for the latter system the equipotential surfaces are just parallel planes. 

 For more complex geometries, the suitable analytic function w(z) may be hard to find. However, 
for conductors with piece-linear cross-section boundaries, substantial help may be obtained from the 
following Schwarz-Christoffel integral 

29 See, e.g., textbook by P. Grivet, Electron Optics, 2nd ed., Pergamon, 1972, or the review collection A. Septier 
(ed.), Focusing Charged Particles, vol. I, Academic Press, 1967, in particular the review by K.-J. Hanszen and R. 
Lauer, pp. 251-307. 

(a)        (b) 

Fig. 2.7. (a) Quadrupole electrostatic lens geometry and (b) its analysis using conformal mapping. 
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that provides the conformal mapping of the interior of an arbitrary N-sided polygon on plane w = u + iv, 
and the upper-half (y > 0) of plane z = x + iy. Here xj  (j = 1, 2, N - 1) are the points of axis y = 0 (i.e., of 
the boundary of the mapped region on plane z) to which the corresponding polygon vertices are mapped, 
while kj are the exterior angles at the polygon vertices, measured in the units of  , with -1  kj   +1 – 
see Fig. 8.30 Of points xj, two may be selected arbitrarily (because their effects may be compensated by 
the multiplicative constant in Eq. (78), and the constant of integration), while all the others have to be 
adjusted to provide the correct mapping. 

  

 

 

 

 

 

  

 

 

 

 In the general case, the complex integral (78) may be hard to tackle. However, in some important 
cases, in particular those with right angles (kj = ½) and/or with some points wj at infinity, the integrals 
may be readily worked out, giving explicit analytical expressions for the mapping functions w(z). For 
example, let us consider a semi-infinite strip, defined by restrictions -1  u  +1 and 0  v, on plane w – 
see the left panel of Fig. 9.  

 

 

 

 

 

 

 

 

30 Integral (70) includes only (N – 1) rather than N poles, because polygon’s shape is completely determined by (N 
– 1) positions wj of its vertices and (N – 1) angles kj. In particular, since the algebraic sum of all external angles 
of a polygon equals , the last angle parameter kj = kN  is uniquely determined by the set of the previous ones. 
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Fig. 2.8. Schwartz-Christoffel mapping of 
polygon’s interior on the upper half-plane.  
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 The strip may be considered as a polygon, with one vertex at the infinitely distant vertical point 
w3 = 0 +  i. Let us map it on the upper half of plane z, shown on the right panel of Fig. 9, with vertex 
w1 = -1 + i0 mapped onto point x1 = -1, y1 = 0, and vertex w2 = +1 + i0 mapped onto point x2 = +1, y2 = 
0. Since in this case both external angles are equal to +/2, and hence k1 = k2 = +½, Eq.  (78) is reduced 
to 
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This complex integral may be taken, just as for real z, by the substitution z = sin, giving  
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Determining constants c1,2 from the required mapping, i.e. from the equations w(-1 + i0) = -1 + i0 and  
w(+1+ i0)= +1+ i0 (see Fig. 9), we finally get 
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Using the well-known expression for the sine of a complex argument,31 we may rewrite this elegant 
result in either of the two following forms for the real and imaginary components of z and w: 
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     (2.81b) 

It is amazing how perfectly does the last formula manage to keep y  0 at different borders of our w-
region (Fig. 9): at its side borders (u = 1, 0  v < ), this is performed by the first multiplier, while at 
the bottom border (-1  u  +1, v = 0), the equality is insured by the second operand. 

This mapping may be used to solve several electrostatics problems with the geometry shown in 
Fig. 9; probably the most surprising of them is the following one. A straight gap of width 2t is cut in a 
thin conducting plane, and voltage V is applied between the resulting half-planes – see the bold lines in 
Fig. 10. Selecting a Cartesian coordinate system with axis z along the cut, axis y perpendicular to the 
plane, and the origin in the middle of the cut, we can write the boundary conditions of this Laplace 
problem as 









.0,at ,2/

,0,at ,2/

ytxV

ytxV
      (2.82) 

(Due to problem’s symmetry, we may expect that in the middle of the gap, i.e. at -t < x < +t and y = 0, 
the electric field is parallel to the plane and hence /y = 0.)  The comparison of Figs. 9 and 10 shows 
that if we normalize our coordinates to t, Eq. (81) provides the conformal mapping of our system on 
plane z to the field in a plane capacitor on plane w, with voltage V between two planes u = 1. Since we 

31 See, e.g., MA Eq. (3.5). 
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already know that in that case  = (V/2)u, we may immediately use the first of Eqs. (81b) to write the 
final solution of the problem (in the dimensional coordinates):32 
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Thin lines in Fig. 10 show the corresponding equipotential surfaces;33 it is evident that the 
electric field concentrates at the gap edges, just as it did at the edge of the thin disk (Fig. 6). Let me 
leave the remaining calculation of the surface charge distribution and the mutual capacitance between 
the half-planes (per unit length) for reader’s exercise. 

 

2.5. Variable separation 

 The general approach of the methods discussed in the last two sections was to satisfy the Laplace 
equation by a function of a single variable that also satisfies the boundary conditions. Unfortunately, in 
many cases this cannot be done (at least, using practicably simple functions). In this case, a very 
powerful method, called variable separation, may work, frequently producing “semi-analytical” results 
in the form of series (infinite sums) of either elementary or well-studied special functions. The main idea 
of the method is to present the solution of the general boundary problem (35) as the sum of partial 
solutions, 

      
k

kkc  ,      (2.84) 

where each function k satisfies the Laplace equation, and then select the set of coefficients ck to satisfy 
the boundary conditions. More specifically, in the variable separation method the partial solutions k are 
looked for in the form of a product of functions, each depending of just one spatial coordinate. 

32 This result could also be obtained using the so-called elliptical (not ellipsoidal!) coordinates. 
33 Another graphical representation of the electric field distribution, by field lines, is much less convenient. As a 
reminder, the field lines are defined as lines to whom the (in our current case, electrostatic) field vectors are 
tangential at each point. By this definition, the field lines are always normal to the equipotential surfaces, so that it 
is always straightforward to sketch them from the equipotential surface pattern – such as shown in Fig. 10.  
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tt Fig. 2.10. Equipotential surfaces of 
the electric field between two thin 
conducting semi-planes (or rather 
their cross-sections by the 
perpendicular plane z = const). 
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 (i) Cartesian coordinates. Let us discuss this approach on the classical example of a rectangular 
box with conducting walls (Fig. 11), with the same potential (that I will take for zero) at all the walls, 
but a different potential V fixed at the top lid. Moreover, in order to demonstrate the power of the 
variable separation method, let us carry out all the calculations for a more general case when the top 
lead potential is an arbitrary 2D function V(x, y).34  

 

 

 

 

 

 

 

 

For this geometry, it is natural to use Cartesian coordinates {x, y, z} and hence present each of 
the partial solutions in Eq. (84) as a product 

            )()()( zZyYxXk  .     (2.85) 

Plugging it into the Laplace equation expressed in the Cartesian coordinates, 
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and dividing the result by product XYZ, we get 
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 Here comes the punch line of the variable separation method: since the first term of this sum may 
depend only on x, the second one only of y, etc., Eq. (87) may be satisfied everywhere in the volume 
only if each of these terms equals a constant. In a minute we will see that for our current problem (Fig. 
11), these constant x- and y-terms have to be negative; hence let us denote these variable separation 
constants as (-2) and (-2), respectively. Now Eq. (87) shows that the constant z-term has to be 
positive; if we denote it as 2, we get the following relation: 

      222   .      (2.88) 

 Now the variables are separated in the sense that for functions X(x), Y(y), and Z(z) we have got 
separate ordinary differential equations, 

34 Such distributions may be implemented in practice using so-called mosaic electrodes consisting of many 
electrically-insulated and individually-biased panels. 
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Fig. 2.11. Standard playground for the variable 
separation method discussion: a rectangular box 
with five conducting, grounded walls and a fixed 
potential distribution V(x, y) on the top lid.  
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which are related only by Eq. (88) for their parameters. Let us start from the equation for function X(x). 
Its general solution is the sum of functions sinx and cosx, multiplied by arbitrary coefficients. Let us 
select these coefficients to satisfy our boundary conditions. First, since   X should vanish at the back 
vertical wall of the box (i.e., with the choice of coordinate origin shown in Fig. 11, at x = 0 for any y and 
z), the coefficient at cosx should be zero. The remaining coefficient (at sinx) may be included into the 
general factor ck in Eq. (84), so that we may take X in the form 

         xX sin .      (2.90)  

This solution satisfies the boundary condition at the opposite wall (x = a) only if its argument a is a 
multiple of  , i.e. if  is equal to any of the following numbers (commonly called eigenvalues):35 

         ,...2,1,  nn
an

      (2.91) 

(Terms with negative values of n would not be linearly-independent from those with positive n, and may 
be dropped from the sum (84). Value n = 0 is formally possible, but would give X = 0, i.e. k = 0, at any 
x, i.e. no contribution to sum (84),  so it may be dropped as well.) Now we see that we indeed had to 
take   real, (i.e. 2 positive); otherwise, instead of the oscillating function (90) we would have a sum of 
two exponential functions, which cannot equal zero in two independent points of axis x. 

 Since the equation for function Y(y) is similar to that for X(x), and the boundary conditions on 
the walls perpendicular to axis y (y = 0 and y = b) are similar to those for x-walls, the absolutely similar 
reasoning gives 
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 ,    (2.92) 

where the choice of integer m is independent of that of integer n. Now we see that according to Eq. (88), 
the separation constant  depends on two indices, n and m, so that the relation may be rewritten as 
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The corresponding solution of the differential equation for Z  may be presented as a sum of two 
exponents exp{nmz}, or alternatively as a linear combination of two hyperbolic functions, sinhnmz and 
coshnmz, with arbitrary coefficients. At our choice of coordinate origin, the latter option is preferable, 
because coshnmz cannot satisfy the zero boundary condition at the bottom lid of the box (z = 0). Hence 
we may take Z in the form 

      zZ nmsinh       (2.94) 

35 Note that according to Eqs. (91)-(92), as the spatial dimensions a and b of the system are increased, the 
distances between adjacent eigenvalues tend to zero. This fact implies that for spatially-infinite, non-periodic 
systems, the eigenvalue spectra are continuous, so that the sums of the type (84) become integrals. A few 
problems of this type are provided in Sec. 9 for reader’s exercise. 
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that automatically satisfies that condition. 

 Now it is the right time to combine Eqs. (84) and (85) for our case in a more explicit form, 
replacing symbol k for the set of two integer indices n and m:    
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 ,   (2.95) 

where nm is given by Eq. (93). This solution satisfies our boundary conditions on all walls of the box, 
besides the top lid, for arbitrary coefficients cnm. The only job left for us is to choose these coefficients 
from the top-lid requirement: 
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 .   (2.96) 

It seems like a bad luck to have just one equation for the infinite set of coefficients cnm. However, the 
decisive help come from the fact that the functions of x and y that participate in Eq. (96), form full, 
orthogonal sets of 1D functions. The last term means that the integrals of the products of the functions 
with different integer indices over the region of interest equal zero. Indeed, direct integration gives 
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and similarly for y (with evident replacements a  b, n  m). Hence, the fruitful way to proceed is to 
multiply both sides of Eq. (96) by the product of the basis functions, with arbitrary indices n’ and m’, 
and integrate the result over x and y: 
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Due to Eq. (97), all terms in the right-hand part of the last equation, besides those with n = n’ and m = 
m’, vanish, and (replacing n’ with n, and m’ with m) we finally get 
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Relations (93), (95) and (99) present the complete solution of the posed boundary problem; we 
can see both good and bad news here. The first bit of bad news is that in the general case we still need to 
work out (formally, the infinite number of) integrals (99). In some cases, it is possible to do this 
analytically. For example, in our initial problem of constant potential on the top lid, V(x,y) = const  V0, 
both 1D integrations are elementary; for example 
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and similarly for the integral over y, so that 
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Variable 
separation 
in Cartesian 
coordinates 
(example) 
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The second bad news is that even at such a happy occasion, we still have to sum up the series (95), so 
that our result may only be called analytical with some reservations, because in most cases we need a 
computer to get the finial numbers or plots.  

 Now the first good news. Computers are very efficient for both operations (95) and (99), i.e. 
summation and integration. (As was discussed in Sec. 1.2, random errors are averaged out at these 
operations.) As an example, Fig. 12 shows the plots of the electrostatic potential in a cubic box (a = b = 
c), with an equipotential top lid (V = V0 = const), obtained by numerical summation of series (95), using 
the analytical expression (101). The remarkable feature of this calculation is the very fast convergence 
of the series; for the middle cross-section of the cubic box (z/c = 0.5), already the first term (with n = m 
= 1) gives accuracy about 6%, while the sum of four leading terms (with n, m = 1, 3) reduces the error to 
just 0.2%. (For a longer box, c > a, b, the convergence is even faster – see the discussion below.) Only 
close to the corners between the top lid and the side walls, where the potential changes very rapidly, 
several more terms are necessary to get a reasonable accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 The second good news is that our “semi-analytical” result allow its ultimate limits to be explored 
analytically. For example, Eq. (93) shows that for a very flat box (c << a, b), n,mz    n,mc  << 1 at least 
for the lowest terms of series (95), with n, m << c/a, c/b. In these terms, sinh functions in Eqs. (96) and 
(99) may be well approximated with their arguments, and their ratio by z/c. This means that if we limit 
the summation to these term, Eq. (95) gives a very simple result 
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Fig. 2.12. Distribution of the electrostatic potential within a cubic box (a = b = c) with constant voltage V0 on 
the top lid (Fig. 11), calculated numerically from Eqs. (93), (95) and (101). The dashed line on the left panel 
shows the contribution of the main term (with n = m = 1) to the full result. 
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which means that each segment of the flat box behaves just as a plane capacitor. Only near the vertical 
walls (or near possible locations where V(x,y) is changed sharply), the higher terms in the series (95) are 
important, producing deviations from Eq. (102). In the opposite limit (a, b << c), Eq. (93) shows that, in 
contrast, n,mc  >> 1 for all n and m. Moreover, the ratio sinhn,mz/sinhn,mc drops sharply if either n or m 
is increased, if z is not too close to c. Hence in this case a very good approximation may be obtained by 
keeping just the leading term, with n = m = 1, in Eq. (95), so that the problem of summation disappears. 
(We saw above that this approximation works reasonably well even for a cubic box.) In particular, for 
the constant potential of the upper lid, we can use Eq. (101) and the exponential asymptotic for both sinh 
functions, to get a very simple formula: 
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 The same variable separation method may be used to solve more general problems as well. For 
example, if all walls of the box shown in Fig. 11 have an arbitrary potential distribution, one can use the 
linear superposition principle to argue that the electrostatic potential distribution inside the box as the 
sum of 6 partial solutions of the type of Eq. (95), each with one wall biased by the corresponding 
voltage, and all other grounded ( = 0). 

 To summarize, the results given by the variable separation method are closer to what we could 
call a genuinely analytical solution than to purely numerical solutions - see Sec. 6 below. Now, let us 
explore the issues that arise when this method is applied in other orthogonal coordinate systems. 

 (ii) Polar coordinates. If a system of conductors is cylindrical, the potential distribution is 
independent of the coordinate z along the cylinder axis: /z =0, and the Laplace equation becomes 
two-dimensional. If conductor’s cross-section is rectangular, the variable separation method works best 
in Cartesian coordinates {x, y}, and is just a particular case of the 3D solution discussed above. 
However, if the cross-section is circular, much more compact results may be obtained by using polar 
coordinates {, }. As we already know from the last section, these 2D coordinates are orthogonal, so 
that the two-dimensional Laplace operator is a simple sum.36 Requiring, just as we have done above, 
each component of sum  (84) to satisfy the Laplace equation, we get  
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In a full analogy with Eq. (75), let us present each particular solution as a product: k = R()F(). 

Plugging this expression into Eq. (104) and then dividing all its parts by RF /2, we get 
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Following the same reasoning as for the Cartesian coordinates, we get two separated ordinary 
differential equations 

36 See, e.g., MA Eq. (10.3) with /z = 0. 
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where 2 is the variable separation constant. 

 Let us start their analysis from Eq. (106), plugging into it a probe solution R  = c, where c and 

 are some constants. Elementary differentiation shows that if   0, the equation is indeed satisfied for 
any c, with just one requirement on constant , namely 2 = 2. This means that the following linear 
superposition 

        ,0for ,    



 baR     (2.108) 

with constant coefficients a and b, is also a solution to Eq. (106). Moreover, the general theory of 
linear ordinary differential equations tells us that the solution of a second-order equation like Eq. (106) 
may only depend on just two constant factors that scale two linearly-independent functions. Hence, for 
all values 2  0, Eq. (108) presents the general solution of that equation. The case when  = 0, in which 
functions  + and  - are just constants and hence are not linearly-independent, is special, but in this 
case the integration of Eq. (106) is straightforward,37 giving 

     0.for ,ln00  baR      (2.109) 

 In order to specify the separation constant, we should use Eq. (107), whose general solution is 
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There are two possible cases here. In many boundary problems solvable in cylindrical coordinates, the 
free space region, in which the Laplace equation is valid, extends continuously around the origin point   
= 0. In this region, the potential has to be continuous and uniquely defined, so that F  has to be a 2-

periodic function of angle . For that, one needs ( +2) to be equal to ( + 2n), with n an integer, 
immediately giving us a discrete spectrum of possible values of the variable separation constant: 

               ,...2,1,0  n      (2.111) 

In this case both functions R and F  may be labeled with the integer index n. Taking into account that the 
terms with negative values of n may be summed up with those with positive n, and that s0 should equal 
zero (otherwise the 2-periodicity of function F   would be violated), we see that the general solution to 
the 2D Laplace equation may be presented as 

             


 nsnc
b

aba nn
n

n
nn

n sincosln),(
1

00 







 





.  (2.112) 

 Let us see how all this machinery works on the classical problem of a round cylindrical  
conductor placed into an electric field that is uniform and perpendicular to cylinder’s axis at large 

37 Actually, we have already done it in Sec. 3 – see Eq. (43). 

Variable 
separation  

in polar 
coordinates 
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distances - see Fig. 13a.38 First of all, let us explore the effect of system’s symmetries on coefficients in 
Eq. (112). Selecting the coordinate system as shown in Fig. 13a, and taking the cylinder’s potential for 
zero, we immediately have a0 = 0. Moreover, due to the mirror symmetry about plane [x, z],  the solution 
has to be an even function of angle , and hence all coefficients sn should also equal zero. Also, at large 
distances ( >> R) from the cylinder axis its effect on the electric field should vanish, and the potential 
should approach that of the uniform field E = E0nx: 

          for ,cos00 ExE .    (2.113) 

This is only possible if in Eq. (112), b0 = 0, and also all coefficients an with n  1 vanish, while product 
a1c1 should be equal to (-E0). Thus the solution is reduced to the following form 
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in which coefficients Bn  bncn should be found from the boundary condition on the cylinder’s surface, 
i.e. at  = R:   
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This requirement yields the following equation, 
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38 This problem does belong to our current topic of electrostatic fields between conductors,  because the uniform 
electric field may be created by a large plane capacitor. 

Fig. 2.13. Conducting cylinder inserted into an initially uniform electric field perpendicular to is 
axis: (a) the problem’s geometry, and (b) the equipotential surfaces given by Eq. (117). 
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which should be satisfied for all . But since functions cosn are orthogonal, this equality is only 
possible if all Bn for n  2 are equal zero, while B1 = E0R

2. Hence our final answer (which is of course 
only valid outside of the cylinder, i.e. for   R), is 
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 .   (2.117) 

This result (Fig. 13b) shows a smooth transition between the uniform field (113) far from the 
cylinder, to the equipotential surface of the cylinder (with  = 0). Such smoothening is very typical for 
Laplace equation solutions. Indeed, as we know from Chapter 1, these solutions corresponds to the 
lowest potential energy (1.67), and hence the lowest values of potential gradient modulus, possible at the 
given boundary conditions. 

 To complete the problem, let us calculate the distribution of the surface charge density over the 
cylinder’s cross-section, using Eq. (3): 
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 (2.118) 

This very simple formula shows that at the field direction shown in Fig. 13a (E0 > 0), the surface charge 
is positive on the right side of the cylinder and negative on its left side, thus creating a field directed 
from the right to the left, that compensates the external field inside the conductor, where the net field is 
zero. Note also that the net electric charge of the cylinder is zero, in the correspondence with the 
problem symmetry. Another useful by-product of calculation (118) is that the surface electric field 
equals 2E0cos, and hence its largest magnitude is twice the field far from the cylinder. Such electric 
field concentration is very typical for all convex conducting surfaces. 

 The last observation gets additional confirmation for the second possible topology, when Eq. 
(110) is used to describe problems with no angular periodicity. A typical example is a cylindrical 
conductor with a cross-section that features a corner limited by straight lines (Fig. 14). Indeed, at we 
may argue that at  < R (where R is the scale of radial extension of the straight sides of the corner), the 
Laplace equation may be satisfied by a sum of partial solutions R()F() if the angular components of 
the products satisfy the boundary conditions on the corner sides. Taking (just for the simplicity of 
notation) the conductor’s potential to be zero, and one of the corner’s sides as axis x (  = 0), these 
boundary conditions are 

               0)()0(  FF ,      (2.119) 

where angle  may be anywhere between 0 and 2 (Fig. 14).  

 

 

 

 

 

 

Fig. 2.14. Cylindrical conductor 
cross-sections with (a) a corner 
and (b) a wedge. 
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 Comparing this condition with Eq. (110), we see that it requires c  to vanish, and   to take one 
of the values of the following discrete spectrum:  

 mm  / , (2.120) 

with positive integer m. Hence the full solution of the Laplace equation takes the form 

       R
m

a
m

m
m  







  for ,sin

1

/ ,    (2.121) 

where constants s have been incorporated into am. The set of constants am cannot be simply determined, 
because it depends on the exact shape of the conductor outside the corner, and the externally applied 
electric field. However, whatever the set is, in the limit   0, solution (121) is almost39 always 
dominated by the term with lowest   (corresponding to m = 1) , 

           

  sin/

1a ,     (2.122) 

because the higher terms go to zero faster. This potential distribution corresponds to the surface charge 
density 

           1/
0,const

1
00surface0 )(
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En .  (2.123) 

(It is similar on the opposite face of the angle.) 

 Equation (123) shows that if we are dealing with a usual, concave corner ( < , see Fig. 14a), 
the charge density (and the  surface electric field) tends to zero. On the other case, at a “convex corner” 
with   >  (actually, a wedge - see Fig. 14b), both charge and field concentrate, formally diverging at  
 0. (So, do not sit on a roof’s ridge during a thunderstorm; rather hide in a ditch!) We already saw 
qualitatively similar effects at our analyses of the thin round disk and split plane in the past section. 

 (iii) Cylindrical coordinates. Now, let us discuss whether it is possible to generalize our 
approach to problems whose geometry is still axially-symmetric, but with a substantial dependence of 
the potential on the axial coordinate (/z  0). The classical example of such a problem is shown in 
Fig. 15. Here the side wall and the bottom lid of a round cylinder are kept at fixed potential (say,  = 0), 
but the potential V fixed at the top lid is different. This problem is qualitatively similar to the rectangular 
box problem solved above (Fig. 11), and we will also try to solve it for the case of arbitrary voltage 
distribution over the top lid: V = V(, ). 

 

 

 

 

 

39 Exceptions are possible only for highly symmetric configurations when the external field are crafted to make a1 
= 0. In this case the solution is led by the first nonvanishing term of the series (121). 

Fig. 2.15. Round cylinder  
with conducting walls. 
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 Following the main idea of the variable separation method, let us require that each partial 
function k in Eq. (84) satisfies the Laplace equation, now in full cylindrical coordinates {, , z}:40 
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Plugging in k in the form R()F()Z(z) into Eq. (124) and dividing both parts by product RFZ, we get 

      0
111

2

2

2

2

2









dz

d

d

d

d

d

d

d Z
Z




F
F

R
R

.    (2.125) 

Since the first two terms of Eq. (125) can only depend on polar variables  and , while the third term, 
only on z,  at least that term should be a constant. Denoting it (just like in the rectangular box problem) 
by 2, we get, instead of Eq. (125), a set of two equations: 
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Now, multiplying all the terms of Eq. (127) by 2, we see that the last term, (d2F/d2)/F, may depend 

only on , and thus should be constant. Calling that constant 2 (as in Sec. (ii) above), we separate Eq. 
(127) into an angular equation, 
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,     (2.128) 

and a radial equation: 
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We see that the ordinary differential equations for functions Z(z) and F() (and hence their 
solutions) are identical to those discussed earlier in this section. However, Eq. (129) for the radial 
function R() (called the Bessel equation) is more complex than in the 2D case, and depends on two 

independent constant parameters,  and .  The latter challenge may be readily overcome if we notice 
that any change of  may be reduced to re-scaling the radial coordinate . Indeed, introducing a 
dimensionless variable   ,41 Eq. (129) may be reduced to an equation with just one parameter, : 
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40 See, e.g., MA Eq. (10.3). 
41 Please note that this normalization is specific for each value of the variable separation parameter . Also, note 
that the normalization is meaningless for   = 0, i.e. for the case Z(z) = const. However, if we need partial 
solutions for this value of , we can use Eqs. (108)-(109). 

Bessel 
equation 
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Moreover, we already know that for angle-periodic problems the spectrum of eigenvalues of Eq. (128) is 
discrete  = n.  

 Unfortunately, even in this case, Eq. (130) cannot be satisfied by a single “elementary” function, 
and is the canonical form of an equation defining the Bessel function of the first kind, of order , 
commonly denoted as J(). Let me review in brief the Bessel function properties most relevant for the 
boundary problems of physics - and some other problems discussed in these notes.42 

 First of all, the Bessel function of a negative integer order is very simply related to that with the 
positive order: 

           )()1()(  n
n

n JJ  ,     (2.131) 

enabling us to limit our discussion to the functions with n  0. Figure 16 shows four functions with a 
few lowest positive n. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 As its argument is increased, each function is initially close to  a power law: J0()  1, J1()  
/2 = /2, J2()  2/8, etc. This behavior follows from the Taylor series  
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which that is formally valid for any , and may even serve as an alternative definition of function Jn(). 
However, this series is converging fast only at relatively small arguments,  < n, where its main term is 

42 For a more complete discussion of these functions, see the literature listed in MA Sec. 16, for example, Chapter 
9 (written by F. Olver) in the collection compiled and edited by Abramowitz and Stegun.  

0 5 10 15 20
1

0.5

0

0.5

1

Fig. 2.16. Several first-kind Bessel 
functions Jn() of integer order. 
Dashed lines show the envelope of 
asymptotes (135). 
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At   n + 1.86n1/3, the Bessel function reaches its maximum43 
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and then starts to oscillate with a period that gradually approaches 2, a phase shift that increases by /2 
with each unit increment of n, and an amplitude that decreases as -1/2. These features are described by 
the following asymptotic formula 
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that starts to give reasonable results very soon above the function peaks – see Fig. 16.44 

 Now we are ready to return to our case study (Fig. 15). Let us select functions Z(z) to satisfy the 
bottom-lid boundary condition Z(0) = 0, i.e. proportional to sinhz – cf. Eq. (95). Then 
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  .   (2.136) 

Next, we need to satisfy the zero boundary condition at the cylinder’s side wall ( = R). This may be 
ensured by taking 

      0)( RJ n  .      (2.137) 

Since each function Jn(x) has an infinite number of positive zeros (see Fig. 16), which may be numbered 
by an integer index m = 1, 2, …, Eq. (137) may be satisfied with an infinite number of discrete values of 
the separation parameter :  

      
R
nm

nm


  ,      (2.138) 

where nm is the m-th zero of function Jn(x) – see the top numbers in the cells of Table 1. (Very soon we  
will see what do we need the bottom numbers for.) 

Hence, Eq. (136) may be presented in a more explicit form: 
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43 These two formulas for the Bessel function peak are strictly valid for n >> 1, but may be used for reasonable 
estimates starting already from n = 1; for example, max [J1()] is close to 0.58 and is reached at    2.4, just 
about 30% away from the values given by the asymptotic formulas. 
44 Eq. (135) and Fig. 16 clearly show the close analogy between the Bessel functions and the usual trigonometric 
functions, sine and cosine. In order to emphasize this similarity, and help the reader to develop more gut feeling 
of the Bessel functions, let me mention one fact of the elasticity theory: while sine functions describe, in 
particular, possible modes of standing waves on a guitar string, functions Jn() describe, in particular, possible 
standing waves on an elastic round membrane, with J0() describing their lowest (fundamental) mode. 

Variable 
separation in 

cylindrical  
coordinates 

(example) 
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Here coefficients cnm and snm have to be selected to satisfy the only remaining boundary condition – that 
on the top lid: 
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To use it, let us multiply both parts of Eq. (140) by Jn(nm’/R) cos n’ , integrate the result over the lid 
area, and use the following property of the Bessel functions: 
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where mm’ is the Kronecker symbol.45 

 

  

 

 

 

 

 

 

 

 

 

 

Relation (141) expresses a very specific (“2D”) orthogonality of Bessel functions with different 
indices m - do not confuse them with the function’s order n, please!46 Since it relates two Bessel 
functions with the same index n, it is natural to ask why its right-hand part contains the function with a 
different index (n + 1). Some clue may come from one more very important property of the Bessel 
functions, the so-called recurrence relations:47 

45 Let me hope the reader knows what it is; if not – see MA Eq. (13.1). 
46 The Bessel functions of the same argument but of different orders are also orthogonal, but in a different way: 

nn'n'n n'n
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. 

47 These relations provide, in particular, a  convenient way for fast numerical computation of all Jn() after J0() 
has been computed. (The latter is usually done with an algorithm using Eq. (132) for smaller   and an extension 
of Eq. (135) for larger . ) Note that most mathematical software packages, including all those listed in MA Sec. 
16(iv), include ready subroutines for calculation of functions Jn() and other special functions used in this lecture 
series. In this sense, the line separated these “special functions” from “elementary functions” is rather blurry. 

Table 2.1. Approximate values of a few first zeros of a few lowest-order Bessel functions Jn() (the 
top number in each cell), and the values of dJn/d at those points (the bottom number in the cell). 

   

  m = 1 2 3 4 5 6 

n = 0 2.40482 
-0.51914 

5.52008 
+0.34026 

8.65372 
-0.27145 

11.79215 
+0.23245 

14.93091 
-0.20654 

18.07106 
+0.18773 

1 3.83171 
-0.40276 

7.01559 
+0.30012 

10.17347 
-0.24970 

13.32369 
+0.21836 

16.47063 
-0.19647 

19.61586 
+0.18006 

2 5.13562 
-0.33967 

8.41724 
+0.27138 

11.61984 
-0.23244 

14.79595 
+0.20654 

17.95982 
-0.18773 

21.11700 
+0.17326 

3 6.38016 
-0.29827 

9.76102 
+0.24942 

13.01520 
-0.21828 

16.22347 
+0.19644 

19.40942 
-0.18005 

22.58273 
+0.16718 

4 7.58834 
-0.26836 

11.06471 
+0.23188 

14.37254 
-0.20636 

17.61597 
+0.18766 

20.82693 
-0.17323 

24.01902 
+0.16168 

5 8.77148 
-0.24543 

12.33860 
+0.21743 

15.70017 
-0.19615 

18.98013 
+0.17993 

22.21780 
-0.16712 

25.43034 
+0.15669 
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that in particular yield the following relation (convenient for working out some Bessel function integrals): 
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 For our current purposes, let us apply the recurrence relations at special points nm. At these 
points, Jn vanishes, and the system of two equations (142) may be readily solved to get, in particular, 
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  ,     (2.144) 

so that the square bracket in the right-hand part of Eq. (141) is just (dJn/d)2 at  = nm. Thus the values 
of the Bessel function derivatives at the zero points (given by the lower numbers in the cells of Table 1) 
are as important for boundary problem solutions as the zeros themselves. 

  Since the angular functions cos n  are also orthogonal – both to each other, 

                '
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)cos()cos( nndn'n 


  ,    (2.145) 

and to all functions sinn, the integration over the lid area kills all terms of both series in right-hand 
part of Eq. (140), besides just one term proportional to cn’m’, and hence gives an explicit expression for 
that coefficient. The counterpart coefficients sn’m’ may be found by repeating the same procedure with 
the replacement of cos n’  by sin n’. This evaluation (left for reader’s exercise) completes the solution 
of our problem for an arbitrary lid potential V(,). 

 Still, before leaving the Bessel functions (for a while :-), we need to address two important 
issues. First, we have seen that in our cylinder problem (Fig. 15), the set of functions Jn(nm/R) with 
different indices m (that characterize the degree of Bessel function’s stretch along axis ) play the role 
similar to that of functions sin(nx/a) in the rectangular box problem shown in Fig. 11. In this context, 
what is the analog of functions cos(nx/a) - which may be important for some boundary problems? In a 
more formal language, are there any functions of the same argument   nm/R, that would be linearly 
independent of the Bessel functions of the first kind, while satisfying the same differential equation 
(130)? 

 The answer is yes. For the definition of such functions, we first need to generalize our prior 
formulas for Jn(), and in particular Eq. (132), to the case of arbitrary order  . The generalization may 
be performed in the following way: 
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where (s) is the so-called gamma function that may be defined, for almost any real s, as48 

             



0

1)(   des s .     (2.147) 

The simplest, and the most important property of the gamma function is that for integer values of 
argument it gives the factorial of a number smaller by one: 

          nnn ...21!)1(  ,     (2.148) 

so it is essentially a generalization of the notion of factorial to all real numbers. 

 The Bessel functions defined by Eq. (146) satisfy (after replacements n   and n!  (n + 1)), 
virtually all the relations we have discussed above, including the Bessel equation (130), the asymptotic 
formula (135), the orthogonality condition (141), and the recurrence relations (142). Moreover, it may 
be shown that   n, functions J() and J-() are linearly independent and hence their linear 
combination may be used to present a general solution of the Bessel equation. Unfortunately, as Eq. 
(131) shows, for  = n this is not true, and a solution independent of Jn() has to be formed in a different 
way.  

 The most common way of overcoming this difficulty is first to define, for all   n, function  
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JJ
Y ,    (2.149) 

called the Bessel function of second kind, or more often as the Weber functions,49 and then to follow the 
limit   n. At this, both the numerator and denominator of the right-hand part of Eq. (149) tend to 
zero, but their ratio tends to a finite value called Yn(x). It may be shown that these functions are still the 
solutions of the Bessel equation and are linearly independent of Jn(x), though are related just as those 
functions if the sign of n changes: 
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n YY  .     (2.150) 

 Figure 17 shows a few Weber functions of the lowest integer orders. The plots show that the 
asymptotic behavior is very much similar to that of Jn( ), 
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but with the phase shift necessary to make these Bessel functions orthogonal to those of the fist order – 
cf. Eq. (135). However, for small values of argument , the Bessel functions of the second kind behave 
completely differently from those of the first kind: 
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48 See, e.g., MA Eq. (6.7a). I used word “almost” because the gamma-function tends to infinity at all non-positive 
integer values of its argument (s = 0, -1. -2, …). 
49 They are also sometimes called the Neumann functions, and denoted as N(). 
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where  

          





   0.577157ln

1
...

3

1

2

1
1lim n

nn    (2.153) 

is the so-called Euler constant. Relations (152) and Fig. 17 show that functions Yn( ) diverge at    0 
and hence cannot describe the behavior of any physical variable, in particular the electrostatic potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 One may wonder: if this is true, when do we need these functions in physics? This does not 
happen too often, but still does. Figure 18 shows an example of a boundary problem of electrostatics 
that requires both functions Jn( ) and Yn( ).  

 

 

 

 

 

 

 

 

 Two round, coaxial conducting cylinders are kept at the same (say, zero) potential, but at least 
one of two horizontal lids has a different potential. The problem is almost completely similar to that 
discussed above (Fig. 15), but now we need to find the potential distribution in the free space between 
the cylinders, R1 <  < R2. If we use the same variable separation as in the simpler counterpart problem, 

Fig. 2.17. A few Bessel functions of the 
second kind (a.k.a. the Neumann 
functions, a.k.a. the Weber functions). 

0 5 10 15 20
1

0.5

0

0.5

1

)(nY

3    2    1     0   n



Fig. 2.18. Simple boundary 
problem that cannot be solved 
using just one kind of Bessel 
functions. 
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we need the radial functions R() to satisfy two zero boundary conditions: at  = R1 and  = R2 . With 

the Bessel functions of just first kind, Jn(), it is impossible to do, because the two boundaries would 
impose two independent (and generally incompatible) conditions, Jn(R1) =0, and Jn(R2) =0, for one 
“compression parameter” . The existence of the Bessel functions of the second kind immediately saves 
the day, because if a solution is presented as a linear combination,50 

            ),()(  nYnJ YcJc       (2.154) 

two zero boundary conditions give two equations for  and ratio c  cY/cJ. (Due to the oscillating 
character of both Bessel functions, these conditions would be typically satisfied by an infinite set of 
discrete pairs {, c}.) Note, however, that generally none of these pairs would correspond to zeros of 
either Jn nor Yn, so that having an analog of Table 1 for the latter function would not help much. Hence, 
even the simple problems of this kind (like the one shown in Fig. 18) typically require numerical 
solutions of algebraic (transcendental) equations.  

 One more issue we need to address, before moving on to the spherical coordinates, are the so-
called modified Bessel functions: of the first kind, I(), and of the second kind, K(). They are two 
linearly-independent solutions of the modified Bessel equation,  
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that differs from Eq. (130) “only” by the sign of one of its terms. Figure 19 shows a simple problem that 
leads to this equation: a round conducting cylinder is sliced, perpendicular to its axis, to rings of equal 
height h, which are kept at equal but sign-alternating potentials.  

 

 

 

 

 

 

 

 

 If the gaps between the sections are narrow, t << h, we may use the variable separation method 
for the solution to this problem, but now we evidently need periodic (rather than exponential) solutions 

50 A pair of independent linear functions, used for presentation of the general solution of the Bessel equation, may 
be also chosen in a different way, using the so-called Hankel functions 

        )()()()2,1(  nnn iYJH  .     

For representing the general solution of Eq. (130), this alternative is completely similar to using the pair of 
complex functions exp{ix} =  cos x  isin x  instead of the pair of real functions {cos x, sin x} for 
representing the general solution of Eq. (89) for X(x). 

Fig. 2.19. Typical boundary problem whose 
solution may be conveniently described in 
terms of the modified Bessel functions. 
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along axis z, i.e. linear combinations of sinkz and coskz with various real values of constant k. 
Separating the variables, we arrive at a differential equation similar to Eq. (129), but with the negative 
sign before the separation constant: 
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Radial coordinate normalization,   k, immediately leads us to Eq. (155), and hence (for  = n) to the 
modified Bessel functions In() and Kn().  

Figure 20 shows the behavior of a few such functions, of a few lowest orders. One can see that at 
  0 it is virtually similar to that of the “usual” Bessel functions - cf. Eqs. (132) and (152), with Kn() 
multiplied (due to purely historical reasons) by an additional coefficient, /2: 
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However, the asymptotic behavior of the modified functions is very much different, with In(x) 
exponentially growing and Kn() exponentially dropping at   : 
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 To complete our brief survey of the Bessel functions, let me note that all the functions we have 
discussed so far may be considered as particular cases of Bessel functions of the complex argument, say 
Jn(z) and Yn(z), or, alternatively, Hn

(1,2)(z) = Jn(z)  iYn(z).51 The “usual” Bessel functions Jn() and 

51 These complex functions still obey the general relations (143) and (146), with  replaced with z. 

Fig. 2.20. Modified Bessel 
functions of the first kind (left 
panel) and the second kind 
(right panel). 
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Yn() may be considered as a set of values of these generalized functions on the real axis (z = ), while 
the modified functions as their particular case at z = i: 
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Moreover, this generalization of the Bessel functions to the whole complex plane z enables the use of 
their values along other directions on that plane, for example under angles /4  /2. As a result, one 
arrives at the so-called Kelvin functions 
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which are also useful for some important problems of mathematical physics and engineering. 
Unfortunately, we do not have time to discuss these problems in this course.52 

 (iv) Spherical coordinates are very important in physics, because of the (approximate) spherical 
symmetry of many objects - from electrons and nuclei and atoms to planets and stars. Let us again 
require each component k of Eq. (84) to satisfy the Laplace equation. Using the well known expression 
for the Laplace operator in spherical coordinates,53 we get 
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Let us look for a solution of this equation in the following variable-separated form: 
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Separating equations one by one, just like this has been done in cylindrical coordinates, we get the 
following equations for the functions participating in this solution: 
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where   cos  is a new variable in lieu of  (so that -1    +1), and 2 and l(l+1) are the separation 
constants. (The reason for selection of the latter one in this form will be clear in a minute.) One can see 
that, in contrast with the cylindrical coordinates, the equation for the radial functions is quite simple. 

52 Later in the course we will also run into the so-called spherical Bessel functions jn() and yn(), which may be 
expressed via the Bessel functions of a semi-integer order. Surprisingly enough, the spherical Bessel functions 
turn out to be much simpler than Jn() and Yn(). 
53 See, e.g., MA Eq. (10.9). 
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Indeed, let us look for its solution in the form cr - just as we have done with Eq. (106). Plugging this 
solution into Eq. (163), we immediately get the following condition on parameter : 

                  )1(1  ll .     (2.166) 

This quadratic equation has two roots,  = l + 1 and  = - l, so that the general solution to Eq. (163) is 
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 Equation (165) is also very simple, and is absolutely similar to the Eq. (107) we had for the 
cylindrical coordinates. However, Eq. (164) function P(), where  is the cosine of the polar angle , is 
the so-called Legendre differential equation, whose solution cannot be expressed via what is usually 
called “elementary functions” - though, again, there is no generally accepted line between them and 
“special functions”. 

 Let us start with axially-symmetric problems for which / =0. This means F() = const, and 

thus   = 0, so that Eq. (164) is reduced to so-called Legendre’s ordinary differential equation: 
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One can readily check that the solutions of this equation for integer values of l are specific (Legendre) 
polynomials54 that may be defined, for example, by the following Rodrigues’ formula: 
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As follows from this formula, the first few Legendre polynomials are pretty simple: 
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though such explicit expressions become more and more bulky as l is increased. As Fig. 21 shows, all 
these functions, that are defined on the [-1, +1] segment, start at one point, Pl(+1) = + 1, and end up 
either at the same point or in the opposite point: Pl(-1) = (-1)l. On the way between these two end points, 
the l-th polynomial crosses the horizontal axis l times. It is straightforward to use Eq. (169) for proving 
that these polynomials form a full, orthogonal set of functions, with the following normalization rule: 

54 Just for reader’s reference: if l is not integer, the general solution of Eq. (2.168) may be represented as a linear 
combination of the so-called Legendre functions (not polynomials!) of the first and second kind, Pl() and Ql().  
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so that any function f(), defined on the segment [-1, +1], may be presented as a unique series over the 
polynomials.55 

 

 

 

 

 

 

 

  

 

 

 Thus, taking into account the additional division by r in Eq. (162), the general solution of any 
axially-symmetric Laplace problem may be presented as 
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Please note a strong similarity between this solution and Eq. (112) for the 2D Laplace problem in polar 
coordinates. However, besides the difference in angular functions, there is also a difference (by one) in 
the power of the second radial function, and this difference immediately shows up in core problems.  

 Indeed, let us solve a problem similar to that shown in Fig. 13: find the electric field around a 
conducting sphere of radius R, placed into an initially uniform external field E0 (whose direction we will 
take for axis z) – see Fig. 22a. If we select z=0 = 0, then a0 = b0 = 0. Now, just as has been argued for 
the cylindrical case, at r >> R the potential should approach that for the uniform field: 

         cos00 rEzE  ,     (2.173) 

and this again means that in Eq. (172), only one of coefficients al survives: al = -E0l1. Now, and from 
the boundary condition on the surface, (R,) = 0, we get: 
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This expression may be viewed as the expansion of function f()  0 into a series of orthogonal 
functions Pl(). Since such expansions are unique, and Eq. (174) is satisfied if  

55 As a result, there is not practical sense, at least for the purposes of this course, in pursuing (more complex) 
solutions to Eq. (168) for non-integer values of l. 

Fig. 2.21. A few lowest Legendre 
polynomials Pl(). 

1 0 1
1

0

1



)(lP

0l

1l 2l

3l
4l

Variable 
separation 
in spherical 
coordinates 
(for axial 
symmetry) 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 2           Page 43 of 64 

      1,
3

0 ll REb  ,      (2.175) 

this is indeed the only possibility to satisfy the boundary condition, so that, finally,  
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This distribution, shown in Fig. 22b, is very much similar to Eq. (117) for the cylindrical case, 
but with a different power of radius in the second term. This leads to a quantitatively different 
distribution of the surface electric field: 
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so that its maximal value is a factor of 3 (rather than 2) larger than the external field.  

 Now let us discuss the Laplace equation solution in the general case (no axial symmetry), but 
only for most important systems in which the free space surrounds the origin from all sides. In this case 
the solutions to Eq. (165) have to be 2-periodic, and hence  = n = 0, 1, 2,… Mathematics says that 
the Legendre equation (164) with integer   = n and a fixed integer l has a solution only for a limited 
range of n:56 

        lnl  .      (2.178) 

These solutions are called the associated Legendre functions. For n  0, they may be defined via the 
Legendre polynomials using the following formula: 

56 In quantum mechanics, letter n is typically reserved used for the “main quantum number”, while the azimuthal 
functions are numbered by index m. However, I will keep using n as their index, because for this course’s 
purposes, this seems more logical in the view of the similarity of the spherical and cylindrical functions. 

0E

R



z

0

Fig. 2.22. Conducting sphere in a uniform electric field: (a) problem’ geometry, and (b) the 
equipotential  surface pattern given by Eq. (176). The pattern is qualitatively similar but 
quantitatively different from that for the conducting cylinder in a perpendicular field – cf. Fig. 13. 
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On the segment   [-1, +1], each set of the associated Legendre functions with a fixed index n and non-
negative l form a full, orthogonal set, with the normalization relation, 
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that is evidently a generalization of Eq. (171).  

 Since these relations may seem a bit intimidating, let me write down explicit expressions for a 
few Pl

n (cos) with the lowest values of l and n  0: 
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The reader should agree there is not much intimidation is these functions - which are most important for 
applications. 

 Now the general solution (162) to the Laplace equation in the spherical coordinates may be 
spelled out as 
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Since the difference between angles  and   is somewhat artificial, physicists prefer to think not about 
functions P and F  in separation, but directly about their products that participate in this solution.  Figure 
23 shows a few such angular functions57 by plotting their modulus along the radius, and using bi-color 
to show the function sign. While the lowest function (l = 0, n = 0) is just a constant, two “dipole” 
functions (l = 1) differ from each other by their spatial orientation. Functions with higher l (say, l = 2) 
differ more substantially, with the following general trend: for each value of l, the function with n = 0  is 

57 In quantum mechanics, it is more convenient to use a slightly different set of basic functions, namely complex 
functions called spherical harmonics, 
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which are defined for both positive and negative n (within the limits –l  n  +l),  because they form a full set of  
orthonormal eigenfunctions of angular momentum operators L2 and Lz - see, e.g., QM Secs. 3.6 and 5.6. 
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axially-symmetric58 and has l zeros on its way from   = 0 to   = , while the functions with n = l do not 
have zeros inside that interval, while oscillating most strongly as functions of . 

  

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As an exception, in order to save time, I will skip an example of application of the associated 
Legendre functions, because several such examples are given in the quantum mechanics part of these 
series. (Note that in this field, index n is traditionally called m – the magnetic quantum number.) 

 

2.6. Charge images 

 So far, we have discussed various methods of solution of the Laplace boundary problem (35). 
Let us now move on to the discussion of its generalization, the Poisson equation (1.41), that we need 
when besides the conductors, we also have “free” charges with a known spatial distribution (r). (This 
will also allow us, better equipped, to revisit the Laplace problem again in the next section.)  

Let us start with a somewhat limited, but sometimes very useful charge image (or “image 
charge”) method. Consider a very simple problem: a single point charge near a conducting half-space – 
see Fig. 24. Let us prove that its solution, above conductor’s surface (z   0), may be presented as: 
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58 According to Eq. (179), these functions involve only the Legendre polynomials Pl  P l
0 . 

Fig. 2.23. Several products )()(cos  n
n

l FP  

with the lowest values of positive l and n. Color 
shows function’s sign, while distance from the 
origin, its magnitude. (Adapted from Web site 
http://people.csail.mit.edu/sparis/sh/). 

l = 0:       n = 0 

l = 1:    n = 0            n = 1 

l = 2:     n = 0             n = 1          n = 2 
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or in a more explicit (coordinate) form: 
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where  is the distance of the observation point from the vertical line on which the charge is located. 
Indeed, this solution evidently satisfies both the boundary condition of zero potential at the surface of 
the conductor (z = 0), and the Poisson equation (1.41), with the single -functional source at point r’ = 
{0, 0, d} in its right-hand part, because its another singularity, at point r” = {0, 0, -d}, is outside the 
region of validity of this solution (z  0).  

 

 

  

 

 

 

 

 

 

 

 Physically, the solution may be interpreted as the sum of the fields of  the actual charge (+q) at 
point r’ , and an equal but opposite charge (-q) at the “mirror image” point r” (Fig. 24). This is the basic 
idea of the charge image method. Before moving to more complex problems, let us discuss the situation 
shown in Fig. 24 in a little bit more detail. First, we can use Eqs. (3) and (186) to calculate the surface 
charge density: 
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The total surface charge is 

      
 






0
2/322

0

2 2
2

)(2 


 d
d

dq
drdQ

A

.   (2.188) 

This integral may be easily taken using the substitution   2/d2 (giving d = 2d/d2): 
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This result is very natural, because the conductor “wants” to bring as much surface charge from its 
interior to the surface as necessary to fully compensate the initial charge (+q) and hence to kill the 

Fig. 2.24. The simplest problem readily solvable by the 
charge image method. Point colors in this section are 
used, here and in the balance of this section, to denote 
charges of the original (red) and opposite (blue) sign. 
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electric field at large distances as efficiently as possible, hence reducing the total electrostatic energy 
(1.67) to the lowest possible value. 

 For a deeper understanding of this polarization charge of the surface, let us take our calculations 
to the extreme – to q equal to one elementary change e, and place a particle with this charge (for 
example, a proton) at a macroscopic distance - say 1 m - from conductor’s surface. Then, according to 
Eq. (189), the total polarization charge of the surface equals to that of an electron, and according to Eq. 
(187), its spatial extent is of the order of d2 = 1 m2. This means that if we consider a much smaller part 
of the surface, A << d2, its polarization charge magnitude Q = A is much less than one electron! 
For example, Eq. (187) shows that the polarization charge of quite a macroscopic area A = 1 cm2 right 
under the initial charge ( = 0) is eA/2d2  1.610-5 e. Can this be true, or our theory is somehow 
limited to the charges much larger than e? 

 Surprisingly enough, the answer to this question has become clear (at least to some physicists :-) 
only as late as in the mid-1980s when several experiments demonstrated, and theorists accepted, some 
rather grudgingly that the usual polarization charge formulas are valid for elementary charges q as well, 
i.e., such the polarization charge Q of a macroscopic surface area can indeed be less than e. The 
underlying reason for this paradox is the nature of the polarization charge of the conductor surface: as 
should be clear from our discussion in Sec. 1, it is due not to new charged particles brought into the 
conductor (such charge would be in fact quantized in the units of e), but to a small shift of the free 
charges of a conductor by a very small distance from their equilibrium positions that they had in the 
absence of the external field induced by charge q. This shift is not quantized, at least on the scale 
relevant for our issue, and neither is Q. This understanding has opened a way toward the invention and 
experimental demonstration of several new devices including so-called single-electron transistors,59 
which may be, in particular,  used to measure polarization charges as small as ~10-6 e. 

 To complete the discussion of our initial problem (Fig. 24), let us find the potential energy U of 
the charge-to-surface interaction. For that we may use the value of the electrostatic potential (185) in the 
point of the charge itself (r = r’), of course ignoring the infinite potential created by the charge itself, so 
that the remaining potential is that of the image charge 

           
d

q
'

24

1
)(

0
image 
 r .     (2.190) 

Looking at the definition of the electrostatic potential, given by Eq. (1.31), it may be tempting to 
immediately write U = qimage = - (1/40)(q

2/2d) [WRONG!], but this would not be correct. The reason 
is that potential image  is not independent of q, but is actually induced by this charge. This is why the 
correct approach is to use Eq. (1.63), with just one term: 
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twice lower in magnitude than the wrong result cited above. In order to double-check this result, and 
also get a better feeling of the factor ½ that distinguishes it from the wrong guess, we can recalculate 

59 Actually, this term (for which the author of these notes should be blamed :-) is misleading: operation of the 
“single-electron transistor” is based on the interplay of discrete charges (multiples of e) transferred between 
conductors, and sub-single-electron polarization charges – see, e.g., K. K. Likharev, Proc. IEEE  87, 606 (1999). 
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energy U as the integral of the force exerted on the charge by the conductor (i.e., in our formalism, by 
the image charge): 
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This calculation clearly accounts for the gradual build-up of force F, as the real charge is brought from 
afar (where we have opted for U =0) toward the surface. 

 This result, used for electrons, particles with charge q = -e, has several important applications. 
For example, let us plot energy U for an electron near a metallic surface, as a function of d. For that, we 
may use Eq. (192) until our macroscopic approximation (2) becomes invalid, and U transitions to some 
negative constant value (-)  inside the conductor – see Fig. 25a.  

 

 

 

  

  

 

  

 The positive constant  is called workfunction, because it describes how much work should be 
done on an electron to remove it from the conductor. As was discussed in Sec. 1, in good metals the 
electric field screening happens at interatomic distances  a0  10-10 m. Plugging d = a and q = -e into Eq. 
(191), we get  610-19 J  3.5 eV. This crude estimate is in a surprisingly good agreement with the 
experimental values of the workfunction, ranging between 4 and 5 eV for most metals.60 

 Next, let us consider the effect of an additional external electric field E0 applied perpendicular to 
a metallic surface, on this potential profile. Assuming the field to be uniform, we can add its potential -
eE0d at distance d from the surface, to that created by the image charge. (As we know from Eq. (1.53), 
since field E0 is independent of the electron position, its recalculation to the potential energy does not 
require the coefficient ½.) As the result, the potential energy of an electron near the surface becomes  
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with a similar crossover to U = -   inside the conductor – see Fig. 25b. One can see that at the 
appropriate sign, and sufficient magnitude of the applied field, it lowers the potential barrier that 
prevented electron from leaving the conductor. At E0 ~ /a0 this suppression becomes so strong that 
electrons just below the Fermi surface start quantum-mechanical tunneling through the remaining thin 

60 For more discussion of workfunction, and its effect on electron kinetics, see, e.g., SM Sec. 6.4. 

Fig. 2.25. (a) Origin of 
the workfunction and (b) 
the field emission of 
electrons (schematically). 
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barrier. This is the field emission effect, which is used in vacuum electronics to provide efficient 
cathodes that do not require heating to high temperatures.61   

 Returning to the basic electrostatics, let us consider some other geometries where the method of 
images may be effectively applied. First, let us consider a right corner (Fig. 26a). Reflecting the initial 
charge in the vertical plane we get the image charge shown in the top left corner of the panel, that makes 
the boundary condition  = const satisfied on the vertical surface of the corner. However, in order the 
same to be true on the horizontal surface, we have to reflect both the initial charge and the image charge 
in the horizontal plane, flipping their signs. The final configuration of 4 charges, shown in Fig. 26a, 
satisfies all the boundary conditions. The resulting potential distribution may be readily written as the 
evident generalization of  Eq. (185). From there, the electric field and electric charge distributions, and 
the potential energy and forces acting on the charge may be calculated exactly as above.  

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61 The practical development of such “cold” cathodes is strongly affected by the fact that any nanoscale surface 
irregularity (a protrusion, an atomic cluster, or even a single “adatom” stuck to the surface) may cause a strong  
increase of the local field well above the average applied field E0 (see, for example our discussion in Sec. 4 
above), making the emission reproducibility an issue. 

Fig. 2.26. Charge images for (a, b) internal corners with angles   and /2, (c) plane capacitor, and (d) 
rectangular box, and (d) equipotential surfaces for the last system.  
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 Next, consider a corner with angle /4 (Fig. 26b). Here we need to repeat the reflection operation 
not 2 but 4 times before we arrive at the final pattern of 8 positive and negative charges. (Any attempt to 
continue this process would lead to an overlap with the already existing charges.) This reasoning can be 
readily extended to any 2D corner with angle  = /n, with any integer n, that requires 2n charges 
(including the initial one) to satisfy all the boundary conditions. 

 Some configurations require an infinite number of images that are, however, tractable. The most 
important of them is a system of two parallel conducting surfaces, i.e. a plane capacitor of infinite area 
(Fig. 26c). Here the repeated reflection leads to an infinite system of charges q at points 

Djdx j 2    (2.194) 

where 0 < d < D is the position of the initial charge and  j an arbitrary integer. However, the resulting 
infinite sum for the potential of the real charge q, created by the field of its images, 
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is converging (in its last form) very fast. For example, the exact value, (D/2) = -2ln2(q/40D), differs 
by less than 5% from the approximation using just the first term of the sum.  

 The same method may be applied to 2D (cylindrical) and 3D rectangular boxes that require, 
respectively, a 2D or 3D infinite lattices of images; for example in a 3D box with sides a, b, and c, 
charges q are located at points (Fig. 26d) 

       lckbja'jkl 222  rr ,     (2.196) 

where r’ is the location of the initial (real) charge, and j, k, and l are arbitrary integers. Figure 26e shows 
the results of summation of the potentials of such charge set, including the real one, in a 2D box (within 
the plane of the real charge). One can see that the equipotential surfaces, concentric near the charge, are 
naturally leaning along the conducting walls of the box, which should be equipotential.  

 Even more surprisingly, the image charge method works very efficiently not only for the 
rectilinear geometries, but also for spherical ones.  Indeed, let us consider a point charge q at some 
distance d from the center of a conducting, grounded sphere of radius R (Fig. 27a), and try to satisfy the 
boundary condition  = 0 for the electrostatic potential on sphere’s surface using an imaginary charge q’ 
located at some point located beyond the surface, i.e. inside the sphere. 
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Fig. 2.27. Method of charge images for 
a conducting sphere: (a) the idea, and 
(b) the resulting potential distribution 
for particular case d = 2 R. 
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 From problem’s symmetry, it is clear that the point should be at the line passing through the real 
charge and the sphere’s center, at some distance d’ from the center. Then the total potential created by 
the two charges at an arbitrary point with r  R (Fig. 27a) is 
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It is easy to see that we can make the two fractions to be equal and opposite at all points on the sphere’s 
surface (i.e. for any  at r = R), if we take62 
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Since the solution to any Poisson boundary problem is unique, Eqs. (197) and (198) give us such 
solution for this problem. Figure 27b shows a typical equipotential pattern calculated using Eqs. (197) 
and (198). It is surprising how formulas that simple may describe such a nontrivial field distribution. 

 Now let us calculate the total charge Q induced by charge q on conducting sphere’s surface. We 
could do this, as we have done for the conducting plane, by the brute force integration of the surface 
charge density  = -0/rr = R. It is more elegant, however, to use the following Gauss law argument. 
Expression (197) is valid (at r  R) regardless whether we are dealing with our real problem (charge q 
and the conducting sphere) or with the equivalent charge configuration (point charges q and q’, with no 
sphere at all). Hence, according to Eq. (1.16), the Gaussian integral over a surface with radius r = R + 0, 
and the total charge inside the sphere should be also the same. Hence we immediately get 
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The similar argumentation may be used to find the charge-to-sphere interaction force: 
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(Note that this expression is legitimate only at d > R.) At large distances, d/R >> 1, this attractive force 
decreases as 1/d3. This unusual dependence arises because, as Eq. (198) specifies, the induced charge of 
the sphere, responsible for the force, is not constant but decreases as Q  1/d. 

 All the previous formulas referred to a sphere that is grounded to keep its potential equal to zero. 
But what if we keep the sphere galvanically insulated, so that its net charge is fixed, e.g., equals zero? 
Instead of solving the problem from the scratch, let us use (again!) the linear superposition principle. For 
that, we may add to the previous problem an additional charge, equal to (-Q), to the sphere, and argue 
that this addition gives an additional potential that does not depend of the potential induced by charge q.  
For the interaction force, such addition yields 

62 In geometry, such points, with dd’ = R2, are referred to as the result of mutual inversion in a sphere of radius R. 
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At large distances, the two terms proportional to 1/d3  cancel each other, giving F  1/d5. Such a rapid 
force decay is due to the fact that the field of the uncharged sphere is equivalent to that of two (equal 
and opposite) induced charges +Q and - Q, and the distance between them (d’ = R2/d) tends to zero at d 
 . The potential energy of such interaction behaves as U  1/d6 at d  ; in the next chapter we will 
see that this is the general law of the induced dipole interaction. 

 

2.7. Green’s functions 

 I have spent so much time/space discussing the potential distributions created by a single point 
charge in various conductor geometries, because, for any geometry, the generalization of these results to 
the arbitrary distribution (r) of free charges is straightforward. Namely, if a single charge q, located at 
point r’, created electrostatic potential 
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then, due to the linear superposition principle, an arbitrary charge distribution creates potential 
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Kernel G(r, r’) is called the (spatial) Green’s function – the notion very popular in all fields of 
physics.63 Evidently, as Eq. (1.35) shows, in the unlimited free space 
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i.e. the Green’s function depends only on one scalar argument – the distance between the field 
observation point r and the field-source (charge) point r’. However, as soon as there are conductors 
around, the situation changes. In this course we will only deal with Green’s functions that are defined in 
the space between conductors, and that vanish as soon as the radius-vector r points to the surface of any 
conductor:64  

      .0),( A'G rrr      (2.205) 

 With this definition, it is straightforward to deduce the Green’s functions for the solutions of the 
last section’s problems in which  conductors were grounded ( = 0). For example, for a semi-space z  0 
limited by a conducting plane (Fig. 24),  Eq. (185) yields 
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11 
rrrr

.   (2.206) 

63 See, e.g., CM Sec. 4.1, QM Secs. 2.2, 7.2 and 7.4, and SM Sec. 5.5.  
64 G so defined is sometimes called the Dirichlet function. 
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We see that in the presence of conductors (and, as we will see later, any other polarizable media), the 
Green’s function may depend not only on the difference r – r’, but in a specific way from each of these 
two arguments. 

  So far, this looked just like re-naming our old results. The really non-trivial result of the Green’s 
function application to electrostatics is that, somewhat counter-intuitively, the knowledge of  the 
Green’s function for a system with grounded conductors (Fig. 28a) allows one to calculate the field 
created by voltage-biased conductors (Fig. 28b), with the same geometry.  

 

 

 

 

 

 

 

 

 In order to show that, let us use the so-called Green’s theorem of the vector calculus.65 The 
theorem states that for any two scalar, differentiable functions f(r) and g(r), and any volume V, 
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rdfggfrdfggf 2322  ,   (2.207) 

where S is the surface limiting the volume. Applying the theorem to the electrostatic potential (r) and 
the Green’s function G (also considered as a function of r), let us use the Poisson equation (1.41) to 
replace 2  with (-/0), and notice that G, considered as a function of r, obeys the Poisson equation 
with the -functional source:  

        )(4),(2 ''G rrrr   .     (2.208) 

(Indeed, according to its definition (202), this function may be formally considered as the field of a 
point charge q = 40.) Now swapping the notation of radius-vectors, r  r’, and using the Green’s 
function symmetry, G(r, r’) = G(r’, r),66 we get 
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Let us apply this relation to volume V of free space between the conductors, and the boundary A 
slightly outside of their surface. In this case, by its definition, the Green’s function G(r, r’) vanishes at 
the conductor surface (r  S) – see Eq. (205). Now changing the sign of ∂n’ (so that it would be the 
outer normal for conductors, rather than free space volume V), dividing all terms by 4, and partitioning 

65 See, e.g., MA Eq. (12.3). Actually, this theorem is a ready corollary of the divergence theorem, MA Eq. (12.2). 
66 This symmetry, virtually evident from Eq. (204), may be formally proved by applying Eq. (207) to functions f 
(r)  G(r, r’) and g(r)  G(r, r”). With this substitution, the left-hand part becomes equal to -4[G(r”, r’) - G(r’, 
r”)], while the right-hand part is zero, due to Eq. (205). 

Fig. 2.28. Green’s function method allows the solution of a simpler boundary problem (a) to be used to find 
the solution of a more complex problem (b), for the same conductor geometry. 
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the total surface A into the parts (numbered by index j) corresponding to different conductors (possibly, 
kept at different potentials k), we finally arrive at the famous result:67 
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While the first term in the right-hand part of this relation is a direct and evident expression of the 
superposition principle, given by Eq. (203), the second term is highly non-trivial: it describes the effect 
of conductors with nonvanishing potentials k (Fig. 28b) using the Green’s function calculated for the 
similar system with grounded conductors, i.e. with all k = 0 (Fig. 28a). Let me emphasize that since our 
volume V excludes conductors, the first term in the right-hand part of Eq. (210) includes only the “free-
standing” charges of the system (in Fig. 28, marked q1, q2, etc.), but not the surface charges of the 
conductors – which are taken into account, implicitly, by the second term.  

 In order to illustrate what a powerful tool Eq. (210) is, let us use to calculate the electrostatic 
field in two systems. In the first of them, a circular disk, separated with a very thin cut from a 
conducting plane, is biased with potential  = V, while the rest of the plane is grounded - see Fig. 29.  

 

 

 

 

 

 

 

 

 

 If the width of the gap between the circle and rest of the plane is negligible, we may apply Eq. 
(210) with (r’) = 0, and the Green’s function for the uncut plane – see Eq. (206).68 In the cylindrical 
coordinates, the function may be rewritten as 
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(The sum of the first three terms under the square roots of Eq. (211) is just the squared distance between 
the horizontal projections  and ’ of vectors r and r’ (or r”), correspondingly, while the last terms are 
the squares of their vertical spacings.) 

 Now we can readily calculate the necessary derivative: 

67 In some textbooks, the sign before the surface integral is negative, because their authors use the outer normal of 
the free-space region V rather than that occupied by conductors - as I do. 
68 Indeed, if all parts of the cut plane are grounded, a narrow cut does not change the field distribution, and hence 
the Green’s function, significantly. 

Fig. 2.29. Voltage-biased conducting circle inside a grounded conducting plane. 
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Due the axial symmetry of the system, we can take   for zero. With this, Eqs. (210) and (212) yield 
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This integral is not too pleasing, but may be readily worked out for points on the symmetry axis ( = 0): 
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This expression shows that if z  0, the potential tends to V (as it should), while at z >> R,  
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This asymptotic behavior is typical for electric dipoles – see the next chapter. 

 Now, let us use the same Eq. (210) to solve the (in :-)famous problem of the cut sphere (Fig. 30). 
Again, if the gap between the two conducting semi-spheres is very thin (t << R), we may use the 
Green’s function for the grounded (and uncut) sphere. For a particular case r’ = dnz, this function is 
given by Eqs. (197)-(198); generalizing the former relation for an arbitrary direction of vector r’, we get 
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where   is the angle between vectors r and r’, and hence r” (Fig. 30). 

 

 

 

 

 

 

 

 

 

 Now, finding the Green’s function’s derivative,  
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and plugging it into Eq. (210), we see that the integration is easy only for the field on the symmetry axis 
(r = rnz,   = ) , giving 

z
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Fig. 2.30. A system of two, oppositely biased semi-
spheres. 
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For z  R,   V/2  (just checking :-), while for z >> R,  
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so this is also an electric dipole field – see the next chapter. 

   

2.8. Numerical methods 

 Despite the richness of analytical methods, for many boundary problems (especially in 
geometries without high degree of symmetry), numerical methods is the only way to the solution. 
Despite the current abundance of software codes and packages offering their automatic numerical 
solution,69 it is important to an educated physicist to understand “what is under their hood”, at least 
because most universal programs exhibit mediocre performance in comparison with custom codes 
written for particular problems, and sometimes do not converge at all, especially for fast-changing (say, 
exponential) functions. 

 The simplest of the numerical methods of solution of partial differential equations is the finite-
difference method70 in which the sought function of N scalar arguments f(r1, r2,…rN) is represented by 
its values in discrete points of a rectangular grid (also called mesh) of the corresponding dimensionality 
(Fig. 31).  

   

 

 

 

 

 

 

  

  

 Each partial second derivative of the function  is approximated by the formula that readily 
follows from the linear approximations for the function f and then its partial derivatives – see Fig. 31a: 
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 , (2.220)  

69 See, for example, MA Secs. 16 (iii) and (iv). 
70 For more details see, e.g., R. Leveque, Finite Difference Methods for Ordinary and Partial Differential 
Equations, SIAM, 2007. 

Fig. 2.31. General idea of the finite-difference method in (a) one, (b) two, and (c) three dimensions. 
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where f  f(rj + h) and where f  f(rj - h). (The relative error of this approximation is of the order of 
h4∂4f/∂rj

4.) As a result, a 2D Laplace operator may be presented as 
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while the 3D operator as 

   .
6

22

2

2

2

2

2

h

fffffff

z

f

y

f

x

f 











     (2.222) 

(The notation used in these formulas should be clear from Figs. 31b and 31c, respectively.)  

 Let us apply this scheme to find the electrostatic potential distribution inside of a cylindrical box 
with conducting walls and square cross-section, using an extremely coarse mesh with step 2/ah   (Fig. 
32). In this case our function, the electrostatic potential, equals zero on the side walls and the bottom, 
and equals to V0 at the top lid, so that, according to Eq. (221), the Laplace equation may be 
approximated as 
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The resulting value for the potential in the center of the box is  = V0/4. Surprisingly, this is the exact 
value! This may be proved by solving this problem by the variable separation method, just as this has 
been done for the similar 3D problem in Sec. 4 above. The result is   
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so that at the central point (x = y = a/2), 
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The last series equals exactly to /8,  so that  = V0/4. 

 

 

 

 

 

 

 

 

 For a similar 3D problem (a cubic box) we can use Eq. (222) to get 

Fig. 2.32. Numerical solution of the internal 2D boundary 
problem for a conducting, cylindrical box with square cross-
section, using a very coarse mesh (with h = a/2). 
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so that  = V0/6. Unbelievably enough, this result is also exact! (This follows from our variable 
separation result expressed by Eqs. (95) and (99).)  

 Though such exact results should be considered as a happy coincidence rather than the norm, 
they still show that numerical methods, with a relatively crude mesh, may be more computationally 
efficient than the “analytical” approaches, like the variable separation method with its infinite-sum 
results that, in most cases, require computers anyway – at least for the result’s comprehension and 
analysis.  

 A more powerful (but also much more complex for implementation) approach is the finite-
element method in which the discrete point mesh, typically with triangular cells, is (automatically) 
generated in accordance with the system geometry. Such mesh generators provide higher point 
concentration near sharp convex parts of conductor surfaces, where the field concentrates and hence the 
potential changes faster, and thus ensure better accuracy-to-performance trade-off than the finite-
difference methods on a uniform grid. The price to pay for this improvement is the algorithm complexity 
that makes manual adjustments much harder. Unfortunately I do not have time for going into the details 
of that method, and have to refer the reader to the special literature on this subject.71 

 

2.9. Exercise problems 

 2.1. Calculate the force (per unit area) exerted on a conducting surface by an electric field. 
Compare the result with the definition of the electric field, given by Eq. (1.5). 

 
 2.2. A thin plane film, carrying a uniform electric charge density 
, is placed inside a plane capacitor whose plates are connected by a 
wire – see Fig. on the right. Neglecting the edge effects, calculate the 
surface charges of the plates, and the net force acting on the film (per 
unit area). 
 
 2.3. Following the discussion of two weakly coupled spheres in Sec. 2, find an approximate 
expression for the mutual capacitance (per unit length) between two very thin, parallel wires, both  with 
a round cross-section, but each with its own diameter. Compare the result with that for two small 
spheres, and interpret the difference. 
 

2.4. Use the Gauss law to calculate the mutual capacitance of the 
following 2-electrode systems, with the cross-section shown in Fig. 5 
(reproduced on the right): 

 (i) a conducting sphere inside a concentric spherical cavity in another 
conductor, and 

(ii) a conducting cylinder inside a coaxial cavity in another conductor. 

71 See, e.g., C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, 
Dover, 2009, or T. J. R. Hughes, The Finite Element Method, Dover, 2000. 
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(In this case, we speak about the capacitance per unit length).  
Compare the results with those obtained in Sec. 2.2, using the Laplace equation solution. 

 
  
 2.5. Calculate the electrostatic potential distribution around two barely 
separated conductors in the form of coaxial, round cones (see Fig. on the right), 
with voltage V between them. Compare the result with that of a similar 2D 
problem, with the cones replaced by plane-face wedges. Can you calculate the 
mutual capacitance between the conductors in any of these systems? If not, can 
you estimate it? 
 
 
 2.6. A system of two thin conducting plates is located over a 
ground plane as shown in Fig. on the right, where A’ and A” are plate 
part areas, while d’ and d” are distances between them. Neglecting 
the fringe effects, calculate: 

 (i) the effective capacitance of each plate, and 
 (ii) their mutual capacitance. 
 
 
 2.7. Using the results for a single thin round disk, obtained in Sec. 4, 
consider a system of two such disks at a small distance d << R from each other - 
see Fig. on the right. In particular, calculate: 

 (i) the reciprocal capacitance matrix of the system, 
 (ii) the mutual capacitance between the disks, 
 (iii) the partial capacitance, and 
 (iv) the effective capacitance of one disk, 

(all in the first non-vanishing approximations in d/R << 1). Compare the results (ii)-(iv) and interpret 
their similarities and differences. 
 
 2.8.* Calculate the mutual capacitance (per unit length) between two 
cylindrical conductors forming a system with the cross-section shown in 
Fig. on the right, in the limit t << w << R. 

 Hint: You may like to use elliptical (not “ellipsoidal”!) coordinates 
{, } defined by the following equation: 
   ),cosh(  iciyx      (*) 
with the appropriate choice of constant c. In these orthogonal 2D 
coordinates, the Laplace operator is very simple:72 
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72 This fact should not be surprising, because Eq. (*) is essentially the conformal map z = c coshw, where z = x + 
iy, and w  =   + i - see the discussion in Sec. 4. 
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2.9. Formulate 2D electrostatic problems that can be solved using each of the following analytic 

functions of the complex variable z  x + iy: 

 (i) w = ln z, 
 (ii) w = z1/2, 

and solve these problems. 
 
  
 2.10. On each wall of a cylindrical volume with a rectangular 
cross-section ab, with no electric charges inside it, the electric field is 
uniform, normal to the wall plane, and opposite to that on opposite side 
– see Fig. on the right. Calculate the distribution of the electric potential 
inside the volume, provided that the field magnitude on the vertical 
walls equals E. 

 
 
2.11. Complete the solution of the problem shown in Fig. 10, by calculating the distribution of 

the surface charge of the semi-planes. Can you calculate the mutual capacitance between the plates (per 
unit length)? If not, can you estimate it? 
 
 2.12.* A straight, long, thin, round-cylindrical metallic pipe has been 
cut, along its axis, into two equal parts – see Fig. on the right. 

 (i) Use the conformal mapping method to calculate the distribution of 
the electrostatic potential, created by voltage V applied between the two parts, 
both outside and inside the pipe, and of the surface charge.  
 (ii) Calculate the mutual capacitance between pipe’s halves (per unit 
length), taking into account a small width 2t << R of the cut. 

 Hints: In Task (i), you may like to use the following complex 
function: 













z
z

w
R

R
ln , 

while in Task (ii), it is advisable to use the solution of the previous problem. 
 
 2.13. Solve Task (i) of the previous problem using the variable separation method, and compare 
the results. 
 
 2.14. Use the variable separation method to calculate the potential distribution above the plane 
surface of a conductor, with a strip of width w separated by very thin cuts, and biased with voltage V – 
see Fig. below. 
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 2.15. In the Fig. of the previous problem, the cut-out and voltage-biased part of the conducting 
plane is now not a strip, but a square with side w. Calculate the potential distribution above conductor’s 
surface.  
 
 2.16. Complete the cylinder problem started in Sec. 5 (see Fig. 15), for the cases when voltage 
on the top lid is fixed as follows:  

 (i) V = V0J1(11/R)sin, where 11  3.832 is the first root of function J1(x), and 
  (ii)  V = V0 = const. 

 For both cases, calculate the electric field in the centers of the lower and upper lids. (For 
assignment (ii), an answer including series and/or integrals is satisfactory.) 
 

 
2.17. Each electrode of a large plane capacitor is cut into 

long strips of equal width l, with very narrow gaps between them. 
These strips are kept at the alternating potentials as shown in Fig. 
on the right. Use the variable separation method to calculate the 
electrostatic potential distribution. Explore the limit  l << d. 
 
 

2.18. Solve the problem shown in Fig. 19. In particular: 

 (i) calculate and sketch the distribution of the electrostatic potential inside the system for various 
values of ratio R/h, and 

(ii) simplify the results for the limit R/h  0. 
 
 2.19. Use the variable separation method to find the potential distribution inside and outside of a 
thin spherical shell of radius R, with fixed potential (R,,) = V0 sin cos. 
 
 2.20. A thin spherical shell carries charge with areal density  = 0cos. Calculate the spatial 
distribution of the electrostatic potential and field.  
 
 2.21. Use the variable separation method to calculate the potential 
distribution both inside and outside of a thin spherical shell of radius R, 
separated with a very thin cut, along plane z = 0, into two halves, with 
voltage V applied between them – see Fig. on the right. Analyze the 
solution; in particular, compare the field at axis z, for z > R, with Eq. 
(2.218), obtained by the Green’s function method. 

 Hint: You may like to use the following integral of a Legendre 
polynomial with odd index l = 1, 3, 5…= 2n – 1:73 

73 As a reminder, the double factorial (also called “semifactorial”) operator (!!) is similar to the usual factorial 
operator (!), but with the product limited to numbers of the same parity as its argument (in our particular case, of 
the odd numbers in the numerator, and even numbers in the denominator). 
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2.22. A small conductor (in this context, usually called the single-electron 

box or single-electron island) is placed between two conducting electrodes, with 
voltage V applied between them. The gap between one of the electrodes and the 
box is so narrow that electrons may tunnel quantum-mechanically through this gap 
(“weak tunnel junction”) – see Fig. on the right. Neglecting thermal fluctuations, 
calculate the equilibrium charge of the island as a function of V.  

Hint: To solve this problem, you do not need to know much about 
quantum-mechanical tunneling through weak junctions,74 besides that such 
tunneling of an electron, and its subsequent energy relaxation inside the conductor, 
may be considered as a single inelastic (energy-dissipating) event. In the absence of thermal agitation, 
such event takes place when (and only when) it decreases the potential energy of the system. 

 
2.23. Calculate the total surface charges induced in the plates of a very broad plane capacitor of 

thickness D by a point charge q separated from one of the electrodes by distance d. 
  

 
2.24. Prove the statement, made in Sec. 6, that the 2D boundary problem 

shown in Fig. on the right can be solved using a finite number of image charges if 
angle  equals /n, where n = 1, 2,… 
 
  
 
 2.25. Use the image charge method to calculate the energy of electrostatic interaction between a 
point charge placed in the center of a spherical cavity that was carved inside a grounded conductor, and 
the conductor’s walls. Looking at the result, could it be obtained in a simpler way (or ways)? 

 
 
2.26. Use the method of images to find the Green’s 

function of the system shown in Fig. on the right, where the 
bulge on the conducting plane has the shape of a semi-sphere of 
radius R. 

 
 
2.27.* Use the fact of spherical inversion, expressed by Eq. (198), to develop an iterative method 

for more and more precise calculation of the mutual capacitance between two similar metallic spheres of 
radius R, with centers separated by distance d  > 2R. 

74 In this context, weak junction means a tunnel junction with transparency so low that the tunneling electron’s 
wavefunction looses its quantum-mechanical coherence before the electron has time to tunnel back. In a typical 
junction of a macroscopic area this condition is fulfilled if the effective tunnel resistance of the junction is much 
higher than the quantum unit of resistance (see, e.g., QM Sec. 3.2) , RQ  /2e2  6.5 k. 
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 2.28.* A metallic sphere of radius R1, carrying electric charge Q, is 
placed inside a spherical cavity of radius R2 > R1, cut inside another metal. 
Calculate the force exerted on the sphere if is center is displaced by a small 
distance  << R1, R2 – R1 from that of the cavity – see Fig. on the right. 

 
 
 
2.29. Within the simple model of electric field screening in conductors, discussed in Sec. 2.1, 

analyze the partial screening of the electric field of a point charge q by a plane, uniform conducting film 
of thickness t << , where  is (depending on charge carrier statistics) either the Debye or the Thomas-
Fermi screening length – see, respectively, Eqs. (2.8) or (2.10). Assume that the distance d between the 
charge and plane is much larger than t. 

 
2.30. Suggest a convenient definition of 2D Green’s function for electrostatic problems, and 

calculate it for: 

  (i) the unlimited free space, and 
  (ii) the free space above a conducting plane. 

Use the latter result to re-solve Problem 14. 
 

 2.31. Find the 2D Green’s function for the free space 

 (i) outside a round conducting cylinder, 
 (ii) inside a round cylindrical hole in a conductor. 
 
 2.32. Solve Task (i) of Problem 12 (see also Problem 13), using the Green’s function method. 

 Hints: You may like to use the 2D Green’s function derived in the solution of Problem 2.27(ii), 
and the following table integral:75 
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 2.33. Solve the same 2D boundary problem that was discussed in Sec. 6 (Fig. 32) using: 

  (i) the finite difference method, with a finer square mesh, h = a/3, and 
  (ii) the variable separation method. 

Compare the results (at the mesh points only) and comment. 
 
 
 

75 Here the notation tan-1 is used for the multi-valued function (alternatively called Arctan) which is reciprocal to 
tan. (Due to the -periodicity of the tan, function tan-1 is defined to an arbitrary additive multiple of .) At the 
value interval [-/2, +/2] , tan-1  is usually called arctan. 
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Chapter 3. Polarization of Dielectrics 

In the last chapter, we have discussed the electric polarization of conductors. In contrast to those 
materials, in dielectrics the charge motion is limited to the interior of an atom or a molecule, so that the 
electric polarization of these materials by external field takes a different form. This issue is the main 
subject of this chapter. In preparation to the analysis of dielectrics, we have to start with a more general 
discussion of the electric field of a spatially-restricted system of charges.  

 

3.1. Electric dipole 

 Let us consider a localized system of charges, of a linear size scale a, and calculate a simple but 
approximate expression for the electrostatic field induced by the system at a distant point r. For that, let 
us select a reference frame with the origin either somewhere inside the system, or at a distance of the 
order of a from it (Fig. 1).  

 

 

 

 

  

 

 

Then positions of all charges of the system satisfy the following condition 

            rr'  .      (3.1) 

Using this condition, we can expand the general expression (1.38) for the electrostatic potential (r) of 
the system into the Taylor series in small parameter r’  {r’1, r’2, r’3}. For any spatial function of the 
type f(r - r’), the expansion may be presented as1 
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The two leading terms of this expansion, sufficient for our current purposes, may be rewritten in the 
vector form:2 

     ...)()()(  rrrrr f'f'f  .    (3.3) 

Let us apply this approximate formula to the free-space Green’s function (2.204), which weighs the 
charge density contributions in Eq. (1.38). The gradient of such a spherically-symmetric function f(r) = 
1/r is just nrdf/dr, so that 

1 See, e.g., MA Eq. (2.11b). 
2 The third term (responsible for quadrupole effects), as well as all the following, multipole terms would require a 
tensor (rather then vector) representation. 

r

'r

0 Fig. 3.1. Deriving the approximate expression (5) 
for the electrostatic field of a localized system of 
charges at a distant point (r >> r’ ~ a).
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 Plugging this dipole expansion into Eq. (1.38), we get 
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where Q is the net charge of the system, while the vector 

                r''d' 3)( rrp  ,     (3.6) 

with magnitude p of the order of Qa, is called its (electric) dipole moment.3 

 If Q  0, the second term in the right-hand part of Eq. (5) is just a small correction to the first 
one, and in many cases may be ignored. (Remember, Eq. (5) is only valid in the limit r/a  ). 
However, the net charge of many systems is exactly zero. The most important example is a neutral atom 
or a neutral molecule, in which the negative charge of electrons exactly compensates the positive charge 
of protons in nuclei. For such neural systems, the second (dipole-moment) term, d, in Eq. (5) is the 
leading one. Due to its importance, let us rewrite this expression in two other, equivalent forms:  
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that are more convenient for some applications. Here   is the angle between vectors p and r, and in the 
last (Cartesian) presentation, axis z is directed along vector p. Figure 2a shows equipotential surfaces of 
the dipole field (or rather their cross-sections by a plane in which vector p resides). 

  

 

 

 

 

 

 

 

 

 

 

 

3 Accordingly, a localized system of charges with Q = 0, but p  0, is called an (electric) dipole. 

Electric  
dipole  
moment 

Electric  
dipole’s  
potential 

(a)        (b) p

r

p


E

Fig. 3.2. Dipole field: (a) equipotential surfaces and (b) electric field lines, for vertical vector p. 
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 The simplest example of the dipole (that gave such systems their name) is a system of two equal 
but opposite point charges, +q and –q, with radius-vectors, respectively, r+ and r-: 

             )()()()(   rrrrr  qq .    (3.8) 

For this system, Eq. (6) yields 

         arrrrp qqqq   )()()( ,    (3.9) 

where a is the vector connecting points r- and r+. Note that in this case (and for all systems with Q = 0), 
the dipole moment does not depend on the reference frame origin choice. 

 A less trivial example is a conducting sphere of radius R in a uniform external electric field E0. 
As a reminder, we have solved this problem in Sec. 2.5(iv) and obtained Eq. (2.176) as a result. The first 
term in the parentheses of that relation describes the external field (2.173), so that the field of the sphere 
itself (meaning the field of its surface charge induced by E0) is given by the second term:  

                  cos
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3
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r

RE
s  .     (3.10) 

Comparing this expression with the second form of Eq. (7), we see that the sphere has an induced dipole 
moment 

       .4 3
00 REp       (3.11) 

This is an interesting example of a purely dipole field – in all points outside the sphere (r > R), the field 
has no higher moments.4 

 Returning to the general properties of the dipole field, let us calculate its characteristics. First of 
all, we may use Eq. (7) to calculate the electric field of a dipole: 

        












 


2

0
3

0

cos

4

1

4

1

r

p

rdd




 
pr

E .   (3.12) 

The differentiation is easiest in spherical coordinates, using the following well-known expression for the 
gradient of a scalar function in these coordinates5 and taking axis z parallel to vector p. From the last 
form of Eq. (12) we immediately get 
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Figure 2b shows the electric field lines given by Eqs. (13). 

 Next, let us calculate the potential energy of interaction between a fixed dipole and a external 
electric field, using Eq. (1.54). Assuming that the external field does not change much at distances of the 
order of a (Fig. 1), we may expand the external potential ext(r) into the Taylor series, just as Eq. (3) 
prescribes, and keep only its two leading terms: 

4 Other examples of dipole fields are given by two more systems discussed in Chapter 2 – see Eqs. (2.215) and 
(2.219). Those systems, however, do have higher-order multipole moments, so that for them, Eq. (7) gives only 
the long-distance approximation.  
5 See, e.g., MA Eq. (10.8) with / = 0. 
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       extext
3

extext
3
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The first term is the potential energy the system would have if it were a point charge. If the net charge Q 
is zero, that term disappears, and the leading contribution is due to the dipole moment: 

       extEp U .      (3.15) 

Note, however,  that Eq. (15) is only valid for a fixed dipole, with p independent of Eext. In the opposite 
limit, when the dipole is induced by the field, i.e. p  Eext (see Eq. (11) as an example), we can repeat 
the discussion that accompanied Fig. 1.6 to show that Eq. (15) acquires an additional factor ½. 

In particular, combining Eqs. (13) and Eq. (15), we may get the following important formula for 
interaction of two independent dipoles 
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where r is the vector connecting the dipoles, and axis z is directed along this vector. If each moment is 
due to the polarization of the dipole by the electric field of its counterpart: p1,2  E2,1  1/r3, this 
expression (which is valid for this case with the additional factor ½) the potential is always negative and 
proportional to 1/r6. Such potential describes, in particular, the long-range, attractive part (the so-called 
London dispersion force) of the interaction between electrically neutral atoms and molecules.6 

 According to Eq. (15), in order to reach the minimum of U, the electric field “tries” to align the 
dipole direction along its own. The quantitative expression of this effect is the torque  exerted by the 
field. The simplest way to calculate it is to sum up all the elementary torques d = rdFext = 
rEext(r)(r)d3r exerted on all elementary charges of the system: 

              )0()()( ext
3

ext EprrErτ rd ,    (3.17) 

where at the last transition we have again neglected the spatial dependence of the external field.  

 The spatial dependence of Eext cannot, however, be ignored at the calculation of the total force 
exerted by the field on the dipole (with Q = 0). Indeed, Eq. (15) shows that if the field is constant, the 
dipole energy is the same at all spatial points, and hence the net force is zero. However, if the field has a 
finite gradient, a total force does appear: 

           )( extEpF  U ,     (3.18) 

where the derivative has to be taken at the dipole’s position (in our notation, at r =  0). If the dipole that 
is being moved in a field retains its magnitude and orientation, then the last formula is equivalent to7  

         extEpF  .     (3.19) 

Alternatively, the last expression may be obtained similarly to Eq. (14):  

            extext
3

extext
3

ext )()0()(0)()()( EpEErErrErF  Qrdrd  . (3.20) 

6 See, e.g., SM Sec. 3.5. 
7 The equivalence may be proved, for example, by using MA Eq. (11.6) with f = p = const and g = Eext, taking 
into account that according to the general Eq. (1.28), Eext = 0. 
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 Finally, let me add a note on the so-called coarse-grain model of the dipole. The dipole 
approximation explored above is asymptotically correct at large distances, r >> a. However, for some 
applications (including the forthcoming discussion in Sec. 5 of molecular field effects) it is important to 
have an expression that would be approximately valid everywhere in space, though maybe without exact 
details at r ~ a, and also give the correct result for the space-average of the electric field, 

      
V

rd
V

31
EE ,     (3.21) 

where V is a regularly-shaped volume much larger than a3, for example a sphere of radius R >> a, with 
the dipole at its center. For the field Ed given by Eq. (13), such average is zero. Indeed, let us consider 
Cartesian components of that vector in the coordinate system with axis z directed along vector p. Due to 
the axial symmetry of the field, the averages of components Ex and Ey evidently vanish. Let us use Eq. 
(13) to spell out the “vertical” component of the field (parallel to the dipole moment vector): 
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Integrating this expression over the whole solid angle  = 4, at fixed r, using a convenient variable 
substitution cos   , we get 

     03
2

sinsincos2
2

sin2Ω
1

1

3
3

00

22
3

004

 















d
r

p
d

r

p
dEdE zz . (3.23) 

 On the other hand, the exact electric field of an arbitrary charge distribution, having the total 
dipole moment p, satisfies the following condition, 
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where the integration is over any sphere containing all the charges. A proof of this formula for the 
general case requires a somewhat cumbersome, though straightforward integration,8 but later in the 
course we will see that it is correct for several particular cases. The origin of the difference between Eqs. 
(23) and (24) is illustrated in Fig. 3 on the example of a dipole created by two equal but opposite 
charges – see Eqs. (8)-(9). The zero average of the dipole field (13) does not take into account the 
contribution of the field in the region between the charges (where Eq. (13) is not valid), which is 
directed mostly against the dipole vector (9).  

Thus in order to be used as a reasonable coarse-grain model, Eq. (13) should be modified as 
follows: 
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Evidently, such modification does not change the field at large distances r >> a, i.e. in the region where 
the expansion (3) and hence Eq. (13) are valid. 

 

8 See, e.g., the end of Sec. 4.1 in the textbook by J. Jackson, Classical Electrodynamics, 3rd ed., Wiley, 1999. 
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3.2. Dipole media 

 Let us generalize equation (7) to the case of several (possibly, many) dipoles pj located at 
arbitrary points rj. Using the linear superposition principle, we get 
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If our system (medium) contains many similar dipoles, distributed in space with density n(r), we may 
use the same standard argumentation that has led us from Eq. (1.5) to Eq. (1.8), to rewrite the last sum as 
an integral 
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where vector P(r)  n(r)p, called electric polarization has the physical meaning of the net dipole 
moment per unit volume. Note again that since Eq. (26) does not describe that field at distances 
comparable to the dipole size, and hence Eq. (27), and all the following formulas of this section, 
describes the so-called macroscopic electric field, i.e. the dipole field averaged over the microscopic 
(dipole-size) distances.   

 Now comes a very impressive mathematical trick. Just as has been done in the previous section 
(just with the appropriate sign change), Eq. (27) may be rewritten in the equivalent form 
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where ’ means the del operator (in this particular case, the gradient) acting in the “source space” of 
vectors r’. The right-hand part of Eq. (28), applied to any volume V limited by surface S, may be 
integrated by parts in the following way:9 
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9 To prove this (almost evident) formula strictly, it is sufficient to apply the divergence theorem given by MA Eq. 
(12.2), to vector function f = P(r’)/r – r’, in the “source space” of radius-vectors r’. 

Fig. 3.3. Illustrating the origin of Eq. (24). 
(The field lines are very approximate.) 
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If the surface does not carry an infinitely dense (-functional) sheet of additional dipoles, or it is 
just very far, the first term in the right-hand part is negligible. Now comparing the second term with the 
basic equation (1.38) for the electric potential, we see that this term may be interpreted as the field of 
certain effective electric charges with density 

       P ef .      (3.30) 

 Figure 4 illustrates the physics of this relation for a cartoon model of a multi-dipole system: a 
layer of uniformly-distributed two-point-charge units oriented perpendicular to the layer surface. (In this 
case P = dP/dx.) One can see that ef, defined by Eq. (30), may be interpreted as the density of 
uncompensated surface charges of polarized elementary dipoles.  

   

 

 

 

 

 

 

 

 

 

 Next, from Sec. 1.2, we already know that Eq. (1.38) is equivalent to the inhomogeneous 
Maxwell equation (1.27) for the electric field. This is why Eq. (30) implies that if, besides the 
compensated charges of the dipoles, the system also has certain stand-alone charges (not a part of the 
dipoles!) distributed in space with density (r), the average electric field obeys, instead of Eq. (1.27), 
the following generalized equation 

           PE   



 0

ef
0

11
.    (3.31) 

It is evidently tempting (and very convenient for applications!) to carry over the dipole-related term of 
this equation over to the left-hand part of Eq. (31), and rewrite the resulting equality as the so-called 
macroscopic Maxwell equation 

          D ,      (3.32) 

where a new vector, called the electric displacement, is defined as10 

10 Note that the dimensionality of D in SI units is different from that of E. In contrast, in the Gaussian units the 
electric displacement is defined as D = E + 4P, so that D = 4 (the relation ef = -P remains the same as in 
SI units), and the dimensionalities of D and E coincide. Philosophically, this coincidence is a certain handicap, 
because it is frequently convenient to consider Cartesian components of E as a generalized force, and those of D 
as a generalized coordinate (see Sec. 6 below), and it is comforting to have their dimensionality different. 

Fig. 3.4. Spatial distributions of the 
polarization and effective charges in a layer of 
similar elementary dipoles (schematically). 
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        PED  0 .      (3.33) 

The comparison of Eqs. (32) and (1.27) shows that D may be interpreted as the “would-be” 
electric field that would be created by stand-alone charges in the absence of the dipole medium 
polarization. In contrast, E is the actual electric field - though, as was mentioned above, space-averaged 
over a volume much larger that of an elementary dipole.11 

 To complete the general analysis of the multi-dipole systems, let us rewrite the macroscopic 
Maxwell equation (32) in the integral form. Applying the divergence theorem to an arbitrary volume V 
limited by surface S, we get the following macroscopic Gauss law: 

          QrdrdD
VS

n   32  ,     (3.34) 

where Q is the total stand-alone charge inside volume V. 

 Let me emphasize again that the key Eq. (27), and hence all the following equations of this 
section, only to the macroscopic field, i.e. the electric field averaged over its rapid variations at the 
atomic space scale. Such macroscopic description is valid as soon as we are not concerned with the 
inter-atomic field variations - for whose description the classical physics is inadequate in any case. 

 

3.3. Linear dielectrics 

 The general equations derived above are broadly used to describe any dielectrics – materials with 
bound electric charges (and hence with no dc electric conduction). The polarization properties of these 
materials may be described by the dependence between vectors P  and E. In the most materials, in the 
absence of external electric field, the elementary dipoles p either equal zero or have a random 
orientation in space, so that the net dipole moment of each macroscopic volume (still containing many 
such dipoles) equals zero: P = 0.  

Moreover, if the field changes are sufficiently slow, most materials may be characterized by a 
unique dependence of P on E. Then using the Taylor expansion of function P(E), we may argue that in 
relatively low electric fields the function should be well approximated by a linear dependence between 
these two vectors. In an isotropic media, the coefficient of proportionality should be just a scalar.12  In 
SI units, this constant is defined by the following relation: 

        EP 0 e ,      (3.35) 

with the dimensionless constant e called the electric susceptibility. However, it is much more common 
to use, instead of e , another parameter, 

                    er  1 ,      (3.36) 

11 Note, however, that such averaging does not include the inner-dipole fields which is (approximately) described 
by the second term of Eq. (25). 
12 In anisotropic materials, such as crystals, a susceptibility tensor may be necessary to give an adequate 
description of  the linear relation of vectors P and E. Fortunately, in most important crystals (such as silicon) the 
anisotropy of polarization is small, so that they may be reasonably well characterized by scalar susceptibility. 
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which is sometimes called the relative electric permittivity, but much more often, the dielectric 
constant.13 This parameter is very convenient, because combining Eqs. (35) and (36),  

        E.P 01   r      (3.37) 

and then plugging the resulting relation into the general Eq. (33), we get simply14 

         )1(with  , 00 er   ED .    (3.38) 

where  is called the electric permittivity of the material. Table 1 gives values of the dielectric constant 
for several representative materials. 

  

  

 

 

 

 

 

 

 

 

 

 

  

In order to get some feeling of the physics behind these values, let us consider a very common 
model of a media whose elementary dipoles do not interact, so that in the relation P = np the elementary 
dipole moments p may be calculated  independently of each other.  This means that in a linear dielectric, 
in which Eq. (35) holds, each induced dipole moment p has to be proportional to the applied field E as 
well. Let us write this dependence in the following traditional form, 

                 Ep mol04  ,     (3.39) 

where mol is called the molecular (or, sometimes, “atomic”) polarizability, so that 

           EpP nn mol04  .     (3.40) 

Comparing this relation with Eq. (35), we get e = 4moln, so that Eq. (36) yields15 

13 Note that in electrical engineering literature, the dielectric constant is often denoted by letters  or K. 
14 In Gaussian units, e is defined by relation P = eE, while  is still defined as D = E. Because of that,  is 
dimensionless and equals (1 + 4e). Note that ()Gaussian = (/0)SI = r, and (e)SI = 4(e)Gaussian, sometimes 
creating a confusion with the numerical values of the latter parameter. 

Table 3.1. Dielectric constants of a few representative (and/or practically important) dielectrics 

Material r 

Air (at ambient conditions) 1.00054 

Teflon (polytetrafluoroethylene, CnF2n) 2.1 

Silicon dioxide (amorphous) 3.9 

Glasses (of various compositions) 3.7-10 

Castor oil 4.5 

Silicon 11.7 

Water (at 100C) 55.3 

Water (at 20C) 80.1 

Barium titanate (BaTiO3 at 20C ) ~1,600 

Molecular 
polarizability 

 

Electric 
permittivity 
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                nr mol41   .     (3.41) 

 Now let us consider the following toy model of a dielectric:16 a set of similar conducting spheres 
of radius R, spread apart with small density n << 1/R3. At such low density of the spheres, their 
electrostatic interaction is negligible, and we can use Eq. (11) for the induced dipole moment of a single 
sphere. Then the polarizability definition (39) yields mol = R3, so that e  = 4nR3, and 

      nRr
341   .     (3.42) 

 Let us use this result for a crude estimate of the dielectric constant of air at the so-called ambient 
conditions, meaning the normal atmospheric pressure, and temperature T = 300 K. At these conditions 
the molecular density n may be, with a few-percent accuracy, found from the equation of state of an 
ideal gas:17 n  P/kBT  (1.013105)/(1.3810-23300)  2.51025 m-3. The main component of air, 
molecular nitrogen N2, has a van-der-Waals radius18 of 155 pm = 1.5510-10 m. Using it for R,  from our 
crude model we get r   1.001. Comparing this number with the first line of Table 1, we see that our 
crude model gives surprisingly reasonable results: in order to get the exact experimental value, it is 
sufficient to decrease R by just ~25%. 

 This result may encourage us to try using Eq. (42) for larger density n, i.e., beyond the range of 
its quantitative applicability. For example, as a crude model for solid and liquids let us assume that 
spheres form a simple cubic lattice with period a = 2R (i.e., the neighboring spheres almost touch). With 
this n = 1/a3 = 1/8R3, Eq. (33) yields r = 1 + 4/8  2.5. Due to the crude nature of this estimate, we 
may conclude that it provides a reasonable explanation for the values of r, listed in first few lines of 
Table 1. Still, it is clear that such model cannot even approximately describe dielectric properties of 
either water or barium titanate (and similar materials), as well as their strong temperature dependence. 
Such high values may be explained by the molecular field effect: each elementary dipole is polarized not 
only by the external field (as in our current toy model), but by the field of neighboring dipoles as well.  

 Before analyzing this effect (in the next section), let us review how are the most important 
results of electrostatics modified by a uniform linear dielectric medium that obeys Eq. (38) with a space-
independent dielectric constant r. The simplest problem of this kind is a set of free charges of density 
(r), inserted into the medium. For this case, we can combine Eqs. (32) and (38) to write 

          






 2  i.e.,E .     (3.43) 

For charges in vacuum, we had similar equations (1.27) and (1.41), but with a different constant, 0 = 
/r. Hence all the results discussed in Chapter 1 are valid, with both E and  reduced by the factor of r. 
Thus, the most straightforward result of the induced polarization of a dielectric media is the electric field 
reduction. This is a very important effect, especially taken into account the very high values of r  in 
such dielectrics as water – see Table 1. Indeed, this is the reduction of the attraction between positive 

15 Note that for all materials listed in Table 1, r > 1, i.e. mol > 0. Actually, this is true for all stable dielectrics. 
Let me postpone a discussion of this fact until Sec. 5.5 where I will compare physical mechanisms of the electric 
and magnetic polarization. 
16 A more accurate model of atomic polarization is discussed in QM Chapter 6. 
17 See, e.g., SM Secs. 1.4 and 3.1. 
18 Such radius is defined by the requirement that the volume of the corresponding sphere, used in the van-der-
Waals equation (see, e. g., SM Sec. 4.1) gives the best fit to the experimental equation of state n = n (P, T).  
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and negative ions (called, respectively, cations and anions) in water that enables their substantial 
dissociation and hence almost all biochemical reactions, which are the basis of biological cell functions - 
and hence of the life itself. 

 Now, what if the electric field in a uniform dielectric is induced by charges located on 
conductors - with potentials rather than charge density fixed? Then, with the substitution of the 
electrostatic potential definition E  -,  Eq. (43) in the space between the conductors is reduced to the 
Laplace equation, and the boundary problem remains exactly the same as formulated in Chapter 2 – see 
Eqs. (2.35). Hence the potential distribution (r) is related to the conductor potential in exactly the same 
way as in vacuum (see, e.g., any problem discussed in Chapter 2), without any effect of the medium 
polarization. However, in order to find, from that distribution, the density   of charges on conductor 
surfaces, we need to use the macroscopic Gauss law (34). Applying this equation to a pillbox-shaped 
volume on the conductor surface, we get the following relation, 

            
n

ED nn 



 ,     (3.44) 

which differs from Eq. (2.3) only by the replacement 0   = r0. Hence the charge density, calculated 
for the vacuum case, should be increased by the factor of r – that’s it. In particular, this means that all 
the capacitances that had been calculated in vacuum, should be increased by that factor. For example, 
for planar capacitor filled with linear dielectric r, we get the well-known formula 
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 0 .     (3.45) 

(As a reminder, this increase of Cm by r  has been already used  in Sec. 2.2 for capacitance estimates.)  

 Now let us discuss more complex situations in which the dielectric medium is not uniform, for 
example when it contains a boundary separating two regions filled by different uniform dielectrics. (The 
analysis is clearly applicable to a dielectric/vacuum boundary as well, with one of the dielectric 
constants set to 1.) For that, let us apply the macroscopic Gauss law (34) to a pillbox formed at the 
interface between two dielectrics, with no surface charges – see the solid lines in Fig. 5.   

 

 

 

 

 

 

 

  

 This immediately gives (Dn)1 = (Dn)2, so that Eq. (38) yields 

            
nn

EE nn 






 2
2

1
121   i.e.,





 .    (3.46) 

1E

2D

1D

2E

1

2
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 Now, what about the tangential component (E) of the electric field? In dielectrics, static electric 
field is still potential, hence we can still use Eq. (1.28). Integrating this equation along to a narrow 
contour stretched along the interface (see the dashed line in Fig. 5), we get 

                 






 






 21
21   i.e.,EE .    (3.47) 

Note that this condition is compatible with (and may be derived follows from) the continuity of the 
electrostatic potential itself, 1 = 2, at each point of the interface. That relation may be derived from the 
electric field definition as the gradient of  - see Eq. (1.33). Indeed, if the potential leaped at the border, 
the electric field would be infinite. 

 Let us apply the boundary conditions (46)-(47), for example, to two thin (t << d) vacuum slits 
cut in a uniform dielectric with an initially uniform19 electric field E0 (Fig. 6). In both cases, a slit with t 
 0 cannot modify the field distribution outside it substantially. 

 

 

 

 

 

 

 

 

 

 For slit (a), normal to the applied field, we may apply Eq. (46) to the “major” (broad) interfaces, 
shown horizontal in Fig. 6, we see that D should be continuous. But according to Eq. (33), this means 
that inside the gap (i. e. in the vacuum, with P = 0) the electric field equals D/0. This field, and hence 
D, may be measured, showing that the electric displacement is not a purely mathematical construct. 
Superficially, this result violates the boundary condition (47) on the vertical (“minor”) interfaces of the 
slit. Note, however, that the electric field within the gap is r times higher  than in the dielectric outside 
it. Hence the slit deforms the equipotential surfaces around it to concentrate the field inside itself. The 
curving of the surfaces near the minor interfaces takes care of the fulfillment of Eq. (47) at the minor 
interfaces.   

 On the contrary, for slit (b) parallel to the applied field, we may apply Eq. (47) to the major 
(now, vertical) interfaces of the slit, to see that it is electric field E that is continuous now, while the 
electric displacement D = 0E inside the gap is a factor of r lower than its value in the dielectric. (Any 
perturbation of the field uniformity, caused by the compliance with Eq. (46) at the minor interfaces, is 
settled at distances ~ t from these interfaces.) 

19 Actually, selecting the slit size d much less that the characteristic scale of the field change, we can apply the 
following arguments to any external field distribution. 

Fig. 3.6. Fields inside narrow 
slits cut in a linear dielectric. 
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 For problems with piecewise-constant   but more complex geometries we may need to apply the 
methods studied in Chapter 2. As in vacuum, in the simplest cases we can select such a set of orthogonal 
coordinates that the electrostatic potential depends on just one of them. Consider, for example, two types 
of plane capacitor  filling with two different dielectrics – see Fig. 7.  

 In case (a), voltage V between the electrodes is the same for each part of the capacitor, and at 
least far from the dielectric interface, the electric field is vertical, uniform, and similar (E = V/d). Hence 
the boundary condition (47) is satisfied even if such a distribution is valid near the surface as well, i.e. at 
any point of the system. The only effect of different values of  in the two parts is that the electric 
displacement D = E and hence electrodes’ surface charge density  = D are different in the two parts. 
Thus we can calculate the electrode charges Q1,2 of the two parts independently, in each case using Eq. 
(44), and then add up the results to get the total capacitance 

               2211
21 1

AA
dV

QQ
Cm  


 .    (3.48) 

Note that this formula may be interpreted as the total capacitance of two separate capacitors connected 
(by conducting wires) in parallel. This is natural, because we may cut the system along the dielectric 
interface, without any effect on the fields in either part, and then connect the corresponding electrodes 
by external wires, again without any effect on the system – besides very close to capacitor’s edges. 

 

  

 

 

 

 

 

 Case (b) may be analyzed by applying Eq. (34) to a Gaussian pillbox with the lower lid inside 
the (for example) bottom electrode, and the top lid in any of the layers. From this we see that D 
anywhere inside the system should be equal to the surface charge density   of the lower electrode, i.e. 
constant. Hence, in the top dielectric layer the electric field is constant: E1 = D1/1 = /1, while in 
bottom layer, similarly,  E2 = D2/2 = /2. Integrating E across the whole capacitor, we get 
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so that the mutual capacitance per unit area  
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 Note that this result is equivalent to the total capacitance of an in-series connection of two plane 
capacitors based on each of the layers. This is natural, because we could insert an uncharged thin 
conducting sheet (rather than a cut as in the previous case) at the layer interface, which is an 

Fig. 3.7. Plane capacitors filled 
with two different dielectrics. 
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equipotential surface, without changing the field distribution in the system. Then we could thicken the 
conducting sheet as much as we like (turning it into a wire), also without changing the fields and hence 
the capacitance. 

 In order to warm up for more complex problems, let us see how the last problem could be solved 
using the Laplace equation approach. Due to the symmetry of the system, the electrostatic potential in 
each layer may only depend on one (in Fig. 7b, vertical) coordinate z, so that the Laplace equation in 
each uniform part of the system is reduced to d2/d2z = 0. Hence in each layer the electrostatic potential 
changes linearly, though possibly with different coefficients: 1 = c11z + c12, and 2 = c21z + c22. 
Selecting the electrode potentials as  (0) = 0 and  (d1+ d2) = V, from those boundary conditions we get 
c12 = 0, c21(d1+d2) + c22 = V, so that we need two more equations to find all four coefficients cjj’. These 
additional equations come from the conditions of continuity of the potential (c11d1 + c12 = c21d1 + c22) 
and displacement (1c11 = 2c21) at the interface z  = d1. Solving these equations, we can readily find the 
electric field and displacement in both layers, then the surface charge densities 
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  (3.51) 

(which in this case are equal and opposite) and finally the capacitance per unit area, with (of course) the 
same result (50). 

 Let us apply the same approach to a more complex problem, shown in Fig. 8a: a dielectric sphere 
placed into a uniform external electric field E0.  

 

 

 

 

 

 

 

 

 

 

 

 

 In this case the Laplace equation is not one-dimensional, and hence invites the variable 
separation method discussed in Sec. 2.5. From that discussion we already know, in particular, the 
general solution (2.172) of the Laplace equation outside of the sphere. To satisfy the uniform-field 
condition at r  , it reduces to 
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Fig. 3.8. Dielectric sphere in an initially uniform electric field: (a) the problem, and (b) the 
equipotential  surfaces, as given by Eq. (55), for r = 3. 
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Inside the sphere we can only use the radial functions that are finite at r  0: 
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lRr ra  P .     (3.53) 

Now, writing the boundary conditions (46) and (47) at r = R, we see that for all coefficients al and bl 
with l  2 we (just like for the conducting sphere in vacuum) get homogeneous equations that have only 
trivial solutions. Hence, all these terms may be dropped, while for the only surviving angular harmonic, 
proportional to P1(cos) = cos, Eqs. (46)-(47) yield two equations: 
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Solving this simple system for a1 and b1, we get the final solution of the problem: 
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 Figure 8b shows the equipotential surfaces given by this solution, for a particular value off the 
dielectric constant r. Note that, just like for a conducting sphere, at r  R the dielectric sphere produces 
(on the top of the uniform external field) a purely dipole field, with p = 4R30E0(r – 1)/(r + 2) – an 
evident generalization of Eq. (11), to which our result tends at r  . By the way, this property is 
common: from the point of view of their electrostatic (but not transport!) properties, conductors may be 
adequately described as dielectrics with r  . 

 Another remarkable feature of Eqs. (55) is that the electric field inside the sphere is uniform20 
with R-independent values 
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In the limit r  1 (the “vacuum sphere”, i.e. no sphere at all), the electric field inside the sphere 
naturally tends to the external one, and its polarization disappears. In the opposite limit and r   the 
electric field inside the sphere vanishes, and the field outside the sphere approaches that we have found 
for the conducting sphere – see Eq. (2.176). 

 To complete the discussion of this example, note a very curious result: the field Eself, created by 
the dielectric sphere inside itself, is related to its polarization vector by a simple equation independent of 
either the dielectric constant or sphere’s size: 
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r

r ,    (3.57)  

where factor 3 stems sphere’s dimensionality. (For a round cylinder in a normal external field, the 
similar relation is valid, but with factor 2.)  This equality is just the particular manifestation of the 
general relation (24). Indeed, if summed over all N = nV similar dipoles p, distributed inside the sphere 
with constant density n (so that the polarization vector P = np is constant), Eq. (24) yields 

20 This is true for any ellipsoid, at arbitrary external field orientation. 
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so that after division by V, and taking into account the field uniformity in our particular case, it 
coincides with Eq. (57).21 We will use these results in the following section to discuss the molecular 
field effect. 

 Before doing that, let me briefly revisit the method of charge images that was discussed in Sec. 
2.6, to find its new features pertaining to dielectrics. As the simplest example, consider a point charge 
near a dielectric half-space – see Fig. 9 (cf. Fig. 2.24). 

   

 

 

 

 

 

 

 

 

 The Laplace equations in the upper half-space z > 0 (besides the charge point  = 0, z = d) may 
still be satisfied using a single image charge q’  at point  = 0, z = - d, but now q’ may differ from (-q). 
In addition, in contrast to the conducting plane case, we should also find the field inside the dielectric (z 
 0). This field cannot be contributed by the image charge, because it would provide a potential 
divergence at its location. Thus, in that half-space we should try to use the real point source only,  but 
maybe with a re-normalized charge q” rather than the genuine charge q – see Fig. 9. As a result, we may 
look for the potential distribution in the form 
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at this stage with unknown q’ and q”. Plugging this solution into the boundary conditions (46) and (47) 
at z = 0 (with /n = /z), we see that they are indeed satisfied (so that Eqs. (59) express the unique 
solution of the boundary problem) if the effective charges q’ and q’’ obey the following relations: 

21 The reader may wonder how have we managed to proof Eq. (24), at least for this particular case, using only the 
relations based on the dipole approximation (7) for the field, which does not cover the inter-dipole fields 
responsible for Eq. (24) – see Fig. 3 and its discussion. The reason is that according to Eq. (30), the additional 
field Eself inside the sphere may be considered as been created by effective charges, of density ef, distributed on 
sphere’s surface. For these charges, field Eef is internal, similar to the field between two charges, shown in Fig. 3. 

z Fig. 3.9. Charge images for a dielectric half-space. 
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        q''q'qq''q'q r  , .    (3.60) 

Solving this simple system of linear equations, we get 
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 If r  1, then q’  0, and q’’  q – both facts very natural, because in this limit (no 
polarization!) we have to recover the unperturbed field of the initial point charge in both semi-spaces. In 
the opposite limit r    (which, according to our discussion of the last problem, should correspond to 
a conducting plane),  q’  q (repeating the result we have discussed in very much detail in Sec. 2.6) and  
q’’  0. According to the second of Eqs. (3.59), the last result means the field in the dielectric tends to 
zero in this limit, as it should.   

 Finally, following the logic of Chapter 2, at this point it would be appropriate to discuss the 
Green’s function method. However, due to the time/space restrictions, I will skip this discussion, 
especially because the all the method’s philosophy remains absolutely the same as for the vacuum case, 
so that the generalization to the case of dielectrics is straightforward. 

 

3.4. Molecular field effects 

 In 1850, O.-F. Mossotti and (probably, independently, but almost 30 years later!) R. Clausius 
made an interesting experimental observation known now, rather unfairly, as the Clausius-Mossotti 
relation: if density n of molecules in a chemical compound may be changed without changing its 
molecular structure, then the following ratio, 
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,      (3.62) 

is approximately proportional to n. For r  1, i.e., n  0, there is no surprise here: according to Eq. 
(41), for independent molecular dipoles r – 1 = 4moln   n. However, at larger density n, the 
effective field Eef, acting  on each dipole, includes not only the external field E0, but also a substantial 
“molecular field” Emol of the surrounding dipoles:  

               0mol0ef EEE  ,     (3.63) 

where the position of the particular dipole we are discussing is taken for r = 0. Let us calculate Emol(0), 
using a very simple model: a regular cubic lattice of identical dipoles (Fig. 10).  In a Cartesian 
coordinate system with axes directed along the lattice vectors, coordinates of the dipoles are  

     alzakyajx jkljkljkl  ,, ,    (3.64) 

where j, k, and l are the integers numbering the dipoles. Now we may use the last form of Eq. (13), and 
the linear superposition principle, to calculate one of the Cartesian components (say, along axis x) of the 
molecular field induced by all other dipoles of the lattice: 
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with excluded term j = k = l = 0 is excluded. The sums of all cross-terms, proportional to jk and jl, 
vanish due to system symmetry, so that Eq. (65) reduces to 
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Since all the sums participating in this expression are equal,  
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we get (Emol) x(0) = 0. Due to the system symmetry, the same result is valid for all other components of 
the dipole field. Hence, Emol(0) = 0, and (due to the equivalence of all the dipoles of the system), the 
molecular field vanishes at the location of each dipole, so that Eq. (3.63) is reduced to Eef = E0. 

 

 

 

 

  

 

  

 

 In order to relate the external field E0 and the average dipole22 field E in the medium, we may 
use Eq. (56) for a uniform, macroscopic sphere23 with a radius much larger then the inter-dipole distance 
a, so that our assumption of infinite limits of the rapidly converging sum (65) is not substantially 
affected:  
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Now we may plug this relation into the general formula (37) for linear dielectrics: 
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 This “macroscopic” relation has to give the same result as the “microscopic” Eq. (40) - with the 
replacement E  Eef which reflects the fact that in the general case each dipole is polarized by the 
effective field (63) rather than the average field E: 

               efmol04 EP n .     (3.70) 

22 This qualifier is important: E is the long-range (dipole field) average participating in the macroscopic Maxwell 
equations, rather than the exact average that would include the inner-dipole fields, for which Eq. (24) would be 
valid. 
23 This geometry, due to its isotropy, most fairly represents the relation between E and E0.  

Fig. 3.10. Cubic lattice of similar dipoles. 
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The comparison yields the so-called Lorentz-Lorenz formula,24 
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that complies with the Clausius-Mossotti observation, provided that the molecular polarizability mol is 
independent of density. (This is a good approximation at least for weak “molecular” bonding.)  

It is somewhat surprising how many dielectric materials obey Eq. (71) rather well, because of its 
approximate nature. Indeed, its derivation is based on the assumption of a specific crystal lattice and, 
more importantly, that the molecules are localized exactly in the crystal lattice nodes, and the field of 
each molecule may be expressed by the dipole approximation. In reality, atom’s electrons, which 
participate in the dipole moment formation, are spread in space due to quantum-mechanical uncertainty 
on a scale that may be comparable with distances between the molecules. 

 Solving Eq. (71) for the dielectric constant, we get 
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If the dipole density is low, moln << 1, we get our old result (41) corresponding to independent dipoles, 
and hence to Eef = E. However, at high dipole density and/or polarizability, the effective field acting on 
the each dipole, 
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may be substantially larger than the average field E, due to the molecular field contribution. Note r, the 
Eef/E ratio, and hence the electric susceptibility 
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all diverge when the density-polarizability product approaches the critical value moln = 3/4.  

 This is essentially a rudimentary25 description of the transition from linear dielectrics to the so-
called ferroelectrics with self-sustained (spontaneous) polarization even in the absence of external 

24 It was derived by in 1869 by L. Lorenz and then (in 1878) independently by H. Lorentz. Actually, they 
discussed optical frequencies at which r should be understood as the square of the refraction coefficient at the 
wave frequency (see Chapter 7), but since the optical wavelengths ~ 10-4 m are much longer than interatomic 
distances a ~ 10-9 m, the derivation remains absolutely the same in electrostatics. 
25 Any quantitative description of this transition should account of for thermal fluctuations of the molecular 
dipoles, which reduce the dipole-dipole ordering and hence suppress the transition to the ferroelectric phase until 
temperature has been lowered to a certain Curie temperature TC - named after P. Curie (1859-1906). Right above 
that temperature, the dielectric remains linear, but has a high, temperature-dependent dielectric constant that 
diverges at T  TC. Such materials are frequently called paraelectric, and the paraelectric-to-ferroelectric 
transition at TC  in crystals is a typical example of a continuous (or “second-order”) phase transition - see, e.g., 
SM Sec. 4.4. (As will be discussed in Sec. 5.5 below, some magnetic materials exhibit a very similar phase 
transition between their ferromagnetic and paramagnetic phases.) Moreover, in non-crystalline materials, such as 
bulk ceramics and thin films, the ferroelectric behavior is further complicated by different, field-dependent 
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electric field. These materials are typically recognized by the hysteretic behavior of their polarization as 
a function of applied electric field – see, for example, Fig. 11.  

 Ferroelectric materials are being actively explored as the active materials for nonvolatile 
random-access memories (dubbed either FRAM or FeRAM).26  In cells of this memory, binary 
information is stored in the form of one of two possible directions of spontaneous polarization at E = 0 – 
see, e.g., Fig.11, and is read out by the effect of the average electric field on a nearby semiconductor 
field-effect transistor. Unfortunately, most materials suitable for fabrication of ferroelectric thin films 
are rather complex and incompatible with standard processes of microelectronics. In addition, the time 
of spontaneous depolarization of ferroelectric thin films is typically well below than 10 years - the 
industrial standard for data retention in nonvolatile memories, and this time may be decreased even 
more by “fatigue” from repeated polarization recycling. Due to these reasons, industrial production of 
FRAM is currently just a tiny, few-percent fraction of the nonvolatile memory market (which is 
currently dominated by floating-gate memories – see Sec. 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Other polarization effects can also be met, possible, e.g., antiferroelectricity or helielectricity. 
Unfortunately, we will not have time for a discussion of these exotic phenomena in this course;27 the 
main reason I am mentioning them is to emphasize again that the “material relation” P = P(E) is by no 
means exact or fundamental, though most material, in practicable fields, behave as linear dielectrics. 

directions of polarization P in individual  “domains” of the sample, making the average hysteresis more smooth 
(Fig. 11a) and dependent on sample’s polarization history – for example the amplitude of the applied ac electric 
field (Fig. 11b). 
26 See, e.g., J. F. Scott, Ferroelectric Memories, Springer, 2000. 
27 For a detailed coverage of ferroelectrics, I can recommend an encyclopedic  monograph by M. Lines and A. 
Glass, Principles and Applications of Ferroelectrics and Related Materials,  Oxford U. Press, 2001, and a recent 
collection of reviews by K. Rabe, C. Ahn, and J.-M. Triscone (eds.), Physics of Ferroelectrics: A Modern 
Perspective, Springer, 2010. 

Fig. 3.11. Ferroelectric hysteretic loops: (a) for various material types 
(schematically), and (b) for several amplitudes of the applied ac electric field. 
(Panel b, showing recent (2013) experimental results by S.-W. Jung et al. for an 
inkjet-printed layer of organic semiconductor PC12TV12T, is adapted from 
http://etrij.etri.re.kr/etrij/journal/article/article.do?volume=35&issue=4&page=734.) 
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3.5. Energy of electric field in a dielectric 

 In Chapter 1, we have obtained two key results for the electrostatic energy: Eq. (1.54) for a 
charge interaction with an independent (“external”) field, and a similarly structured formula (1.62), but 
with an additional factor ½, for the field is produced by the charges under consideration. Both relations 
could be merged and rewritten in a “local” form involving energy density u – see Eq. (1.67). These 
equations are of course always valid for dielectrics as well if the charge density includes all charges 
(including those bound into dipoles), but it is convenient to recast them unto a form depending on 
density (r) of only “stand-alone” charges.  

 If a field is created only by stand-alone charges under consideration, and is proportional to (r) 
(requiring that we deal with a linear dielectric!), we can repeat all the argumentation of the beginning of 
Sec. 1.3, and again arrive at Eq. (1.62), provided that  is calculated correctly, i.e., with a due account of 
the dielectric. Now we can recast this result in terms of fields – essentially as this was done in Eqs. 
(1.64)-(1.66), but now making a clear difference between the electric field E (that still equals -) and 
the electric displacement field D that obeys the macroscopic Maxwell equation (32). Plugging (r), 
expressed from that equation, into Eq. (1.62), we get 

               rdU 3

2

1 D .     (3.75) 

Using the fact28 that for any differentiable functions  and D, 

               DDD  )()()(   ,    (3.76) 

we may rewrite Eq. (75) as 

            rdrdU 33 )(
2

1

2

1
  DD   .    (3.77) 

The divergence theorem, applied to first term, reduces it to a surface integral of Dn. (As a reminder, in 
Eq. (1.65) the integral was of ()n  En.) If the surface of the volume we consider is sufficiently far, 
this surface integral vanishes. On the other hand, the gradient in the second term of Eq. (77) is just 
(minus) field E, so that it gives  

         rdErdEErdU r
32033 )()(

2
)()()(

2

1

2

1
rrrrrDE   


 .  (3.78) 

This expression is a natural generalization of Eq. (1.67) and shows that we can, like we did in vacuum, 
present the electrostatic energy in a local form29 

                  



222

1
,)(

2
23 D

EurduU   DEr .   (3.79) 

 Again, this expression is not valid for nonlinear dielectrics, because our starting point, Eq. 
(1.62), is only valid if  is proportional to . In order to make our calculation more general, we should  

28 See, e.g., MA Eq. (11.4a). 
29 Again, in Gaussian units this expression should be divided by 4. 
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intercept our calculations in Sec. 1.3 at an earlier stage, at which we have not yet used this 
proportionality. For example, Eq. (1.54) may be rewritten, in the continuous limit,  as  

              rdU 3)()( rr  ,     (3.80) 

where symbol  means a small variation of the function - e.g., its change in time, sufficiently slow to 
ignore the relativistic and magnetic-field effects. Applying such variation to Eq. (32), and plugging the 
resulting  =  D into Eq. (80), we get 

                rdU 3 D .     (3.81) 

(Note that in contrast to Eq. (75), this expression does not have factor ½.) Now repeating the same 
calculations as in the linear case, for the energy density variation we get a remarkably simple (and 
general!) expression, 

              DE  u .      (3.82) 

This is as far as we can go for the general dependence D(E). If the dependence is linear and 
isotropic, as in Eq. (38), then D = E and 

EE  u        (3.83)  

Integration of this expression over variations, from zero field to a certain final distribution E(r), brings 
us back to Eq. (79).  

 Another important role of Eq. (82) is that it shows that Cartesian coordinates of E may be 
interpreted as generalized forces, and those of D as generalized coordinates (per unit volume).30 This 
allows one to form the proper Gibbs potential energy31 of a system inside some volume V, placed in an 
external electric field Eext:  

            DErrr   ext
3 , ugrdg

V

G .    (3.84) 

 As an analytical mechanics reminder, if a generalized external force (in our case, Eext) is fixed, 
the stable equilibrium of the system corresponds to the minimum of G, rather than of the potential energy 
U as such - in our case, that of the field:  

                    DErr urduU
V

,3 .    (3.85) 

In order to illustrate this important point, let us return to the simple case of a system with linear 
dielectric(s), in which D  E  Eext, so that Eq. (85) may be explicitly integrated over the external 
field variation, to reproduce the second of Eqs. (79): 

30 This is the point where the SI units, prescribing fields E and D different dimensionalities, are more revealing 
than the Gaussian units. 
31 See, e.g., CM Sec. 1.5. Note that as Eq. (84) clearly illustrates, once again, that the difference between potential 
energies G and U, usually discussed in courses of statistical physics and/or thermodynamics as the difference 
between the Gibbs and Helmholtz free energies (see, e.g., SM 1.6), exists regardless of statistics or thermal 
motion. 

General  
energy 
variation 
 

Gibbs  
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              DEr 
2

1
u .      (3.86) 

In this case, Eq. (84) yields 

             const
222

1 2
extext

2
ext  EEEEDEDEr


Eg ,  (3.87) 

where the constant may depend on the external field, but not on the resulting field distribution. As a 
sanity check, let us apply this result to a volume V well inside a long dielectric cylinder placed into a 
uniform external field Eext parallel to cylinder’s axis. (Such orientation is important to ignore the 
geometric effects discussed in Sec. 3 – see, e.g., Fig. 6 and its discussion.) Then E has to be uniform in 
the dominating  part of the cylinder, so that Eq. (84) may be explicitly integrated over the volume, 
giving 

    const
2

2
ext  VEE


G .     (3.88) 

The minimum of this function is achieved at the evidently correct result E = Eext - in contrast to the 
unphysical result E = 0 (meaning electric field’s expulsion from the volume) that we would get 
minimizing U.  

 

3.6. Exercise problems 

 3.1.* Prove the following extension of Eq. (5): 
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where Q is a scalar - the total charge of the system, pj are the Cartesian components of a vector – 
system’s dipole moment (6), and Qjj’ are Cartesian components of a tensor – system’s quadrupole 
moment: 

        r'dr'r'r''r'dr''pr'd'Q jj'j'jjj'jj
3233 3,,  rrr Q . 

 
 3.2. A plane, thin ring of radius R is charged with a constant linear density . Calculate the exact 
electrostatic potential distribution along the symmetry axis of the ring, and prove that at large distances, 
r >> R, it is indeed described by the multipole expansion spelled out in Problem 1. 
 
 3.3. Without carrying out an exact calculation, can you predict the spatial dependence of the 
interaction between various electric multipoles, including point charges (in this context, frequently 
called monopoles), dipoles, and quadrupoles? Based on these predictions, what is the functional 
dependence of the interaction between dumbbell-shaped diatomic molecules such as H2, N2, O2, etc., on 
the distance between them, if the distance is much larger than the molecular size? 
 
 3.4. In suitable reference frames, calculate the dipole and quadrupole moments of the following 
systems (see Figs. below): 
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 (i) 4 point charges of the same magnitude, but alternating signs, placed in the corners of a 
square;  
 (ii) a similar system, but with a pair charge sign alternation; and 
 (iii) a point charge in the center of a thin ring carrying a similar but opposite charge, uniformly 
distributed along its circumference. 
 
 
 

 

 

 

 

 
 3.5. Two similar electric dipoles, of fixed magnitude p, located at fixed distance r from each 
other, are free to rotate, changing their directions. What stable equilibrium position(s) may they take as a 
result of their electrostatic interaction? 

 

 3.6. An electric dipole is located above an infinite conducting 
plane (see Fig. on the right). Calculate: 

 (i) the distribution of the induced charge in the conductor, 
 (ii) the dipole-to-plane interaction energy, and 
 (ii) the force and the torque acting on the dipole. 
 
 

 3.7. Use two different approaches to calculate the energy of interaction between a grounded 
conductor and an electric dipole p, placed in the center of a spherical cavity of radius R, carved in the 
conductor. 
  
 3.8. A plane separating two parts of otherwise free space is densely and uniformly (with constant 
areal density n) filled with dipoles, with their dipole moments p oriented in a direction normal to the 
plane.  

 (i) Calculate the boundary conditions for the electrostatic potential on both sides of the plane.  
 (ii) Use the result of Task (i) to calculate the potential distribution created in space by a spherical 
surface, with radius R, densely and uniformly filled with radially-oriented dipoles. 
 (iii) What condition that should be imposed on the dipole density n for your results to be 
qualitatively valid? 
 

3.9. A plane capacitor, with zero voltage between its 
conducting plates (as may be fixed, e.g., with an external 
wire – see Fig. on the right), is partly filled with a material 
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with spontaneous, constant polarization P0.32  Find the distributions of the electric field, electric 
displacement, and the surface charge density of each plate. 
 
 3.10. A sphere of radius R is made of a material with a uniform, fixed polarization P0.  

 (i) Calculate the electric field everywhere in space – both inside and outside the sphere. 
(ii) Explore the limit R  0, keeping P0R

3 = const, and compare the result with Eq. (25). 
 
 3.11. Discuss the physics of Eq. (3.85) of the lecture notes, in particular the physical nature of 
the potential energy U in a dipole medium. Apply your conclusion to a material with fixed (field-
independent) polarization P0, and calculate the electric field energy of the uniformly polarized sphere 
considered in the previous problem.  

 
 
3.12. Experimental plots in Fig. on the right show that 

the polarization of EuMn2O5, a typical 
ferroelectric/paraelectric material, becomes almost linear at 
50 K. Use the plot to calculate (with an accuracy better than 
10%) its dielectric constant r at this temperature. 

 

 

 
3.13.  In two separate experiments, a thin, plane sheet of a linear dielectric with r = const is 

placed into a uniform external electric field E0: 

 (i) with sheet’s surface parallel to the electric field, and 
 (ii) the surface perpendicular to the field. 

For each case, find the electric field E, the electric displacement D, and the polarization vector P inside 
the dielectric (far from sheet’s edges). 
 
 3.14. A point charge q is located at distance r >> R from the center of a uniform sphere of radius 
R, made of a uniform linear dielectric. In the first nonvanishing approximation in small parameter R/r, 
calculate the interaction force, and the energy of interaction between the sphere and the charge. 

 
3.15. A fixed dipole p is placed in the center of a spherical cavity of radius R, cut inside a 

uniform, linear dielectric. Calculate the electric field distribution everywhere in the system (both for r < 
R and r > R).  

 Hint: You may start with the assumption that the field at r > R has a distribution typical for a 
dipole (but be ready for surprises :-). 

32 In electrical engineering, such materials (typically, synthetic polymers) are frequently called electrets. As an 
approximation, this condition may be applied to hard ferroelectrics, if the external or self-induced electric fields 
are not too high. 
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 3.16. A spherical capacitor (see Fig. on the right) is filled with a linear 
dielectric whose permittivity  depends on spherical angles  and , but not on 
the distance r from system’s center. Give an explicit expression for its 
capacitance C. 

 

 
  
 3.17. For each of the two capacitors shown in Fig. 3.7 of the lecture notes, calculate the electric 
forces (per unit area) on the boundaries of two uniform dielectrics, in terms of the electric fields. 
 
 
 3.18. A uniform electric field E0 has been created (by external 
sources) inside a uniform linear dielectric. Find the change of the electric 
field, created by cutting out a cavity in the shape of a round cylinder of 
radius R, with the axis perpendicular to the external field - see Fig. on the 
right.  

 
 
3.19. Small linear-dielectric particles of spherical shape are dispersed in free space with low 

concentration n << 1/R3, where R is particle's radius. Calculate the average dielectric constant of such a 
medium. Compare the result with the apparent, but incomplete answer 

               nVrr 11   ,   

(where r is the dielectric constant of particle's material and V = (4/3)R3 is its volume), and explain the 
origin of the difference. 
 
 
 3.20.* Calculate the spatial distribution of the electric potential induced by a 
point charge q is placed at distance d from  a very wide parallel plate, of thickness D, 
made of a linear dielectric – see Fig. on the right. 
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Chapter 4. DC Currents 

In this chapter I discuss the laws governing the distribution of constant (“dc”) currents inside conducing 
media, with a focus on the linear (“Ohmic”) conductivity. In most cases, the partial differential equation 
governing the distribution may be reduced to the same Laplace and Poisson equations whose solution 
methods have been discussed in detail in Chapter 2. Due to this fact, this chapter is rather short. 

 

4.1. Continuity equation and the Kirchhoff laws 

 Until this point, our discussion of conductors has been limited to the cases when they are 
separated with insulators (meaning either vacuum or dielectric media) preventing any continuous 
motion of charges from one conductor to another, even if there is a voltage difference (and hence 
electric field) between them – see Fig. 1a.  

   

 

 

 

 

 

 

 

 

 

 

 

 Now let us connect two conductors galvanically, say with a wire – a thin, elongated conductor 
(Fig. 1b). Then the electric field causes the motion of charges in the wire - from a conductor with a 
higher electrostatic potential toward that with a lower potential, until the potentials equilibrate. Such 
process is called charge relaxation. The main equation governing this process may be obtained from the 
experimental fact (already mentioned in Sec. 1.1) that electric charges cannot appear or disappear 
(though opposite charges may recombine with the conservation of the net charge.) As a result the 
change of charge Q in one conductor may change only due to the current I  through the wire:1  

         I
dt

dQ
 .      (4.1)

1 Just as a (hopefully, unnecessary :-) reminder, in the SI units the current is measured in amperes (A). In the legal 
metrology, the ampere (rather than the coulomb, which is defined as 1C = 1A  1s) is a primary unit. I will 
mention its formal definition in the next chapter. In the Gaussian units, Eq. (1) remains the same, so that the 
current’s unit is the so-called statampere - defined as statcoulomb per second. 

(a)    (b)      (c) 

Fig. 4.1. Two oppositely charged conductors: (a) at the electrostatic situation, (b) at charge relaxation 
through an additional narrow conductor (“wire”), and (c) a system sustaining dc current in the wire. 
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 Let us express this law in a differential form, introducing the notion of current density vector 
j(r). This vector may be defined via the following relation for current dI crossing an elementary area dA 
(Fig. 2) 

            dAjdAjjdAdI n )cos(cos  ,    (4.2) 

where  is the angle between the normal to the surface and the carrier motion direction (which is taken 
for the direction of vector j). 

 

 

 

 

 

With that definition, Eq. (1) may be re-written as 

            
S

n

V

rdjrd
dt

d 23 ,     (4.3) 

where V is an arbitrary stationary volume limited by the closed surface S. Applying to this volume the 
same divergence theorem as was repeatedly used in previous chapters, we get 

            03 



 




V

rd
t

j


.     (4.4) 

Since volume V if arbitrary, this equation may be true only if 

       0



j
t


.     (4.5) 

This is the fundamental continuity equation - which is true even for the time-dependent phenomena.2 

 The charge relaxation is of course a dynamic, time-dependent process. However, electric 
currents may also exist in stationary situations, when a current source, for example a battery, replenishes 
the conductor charges and hence sustains currents at a certain time-independent level – see Fig. 1c. (As 
we will see below, in most cases this process requires a persistent replenishment of the electrostatic 
energy from either a source or storage of energy of a different kind – say, the chemical energy of the 
battery.) Let us discuss the laws governing the distribution of such dc currents. In this case (/t = 0), 
Eq. (5) reduces to a very simple equation 

          0 j .      (4.6) 

 This equation acquires an even a simpler form in the particular but important case of electric 
circuits (Fig. 3), the systems may be presented as an electric connection of components of two types:  

2 Similar differential relations are valid for the density of any conserved quantity, for example for mass in 
classical fluid dynamics (see, e.g., CM Sec. 8.2), and for the probability in statistical physics (SM Sec. 5.6) and 
quantum mechanics (QM Sec. 1.4). 

j

dA

cosdA


Fig. 4.2. Current density vector. 
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 (i) small-size (lumped) circuit elements (also called “two-terminal devices”), meaning a passive 
resistor, a current source, etc. – generally, any black box with two wires sticking out of it, and 

 (ii) perfectly conducting wires, with negligible voltage drop along them, that are galvanically 
connected at certain points, called nodes (or “junctions”).   

  

 

 

 

 

 

 

 

 In the standard circuit theory, the electric charges of the nodes are considered negligible, and we 
may integrate Eq. (6) over the closed surface drawn around any node to get 

           0
j

jI ,      (4.7a) 

where the summation is over all the wires (numbered with index j) connected in the node. On the other 
hand, according to its definition (2.25), voltage drop Vk across each circuit element may be presented as 
the difference of potentials of the adjacent nodes, Vk = k - k-1. Summing such differences around any 
closed loop of the circuit (Fig. 3), we get all terms cancelled, so that 

          0
k

kV .      (4.7b) 

These relations are called, respectively, the 1st and 2nd Kirchhoff laws - or sometimes the node 
rule and the loop rule. They may seem elementary, and the genuine power of the Kirchhoff approach is 
in the fact a set of Eqs. (7), covering every node and every circuit element of the system, gives a system 
of equations sufficient for the calculation of all currents and voltages in it - provided that the relation 
between current and voltage in known for each circuit element.   

 It is almost evident that in the absence of current sources, the system of equations (7) has only a 
trivial solution: Ij = 0, Vk = 0 - with the exotic exception of superconductivity, to be discussed in Sec. 
6.3. The current sources, that allow non-vanishing current flows, may be described by their 
electromotive forces (e.m.f.) Vk, having the dimensionality of voltage, which have to be taken into 
account in the corresponding terms Vk of sum (7b). Let me hope that the reader has some experience of 
using Eqs. (7) for the analysis of simple circuits – say consisting of several resistors and dc batteries – 
so I may save time on a discussion of  these simple problems. 

    

4.2. The Ohm law 

 As was mentioned above, the relations spelled out in Sec. 1 are sufficient for forming a closed 
system of equations for finding currents and electric field in a system only if they are complemented 

Fig. 4.3. Typical system obeying the Kirchhoff 
laws.

“node” 

“loop” 

“circuit 
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law 
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with material equations relating scalars I and V in each circuit element, i.e. vectors  j and E in each 
point of the medium of such an element. The simplest, and most frequently met relation of this kind is 
the famous Ohm law whose differential form is 

            Ej  ,      (4.8) 

where   is a constant called conductivity.3  Though this is not a fundamental relation, and is 
approximate for any conducting media, we can argue that if: 

 (i) there is no current at E = 0 (mind superconductors!), 
 (ii) the medium is isotropic or almost isotropic (a notable exception: some organic conductors), 
 (iii) the mean free path l of current carriers is much smaller than the characteristic scale a of the 
spatial variations of j and E, 

then the Ohm law may be viewed as a result of the Taylor expansion of the local relation j(E) in 
relatively small fields, and thus is very common.  

 Table 1 gives the experimental values of dc conductivity for some practically important (or just 
representative) materials. The reader can see that the range of its values is very broad, covering more 
that 30 orders of magnitude, even without going to such extremes as very pure metallic crystals at very 
low temperatures, where   may reach ~1012 S/m.  

 

Table 4.1. Ohmic conductivities for some representative (or practically important) materials at 20C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 In SI units, the conductivity is measured in siemens per meter, where one siemens (S) is the reciprocal of one 
ohm: 1 S  (1 )-1  1 A / 1 V. The constant reciprocal to conductivity, 1/, is called resistivity, and is commonly 
denoted by letter . I will, however, try to avoid using this notion, because I am already overusing this letter. 

Material  (S/m) 

Teflon ([C2F4]n) 10-22-10-24 

Silicon dioxide 10-16-10-19 

Various glasses 10-10-10-14 

Deionized water ~10-6 

Sea water 5 

Silicon n-doped to 1016cm-3 2.5102 

Silicon n-doped to 1019cm-3 1.6104 

Silicon p-doped to 1019cm-3 1.1104 

Nichrome (alloy 80% Ni + 20% Cr) 0.9106 

Aluminum 3.8107 

Copper 6.0107 

Zinc crystal along a-axis 1.65107 

Zinc crystal along c-axis 1.72107 
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In order to get some feeling what do these values mean, let us consider a very simple system 
(Fig. 4): a plane capacitor of area A >> d2, filled with a material that has not only a dielectric constant r, 
but also some Ohmic conductivity , with much more conductive plate electrodes. 

 

 

 

 

 

 Assuming that these properties are compatible with each other,4 we may assume that the 
distribution of electric potential (not too close to the capacitor edges) still obeys Eq. (2.39), so that the 
electric field is vertical and uniform, with E = V/d. Then, according to Eq. (6) the current density is also 
uniform, j = E = V/d. From here, the total current between the plates is 

         .A
d

V
EAjAI        (4.9) 

On the other hand, from Eqs. (2.26) and (3.45), the instant value of plate charge is Q = CmV = 
(r0A/d)V.  Plugging these relations into Eq. (1), we see that the speed of charge (and voltage) 
relaxation does not depend on the geometric parameters A and d: 

         






0, r
r

r

V

dt

dV
 ,     (4.10) 

where parameter r has the sense of the relaxation time constant. As we know (see Table 3.1), for most 
practical materials the dielectric constant is within one order of magnitude from 10, so that the 
numerator of Eq. (10) is of the order of 10-10. As a result, according to Table 1, the charge relaxation 
time ranges from ~1014s (more than a million years!) for best insulators like teflon, to ~10-18s for the 
least resistive metals.  

 What is the physics behind these values of  and why, for some materials, Table 1 gives them 
with such a large uncertainty? If charge carriers move as classical particles (e.g., in plasmas or non-
degenerate semiconductors), a reasonable description of conductivity is given by the famous Drude 
formula.5 In his picture, due to weak electric field, the charge carriers are accelerated in its direction 
(possibly on the top of their random motion in all directions, i.e. with a vanishing average velocity 
vector): 

          E
v

m

q

dt

d
 ,      (4.11) 

and as a result their velocity acquires an the average value 

              E
v

v
m

q

dt

d
 ,     (4.12) 

4 As will be discussed in Chapter 6, such simple analysis is only valid if  is not too high. 
5 It was suggested by P. Drude in 1900. 

Fig. 4.4. “Leaky” plane capacitor. 

V

0

z

d

0
 ,r

Q

Q

Ej,



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 4           Page 6 of 14 

where the phenomenological parameter  = l/v (not to be confused with r!) may be understood as the 
effective average time between carrier scattering events. From here, the current density: 

          
m

nq

m

nq
qn

 22

i.e.,  Evj .    (4.13a) 

(Notice the independence of  of the carrier charge sign.) Another form of the same result, more popular 
in the physics of semiconductors, is 

         
m

nq
  with ,2 ,     (4.13b) 

where parameter , defined by relation v  E, is called the charge carrier mobility. 

 Most good conductors (e.g., metals) are essentially degenerate Fermi gases (or liquids), in which 
the average thermal energy of a particle, kBT is much lower that the Fermi energy F. In this case, a 
quantum theory is needed for the calculation of . Such theory was developed by the quantum physics’ 
godfather A. Sommerfeld in 1927 (and is sometimes called the Drude-Sommerfeld model). I have no 
time to discuss it in this course,6 and here I will only notice that for an ideal, isotropic Fermi gas the 
result is reduced to Eq. (13), with a certain effective value of , so it may be used for estimates of , 
with due respect to the quantum theory of scattering. In a typical metal, n is very high (~1023 cm-3) and 
is fixed by the atomic structure, so that the sample quality may only affect   via the scattering time .  

 At room temperature, the scattering of electrons by thermally-excited lattice vibrations 
(phonons) dominates, so that   and  are high but finite, and do not change much from one sample to 
another. (Hence, the more accurate values given for metals in Table 1.) On the other hand, at T  0, a 
perfect crystal should not exhibit scattering at all, and conductivity should be infinite. In practice, this is 
never true (for example, due to electron scattering from imperfect boundaries of finite-size samples), 
and the effective conductivity  is infinite (or practically infinite, at least above the measurable value 
~1020 S/m) only in superconductors.7 

 On the other hand, the conductivity of quasi-insulators (including deionized water) and 
semiconductors depends mostly of the carrier density n that is much lower than in metals. From the 
point of view of quantum mechanics, this happens because the ground-state eigenenergies of charge 
carriers are localized within an atom (or molecule), and separated from excited states, with space-
extended wavefunctions, by a large energy gap (called bandgap). For example, in SiO2 the bandgap 
approaches 9 eV, equivalent to ~4,000 K. This is why, even at room temperatures the density of 
thermally-excited free charge carriers in good insulators is negligible. In these materials, n is determined 
by impurities and vacancies, and may depend on a particular chemical synthesis or other fabrication 
technology, rather than on fundamental properties of the material. (On the contrary, the carrier mobility 
 in these materials is almost technology-independent.) 

 The practical importance of the technology may be illustrated on the following example. In cells 
of the so-called floating-gate memories, in particular the flash memories, which currently dominate the 
nonvolatile digital memory technology, data bits are stored as small electric charges (Q ~ 10-16 C) of 

6 For such a discussion see, e.g., SM Sec. 6.3. 
7 Electrodynamic properties of superconductors are so interesting (and important) that I will discuss them in more 
detail in Chapter 6. 

Two  
versions 
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Drude  
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highly doped silicon islands (so-called floating gates) separated from the rest of the integrated circuit 
with a ~10-nm-thick layer of silicon dioxide, SiO2. Such layers are fabricated by high-temperature 
oxidation of virtually perfect silicon crystals. The conductivity of the resulting high-quality (though 
amorphous) material is so low,  ~ 10-19 S/m, that the relaxation time r, defined by Eq. (10), is well 
above 10 years – the industrial standard for data retention in non-volatile memories. In order to 
appreciate how good this technology is, the cited value should be compared with the typical 
conductivity  ~ 10-16 S/m of the usual, bulk SiO2 ceramics.8  

 

4.3. Boundary problems 

 For an Ohmic conducting media, we may combine Eqs. (6) and (8) the following differential 
equation 

        0   .     (4.14) 

For a uniform conductor (  = const), Eq. (14) is reduced to the Laplace equation for the electrostatic 
potential . As we already know from Chapters 2 and 3, its solution depends on the boundary 
conditions. These conditions depend on the interface type.   

 (i) Conductor-conductor interface. Applying the continuity equation (6) to a Gauss-type pillbox 
at the interface of two different conductors (Fig. 5), we get  

        (jn)1 = (jn)2,       (4.15) 

so that if the Ohm law is valid inside each medium, then 

               
nn 





 2

2
1

1





 .     (4.16) 

 

 

 

 

 

 

 

 Also, since the electric field should be finite, its potential  has to be continuous across the 
interface - the condition that may also be written as 

8 Unfortunately, these notes are not an appropriate platform to discuss details of the floating-gate memory 
technology. However, I think that every educated physicist should know its basics, because such memories are 
presently the driver of all semiconductor integrated circuit technology development, and hence of the whole 
information technology progress. Perhaps the best available book is J. Brewer and M. Gill (eds.), Nonvolatile 
Memory Technologies with Emphasis on Flash, IEEE, 2008. 

1
12  

2j

1j

Fig. 4.5. DC current “refraction” at the interface between two 
different conductors. 
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 21 .      (4.17) 

Both these conditions (and hence the solutions of the boundary problems using them) are similar to 
those for the interface between two dielectrics – cf. Eqs. (3.46)-(3.47).  

 Note that using the Ohm law, Eq. (17) may be rewritten as 

              2
2

1
1

)(
1

)(
1

 
jj  .     (4.18) 

Comparing it with Eq. (15) we see that, generally, the current density magnitude changes at the 
interface: j1  j2. It is also curious that if 1  2, the current line slope changes at the interface (Fig. 4), 
qualitatively to the refraction of light rays in optics – see Chapter 7. 

 (ii) Conductor-electrode interface. The definition of an electrode, or a “perfect conductor”, is a 
medium with   . Then, at fixed current density at the interface, the electric field in the electrode 
tends to zero, and hence it may be described by equation 

      const j ,     (4.19) 

where constants j may be different for different electrodes (numbered with index j).  Note that with 
such boundary conditions the Laplace boundary problem becomes exactly the same as in electrostatics – 
see Eq. (2.35) – and hence we can use all the methods (and some solutions :-) of Chapter 2 for finding 
dc current distribution. 

 (iii) Conductor-insulator interface. For the description of an insulator, we can use   = 0, so that 
Eq. (16) yields the following boundary condition, 

           0



n


,      (4.20) 

for the potential derivative inside the conductor. From the Ohm law we see that this is just the very 
natural requirement for the dc current not to flow into an insulator.  

 Now, note that this condition makes the Laplace problem inside the conductor completely well-
defined, and independent on the potential distribution in the adjacent insulator. On the contrary, due to 
the continuity of the electrostatic potential at the border, its distribution in the insulator has to follow 
that inside the conductor. Let us discuss this conceptual issue on the following (apparently, trivial) 
example: dc current in a long wire with a constant cross-section area A. The reader certainly knows the 
answer:  

     
A

l

I

V
R

R

V
I


   where, ,    (4.21) 

where l is the wire length, and constant R is called the resistance.9 However, let us get this result 
formally from our theoretical framework. For the ideal geometry shown in Fig. 6a, this is easy to do. 
Here the potential evidently has a linear 1D distribution 

9 The first of Eqs. (21) is essentially the integral form of the Ohm law (8), and is valid not only for a uniform 
wire, but for any Ohmic conductor with a geometry in which I and V may be clearly defined. 

Uniform 
wire’s 
resistance 
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            ,const V
l

x
      (4.22) 

both in the conductor and the surrounding free space, with both boundary conditions (16) and (17) 
satisfied at the conductor-insulator interfaces, and condition (20) satisfied at the conductor-electrode 
interfaces. As a result, the electric field is constant and has only one component Ex = V/l, so that  inside 
the conductor 

        AjIEj xxx  , ,     (4.23) 

giving us the well-known Eq. (21). 

 

 

 

 

 

 

 

 

 

  

 

However, what about the geometry shown in Fig. 6b? In this case the field distribution in the 
insulator is dramatically different, but according to boundary problem defined by Eqs. (14) and (20), 
inside the conductor the solution is exactly the same as it was in the former case. Now, the Laplace 
equation in the surrounding insulator has to be solved with the boundary values of the electrostatic 
potential, “dictated” by the distribution of the current (and hence potential) in the conductor.   

Let us solve a problem in that this conduction hierarchy may be followed analytically to the very 
end. Consider an empty spherical cavity cut in a conductor with an initially uniform current flow with 
constant density j0 = nzj0 (Fig. 7a). Following the conduction hierarchy, we have to solve the boundary 
problem in the conducting part of the system, i.e. outside the sphere (r  R), first. Since the problem is 
evidently axially-symmetric, we already know the general solution of the Laplace equation – see Eq. 
(2.172). Moreover, we know that in order to match the uniform field at r   , all coefficients al but 
one (a1 = - E0 = - j0/) have to be zero, and that the boundary conditions at r = R will give zero solutions 
for all coefficients bl  but one (b1), so that 

       .for ,coscos
2
10 Rr

r

b
r

j
 


 .    (4.24) 

In order to find coefficient b1, we have to use the boundary condition (20) at r = R: 

A,

'

0V

l

Fig. 4.6. (a) Trivial and (b)  
not-so-trivial problems of the 
field distribution at dc current 
flow. (For the latter case, 
schematically.) 

'

(a)          (b) 
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This gives b1 = -j0R
3/2, so that, finally, 

     


 cos
2

),(
2

3
0











r

R
r

j
r .    (4.26) 

(Note that this potential distribution corresponds to the dipole moment p = -E0R
3/2. It is easy to check 

that if the empty sphere was cut in a dielectric, the potential distribution outside the cavity would be 
similar,  with p = -E0R

3(r – 1)/(r + 2). In the limit r  , these two results coincide, despite the rather 
different type of the problem: in the dielectric case, there is no current at all.) 

 

 

 

 

 

 

 

 

 

 

 

 

 Now, as the second step in the conductivity hierarchy, we may find the electrostatic potential 
distribution (r,) in the insulator, in this particular case inside the cavity (r  R). It should also satisfy 
the Laplace equation with the boundary conditions at r = R, “dictated” by distribution (26): 

        


 cos
2

3
),( 0 R

j
R  .     (4.27) 

We could again solve this problem by the formal variable separation (keeping in the general solution 
(2.172) only the term proportional to bl, that does not diverge at r  0), but if we notice that boundary 
condition (27) depends on just one Cartesian coordinate, z = Rcos, the solution may be just guessed: 

                 Rrr
j

z
j

r  at ,cos
2

3

2

3
),( 00 


 .   (4.28) 

It evidently satisfies the Laplace equation and the boundary condition (27), and corresponds to a 
constant vertical electric field equal to 3j0/2 - see Fig. 6b. 

 The conductivity hierarchy says that static electrical fields and charges outside conductors (e.g., 
electric wires) do not affect currents flowing in the wires, and it is physically clear why. For example, if 

0j

R



z

0

Fig. 4.7. Spherical cavity in a uniform conductor: (a) the problem’s geometry, and (b) the equipotential  
surfaces, as given by Eq. (26) and (28). 

(a)        (b) 





Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 4           Page 11 of 14 

a charge in vacuum is slowly moved close to a wire, it (in accordance with the linear superposition 
principle) will only induce an additional surface charge (see Chapter 2) that screens the external 
charge’s field, without participating in (or disturbing) the current flow inside the conductor. 

 Besides the conceptual discussion, the two examples given above may be considered as a 
demonstration of the application of the first two methods described in Chapter 2 (the orthogonal 
coordinates (Fig. 5) and variable separation (Fig. 6)) to dc current distribution problems. Continuing this 
review of the methods we know, let us discuss the analog of the method of charge images. Let us 
consider the spherically-symmetric potential distribution of the electrostatic potential, similar to that 
given by Eq. (1.35): 

      
r

c
 .      (4.29) 

As we know from Chapter 1, this is a particular solution of the 3D Laplace equation at all points but r = 
0, and hence is a legitimate solution in a current-carrying conductor as well. In vacuum, this distribution 
would correspond to a point charge q = 40c; but what about the conductor? Calculating the 
corresponding electric field and current density, 

        ,,
33

rEjrE
r

c

r

c        (4.30) 

we see that the total current flowing from the point in the origin through a sphere of an arbitrary radius r 
does not depend on the radius: 

    .44 2 cjrAjI         (4.31) 

Plugging the resulting c into Eq. (29), we get 

          
r

I




4
 .      (4.32) 

 Hence the Coulomb-type distribution of the electric potential in a conductor is possible (at least 
at some distance from the singular point r = 0), and describes dc current I flowing out of a small-size 
electrode - or into such a point, if coefficient c is negative. Such current injection may be readily 
implemented experimentally; think for example about an insulated wire with a small bare end, inserted  
into a poorly conducting soil – an important method in geophysical research.10  

 Now let the injection point r’ be close to a plane interface between the conductor and an 
insulator  (Fig. 8). In this case, besides the Laplace equation, we should satisfy the boundary condition, 

       0




n

Ej nn

 .     (4.33) 

 It is clear that this can be done by replacing the insulator for a conductor with an additional 
current injection point, at the mirror image point r”. Note, however, that in contrast to the charge 
images, the sign of the imaginary current has to be similar, not opposite, to the initial one, so that the 
total electrostatic potential inside the conducting semi-space is 

10 Such situations are even more natural in 2D situations, for example, think about a wire soldered, in a small spot, 
to a thin metallic foil. (Note that here the current density distribution law is different, j   1/r  rather than 1/r2.) 
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 .    (4.34) 

(Note that the image current’s sign would be opposite if we discussed an interface between a conductor 
with a moderate conductivity and a perfect conductor (“electrode”) whose potential should be virtually 
constant.) 

 

  

 

 

 

 

 

 

 This result may be readily used, for example, to calculate the current density at the conductor’s 
surface, as a function of distance  from point 0 (the surface point closest to the current injection) – see 
Fig. 8. At the surface, Eq. (34) yields 

          
  2/122

1

2 d

I





 ,     (4.35) 

so that the current density is independent of : 

         
  2/3222 d

I
Ej













  .    (4.36) 

 Deviations from Eqs. (35) and (36), which are valid for a uniform medium, may be used to find 
and characterize conductance inhomogeneities, say, those due to mineral deposits in the Earth crust.11 

 

4.4. Dissipation power 

Let me conclude this brief chapter with an ultra-short discussion of energy dissipation in 
conductors. In contrast to the electrostatics situations in insulators (vacuum or dielectrics), at dc 
conduction the electrostatic energy  U is “dissipated” (i.e. transferred to heat) at a certain rate P  - 
dU/dt, called dissipation power.12 This rate may evaluated by calculating the power of electric field’s 
work on a single moving charge: 

11 In practice, the current injection may be produced, due to electrochemical reactions, by an ore mass itself, so 
that one need only measure (and interpret :-) the resulting potential distribution - the so-called self-potential 
method - see, e.g., Sec. 6.1 in monograph by W. Telford et al., Applied Geophysics,  2nd ed., Cambridge U. Press, 
1990. 
12 Since the electric field and hence the electrostatic energy are time-independent, this means that the energy is 
replenished at the same rate from the current source(s). 

Fig. 4.8. Method of images at dc conduction. 
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vEvF  q1P .     (4.37) 

After the summation over all charges, Eq. (37) gives us the dissipation power. If the charge 
density n is uniform, multiplying by it both parts of this equation, and taking into account that qnv = j, 
for the power dissipated in a unit volume we get the Joule law          
  

          jEvE  nqn
V

N

V 1
1 P

PP
p .    (4.38) 

 In the particular case of the Ohmic conductivity, this expression may be also rewritten in two 
other forms: 




2
2 j

E p .     (4.39) 

At dc conduction, the energy is permanently replenished by a flow of power from the current source(s). 

 With our electrostatics background, it is straightforward (and hence left for reader’s exercise) to 
prove that the dc current distribution in a uniform Ohmic conductor, at a fixed voltage applied at its 
borders, corresponds to the minimum of the total dissipation power 

                rdE
V

32 P .     (4.40) 

  

4.5. Exercise problems 

 4.1. Find the resistance between two large conductors separated 
with a very thin, plane, insulating partition, with a circular hole of 
radius R in it  – see Fig. on the right. 

 Hint: You may like to use the degenerate ellipsoidal coordinates 
that had been used in Sec. 2.4 to find the self-capacitance of a round 
disk in vacuum. 
 
 
 4.2. Calculate the effective (average) conductivity ef of a 
medium with many empty spherical cavities of radius R, carved at 
random points in a uniform Ohmic conductor (see Fig. on the right), in 
the limit of low density  n << R-3 of the spheres. 

 Hint: Try to use the analogy with a dipole media (Sec. 3.2). 

 

4.3. In two separate experiments, a narrow gap, of irregular width, between two close metallic 
electrodes is filled with some material - in the first case, with a uniform linear insulator with an electric 
permittivity , and in the second case, with a uniform conducting material with an Ohmic conductivity 
. Neglecting the fringe effects, calculate the relation between the mutual capacitance C between the 
electrodes (in the first case) and the dc resistance R between them (in the second case). 

R2



R



General  
Joule  

law 

Joule law 
for Ohmic 

conductivity 
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 4.4. Calculate the voltage drop V across a uniform, wide 
resistive slab of thickness t, at distance l from the points of 
injection/ejection of dc current I that is passed across the slab - see 
Fig. on the right. 

 Hint: Try to use the dc current analog of the charge image 
method. 

 

 
 4.5. Find the voltage drop V between two corners of a square 
cut from a uniform, resistive sheet of thickness t, induced by dc 
current I that is passed between its two other corners - see Fig. on the 
right.  

 

  
 4.6. Calculate the distribution of dc current density in a thin, round, uniform resistive disk, if the 
current is inserted into a point at its rim, and picked up at the center.  
 
 4.7.* The simplest model of a vacuum diode consists of two plane, parallel metallic electrodes of 
area A, separated by a gap of thickness d << A1/2: a “cathode” which emits electrons to vacuum, and an 
“anode” which absorbs the electrons arriving at its surface. Calculate the dc I-V curve of the diode, i.e. 
the stationary relation between current I flowing between the electrodes and voltage V applied between 
them, using the following simplifying assumptions: 

 (i) due to the effect of the negative space charge of the emitted electrons, current I is much 
smaller than the emission ability of the cathode,  
 (ii) the initial velocity of the emitted electrons is negligible, and 
 (iii) the direct Coulomb interaction of electrons (besides the space charge effect) is negligible. 
 
 4.8.*  Calculate the space-charge-limited current in a system with the same geometry, and using 
the same assumptions as in the  previous problem, besides assuming now that the emitted charge carriers 
move not ballistically, but in accordance with the Ohm law, with the conductivity given by Eq. (4.13):  
= q2n, with constant mobility . 

 Hint: In order to get a realistic result, assume that the medium in which the carriers move13 has a 
certain dielectric constant r. 
 
 4.9. Prove that the distribution of dc currents in a uniform Ohmic conductor, at fixed voltage 
applied at its boundaries, corresponds to the minimum of the total power dissipation (“Joule heat”). 
 

13 As was mentioned in Sec. 4.2 of the lecture notes, the assumption of constant (charge-density-independent) 
mobility is most suitable for semiconductors. 
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Chapter 5. Magnetism 

Despite the fact that we are now starting to discuss a completely new type of electromagnetic 
interactions, its  coverage (for the stationary case) will take just one chapter, because we will be able to 
recycle many ideas and methods of electrostatics, though with a twist or two. 

 

5.1. Magnetic interaction of currents 

 DC currents in conductors usually leave them electroneutral, (r) = 0, with a very good 
precision, because any virtual misbalance of positive and negative charge density results in extremely 
strong Coulomb forces that restore their balance by an additional shift of free carriers.1 This is why let 
us start the discussion of magnetic interactions from the simplest case of two spatially-separated, 
current-carrying, electroneutral conductors (Fig. 1).  

 

 

 

 

 

 

 

 According to the Coulomb law, there should be no force between them. However, several 
experiments carried out in the early 1820s2 proved that such non-Coulomb forces do exist, and are the 
manifestation of another, magnetic interactions between the currents. In the contemporary used in this 
course, their results may be summarized with one formula, in SI units expressed as:3 

         
3

'
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''r'drd

VV rr

rr
rjrjF




 


.    (5.1) 

Here coefficient 0/4 (where 0 is called either the magnetic constant or the free space permeability), 
by definition, equals exactly 10-7 SI units, thus relating the electric current (and hence electric charge) 
definition to that of force – see below. 

 Note that the Coulomb law (1.1), with the account of the linear superposition principle, may be 
presented  in a very similar form: 

1 The most important case when the electroneutrality does not hold is the motion of electrons in vacuum. In this 
case, magnetic forces coexist with (typically, stronger) electrostatic forces – see Eq. (3) below and its discussion. 
In some semiconductor devices, local violations of electroneutrality also play an important role. 
2 Most notably, by H. C. Ørsted, J.-B. Biot and F. Savart, and A.-M. Ampère.  
3 In the Gaussian units, coefficient 0/4 is replaced with 1/c2 (i.e., implicitly with 00) where c is the speed of 
light, in modern metrology considered exactly known – see, e.g., appendix CA: Selected Physical Constants. 

Fig. 5.1. Magnetic interaction of two 
currents. 
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.    (5.2) 

Besides the different coefficient and sign, the “only” difference of Eq. (1) from Eq. (2) is the scalar 
product of current densities, evidently necessary because of the vector character of the current density. 
We will see that this difference will bring certain complications in applying the electrostatics 
approaches, discussed in the previous chapters, to magnetostatics.  

 Before going to their discussion, let us have one more glance at the coefficients in Eqs. (1) and 
(2). To compare them, let us consider two objects with uncompensated charge distributions (r) and 
’(r), each moving parallel to each other as a whole certain velocities v and v’, as measured in an 
inertial “lab” frame. In this case, j(r) = (r)v, j(r)j’(r) = (r)’(r)vv’, and the integrals in Eqs. (1) and 
(2) become functionally similar, and differ only by the factor 
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.    (5.3) 

(This expression hold in any consistent system of units.) We immediately see that magnetism is an 
essentially relativistic phenomenon, very weak in comparison with the electrostatic interaction at the 
human scale velocities, v << c, and may dominate only if the latter interaction vanishes – as it does in 
electroneutral systems.4 

 Also, Eq. (3) points at an interesting paradox. Consider two electron beams moving parallel to 
each other, with the same velocity v with respect to a lab reference frame. Then, according to Eq. (3), 
the net force of their total (electric and magnetic) interaction is proportional to (1 – v2/c2), and tends to 
zero in the limit v  c. However, in the reference frame moving together with electrons, they are not 
moving at all, i.e. v = 0. Hence, from the point of view of such a moving observer, the electron beams 
should interact only electrostatically, with a repulsive force independent of velocity v. Historically, this 
had been one of several paradoxes that led to the development of the special relativity; its resolution will 
be discussed in Chapter 9, devoted to this theory. 

 Returning to Eq. (1), in some simple cases, the double integration in it may be carried out 
analytically. First of all, let us simplify this expression for the case of two thin, long conductors (wires) 
separated by a distance much larger than their thickness. In this case we may integrate the products jd3r 
and j’d3r’ over wires’ cross-sections first, neglecting the corresponding change of (r – r’). Since the 
integrals of the current density over the cross-sections of the wire are just the currents I and I’ in the 
wires, and cannot change along their lengths (correspondingly, l and l’), they may be taken out of the 
remaining integrals, reducing Eq. (1) to 
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.    (5.4) 

4 The discovery and initial studies of such a subtle, relativistic phenomenon as magnetism in the early 19th 
century was much facilitated by the relative abundance of natural ferromagnets, materials with spontaneous 
magnetic polarization, whose strong magnetic field may be traced back to relativistic effects (such as spin) in 
atoms. (The electrostatic analogs of such materials, electrets, are much more rare.) I will briefly  discuss the 
ferromagnetism in Sec. 5 below. 
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As the simplest example, consider two straight, parallel wires (Fig. 2), separated by distance d, 
with length l  >> . In this case, due to symmetry, the vector of magnetic interaction force has to: 

(i) lay in the same plane as the currents, and  
(ii) be perpendicular to the wires – see Fig. 2. 

 Hence we can limit our calculations to just one component of the force. Using the fact that with the 
coordinate choice shown in Fig. 2, drdr’ = dxdx’, we get 
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.  (5.5) 

Introducing, instead of x’, a new, dimensionless variable   (x – x’)/, we may reduce the internal 
integral to a table integral which we have already met in this course: 
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The integral over x is formally diverging, but this means merely that the interaction force per unit length 
of the wires is constant: 
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0  .     (5.7) 

Note that the force drops rather slowly (only as 1/d) as the distance d  between the wires is increased, 
and is attractive (rather than repulsive as in the Coulomb law) if the currents are of the same sign. 

 

 

 

 

 

 

  

 

 This is an important result,5 but again, the problems solvable so simply are few and far between, 
and it is intuitively clear that we would strongly benefit from the same approach as in electrostatics, i.e., 
from breaking Eq. (1) into a product of two factors via the introduction of a suitable field. Such 
decomposition may done as follows: 

        
V

rd 3)()( rBrjF ,     (5.8) 

5 In particular, Eq. (7) is used for the legal definition of the SI unit of current, one ampere (A), via the SI unit of 
force (the newton, N), with coefficient 0 fixed as listed above. 
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Fig. 5.2. Magnetic force between two 
straight parallel currents. 
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where vector B is called the magnetic field (in our particular case, induced by current j’):6  
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.    (5.9) 

The last equation is called the Biot-Savart law, while F expressed by Eq. (8) is sometimes called the 
Lorentz  force.7 However, more frequently the later term is reserved for the full force,  

       BvEF  q ,     (5.10) 

exerted by electric and magnetic fields field on a point charge q, moving with velocity v. (The 
equivalence of Eq. (8) and the magnetic part of Eq. (10) follows from the summation of all forces acting 
on n particles in a unit volume, moving with the same velocity v, so that j = qnv.) 

Now we have to prove that the new formulation (8)-(9) is equivalent to Eq. (1). At the first 
glance, this seems unlikely. Indeed, first of all, Eqs. (8) and (9) involve vector products, while Eq. (1) is 
based on a scalar product. More profoundly, in contrast to Eq. (1), Eqs. (8) and (9) do not satisfy the 3rd 
Newton’s law, applied to elementary current components jd3r and j’d3r’, if these vectors are not parallel 
to each other. Indeed, consider the situation shown in Fig. 3. Here vector j’ is perpendicular to vector (r 

– r’), and hence, according to Eq. (9), produces a nonvanishing contribution dB’ to the magnetic field, 
directed (in Fig. 3) perpendicular to the plane of drawing, i.e. is perpendicular to vector j. Hence, 
according to Eq. (8), this field provides a nonvanishing contribution to F. On the other hand, if we 
calculate the reciprocal force F’ by swapping indices in Eqs. (8) and (9), the latter equation immediately 
shows that dB(r’)  j(r – r’) = 0, because the two operand vectors are parallel (Fig. 3). Hence, the 
current component  j’d3r’ does exert a force on its counterpart, while jd3r does not. 

 

 

 

 

 

Despite this apparent problem, let us still go ahead and plug Eq. (9) into Eq. (8): 
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.    (5.11) 

6 The SI unit of the magnetic field is called tesla, T - after N. Tesla, an electrical engineering pioneer. In the 
Gaussian units, the already discussed constant 1/c2 in Eq. (1) is equally divided between Eqs. (8) and (9), so that 
in them both, the constant before the integral is 1/c. The resulting Gaussian unit of field B is called gauss (G); 
taking into account the difference of units of electric charge and length, and hence current density, 1 G equals 
exactly 10-4 T. Note also that in some textbooks, especially old ones, B is called either the magnetic induction, or 
the magnetic flux density, while the term “magnetic field” is reserved for vector H that will be introduced Sec. 5 
below.  

Named after H. Lorentz, who received a Nobel prize for his explanation of the Zeeman effect, but is 
more famous for his numerous contributions to the development of special relativity – see Chapter 9. To 
be fair, the magnetic part of the Lorentz force was correctly calculated first by O. Heaviside. 


Fig. 5.3. Apparent violation of the 3rd 
Newton law in magnetism. 
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This double vector product may transformed into two scalar products, using the vector algebraic identity 
called the bac minus cab rule, a(bc) = b(ac) – c(ab).8 Applying this relation, with a = j, b = j’, and c 
= R  r – r’, to Eq. (11), we get 
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.  (5.12) 

The second term in the right-hand part of this equation coincides with the right-hand part of Eq. (1), 
while the first term equals zero, because its the internal integral vanishes. Indeed, we may break 
volumes V and V’ into narrow current tubes, the stretched sub-volumes whose walls are not crossed by 
current lines (jn = 0). As a result, the (infinitesimal) current in each tube, dI = jdA = jd2r, is the same 
along its length, and, just as in a thin wire, jd2r may be replaced with dIdr. Because of this, each tube’s 
contribution to the internal integral in the first term of Eq. (12) may be presented as 
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drdI
R

ddI
R

ddI
lll

11
3 


  r

R
r ,    (5.13) 

where operator  acts in the r space, and the integral is taken along tube’s length l. Due to the current 
continuity, each loop should follow a closed contour, and an integral of a full differential of some scalar 
function (in our case, 1/r12) along it equals zero.  

 So we have recovered Eq. (1). Returning for a minute to the paradox illustrated with Fig. 3, we 
may conclude that the apparent violation of the 3rd Newton law was the artifact of our interpretation of 
Eqs. (8) and (9) as sums of independent elementary components. In reality, due to the dc current 
continuity expressed by Eq. (4.6), these components are not independent. For the whole currents, Eqs. 
(8)-(9) do obey the 3rd law – as follows from their already proved equivalence to Eq. (1).  

 Thus we have been able to break the magnetic interaction into the two effects: the creation of the 
magnetic field B by one current (in our notation, j’), and the effect of this field on the other current (j).  
Now comes an additional experimental fact: other elementary components jd3r’ of current j also 
contribute to the magnetic field (9) acting on component jd3r.9 This fact allows us to drop prime after j 
in Eq. (9), and rewrite Eqs. (8) and (9) as 
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,    (5.14) 

             
V

rd 3)()( rBrjF ,     (5.15) 

Again,  the field observation point r and the field source point r’ have to be clearly distinguished. We 
immediately see that these expressions are similar to, but still different from the corresponding relations 
of the electrostatics, namely Eq. (1.8), 

8 See, e.g., MA Eq. (7.5). 
9 Just in electrostatics, one needs to exercise due caution at transfer from these expressions to the limit of discrete 
classical particles, and extended wavefunctions in quantum mechanics, in order to avoid the (non-existing) 
magnetic interaction of a charged particle upon itself.  
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and the distributed version of Eq. (1.6):  

             rd
V

3)()( rErF    .      (5.17) 

(Note that the sign difference has disappeared, at the cost of the replacement of scalar-by-vector 
multiplications in electrostatics with cross-products of vectors in magnetostatics.) 

 For the frequent case of a field of a thin wire of length l’, Eq. (14) may be re-written as  
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Let us see how does the last formula work for the simplest case of a straight wire (Fig. 4a). The 
magnetic field contribution dB due to any small fragment dr’ of the wire’s length is directed along the 
same line (perpendicular to both the wire and the perpendicular d  dropped from the observation point to 
the wire line), and its magnitude is 
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Summing up all such contributions, we get 

            
d

I

dx

dxI
B







2)(4
0

2/322
0 


 





.    (5.20) 

   

 

 

 

 

 

 

 

  

 This is a simple but very important result. (Note that it is only valid for very long (l >> d), 
straight wires.) It is especially crucial to note the “vortex” character of the field: its lines go around the 
wire, forming round rings with the centers on the current line. This is in the sharp contrast to the 
electrostatic field lines that can only begin and end on electric charges and never form closed loops 
(otherwise the Coulomb force qE would not be conservative). In the magnetic case, the vortex field may 
be reconciled with the potential character of magnetic forces, which is evident from Eq. (1), due to the 
vector products in Eqs. (14)-(15). 

Fig. 5.4. Magnetic fields of: (a) a straight current, and (b) a current loop. 
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 Now we may use Eq. (15), or rather its thin-wire version 

      )(rBrF  
l

dI ,     (5.21) 

to apply Eq. (20) to the two-wire problem (Fig. 2). Since for the second wire vectors dr and B are 
perpendicular to each other, we immediately arrive at our previous result (7). 

 The next important application of the Biot-Savart law (14) is the magnetic field at the axis of a 
circular current loop (Fig. 4b). Due to the problem symmetry, the net field B has to be directed along the 
axis, but each of its components dB is tilted by angle   = tan-1(z/R)  to this axis, so that its axial 
component  
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Since the denominator of this expression remains the same for all wire components dr’, in this case the 
integration is trivial (dr’ = 2R), giving finally 
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.     (5.23) 

 Note that the magnetic field in the loop’s center (i.e., for z = 0), 
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2
0 ,      (5.24) 

is   times higher than that due to a similar current in a straight wire, at distance d  = R from it. This 
increase it readily understandable, since all elementary components of the loop are at the same distance 
R from the observation point, while in the case of a straight wire, all its point but one are separated from 
the observation point by a distance larger than d. 

 Another notable fact is that at large distances (z2 >> R2), field (23) is proportional to z-3:  
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 ,     (5.25) 

just like the electric field of a dipole (along its direction), with the replacement of the electric dipole 
moment magnitude p with m = IA, where A = R2 is the loop area. This is the best example of a 
magnetic dipole, with dipole moment m - the notions to be discussed in more detail in Sec. 5 below.  

 

5.2. Vector-potential and the Ampère law 

 The reader can see that the calculations of the magnetic field using Eq. (14) or (18)  are still 
cumbersome even for the very simple systems we have examined. As we saw in Chapter 1, similar 
calculations in electrostatics, at least for several important systems of high symmetry, could be 
substantially simplified using the Gauss law (1.16). A similar relation exists in magnetostatics as well, 
but has a different form, due to the vortex character of the magnetic field. To derive it, let us notice that 
in an analogy with the scalar case, the vector product under integral (14) may be transformed as 
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where operator  acts in the r space. (This equality may be really verified by its Cartesian components, 
noticing that the current density is a function of r’ and hence its components are independent of r.) 
Plugging Eq. (26) into Eq. (14), and moving operator  out of the integral over r’, we see that the 
magnetic field may be presented as the curl of another vector field:10 

                )()( rArB   ,     (5.27) 

namely the so-called vector-potential: 
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Please note a wonderful analogy between Eqs. (27)-(28) and, respectively, Eqs. (1.33) and (1.38). This 
analogy implies that vector-potential A plays,  for the magnetic field, essentially the same role as the 
scalar potential   plays for the electric field (hence the name “potential”), with due respect to the vortex 
character of A. I will discuss this notion in detail below. 
 Now let us see what equations we may get for the spatial derivatives of the magnetic field. First, 
vector algebra says that the divergence of any curl is zero.11 In application to Eq. (27), this means that 

          0B .      (5.29) 

Comparing this equation with Eq. (1.27), we see that Eq. (29) may be interpreted as the absence of a 
magnetic analog of an electric charge on which magnetic field lines could originate or end. Numerous 
searches for such hypothetical magnetic charges, called magnetic monopoles, using very sensitive and 
sophisticated experimental setups, have never given a convincing evidence of their existence in Nature. 

 Proceeding to the alternative, vector derivative of the magnetic field (i.e., its curl), and using Eq. 
(28), we get 
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This expression may be simplified by using the following general vector identity:12 

                     ccc 2  ,     (5.31) 

applied to vector c(r) = j(r’)/r – r’: 
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As was already discussed during our study of electrostatics,  

10 In the Gaussian units, Eq. (27) remains the same, and hence in Eq. (28), coefficient 0/4 is replaced with 1/c. 
11 See, e.g., MA Eq. (11.2). 
12 See, e.g., MA Eq. (11.3). 
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so that the last term of Eq. (32) is just 0j(r). On the other hand, inside the first integral we can replace 
 with (-’), where prime means differentiation in the space of radius-vector r’. Integrating that term by 
parts, we get 
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Applying this equation to the volume V’ limited by a surface S’ sufficiently distant from the field 
concentration (or with no current crossing it), we may neglect the first term in the right-hand part of Eq. 
(34), while the second term always equals zero in statics, due to the dc charge continuity – see Eq. (4.6). 
As a result, we arrive at a very simple differential equation13 

        jB 0 .      (5.35) 

 This is (the dc form of) the inhomogeneous Maxwell equation, which in magnetostatics plays the 
role similar to the Poisson equation (1.27) in electrostatics. Let me display, for the first time in this 
course, this fundamental system of equations (at this stage, for statics only), and give the reader a minute 
to stare at their beautiful symmetry - that has inspired so much of the 20th century physics: 
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Their only asymmetry, two zeros in the right hand parts (for the magnetic field’s divergence and electric 
field’s curl), is due to the absence in Nature of, respectively, the magnetic monopoles and their currents. 
I will discuss these equations in more detail in Sec. 6.7, after the equations for field curls have been 
generalized to their full (time-dependent) versions.  

 Returning now to a more mundane but important task of calculating magnetic field induced by 
simple current configurations, we can benefit from an integral form of Eq. (35). For that, let us integrate 
this equation over an arbitrary surface S limited by a closed contour C, applying to it the Stokes 
theorem.14 The resulting expression, 

       Irdjd
C S

n 0
2

0   rB ,     (5.37) 

where I  is the net electric current crossing surface S, is called the Ampère law. 

 As the first example of its application, let us return to a current in a straight wire (Fig. 4a). With 
the Ampère law in our arsenal, we can readily pursue an even more ambitious goal – calculate the 
magnetic field both outside and inside of a wire of arbitrary radius R, with an arbitrary (albeit axially-
symmetric) current distribution j() – see Fig. 5. Selecting two contours C in the form of rings of some 

13 As in all earlier formulas for the magnetic field, in the Gaussian units the coefficient 0 in this relation has to be 
replaced with 4/c. 
14 See, e.g., MA Eq. (12.1) with f = B. 
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radius in the plane perpendicular to the wire axis z, we have Bdr = B(d), these  is the azimuthal 
angle, so that the Ampère law (37) yields: 
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Thus we have not only recovered our previous result (20), with the notation replacement d  , in a 
much simpler way, but could also find the magnetic field distribution inside the wire. (In the most 
common case when the wire conductivity  is constant, and hence the current is uniformly distributed 
along its cross-section,  j() = const, the first of Eqs. (38) immediately yields B    for   R). 

 

 

 

 

 

 

 

 

 Another important example is a straight, long solenoid (Fig. 6a), with dense winding: n2A >> 1, 
where n is the number of wire turns per unit length and A is the area of solenoid’s cross-section - not 
necessarily circular.  

 

 

 

 

 

 

 

 

 

From the symmetry of this problem, the longitudinal (in Fig. 6a, vertical) component Bz of the 
magnetic field may only depend on the horizontal position  of the observation point. First taking a 
plane Ampère contour C1, with both long sides outside the solenoid, we get Bz(2) – Bz(1) = 0, because 
the total current piercing the contour  equals zero. This is only possible if Bz = 0 at any  outside of the 

Fig. 5.5. The simplest application of the Ampère 
law: dc current in a straight wire. 
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Fig. 5.6. Magnetic field of (a) straight and (b) toroidal solenoids. 
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(infinitely long!) solenoid.15 With this result on hand, from contour C2 we get the following relation for 
the only (z-) component of the internal field: 

      NIBl 0 ,      (5.39) 

where N is the number of wire turns passing through the contour of length l. This means that regardless 
of the exact position internal side of the contour, the result is the same: 

              nII
l

N
B 00   .     (5.40) 

Thus, the field inside an infinitely long solenoid is uniform; in this sense, a long solenoid is a magnetic 
analog of a wide plane capacitor.  

 As should be clear from its derivation, the obtained result, especially that the field outside of the 
solenoid equals zero, is conditional on the solenoid length being very large in comparison with its lateral 
size. (From Eq. (25), we may predict that for a solenoid of a finite length l, the external field is only a 
factor of ~A/l2 lower than the internal one.) Much better suppression of this external (“fringe”) field may 
be obtained using the toroidal solenoid (Fig. 6b). The application of Ampère law to this geometry shows 
that, in the limit of dense winding (N >> 1), there is no fringe field at all – for any relation between two 
radii of the thorus, while inside the solenoid, and distance  from the center, 

         



2

0 NI
B  .      (5.41) 

We see that a possible drawback of this system for practical applications is that internal field depends on 
, i.e. is not quite uniform; however, if the thorus is thin, this problem is minor. 

 How should we solve the problems of magnetostatics for systems whose low symmetry does not 
allow getting easy results from the Ampère law? (The examples are of course too numerous to list; for 
example, we cannot use this approach even to reproduce Eq. (23) for a round current loop.) From the 
deep analogy with electrostatics, we may expect that in this case we could recover the field from the 
solution of a  certain partial boundary problem for the field’s potential, in this case the vector-potential 
A defined by Eq. (28). However, despite the similarity of this formula and Eq. (1.38) for , that was 
emphasized above, there are two additional issues we should tackle in the magnetic case.   

First, finding vector-potential distribution means determining three scalar functions (say, Ax, Ay, 
and Az), rather than one (). Second, generally the differential equation satisfied by A is more complex 
than the Poisson equation for . Indeed, plugging Eq. (27) into Eq. (35), we get 

                jA 0  .     (5.42) 

If we wrote the left-hand part of this equation in (say, Cartesian) components, we would see that they 
are much more interwoven than in the Laplace operator, and hence much less convenient for using the 
orthogonal coordinate approach or the variable separation method. In order to remedy the situation, let 
us apply to Eq. (42) the now-familiar identity (31). The result is 

15 Applying the Ampère law to a circular contour of radius , coaxial with the solenoid, we see that the field 
outside (but not inside!) it has an azimuthal component B, similar to that of the straight wire (see Eq. (38) above) 
and hence (at N >> 1) much weaker than the longitudinal field inside the solenoid – see Eq. (40). 
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          jAA 0
2)(  .     (5.43) 

We see that if we could kill the first term in the left-hand part, for example if A = 0, the second term 
would give us a set of independent Poisson equations for each Cartesian component of vector A. 

 In this context, let us discuss what discretion do we have in the potentials’ choice. In 
electrostatics, we might add to any function ’, that satisfies Eq. (1.33), not only an arbitrary constant, 
but also an arbitrary function of time, without affecting the electric field: 

          E 'tf'   )( .     (5.44) 

Similarly, using the fact that curl of the gradient of any scalar function equals zero,16 we may add to any 
function A’, that satisfies Eq. (27) for a given field B, not only a constant, but even a gradient of an 
arbitrary function (r, t), because 

            BAAA  '''  )()(  .   (5.45) 

Such additions, keeping the actual (observable) fields intact, are called gauge transformations.17 Let us 
see what such a transformation does to A’: 

      2)(  '' AA  .    (5.46) 

Hence we can always choose a function  in such a way that the right-hand part of this relation, and 
hence the divergence of the transformed vector-potential, A  A’ + , would vanish at all points. In 
this case, Eq. (43) is reduced to the vector Poisson equation  

       jA 0
2  ,      (5.47) 

As we know from the electrostatics (please compare Eqs. (1.38) and (1.41)), the vector-potential defined 
by Eq. (28) does satisfy this equation. So, the so-called Coulomb gauge condition, 

          0A ,      (5.48) 

reduces the set of the functions A(r) that satisfy  Eq. (27) to the actual vector-potential (28). However, 
this condition still leaves some liberty in the vector-potential selection. In order to demonstrate that, and 
also to get a better feeling of vector-potential’s distribution in space, let us calculate it for two important 
particular cases. 

 First, let us revisit the straight wire problem (Fig. 5). As Eq. (28) shows, in this case vector A has 
just one component (along the axis z). Moreover, due to the problem’s axial symmetry, its magnitude 
may only depend on the distance from the axis: A = nzA(). Hence, the gradient of A is directed across 
axis z, so that Eq. (48) is satisfied even for this vector, i.e. the Poisson equation (47) is satisfied even for 
the original vector A. For our symmetry (/ = /z = 0), the Laplace operator, written in cylindrical 
coordinates, has just one term,18 reducing Eq. (47) to 
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16 See, e.g., MA Eq. (11.1). 
17 The use of term “gauge” (originally meaning “a measure” or “a scale”) in this context is purely historic, so the 
reader should not try to find too much hidden sense in it. 
18 See, e.g., MA Eq. (10.3). 
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Multiplying both parts of this equation by  and integrating them over the coordinate once, we get 
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Since in the cylindrical coordinates, for our symmetry,19 B = - dA/d, Eq. (50) is nothing else than our 
old result (38) for the magnetic field.20 However, let us continue the integration, at least for the region 
outside the wire, where the function A() depends only on the full current I rather than on the current   
distribution inside the wire. Dividing both parts of Eq. (50) by , and integrating them over that 
coordinate again, we get 
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As a reminder, we had the similar logarithmic behavior for the electrostatic potential outside a  
uniformly charged straight line. This is natural, because the Poisson equations for both cases are similar. 

 Now let us find the vector-potential for the long solenoid (Fig. 6a), with its uniform magnetic 
field. Since Eq. (28) prescribes vector A to follow the direction of the current, we can start with looking 
for it in the form A = n A(). (This is especially natural if the solenoid’s cross-section is circular.) With 
this orientation of A, the same general expression for the curl operator in cylindrical coordinates yields  
A = nz(1/)d(A)/d. According to the definition (27) of A, this expression should be equal to B, in 
our case equal to nzB, with constant B – see Eq. (40). Integrating this equality, and selecting such  
integration constant so that A(0) is finite, we get  

          
2

 B
A  .      (5.52) 

 Plugging this result into the general expression for the Laplace operator in the cylindrical 
coordinates,21 we see that the Poisson equation (47) with j = 0 (i.e. the Laplace equation), is satisfied 
again – which is natural since for this distribution, A = 0. However, Eq. (52) is not the unique (or 
even the simplest) solution of the problem. Indeed, using the well-known expression for the curl 
operator in Cartesian coordinates,22 it is straightforward to check that either function A’ = nyBx, or 
function A”= -nxBy, or any of their weighed sums, for example A’’’ = (A’ + A’’)/2 = B(-nxy + nyx)/2, 
also give the same magnetic field, and also evidently satisfy the Laplace equation. If such solutions do 
not look very natural due to their anisotropy in the [x, y] plane, please consider the fact that they 
represent the uniform magnetic field regardless of its source (e.g., of the shape of long solenoid’s cross-
section). Such choices of vector-potential may be very convenient for some problems, for example for 
the analysis of the 2D motion of a charged quantum particle in the perpendicular magnetic field, giving 
the famous Landau energy levels.23 

 

19 See, e.g., MA Eq. (10.5) with / = /z = 0. 
20 Since the magnetic field at the wire axis has to be zero (otherwise, being perpendicular to the axis, where would 
it be directed?), the integration constant in Eq. (50) should be zero. 
21 See, e.g., MA Eq. (10.6). 
22 See, e.g., MA Eq. (8.5). 
23 See, e.g., QM Sec. 3.2. 
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5.3. Magnetic energy, flux, and inductance 

 Considering currents flowing in a system as generalized coordinates, magnetic forces (1) 
between them are their unique functions, and in this sense the magnetic interaction energy U may be 
considered a potential energy of the system. The apparent (but deceptive) way to guess the energy is to 
use the analogy between Eq. (1) and its electrostatic analog, Eq. (2). As we know from Chapter 1, if 
these densities describe the distribution of the same charge, i.e. if ’(r) = (r), then the self-interaction 
of its elementary components correspond to the potential energy expressed by Eq. (1.61): 
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Using the analogy, for the magnetic interaction between elementary components of the same current, 
with density j(r) = j’(r), we could guess that 
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while for independent currents the coefficient ½ should be removed. Now let me confess that this is a 
wrong way to get this correct result. Indeed, the sign in Eq. (1) is opposite to that in Eq. (2), so that 
following this argumentation we would get Eq. (53) with the minus sign. The reason of this paradox is 
fundamental: fixing electric charges does not require external interference (work), while the 
maintenance of currents generally does. Strictly speaking, a derivation of Eq. (53) required additional 
experimental fact, the Faraday induction law. However, I would like to defer its discussion until the 
beginning of the next chapter, and for now ask the reader to believe me that the sign in Eq. (53) is 
correct.  

Due to the importance of this relation, let us rewrite it in several other forms, beneficial for 
different applications. First of all, just as in electrostatics, Eq. (54) may be recast into a potential-based 
form. Indeed, using definition (28) of the vector-potential A(r), Eq. (54) becomes24 
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rArj .      (5.55) 

This formula, that is a clear magnetic analog of Eq. (1.62) of electrostatics, is very popular among 
theoretical physicists, because it is very handy for the field theory manipulations. However, for many 
calculations it is more convenient to have a direct expression of energy via the magnetic field. Again, 
this may be done very similarly to what we have done in Sec. 1.3 for electrostatics, i.e. plugging into Eq. 
(55) the current density expressed from Eq. (35) to transform it as25 
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Now using the divergence theorem, the second integral may be transformed into a surface integral of 
product (AB)n. Equations (27)-(28) show that if the current distribution j(r) is localized, this product 
drops with distance r faster than 1/r2, so that if the integration volume is large enough, the surface 

24 This relation remains the same in the Gaussian units, because in those units both Eq. (28) and Eq. (54) should 
be stripped of their 0/4 coefficients. 
25 For that, we may use MA Eq. (11.7) with f = A and g = B, giving A(B) = B(A) - (AB). 
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integral is negligible. In the remaining first integral, we may use Eq. (27) to recast A into the 
magnetic field. As a result, we get a very simple and fundamental formula. 

                rdBU 32

02

1


.     (5.57a) 

Just as with the electric field, this expression may be interpreted as a volume integral of the magnetic 
energy density u: 
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  urduU ,    (5.57b) 

clearly similar to Eq. (1.67).26 Again, the conceptual choice between the spatial localization of magnetic 
energy – either at the location of electric currents only, as implied by Eqs. (54) and (55), or in all regions 
where the magnetic field exists, as apparent from Eq. (57b), cannot be done within the framework of 
magnetostatics, and only electrodynamics gives the decisive preference for the latter choice. 

 For the practically important case of currents flowing in several thin wires, Eq. (54) may be first 
integrated over the cross-section of each wire, just as was done at the derivation of Eq. (4).  Again, since 
the integral of the current density over kth  wire's cross-section is just the current Ik in the wire, and 
cannot change along its length, it may be taken from the remaining integrals, giving 
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where l is the full length of the wire loop. Note that Eq. (58) is valid if currents Ik are independent of 
each other, because the double sum counts each current pair twice, compensating coefficient ½ in front 
of the sum. It is useful to decompose this relation as 
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,     (5.60) 

 Coefficient Lkk’ in the quadratic form (59), with k  k’, is called the mutual inductance between 
current loops k and k’, while the diagonal coefficient Lk  Lkk is called the self-inductance (or just 
inductance) of kth loop. 27 From the symmetry of Eq. (60) with respect to the index swap, k  k’, it 
evident that the matrix of coefficients Lkk’ is symmetric:28 

26 The transfer to the Gaussian units in Eqs. (77)-(78) may be accomplished by the usual replacement 0  4, 
thus giving, in particular, u = B2/8. 
27 As evident from Eq. (60), these coefficients depend only on the geometry of the system. Moreover, in the 
Gaussian units, in which Eq. (60) is valid without the factor 0/4, the inductance coefficients have the dimension 
of length (centimeters). The SI unit of inductance is called the henry, abbreviated H - after J. Henry, 1797-1878, 
who in particular discovered the effect of electromagnetic induction (see Sec. 6.1) independently of M. Faraday. 
28 Note that the matrix of the mutual inductances Ljj’ is very much similar to the matrix of reciprocal capacitance 
coefficients pkk’ – for example, compare Eq. (62) with Eq. (2.21). 
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           k'kkk' LL  ,      (5.61) 

so that for the practically important case of two interacting currents I1 and I2, Eq. (59) reads 
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2
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ILIMIILU  ,    (5.62) 

where M  L12 = L21 is the mutual inductance coefficient. 

 These formulas clearly show the importance of self- and mutual inductances, so I will 
demonstrate their calculation for at least a few basic geometries. Before doing that, however, let me 
recast Eq. (58) into one more form that may facilitate such calculations. Namely, let us notice that for 
the magnetic field induced by current Ik in a thin wire, Eq. (28) is reduced to 
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so that Eq. (58) may be rewritten as 
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But according to the same Stokes theorem that was used earlier in this chapter to derive the Ampère law, 
and Eq. (27), such integral is nothing more than the magnetic field flux (more frequently called just the 
magnetic flux) through a surface S limited by the contour l :29 
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rrA .    (5.65) 

As a result, Eq. (64) may be rewritten as 
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kIU  ,     (5.66) 

where kk’ is the flux of the field induced by k’-th current  through the loop of the k-th current. 
Comparing this expression with Eq. (59), we see that 
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kS
nk'kk ILrd   B ,     (5.67) 

 This expression not only gives us one more means for calculating coefficients Lkk’, but also 
shows their physical sense: the mutual inductance characterizes how much field (colloquially, “how 
many field lines”) induced by current Ik' penetrate the loop of current Ik, and vice versa. Since due to the 
linear superposition principle, the total flux piercing k-th loop may be presented as 

         
k'

kkk
k'

kkk IL '''ΦΦ .     (5.68) 

29 The SI unit of magnetic flux is called weber, abbreviated Wb - after W. Weber, who in particular co-invented 
(with C. Gauss) the electromagnetic telegraph, and in 1856 was first, together with R. Kohlrausch, to notice that 
the value of (in modern terms) 1/(00)

1/2, derived from electrostatic and magnetostatic measurements, coincides 
with the independently measured speed of light c, giving  an important motivation for Maxwell’s theory. 
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For example, for the system of two currents this expression is reduced to a clear analog of Eqs. (2.19): 
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     (5.69) 

For the even simpler case of a single current, 

           LI ,      (5.70) 

so that the magnetic energy of the current may be presented in several equivalent forms: 
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These relations, similar to Eqs. (2.14)-(2.15) of electrostatics, show that the self-inductance L of a 
current loop may be considered as a measure of system’s magnetic energy at fixed current.   

 Now we are well equipped for the calculation of inductances, having three options. The first one 
is to  use Eq. (60) directly.30 The second one is to calculate the magnetic field energy from Eq. (57) as 
the function of currents Ik in the system, and then use Eq. (59) to find all coefficients Lkk’. For example, 
for a system with just one current, Eq. (71) yields 

             
2/2I

U
L  .      (5.72) 

Finally, if the system consists of thin wires, so that the loop areas Sk and hence fluxes kk’ are well 
defined, we may calculate them from Eq. (65), and then use Eq. (67) to find the inductances.   

 Actually, the first two options may have advantages over the third one even for such system of 
thin wires for whom the notion of magnetic flux is not quite clear. As an important example, let us find 
inductance of a long solenoid - see Fig. 6a. We have already calculated the magnetic field inside it – see 
Eq. (40) - so that, due to the field uniformity, the magnetic flux piercing each wire turn is just 

              nIABA 01  ,     (5.73) 

where A is the area of solenoid’s cross-section - for example R2 for a round solenoid, though Eq. (40) is 
more general. Comparing Eqs. (73) and (67), one might wrongly conclude that L = 1/I = 0nA 
[WRONG!], i.e. that the solenoid’s inductance is independent on its length. Actually, the magnetic flux 
1 pierces each wire turn, so that the total flux through the whole current loop, consisting of N turns, is  

            lAInN 2
01  ,     (5.74) 

and the correct expression for solenoid’s inductance is  

               lAn
I

L 2
0


 ,     (5.75) 

i.e. the inductance per unit length is constant: L/l = 0n
2A. Since this reasoning may seem a bit flimsy, it 

is prudent to verify it by using Eq. (72) to calculate the full magnetic energy inside the solenoid 
(neglecting minor fringe and external field contributions): 

30 Numerous applications of this Neumann formula to electrical engineering problems may be found, for example, 
in the classical text F. Grover, Inductance Calculations, Dover, 1946. 
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 .   (5.76)  

Plugging this result into Eq. (72) immediately confirms result (75).  

The use of the first two options for inductance calculation becomes inevitable for continuously 
distributed currents. As an example, let us calculate self-inductance L of a long coaxial cable with the 
cross-section shown in the Fig. 7.31  

 

 

 

 

 

Let us assume that the current is uniformly distributed over the cross-sections of both 
conductors. (As we know from the previous chapter, such distribution indeed takes place if both the 
internal and external conductors are made of a uniform resistive material.) First, we should calculate the 
radial distribution of the magnetic field (that of course has only one, azimuthal component, because of 
the axial symmetry of the problem). This distribution may be immediately found from the application of 
the Ampère law to circles of radii  within four different ranges: 
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 Now, an elementary integration yields the magnetic energy per unit length of the cable: 
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 (5.78) 

From here, and Eq. (72), we get the final answer: 
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31 As a reminder, the mutual capacitance C between the conductors of such a system was calculated in Sec. 2.3. 
As will be discussed in Chapter 7 below, the pair of parameters L and C define the propagation of the most 
important, TEM mode of electromagnetic waves along the cable. 
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Fig. 5.7. Cross-section of a coaxial cable. 
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 Note that for the particular case of a thin outer conductor, c - b << b, this expression reduces to 
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,     (5.80) 

where the first term in the parentheses may be traced back to the contribution of the magnetic field 
energy in the free space between the conductors. This distinction is important for some applications, 
because in superconductor cables, as well as resistive-metal cables as high frequencies (to be discussed 
in the next chapter), the field does not penetrate the conductor bulk, so that Eq. (80) is valid without the 
last term, 1/4, in the parentheses, which is due to the magnetic field energy inside the wire. 

As the last example, let us calculate the mutual inductance between a long straight wire and a 
round wire loop adjacent to it (Fig. 8), neglecting the thickness of both wires.  

 

 

 

 

 

 

 

 Here there is no problem with using the last formalism, based on the magnetic flux calculation. 
Indeed, in the Cartesian coordinates shown in Fig. 8, Eq. (20) reads B1 = 0I1/2y, giving the following 
magnetic flux through the round wire loop: 
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This is a table integral equal to ,32 so that 21 = 0I1R, and the final answer for the mutual inductance 
M = L12 = L21 = 21/I1 is finite (and very simple): 

RM 0 ,      (5.82) 

despite magnetic field's divergence at the lowest point of the loop (y = 0). Note that in contrast with the 
finite mutual inductance of this system, self-inductances of both wires are formally infinite in the thin-
wire limit – see, e.g., Eq. (80), that in the limit b/a >> 1 describes a thin straight wire. However, since 
this divergence is very weak (logarithmic), it is quenched by any deviation from this perfect geometry. 
For example, a good estimate of the inductance of a wire of a large but finite length l may be obtained 
from Eq. (81) via the replacement of b with l: 
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.      (5.83) 

32 See, e.g., MA Eq. (6.13) for a = 1. 
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(Note, however, that the exact result depends on where from/to the current flows beyond that segment. ) 
A close estimate, with l replaced with 2R, and b replaced with R, is valid for the self-inductance of the 
round loop. A more exact calculation of this inductance, which would be asymptotically correct in the 
limit a << R, is a very useful exercise, which is highly recommended to the reader. 33  

 

5.4. Magnetic dipole moment, and magnetic dipole media 

 The most natural way of description of magnetic media parallels that described in Chapter 3 for 
dielectrics, and is based on properties of magnetic dipoles. To introduce this notion quantitatively, let us 
consider, just as in Sec. 3.1, a spatially-localized system with current distribution j(r), whose magnetic 
field is measured at relatively large distances r >> r’ (Fig. 9). 

 

 

 

 

 

 

 

Applying the truncated Taylor expansion (3.4) to definition (28) of the vector potential, we get 
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Due to the vector character of this potential, we have to depart slightly from the approach of Sec. 3.1 
and use the following vector algebra identity:34  

       0)()( 3  rdfggf
V

 jj     (5.85) 

that is valid for any pair of smooth (differentiable) scalar functions f(r) and g(r), and any vector function 
j(r) that, as the dc current density, satisfies the continuity condition j = 0 and whose normal 
component vanishes on its surface.  

 First, let us use Eq. (85) with  f  1 and g equal to any component of the radius-vector r: g = ri (i 
= 1, 2, 3). Then it yields 

         0)( 33  
V

i

V

i rdjrdnj ,       (5.86) 

so that for the vector as the whole 

33 Its solution may be found, for example, just after Sec. 34 of L. Landau et al., Electrodynamics of Continuous 
Media, 2nd ed., Butterwort Heinemann, 1984.  
34 See, e.g., MA Eq. (12.3) with additional condition  jnS = 0, pertinent for space-restricted currents. 
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Fig. 5.9. Magnetic field of localized currents, observed 
from a distant point (r >> a). 
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          03 
V

rdrj ,      (5.87) 

showing that the first term in the right-hand part of Eq. (84) equals zero. Next, let us use Eq. (85) with f 
= ri, g = ri’ (i, i’ = 1, 2, 3); then it yields 
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so that the ith Cartesian component of the second integral in Eq. (84) may be transformed as 
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As a result, Eq. (85) may be rewritten as   
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where vector m, defined as35 
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rjrm ,     (5.91) 

is called the magnetic dipole moment of our system - that itself, within approximation (90), is called the 
magnetic dipole.  

 Note a close analogy between m and the angular momentum of a non-relativistic particle with 
mass mk: 

          kkkkkk m vrprL  ,     (5.92) 

where pk = mkvk is its mechanical momentum. Indeed, for a continuum of such particles with the same 
electric charge q, with the spatial density n, j = qnv, and Eq. (91) yields 
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  vrjrm ,    (5.93) 

while the total angular momentum of such continuous system of particles of the same mass (mk = m0) is 

              
V

rdnm 3
0 vrL , 

so that we get a very straightforward relation 

                Lm
02m

q
 .      (5.95) 

35 In the Gaussian units, definition (91) is kept valid, so that Eq. (90) is stripped of the factor 0/4. 
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For the orbital motion, this classical relation survives in quantum mechanics for operators and hence for 
eigenvalues, in whom the angular momentum is quantized in the units of the Planck’s constant , so that 
for an electron, the orbital magnetic moment is always a multiple of the so-called Bohr magneton  

         
em

e

2B


 ,      (5.96) 

where me is the free electron mass.36 However, for particles with spin, such a universal relation between 
vectors m and L is no longer valid. For example, electron’s spin s = ½ gives contribution /2 to the 
mechanical momentum, but its contribution to the magnetic moment it still very close to B.37 

 The next important example of a magnetic dipole is a planar wire loop limiting area A (of an 
arbitrary shape), carrying current I, for which m has a surprisingly simple form,  

            Am I ,      (5.97) 

where the modulus of vector A equals area A, and its direction is perpendicular to loop’s plane. This 
formula may be readily proved by noticing that if we select the coordinate origin on the plane of the 
loop (Fig. 10), then the elementary component of the magnitude of integral (91), 
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is just the elementary area dA = (1/2)rd(r)   r2d/2. 

 

 

 

 

  

  

 

The combination of Eqs. (96) and (97) allows a useful estimate of the scale of atomic currents, 
by finding what current I should flow in a circular loop of atomic size scale (the Bohr  radius) rB  
0.510-10 m, i.e. of area A  10-20 m2, to produce a magnetic moment equal to B.38 The result is 
surprisingly macroscopic: I ~ 1 mA (quite comparable to the currents driving your earbuds :-). Though 
this estimate should not be taken too literally, due to the quantum-mechanical spread of electron's 
wavefunctions, it is very useful for getting a feeling how significant the atomic magnetism is and hence 
why ferromagnets may provide such a strong field. 

36 In SI units, me  0.9110-30 kg, so that B  0.9310-23 J/T. 
37 See, e.g., QM Sec. 4.1 and beyond. 
38 Another way to arrive at the same estimate is to take I ~ ef = e/2  with  ~ 1016 s-1 being the typical 
frequency of radiation due to atomic interlevel quantum transitions.  
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 After these illustrations, let us return to Eq. (90). Plugging it into the general formula (27), we 
may calculate the magnetic field of a magnetic dipole: 
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.     (5.99) 

The structure of this formula exactly duplicates that of Eq. (3.15) for the electric dipole field. Because of 
this similarity, the energy of a dipole in an external field, and hence the torque and force exerted on it by 
the field, are also absolutely similar to the expressions for an electric dipole - see Eqs. (3.15)-(3.18): 

       extBm U ,     (5.100) 

and as a result, 

                extBmτ  ,      (5.101) 

                 )( extBmF   .     (5.102) 

 Now let us consider a system of many magnetic dipoles (e.g., atoms or molecules), distributed in 
space with density n. Then we can use Eq. (90) (generalized in the evident way for an arbitrary position, 
r’, of a dipole), and the linear superposition principle, to calculate the “macroscopic” component of the 
vector-potential A - in other words, dipole's potential averaged over short-scale variations on the inter-
dipole distances: 
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where M  nm is the macroscopic (average) magnetization, i.e. the magnetic moment per unit volume. 

Transforming this integral absolutely similarly to how Eq. (3.27) had been transformed into Eq. (3.29), 
we get: 

                 


 '
)(

4
)( 30 rd

'

''

rr

rM
rA





.     (5.104) 

 Comparing this result with Eq. (28), we see that M is equivalent, in its effect, to the density 
jef of a certain effective “magnetization current”.  Just as the electric-polarization “charge” ef discussed 
in Sec. 3.2 (see Fig. 3.3), jef = M may be interpreted the uncompensated part of vortex currents 
representing single magnetic dipoles (Fig. 11).  

 

 

 

 

 

 

   

 

Fig. 5.11. Cartoon illustrating the physical nature of 
the “magnetization current” jef = M. 
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 Now, using Eq. (28) to add the possible contribution from “stand-alone” currents j, not included 
into  the currents of microscopic dipoles, we get the general equation for the vector-potential of the 
macroscopic field: 
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Repeating the calculations that have led us from Eq. (28) to the Maxwell equation (35), with the account 
of the magnetization current term, for the macroscopic magnetic field B we get39  

            MjB   0 .     (5.106) 

 Following the same philosophy as in Sec. 3.2, we may recast this equation as 

          jH  ,      (5.107) 

where a new field defined as 
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B
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,      (5.108) 

by historic reasons (and very unfortunately) is also called the magnetic field.40 It is crucial to remember 
that the physical sense of field H is very much different from field B. In order to understand the 
difference better, let us use Eq. (107) to complete a macroscopic analog of system (36), called the 
macroscopic Maxwell equations (again, so far for the stationary case /t = 0): 
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One can clearly see that the roles of vector fields D and H are very similar: they could be called “would-
be” fields - which would be induced by stand-alone charges and currents, if the media had not modified 
them by its dielectric and/or magnetic polarization.  

39 Similarly to the situation with the electric dipoles (see Eq. (3.24) and its discussion), it may be shown that the 
magnetic field of any closed current loop (or any system of such loops) satisfies the following equality: 
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where the integral is over any sphere confining all the currents. On the other hand, for field (99), derived from the 
asymptotic approximation (90), such integral vanishes. In order to get a course-grain description of the magnetic 
field of a small system located at r = 0, which would be valid everywhere (though at r ~ a, only approximately), 
Eq. (99) should be modified as follows: 
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Hence, strictly speaking, the macroscopic field B participating in Eq. (106) and beyond is the average long-range 
field of the magnetic dipoles (plus of the stand-alone currents j) rather than the genuine average magnetic field. 
40 This confusion is exacerbated by the fact that in Gaussian units, Eq. (108) has the form H = B - 4M, and 
hence fields B and H has one dimensionality (and are equal in free space!) - though the unit of H has a different 
name (oersted, abbreviated as Oe). Mercifully, in the SI units, the dimensionality of B and H is different, with the 
unit of H being called ampere per meter. 
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 Despite this similarity, let me note an important difference of signs in the relation (3.33) between  
E, D, and P, on one hand, and relation (108) between B, H, and M, on the other hand. It is not just the 
matter of definition. Indeed, due to the similarity of Eqs. (3.15), and (100), including similar signs, the 
electric and magnetic fields both try to orient the corresponding dipole moments along the field. Hence, 
in the media that allow such orientation (and as we will see momentarily, for magnetic media it is not 
always the case), the induced polarizations P and M are directed along, respectively, vectors E and B. 
According to Eq. (3.33), if the would-be field D is fixed - say, by a fixed stand-alone charge  
distribution (r) - such polarization reduces the genuine average electric field E = (D - P)/0. On the 
other hand, Eq. (108) shows that in a magnetic media with a fixed would-be field H, magnetic 
polarization with M  B enhances the average magnetic field B = 0(H + M). This difference may be 
traced back to the sign difference in the initial  relations (1.1) and (5.1), i.e. to the basic fact that charges 
of the same sign repulse, while currents of the same direction attract each other. 

 In order to form a complete system of differential equations, the macroscopic Maxwell equations 
(109) have to be complemented with “constitutive relations” D  E, j  E, and B   H. In previous 
two chapters we already discussed, in brief, two of them; let us proceed to the last one. 

 

5.5. Magnetic materials 

 A major difference between the dielectric and magnetic material equations D(E) and B(H) is that 
while a typical dielectric media reduces the external electric field, magnetic media may either reduce or 
enhance it. In order to quantify this fact, let us consider the so-called linear magnetics in which M (and 
hence H) are proportional to B. Just as in dielectrics, in material without spontaneous magnetization, 
such linearity at relatively low fields follows from the Taylor expansion of function M(B). For isotropic 
materials, this proportionality is characterized by a scalar - either the magnetic permeability , defined 
by the following relation: 

     HB  ,      (5.110) 

or the magnetic susceptibility41defined as 

         HM m .      (5.111) 

Plugging these relations into Eq. (108), we see that these two parameters are not independent, but are 
related as 

                0)1(  m .     (5.112) 

 Note that despite the superficial similarity between Eqs. (110)-(111) and relations (3.35)-(3.38) 
for linear dielectrics: 

41 According to Eq. (110) (i.e. in SI units), m  is dimensionless, while  has the same the same dimensionality as 
0. In the Gaussian units,  is dimensionless, ()Gaussian = ()SI/0, and m  is also introduced differently, as  = 1 + 
4m, Hence, just as for the electric susceptibilities, these dimensionless coefficients are different in the two 
systems: (m )SI = 4(m)Gaussian. Note also that m is formally called the volume magnetic susceptibility, in order to 
distinguish it from the molecular susceptibility  defined by a similar relation, m  H, where m is the average 
induced magnetic moment of a single dipole – e.g., a molecule. Evidently, in a dilute medium, i.e. in the absence 
of substantial dipole-dipole interaction, m = n , where n is the dipole density. 

Magnetic 
permeability 

Magnetic 
susceptibility 

 

m vs.  



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 5           Page 26 of 42 

           00 1,,  ee  EPED ,    (5.113) 

there is an important conceptual difference between them. Namely, while vector E in the right-hand 
parts of Eqs. (113) is the real (average) electric field, vector H in the right-hand part of Eqs. (110)-(111) 
represents a “would-be” magnetic field, in all aspects similar to vector D rather than E. For relatively 
dense media, whose polarization may affect the genuine fields substantially, this difference between 
parameters  and  may make their properties (e.g., the Kramers-Kronig relations, to be discussed in 
Sec. 7.3) rather different.  

 Another difference between parameters  and  (and hence between e and m) is evident from 
Table 1 which lists the values of magnetic susceptibility for several materials. It shows that in contrast 
to linear dielectrics whose susceptibility e is always positive, i.e. the dielectric constant r = e + 1 is 
always larger than 1 (see Table 3.1), linear magnetics may be either paramagnets (m > 0, i. e.  > 0) or 
diamagnets (m < 0,   < 0).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The reason of this difference is that in dielectrics, two different polarization mechanisms 
(schematically illustrated by Fig. 12) lead to the same sign of the average polarization. The first of them 
takes place in atoms without their own spontaneous polarization. A crude classical image of such an 
atom is an isotropic cloud of negatively charged electrons surrounding a positively charged nucleus - see 
Fig. 12a. The external electric field shifts the positive charge in the direction of E, and negative charges 
in the opposite direction, thus creating a dipole with aligned vectors p and E, and hence positive 

Table 5.1. Magnetic susceptibility (m)SI of a few representative (and/or important) materials(a) 
 

“Mu-metal” (75% Ni + 15% Fe + a few %% of Cu and Mo)  ~20,000(b) 

Permalloy (80% Ni + 20% Fe) ~8,000(b) 

“Soft” (or “transformer”) steel (Fe + a few %% of Si) ~4,000(b) 

Nickel ~100 

Aluminum +210-5 

Diamond -210-5 

Copper -710-5 

Water -910-6 

Bismuth (the strongest non-superconducting diamagnet) -1.710-4 
 

(a)The table does not include bulk superconductors, which in a crude (“macroscopic”) 
approximation may be described as perfect diamagnets (with B  = 0, i.e. m = -1 and  = 0), though the 
actual physics of this phenomenon is more complex – see Sec. 6.3 below. 
 (b) The exact values of m  for soft ferromagnetic materials depend not only on their exact 
composition, but also on their thermal processing (“annealing”). Moreover, due to unintentional 
vibrations, the extremely high m  of such materials may somewhat decay with time, though may be 
restored to approach the original value by new annealing. 
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polarizability mol - see Eq. (3.39). As a result, the electric susceptibility is also positive – see Eqs. 
(3.41) or (3.71). 

 In the second case (Fig. 12b) of a gas or liquid consisting of polar molecules, each molecule has 
its own, spontaneous dipole moment p0 even in the absence of external electric field. (A typical example 
is a water molecule H2O, with the positive oxygen ion positioned out of the line connecting two positive 
hydrogen atoms, thus producing a spontaneous dipole with moment’s magnitude p0  e0.3810-10m.) 
However, in the absence of the applied electric field, the orientation of such dipoles is random, so that 
the average polarization P = np0 equals zero. A weak applied field does not change the magnitude of 
the dipole moments significantly, but creates their preferential orientation along the field (in order to 
decrease the potential energy U = -p0E), thus creating a nonvanishing vector average p0 directed 
along E. If the applied field is not two high (p0E << kBT), the induced polarization P = np0 is 
proportional to E, again giving a positive polarizability mol.42 

 

 

 

 

 

 

 

 

 

  

 

 Returning to magnetics, the second of the above mechanisms, i.e. the ordering of spontaneous 
dipoles by the applied field, is responsible for the paramagnetism. Again, now according to Eq. (100), 
such field tends to align the dipoles along its direction, so that the average direction of spontaneous 
elementary moments m0, and hence the direction of  M, is the same as that of the average field B (i.e., 
for a diluted media, of H  B/0), resulting in a positive susceptibility m. However, in contrast to the 
electric polarization, there is a mechanism of magnetic polarization, called the orbital (or “Larmor”43) 
diamagnetism, which gives m < 0. As its simplest model,  let us consider the orbital motion of an 
atomic electron as classical particle of mass m0, with electric charge q, about an immobile attractive 
center - modeling the atomic nucleus. As classical mechanics tells us, the central attractive force does 

42 The proportionality of p0 (and hence P) to E is a result of a dynamic balance between the dipole-orienting 
torque (101) and disordering thermal fluctuations. A qualitative description of such balances is one of the main 
tasks of statistical mechanics - see, e.g., SM Chapters 2 and 4. However, the very fact of proportionality P  E in 
low fields may be readily understood as the result of the Taylor expansion of function P(E) at E 0. 
43 After  J. Larmor (1857 – 1947) who first described the torque-induced precession mathematically. 











 











 

Fig. 5.12. Cartoons of two types 
of induced electrical polarization: 
(a) elementary dipole induction 
and (b) partial ordering of 
spontaneous elementary dipoles. 
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not change particle’s angular momentum L  m0rv, but the applied magnetic field B (that may be taken 
uniform on the atomic scale) does, due to the torque (101) it applies to magnetic moment (95): 

             BLBmτ
L


02m

q

dt

d
.     (5.114) 

 The vector diagram in Fig. 13 shows that in the limit of relatively weak field, when the 
magnitude of the angular momentum L may be considered constant, this equation describes the rotation 
(called the torque-induced precession44) of vector L about the direction of vector B, with angular 
frequency  = -qB/2m0, independent on angle . Let me leave for the reader to use Eq. (114) for 
checking that, irrespectively the sign of charge q, the resulting additional magnetic moment m has a 
direction opposite to that of vector B, and hence m is negative, leading to the Larmor diamagnetism.45 

 

 

 

 

 

 

  

  

  

 An important conceptual question is what exactly prevents the initial magnetic moment m that, 
according to Eq. (95), is associated with the angular momentum L of the electron, from turning along 
the magnetic field, just as in the second polarization mechanism illustrated by Fig. 12b - thus decreasing 
the potential energy (100) of the system. The answer is the same as for the usual mechanical top – it 
“wants” to fall due to the gravity field, but cannot do that due to the mechanical inertia. In classical 
physics, even a small friction (dissipation) eventually drains top’s rotational kinetic energy, and it falls. 
However, in quantum mechanics the ground-state “motion” of electrons in an atom is not subjected to 
friction, because they cannot be brought to full rest due to Heisenberg’s uncertainty principle. Somewhat 
counter-intuitively, the magnetic moments due to such fully-quantum effect as spin are much more 
susceptible to interaction with environment, so that in atoms with uncompensated spins, the magnetic 
dipole orientation mechanism prevails over the orbital diamagnetism, and the materials incorporating 
such atoms usually exhibit net paramagnetism – see Table 1.  

 Due to possible strong interactions between elementary dipoles, magnetism of materials is an 
extremely rich field of physics, with numerous interesting phenomena and elaborated theories. 

44 For a detailed discussion of the effect see, e.g., CM Sec. 6.5. 
45 The quantum-mechanical treatment (see, e.g., QM Sec. 6.4) confirms this qualitative picture, while giving 
quantitative corrections to the classical result for m. 

Fig. 5.13. Torque-induced precession of 
a charged particle in a magnetic field. 
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Unfortunately, all this physics is well outside the framework of this course, and I have to refer the 
interested reader to special literature,46 but still need to mention its key notions.  

 Most importantly, a sufficiently strong dipole-dipole interaction may lead to their spontaneous 
ordering, even in the absence of the applied field. This ordering may correspond to either parallel 
alignment of the atomic dipoles (ferromagnetism)  or anti-parallel alignment of the adjacent dipoles 
(antiferromagnetism). Evidently, the external effects of ferromagnetism are stronger, because such 
phase corresponds to a substantial spontaneous magnetization M. (This value is frequently called the 
saturation magnetization, Ms, while the corresponding magnitude of B  = 0M  is called either the 
saturation magnetic field, or the remanence field, BR). The direction of BR may switched by the 
application an external magnetic field, with a magnitude above certain value HC called coercivity, 47 
leading to the well-known hysteretic loops on the [B, H] plane - see Fig. 14 for a typical example.  

 

 

 

 

 

 

 

 

 

 In relatively low fields, H << HC, such materials may be described as hard (or “permanent”) 
ferromagnets; at such approximate treatment, magnetization M is considered constant. On the  other 
hand, the theory needed for a fair description phenomena at H ~ HC is rather complicated. Indeed, the 
direction of magnetization of crystals may be  affected by the anisotropy of the crystal lattice.  Because 
of that,  typical non-crystalline ferromagnetic materials  (like steel, permalloy, “mu-metal”, etc.) consist 
of randomly oriented magnetic domains, each with certain spontaneous magnetization direction. The 
magnetic interaction of the domain with its neighbors and the external field determines the evolution of 
its magnetization and hence the average magnetic properties of the ferromagnet. In particular, such 
interaction explains why the hysteresis loop shape is dependent on the cycled field amplitude and 
cycling history – see Fig. 14. A very important class of multi-domain materials is the so-called soft 
ferromagnets, whose coercivity is relatively low. At low cycled field amplitude, the soft ferromagnets 
behave, on the average, as linear magnetics with very high values of m and hence  (see the top rows of 
Table 1, and Fig. 14) that are highly dependent on the material’s fabrication technology and its post-
fabrication thermal and mechanical treatments. 

46 See, e.g., D. J. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd ed., CRC Press, 1998, or R. C. 
O’Handley, Modern Magnetic Materials, Wiley, 1999. 
47 Materials with very high coercivity HC  are frequently called hard ferromagnets or permanent magnets. 

Fig. 5.14. Experimental magnetization 
curves of specially processed (cold-rolled) 
transformer steel, i.e. a solid solution of 
~10% C and ~ 6% Si in Fe. (Adapted 
from www.thefullwiki.org/Hysteresis.) 
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 High values of m are is also pertinent to magnetics in which the molecular dipole interaction is 
relatively weak, so that their ferromagnetic ordering may be destroyed by thermal fluctuations, if 
temperature is increased above the so-called Curie temperature TC. At T > TC, such materials behave as 
paramagnets, with susceptibility obeying the Curie-Weiss law 

      
C

1

TTm 
 .      (5.115) 

(At vanishing moment interaction, TC  0, and Eq. (115) is reduced to the Curie law m  1/T typical 
for weak paramagnets.) The transition between the ferromagnetic and paramagnetic phase at T = TC is 
the classical example of continuous phase transitions, similar to that between the paraelectric and 
ferroelectric phases of a dielectric. In both cases, the “macroscopic” (average) polarization – either M or 
P – plays the role of the so-called order parameter that (in the absence of external fields) appears at T = 
TC and increases gradually at the further reduction of temperature.48 

 Before returning to magnetostatics per se, I have to mention the large practical role played by 
hard ferromagnetic materials (well beyond refrigerator magnets :-). Indeed, despite the decades of the 
exponential (Moore’s-law) progress of semiconductor electronics, most computer data storage systems 
are still based on the hard disk drives whose active medium is a submicron-thin ferromagnetic layer, 
with bits stored in the form of the direction of the spontaneous magnetization of small film spots. This 
technology has reached a fantastic sophistication,49 with recording data density approaching 1012 bits 
per square inch. Only recently it has started to be seriously challenged by the so-called solid state drives 
based on the flash semiconductor memories already mentioned in Chapter 3. 

  

5.6. Systems with magnetics 

 Similarly to the electrostatics of linear dielectrics, magnetostatics of linear magnetics is very 
simple in the particular case when the stand-alone currents are deeply embedded into a medium with a 
constant permeability . Indeed, in this case, boundary conditions on the distant surface of the media do 
not affect the solution of the boundary problem described by the magnetic equations of the macroscopic 
Maxwell system (109). Now let us assume that we know the solution B0(r) of the magnetic pair of the 
genuine (“microscopic”) Maxwell equations (36) in free space, i.e. when the genuine current density j 
coincides with that of stand-alone currents. Then the macroscopic equations and the material equation 
(110) are completely satisfied with the pair of functions 

         rBrHrB
rB

rH 0
00

0 ,




 .    (5.116) 

Hence the only effect of a complete filling a system of fixed currents with a uniform, linear 
magnetic is the increase of the magnetic field B at all points by the same constant factor /0  1 + m. 
(As a reminder, a similar filling of a system of fixed charges with a uniform, linear dielectric leads to a 
reduction of the electric field E by factor /0 = r = 1 + e.) 

48 A discussion of such transitions may be found, in particular, in SM Chapter 4. 
49 “A magnetic head slider [the read/write head – KKL] flying over a [rather uneven – KKL] disk surface with a 
flying height of 25 nm with a relative speed of 20 meters/second is equivalent to an aircraft flying at a physical 
spacing of 0.2 µm at 900 kilometers/hour.” B. Bhushan, as quoted in a (generally good) book by G. Hadjipanayis, 
Magnetic Storage Systems Beyond 2000, Springer, 2001. 
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 However, this simple result is generally invalid in the case of non-uniform (or piece-wise 
uniform) magnetic samples. Theoretical analyses of magnetic field distribution in such non-uniform 
systems may be facilitated by two additional tools. First, integrating the macroscopic Maxwell equation 
(107) along a closed contour C limiting a smooth surface S, and using the Stokes theorem, we get the 
macroscopic version of the Ampère law (37): 

        Id
C

 rH .      (5.117)   

This is exactly the replica of the “microscopic” equation Eq. (37), with the replacement B/0  H.  

Let us apply this relation to a boundary between two regions with constant, but different , with 
no stand-alone currents on the border, similarly how this was done for field E in Sec. 3.4 - see Fig. 3.5. 
The result is similar as well: 

    constH .     (5.118) 

On the other hand, the integration of the Maxwell equation (29) over a Gaussian pillbox enclosing a 
border fragment (again similar to that shown in Fig. 3.5) yields the result similar to Eq. (3.46):  

           const   i.e. const,  nn HB  .    (5.119) 

 Let us use these boundary conditions, first, to see what happens with a thin sheet of magnetic 
material (or any other strongly elongated sample) placed parallel to a uniform external field H0. Such 
sample cannot noticeably disturb the field in the free space outside it: Hext = H0, Bext = Hext/0 = H0/0. 
Now applying Eq. (118) to the dominating, large-area interfaces, we get Hint = H0, i.e., Bint = (/0) B0.50 
The fact of constancy of field H in this geometry explains why this field is used as the horizontal axis in 
plots like Fig. 14: such measurements are typically carried out by placing an elongated  sample of the 
material into the uniform field – say the one produced by a long solenoid. 

 Samples of other geometries may create strong perturbations of the external field, extended to 
distances of the order of the transversal dimensions of the sample. In order to analyze such problems, we 
may benefit from a simple, partial differential equation for a scalar function, e.g., the Laplace equation, 
because in Chapter 2 we have learned how to solve it for many simple geometries. In magnetostatics, the 
introduction of a scalar potential is generally impossible due to the vortex-like magnetic field lines, but 
if there are no stand-alone currents within the region we are interested in, then the Maxwell equation 
(32) for field H is reduced to   H = 0, and we may introduce the scalar potential of the magnetic field, 
m, using the relation similar to Eq. (1.33): 

         m-H .      (5.120) 

Combining it with the homogenous Maxwell equation for magnetic field, B = 0, we arrive at the 
familiar differential equation, 

                   0 m ,     (5.121) 

that, for a uniform media ( = const), is reduced to our beloved Laplace equation. Moreover, Eqs. (118) 
and (119) give the very familiar boundary conditions: first 

50 The reader is highly encouraged to carry out a similar analysis of fields inside narrow gaps cut in a linear 
magnetic, similar to that carried out for linear dielectrics in Sec. 3.3 – see Fig. 3.6 and its discussion. 
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       const



m ,               (5.122a) 

which is equivalent to  

        constm ,               (5.122b) 

and also 

                 const



n
m .     (5.123) 

Note that these boundary conditions are similar for (3.46) and (3.47) of electrostatics, with the 
replacement   .51  

 Let us analyze the geometric effects on magnetization, using the (too?) familiar structure: a  
sphere, made of a linear magnetic material, in a uniform external field. Since the differential equation 
and boundary conditions are similar to those of the similar electrostatics problem (see Fig. 3.8), we can 
use the above analogy to recycle the solution we already have got – see Eqs. (3.55)-(3.56). Just as in the  
electric case, the field outside the sphere, with potential 

           ,cos
2 2
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0
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R
rHRrm                     (5.125a) 

is a sum of the uniform external field H0 and the dipole field (99) with the following induced magnetic 
dipole moment of the sphere:52 
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 .              (5.125b) 

On the contrary, the internal field is perfectly uniform:  
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Note that though H inside the sphere is not equal to its value of the external field H0. This 
example shows that the interpretation of H as the “would-be” magnetic field generated by external 

51 This similarity may seem strange, because earlier we have seen that parameter  is physically more similar to 
1/. The reason for this paradox is that in magnetostatics, the introduced potential m is traditionally used to 
describe the “would-be field” H, while in electrostatics, potential  describes the real (average) electric field E. 
(This tradition persists from the old days when H was perceived as a genuine magnetic field.) 
52 Instead of differentiating  the m given by Eq. (125a), we may use the absolute similarity of Eqs. (3.13) and 
(99), to derive from Eq. (3.17) a similar expression for the magnetic potential of an arbitrary magnetic dipole: 
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Now comparing this formula with the second term of Eq. (125a), we immediately get Eq. (125b). 
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currents j should not be exaggerated into saying that its distribution is independent on the magnetic 
bodies in the system.53 

In the limit  >> 0, Eqs. (126) yield Hint/H0 << 1, Bint/H0 = 30, the factor 3 being specific for 
the particular geometry of the sphere. If a sample is stretched along the applied field, this limitation of 
the field concentration is gradually removed, and Bint tends to its maximum value H0 >> Bext, as was 
discussed above. This effect of “magnetic line concentration” in high- materials is used in such 
practically important devices as transformers, in which two multi-turn coils are wound on a ring-shaped 
(e.g., toroidal, see Fig. 6b) core made of a soft ferromagnetic material (such as the transformer steel, see 
Table 1) with  >> 0. This minimizes the number of “stray” field lines, and makes the magnetic flux  
piercing each wire turn (of either coil) virtually the same – the equality important for secondary voltage 
induction – see the next chapter. 

 The second theoretical tool, frequently useful for problem solution, is a macroscopic expression 
for magnetic field energy U. For a system with linear magnetic materials, we may repeat the 
transformation of Eq. (55), made in Sec. 3, but with due respect to the magnetization, i.e. replacing j not 
from Eq. (56), but from Eq. (107). As a result, instead of Eq. (57) we get 

               
222

with  ,
22
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urduU
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HB
r ,   (5.127) 

This result is evidently similar to Eq. (3.79) of electrostatics.  

 For  the general case of nonlinear magnetics, calculations similar to those resulting in Eq. (3.82) 
give the following analog of that relation:  

        BH δu  ,      (5.128) 

for a linear magnetic yielding Eq. (127). Similarly to the electrostatics of dielectrics, we may argue that 
according to Eq. (128), in systems with magnetic media, H plays the role of the generalized force, and B 
of the generalized coordinate (per unit volume).54 As the result, the Gibbs potential energy, whose 
minimum corresponds to the stable equilibrium of the system in an external field Hext, is 

       BHrrr   ext
3 with  , ugrdg

V

G ,    (5.129) 

the expression to be compared with Eq. (3.84). Similarly, for a system with linear magnetics, the latter 
of these expressions may be integrated over the variations to give 

53 From the standpoint of mathematics, this happens because the solution to a boundary problem is determined by 
not only the differential equation inside the system (in our case, the Laplace equation for potential m), but also by 
boundary conditions – which are affected by magnetics – see Eqs. (118)-(119). 
54 Note that in this respect, the analogy with electrostatics is incomplete. Indeed, according to Eq. (3.82), in 
electrostatics the role of a generalized coordinate is played by would-be field D, and that of the generalized force, 
by the real (average) electric field E. This difference may be traced back to the fact that electric field E may 
perform work on a moving charged particle, while the magnetic part of the Lorentz force (10), vB, is always 
perpendicular to particle’s velocity, and its work equals zero. However, this difference does not affect the full 
analogy of expressions (3.79) and (127) for field energy density in linear media. 
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        const
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g ,   (5.130) 

with similar consequences for the external magnetic field penetration into a system with magnetics. As a 
sanity check, for a uniform system with negligible fringe fields, such as a long solenoid filled with a 
uniform, linear magnetic material, Eq. (130) may be readily integrated over the sample volume to give 

          const
2

1
)( 2

ext  VHBr 


G ,    (5.131) 

so that the minimum of the Gibbs potential energy, i.e. the stable equilibrium of the system, corresponds 
to the result that has already been derived in the beginning of this section: B = Hext, i.e. H = Hext.  

For the important particular case of a long solenoid (Fig. 6a) filled with a linear magnetic 
material, we hay find field H from Eq. (117), just as we used Eq. (37) in Sec. 2 for finding B for a 
similar empty solenoid, getting 

     InH  ,  and hence InB  .     (5.132) 

Now we may plug this result into Eq. (127) to calculate the magnetic energy stored in the solenoid: 
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 ,     (5.132) 

and then use Eq. (72) to calculate its self-inductance: 

               lAn
I

U
L 2

2 2/
      (5.133) 

- as evident generalization of Eq. (75). This result explains why filling of solenoids with soft 
ferromagnets with  >> 0 is so popular in the electrical engineering practice, where large self- and 
mutual inductances are frequently needed in systems with size and/or weight restrictions. 

 Now, let us use these two tools to discuss a curious (and practically important) approach to 
systems with ferromagnetic cores. First, let us find the magnetic flux  in a system with a relatively 
thin, closed magnetic core made of sections of (possibly, different) soft ferromagnets, with the cross-
section areas Ak much smaller than the squared lengths lk of the sections - see Fig. 15.  

 

 

 

 

 

 

 

 

If  all k >> 0, virtually all field lines are confined to the interior of the core. Then, applying the 
macroscopic Ampère law (117) to contour C, which follows a magnetic field line inside the core (see the 

Fig. 5.15. Deriving the “magnetic Ohm law” (135). 
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dashed line in Fig. 15), we get the following approximate expression (exactly valid only in the limit 
k/0, lk

2/Ak  ): 

          NI
B

lHldlH
k k

k
k

k
kk

C

l   
.    (5.134) 

However, since the magnetic field lines stay in the core, the magnetic flux k  BkAk should be the same 
( ) for each section, so that Bk = /Ak. Plugging this condition into Eq. (134), we get 
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  where,Φ .    (5.135) 

  Note a close analogy of the first of these equations with the Ohm law for several resistors 
connected in series, with the magnetic flux playing the role of electric current, while the product NI, of 
the voltage applied to the resistor chain. This analogy is fortified by the fact that the second of Eqs. 
(135) is similar to the expression for resistance R = l/A of a long uniform conductor, with the magnetic 
permeability   playing the role of the electric conductivity . (In order to sound similar, but still 
different from resistance R, parameter R  is called the reluctance.) This is why Eq. (135) is called the 
magnetic Ohm law; it is very useful for approximate analyses of systems like ac transformers, magnetic 
energy storage systems, etc.  

 The role of the “magnetic e.m.f.” NI may be also played by a permanent-magnet section of the 
core. Indeed, for relatively low fields we may use the Taylor expansion of the nonlinear function B(H) 
near H = 0 to write 

         00 ,  Hdds dH

dB
HMB  ,    (5.136) 

where Ms is the spontaneous magnetization magnitude at H = 0, the  sign corresponds to two possible 
directions of the magnetization, and parameter d is called  the differential (or “dynamic”) permeability. 
Expressing H from this relation, and using it in one of components of the sum (134), we again get a 
result similar to Eq. (135) 
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with  ,Φ ef ,    (5.137) 

where lH and AH are geometric dimensions of the hard-ferromagnet section, and product NI is replaced 
with its effective value 

        Hs
d

lMNI

0

ef  .     (5.138) 

This result may be used for a semi-quantitative explanation of the well-known short-range forces 
acting between permanent magnets (or between them and soft ferromagnets) at their mechanical contact 
(Fig. 16).  
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 Indeed, considering the free-space gaps between them as sections of the core (which is 
approximately correct, because due to the small gap thickness d the magnetic field lines cannot stray far 
from the contact area), and neglecting the reluctance R of the bulk material (due to its larger cross-
section), we get 
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so that, according to Eq. (127), the magnetic energy of the system (disregarding the constant energy of 
the permanent magnetization) is 
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Hence the magnet attraction force, 
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 ,     (5.141) 

behaves almost as the divergence 1/d2 truncated at a short distance d0 << l. Due to that truncation, the 
force is finite at d = 0; this exactly the force you need to apply to detach two magnets. 

 Finally, let us discuss in brief a related effect in experiments with thin and long hard 
ferromagnetic samples - “needles”, like those used in magnetic compasses. Using the definition (108) of 
field H, the Maxwell equation (29) takes the form 

          00  MHB   ,     (5.142) 

and may be rewritten as 

                MH   .     (5.143) 

While this relation is general, it is especially convenient in hard ferromagnets, where M is virtually 
fixed by the saturation. Comparing this equation with Eq. (1.27) for the electrostatic field, we see that 
the right-hand part of Eq. (143) may be considered as a fixed source of a Coulomb-like magnetic field.  

 For example, let us apply Eq. (143) to a thin, long needle made of a hard ferromagnet (Fig. 17a). 
Inside the needle, M = Ms = const, while outside it M = 0, so that the right-hand part of Eq. (143) is 
substantially different from zero only in two small areas at the needle’s ends, and on much larger 
distances we can use the following approximation: 

            )()( 21 rrrrH   mm qq ,    (5.155) 
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Fig. 5.16. Short-range interaction between magnets. 
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where r1,2 are ends’ positions, and qm  MsA, with A being the needle’s cross-section area. This equation 
is completely similar to Eq. (1.27) for the electric field created by two equal and opposite point charges. 
In particular, if two ends of two needles are hold at an intermediate distance r  (A1/2 << r << l, where l is 
the needle length, see Fig. 17b), the ends interact in accordance with the magnetic Coulomb law 

      .
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F sm       (5.156) 

 

 

 

 

 

 

 

 

 

 The “only” (but conceptually, very significant!) difference with electrostatics is that the 
“magnetic charges” qm cannot be fully separated. For example, if we break a magnetic needle in the 
middle in at attempt to bring its two ends further apart, two new “charges” appear – see Fig. 17b. There 
are several solid state systems where more flexible structures, similar to the magnetic needles, may be 
implemented. First of all, certain (“type-II”) superconductors may sustain so-called Abrikosov vortices – 
crudely, flexible tubes with field-suppressed superconductivity inside, each carrying one magnetic flux 
quantum 0 = /e  210-15 Wb – see Sec. 6.3. Ending on superconductor’s surface, these tubes let the 
magnetic field lines to spread into the surrounding space, essentially forming a magnetic monopole 
analog (of course, with an equal and opposite “monopole” on another end of the line). Such flux tubes 
are not only flexible but readily stretchable, resulting in several peculiar effects.55 Another, recently 
found, examples of paired “monopoles” include spin chains in so-called spin ices – crystals with 
paramagnetic ions arranged into a specific (pyrochlore) lattice – such as dysprosium titanate Dy2Ti2O7.56 

    

5.7. Exercise problems 

 5.1. Two straight, parallel, long, plane, thin strips of width d, 
separated by distance d, are used to form a current loop - see Fig. on the 
right. Calculate the magnetic field in the plane located at the middle 
between the planes of the strips, assuming that current I is uniformly 
distributed across strip width.  

 

55 A detailed discussion of the Abrikosov vortices may be found, for example, in Chapter 5 of M. Tinkham, 
Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. 
56 See, e.g., L. Jaubert and P. Holdworth, J. Phys. – Cond. Matt. 23, 164222 (2011) and references therein. 
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Fig. 5.17. (a) “Magnetic charges” at the ends of a thin ferromagnetic needle and (b) the result of its breaking 
into two parts (schematically). 
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5.2. For the system studied in the previous problem, but now only in the limit  d << w, calculate: 

 (i) the distribution of the magnetic field (in the simplest possible way), 
 (ii) the vector-potential of the field, 
 (iii) the force (per unit length) acting on each strip, and 
 (iv) the magnetic energy and self-inductance of the system (per unit length). 
 
  
 5.3. Calculate the magnetic field distribution near the center of the system of 
two similar, plane, round, coaxial wire coils, fed by equal but oppositely directed 
currents – see Fig. on the right. 
 
 
 
  
  
 5.4. The two-coil-system, similar to that considered in the previous problem, 
carries equal and similarly directed currents – see Fig. on the right. Calculate what 
should be the ratio d/R for the second derivative 2Bz/z2 at z = 0 to vanish.57 
 
 
 
 5.5. Calculate the magnetic field distribution along the axis of a 
straight solenoid (see Fig. 6a, partly reproduced on the right) with a finite 
length l, and round cross-section of radius R. Assume that the solenoid has 
many wire turns (N >> 1) that are uniformly distributed along its length. 
 
 
 5.6. A thin spherical shell of radius R, with charge Q uniformly distributed over its surface, 
rotates about its axis with angular velocity . Calculate the distribution of the magnetic field 
everywhere in space. 
 
 5.7. A sphere of radius R, made of an insulating material with a uniform electric charge density 
, rotates about its diameter with angular velocity . Calculate the magnetic field distribution inside the 
sphere and outside it. 
 
 5.8. The reader is (hopefully :-) familiar with the classical Hall effect when it takes place in the 
usual rectangular Hall bar geometry – see the left panel of the Fig. below. However, the effect takes a 
different form in the so-called Corbino disk – see the right panel below. (Dark shading shows electrodes, 
with no appreciable resistance.) Analyze the effect in both geometries, assuming that in both cases the 
conductors are thin, planar, have a constant Ohmic conductivity  and charge carrier density n, and that 
the applied magnetic field B is uniform and normal to conductors’ planes. 

  

57 Such system, producing a highly uniform field near its center, is called the Helmholtz coils, and is broadly used 
in physics experiment. 
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 5.9.* The simplest model of the famous homopolar motor58 is a 
thin, round conducting disk, placed into a uniform magnetic field normal 
to its plane, and fed by dc current flowing from disk’s center to a sliding 
electrode (“brush”) – see Fig. on the right. 

 (i) Express the torque, rotating the disk, via its radius R, magnetic 
field B, and current I. 
 (ii) If the disk is allowed to rotate about its axis, and the motor is driven by a battery with e.m.f. 
V, calculate its angular velocity , neglecting electric circuit’s resistance and friction. 
 (iii) Now assuming that the current circuit (battery + wires + contacts + disk itself) has full 
resistance R, derive and solve the equation for the time evolution of , and analyze the solution. 
 
 5.10.* Estimate the values of magnetic susceptibility due to  

 (i) orbital diamagnetism, and 
 (ii) spin paramagnetism, 

for a dilute medium with negligible interaction between molecular dipoles.   

 Hints: For task (i), you may use the classical model described by Eq. (114) (see Fig. 13), while 
for task (ii), assume the mechanism of ordering of spontaneous magnetic dipoles m0, similar to the one 
sketched for electric dipoles in Fig. 12b, with the magnitude of the order of the Bohr magneton B – see 
Eq. (96). 
 
 5.11.* Use the classical picture of the orbital (“Larmor”) diamagnetism, discussed in Sec. 5.5 of 
the lecture notes, to calculate its (small) correction B(0) to the magnetic field B, as felt by the atomic 
nucleus, modeling atomic electrons by a spherically-symmetric cloud with electric charge density (r). 
Express the result via the value (0) of the electrostatic potential of electrons’ cloud, and use this 
expression for a crude numerical estimate of the relative correction, B(0)/B, for the hydrogen atom. 
 
 5.12. Current I is flows in a thin wire bent into a plane, round loop of radius R. Calculate the net 
magnetic flux through the whole plane in which the loop is located. 
 
 

58 It was invented by M. Faraday in 1821, i.e. well before his celebrated work on electromagnetic induction. The 
adjective “homopolar” refers to the constant “polarity” (sign) of the current; the alternative term is “unipolar”.  
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 5.13. Calculate the (self-) inductance of a toroidal 
solenoid (Fig. 6b) with the round cross-section of radius r ~ R 
(see Fig. on the right), filled with a material  of magnetic 
permeability , with many (N >> 1, R/r) wire turns uniformly 
distributed along the perimeter. Check your results by  analyzing 
the limit r << R. 

Hint : You may like to use the following table integral:59 

 
 

   .1for ,1
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 5.14. Prove that: 

 (i) the self-inductance L of a current loop cannot be negative, and 
 (ii)each mutual inductance coefficient Lkk’, defined by Eq. (60), cannot be larger than 
(LkkLk’k’)

1/2. 

 

 5.15. A round cylindrical shell, made of a soft ferromagnet, is 
placed into a uniform external field H0 perpendicular to its axis - see 
Fig. on the right. Find the distribution of the magnetic field everywhere 
in the system, and discuss its efficiency as a “magnetic shield”. 

 

 
 5.16. A straight thin wire, carrying current I, passes parallel to 
the plane boundary between two uniform, linear magnetics – see Fig. on 
the right. Calculate the magnetic field everywhere in the system, and 
the force (per unit length) exerted on the wire.  

 

 
   

5.17. Calculate the distribution of magnetic field around a sphere made of a hard ferromagnet 
with a permanent, uniform magnetization M = const. 
 
 5.18.* A limited volume V is filled with a magnetic material with magnetization M(r).  

 (i) Use Eq. (5.143) to write explicit expressions for the magnetic field and its potential, induced 
by the magnetization. 
 (ii) Recast these expressions in forms convenient when M(r) = M0 = const inside volume V. 
 

 5.19. Use the results of the previous problem to calculate the 
distribution of the magnetic field along the axis of a straight 

59 See, e.g., MA (6.13). 
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permanent magnet of length 2l, with round cross-section of radius R, and uniform magnetization M0 
parallel to the axis - see Fig. on the right. 
 
 5.20. A very broad film of thickness 2t is magnetized normally to its plane, with a periodic 
checkerboard pattern with square side a: 
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Calculate the magnetic field distribution in space.60 

 

 5.21. A flat end of a rod magnet, with cross-section area 
A, with saturated magnetization Ms directed along rod’s length, 
is let to stuck to a plane surface of a large sample made of a soft 
ferromagnetic material with  >> 0. Calculate the force 
necessary to detach the rod from the surface, if it is applied 
strictly perpendicular to the contact surface – see Fig. on the 
right. 
 
 5.22.* Based on the discussion of the quadrupole electrostatic lens in Sec. 2.4 of the lecture 
notes, suggest permanent-magnet systems which may similarly focus particles moving close to system’s 
axis, and carrying: 

 (i) an electric charge, 
 (ii) no net electric charge, but a nonvanishing spontaneous magnetic dipole moment m. 
 
 5.23. A circular wire loop, carrying a fixed dc current, has been 
placed inside a similar but larger loop, carrying a fixed current in the same 
direction – see Fig. on the right. Use semi-quantitative arguments to analyze 
the mechanical stability of the coaxial, coplanar position of the inner loop 
with respect to its possible angular, axial, and lateral displacements, if the 
position of the outer loop is fixed. 
 
 
 
 
 
 
 
 
 
 

60 This problem is of an evident relevance for the perpendicular magnetic recording (PMR) technology, which 
presently dominates the high-density digital magnetic recording, with the density already approaching 1 Tb/in2. 
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Chapter 6. Time-Dependent Electromagnetism 

This chapter discusses two major new effects that appear if the electric and magnetic fields are 
changing in time: the “electromagnetic induction” of electric field by changing magnetic field, and the 
reciprocal effect of “displacement currents” - the induction of  magnetic field by changing electric field. 
These two phenomena, which make the time-dependent electric and magnetic fields inseparable, 
contribute to the system of four Maxwell equations, and make it valid for arbitrary electromagnetic 
processes. On the way, I will pause for a brief review of the electrodynamics of superconductivity, which 
(besides its own significance), provides a perfect platform for a discussion of the gauge invariance. 

 

6.1. Electromagnetic induction 

 As Eqs. (5.36) and (5.109) show, in static situations (/t = 0) the Maxwell equations describing 
the electric and magnetic fields are independent, and are coupled only implicitly, via the continuity 
equation (4.5) relating their right-hand parts  and j. (In statics this relation imposes a restriction only on 
vector j.) In dynamics, when the fields change in time, the situation in different.  

Historically, the first discovered explicit coupling between the electric and magnetic fields was 
the effect of electromagnetic induction.1 The summary of Faraday’s numerous experiments has turned 
out to be very simple: if the magnetic flux, defined by Eq. (5.65), 

        
S

n rdB 2Φ ,     (6.1) 

through a surface S limited by contour C, changes in time by whatever reason (e.g., either due to a 
change of the magnetic field B, or contour’s motion, or its deformation), it induces an additional, vortex-
like electric field Eind, similar in its topology to the magnetic field induced by a current. The exact 
distribution of Eind in space depends on  system geometry details and may be rather complex, but its 
integral along the contour C, called the inductive electromotive force (e.m.f.), obeys a very simple 
Faraday induction law: 2 

         
dt

d
d

C

Φ
ind   rEindV .     (6.2) 

In is straightforward (and hence left for the reader’s exercise :-) to show that the e.m.f. may be 
measured, for example, either inserting a voltmeter into a conducting loop following contour C, or by 
measuring current I = Vind/R it induces in a thin wire with Ohmic resistance R, whose shape follows that 
contour. The minus sign in Eq. (2) corresponds to the so-called Lenz rule: the magnetic field of the 
induced Ohmic current provides a partial compensation of the change of the original  in time. 

 In order to recast Eq. (2) in a differential form, let us apply, to the above definition of Vind,  the 
same Stokes theorem that was repeatedly used in Chapter 5.3 The result is 

1 The induction e.m.f. was discovered independently by J. Henry and M. Faraday, but is was a brilliant 
experiment series of the latter physicist, carried out in 1831, which resulted in this general formulation of the law. 
2 In Gaussian units, the right-hand part of this formula has the additional coefficient 1/c.  
3 If necessary, see MA Eq. (12.1) again.  

Faraday 
induction  

law 
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S

n rd 2
ind indEV .     (6.3) 

Now combining Eqs. (1)-(3), for a contour C whose shape does not change in time (so that the 
integration along it is interchangeable with the time derivative),4 we get 

        02 











S n

rd
t

B
Eind .    (6.4) 

 Since the induced electric field is additional to the field (1.33) created by electric charges, for the 
net field we should write E = Eind -  . However, since curl of any gradient field is zero,5 () = 0, 
Eq. (4) is valid for the net field E. Since  this equation should be correct for any closed area S, we may 
conclude that 

                 0




t

B
E      (6.5) 

at any point. This is the final (time-dependent) form of this Maxwell equation. Superficially, it may look 
that Eq. (5) is less general than Eq. (2); for example that it does not describe any electric field, and 
hence any e.m.f. in a moving loop, if field B is constant in time, so that flux (1) does change in time. 
However, this is not true; in Chapter 9 we will see that in the reference frame moving with the loop such 
e.m.f. does appear. 

 Now let us re-formulate Eq. (5) in terms of the vector-potential. Since the induction effect does 
not alter the fundamental relation   B = 0, we still may present the magnetic field as prescribed by Eq. 
(5.27), i.e. as B =  × A. Plugging this expression into Eq. (6), we get 

               0











t

A
E .     (6.6) 

Hence we can use the argumentation of Sec. 1.3 (there applied to vector E alone) to present the 
expression in parentheses as -, so that 

               




t

A
E .     (6.7) 

 It is tempting to interpret the first term of the right-hand part as describing the electromagnetic 
induction alone, and the second term representing a purely electric field induced by electric charges. 
However, the separation of these two terms is, to a certain extent, conditional. Indeed, let us consider the 
gauge transformation already mentioned in Sec. 5.2, 

        AA ,     (6.8) 

4 Let me admit that from the beginning of the course, I was carefully sweeping under the rug a very important 
question: in what exactly reference frame(s) all the equations of electrodynamics are valid? I promise to discuss 
this issue in detail later in the course (in Chapter 9), and for now would like to get away with a very short answer: 
all the formulas discussed so far are valid any inertial reference frame, as defined in classical kinematics – see, 
e.g., CM Chapter 1. It is crucial, however, to have fields E and B measured in the same reference frame. 
5 See, e.g., MA Eq. (11.1). 
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that, as we already know, does not change the magnetic field. According to Eq. (8), in order to keep the 
full electric field intact (gauge-invariant) as well, the scalar electric potential has to be transformed 
simultaneously, as 

        
t




 ,      (6.9) 

leaving the choice of a time-independent addition to  restricted only by the Laplace equation – since 
the full  should satisfy the Poisson equation (1.41) with a gauge-invariant right-hand part. We will 
return to the discussion of gauge invariance in Sec. 3. 

 Now let us discuss whether Eqs. (2) or (5) describing the electromagnetic induction represent 
some completely new facts, on top of all the equations of electrostatics and magnetostatics, discussed in 
previous five chapters. The answer is not. To demonstrate that, let us consider a thin wire loop with 
current I, placed in a magnetic field (Fig. 1). According to Eq. (5.21), the magnetic force exerted by the 
field upon a small fragment of the wire is 

       rBBrF dIdId  )( ,     (6.10) 

where dr is a small vector, tangential to loop’s contour and directed along current I. Now let the wire be 
slightly (and slowly) deformed so that this particular fragment is displaced by a small distance r. (Let 
me hope that Fig. 1 makes the difference between the elementary vectors dr and r absolutely clear.)  

 

 

 

 

 

 

 

 

 Since the wire’s acceleration (if any) is negligibly small, external (non-magnetic) forces should 
balance force (10), i.e. provide an equal and opposite force. This is why the work of these external 
forces at the displacement r, i.e. the change of the magnetic field energy U, is, 

                       rBrrF dIddU   )( .    (6.11) 

Let us apply to this mixed product the general operand rotation rule of the vector algebra,6 so that vector 
B comes out of the vector product: 

                 rrB   dIdU )( .     (6.12) 

But the magnitude of this vector product is nothing more than the area (d2r)  (dS) swept by the 
wire’s fragment at the deformation (Fig. 1), while its direction is perpendicular to this elementary area 
dS, along the “proper” normal vector n = (dr/dr)(r/r). The scalar multiplication of B by this vector is 

6 See, e.g., MA Eq. (7.6). 

Fig. 6.1. Thin wire with current in a magnetic field, 
and its small deformation. 
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equivalent to taking its normal component. Hence, integrating Eq. (12) over all the wire length, we get 
the following result for the total variation of the magnetic energy: 

                     
C

n rdBIU )( 2 .       (6.13) 

If B does not change at the wire deformation, the variation sign may be moved out from the integral, and 
Eq. (13) yields7  

             IU ,      (6.14) 

where  is the magnetic flux through the loop.  

 Now let the work W = U, necessary for this energy change, to come from a generator of 
voltage Vext,  inserted somewhere in the loop. In order for the system to be in quasi-equilibrium, this 
voltage should counter-balance the electromagnetic induction’s e.m.f. Vind.  Work of the voltage at 

transfer of charge Q = It, during elementary deformation’s duration t, is 

            tIQQV  indindext VVW  .    (6.15) 

Comparing Eqs. (14) and (15), we arrive at the Faraday induction law (2).  

 Moreover, some authors derive Eq. (2) in this way, implying that there is no new information in 
the induction law at all. Note, however, that the simple derivation given above has used the assumption 
of magnetic field’s independence on the deformation. A removal of this limitation would require using 
the Lorentz field transform (which will be only discussed in Chapter 9), and a very careful 
argumentation to exclude a faulty logic loop, because the transform itself is typically derived from 
Maxwell equations - including Eq. (5) that we are trying to prove. Personally I am happy that Dr. 
Faraday did his thorough work so early, placing the electromagnetic induction law on a firm 
experimental basis. 

 

6.2. Quasistatic approximation and skin effect 

 As we will see later in this chapter, the interplay of the electromagnetic induction with one more 
time-dependent effect (the so-called displacement currents), enables electromagnetic waves propagating 
with speed c = 1/(00)

1/2 in free space, and with a comparable speed v = 1/()1/2
  in dielectric and/or 

magnetic materials. For the phenomena whose spatial scale is much smaller than the wavelength   = 
2v/, the displacement current effects are negligible, and time-dependent phenomena may be described 
by using Eq. (6) together with three other macroscopic Maxwell equations in their unmodified form:8 

              
.0 ,
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t     (6.16) 

 These equations define the so-called quasistatic approximation of electromagnetism, and are 
sufficient to describe many important phenomena. Let us use them first of all for an analysis of the so-

7 Actually, Eq. (14) is just an integral version of Eq. (5.128). 
8 Actually, the absence of time-dependent corrections to other Maxwell equations in the quasistatic approximation 
should be considered as an additional experimental fact. 

Quasistatic 
approximation 
 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 6           Page 5 of 32 

called skin effect, the phenomenon of self-shielding of the alternating (ac) magnetic fields by currents 
flowing in a conductor. 

 In order to form a complete system of equations, Eqs. (16) should be augmented by material 
equations describing the medium. Let us take them, for a conductor, in the simplest (and simultaneously, 
most common) linear and isotropic form: 

      HBEj   , .     (6.17) 

If the conductor is uniform, i.e. coefficients   and  are constant inside it, the whole system of 
equations (16)-(17) may be reduced to a single equation. Indeed, a sequential substitution of these 
equations into each other yields: 
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 (6.18) 

Thus we have arrived, without any further assumptions, at a very simple partial differential 
equation. Let us use it to analyze the skin effect in the simplest geometry (Fig. 2a) when an external 
source (which, at this point, does not need to be specified) produces, near a plane surface of a bulk 
conductor, a spatially-uniform ac magnetic field H(0)(t) parallel to the surface. 

 

 

 

 

 

  

  

  

  

Selecting the coordinate system as shown in Fig. 2, we may express this condition as 

       
yx tH nH )(0

0 .     (6.19) 

The translational symmetry of our simple problem within the surface plane [y, z] implies that inside the 
conductor /y = /z = 0 as well, and H = H(x, t)ny even at x  0, so that Eq. (18) for conductor’s 
interior is reduced to a differential equation for just one scalar function H(x, t) = B(x, t)/:9 
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.     (6.20) 

9 Due to the simple linear relation between fields B and H, it does not matter too much which of them is used for 
the solution of this problem. A slight preference is for H, due to the simplicity of the  boundary condition (5.118). 

Fig. 6.2. (a) Skin effect in the 
simplest, planar  geometry, 
and (b) two Ampère contours 
for deriving the “microscopic” 
(contour C1) and the 
“macroscopic” (contour C2) 
boundary conditions for H. 
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This equation may be further simplified by noticing that due to its linearity, we may use the linear 
superposition principle for the time dependence of the field,10 via expanding it, as well as the external 
field (19), into the Fourier series, 
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   (6.21) 

and arguing that if we know the solution for each frequency component, the whole field may be found 
through the elementary summation (17) of these solutions. For each single-frequency component, Eq. 
(21) is immediately reduced to an ordinary differential equation for the complex amplitude H(x): 

             
 H

dx

d
Hi

2

21
 .     (6.22) 

 From the theory of linear differential equations we know that Eq. (22) has the following general 
solution: 

        
xx

eHeHxH 



  

 )( ,    (6.23) 

where constants  are roots of the characteristic equation that may be obtained by substitution of any of 
these two exponents into the initial differential equation. For our particular case, the characteristic 
equation, following from Eq. (22), is 

         



2

 i       (6.24) 

and its roots are complex constants 

               2/12/1
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 .    (6.25) 

 For our problem, the field cannot grow exponentially at x  +, so that only one of the 
coefficients, namely H- corresponding to the decaying exponent, with Re  < 0 (i.e.  = -), may be 
nonvanishing, so that H(x) = H(0)exp{-x}. In order to find the constant factor H(0), we can integrate 
the Maxwell equation H = j along a pre-surface contour – say, contour C1 shown in Fig. 2b. The 
right-hand part’s integral is negligible, because j does not contain any “genuinely surface” currents, 

localized at a depth much smaller than 1/Re[--]. As a result, we get  the “microscopic”
 11

 boundary 
condition similar to Eq. (5.118) for the stationary magnetic field, H  = const at x = 0, we get  

             00 0  i.e.,,0  HHtHtH  ,    (6.26) 

10 Another important opportunity to exploit the linearity of Eq. (6.20) (as well as any linear, homogeneous 
differential equation) is to use the spatial-temporal Green’s function approach to explore the dependence of its 
solutions on various initial conditions. Unfortunately, because of lack of time, I have to leave such exploration for 
reader’s exercise. 
11 This common name is awkward, because Eq. (26) results from macroscopic Maxwell equations (16), but is 
justified as the counterpart to the “macroscopic” boundary condition (30), to be discussed in a minute. 
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so that the final solution of the problem may be presented as 
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 expexp)( 0 ,   (6.27a) 

where constant s is called the skin depth: 
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 s .     (6.27b) 

 This solution describes the skin effect: the penetration of the ac magnetic field of frequency  
into a conductor only to a depth of the order of s. A couple of examples of the skin depth: for copper at 
room temperature, s   1 cm at the ac power distribution frequency of 60 Hz, and is of the order of just 
1 m at a few GHz, i.e. at typical frequencies of cell phone signals and kitchen microwave magnetrons. 
For a modestly salted water, s is close to 250 m at 1 Hz (with big implications for radio 
communications with submarines), and is of the order of 1 cm at a few GHz  (explaining a nonuniform 
heating of a soup bowl in a microwave oven).  

 In order to complete the skin effect discussion, let us consider what happens with the induced ac 
currents12 and the electric field at this effect. When deriving our basic equation (18), we have used, in 
particular, relations j =   H = -1 × B, and E = j/. Since a spatial differentiation of an exponent 
yield a similar exponents, the electric field and current density have the same spatial dependence as the 
magnetic field, i.e. penetrate inside the conductor by distances of the order of s(), but their vectors are 
directed perpendicularly to B, while still being parallel to the conductor surface:13 

        zz xHxxHx nEnj )(,)(  


 
  .   (6.28) 

By the way, integrating the first of these relations with the help of Eq. (26a), we may find that 
the linear density J of the surface currents (measured in A/m), is simply and fundamentally related to 
the applied magnetic field: 

      
zHdxx njJ 0

0

  


.     (6.29) 

Since this relation does not have frequency-dependent factors, we may sum it up for all frequencies and 
get a universal relation  

                           nHnHnnnJ  tttHtHt xxyz
0000 ,  (6.30) 

where n = -nx is the outer normal to the surface – see Fig. 2b. This simple relation (whose last form is 
independent of the reference frame choice) is not occasional. Indeed, Eq. (30) may be readily obtained 
from the Ampère law (5.37) applied to a contour drawn around a fragment of the surface, but extending 
under it much deeper than the skin depth – see contour C2 in Fig. 2b, regardless of the exact law of the 

12 They are frequently called eddy currents, because of the loop form of their lines. (In the 1D geometry explored 
above these loops are implicit, closing at infinity.)  
13 Notice that vectors j  and E are parallel, and have the same time dependence. This means that the time average 
of the power dissipation  j  E  is finite. We will return to its discussion later in this chapter. 

Skin  
depth 
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field penetration. Relation (30) is frequently called the “macroscopic” boundary condition for the 
magnetic field near conductor’s surface, to distinguish it from the “microscopic” boundary condition 
(26). 

For the skin effect, the fundamental relation between the surface current density and the external 
magnetic field means that the effect implementation does not require a dedicated ac magnetic field 
source. For example, it takes place in any wire that carries ac current, and leads to current concentration 
in a surface sheet of thickness ~s. (Of course the quantitative analysis of this problem in a wire with an 
arbitrary cross-section may be technically complicated, because it requires to solve Eq. (18) for a 2D 
geometry; even for the round cross-section, the solution involves the Bessel functions.) In this case, the 
ac magnetic field outside the conductor, that still obeys Eq. (30), is better understood as the effect, rather 
than the reason, of the ac current flow. 

 Finally, the reader should mind the validity limits of these results – besides the universal Eq. 
(30). First, in order for the quasistatic approximation to be valid, frequency  should not be too high, so 
that the skin depth (27) remains much smaller than the corresponding wavelength, 

            
2/1

2

242














 v

,     (6.31) 

which decreases with  faster than s (27b). Note that the crossover frequency (at which s = ), 

                
0





r
r  ,     (6.32) 

is nothing else than the reciprocal charge relaxation time (4.10). As was discussed in Sec. 4.2, for good 
metals this frequency is extremely high (about 1018 s-1).  

A more practical upper limit on  is that the skin depth s should stay much larger than the mean 
free path l of charge carriers.14 Beyond this point, a non-local relation between vectors j(r) and E(r) 
becomes essential. Both theory and experiment show that at s < l, the skin effect still persists, but 
acquires a slightly different frequency dependence, s  -1/3. Such anomalous skin effect has useful 
applications, for example, for experimental measurements of the Fermi surface in metals.15 

  

6.3. Electrodynamics of superconductivity and gauge invariance 

 The effect of superconductivity16 takes place when temperature T is reduced below a certain 
critical temperature (Tc), specific for each material. For most metallic superconductors, Tc is of the 
order of typically a few kelvins, though several exotic compounds (the so-called high-temperature 
superconductors) with Tc above 100 K have been found since 1987. The most notable property of 
superconductors is the absence, at T < Tc, of measurable resistance to not very high dc currents.  

14 A brief discussion of the mean free path may be found, for example, in SM Chapter 6. In very clean metals at 
low temperatures, s  may approach l at frequencies as low as  ~1 GHz, though at room temperature the crossover 
from the normal to the anomalous skin affect takes place at ~ 100 GHz. 
15 See, e.g., A. Abrikosov, Introduction to the Theory of Normal Metals, Academic Press, 1972. 
16 Discovered experimentally in 1911 by H. Kamerlingh Onnes. 
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 However, electromagnetic properties of superconductors cannot be described by just taking   = 
 in our previous results. Indeed, for this case, Eq. (27b) would give s = 0, i.e., no ac magnetic field 
penetration at all, while for the dc field we would have the uncertainty  = ? Experiment shows 
something substantially different: weak magnetic fields do penetrate into superconductors by a material-
specific London penetration depth L ~ 10-7-10-6 m,17  which is virtually frequency-independent until the 
skin depth s, measured in the same material in its “normal” state, i.e. the absence of superconductivity, 
becomes less than L. (This crossover happens typically at frequencies ~ 1013 s-1.) The smallness of L 

means that the magnetic field is pushed out of macroscopic samples at their transition into the 
superconducting state. 

 This Meissner-Ochsenfeld effect, discovered experimentally in 1933,18 may be partly understood 
using the following classical reasoning. When we discussed the physics of conductivity in Sec. 4.2, we 
implied that the current (and electric field) frequency   is either zero or sufficiently low. In the classical 
Drude reasoning (see Sec. 4.2), this is acceptable while  << 1, where  is the effective carrier 
scattering time participating in Eqs. (4.12)-(4.13). If this condition is not satisfied, we should take into 
account the charge carrier inertia; moreover, in the opposite limit  >> 1 we may neglect the scattering 
at all. Classically, we can describe the charge carriers in such a “perfect conductor” as particles that are 
accelerated by the electric field in accordance with the 2nd Newton law (4.11) at all times, 

      EFv
m

q

m


1
 ,     (6.33) 

so that the current density j = qnv they create changes in time as 

           Ej
m

nq 2

 .      (6.34) 

In terms of the Fourier amplitudes (see the previous section), this means 

                  Ej
m

nq
i

2

 .     (6.35) 

Comparing this formula with the relation j = E implied in the last section, we see that  we can use all 
its results with the following replacement: 

         



m

nq
i

2

 .      (6.36)  

This change replaces the characteristic equation (24) with  

      



niq

m
i

2

2

 ,     (6.37) 

i.e. replaces the skin effect with the field penetration by the following frequency-independent depth: 

17 Named to acknowledge the pioneering theoretical work of brothers F. and H. London – see below. 
18 It is hardly fair to shorten the name to just the “Meissner effect”, as it is frequently done, because of the 
reportedly crucial contribution made by R. Ochsenfeld, then W. Meissner’s student, into the discovery. 
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 .     (6.38) 

Superficially, this means that the field decay into the superconductor does not depend on frequency: 

         









x

tHtxH exp),0(),( ,    (6.39) 

explaining the Meissner-Ochsenfeld effect. 

 However, there are two problems with this result. First, for the parameters typical for good 
metals (q = -e, n ~ 1029 m-3, m ~ me,   0), Eq. (38) gives   ~ 10-8 m, a factor of 10-102 lower than the 
typical experimental values of L. Experiment also shows that the penetration depth diverges at T  Tc, 
which is not predicted by Eq. (38). Another, much more fundamental problem with Eq. (38) is that it has 
been derived for   >> 1. Even is we assume that somehow there are no collisions at all, i.e.   = , at 
  0 both parts of the characteristic equation (37) vanish, and we cannot make any conclusion about k. 
This is not just a mathematical artifact we could ignore. For example, let us place a non-magnetic metal 
at T > Tc into a static external magnetic field. The field will completely penetrate into the sample. Now 
let us cool it. As soon as the temperature drops below Tc, our calculations become valid, forbidding the 
penetration into the superconductor of any change of the field, so that the initial field would be “frozen” 
inside the sample. The experiment shows something completely different: as T is lowered below Tc, the 
initial field is being pushed out of the sample.  

 The resolution of these contradictions has been provided by quantum mechanics. As was 
explained in 1957 in a seminal work by J. Bardeen, L. Cooper, and J. Schrieffer (commonly referred to  
the BSC theory), superconductivity is due to the correlated motion of electron pairs, with opposite spins 
and nearly opposite momenta. Such Cooper pairs, each with the electric charge q = -2e and zero spin, 
may form only in a narrow energy layer near the Fermi surface, of certain thickness (T).  Parameter 
(T), which may be also considered as the binding energy of the pair, tends to zero at T  Tc, while at T 
<< Tc  it has a virtually constant value (0)  3.5 kBTc, of the order of a few meV for most 
superconductors. This fact readily explains the relatively low spatial density of the Cooper pairs: np(T) ~ 
n(T)/F ~ 1026 m-3. With the correction n  np, our Eq. (38) for the penetration depth becomes 

           .

2/1

2L 











Tnq

m

p
      (6.40) 

This expression diverges at T  Tc, and generally fits the experimental data reasonably well, at least for 
the so-called “clean” superconductors (with the mean free path l  v much longer that the Cooper pair 
size  - see below).   

 The smallness of the coupling energy (T) is also a key factor in the explanation of the 
Meissner-Ochsenfeld effect, as well as several macroscopic quantum phenomena in superconductors. 
Because of Heisenberg’s quantum uncertainty relation rp ~ , the Cooper-pair size (the so-called 
coherence length) is relatively large:   ~ r ~ /p ~ vF/(T) ~ 10-6 m. As a result, np3 >> 1, meaning 
that Cooper pairs are strongly overlapped in space. Now, due to their integer spin, Cooper pairs behave 
like bosons, which means in particular that at low temperature they exhibit the so-called Bose-Einstein 

London 
penetration  
depth 
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condensation onto the same energy level.19 This means that the frequency  = E/ of the time evolution 
of each pair’s wavefunction  = exp{-it} is the same, i.e. that the phases  of the wavefunctions, 
defined by equation 

           ie ,      (6.41) 

become equal, so that the current is carried not by individual Cooper pairs but rather their Bose-Einstein 
condensate described by a single wavefunction. Due to this coherence, the quantum effects (which are, 
in usual Fermi-liquids of single electrons, masked by the statistical spread of phases ), become very 
explicit – “macroscopic”. 

 To illustrate this, let us write the well-known quantum-mechanical formula for the probability 
current of a free, non-relativistic particle,20 

              c.c.
2

1
c.c.

2
    


i

mm

i
pj .   (6.42) 

Now let me borrow one result that will be proved later in the course (in Sec. 9.7) when we discuss the 
analytical mechanics of a charged particle moving in an electromagnetic field. Namely, in order to 
account for the magnetic field effects, particle’s kinetic momentum p, equal to mv (where v   dr/dt is 
particle’s velocity) has to be distinguished from its canonical momentum,21 

        ApP q .      (6.43) 

where A is the vector-potential of the field – see Eq. (5.27). In contrast with Cartesian components pj = 
muj of momentum p, the canonical momentum components are the generalized momenta corresponding 
to components rj of the radius-vector r, considered as generalized coordinates of the particle: Pj = 
L/vj, where L is the particle’s Lagrangian function. According to the general rules of transfer from 

classical to quantum mechanics,22 it is vector P whose operator (in the Schrödinger picture) equals -i, 
so that the operator of kinetic momentum p = P – qA is equal to -i - qA. Hence, the in order to 
account for the magnetic field effects, we should make the following replacement: 

             Aqii    .     (6.44) 

In particular, Eq. (42) has to be replaced with 

             c.c.
2

1
   Aj qi

mp  .    (6.45) 

This expression becomes more transparent if we take the wavefunction in form (41): 

19 A qualitative discussion of the Bose-Einstein condensation of bosons may be found in SM Sec. 3.4, though the 
full theory of superconductivity is more complex, because it describes the condensation taking place 
simultaneously with the formation of effective bosons (Cooper pairs). For a more detailed coverage of physics of 
superconductors, the reader may be referred, for example, to the already cited monograph by M. Tinkham, 
Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. 
20 See, e.g., QM Sec. 1.4, in particular Eq. (1.47). 
21 I am sorry to use traditional notations p and P for the momenta – the same symbols which were used for the 
electric dipole moment and polarization in Chapter 3. I hope there will be no confusion, because the latter notions 
are not used in this section. 
22 See, e.g., CM Sec. 10.1, in particular Eq. (10.26). 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 6           Page 12 of 32 

         





  Aj



 q

mp  2
.     (6.46) 

This relation means, in particular, that in order to keep j invariant, the gauge transformation (8)-(9) has 
to be accompanied by a simultaneous transformation of the wavefunction phase: 

      


q
 .      (6.47) 

It is fascinating that the quantum-mechanical wavefunction (more exactly, its phase) is not gauge-
invariant – meaning that you may change it in your mind – at will! Again, this does not change any 
observable (such as j or the probability density *), i.e. any experimental results. 

 For the electric current density of the whole superconducting condensate, Eq. (46) yields  

        
 







  Aj



 q

m

Tqn p  .     (6.48) 

This equation shows that this supercurrent may be induced by dc magnetic field alone and does not 
require any electric field. Indeed, for the simplest, 1D geometry shown in Fig. 2a, j(r) = j(x) nz, A(r) = 
A(x) nz, and /z = 0, so that the Coulomb gauge condition (5.48) is satisfied for any choice of the gauge 
function (x), and for the sake of simplicity we can choose it to provide (r)  const,23 so that 

      
 

Aj
m

Tnq p
2

 .     (6.49) 

 This is the so-called London equation, proposed (in a different form) by brothers F. and H. 
London in 1935 for a phenomenological description of the Meissner-Ochsenfeld effect. Combining it 
with Eq. (5.47), generalized for an arbitrary uniform media by the replacement 0  , we get 

              
 

AA
m

Tnq p
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 .     (6.50) 

This simple differential equation, similar in structure to Eq. (18), has a similar exponential solution, 
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exp)0()(,exp)0()(,exp)0()( , (6.51) 

that shows that the magnetic field and supercurrent penetrate into a superconductor only by the 
London’s penetration depth L, given by Eq. (40), regardless of frequency.24 By the way, integrating the 
last result through the penetration layer, and using Eqs. (34), (43) and the vector-potential definition, B 
= A (for our geometry, giving B(x) = dA(x)/dx = -LA(x)) we may check that the linear density J of 
the surface supercurrent still satisfies the universal relation (30).  

23 This is the so-called London gauge which, for our geometry, is also the Coulomb gauge. 
24 Since not all electrons of a superconductor form Cooper pairs, at any frequency   0 they provide Joule losses 
which are not described by Eq. (48). These losses become very substantial when frequency  becomes so high 
that the skin-effect length s of the material (as measured with superconductivity suppressed, say by high 
magnetic field) becomes less than L. For typical metallic superconductors, this happens at frequencies of a few 
hundred GHz, so that even for microwaves, Eq. (51) gives a fairly good description of the field penetration. 

Supercurrent  
density 
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 Let me hope that the physical intuition of the reader enables him or her to make the following 
semi-quantitative generalization of the quantitative solution (51) to superconductor sample of arbitrary 
shape: B and j may only penetrate into the sample by distances of the order of L(0). In particular, for 
samples much larger than L, the London theory gives the following “macroscopic” description of the 
Meissner-Ochsenfeld effect: j = 0 and B = 0 everywhere inside a superconductor. In this coarse 
description, the bulk superconductor sample behaves as an ideal diamagnet, with  = 0.25 In particular, 
we can use this analogy and the first of Eqs. (5.125) to immediately obtain the magnetic field 
distribution outside a superconducting sphere: 

           .cos
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000  









r

R
rHmmHB    (6.52) 

 Figure 3 shows the corresponding surfaces of equal potential m. It is evident that the magnetic 
field lines (normal to the equipotential surfaces) bend to become parallel to the superconductor’s 
surface. By the way, this pattern illustrates the answer to the question that might arise at making 
assumption (19): what happens to superconductors in a normal magnetic field? The answer is: the field 
is deformed outside the superconductor to provide Bn = 0 at the surface - otherwise, due to the continuity 
of Bn, the magnetic field would penetrate the superconductor, which is impossible. Of course this answer 
should be taken with a grain of salt: strong magnetic fields do penetrate into superconductors, destroying 
superconductivity (completely or partly), thus violating the Meissner-Ochsenfeld effect. Such a 
penetration by itself features  several interesting electrodynamic effects, for whose discussion we 
unfortunately do not have time.26 

  

 

 

 

 

 

 

 

 

 

6.4. Electrodynamics of macroscopic quantum phenomena 

 We have seen that for the ac magnetic field penetration, the quantum theory of superconductivity 
gives essentially the same result as the classical theory of a perfect conductor – cf. Eqs. (39) and (51) – 
with the “only” conceptual exception that the former theory extends the effect to dc fields. However, the 

25 Of course, this analogy sweeps under the rug the real physics of the Meissner-Ochsenfeld effect. In particular, 
in superconductors the role of the surface “magnetization currents” with effective density jef = M (see Fig. 5.11 
and its discussion) is played by the real, persistent surface supercurrents (48).  
26 The interested reader may be referred, e.g., to Chapter 5 of  M. Tinkham’s monograph cited above. 

Fig. 6.3. Surfaces of constant scalar 
potential m of magnetic field 
around a superconducting sphere of 
radius R >> L, placed into a weak 
uniform, vertical magnetic field. 
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quantum theory of superconductors is much more rich. For example, let us use Eq. (48) to derive the 
fascinating effect of magnetic flux quantization. Consider a closed ring made of a superconducting 
“wire” with a cross-section much larger than L

2 (Fig. 4a). 

 

 

 

 

 

  

  

 

 

 

From the last section’s analysis, we know that deep inside the wire the supercurrent is 
exponentially small. Integrating Eq. (48) along any closed contour C that does not approach the surface 
closer than a few L at any point, we get 

           0 
C C

d
q

d rA-r


 .     (6.53) 

The first integral, i.e. the difference of  in the initial and final points, has to be equal to either zero or 
an integer number of 2, because the change    + 2n does not change condensate’s wavefunction: 

                  ini ee' 2 .    (6.54) 

On the other hand, the second integral in Eq. (53) is just the magnetic flux  (1) through the contour - 
and, due to the Meissner-Ochsenfeld effect, through the superconducting ring as a whole. As a result, we 
get 

              ,...2,1,0,
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,   (6.55) 

i.e. the magnetic flux can only take values multiple of the flux quantum 0. This effect, predicted in 
1950 by the same Fritz London (who expected q to be equal to the electron charge -e), was confirmed 
experimentally in 1961,27  with q = 2e (so that in superconductors 0 = h/2e  2.0710-15 Wb). 
Historically, this observation gave a decisive support to the BSC theory of the Cooper pairs as the basis 
of superconductivity, which had been put forward just 4 years before.28  

27 Independently and virtually simultaneously by two groups: B. Deaver and W. Fairbank, and R. Doll and M. 
Näbauer, so that their reports were published back-to-back in Phys. Rev. Lett. 
28 Actually, the ring is not entirely necessary. In 1957, A. Abricosov used the Ginzburg-Landau equations (see 
below) to explain the counter-intuitive behavior of the so-called type-II superconductors, known experimentally 
as the Shubnikov phase since the 1930s. He showed that high magnetic field may penetrate into such 

Magnetic 
flux 
quantization 
 

Fig. 6.4. (a) Closed, flux-quantizing superconducting ring, (b) a ring cut with a narrow slit, 
and (c) a Superconducting QUantum Interference Device (SQUID). 
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 The flux quantization is just one of the so-called macroscopic quantum effects in 
superconductivity. Consider, for example, a superconducting ring interrupted with a very narrow slit 
(Fig. 4b). Integrating Eq. (48) along the current-free path from point 1 to point 2, along the dashed line 
in Fig. 4 (again, deeper than L(T) from the surface), we get 

        .Φ0 12

2
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q
d

q







    rA     (6.56) 

Using the flux quantum definition (55), this result may be rewritten as 

            



0

21

2 ,     (6.57) 

where   is called the Josephson phase difference. In contrast to each of the phases 1,2, their difference 
  is gauge-invariant, because it is directly related to the gauge-invariant magnetic flux.  

Can this   be measured? Yes, using the Josephson effect.29 In order to understand his prediction, 
let us take two (for the argument simplicity, similar) superconductors, connected with some sort of weak 
link, for example a tunnel barrier or a short normal-metal bridge, through that a small Cooper pair 
current can flow. (Such system of two coupled superconductors is now called a Josephson junction.) Let 
us think what this supercurrent I may be a function of. For that, the reverse thinking is helpful: let us 
imagine we can change current from outside; what parameter of the superconducting condensate can it 
affect? 

 If the current is weak, it cannot perturb the superconducting condensate density, proportional to 
2; hence it may only change the Cooper condensate phases 1,2. However, according to Eq. (41), the 
phases are not gauge-invariant, while the current should be, hence I may affect – or should be a function 
of - the phase difference   defined by Eq. (57). Moreover, just has already been argued during the flux 
quantization discussion, a change of any of 1,2 (and hence of ) by 2 or any of its multiples should not 
change the current. In addition, if the wavefunction is the same in both superconductors ( = 0), 
supercurrent should vanish due to the system symmetry. Hence function I() should satisfy conditions 

      I(0) =0,  I( + 2) = I().    (6.58) 

With this understanding, we should not be terribly surprised by the following Josephson’s result that for 
the weak link provided by weak tunneling,30 

                  sin)( cII  ,     (6.59) 

superconductors, whose coherence length  is smaller than the London’s penetration depth L(T), in the form of 
self-formed tubes surrounded by vortex-shaped supercurrents - the so-called Abrikosov vortices, with the 
superconductivity suppressed near the middle of each tube. This suppression makes each flux tube topologically 
equivalent to a superconducting ring, with the magnetic flux through it equal to one flux quantum, and its ends 
being magnetically similar to magnetic monopoles – see Sec. 5.6 above. 
29 It was predicted in 1961 by B. Josephson (then a PhD student!), and observed experimentally by several groups 
soon after that. 
30 For some other types of weak links, function I() may deviate from the sine form (59) rather considerably, still 
satisfying the general requirements (58). 
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where constant Ic, which depends on of the strength of the weak link and temperature, is called the 
critical current. 

 Let me show how such expression may be derived, for a narrow and short weak link made of a 
normal metal or a superconductor.31 Microscopic theory of superconductivity shows that, within certain 
limits, the Bose-Einstein condensate of Cooper pairs may be described by the following nonlinear  
Schrödinger equation32 

          22  offunction nonlinear  a 
2

1   rUqi
m

A .  (6.60) 

The first three terms of this equation are similar to those of the usual Schrödinger equation (which 
conserves the number of particles), while the nonlinear function in the last term describes the formation 
and dissolution of Cooper pairs, and in particular gives the equilibrium value of ns as a function of 
temperature. Now let the weak link size scale a be much smaller than both the Cooper pair size  and the 
London’s penetration depth L. The first of these relations (a << ) makes the first term in Eq. (60), that 
scales as 1/a2, much larger than all other terms, while the latter relation (a << L) allows one to neglect 
magnetic field effects, and hence drop term (-qA) from the parenthesis in Eq. (60), reducing it to just our 
familiar Laplace equation for the wavefunction: 

           02   .      (6.61) 

Since the weak coupling cannot change  in bulk superconducting electrodes, Eq. (61) may be solved 
with the following simple boundary conditions: 
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where r1 and r2 are some points well inside the corresponding superconductors, i.e. at distances much 
larger than a from the weak link center. It is straightforward to verify that the solution of this boundary 
problem for complex function   may be expressed as follows, 

           )(1)()( 11 rrr fefe
ii    ,    (6.63) 

via the real function f(r) that satisfies the Laplace equation and the following boundary conditions: 
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 Function f(r) depends on the weak link geometry and may be rather complicated, but we do not 

31 This derivation belongs to L. Aslamazov and A. Larkin, JETP Lett. 9, 87 (1969). If the reader is not interested 
in this topic, he or she may safely skip it, jumping directly to the text following Eq. (68). 
32 At T  Tc, where ns  0, the Taylor expansion of the nonlinear function in Eq. (60) may be limited to just one 
term proportional to 2  ns. In this limit, Eq. (60) is called the Ginzburg-Landau equation – see SM (4.58). 
Derived by V. Ginzburg and L. Landau in 1950 from phenomenological arguments (see, e.g., SM Sec. 4.3) , i.e. 
before the advent of the BSC theory, this simple equation, solved together with Eq. (48) and the Maxwell 
equations, may describe a very broad range of macroscopic quantum effects including the Abrikosov vortices, 
critical fields and currents, etc. – see, e.g., M. Tinkham’ monograph cited above.  
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need to know it to get the most important result. Indeed, plugging this solution into Eq. (48) (with term –
qA ignored as being negligibly small), we get 
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Integrating this relation over any cross-section S of the weak link, we arrive at Josephson’s result (59), 
with the following critical current: 
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 This expression may be readily evaluated via the resistance of the same weak link in the 
“normal” (non-superconducting) state, say at T  > Tc. Indeed, as we know from Sec. 4.3, the distribution 
of the electrostatic potential   at normal conduction also obeys the Laplace equation, with boundary 
conditions that may be taken in the form 
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Comparing the boundary problem for (r) with that for function f(r), we get  = Vf. This means that the 
gradient f, which participates in Eq. (66), is just (-E/V) = (-j/V). Hence the integral in that formula is 
just -I/V = -1/Rn, where Rn is the resistance of the Josephson junction in its normal state. As a result, 
Eq. (66) yields 
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 ,     (6.68) 

showing that the IcRn product does not depend on the junction geometry, though it does depend on 
temperature, vanishing, together with np(T), at T  Tc. (Well below the critical temperature, IcRn of a 
sufficiently short weak links is of the order of (0)/e, i.e. of the order of a few mV.) 

 Now let us see what happens if a Josephson junction is placed into the gap in a superconductor 
ring – see Fig. 4c. In this case, we can combine Eqs. (57) and (59), getting 

               
0

2sin



 cII .     (6.69) 

 This effect of periodic dependence of the current on flux is called the macroscopic quantum 
interference,33 while the system shown in Fig. 4b, a superconducting quantum interference device, 
abbreviated as SQUID (with all letters capital, please :-). The low value of the magnetic flux quantum 
0, and hence the high sensitivity of   to the magnetic field, allows using SQUIDs as ultrasensitive 
magnetometers. Indeed, for a superconducting ring of area ~1 cm2, one period of the change of 
supercurrent (69) is produced by magnetic filed change of the order of 10-11 T (10-7 Gs), while sensitive 
electronics allows to measure a tiny fraction of this period – limited by thermal noise at a level of the 

33 The name is due to the deep analogy between this phenomenon and the interference between two waves, to be 
discussed in detail in Sec. 8.4. 
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order of a few pT. This sensitivity allows measurements, for example, of the magnetic fields induced by 
the beating human heart, and even by brain activity, outside of the body.   

 An important aspect of the quantum interference is the so-called Aharonov-Bohm (AB) effect.34 
Let the magnetic field lines be limited to the central part of the SQUID ring, so that no appreciable 
magnetic field ever touches the superconducting ring material. (This may be done experimentally with 
very good accuracy, for example using high- magnetic cores – see their discussion in Sec. 5.6.) As 
predicted by Eq. (69), and confirmed by several careful experiments carried out in the mid-1960s,35 this 
restriction does not matter – the interference is observed anyway. This means that not only the magnetic 
field B, but also the vector-potential A represents physical reality, albeit quite a peculiar one – 
remember the gauge transformation?  

 Actually, the magnetic flux quantization (55) and the macroscopic quantum interference (69) are 
not completely different effects, but just two manifestations of the whole group of inter-related 
macroscopic quantum phenomena. In order to show that, one should note that if critical current Ic (or 
rather its product by loop’s self-inductance L) is high enough, flux  in the SQUID loop is due not only 
to the external magnetic field flux e, but also has a self-field component - cf. Eq. (5.61):36 

       
S

n rdBLI 2
extextext )(Φ  where,ΦΦ .   (6.70) 

Now the relation between  and ext may be found by solving this equation together with Eq. (69). 
Figure 5 shows this relation for several values of the dimensionless parameter   2LIc/0.  

  

 

 

 

 

 

 

 

 

 

34 For a more detailed discussion of the AB effect, which also takes place for single quantum particles, see, e.g., 
QM Sec. 3.2. 
35 Later, similar experiments were carried out with electron beams, and then even with “normal” (meaning non-
superconducting) solid-state conducting rings. In this case, the effect is due to interference of the wavefunction of 
a single charged particle (an electron) with itself, and if of course is much harder to observe that in SQUIDs. In 
particular, the ring size has to be very small, and temperature low, to avoid “dephasing” effects due to 
unavoidable interactions of the particles with environment.
36 The sign before LI would be positive, as in Eq. (5.61), if I was the current flowing into the inductance. 
However, in order to keep the sign in Eq. (69) intact, I should mean the current flowing into the Josephson 
junction, i.e. from the inductance, thus changing the sign of the term. 

Fig. 6.5. Function (ext) for SQUIDs 
with various values of the normalized LIc 

product. Dashed arrows show the flux 
leaps as the external field is changed. (The 
branches with d/dext < 0 are unstable.) 
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These plots show that if the critical current or (or the inductance) is low,   << 1, the self-effects 
are negligible, and the total flux follows the external field (i.e., ext) quite faithfully. However, at  > 1, 
the dependence (ext) becomes hysteretic, and at  >> 1 the positive-slope (stable) branches of this 
function are nearly flat, with the total flux values corresponding to Eq. (55). Thus, a superconducting 
ring closed by a high-Ic Josephson junction exhibits a nearly-perfect flux quantization.  

The self-field effects described by Eq. (70) create certain technical problems for SQUID 
magnetometry, but they are the basis for one more application of these devices: ultrafast computing. 
Indeed, Fig. 5 shows that at the values of  modestly above 1 (e.g.,    3), and within a certain range of 
applied field, the SQUID has two stable flux states that differ by   0 and may be used for coding 
binary 0 and 1. For practical superconductors (like Nb), the time of switching between these states (see 
dashed arrows in Fig. 4) are of the order of a picosecond, while the energy dissipated at such event may 
be as low as ~10-19 J. (This bound is determined not by device’s physics, by the fundamental 
requirement for the energy barrier between the two states to be much higher than the thermal fluctuation 
energy scale kBT, ensuring a sufficiently long information retention time.)  While the picosecond 
switching speed may be also achieved with some semiconductor devices, the power consumption of the 
SQUID-based digital devices may be 5 to 6  orders of magnitude lower, enabling VLSI circuits with 
100-GHz-scale clock frequencies and manageable power dissipation. Unfortunately, the range of 
practical application of these Rapid Single-Flux-Quantum (RSFQ) logic circuits is still narrow, due to 
the inconvenience of their deep refrigeration to temperatures below Tc.37 

Since we have already got the basic relations (57) and (59) describing the macroscopic quantum 
phenomena in superconductivity, let me mention in brief two other members of this group, called the 
Josephson effects. Differentiating Eq. (57) over time, and using the Faraday induction law (2), we get38 

        V
e

dt

d



2



.      (6.71) 

This famous phase-to-voltage relation should be valid regardless of the way how voltage V has been 
created,39 so let us apply Eqs. (59) and (71) to the simplest circuit with a non-superconducting source of 
dc voltage – see Fig. 6.  

  

 

 

 

 

 

   

37 For more on that technology, see, e.g., the review paper by P. Bunyk et al., Int. J. High Speed Electron. Syst. 
11, 257 (2001) and references therein. 
38 Since the induced e.m.f. Vind cannot drop on the superconducting path between the Josephson junction 
electrodes 1 and 2 (Fig. 3), it should equal to (-V), where V is the voltage across the junction. 
39 It may be also obtained from simple Schrödinger equation arguments – see, e.g., QM Sec. 2.2. 

Fig. 6.6. DC-voltage-biased Josephson junction. 
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If current I is below the critical value,  

         -Ic < I < +Ic,      (6.72) 

Eq. (59) allows phase  to have a time-independent value 

                
cI

I1sin  ,     (6.73) 

and hence, according to Eq. (71), a vanishing voltage drop across the junction: V = 0. This dc Josephson 
effect is not quite surprising – indeed, we have postulated from the very beginning that the Josephson 
junction may pass a certain supercurrent. Much more fascinating is the so-called ac Josephson effect that 
takes place if voltage across the junction has a nonvanishing average (dc) component V0. For simplicity, 
let us assume that this is the only voltage component: V(t) = V0 = const,40 then Eq. (71) may be readily 
integrated to give  = Jt + 0, where  

            0J

2
V

e


 .      (6.74) 

This result, plugged into Eq. (59), shows that supercurrent oscillates, 

           0Jsin)(   tII c ,     (6.75) 

with the Josephson frequency J  (74), which is proportional to the applied dc voltage. For practicable 
voltages, frequency fJ = J/2  corresponds to the GHz or even THz ranges, because the proportionality 
coefficient in Eq. (74) is very high: fJ/V0 = 2e/h  483 MHz/V.41 An important experimental fact is the 
universality of this coefficient. For example, in the mid-1980s, the group led by Prof. J. Lukens of our 
department proved that this factor is material-independent with the relative accuracy of at least 10-15. 
Very few experiments, especially in solid state physics, have ever reached such precision.   

 This fundamental nature of the Josephson voltage-to-frequency relation (74) allows an important 
application of the ac Josephson effect in metrology. Namely, phase locking the Josephson oscillations 
with an external microwave signal derived from an atomic frequency standards one can get the most 
precise dc voltage than from any other source. In NIST and other metrological institutions around the 
globe, this effect is used for the calibration of simpler “secondary” voltage standards that can operate at 
room temperature.42 

 

6.5. Inductors, transformers, and ac Kirchhoff laws 

 Let a wire coil (meaning either a single loop illustrated in Fig. 5.4b, or a series of such loops, 
such as one of the solenoids shown in Fig. 5.6) have size a that satisfies, at frequencies of our interest, 
the quasistatic limit condition a << . Moreover, let the coil’s self-inductance L be much larger than that 
of the wires connecting it to other components of our system: ac voltage sources, voltmeters, etc. (Since, 

40 In experiment, this condition is hard to implement, due to relatively high inductance of the current leads 
providing dc voltage supply. However, these complications do not change the main conclusion of the analysis. 
41 This 1962 prediction by B. Josephson was confirmed experimentally – implicitly (by phase locking of the 
oscillations with an external oscillator) in 1963, and explicitly (by the detection of microwave radiation) in 1967. 
42 For more on the Josephson effect and other macroscopic quantum phenomena in superconductivity, see, e.g., 
Chapters 6 and 7 in the monograph by M. Tinkham, which was cited above. 
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according to Eq. (5.75), (5.113), L scales as  the number N of wire turns squared, this is easier to achieve 
at N >> 1.) Then in a system consisting of such lumped induction coils and external wires (and other 
circuit elements such as resistors, capacitances, etc.), we may neglect the electromagnetic induction 
effects everywhere outside the coil, so that the electric field in those external regions is potential. Then 
the voltage V between coil’s terminals may be defined (as in electrostatics) as the difference of values of 
scalar potential  between the terminals, i.e. as integral 

     rE dV       (6.76) 

between the coil terminals along any path outside the coil. This voltage has to be balanced by the 
induction e.m.f. (2) in the coil, so that if the Ohmic resistance of the coil is negligible,43 we may write 

     
dt
d

V


 ,      (6.77) 

where  is the magnetic flux in the coil. If the flux is due to the current I in the same coil only (i.e. if it 
is magnetically uncoupled from other coils), we may use Eq. (5.70) to get the well-known relation 

          
dt
dI

LV  ,      (6.78) 

where the compliance with the Lenz sign rule is achieved by selecting the relations between the assumed 
voltage polarity and current direction as shown in Fig. 7a. 

 

 

 

 

 
  
 If similar conditions are satisfied for two magnetically coupled coils (Fig. 7b), then, in Eq. (77),  
we need to use Eqs. (5.69) instead, getting  
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where the repeating index is dropped for notation simplicity. Such systems of inductively coupled coils 
have numerous applications in electrical engineering and physical experiment.44 Probably the most 
important is the ac transformer (Fig. 7c) where both coils share a common soft-ferromagnetic core. As 
we already know, such material (with  >> 0) tries to not let any magnetic field lines out, so that the 
magnetic flux (t) in the core is nearly the same in each of its cross-sections. This gives 

     ,, 2211 dt

d
NV
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     (6.80) 

43 If the resistance is substantial, it may be represented, in calculations, by a separate lumped circuit element 
(resistor) connected in series with the coil. 
44 Starting from the pioneering experiments by M. Faraday - who invented such devices. 

Fig. 6.7. (a) Induction coil, (b) 
two inductively coupled coils, 
and (c) an ac transformer. 
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where N1,2 is the number of wire turns in each coil, so that the voltage ratio is completely determined by 
the N1/N2 ratio.  

 Now we may generalize, to the ac current case, the notion of an electric circuit, already 
discussed in Chapter 4 – see Fig. 4.3 reproduced in Fig. 8a below. Let not only wire inductances but also 
wire capacitances be negligible in comparison with those of compact (lumped) capacitances. Then we 
may present the circuit as the connection of lumped circuit elements with ideal (voltage- and charge-free 
wires), with the list of its circuit elements now including not only resistors and current sources (as in the 
dc case), but also induction coils (including magnetically coupled ones) and capacitors – see Fig. 8b.  

 

 

 

 

 

 

 

 
 
In the quasi-static limit, current through each wire is conserved, so that the “node rule”, i.e. the 

1st Kirchhoff law (4.7),  

           0
j

jI .      (6.81) 

remains valid. Also, if the electromagnetic induction effect is restricted to the interiors of lumped 
induction coils as discussed above, voltage drops Vk across each circuit element may be still presented, 
just as in dc circuits, as differences of potentials of the adjacent nodes, so that the “loop rule”, i.e. 2nd 
Kirchhoff law given by Eq. (4.8), 

          0
k

kV .      (6.82) 

is also valid. 

In contrast to the dc case, Eqs. (81) and (82) are now the (ordinary) differential equations. 
However, if all circuit elements are linear (as in the examples presented in Fig. 8b), these equations may 
be readily reduced to linear algebraic equations using the Fourier expansion. (In the most common case 
of sinusoidal ac sources, the final stage of Fourier series summation is unnecessary.) I do not have time 
to discuss even the simplest examples of such circuits, such as LC, LR, RC, and LRC loops and periodic 
structures,45 but my experience shows that the potential readers of these notes are well familiar with 
these problems from their undergraduate studies. Let me only emphasize again that the standard ac 

45 Interestingly, these effects include the wave propagation in periodic LC circuits, despite still staying within the 
quasistatic approximation! However, within this approximation, speed 1/(LC)1/2 of these waves is much lower 
than speed 1/()1/2 of electromagnetic waves in the surrounding medium – see the next chapter. 

Fig. 6.8. (a) Typical ac system obeying ac Kirchhoff 
laws in the quasistatic approximation, and (b) the 
simplest circuit elements. 
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circuit theory is only valid within the quasistatic limit a << , and only under the condition of the 
electric and magnetic field confinement inside lumped circuit elements. 

 

6.6. Displacement currents 

 The electromagnetic induction is not the only new effect arising in non-stationary 
electrodynamics. Indeed, though Eqs. (16) are adequate for the description of quasistatic phenomena, a 
deeper analysis shows that one of these equations, namely   H = j, cannot be exact. To see that, let us 
take the divergence of its both sides of this equation: 

                 jH   .     (6.83) 

But, as the divergence of any curl,46 the left hand part should equal zero. Hence we get 

          0 j .      (6.84) 

This is fine in statics, but in dynamics this equation forbids any charge accumulation, because according 
to the continuity relation (4.5),  

        
t





j .      (6.85) 

 This discrepancy had been recognized by James Clerk Maxwell who suggested, in 1864, a way 
out of this contradiction. If we generalize the equation for   H by adding to term j (that describes real 
currents) the so-called displacement current term, 

          
td 




D
j ,      (6.86) 

(that of course vanishes in statics), then the equation takes the form 

         
td 




D
jjjH .     (6.87) 

In this case, due to equation D = ,  the divergence of the right hand part equals zero due to the 
continuity relation (4.5), and the discrepancy is removed.  

 This conclusion, and equation (87), are so important that it is worthwhile to have one more look 
at its derivation, using a particular “electrical engineering” model shown in Fig. 9.47 Neglecting the 
fringe field effects, we may use Eq. (4.1) to describe the relation between current I flowing through a 
wire and the electric charge Q of the capacitor:48  

46 Again, see MA Eq. (11.2) if you need. 
47 No physicist should be ashamed of doing this. J. C. Maxwell himself has arrived at his equations with a heavy 
use of mechanical engineering arguments. (His main book, A Treatise of Electricity and Magnetism, is full of 
drawings of gears and levers.) More generally, the whole history of science teaches us that snobbishness toward 
engineering and other “not-a-real-physics” disciplines is a sure way toward producing nothing of either practical 
value or fundamental importance. In real science, any method leading to novel, correct results should be welcome. 
48 This is of course just the integral form of the continuity equation (85). 
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           I
dt

dQ
 .      (6.88) 

Now let us consider a closed contour C drawn around the wire. (Solid points in Fig. 9 show the places 
where the contour intercepts the plane of drawing.) This contour may be seen as either the line limiting 
surface S1 (crossed by the wire) or the line limiting surface S2 (avoiding such crossing by passing 
through capacitor’s gap). Applying the macroscopic Ampère law (5.117) to the former surface, we get 
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Irdjd n
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2rH ,     (6.89) 

while for the latter surface the same law gives a different result, 

            
C S

rdjd n 0

2
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for the same integral. This is just an integral-form manifestation of the discrepancy outlined above, but it 
shows clearly how serious the problem is (or rather it was - before Maxwell). 

 

 

 

 

 

 

 

 

 

  Now let us see how the introduction of the displacement currents saves the day, considering for 
the sake of simplicity a plane capacitor of area A, with a constant electrode spacing. In this case, as we 
already know, the field inside it is uniform, with D = , so that the total capacitor’s charge Q = A = 
AD, and current (88) may represented as 
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So, instead of Eq. (90), the modified Ampère law gives 
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i.e. the Ampère integral becomes independent of the choice of the (imaginary!) surface limited by 
contour C – as it should. 
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Fig. 6.9. The Ampère law applied to a recharged capacitor.  
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6.7. Finally, the full Maxwell equation system 

. This is a very special moment in the course: with the displacement current introduction, we have 
finally arrived at the full set of macroscopic Maxwell equations for time-dependent fields,49 

          ,,0 j
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     (6.93a) 

      ,0 ,  BD        (6.93b) 

whose validity has been confirmed in by an enormous body of experimental data.50 The most striking 
feature of these equations is that, even in the absence of (local) charges and currents, when all the 
equations become homogeneous,  

              ,,
tt 








D

H
B

E      (6.94a) 
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they still describe something very non-trivial: electromagnetic waves, including light.51 Indeed, one can 
interpret Eqs. (94a) in the following way: the change of magnetic field creates, via the Faraday induction 
effect, a vortex (divergence-free) electric field, while the dynamics of the electric field, in turn, creates a 
vortex magnetic field via the Maxwell’s displacement currents.  

 We will carry out a detailed quantitative analysis of the waves in the next chapter, but it is easy 
(and very instructive) to use the Maxwell equations to estimate their velocity v and the field amplitude 
ratio E/H in a medium with D = E, B = H, and j = 0. Indeed, let the solution of these equations, in a 
uniform, linear medium have a time period T, and hence the wavelength  = vT. Then the magnitude of 
the left-hand part of the first of Eqs. (94a) is of the order of E/ ~ E/vT, while that of its right-hand part 
may be estimated as B/T = H/T. Using similar estimates for the second of Eqs. (94a), we arrive at the 
following two requirements for the E/H ratio:52 
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In order to insure the compatibility of these two relations, the wave speed should satisfy the estimate 
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v ,      (6.96) 

reduced to v ~ 1/(00)
1/2  c in free space, while the ratio of the electric and magnetic field amplitudes 

should be of the following order: 

49 This vector form of the equations, magnificent it its symmetry and simplicity, was developed in 1884-85 by O. 
Heaviside, with substantial contributions by H. Lorentz. (The original Maxwell’s result, circa 1861, looked like a 
system of 20 equations for Cartesian components of the vector and scalar potentials.) 
50 Despite numerous efforts, no other corrections (e.g., additional terms) to Maxwell equations have been ever 
found, and these equations are still considered exact within the range of their validity, i.e. while the electric and 
magnetic fields may be considered classically. Moreover, even in quantum case, these equations are believed to 
be strictly valid as relations between the Heisenberg operators of the electric and magnetic field. 
51 Let me emphasize that this is only possible due to the “displacement current” term D/t. 
52 The fact that T cancels shows (or rather hints) that these estimates are valid for waves of arbitrary frequency.   
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In the next chapter we will see that these are indeed the exact results for a plane electromagnetic wave. 

 Now let me fulfill the promise given in Sec. 2 and establish the validity limits of the quasistatic 
approximation (16). For that, let the spatial scale of our system be a, generally unrelated to wavelength 
 = vT, and carry real currents j producing certain magnetic field H. Then, according to Eqs. (94a), this 
magnetic field Faraday-induces electric field E ~ Ha/T , whose displacement currents, in turn, produce 
an additional magnetic field with magnitude 
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Hence, at a << , the displacement current effect is indeed negligible. 

 Before going after the analysis of the full Maxwell equations in particular situations (that will be 
the main goal of all the next chapters of this course), let us have a look at the energy balance they yield 
for a certain volume V - that may include both charged particles and the electromagnetic field. Since, 
according to Eq. (5.10), the magnetic field does no work on charged particles even if they move, the 
total power P  being transferred from the field to the particles inside the volume is due to the electric 
field alone: 

          Ej   ppP ,3

V

rd ,     (6.99) 

where I have used Eq. (4.38). Expressing j from the corresponding Maxwell equation of system (93), 
and plugging it into Eq. (99), we get 
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 Let us pause here for a second, and transform the divergence of vector EH using the well-
known vector algebra identity:53 

               HEEHHE   .    (6.101) 

The last term in the right-hand part of this equation is exactly the first term in the square brackets of Eq. 
(100), so that we can rewrite that formula as 
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However, according to the Maxwell equation for   E, it is equal to - B/t, so that the second term in 
the square brackets of Eq. (102) equals -HB/t and, according to Eq. (5.128), is just the (minus) time 
derivative of the magnetic energy per unit volume. Similarly, according to Eq. (3.82), the third term 
under the integral is the minus time derivative of the electric energy per unit volume. Finally, we can use 
the divergence theorem to transform the integral of the first term to a 2D integral over the surface S 

53 See, e.g., MA Eq. (11.7) with f = E and g = H. 
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limiting volume V. As the result, we get the so-called Poynting theorem54 for the power balance in the 
system: 
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Here u is the density of the total (electric plus magnetic) energy of the electromagnetic field, with 

             BHDE  u ,              (6.104a) 

so that for an isotropic, linear, and dispersion-free medium, with D(t) = E(t), B(t) = H(t), 
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,             (6.104b) 

and S is the Poynting vector defined as55 

         HES  .      (6.105) 

 The first integral in Eq. (103) is evidently the net change of the energy of the system (particles + 
field) in unit time, so that the second (surface) integral is certainly the power flowing out from the 
system through the surface, and it is tempting to interpret the Poynting vector S locally, as the power 
flow density at the given point.56 In many cases such a local interpretation of vector S is legitimate; 
however, in some cases it may lead to wrong conclusions. Indeed, let us consider a simple system shown 
in Fig. 10: a planar capacitor placed into a static and uniform external magnetic field so that the electric 
and magnetic fields are mutually perpendicular. In this static situation, no charges are moving, both p 
and /t equal to zero, and there should be no power flow in the system. However, Eq. (105) shows that 
the Poynting vector is not equal to zero inside the capacitor, being directed as shown in Fig. 10.  

 

  

 

 

  

 From the point of view of our only unambiguous corollary of the Maxwell equations, Eq. (103), 
there is no contradiction here, because the fluxes of vector S through the walls of any volume V, for 
example the side walls of the volume shown with dashed lines in Fig. 10, are equal and opposite (and 
they are zero for other faces of this rectilinear volume), so that the total flux of the Poynting vector 

54 Called after J. Poynting, though this fact was independently discovered by O. Heaviside, while a similar 
expression for the intensity of mechanical elastic waves had been derived earlier by N. Umov.  
55 Actually, an addition to S of the curl of an arbitrary vector function f(r, t) does not change Eq. (103).  Indeed, 
we may use the divergence theorem to transform the corresponding change of the surface integral in Eq. (103) to a 
volume integral of scalar function (f) that equals zero at any point – see, e.g., MA Eq. (11.2). 
56 Later in the course we will show that the Poynting vector is also directly related to the density of momentum of 
the electromagnetic field. 
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Fig. 6.10. The Poynting vector paradox. 
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equals zero, as it should. It is, however, useful to recall this example each time before giving the local 
interpretation to vector S. 

 Finally, to complete the initial discussion of the Maxwell equations,57 let us rewrite them in 
terms of potentials A and , because this is more convenient for the solution of some (though not all!) 
problems. Even when dealing with a more general system (93) of Maxwell equations than before, Eqs. 
(7) and (5.27),   

     ,AB,
A

E 



 
t

     (6.106) 

are still used as potential definitions. It is straightforward to verify that with these definitions, two 
homogeneous Maxwell equations (93b) are satisfied automatically. Plugging Eqs. (106) into the 
inhomogeneous equations (93a), and considering, for simplicity, a linear, uniform medium with 
frequency-independent  and , we get 
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 This is a more complex result than what we would like to get. However, let us select a special 
gauge that is frequently called (especially for the free space case, when v = c) the Lorenz gauge 
condition58 

              ,0




t

A      (6.108) 

which is a natural generalization of the Coulomb gauge (5.48) for time-dependent phenomena. With this 
condition, Eqs. (107) are reduced to a simpler, beautifully symmetric form:59 
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where v2  1/.60  

57 We will return to their general discussion (in particular, to the analytical mechanics of the electromagnetic 
field, and its stress tensor) in Sec. 9.8, after we have got equipped with the special relativity theory. 
58 This condition, named after L. Lorenz, should not be confused with the Lorentz invariance condition of the 
relativity theory, due to H. Lorentz (note the names’ spelling) – see Sec. 9.4. 
59 Note that Eqs. (109) are essentially a set of 4 similar equations for 4 scalar functions (namely,  and three 
Cartesian components of vector A) and thus clearly invite the 4-component vector formalism of the relativity 
theory - which will be discussed in Chapter 9. 
60 Here I have to mention in passing the so-called Hertz vector potentials e and m (whose introduction may be 
traced to at least the 1904 work by E. Whittaker). They may be defined by the following relations:  
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 If  and A depend on just one spatial coordinate, say z, in a region without field sources:  = 0, j 
= 0,  Eqs. (109) are reduced to the well-known 1D wave equations 

              

0
1

,0
1

2

2

22

2

2

2

22

2

















tvz

tvz

AA



     (6.110) 

describing waves propagating with velocity v. Note that due to the definitions of constants 0 and 0, in 
free space v is just the speed of light: 

      
 

cv 
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.     (6.110) 

Historically, the experimental observation of relatively low-frequency (GHz-scale) electromagnetic waves 
and the proof that their speed in free space is equal to that of light, was the decisive proof of Maxwell’s 
theory.61 A detailed study of this most important physical phenomenon is the main goal of the next 
chapters of this course. 

 

6.8 Exercise problems 

6.1. Prove that the electromagnetic induction e.m.f. Vind  in a 
conducting loop may be measured: 

 (i) by measuring the current I = Vind/R induced in the closed loop with 
Ohmic resistance R, or 
 (ii) using a voltmeter inserted into the loop – see Fig. on the right. 
 
 
 6.2. The magnetic flux  that pierces a plane, round, uniform, 
resistive ring is being changed in time, while the magnetic field outside 
of the ring is negligibly low. A voltmeter is connected to a part the ring 
as shown in Fig. on the right. What would the voltmeter show?  

  

 6.3. A weak, uniform magnetic field B is applied to an axially-symmetric permanent magnet, 
with a dipole magnetic moment m directed along its symmetry axis, rapidly rotating about the same 
axis, with an angular momentum L. Calculate the electric field resulting from field’s application, and 
formulate the conditions of your result’s validity. 

 

which make the Lorenz gauge condition (108) automatically satisfied. These potentials are especially convenient 
for the solution of problems in which the electromagnetic field is excited by external sources characterized by 
externally fixed electric and magnetic polarizations Pext and Mext - rather than fixed charge and current densities  
and j. Indeed, it is straightforward to check that both e and m satisfy equations similar to Eqs. (109), but with 
the right-hand parts equal to, respectively, -Pext and -Mext. 
61 This was first accomplished in 1886 by H. Hertz, using specially designed electronic circuits and antennas. 
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6.4. Use the electromagnetic induction law (5) to derive Eq. (5.128) for the magnetic field 
energy variation. 

 
6.5. A uniform, static magnetic field B is applied along the axis of a 

long round pipe of a radius R, and a very small thickness , made of a 
material with Ohmic conductance . A sphere of mass M and radius R’ < R, 
made of a linear magnetic with permeability  >> 0, is launched, with an 
initial velocity v0, to fly ballistically along pipe’s axis – see Fig. on the 
right. Use the quasistatic approximation to calculate the distance the sphere 
would pass before it stops. Formulate conditions of validity of your result.  
 
 6.6. AC current of frequency  is being passed through a long uniform wire with a round cross-
section of radius R that is comparable with the skin depth s. In the quasistatic approximation, find the 
current density distribution across the wire. Analyze the limits R << s and R >>  s. 
 
 6.7. A very long, round cylinder of radius R, made of a uniform Ohmic 
conductor with conductivity  and magnetic permittivity , has been placed into 
a uniform ac magnetic field Hext = H0cost, directed along its symmetry axis – 
see Fig. on the right. Calculate the spatial distribution of the magnetic field’s 
amplitude, and in particular its value on cylinder’s axis. Spell out the last result 
in the limits of relatively small and large R. 

 Hint: As shortcuts, you are welcome to reuse parts of the solution of the 
previous problem. 
 
 6.8.* Define and calculate an appropriate spatial-temporal Green’s function for Eq. (20), and use 
this function to analyze the dynamics of propagation of the external magnetic field, suddenly turned on 
at t = 0 and then left constant: 

 








,0at  ,

,0at    ,0
,0

0 tH

t
txH  

into an Ohmic conductor occupying half-space x > 0 – see Fig. 6.2. 

 Hint: Try to use a function proportional to exp{-(x – x’)2/2(x)2}, with a suitable time 
dependence of parameter x, and a properly selected pre-exponential factor. 
 
 6.9. Solve the previous problem using the variable separation method, and compare the results. 
 
 6.10. A small, planar wire loop, carrying current I, is located far from a plane surface of a 
superconductor. Within the “macroscopic” description of superconductivity (B = 0), find: 

 (i) the energy of the loop-superconductor interaction, 
 (ii) the force and torque acting on the loop, 
   (iii) the distribution of supercurrents on the superconductor surface. 
 

R R'M , B
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0v
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 6.11.  A straight, uniform magnet of  length 2l, cross-section area A 
<< l2, and mass m, with a permanent longitudinal magnetization M0, is 
placed over a horizontal surface of a superconductor – see Fig. on the 
right. Within the macroscopic model of the Meissner-Ochsenfeld effect, 
find the stable equilibrium position of the magnet. 
 
 6.12. A plane superconducting wire loop, of area A and 
inductance L, may rotate, without friction, about a horizontal axis 0 (in 
Fig. on the right, perpendicular to the plane of drawing) passing 
through its center of mass. Initially the loop was horizontal (with  = 0), 
and carried supercurrent I0 in such direction that its magnetic dipole 
vector was directed down. Then a uniform magnetic field B, directed 
vertically up, was applied. Find all possible equilibrium positions (angles ) of the loop, analyze their 
stability, and give a physical interpretation of the results. 
 
 6.13. Use the London equation to analyze the penetration of external magnetic field into a thin (t 
~ L), planar superconductor  film whose plane is parallel to the field.  
 
 6.14. Use the London equation to calculate the distribution of supercurrent density j across the 
circular cross-section (with radius R ~ L) of a long, straight superconducting wire carrying dc current I.  
 
 6.15.* Use the London equation to calculate the 
inductance (per unit length) of a long, uniform superconducting 
strip placed close to the surface of a similar superconductor – 
see Fig. on the right, which shows the structure’s cross-section. 

Hint: Start from thinking how is the supercurrent 
distributed along the surfaces of the strip and the bulk superconductor. 
 
 6.16. Analyze the magnetic field shielding by a superconducting film of small thickness t << L, 
by calculating the penetration of the field induced by current I flowing in a thin wire which runs  parallel 
to a wide, plane thin film, at distance d >> t from it, into the half-space behind the film. 

 

 6.17. Calculate the self-inductance of a superconducting cable with a 
round cross-section (see Fig. on the right) in the following limits: 

  (i) L << a, b, c - b, and 
 (ii) a << L << b, c - b. 

  

 

 6.18. Use Eqs. (59) and (71) to calculate the energy of a Josephson junction, and the full energy 
of the SQUID shown in Fig. 4c. 
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 6.19. Analyze the possibility of wave propagation in a long, 
uniform chain of lumped inductances and capacitances – see Fig. on 
the right. 

 Hint: Readers without prior experience with electromagnetic 
wave analysis may like to use a substantial analogy between this effect and mechanical waves in a 1D 
chain of elastically coupled particles.62 
 
 6.20. A sinusoidal e.m.f. of amplitude V0 and frequency  
is applied to an end of a long chain of similar, lumped resistors 
and capacitors (see Fig. on the right). Calculate the law of decay 
of the rf oscillation amplitude in the chain. 
 
 6.21. Calculate the pressure exerted by the magnetic field B inside a magnetic-free solenoid of 
length l, cross-section area A << l2 and N turns, on its “walls” (windings), and the force exerted by the 
field on solenoid’s ends. Give a physical interpretation of the direction of these forces. 

 
6.22. In Sec. 6 we have seen that the displacement current concept allows one to generalize the 

Ampère law to time-dependent processes as  

 



S

nS

C

rdD
t

Id 2rH . 

 We also have seen that such generalization makes Hdr over the 
contour C, which was shown in Fig. 9 (see also Fig. on the right), 
independent of the choice of surface S limited by the contour. However, it 
may look like the situation is different for contour a C’ drawn inside the 
capacitor. Indeed, if contour’s radius  is much  larger than the capacitor’s 
thickness d, the magnetic field H, created by the linear current I of the 
contour line is virtually the same as that of a continuous wire, and hence 
integral Hdr along contour C’ is apparently the same as that along contour 
C, while the magnetic flux Dnd

2r through the surface S’ limited by contour 
C’ is evidently smaller, while IS’ = IS = 0, so that the above equation seems 
invalid. Resolve the paradox, for simplicity considering an axially-
symmetric system. 

62 See, e.g., CM Sec. 5.3. 
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Chapter 7. Electromagnetic Wave Propagation 

This (long!) chapter focuses on the most important effect that follows from the time-dependent Maxwell 
equations, namely the electromagnetic waves, at this stage avoiding a discussion of their origin, i.e. 
radiation. I start from  the simplest, plane waves in a uniform and isotropic media. The next step is a 
discussion non-uniform systems, in particular those with sharp boundaries between different materials, 
which bring in such new effects as wave reflection and refraction. Then I will proceed to the structure of 
electromagnetic waves propagating along various long, cylindrical structures, called transmission lines 
- such as coaxial cables, waveguides, and optical fibers. In the end of the chapter, electromagnetic 
oscillations in final-length fragments of such lines, serving as resonators, are also discussed. 

 

7.1. Plane waves 

 Let us start from considering a spatial region that does not contain field sources ( = 0, j = 0), 
and is filled with a linear, uniform, isotropic medium, which obeys Eqs. (3.38) and (5.110): 

               HBED   , .     (7.1) 

Moreover, let us assume for a minute that these material equations hold for all frequencies of interest. 
As was already shown in Sec. 6.7, in this case the Lorenz gauge condition (6.108) allows the Maxwell 
equations to be recast into wave equations (6.110) for the vector and scalar potentials. However, for 
most our purposes it is more convenient to use directly the homogeneous Maxwell equations (6.94) for 
the electric and magnetic fields - which are independent of the gauge choice. After the elementary 
elimination of D and B using Eq. (1), 1 these equations take a simple, symmetric form 
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       ,0E       .0H      (7.2b) 

Now, taking the curl () of each of Eqs. (2a), and using the vector algebra identity (5.31), whose first 
term, for both E and H, vanishes due to Eqs. (2b), we get similar wave equations for the electric and 
magnetic fields: 
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where parameter v is defined by relation  

          

12 v .      (7.4) 

with v2 = 1/00  c2 in free space. 

1 Though B rather then H is the actual (microscopically-averaged) magnetic field, it is mathematically more 
convenient (just as in Sec. 6.2) to use the latter vector in our current discussion, because at sharp media 
boundaries, H obeys the boundary condition (5.118) similar to that for E – see Eq. (3.47). 
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  Two vector equations (3) are of course six similar equations for three Cartesian components of 
two vectors E and H. Each of these equations allows, in particular, the following solution,  

         ),( vtzff        (7.5) 

where z is the Cartesian coordinate along a certain (arbitrary) direction n. This solution describes a 
specific type of a wave, i.e. a certain field pattern moving, without deformation, along axis z, with 
velocity v. According to Eq. (5), each variable f  has the same value in each plane perpendicular to the 
direction n of wave propagation, hence the name – plane wave. 

 According to Eqs. (2), the independence of the wave equations (3) for vectors E and H does not 
mean that their plane-wave solutions are independent. Indeed, plugging solution (5) into Eqs. (2a), we 
get  

             nHE
En

H 


 Z
Z

  i.e., ,    (7.6) 

where constant Z is defined as 

               
2/1
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Z .     (7.7) 

 The vector relation (6) means, first of all, that vectors E and H are perpendicular not only to 
vector n (such waves are called transverse), but also to each other (Fig. 1) - at any point of space and at 
any time instant.  

 

 

 

 

 

 

 Second, the field magnitudes are related by constant Z, called the wave impedance of the 
medium. Very soon we will see that the wave impedance plays a pivotal role in many problems, in 
particular at the wave reflection from the interface between two media. Since the dimensionality of E, in 
SI units, is V/m, and that of H is A/m,  Eq. (7) shows that Z has the dimensionality of V/A, i.e. ohms 
().2 In particular, in free space, 

       Ω377104 7
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.    (7.8) 

 Now plugging Eq. (6) into Eqs. (6.104b) and (6.105), we get:  

      22 HEu   ,     (7.9a) 

2 In Gaussian units, E and H have the same dimensionality (in particular, in a free-space wave, E = H), making the 
(very useful) notion of the wave impedance less manifestly exposed - and in some textbooks not mentioned at all. 
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so that, according to Eqs. (4) and (7), wave’s energy and power densities are universally related as                       

           uvnS  .      (7.9c) 

 In the view of the Poynting vector paradox discussed in Sec. 6.7 (see Fig. 6.10), one may wonder 
whether this expression may be interpreted as the actual density of power flow. In contrast to the static 
situation shown in Fig. 6.7, that limits the electric and magnetic fields to a vicinity of their sources, 
waves may travel far from them. As a result, they can form wave packets of finite length in free space – 
see Fig. 2. 

 

 

 

 

 

 

 

 

 

 Let us apply the Poynting theorem (6.103) to the cylinder shown by dashed lines in Fig. 2, with 
one lid inside the wave packet, and another lid in the region already passed by the wave. Then, 
according to Eq. (6.103), the rate of change of the full energy E inside the volume is dE/dt = -SA (where 
A is the lid area), so that S may be indeed interpreted as the power flow (per unit area) from the volume. 
Making a reasonable assumption that the finite length of a sufficiently long wave packet does not affect 
the physics inside it, we may indeed interpret the S given by Eq. (9) as the power flow density inside a 
plane electromagnetic wave. 

 As we will see later in this chapter, the free-space value Z0 of the wave impedance, given by Eq. 
(8), establishes the scale of wave impedances of virtually all wave transmission lines, so we may use is 
and Eq. (9) to get some sense of how different are the electric and magnetic field amplitudes in the 
waves, on the scale of typical electrostatics and magnetostatics experiments. For example, according to 
Eqs. (9), a wave of a modest intensity S = 1 W/m2 (the power density we get from a usual electric bulb a 
few meters away from it) has E ~ (SZ0)

1/2 ~ 20 V/m, quite comparable with the dc field created by an 
AA battery right outside it. On the other hand, the wave’s magnetic field H = (S/Z0)

1/2  0.05 A/m. For 
this particular case, the relation following from Eqs. (1), (4), and (7),   
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gives B = 0H = E/c ~ 710-8T, i.e. a magnetic field thousand times less than the Earth field, and about 8 
orders of magnitude lower than the field of a typical permanent magnet. A possible interpretation of this 
huge difference is that the scale of magnetic fields B ~ E/c in the waves is “normal” for 

n

Fig. 7.2. Interpreting the Poynting vector 
in  an electromagnetic wave. 
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electromagnetism, while that of permanent magnet fields is abnormally high, because they are due to the 
ferromagnetic alignment of electron spins, essentially quantum objects – see the discussion in Sec. 5.5. 

 As soon as  and   are simple constants, wave speed v is also constant, and Eq. (5) is valid for 
an arbitrary function f  - defined by either initial or boundary conditions. In plain English, a medium 
with frequency-independent  and   supports propagation of plane waves with an arbitrary waveform 
without either decay (attenuation) or deformation (dispersion). However, for any real medium but pure 
vacuum, this approximation is valid only within limited frequency intervals. We will discuss the effects 
of attenuation and dispersion in the next section and see that all our prior results remain valid even in 
that general case, provided that we limit them to single-frequency (i.e. sinusoidal, or monochromatic) 
waves. Such waves may be most conveniently presented as3 

           
 

,Re 



  tkzieff 

      (7.11) 

where f is the complex amplitude of the wave, and k is its wave number (the magnitude of wave vector 
k  nk), sometimes also called the spatial frequency. The last term is justified by the fact, evident from 
Eq. (11), that k is related to the wavelength  exactly as the usual (“temporal”) frequency  is related to 
the time period T: 
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      (7.12) 

Requiring Eq. (11) to be a particular form of Eq. (5), i.e. the argument (kz - t)  k[z – (/k)t] to be 
proportional to (z – vt), so that /k = v, we see that the wave number should equal 

                 2/1
v

k ,     (7.13) 

showing that in this “dispersion-free” case the dispersion relation (k) is linear.  

 Now note that Eq. (6) does not claim mean vectors E and H retain their direction in space. (The 
simple case when they do is called the linear polarization of the wave.)  Indeed, nothing in the Maxwell 
equations prevents, for example, joint rotation of this pair of vectors around the fixed vector n, while 
still keeping all these three vectors perpendicular to each other at all times. An arbitrary rotation law, or 
even an arbitrary constant frequency of such rotation, however, would violate the single-frequency 
(monochromatic) character of the elementary sinusoidal wave (11). In order to understand what is the 
most general type of polarization the wave may have without violating that condition, let us present two 
Cartesian components of one of these vectors (say, E) along any two fixed axes x and y, perpendicular to 
each other and axis z (i.e. vector n), in the same form as used in Eq. (11): 
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 ReRe , .   (7.14) 

In order to keep the wave monochromatic, complex amplitudes Ex and Ey must be constant; however,  
they may have different magnitudes and an arbitrary phase shift between them. 

3 Due to the linearity of Eqs (2), operator Re in Eq. (11) may be ignored until the end of almost any calculation. 
Because of that, the exponential presentation of monochromatic variables is more convenient than manipulation 
with sine and cosine functions. (See also CM Sec. 4.1.)  
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 In the simplest case when the arguments of the complex amplitudes are equal, 

                


ieEE yxyx ,,  .     (7.15) 

the real field components have the same phase: 

               )cos(,,   tkzEE yxyx ,     (7.16) 

so that their ratio is constant in time – see Fig. 3a. This means that the wave is linearly polarized, within 
the plane defined by relation  

       
x

y

E

E



 tan .      (7.17) 

 

 

 

 

 

 

 

 

 

 

 Another simple case is when the moduli of the complex amplitudes E x and E y are equal, but 
their phases are shifted by +/2 or -/2: 
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In this case 
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This means that on the [x, y] plane, the end of vector E moves, with wave’s frequency , either 
clockwise or counterclockwise around a circle – see Fig. 3b:  

       )()(   tt  .     (7.20) 

 Such waves are called circularly-polarized.4 These particular solutions of the Maxwell equations 
are very convenient for quantum electrodynamics, because single electromagnetic field quanta with a 

4 In the convention that dominates research and engineering literature (but unfortunately is not universal), the 
wave is called right-polarized (RP) if it is described by the lower sign in Eqs. (18)-(20), and left-polarized (LP) in 
the opposite case. Another popular term for these cases is the “waves of negative / positive helicity”. 
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Fig. 7.3. Time evolution of the electric field vector in (a) linearly-polarized, (b) circularly-polarized, and 
(c) elliptically-polarized waves.
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certain (positive or negative) spin direction may be considered as elementary excitations of the 
corresponding circularly-polarized wave. (This fact does not exclude, from the quantization scheme, 
waves of other polarizations, because any monochromatic wave may be presented as a linear 
combination of two circularly-polarized waves with opposite helicities, just as Eqs. (14) present it as a 
linear combination of two linearly-polarized waves.) 

    Finally, in the general case of arbitrary complex amplitudes E x and E y, the electric field vector 
end moves along an ellipse on the [x, y] plane (Fig. 3c), such wave is called elliptically polarized. The 
eccentricity and orientation of the ellipse are completely described by one complex number, the ratio 
Ex/Ey, i.e. two real numbers: E x/E y and   = arg(E x/E y). 

 The same information may be expressed via four so-called Stokes parameters s0, s1, s2, s3, which 
are popular in optics because they may be used for the description of not only completely coherent 
waves that are discussed here, but also of party coherent or even fully incoherent waves - including the 
natural light emitted by thermal sources like our Sun. In contrast to the notion of coherent waves whose 
complex amplitudes are considered deterministic numbers, the instant amplitudes of incoherent waves 
should be treated as stochastic variables.5 

 

7.2. Attenuation and dispersion 

 Now let me show that any linear, isotropic medium may be characterized, by complex, 
frequency-dependent electric permittivity () and magnetic permeability (). Indeed, starting from 
electric effects, the electric polarization of realistic elementary dipoles of the medium cannot follow the 
applied electric field instantly, if the field frequency  is comparable with those of the internal processes 
- say, transitions between atomic energy levels. Let us consider the most general law of time evolution 
of polarization P(t) for the case of arbitrary applied electric field E(t),6 but for a sufficiently dilute 
medium, so that the local electric field Eef (3.63), acting on each elementary dipole, is essentially the 
microscopically-averaged field E.7 Then, due to the linear superposition principle, P(t) should be a 
linear sum (integral) of the values of E(t’) at all previous moments of time, t’ < t, weighed by some 
function of t and t’:  

          



t

dt't'tGt'EtP ),()()( .     (7.21) 

 The condition t’ < t, which is implied by this relation, expresses a key principle of physics, the 
causal relation between a cause (in our case, the electric field applied to each dipole) and its effect (the 

5 For further reading about the Stokes parameters, as well as about many optics topics I will not have time to 
cover (especially the geometrical optics and the diffraction-imposed limits on optical imaging resolution), I can 
recommend the classical text by M. Born et al., Principles of Optics, 7th ed., Cambridge U. Press, 1999. 
6 In an isotropic media, vectors E, P, and hence D = 0E + P, are all parallel, and for the notation simplicity I will 
drop the vector sign. I am also assuming that P at any point r is only dependent on the electric field at the same 
point, and hence drop term ikz from the exponent’s argument. This assumption is valid if wavelength   is much 
larger than the elementary media dipole size a. In most systems of interest, the scale of a is atomic (~10-10m), so 
that the last approximation is valid up to very high frequencies,  ~ c/a ~ 1018 s-1, corresponding to hard X-rays. 
7 Note that this condition (which excludes, in particular, the molecular-field effects discussed in Sec. 3.5) is not 
mentioned in most E&M textbooks. If the molecular fields are important, Eq. (21) and its corollaries are only 
valid for the relation between P and the effective local electric field Eef. 
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polarization it creates). Function G(t, t’) is called the temporal Green’s function for the electric 
polarization.8 In order to understand its physical sense, let us consider the case when the applied field 
E(t) is a very short pulse at t = t0, that may be approximated with the Dirac’s delta-function: 

      )()( 0tttE   .     (7.22) 

Then Eq. (21) yields just P(t) = G(t, t0), showing that the Green’s function is just the polarization at 
moment t, created by a unit -functional pulse of the applied field at moment t’ (Fig. 4). Thus, the 
temporal G is the exact time analog of the spatial Green’s functions G(r, r’) we have already studied in 
the electrostatics – see Sec. 2.7. 

  

  

 

 

 

 

  

 What are the general properties of the temporal Green’s function? First, the function is evidently 
real, since the dipole moment p and hence polarization P = np are real by the definition – see Eq. (3.6). 
Next, for systems without infinite internal memory, G should tend to zero at t – t’  , although the 
type of this approach (e.g., whether function G oscillates approaching zero) depends on the medium. 
Finally, if  parameters of the medium do not change in time, the polarization response to an electric field 
pulse should depend not on its absolute timing, but only on the time difference    t – t’ between the 
pulse and observation instants: 
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.   (7.23) 

For a sinusoidal waveform, E(t) = Re [Ee-it], this equation yields 
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The expression in square brackets is of course nothing more that the complex amplitude P of the 
polarization. This means that though even if the static relation (3.35) P = e0E is invalid for an arbitrary 
time-dependent process, we may still keep its Fourier analog, 
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ee ,   (7.25) 

8 A discussion of the temporal Green’s functions in application to classical oscillations may be also found in CM 
Sec. 4.1. 
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Fig. 7.4. Temporal Green’s function for 
electric polarization (schematically). 
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for each sinusoidal component of the process, using it as the definition of the frequency-dependent 
electric susceptibility e(). Similarly, the frequency-dependent electric permittivity may be defined 
using the Fourier analog of Eq. (3.38):  

          ED  .      (7.26) 

Then, according to Eq. (3.36), the permittivity is related to the temporal Green’s function by the usual 
Fourier transform: 
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It is evident from this expression that () may be complex,  
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0 sin)()(,cos)(),()()(  dG"dG'"i' , (7.28) 

and that its real part ’() is always an even function of frequency, while the imaginary part ”() is an 
odd function of . 

 Absolutely similar arguments show that the linear magnetic properties may be characterized with 
complex, frequency-dependent permeability (). Now rewriting Eqs. (1) for the complex amplitudes of 
the fields at a particular frequency, we may repeat all calculations of Sec. 1, and verify that all its results 
are valid for monochromatic waves even for a dispersive (but necessarily linear!) medium. In particular, 
Eqs. (7) and (13) now become 
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2/1
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 kZ ,   (7.28) 

so that the wave impedance and wave number may be both complex functions of frequency. 

 This fact has important consequences for the electromagnetic wave propagation. First, plugging 
the presentation of the complex wave number as the sum of its real and imaginary parts, k()  k’() + 
ik”(), into Eq. (11): 

         ])([)(])([ ReRe tzk'izk"tzki efeeff 


 ,   (7.29) 

we see that  k” () describes the rate of wave attenuation in the medium at frequency .9 Second, if the 
waveform is not sinusoidal (and hence should be presented as a sum of several/many sinusoidal 
components), the frequency dependence of k’() provides for wave dispersion, i.e. the waveform 
deformation at the propagation, because the propagation velocity (4) of component waves is now 
different.10  

9 It may be tempting to attribute this effect to wave absorption, i.e. the dissipation of the wave’s energy, but we 
will see very soon that wave attenuation may be also due to effects different from absorption. 
10 The reader is probably familiar with the most noticeable effect of the dispersion, namely the difference between 
that group velocity vgr  d /dk’, giving the speed of the envelope of a wave packet with a narrow frequency 
spectrum, and the phase velocity vph  /k’ of the component waves. The second-order dispersion effect, 
proportional to d2/d2k’, leads to the deformation (gradual broadening) of the envelope itself. Following tradition, 
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 Let us consider a simple but very important Lorentz oscillator model of a dispersive medium.11 
In dilute atomic or molecular systems (including gases), electrons respond to the external electric field 
especially strongly when frequency  is close to certain eigenfrequencies j corresponding to the 
spectrum of quantum transitions of a single atom/molecule. An approximate, phenomenological 
description of this behavior may be obtained from a classical model of several externally-driven 
harmonic oscillators with finite damping. For an oscillator, driven by electric field’s force F(t) = qE(t), 
we can write the 2nd Newton law as 

          )(2 2
0 tqExxxm   ,     (7.30) 

where 0 is the own frequency of the oscillator, and   its damping coefficient. For a sinusoidal field, 
E(t) = Re [Eexp{-it}], we can look for a particular,  forced-oscillation solution in a similar form x(t) = 
Re [xexp{-it}].12 Plugging this solution into Eq. (30), we can readily find the complex amplitude of 
these oscillations: 
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Using this result to calculate the complex amplitude of the dipole moment as p = qx, and then the 
electric polarization P = np of a dilute medium with n independent oscillators for unit volume, for its 
frequency-dependent permittivity (27) we get
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This result may be readily generalized to the case when the system has several types of 
oscillators with different eigenfrequencies: 
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where fj  nj/n is the fraction of oscillators with eigenfrequency j, so that the sum of all fj equals 1. 
Figure 5 shows a typical behavior of the real and imaginary parts of the complex dielectric constant, 
described by Eq. (33), as functions of frequency. The effect of oscillator resonances is clearly visible, 
and dominates the media response at   j, especially in the case of low damping, j << j. Note that in 
the low-damping limit, the imaginary part of the dielectric constant ”, and hence the wave attenuation 
k”, are negligibly small at all frequencies besides small vicinities of frequencies j, where derivative 
d’()/d is negative.13 Thus, for a system of for weakly-damped oscillators, Eq. (33) may be 
approximated, at most frequencies, as a sum of odd singularities (“poles”): 

these effects are discussed in more detail in the quantum-mechanics part of my lecture notes (QM Sec. 2.1), 
because they are the crucial factor of Schrödinger’s wave mechanics. (See also CM Sec. 5.3.) 
11 This example is focused on the frequency dependence of , because electromagnetic waves interact with 
“usual” media via their electric field much more than via the magnetic field. However, as will be discussed in Sec. 
7, forgetting about the possible dispersion of () might result in missing some remarkable opportunities for 
manipulating the waves. 
12 If this point is not absolutely clear, please see CM Sec. 3.1. 
13 In optics, such behavior is called the anomalous dispersion.  
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This result is especially important because, according to quantum mechanics,14 Eq. (34) is also 
valid for a set of non-interacting, similar quantum systems (whose dynamics may be completely 
different from that of a harmonic oscillator!), provided that j are replaced with frequencies of possible 
quantum interstate transitions, and coefficients fj  are replaced with the so-called oscillator strengths of 
the transitions - which obey the same sum rule, j fj = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 At   0, the imaginary part of the permittivity also vanishes (for any j), while its real part 
approaches its electrostatic (“dc”) value 
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Note that according to Eq. (30), the denominator in Eq. (35) is just the effective spring constant j = 
mjj

2 of the jth oscillator, so that the oscillator masses mj as such are actually (and quite naturally) not 
involved in the static dielectric response.  

 In the opposite limit  >> j, j, permittivity (33) also becomes real, and may be presented as 
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 .   (7.36) 

 The last result is very important, because it is also valid at all frequencies if all j and j vanish, 
i.e. for a gas of free charged particles, in particular for plasmas – ionized atomic gases, with negligible 
collision effects. (This is why the parameter p defined by Eq. (36) is called the plasma frequency.) 
Typically, the plasma as a whole is neutral, i.e. the density n of positive atomic ions is equal to that of 

14 See, e.g., QM Chapters 5 and 9. 

Fig. 7.5. Typical frequency 
dependence of the real and 
imaginary parts of the electric 
permittivity of a media in the 
Lorentz oscillator model. 
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the free electrons. Since the ratio nj/mj for electrons is much higher than that for ions, the general 
formula (36) for the plasma frequency is usually well approximated by the following simple expression: 

         .
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        (7.37) 

 This expression has a simple physical sense: the effective spring constant ef = mep
2 = ne2/0 

describes the Coulomb force that appears when the electron subsystem of a plasma is shifted, as a 
whole, from its positive-ion subsystem, thus violating the electroneutrality. Indeed, consider such a 
small shift, x, perpendicular to the plane surface of a broad, plane slab filled with plasma. The 
uncompensated charges, with equal and opposite surface densities  = enx, that appear at the slab 
surfaces, create inside the it, according to Eq. (2.3), a uniform electric field Ex = enx/0. This field 
exerts force eE = (ne2/0) x on each positively charged ion. According to the 3rd Newton law, the ions 
pull each electron back to its equilibrium position with the equal and opposite force F = -eE = - (ne2/0) 
x, justifying the above expression for ef. Hence it is not surprising that () described by the first of 
Eqs. (36) turns into zero at  = p: at this resonance frequency, finite free oscillations of charge (and 
hence of D = E) do not require a finite force (and hence E). 

 The behavior of electromagnetic waves in a medium that obeys Eq. (36), is very remarkable. If 
the wave frequency  is above p, the dielectric constant and hence the wave number (28) are positive 
and real, and waves propagate without attenuation, following the dispersion relation, 

              2/1222/1
0

1
)()( pc

k   ,    (7.38)  

which is shown in Fig. 6. (As we will see later in this chapter, many wave transmission systems obey 
such dispersion law as well.)  

 

 

 

 

 

 

 

  

  

 At   p the wave number k tends to zero. Beyond that point (at  < p), we still can use Eq. 
(38), but it is more instrumental to rewrite it in the mathematically equivalent form 
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According to Eq. (29), this means that the electromagnetic field exponentially decreases with distance: 

Fig. 7.6. Plasma dispersion law (solid line) in 
comparison with the linear dispersion of the 
free space (dashed line). 0 1 2 3
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 Does this mean that the wave is being absorbed in the plasma? Answering this question is a good 
pretext to calculate the time average of the Poynting vector S = EH of a monochromatic 
electromagnetic wave in an arbitrary dispersive (but still linear!) medium. First, let us spell out fields’ 
time dependence: 
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Now, a straightforward calculation yields15 
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 Let us apply this important general formula to our simple model of plasma at  < p. In this case 
μ() = μ0, i.e. is positive and real, while () is real and negative, so that 1/Z() = [()/ μ()]1/2 is 
purely imaginary, and the average Poynting vector (42) vanishes. This means that energy, on the 
average, does not flow along axis z – as it would if it was absorbed in plasma. As we will see in the next 
section, waves with  < p are rather reflected from plasma’s boundary, without energy loss. Note that 
in the limit  << p, Eq. (39) yields 
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But this is just a particular case (for q = e and  = 0) of the expression (6.38) that we have derived for 
the depth of magnetic field penetration into a lossless (collision-free) conductor in the quasistatic 
approximation. We see again that, as was already discussed in Sec. 6.7, that approximation (in which we 
neglect the displacement currents) gives an adequate description of the time-dependent phenomena at  
<< p, i.e. at   << c/ = 1/k = /2. 

  There are two most important examples of plasmas. For the Earth’s ionosphere, i.e. the upper 
part of the atmosphere that is almost completely ionized by the UV and X-ray components of Sun’s 
radiation, the maximum value of n, reached at about 300 km over the Earth surface, is between 1010 and 
1012 m-3 (depending on the time of the day and Sun’s activity), so that that the maximum plasma 
frequency (37) is between 1 and 10 MHz. This is much higher than the particle’s reciprocal collision 
time -1, so that Eq. (36) gives a very good description of plasma’s electric polarization. The effect of 
reflection of waves with  < p from the ionosphere enables long-range (over-the-globe) radio 
communications and broadcasting at the so-called short waves, with frequencies of the order of 10 MHz. 

15 For an arbitrary plane wave the total average power flow may be calculated as an integral of Eq. (42) over all 
frequencies. By the way, combining this integral and the Poynting theorem (6.103), one can also prove the 
following interesting expression for the average electromagnetic energy density in an arbitrary dispersive (but 
linear and isotropic) medium:  
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Such waves may propagate in the flat channel formed by the Earth surface and the ionosphere, reflected 
repeatedly by these “walls”. Unfortunately, due to the random variations of Sun’s activity, and hence p, 
such natural communication channel is not too reliable, and in our age of fiber optics cables its practical 
importance is diminishing. 

 Another important example of plasmas is free electrons in metals and other conductors. For a 
typical metal, n is of the order of 1023 cm-3 = 1029 m-3, so that Eq. (37) yields p ~ 1016 s-1. Note that this 
value of p is somewhat higher than mid-optical frequencies ( ~ 31015 s-1). This explains why planar, 
even, clean metallic surfaces, such as aluminum and silver films used in mirrors, are so shiny: at these 
frequencies the permittivity is almost exactly real and negative, leading to light reflection, with very 
little absorption. However, the considered model, which neglects electron scattering, becomes 
inadequate at lower frequencies,  ~ 1. 

 A phenomenological way of extending the model by account of scattering is to take, in Eq. (33), 
the lowest eigenfrequency j  to be equal zero (to describe free electrons), while keeping the damping 
coefficient 0 of this mode finite, to account for their energy loss due to scattering. Then Eq. (33) is 
reduced to  
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where response opt() at high (in practice, optical) frequencies is still given by Eq. (33), but now with j 
 0. 

 Result (44) allows for a simple interpretation. To show that, let us incorporate into our 
calculations the Ohmic conduction, generalizing Eq. (4.7) as j = ()E  to account for the possible 
frequency dependence of the Ohmic conductivity. Plugging this relation into the Fourier image of the 
relevant Maxwell equation, H = j - iD = j - i()E, we get 

             EH i .    (7.45) 

This relation shows that for a sinusoidal process, the addition of the Ohmic current density j to the 
displacement current density is equivalent to addition of ()  to -i(), i.e. to the following change of 
the ac electric permittivity: 16 
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Now the comparison of Eqs. (44) and (46) shows that they coincide if we take 
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where the dc conductivity (0) is described by the Drude formula (4.13), and the phenomenologically 
introduced coefficient 0 is associated with 1/2. Relation (47), which is frequently called the 

16 Alternatively, according to Eq. (45), it is possible (and in infrared spectroscopy, conventional) to attribute the 
ac response of a medium at all frequencies to effective complex conductivity ef () = () - i() = -ief(). 
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generalized (or “ac”, or “rf”) Drude formula,17 gives a very reasonable (semi-quantitative) description 
of the ac conductivity of many metals almost all the way up to optical frequencies.  

 

7.3. Kramers-Kronig relations 

 The results for the simple model of dispersion, discussed in the last section, imply that the 
frequency dependences of the real (’) and imaginary (”) parts of the permittivity are not quite 
independent. For example, let us have one more look at the resonance peaks in Fig. 5.  Each time the 
real part drops with frequency, d’/d < 0, its imaginary part ” has a positive peak. R. de L. Kronig in 
1926 and H. A. Kramers in 1927 independently showed that this is not an occasional coincidence 
pertinent only to the Lorentz oscillator model. Moreover, the full knowledge of function ’() allows 
one to calculate function ”(), and vice versa.  The reason is that both these functions are always 
related to a single real function G() by Eqs. (28). 

 To derive the Kramers-Kronig relations, let us consider Eq. (27) on the complex frequency 
plane,   ’ + i”:  
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For all stable physical systems, G() has to be finite for all important values of the integration variable 
(  > 0),  and tend to zero at   0 and   . Because of that, and thanks to factor e-”, the expression 
under the integral tends to zero at      in all upper half-plane (”  0). As a result, we may claim 
that the complex-variable function f() is analytical in that half-plane, and allows us to apply to it the 
Cauchy integral formula18 
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with the integration contour of the form shown in Fig. 7, with radius R of the larger semicircle tending 
to infinity, and radius r that of the smaller semicircle (about the singular point  = ) tending to zero.  

 

 

 

 

 

 

 

 

17 It may be also derived from the Boltzmann kinetic equation in the so-called relaxation-time approximation 
(RTA) – see, e.g., SM Sec. 6.2. 
18 See, e.g., MA Eq. (15.2). 

Fig. 7.7. Integration path C used in the 
Cauchy integral formula to derive the 
Kramers-Kronig dispersion relations. 
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 Due to the exponential decay of ׀f()׀ at ׀׀  , the contribution to the integral from the 
larger semicircle vanishes,19 while the contribution from the small semicircle, where  =   + rexp{i}, 
with -      0, is  
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As a result, for our contour C, Eq. (49) yields 
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Such an integral, excluding a symmetric infinitesimal vicinity of the pole singularity, is called the 
principal value of the (formally, diverging) integral from - to +, and is denoted by letter P before it.20 
Using this notation, subtracting  f()/2 from both parts of Eq. (51), and multiplying them by 2, we get  
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 Now plugging into this complex equality the polarization-related difference f()  () - 0 in 
the form [’() - 0] + i[”()], and requiring both real and imaginary components of both parts of Eq. 
(52) to be equal separately, we get the famous Kramers-Kronig dispersion relations 
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Now we may use the already mentioned fact that ’() is always an even, while ”() an odd function 
of frequency, to rewrite these relations in the following form  
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which is more convenient for most applications, because it involves only physical (positive) frequencies. 

 Though the Kramers-Kronig relations are “global” in frequency, in certain cases they allow an 
approximate calculation of dispersion from experimental data for absorption, collected even in a limited 
frequency range. For example, if a medium has a sharp absorption peak at some frequency j, we may 
approximate it as 

            offunction smooth  more a )()(  jc" ,   (7.55) 

and the first of Eqs. (54) immediately gives 

19Strictly speaking, this also requires f() to decrease faster than -1 at the real axis (at ” = 0), but due to 
nonvanishing inertia of charged particles, this requirement is fulfilled for all realistic models of dispersion – see, 
e.g., Eq. (36). 
20 I am typesetting this symbol in a Roman font, to exclude any possibility of its confusion with media’s 
polarization. 
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thus predicting the anomalous dispersion near such a point. This calculation shows that such behavior 
observed in the Lorentz oscillator model (Fig. 5) is by no means occasional or model-specific. 

 Let me emphasize again that the general, and hence very powerful Kramers-Kronig relations 
hinge on the causal, linear relation (21) between polarization P(t) with the electric field E(t’). Hence, 
these relations are also valid for the complex functions relating Fourier images of any cause/effect-
related pair of variables. In particular, at a measurement of any linear response r(t) of any experimental 
sample to any external applied field f(t), whatever the nature of this response and physics behind it, we 
may be confident that there is a causal relation between the variables r and f, so that the complex 
function ()  r/f does obey the Kramers-Kronig relations. However, it is still important to 
remember that a linear relation between the Fourier amplitudes of two variables does not necessarily 
imply the causal relationship between them.21  

 

7.4. Reflection 

 The most important new effect arising in nonuniform media is  wave reflection. Let us start its 
discussion from the simplest case of a plane electromagnetic wave that is normally incident on an 
interface between two uniform, linear, isotropic media.  

If the interface is an ideal mirror, the description of reflection is very simple. Indeed, let us 
assume that one of the two media (say, located at z > 0, see Fig. 8) cannot sustain any electric field at 
all: 

          .00 zE       (7.57) 

This condition is evidently incompatible with the single traveling wave (5). However, this solution may 
be readily corrected using the fact that the dispersion-free 1D wave equation, 
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supports waves, propagating, with the same speed, in opposite directions. As a result, the following 
linear superposition of two such waves,  

               )()(0 vtzfvtzfE z  ,    (7.59) 

satisfies both the equation and the boundary condition (57), for an arbitrary function f. The second term 
in Eq. (59) may be interpreted as the total reflection of the incident wave described by its first term, in 
this case with the change of electric field’s sign. By the way, since vector n of the reflected wave is 

21 For example, the function ()  E/ P , in the Lorentz oscillator model, does not obey the Kramers-Kronig 
relations. This is evident not only from the fact that E(t) is not a causal function of P(t), but even mathematically. 
Indeed, the Green’s function describing a causal relationship has to tend to zero at small time delays    t – t’, so 
that its Fourier image has to tend to zero at    . This is certainly true for the function f() given by Eq. (32), 
but not for the reciprocal function ()   1/f()  (2 - 0

2) – 2i, which diverges at large frequencies. 
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opposite to that incident one (see arrows in Fig. 1), Eq. (6) shows that the magnetic field of the wave 
does not change its sign at the reflection: 

              )()(
1

0 vtzfvtzf
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H z  .    (7.60) 

 

 

 

 

 

 

 

 

 

  

 Blue lines in Fig. 8 show the resulting pattern (59) for the simplest, sinusoidal waveform 
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  .    (7.61a) 

Depending on convenience in a particular context, this pattern may be legitimately interpreted either as 
a superposition (61a) of two traveling waves or a single standing wave, 
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in which the electric and magnetic field oscillate with the phase shifts by /2 both in time and space: 
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As the result of this shift, the time average of the Poynting vector’s magnitude, 
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EHtzS ti 2sinRe
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 ,    (7.63) 

equals zero, showing that at the total reflection there is no average power flow. (This is natural, because 
the perfect mirror can neither transmit the wave nor absorb it.) However, Eq. (63) shows that the 
standing wave provides local oscillations of energy, transferring it periodically between the 
concentrations of the electric and magnetic fields, separated by distance z = /2k = /4. 

 For the case of the sinusoidal waves, the reflection effects may be readily explored even for the 
more general case of dispersive and/or lossy media in which () and (), and hence the wave vector 
k() and wave impedance Z(), defined by Eqs. (28), are certain complex functions of frequency. The 
“only” new factors we have to account for is that in this case the reflection may not be full, and that 

 

Fig. 7.8. Spatial dependence of electric field at 
the reflection of a sinusoidal wave from a 
perfect conductor: the real pattern (red lines) 
and the crude, ideal-mirror approximation (blue 
lines). Dashed lines show the patterns after a 
half-period time delay (t = ). 
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inside the second media we have to use the traveling-wave solution as well. Both these factors may be 
taken care of by looking for the solution of our boundary problem in the form 

                tiziktizikzik eTeEEeeReEE zz



   Re,Re 00 , (7.64) 

and hence, according to Eq. (6), 
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(Indices + and – correspond to, respectively, the media at z > 0 and z < 0.)  Please note the following 
important features of these relations: 

 (i) Due to the problem linearity, we could (and did :-) take the complex amplitudes of the 
reflected and transmitted wave proportional to that (E) of the incident wave, describing them by the 
dimensionless coefficients R and T. The total reflection from an ideal mirror, that was discussed above, 
corresponds to the particular case R = -1 and T = 0. 

 (ii) Since the incident wave, that we are considering, arrives from one side only (from z = - ), 
there is no need to include a term proportional to exp{-ik+z} into Eqs. (64)-(65) - in our current problem. 
However, we would need such a term if the medium at z > 0 was non-uniform (e.g., had at least one 
more interface or any other inhomogeneity), because the wave reflected from that additional 
inhomogeneity would be incident on our  interface (located at z = 0) from the right.   

 (iii) Solution (64)-(65) is sufficient even for the description of the cases when waves cannot 
propagate at z  0, for example a conductor or a plasma with p > . Indeed, the exponential drop of the 
field amplitude at z > 0 in such cases is automatically described by the imaginary part of wave number 
k+ - see Eq. (29).  

  In order to find coefficients R and T, we need to use boundary conditions at z = 0. Since the 
reflection does not change the transverse character of the partial waves, at the normal incidence both 
vectors E and H remain tangential to the interface plane (in our notation, z = 0). Reviewing the 
arguments that has led us, in statics, to boundary conditions (3.47) and (5.118) for these components, we 
see that they remain valid for the time-dependent situation as well,22 so that for our current case of 
purely transverse waves we can write:  

                        0000 ,   zzzz HHEE .    (7.66) 

Plugging Eqs. (64)-(65) into these conditions, we get 

                T
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1

1
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22 For example, the first of conditions (66) may be obtained by integrating the full (time-dependent) Maxwell 
equation E + B/t = 0 over a narrow and long rectangular contour with dimensions l and d (d << l) stretched 
along the interface. In the Stokes theorem, the first term gives El, which the contribution of the second term is 
proportional to product dl and vanishes as d/l  0. The proof of the second boundary condition is similar – as was 
already discussed in Sec. 6.2. 
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Solving this simple system of equations, we get23  
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 These formulas are very important, and much more general than one may think, because they are 
applicable for virtually any 1D waves - electromagnetic or not, if only the impedance Z is defined in a 
proper way.24 Since in the general case the wave impedances Z, defined by Eq. (28) with the 
corresponding indices, are complex functions of frequency, Eqs. (68) show that coefficients R and T 
may have imaginary parts as well. This fact has most important consequences at z < 0 where the 
reflected wave, proportional to R, interferes with the incident wave. Indeed,  plugging R = R ei  
(where    arg R  is a real phase shift) into the expression in parentheses in the first of Eqs. (64), we 
may rewrite it as  
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  (7.69) 

This means that the field may be presented as a sum of a traveling wave and a standing wave, with 
amplitude proportional to R , shifted by distance - toward the interface, relatively to the ideal-mirror 
pattern (61b). This effect is  frequently used for the experimental measurements of an unknown 
impedance Z+ of some medium, provided than Z – is known (e.g., for the free space, Z- = Z0). For that, a 
small antenna (the probe), not disturbing the field distribution too much, is placed into the wave field,  
and the amplitude of the ac voltage induced in it by the wave in the probe is measured by some detector 
(e.g., a semiconductor diode with a quadratic I-V curve), as a function of z (Fig. 9). From this 
measurement, it is straightforward to find both R  and -, and hence restore complex R, and then use 
Eq. (68) to calculate both modulus and argument of Z+.25 

 

  

 

 

  

  

 

Now let us discuss what do these results give for waves incident from the free space (Z-() = Z0 
= const, k- = k0 = /c) onto the surface of two particular media. 

23 Please note that only the media impedances (rather than wave velocities) are important for the reflection in this 
case! Unfortunately, this fact is not clearly emphasized in some textbooks that discuss only the case  = 0, when 
Z = (0/)1/2 and v = 1/(0)1/2 are proportional to each other. 
24 See, e.g., the discussion of elastic waves of mechanical deformations in CM Secs. 5.3, 5.4, 7.7, and 7.8.  
25 Before the advent of computers, specially lined paper (called the Smith chart) was commercially available for 
performing this recalculation graphically; it is occasionally used even nowadays for result presentation. 
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 (i) For a collision-free plasma (with negligible magnetization) we may use Eq. (36) with () = 
0, to present the impedance in either of two equivalent forms: 

     
    2/12202/1220
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The former expression is more convenient in the case  > p, when the wave vector k+ and the wave 
impedance Z+ of plasma are real, so that a part of the incident wave propagates into the plasma. 
Plugging this expression into the latter of Eqs. (68), we see that the transmission coefficient is real: 
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 Note that according to this formula, somewhat counter-intuitively, T > 1 for any frequency 
(above p). How can the transmitted wave be more intensive than the incident one that has induced it? 
For a better understanding of this result, let us compare the powers (rather than amplitudes) of these two 
waves, i.e. their average Poynting vectors (42): 
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It is easy to see that the ratio of these two values26 is always below 1 (and tends to zero at   p), so 
that only a fraction of the incident wave power may be transferred. Hence the result T > 1 may be 
interpreted as follows: the interface between two media also works as an impedance transformer: though 
it can never transfer more power than the incident wave provides, i.e. can only decrease the product S = 
EH, but since the ratio Z = E/H changes at the interface, the amplitude of one of the fields may increase 
at the transfer. 

 Now let us proceed to case  < p, when the waves cannot propagate in the plasma. In this case, 
the latter of expressions (70) is more convenient, because it immediately shows that Z+ is purely 
imaginary, while Z- = Z0 is purely real. This means that  (Z+ - Z-)  = (Z+ + Z-)*, i.e. according to the first 
of Eqs. (68), R = 1, so that the reflection is total, i.e. no incident power (on the average) is transferred 
into the plasma – as was already discussed in Sec. 2. However, the complex R has a finite argument, 
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and hence provides a finite spatial shift (69) of the standing wave toward the plasma surface: 
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 On the other hand, we already know from Eq. (40) that the solution at z > 0 is exponential, with 
the decay length  that is described by Eq. (39). Calculating, from coefficient T, the exact coefficient 
before this exponent, it is straightforward to verify that the electric and magnetic fields are indeed 

26 This ratio is sometimes also called the transmission coefficient, but in order to avoid its confusion with T, it is 
better to call it the power transmission coefficient.  
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continuous at the interface, forming the pattern shown by red lines in Fig. 8. This penetration may be 
experimentally observed, for example, by bringing close to the interface the surface of another material 
transparent as frequency . Even without solving this problem exactly, it is evident that if the distance 
between these two interfaces becomes comparable to , a part of the exponential “tail” of the field is 
picked up by the second material, and induces a propagating wave. This is an electromagnetic analog of 
the quantum-mechanical tunneling through a potential barrier.27 

 Note that at  << p, both - and  are reduced to the same frequency-independent value, 
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which is just the field penetration depth  (6.38) calculated for a perfect conductor model (assuming m = 
me and  = 0) in the quasistatic limit. This is natural, because the condition  << p may be recast as 0 
= 2c/ >> 2c/p = 2. 

 (ii) Now let us consider electromagnetic wave reflection from a nonmagnetic conductor. In the 
simplest low-frequency limit, when   is much less than 1, the conductor may be described by a 
frequency-independent conductivity . 28 According to Eq. (46), in this case we can take 
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With this substitution, Eqs. (68) immediately give us all the results of interest. In particular, they show 
that now R is complex, and hence some fraction F of the incident wave is absorbed by the conductor. 
Using Eq. (42), we may calculate the fraction to be 
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(Since power flow S+ into the conductor depends on z, tending to zero at distances z ~ , it is important 
to calculate it directly at the interface to account for the absorption in the whole volume of the 
conductor.) Restricting ourselves, for the sake of simplicity, to the most important quasistatic limit, i.e. 
to Z+ = (0/i)1/2, and using Eq. (6.27) to express the impedance via the skin depth, Z+ = 
(2/i)1/2(s/0)Z0, we see thatZ+ << Z0, so that, according to Eq. (68), T  2Z+/Z0 and 
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 Thus the absorbed power scales as the ratio of the skin depth to the free-space wavelength. This 
important result is widely used for the semi-qualitative evaluation of power losses in metallic 
waveguides and resonators, and immediately shows that in order to keep the losses low, the 
characteristic size of such systems (that gives a scale of the free-space wavelengths 0, at which they are 

27 See, e.g., QM Sec. 2.3. 
28In a typical metal,  ~ 10-13s, so that this approximation work well all the way up to  ~ 1013 s-1, i.e. up to the 
far-infrared frequencies. 
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used) should be much larger than s. A more detailed theory of these structures will be discussed later in 
this chapter. 

 

7.5. Refraction 

 Now let us consider the effects arising at the plane interface if the wave incidence angle   (Fig. 
10) is arbitrary, rather than equal to zero as in our previous analysis, for the simplest case of fully 
transparent media, with real  and .  

 

 

 

 

 

 

 

  

 In contrast with the case of normal incidence, here the wave vectors k-, k-’, and k+ of the three 
component (incident, reflected, and transmitted) waves may have different directions. Hence now we 
have to start our analysis with writing a general expression for a single plane, monochromatic wave for 
the case when its wave vector k has all 3 Cartesian components, rather than one. An evident 
generalization of Eq. (11) to this case is 
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 rkr .   (7.79) 

 This relation enables a ready analysis of “kinematic” relations that are independent of the media 
impedances. Indeed, it is sufficient to notice that in order to satisfy any linear, homogeneous boundary 
conditions at the interface (z = 0), all waves have the same temporal and spatial dependence on this 
plane. Hence if we select plane xz so that vector k- lies in it, then (k-)y = 0, and k+ and k-‘ cannot  have 
any y-component either, i.e. all three vectors lie in the same plane - that is selected as the plane of 
drawing of Fig. 10. Moreover, due to the same reason their x-components should be equal: 

      rk'kk ' sinsinsin    .    (7.80) 

From here we immediately have the well-known laws of reflection 

             ' ,      (7.81) 

and refraction:29 

29 This relation is traditionally called the Snell law, after a 17th century’s author W. Snellius, though it has been 
traced back to a circa 984 manuscript by Abu Saad al-Ala ibn Sahl.  
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Fig. 7.10. Plane wave reflection, transmission, and 
refraction at a plane interface. The plane of drawing is 
selected to contain all three wave vectors k+, k-, and k’-. 
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In this form, the laws are valid for plane waves of any nature. In optics, the Snell law (82) is frequently 
presented in the form  
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where n is the index of refraction (also called the “refractive index”) of the corresponding medium, 
defined as its wave number normalized so that of the free space (at wave’s frequency): 
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 Perhaps the most famous corollary of the Snell law is that if a wave propagates from a medium 
with a higher index of refraction to that with a lower one (i.e. if n- > n+ in Fig. 10), for example from 
water into air, there is always a certain critical value c of the incidence angle, 
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at which angle r reaches /2. At a larger , i.e. within the range c <   < /2, the boundary conditions 
cannot be satisfied with a refracted wave with a real wave vector, so that the wave experiences the so-
called total internal reflection. This effect is very important for practice, because it shows that dielectric 
surfaces may be used as mirrors, in particular in optical fibers - to be discussed in more detail in Sec. 8 
below. This is very fortunate for all the telecommunication technology, because the light reflection from 
metals is rather imperfect. Indeed, according to Eq. (78), in the optical range (0 ~ 0.5 m, i.e.  ~ 1015 
s-1), even the best conductors (with  ~ 6108 S/m and hence the normal skin depth s ~ 1.5 nm) provide 
relatively high losses F ~ 1% at each reflection.  

 Note, however, that even within the range c <  < /2 the field at z > 0 is not identically equal to 
zero: just as it does at the normal incidence ( = 0), it penetrates into the less dense media by a distance 
of the order of 0, exponentially decaying inside it. At   0 the penetrating field still changes 
sinusoidally, with wave number (80), along the  interface. Such a field, exponentially dropping in one 
direction but still propagating as a wave in another direction, is frequently called the evanescent wave. 

 One more remark: just as at the normal incidence, the field penetration into another medium 
causes a phase shift of the reflected wave – see, e.g., Eq. (69) and its discussion. A new feature of this 
phase shift, arising at    0, is that it also has a component parallel to the interface – the so-called called 
the Goos-Hänchen effect. In geometric optics, this effect leads to an image shift (relative to that its 
position in a perfect mirror) with components both normal and parallel to the interface.  

 Now let us carry out an analysis of the “dynamic” relations that determine amplitudes of the 
refracted and reflected waves. For this we need to write explicitly the boundary conditions at the 
interface (i.e. plane z = 0). Since now the electric and/or magnetic fields may have components normal 
to the plane, in addition to the continuity of their tangential components, which we have repeatedly 
discussed, 
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     0,0,0,0, ,   zyxzyxzyxzyx HHEE ,    (7.86) 

we also need relations for the normal components. As it follows from the homogeneous macroscopic 
Maxwell equations (6.94b), they are also the same as in statics (Dn = const, Bn = const), for our 
reference frame choice (Fig. 10) giving  

            0000 ,   zzzzzzzz HHEE  .   (7.87) 

 The expressions of these components via amplitudes E, RE, and TE of the incident, reflected 
and transmitted waves depend on the incident wave’s polarization. For example, for a linearly-polarized 
wave with the electric field vector perpendicular to the plane of incidence (Fig. 11a), i.e. parallel to the 
interface plane, the reflected and refracted waves are similarly polarized.  

 

 

 

 

 

 

 

 

 

 

 

 As a result, all Ez are equal to zero (so that the first of Eqs. (87) is inconsequential), while the 
tangential components of the electric field are just equal to their full amplitudes, just as at the normal 
incidence, so we still can use Eqs. (64) to express these components via coefficients R and T. However, 
at    0 the magnetic fields have not only tangential components 
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but also normal components (Fig. 11a): 
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 Plugging these expressions into the boundary conditions expressed by Eqs. (86) (in this case, for 
y components only) and the second of Eqs. (87), we get three equations for two unknown coefficients R 
and T. However, two of these equations duplicate each other because of the Snell law, and we get just 
two independent equations, 

Fig. 7.11. Reflection and refraction at two different linear polarizations of the incident wave. 
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which are a very natural generalization of Eqs. (67), with replacements Z-  Z-cosr, Z+  Z+cos. As a 
result, we can immediately use Eq. (68) to write the solution of system (90):30  
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 If we want to express the coefficients via the angle of incidence alone, we should use the Snell 
law (82) to eliminate angle r, getting 

       
 
    2/1222/122

2/122

sin)/(1cos

cos2
,

sin)/(1cos

sin)/(1cos

























kkZZ

Z
T

kkZZ

kkZZ
R . (7.91b) 

However, my strong preference is to use the kinematic relation (82) and dynamic relations (91a) 
separately, because Eq. (91b) obscures the very important physical fact that and the ratio of  k , i.e. of 
the wave velocities of the two media, is only involved in the Snell law (79), while the dynamic relations 
essentially include only the ratio of wave impedances - just as in the case of normal incidence. 

 In the opposite case of the linear polarization of the electric field within the plane of incidence 
(Fig. 11b), it is the magnetic field that does not have a normal component, so it is now the second of 
Eqs. (87) that does not participate in the solution. However, now the electric fields in two media have 
not only tangential components,  
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       (7.92) 

but also normal components (Fig. 11b): 
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As a result, instead of Eqs. (90), the reflection and transmission coefficients are related as 
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Again, the solution of this system may be immediately written using the analogy with Eq. (67): 
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or, alternatively, using the Snell law: 
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30 Note that we may calculate the reflection and transmission coefficients R’ and T’ for the wave traveling in the 
opposite direction just by making parameter swaps Z+  Z- and   r, and that the resulting coefficients satisfy 
the following Stokes relations: R’ = -R, and R2 + TT’ = 1, for any Z. 
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 For the particular case + = - = 0, when Z+/Z- = (-/+)1/2 = k-/k+ = n-/n+ (which is approximately 
correct for traditional optical media), Eqs. (91b) and (95b) are called the Fresnel formulas.31 Most 
textbooks are quick to point out that there is a major difference between these cases: while for the 
electric field polarization within the plane of incidence (Fig. 11b), the reflected wave amplitude 
(proportional to coefficient R) turns to zero at a special value of   (the so-called Brewster angle):32 
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while there is no such angle in the opposite case (Fig. 11a).33 However, that this statement, as well as 
Eq. (96), is true only for the case + = -. In the general case of different  and , Eqs. (91) and (95) 
show that the reflected wave vanishes at  = B with 
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 Note the natural    symmetry of these relations, resulting from the E  H symmetry for 
these two polarization cases (Fig. 11). They also show that for any set of parameters of the two media 
(with ,  > 0), tan2B is positive (and hence a real Brewster angle B exists) only for one of these two 
polarizations. In particular, if the interface is due to the change of  alone (i.e. + = -), the first of Eqs. 
(97) is reduced to the simple form (96) again, while for the polarization shown in Fig. 11b there is no 
Brewster angle, i.e. the reflected wave has a nonvanishing amplitude for any .  

 Such account of both media parameters on an equal footing is especially necessary to describe 
the so-called negative refraction effects.34 As was shown in Sec. 2, in a medium with electric-field-
driven resonances, function () may be almost real and negative, at least within limited frequency 
intervals – see, in particular, Eq. (34) and Fig. 5. As have already been discussed, if, at these 
frequencies,  function () is real and positive, then k2() = 2()() < 0, and k may be presented as 
i/ with real , meaning the exponential field decay into the medium. However, let consider the case 
when both () < 0 and () < 0 at a certain frequency. (This is evidently possible in a medium with 
both E-driven and H-driven resonances, at proper relations between their eigenfrequencies.) Since in 
this case k2() = 2()()  > 0, the wave vector is real, so that Eq. (79) describes a traveling wave, 
and one could think that there is nothing new in this case. Not quite so!  

31 After A.-J. Fresnel (1788-1827), one of the pioneers of the wave optics, who is credited, among many other 
contributions (see in particular Ch. 8), for the concept of light as a purely transverse wave. 
32 A very simple interpretation of Eq. (93) is based on the fact that, together with the Snell law (82), it gives r +   
= /2. As a result, vector E+ is parallel to vector k-’, and hence oscillating dipoles of medium at z > 0 do not have 
the component which could induce the transverse electric field E-‘ of the reflected wave.  
33 This effect is used in practice to obtain linearly polarized light, with the electric field vector perpendicular to 
the plane of incidence, from the natural light with its random polarization. An even more practical application of 
the effect is a partial reduction of undesirable glare from wet surfaces (for the water/air interface, n+/n-  1.33, 
giving B  50) by making car light covers and sunglasses of vertically-polarizing materials.   
34 Despite some important background theoretical work by A. Schuster (1904), L. Mandelstam (1945), D. 
Sivikhin (1957), and especially V. Veselago (1966-67), the negative refractivity effects have only recently 
become a subject of intensive scientific research and engineering development. 

Brewster  
angle 
 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 7           Page 27 of 66 

 First of all, for a sinusoidal, plane wave (79), operator  is equivalent to the multiplication by ik. 
As the Maxwell equations (2a) show, this means that at a fixed direction of vectors E and k, the 
simultaneous reversal of signs of  and  means the reversal of the direction of vector H. Namely, if 
both  and  are positive, these equations are satisfied with mutually orthogonal vectors E, H, and k 
forming the usual, right-hand system (see Fig. 1 and Fig. 12a), the name stemming from the popular 
“right-hand rule” used to determine the vector product direction. However, if both  and  are negative, 
the vectors form a left-hand system – see Fig. 12b. (Due to this fact, the media with   < 0 and  < 0 are 
frequently called the left-handed materials, LHM for short.) According to Eq. (6.97), that does not 
involve media parameters, this means that for a plane wave in a left-hand material, the Poynting vector S 
= EH, i.e. of the energy flow, is directed opposite to the wave vector k. 

 

 

 

 

 

 

  

 This fact may seems strange, but is in no contradiction with any fundamental principle. Let me 
remind you that, according to the definition of vector k, its direction shows the direction of the phase 
velocity vph = /k of a sinusoidal (and hence infinitely long) wave that cannot be used, for example, for 
signaling. Such signaling (by sending wave packets – see Fig. 13) is possible with the group velocity vgr 
= d/dk. This velocity in left-hand materials is always positive (directed along vector S).  

 

 

 

 

 

 

 

 

 

 Maybe the most fascinating effect possible with left-hand materials is the wave refraction at their 
interfaces with the usual, right-handed materials - first predicted by V. Veselago. Consider the example 
shown in Fig. 14a.  In the incident wave, coming from the usual material, the directions of vectors k- and 
S- coincide, and so they are in the reflected wave characterized by vectors k’- and S’-. This means that 
the electric and magnetic fields in the interface plane (z = 0) are, at our choice of coordinates, 
proportional to exp{ikxx}, with positive component kx = k-cos . In order to satisfy any linear boundary 
conditions, the refracted wave, going into the left-handed material, should match that dependence, i.e. 

Fig. 7.13. Example of a wave packet 
moving along axis z with a negative 
phase velocity, but positive group 
velocity. Blue lines show a packet 
snapshot a short time interval after the 
first snapshot (red lines).
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Fig. 7.12. Directions of main vectors 
of a plane wave inside a medium 
with (a) positive and (b) negative  
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have a positive x-component of its wave vector k+. But in this medium, this vector has to be antiparallel 
to vector S that, in turn, should be directed out of the interface, because it presents the power flow from 
the interface into the material bulk. These conditions cannot be reconciled by the refracted wave 
propagating along the usual Snell-law direction (shown by the dashed line in Fig. 13a), but are all 
satisfied at refraction in the direction given by Snell’s angle with negative sign. (Hence the term 
“negative refraction”).35 

  

 

 

 

 

 

 

 

 

 

 

 In order to understand how unusual the results of the negative refraction may be, let us consider 
a parallel slab of thickness d, made of a hypothetical left-handed material with  = - 0,  = - 0 (Fig. 
14b), placed in free space. For such a material, the refraction angle r = - , so that the rays from a point 
source, located at a distance a < d from the slab,  propagate as shown in that figure, i.e. all meet again at 
distance a inside the plate, and then continue to propagate to the second surface of the slab. Repeating 
our discussion for this surface, we see that a point’s image is also formed beyond the plate at distance 2a 
+ 2b = 2a + 2(d – a) = 2d from the object. Superficially, this looks like the usual lens, but the well-
known lens formula, which relates a and b with the focal length f, is not satisfied. (In particular, a 
parallel beam is not focused into a point at any finite distance.) 

 As an additional difference from the usual lens, the system shown in Fig. 14b does not reflect 
any part of the incident light. Indeed, it is straightforward to check that in order for all above formulas 
for R and T to be valid, the sign of the wave impedance Z in left-handed materials has to be kept 
positive. Thus, for our particular choice of parameters ( = - 0,  = - 0), Eqs. (91a) and (95a) are valid 
with Z+ = Z- = Z0 and cos r = cos   = 1, giving R = 0 for any linear polarization, and hence for any other 
wave polarization - circular, elliptic, natural, etc.  

 The perfect lens suggestion has triggered a wave of efforts to implement left-hand materials 
experimentally. (Attempts to found such materials in nature have failed so far.) Most progress in this 
direction has been achieved using the so-called metamaterials, which are essentially quasi-periodic 
arrays of specially designed electromagnetic resonators, ideally with high density n >> -3. For example, 

35 Inspired by this fact, in some publications the left-hand materials are prescribed a negative index of refraction 
n. However, this prescription should be treated with care (for example, it complies with the first form of Eq. (84), 
but not its second form), and the sign of n, in contrast to that of wave vector k, is the matter of convention.   

Fig. 7.14. Negative refraction: (a) waves at the interface between media with positive and negative values 
of  , and (b) the hypothetical perfect lens: a parallel plate made of a material with  = - 0 and  = - 0. 
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Fig. 15a shows the metamaterial that was used for the first demonstration of negative refractivity in the 
microwave region, i.e. a few-GHz frequencies – see Fig. 15b. It combines straight strips of a metallic 
film, working as lumped resonators with a large electric dipole moment (hence strongly coupled to 
wave’s electric field E), and several almost-closed film loops (so-called split rings), working as lumped 
resonators with large magnetic dipole moments, coupled to field H. By designing the resonance 
frequencies close to each other, the negative refractivity may be achieved – see the black line in Fig. 
15b, which shows experimental data. Recently, the negative refractivity was demonstrated in the optical 
range, albeit at relatively large absorption that spoils all potentially useful features of the left-handed 
materials. 

 

        

 

 

 

 

 

 

 This progress has stimulated the development of other potential uses of metamaterials (not 
necessarily the left-handed ones), in particular designs of nonuniform systems with engineered 
distributions (r, ) and (r, ), which may provide electromagnetic wave propagation along the 
desired paths, e.g. around a certain region of space (Fig. 16), making it virtually invisible for an external 
observer - so far, within a limited frequency range, and a certain wave polarization only. Due to these 
restrictions, the practical value of this work on such invisibility cloaks in not yet clear (at least to this 
author); but so much attention is focused on this issue36 that the situation should become much more 
clear in just a few years. 

   

 

 

 

 

 

 

 

 

 

36 For a recent review, see, e.g., B. Wood, Comptes Rendus Physique 10, 379 (2009). 

Fig. 7.15. The first artificial 
left-hand material with 
experimentally demonstrated 
negative refraction in a 
microwave region. Adapted 
from R. Shelby et al., Science 
292, 77 (2001). © AAAS. 

Fig. 7.16. Experimental demonstration of a 
prototype 2D “invisibility cloak” in the 
microwave region. Adapted from D. Schurig 
et al., Science 314, 977 (2006). © AAAS. 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 7           Page 30 of 66 

7.6. Transmission lines: TEM waves 

 So far, we have analyzed plane the electromagnetic waves with infinite cross-section. The cross-
section may be limited, still sustaining wave propagation, using wave transmission lines (also called 
waveguides):  cylindrically-shaped structures made of either good conductors or dielectrics. Let us first 
discuss the first option. In order to keep our analysis (relatively :-) simple, let us assume that: 

 (i) the structure is a cylinder (not necessarily with a round cross-section, see Fig. 17) filled with a 
usual (right-handed), uniform dielectric material with negligible losses:   = ’  > 0,   = ’ > 0, and 

 (ii) the wave attenuation due to the skin effect is also negligibly low. (As Eq. (78) indicates, for 
that the characteristic size a of waveguide’s cross-section has to be much larger than the skin-depth s of 
its wall material. The effect of skin-effect losses will be analyzed in Sec. 10 below.) 

 After such exclusion of attenuation, we may look for a particular solution of the Maxwell 
equations in the form of a monochromatic wave traveling along the waveguide: 

          )()( ),(Re),(,),(Re),( tzzkitzzki eyxteyxt 


  HrHErE ,  (7.98) 

with real kz. Note that this form allows an account for a substantial coordinate dependence of the electric 
and magnetic field in the plane {x,y} of the waveguide’s cross-section, as well as for longitudinal 
components of the fields, so that solution (98) is substantially more complex than the plane waves we 
have discussed above. We will see in a minute that as a result of this dependence, constant kz  may be 
very much different from the plane-wave value (13), k  ()1/2, in the same material. 

 

 

 

 

 

 

 

  

 

 In order to describe these effects explicitly, let us decompose the complex amplitudes of the 
fields into the longitudinal and transverse components (Fig. 17)37 

             tzztzz HE HnHEnE   , .    (7.99) 

Plugging Eqs. (98)-(99) into the homogeneous Maxwell equations (2), and requiring the longitudinal 
and transverse components to be balanced separately, we get 

37 Note that for the notation simplicity, I am dropping index  in the complex amplitudes of the field components, 
and later will drop argument   in kz and Z, though they may depend on the wave frequency rather substantially – 
see below. 

Fig. 7.17. Decomposition of  the 
electric field in a waveguide. 
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where t is the 2D del operator acting in the transverse plane [x, y] only (so that  = t + nz/z ). These 
equations may look even more bulky than the original Maxwell equations, but actually are much simpler 
for analysis. Indeed, eliminating the transverse components from these equations (or, even simpler, just 
plugging Eq. (99) into Eqs. (3) and keeping just their z-components), we may get a pair of self-
consistent equations for the longitudinal components of the fields, 38   

                  0,0 2222  zttztt HkEk  ,     (7.101) 

where k is still defined by Eq. (13), k = ()1/2, and 
22222
zzt kkkk        (7.102) 

After distributions Ez(x,y) and Hz(x,y) have been found from these equations, they provide right-hand 
parts for rather simple, closed system of equations (100) for the transverse components of field vectors. 
Moreover, as we will see below, each of the following three types of solutions: 

 (i) with Ez = 0 and Hz = 0 (called the transverse, or TEM waves), 

 (ii) with Ez = 0, but Hz  0 (called either TE waves or, more frequently, H modes), and 

 (iii) with Ez 0, but Hz = 0 (TM waves or E modes), 

has its own dispersion law and hence wave propagation velocity; as a result, these modes (the term 
meaning the field distribution pattern) may be considered separately. 

 Let us start with the simplest, TEM waves with no longitudinal components of either field. For 
them, the top two equations of system (100) immediately give Eqs. (6) and (13), and kz = k. In plain 
English, this means that E = Et and H = Ht are proportional to each other and mutually perpendicular 
(just as in the plane wave) at each point of the cross-section, and that the TEM wave impedance Z  E/H 
and dispersion law (k), and hence the propagation speed, are the same as in a plane wave in the 
material filling the waveguide. In particular, if  and  are frequency-independent within a certain 
frequency range, the dispersion law is linear,  = k/()1/2, and wave’s speed does not depend on its 
frequency. For practical applications to telecommunications, this is a very important advantage of TEM 
waves over their TM and TE counterparts – to be discussed below. 

 Unfortunately, such waves cannot propagate in every waveguide. In order to show this, let us 
have a look at the two last lines of Eqs. (100). For the TEM waves (Ez = 0, Hz = 0, kz = k), they yield  

     
.0,0

,0,0
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    (7.103) 

In the macroscopic approximation of the boundary conditions (i. e., neglecting the screening and skin 
depths), we have to require that the wave does not penetrate the walls, so that inside them, E = H = 0. 
Close to the wall but inside the waveguide, the normal component En of the electric field may be 

38 The wave equation presented in the form (101) is called the (in our particular case, 2D) Helmholtz equation, 
after H. von Helmholtz (1821-1894) - the mentor of H. Hertz and M. Planck, among many others. 

2D Helmholtz 
equations for 

Ez and Hz 

Wave vector 
component 

balance 
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different from zero, because surface charges may sustain its jump (see Sec. 2.1). Similarly, the 
tangential component H of the magnetic field may have a finite jump at the surface due to skin currents. 
However, the tangential component of the electric field and the normal component of magnetic field 
cannot experience such jump, and in order to have them vanishing inside the walls they have to equal 
zero near the walls inside the waveguide as well: 

               0,0  nHE .     (7.104) 

 But the left columns of Eqs. (103) and (104) coincide with the formulation of the 2D boundary 
problem of electrostatics for the electric field induced by electric charges of the conducting walls, with 
the only difference that in our current case the value of  should be replaced with (). Similarly, the 
right columns of those relations coincide with the formulation of the 2D boundary problem of 
magnetostatics for the magnetic field induced by currents in the walls, with  = (). The only 
difference is that in our current case the magnetic fields should not penetrate inside the conductors.  

 Now we immediately see that in waveguides with a singly-connected wall topology (see, e.g., 
the particular example shown in Fig. 17), TEM waves are impossible, because there is no way to create 
a finite electrostatic field inside a conductor with such cross-section. Fortunately, such fields (and hence 
TEM waves) are possible in structures with cross-sections consisting of two or more disconnected (dc-
insulated) parts – see, e.g., Fig. 18. (Such structures are more frequently called the transmission lines 
rather than waveguides, the last term being mostly reserved for the lines with singly-connected cross-
sections of the walls.) 

 

 

 

 

 

  

 

 

 Now we can readily derive some “global” relations for each conductor, independent on the exact 
shape of its cross-section. Indeed, consider contour C drawn very close to the conductor’s surface (see, 
e.g., the red dashed line in Fig. 18). First, we can consider it as a cross-section of a cylindrical Gaussian 
volume of certain length dz <<  2/k. Using the generalized Gauss law (3.29), get 

 



C
nt drE ,     (7.105) 

where  (not to be confused with wavelength !) is the linear density of electric charge of the 
conductor. Second, the same contour C may be used in the generalized Ampère law (5.131) to write 

               Idr
C

t  H ,     (7.106) 

Fig. 7.18. Example of the cross-section 
of a transmission line that may support 
the TEM wave propagation. 
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where I is the total current flowing along the conductor (or rather its complex amplitude). But, as was 
mentioned above, in the TEM wave the ratio Et/Ht of the field components participating in these two 
integrals is constant and equal to Z = (/)1/2, so that Eqs. (105)-(106) give the following simple relation 
between the “global” characteristics of the conductor: 

      
  


 




kZ
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2/1

/
.    (7.107) 

This relation may be also obtained by a different means; let me describe it, because it has an 
independent value. Let us consider a small segment dz <<  = 2/k of the conductor (limited by the red 
dashed line in Fig. 18) and apply the electric charge conservation law (4.1) to the instant values of the 
linear charge density and current. The cancellation of dz in both parts yields 

       
z

tzI
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 ),(),(
.     (7.108) 

(If we accept the sinusoidal waveform, exp{i(kz - t)}, for both these variables, we immediately recover 
Eq. (107) for their complex amplitudes, so that the result just expresses the charge continuity law. 
However, Eq. (108) is valid for any waveform.) 

 The global equation (108) may be made more specific in the case when the frequency 
dependence of  and  is negligible, and the transmission line consists of just two isolated conductors 
(see, e.g., Fig. 18). In this case, in order to have the wave well localized in the space near the two 
conductors, we need a sufficiently fast convergence of its electric field at large distances.39 For that, 
their linear charge densities for each value of z should be equal and opposite, and we can simply relate 
them to the potential difference V between the conductors:  
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where C0 is the mutual capacitance of the conductors per unit length – that was repeatedly discussed in  
Chapter 2. Then Eq. (108) takes the form 
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Next, let us consider the contour shown with the red dashed line in Fig. 19 (which shows a cross-
section of the transmission line by a plane containing the wave propagation axis z), and apply to it the 
Faraday induction law (6.3). Since the electric field is zero inside the conductors (in Fig. 19, on the 
horizontal parts of the contour), the total e.m.f. equals the difference of voltages V at the end of the 
segment dz, while the only source of the magnetic flux through the area limited by the contour are the 
(equal and opposite) currents I in the conductors, we can use Eq. (5.70) to express it. As a result, 
canceling dz in both parts of the equation, we get 
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 ),(),(
0 ,     (7.111) 

39 The alternative is to have a virtually plane wave, which propagates along the transmission line conductors, and 
whose fields are just slightly deformed in their vicinity. Such a wave cannot be “guided” by the conductors, and 
hardly deserves the name of a “wave in the waveguide”. 
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where L0 is the mutual inductance of the conductors per unit length. The only difference between L0 and 
the dc mutual inductances discussed in Chapter 5 is that at the high frequencies we are analyzing now, 
L0 should be calculated neglecting its penetration into the conductors. (In the dc case, we had the same 
situation for superconductor electrodes, within their crude, ideal-diamagnetic description.) 

 

 

 

 

 

 

  

The system of Eqs. (110) and (111) is frequently called the telegrapher’s equations. Combined, 
they give for any “global” variable f (either V, or I, or ) a 1D wave equation, 
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which describes the dispersion-free TEM wave propagation. Again, this equation is only valid within the 
frequency range where the frequency dependence of both  and  is negligible. If it is not so, the global 
approach may still be used for sinusoidal waves f = Re[fexp{i(kz - t)}]. Repeating the above 
arguments, instead of Eqs. (110)-(111) we get algebraic equations  

          ,, 00   kVILkIVC      (7.113) 

in which L0   and C0   may now depend on frequency.  

 Two linear equations (113) are consistent only if 
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Besides the fact we have already known (that the TEM wave speed is the same as that of the plane 
wave), Eq. (114) gives us a result that I confess I have not emphasized enough in Chapter 5: the product 
L0C0 does not depend on the shape or size of line’s cross-section (provided that the magnetic field 
penetration into the conductors is negligible). Hence, if we have calculated the mutual capacitance C0 of 
a system of two cylindrical conductors, the result immediately gives us their mutual inductance: L0 = 
/C0. This relation stems from the fact that both the electric and magnetic fields may be expressed via 
the solution of a 2D Laplace equation for system’s cross-section. 

 With Eq. (114) satisfied, any of Eqs. (113) gives the same result for ratio 
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that is called the transmission line’s impedance. This parameter has the same dimensionality (in SI 
units, ohms) as the wave impedance (7), 

Fig. 7.19. Electric current, magnetic flux, and 
voltage in a two-conductor transmission line. 
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but these parameters should not be confused, because ZW depends on cross-section’s geometry, while Z 
does not. In particular, ZW is the only important parameter of a transmission line for  matching with a 
lumped load circuit (Fig. 20) in the important case when both the cable cross-section’s size and the 
load’s linear dimensions are much smaller than the wavelength. (The ability of TEM lines to have such a 
small cross-section is their another important advantage.) Indeed, in this case we may consider the load 
in the quasistatic limit and write  

            )()()( 00 zIZzV L    ,     (7.117) 

where ZL() is the (generally complex) impedance of the load. Taking V(z,t) and I(z,t) in the form 
similar to Eqs. (61) and (62), and writing two Kirchhoff’ s laws for point z = z0, we get for the reflection 
coefficient a result similar to Eq. (68): 
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     (7.118) 

This formula shows that for the perfect matching (i.e. the total wave absorption in the load), load’s 
impedance ZL() should be real and equal to ZW - but not necessarily to Z. 

 

 

 

 

 

  

  As an example, let us consider one of the simplest (and the most important) transmission lines: 
the coaxial cable (Fig. 21).40  

               

 

 

 

 

  

  

  For this geometry, we already know expressions for both L0 and C0, though they have to be 
modified for the dielectric constant and the magnetic field non-penetration into the conductors. After 
that modification, 

40 The coaxial cable was first patented by O. Heaviside in 1880.  
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Fig. 7. 21. Cross-section of a coaxial cable with 
arbitrary (possibly, dispersive) dielectric filling. 
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Fig. 7.20. Transmission line 
impedance matching. 
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So, the universal relation (114) is indeed valid! For cable’s impedance (115), Eqs. (119) yield 
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 For standard TV antenna cables (such as RG-6/U, with b/a ~ 3, /0  2.2), ZW = 75 ohms, while 
for most computer component connections, cables with ZW  = 50 ohms (such as RG-58/U) are prescribed 
by electronic engineering standards. Such cables are broadly used for transfer of electromagnetic waves 
with frequencies (limited mostly by cable attenuation; see Sec. 10 below) up to 1 GHz over distances of 
a few km, and up to ~20 GHz on the tabletop scale (a few meters). 

Another important example of TEM transmission lines is the set of two parallel wires. In the 
form of twisted pairs,41 they allow communications, in particular long-range telephone and DSL Internet 
connections, at frequencies up to a few hundred kHz, as well as relatively short Ethernet and TV cables 
at frequencies up to ~ 1 GHz, limited mostly by the mutual interference and parasitic radiation effects. 

 

7.7. H and E waves in metallic waveguides 

 Let us now return to Eqs. (100) and explore the TE and TM waves - with, respectively, either Hz 
or Ez different from zero. At the first sight, they may seem more complex. However, equations (101), 
which determine the distribution of these longitudinal components over the cross-section, are just 2D 
Helmholtz equations for scalar functions. For simple cross-section geometries may be solved using the 
methods discussed for the Laplace equation in Chapter 2, in particular the variable separation. After the 
solution of such an equation has been found, the transverse components of the fields may be calculated 
by differentiation, using the simple formulas,  
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which follow from the two equations in the first line of Eqs. (100).42 

 In comparison with the electro- and magnetostatics problems, the only conceptually new feature 
of Eqs. (101), with appropriate boundary conditions, is that they form the so-called eigenproblems, with 
typically many solutions (eigenfunctions), each describing a specific wave mode, and corresponding to a 
specific  eigenvalue of parameter kt,.  The good news here is that these values of kt  are determined by 
this 2D boundary problem and hence do not depend on kz. As a result, the dispersion law (kz) of each 
mode, that follows from the last form of Eq. (102), 
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41 The twisting reduces mutual induction (“crosstalk”) between the lines, and parasitic radiation at their bends. 
42 For that, one of these two linear equations should be first vector-multiplied by nz. Note that this approach could 
not be used to analyze TEM waves, because for them kt = 0, Ez = 0, Hz = 0, and Eqs. (121) yield uncertainty. 
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is functionally the same as that of plane waves in a plasma (see Eq. (38), Fig. 6, and their discussion), 
with the only differences that c is now replaced with v = 1/()1/2, the speed of plane (or any TEM) 
waves in the medium filling the waveguide, and p is replaced with the so-called cutoff frequency 

                 ,tc vk       (7.123) 

specific for each mode.  (As Eq. (101) implies, and as we will see from several examples below, kt has 
the order of 1/a, where a is the characteristic dimension of waveguide’s cross-section, so that the critical 
value of the free-space wavelength is of the order of a.) Below the cutoff frequency of each particular 
mode, it cannot propagate in the waveguide. 43 As a result, modes with the lowest values of c present 
special practical interest, because the choice of the signal frequency  between two lowest values of 
cutoff frequency guarantees that the waves propagate in the form of only one mode, with the lowest kt . 
Such a choice allows to simplify the excitation of the desired mode by wave generators, and to avoid the 
parasitic transfer of electromagnetic wave energy to undesirable modes by (unavoidable) small 
inhomogeneities of the system. 

 The boundary conditions for the Helmholtz equations (101)  depend on the propagating wave 
type. For TM waves (i.e. E modes, with Hz = 0 but Ez  0), in the macroscopic approximation the 
boundary condition E = 0 immediately gives 

      ,0CzE       (7.124) 

where C is the contour limiting the conducting wall’s cross-section. For TE waves (the H modes, with Ez 
= 0 but Hz  0), the boundary condition is slightly less obvious and may be obtained using, for example, 
the second equation of system (100), vector-multiplied by nz. Indeed, for the component perpendicular 
to the conductor surface the equation gives 
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But the first term in the left-hand part of this equation must be zero on the wall surface, because of the 
second of Eqs. (104), while according to the first of Eqs. (104), vector Et in the second term cannot have 
a component tangential to the wall. As a result, the vector product in that term cannot have a normal 
component, so that the term should equal zero as well, and Eq. (125) is reduced to   

     0



C
z

n

H
.     (7.126) 

 Let us see what does this approach give for a simple but practically important example of a 
metallic-wall waveguide with a rectangular cross-section. In this case it is natural to use the Cartesian 
coordinates shown in Fig. 22, so that both Eqs. (101) take the simple form 

43 An interesting recent twist in the ideas of electromagnetic metamaterials (mentioned in Sec. 5 above) is the so-
called -near-zero materials, designed to have the effective product  much lower than 00 within certain 
frequency ranges. Since at these frequencies the speed v (4) becomes much lower than c, the cutoff frequency 
(123) virtually vanishes. As a result, waves may “tunnel” through very narrow sections of metallic waveguides 
filled with such materials – see, e.g., M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).  
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From Chapter 2 we know that the most effective way of solution of such equations in a 
rectangular region is the variable separation, in which the general solution is represented as a sum of 
partial solutions of the type 

      )()( yYxXf  .     (7.128) 

Plugging this expression into Eq. (127), and dividing each term by XY, we get the equation,  
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,     (7.129) 

that should be satisfied for all values of x and y within the waveguide’s interior. This is only possible if 
each term of the sum equals a constant. Taking the X-term and Y-term constants in the form (–kx

2) and (–
ky

2), respectfully, and solving the corresponding ordinary differential equations,44 for eigenfunction  
(128) we get 

           yksykcxksxkcf yyyyxxxx sincossincos  ,     with  222
tyx kkk  , (7.130) 

where constants c and s should be found from the boundary conditions. Here the difference between the 
H modes and E modes pitches in. 

 

 

 

 

 

 

  

 For the former modes (TE waves), Eq. (130) is valid for Hz, and we should use condition (126) 
on all metallic walls of the waveguide (x = 0 and a; y = 0 and b – see Fig. 22).  As a result, we get very 
simple expressions for eigenfunctions and eigenvalues: 
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44 Let me hope that the solution of equations of the type 0/ 222  XkdxXd x  does not present a problem for 

the reader, due to his or her prior experience with problems such as standing waves on a guitar string, 
wavefunctions in a flat 1D quantum well, or (with the replacement x  t) a classical harmonic oscillator. 

a

b

0 x

y

Fig. 7.22. Rectangular waveguide, and the 
transverse field distribution in the basic 
mode H10 (schematically). 
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where Hl is the longitudinal field amplitude, and n and m are two arbitrary integer numbers, besides that 
they cannot equal to zero simultaneously. (Otherwise, function Hz(x,y) would be constant, so that, 
according to Eq. (121), the transverse components of the electric and magnetic field would equal zero. 
As a result, as the last two lines of Eqs. (100) show, the whole field would be zero for any kz  0.) 
Assuming, for certainty, that a  b (as shown in Fig. 22), we see that the lowest eigenvalue of kt, and 
hence the lowest cutoff frequency (123), is achieved for the so-called H10 mode with n = 1 and m = 0, 
and hence 

   
a

kt


10)(       (7.133) 

(thus confirming our prior estimate of kt). 

Depending on the a/b ratio, the second lowest kt and cutoff frequency belong to either the H11 
mode with n = 1 and m = 1:  
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or to the H20 mode with n = 2 and m = 0: 

       1020 )(2
2

)( tt k
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.     (7.135) 

These values become equal at a/b = 3  1.7; in practical waveguides, the a/b ratio is not too far from 
this value. For example, in the standard X-band waveguide WR90 with a  2.3 cm (fc  c/2  6.5 
GHz), b  1.0 cm. 

 Now let us have a fast look at alternative TM waves (E modes). For them, we may still should 
use the general solution (130) with f = Ez, but now with boundary condition (124). This gives us 
eigenfunctions 
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sinsin ,    (7.136) 

and the same eigenvalue spectrum (132) as for the H modes. However, now neither n nor m can be equal 
to zero; otherwise Eq. (136) would give the trivial solution Ez(x,y) = 0. Hence the lowest cutoff 
frequency of TM waves is provided by the so-called E11 mode with n =1, m = 1, and the eigenvalue is 
again given by Eq. (134). 

 Thus the basic (or “fundamental”) H10 mode is certainly the most important wave in rectangular 
waveguides; let us have a better look at its field distribution. Plugging the corresponding solution (131) 
with n = 1 and m = 0 into the general Eqs. (121), we easily get 
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This field distribution is (schematically) shown in Fig. 22. Neither of the fields depends on the vertical 
coordinate – which is very convenient, in particular, for microwave experiments with small samples. 

Basic 
mode’s 

cutoff 
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The electric field has only one (vertical) component that vanishes at the side walls and reaches 
maximum at waveguide’s center; its field lines are straight, starting and ending on wall surface charges 
(whose distribution propagates along the waveguide together with the wave). In contrast, the magnetic 
field has two nonvanishing components (Hx and Hz), and its field lines are shaped as horizontal loops 
wrapped around the electric field maxima.  
 An important question is whether the H10 wave may be usefully characterized by a unique 
impedance introduced similar to ZW of the TEM modes – see Eq. (115). The answer is not, because the 
main value of ZW is a convenient description of the impedance matching of the transmission line with a 
lumped load – see Fig. 20 and Eq. (118). As was discussed above, such simple description is possible 
(i.e., does not depend on the exact geometry of the connection) only if both dimensions of line’s cross-
section are much less than . But for the H10 wave (and more generally, any non-TEM mode) this is 
impossible – see, e.g., Eq. (129): its lowest frequency corresponds to the TEM wavelength max = 
2/(kt)min = 2/(kt)10 = 2a.45 

 Now let us consider metallic waveguides with round cross-section (Fig. 23a). In this single-
connected geometry, again, the TEM waves are impossible, while for the analysis of H modes and E 
modes the polar coordinates {,} are most natural. In these coordinates, the 2D Helmholtz equation 
(101) takes the form 
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Separating the variables as  f = R()F(), we get 
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 But this is exactly the Eq. (2.127) that was studied in the context of electrostatics, just with a 
replacement of notation:   kt. So we already know that in order to have 2-periodic functions F(), 
and finite values R(0) (which are necessary for our current case – see Fig. 23a), the general solution is 

45 The reader is encouraged to find a simple interpretation of this equality. 

Fig. 7.23. (a) Metallic and (b) dielectric 
waveguides with circular cross-sections. 
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given by Eq. (2.136), i.e. the eigenfunctions may be expressed via integer-order Bessel functions of the 
first kind:46 

                inekJf nmnnm )(const ,     (7.141) 

with eigenvalues knm of the transverse wave number kt to be determined from appropriate boundary 
conditions. 

 As for the rectangular waveguide, let us start from H modes (f = Hz). Then the boundary 
condition on the wall surface ( = R) is given by Eq. (126), which, for solution (141), takes the form 
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,0)( .     (7.142) 

This means that eigenvalues of Eq. (139) are 
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 ,     (7.143) 

where ’nm is the mth  root of function dJn()/d. The approximate values of these roots for several 
lowest n and m may be read out from the plots in Fig. 2.16; their more accurate values are presented in 
Table 1 below.  
      

 

  

 

 

 

 
 

 It shows, in particular, that the lowest of the roots is ’11  1.84. Thus, a bit counter-intuitively, 
the basic mode, providing the lowest cutoff frequency c = vknm, is H11 corresponding to n = 1 rather 
than n = 0:47 

                         ie
R

JHH '
lz 






 111 ,     (7.144) 

with the transverse wave vector kt = k11 = ’11/R  1.84/R, and hence the cutoff frequency corresponding 
to the TEM wavelength max = 2/k11  3.41 R. Thus the ratio of max to the waveguide diameter 2R is 

46 In Chapter 2, it was natural to take the angular dependence in the sin-cos form, which is equivalent to adding a 
similar term with n  -n to the right-hand part of Eq. (141). However, since the functions f  we are discussing 
now are already complex, it is easier to do calculations in the exponential form - though it is vital to restore real 
fields before calculating any of their nonlinear forms, e.g., the wave power.  
47 The lowest root of Eq. (142) with n = 0,  i.e. ’00, equals 0, and would yield k = 0 and hence a constant field Hz , 
which, according to the first of Eqs. (121), would give vanishing electric field. 

Table 7.1. Roots ’nm of function dJn()/d for a few 
values of Bessel function’s index n and root’s number m.

 m = 1 2 3 

n = 0 3.83171 7.015587 10.1735 
1 1.84118 5.33144 8.53632 
2 3.05424 6.70613 9.96947 
3 4.20119 8.01524 11.34592 
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about 1.7, i.e. is close to the ratio max/a = 2 for the rectangular waveguide. The origin of this proximity 
is clear from Fig. 24, which shows the transverse field distribution in the H11 mode. (It may be readily 
calculated from Eqs. (121) with Ez = 0 and Hz given by the real part of Eq. (144).) 

  

 

 

 

 

 

 

 One can see that the field structure is actually very similar to that of the basic mode in the 
rectangular waveguide, shown in Fig. 22, despite the different nomenclature (due to the different type of 
used coordinates). However, note the arbitrary argument of complex constant Hl in Eq. (144), indicating 
that in circular waveguides the transverse field polarization is arbitrary. For some practical applications, 
the degeneracy of these “quasi-linearly-polarized” waves creates  problems; they may be avoided by 
using waves with circular polarization.48 

 As Table 1 shows, the next lowest H mode is H21, for which kt = k21 = ’21/R  3.05/R, almost 
twice larger than that of the basic mode, and only then comes the first mode with no angular dependence 
of the any field, H01, with kt = k01 = ’01/R  3.83/R.49  

 For the E modes, we may still use Eq. (141) (with f = Ez), but with boundary condition (124) at  
= R. This gives the following equation for the problem eigenvalues: 

     ,0)( RkJ nmn  i.e. 
R

k nm
nm


 ,    (7.145) 

where nm is the m-th root of function Jn() – see Table 2.1. The table shows that the lowest kt equals to 
01/R  2.405/R. Hence the corresponding mode (E01), with  

           )( 010 R
JEE lz

 ,     (7.146) 

 has the second lowest cutoff frequency, approximately 30% higher than that of the basic mode H11.  

 Finally, let us discuss one more topic of general importance – the number N of electromagnetic 
modes that may propagate in a waveguide within a certain range of relatively large frequencies  >> c. 
This is easy to calculate for a rectangular waveguide, with its simple expressions (132) for the 
eigenvalues of {kx, ky}. Indeed, these expressions describe a rectangular mesh on the [kx, ky] plane, so 

48 Actually, Eq. (144) does describe a circularly polarized wave, while the real and imaginary parts of this 
expression describing two mutually perpendicular quasi-linearly-polarized waves.  
49 Electric field lines in the H01 mode (as well as all higher H0m modes) are directed straight from the axis to the 
walls, reminding those of TEM waves in the coaxial cable. Due to this property, these modes provide, at  >> c , 
much lower power losses (see Sec. 10 below) than the fundamental H11 mode, and are sometimes used in practice, 
despite all inconveniences of working in the multimode frequency range. 

E

H Fig. 7.24. Transverse field components in the 
basic H11 mode of a metallic, circular waveguide 
(schematically). 
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that each point corresponds to the plane area Ak = (/a)(/b), and the number of modes in a large k-
plane area Ak >> Ak is N =  Ak/Ak = abAk/2 = AAk/2, where A is the waveguide’s cross-section area.50 
However, it is frequently more convenient to discuss transverse wave vectors kt of arbitrary direction, 
i.e. with arbitrary sign their components kx and ky. Taking into account that the opposite values of each 
component actually give the same wave, the actual number of different modes of each type (E or H) is a 
factor of 4 lower than was calculated above. This means that the number of modes of both types is 

      
2)2(

2


AA
N k .       (7.147) 

 It may be convincingly argued that this mode counting rule is valid for waveguides with cross-
section of any shape, and any boundary conditions on the walls, provided that N >> 1.  

 

7.8. Dielectric waveguides and optical fibers 

 Now let us discuss electromagnetic wave propagation in dielectric waveguides. The simplest, 
step-index waveguide (Figs. 23, 25) consists of an inner core and an outer shell (in the optical fiber 
technology, called cladding) with a higher wave propagation speed, i.e. lower index of refraction: 

            , i.e., kkvv .    (7.148) 

(In most cases the difference is achieved due to that in the dielectric constant, - < +, while magnetically 
both materials are almost passive: -  +  0, and I will assume that in my narrative.) The idea of the 
waveguide operation may be readily understood in the case when wavelength  is much smaller than the 
characteristic size R of core’s cross-section. If this “geometric optics” limit, at the distances of the order 
of   from the core-to-cladding interface, which determines the wave reflection,  we can consider the 
interface as a plane. As we know from Sec. 5, if angle  of plane wave incidence on such an interface is 
larger than the critical value c specified by Eq. (82), the wave is totally reflected. As a result, the waves 
launched into the fiber core at such “grazing” angles, propagate inside the core, repeatedly reflected 
from the cladding – see Fig. 25.  

 

 

 

 

 

 

 The most important type of dielectric waveguides are optical fibers.51 Due to a heroic 
technological effort, in about three decades starting from the mid-1960s, the attenuation of glass fibers 

50 This formula ignores the fact that, according to our analysis, some modes (with n = 0 and m = 0 for H modes, 
and n = 0 or m = 0 for E modes, are forbidden. However, for N >> 1, the associated corrections of Eq. (147) are 
negligible. 
51 For a comprehensive description of this vital technology see, e.g., A. Yariv and P. Yeh, Photonics, 6th ed., 
Oxford U. Press, 2007. 

Fig. 7.25. Wave propagation 
in a thick optical fiber. 
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“cladding” 
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has been decreased from the values of the order of 20 db/km (typical for the window glass) to the 
fantastically low values about 0.2 db/km (meaning a virtually perfect transparency of 10-km-long fiber 
segments!) – see Fig. 26a. It is remarkable that this ultralow power loss may be combined with an 
extremely low frequency dispersion, especially for near-infrared waves (Fig. 26b). In conjunction with 
the development of inexpensive erbium-based quantum amplifiers, this breakthrough has enabled inter-
continental (undersea), broadband52 optical cables, which are the backbone of all the modern 
telecommunication infrastructure. The only bad news is that these breakthroughs were achieved for just 
one kind of materials (silica-based glasses)53 within a very narrow range of their chemical composition. 
As a result, the dielectric constants /0 of the cladding and core of practical optical fibers are both 
close to 2.2 (n  1.5) and are very close to each other, so that the relative difference of the refraction 
indices, 

               ,
2 





 








n

nn
     (7.149) 

is typically below 0.5%, thus limiting the fiber bandwidth – see below. 

 

 

   

 

 

 

 

 

 

 

 

 

 

  Practical optical fibers come in two flavors: multi-mode and single-mode ones. Multi-mode 
fibers, used for transfer of high optical power (up to as much as ~10 watts), have relatively thick cores, 
with a diameter 2R of the order of 50 m, much larger than  ~ 1 m. In this case, the “geometric-
optics” picture of the wave propagation discussed above is quantitatively correct, and we may use it to 
calculate the number of quasi-plane-wave modes that may propagate in the fiber. Indeed, for the 
complementary angle (Fig. 25) 

52 Each frequency band shown in Fig. 26a, at a typical signal-to-noise ratio S/N > 105 (50 db), corresponds to the 
Shannon bandwidth f log2(S/N) exceeding 1014 bits per second, five orders of magnitude (!) higher than that of a 
modern Ethernet cable. And this is only per one fiber; an optical cable may have hundreds of them. 
53 The silica-based fibers were suggested in 1966 by C. Kao (the 2009 Nobel Prize in physics), but the very idea 
of using optical fibers for communications may be traced back to at least the 1963 work by J. Nishizawa. 

Fig. 7.26. (a) Attenuation and (b) dispersion of representative single-mode optical fibers. 
(Adapted, respectively, from  http://olson-technology.com  and http://www.timbercon.com.) 

(a)          (b) 
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,        (7.150) 

Eq. (82) gives the propagation condition 
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For the case  << 1, when the incidence angles   > c of all propagating waves are close to /2, and 
hence the complimentary angles are small, we can keep only two first terms  in the Taylor expansion of 
the left-hand part of Eq. (151) and get 

          22
max .      (7.152) 

Even for the higher-end value  = 0.005,  this critical angle is only ~0.1 radian, i.e. close to 5. Due to 
this smallness, we can approximate the maximum transverse component of the wave vector as 

          kkkkt 2)(sin)( maxmaxmax  ,    (7.153) 

and use Eq. (147) to calculate number N of propagating modes: 
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For typical values k = 0.73107 m-1 (corresponding to the free-space wavelength 0 = n = 2n/k  1.3 
m), R = 25 m, and  = 0.005, this formula gives N  150.  

 The largest problem with using multi-mode fibers for communications is their high geometric 
dispersion, i.e. the difference of the mode propagation speed, which is usually characterized in terms of 
the signal delay time difference (traditionally measured in picoseconds per kilometer) between the 
fastest and the slowest mode. Within the geometric optics approximation, the difference of time delays 
of the fastest mode (with kz = k) and the slowest mode (with kz = k sinc) at distance l is 

          





























v

l

n

n

v

l

v

l
k

llk

v

l
t cz

z

z

1sin1 


.  (7.155) 

For the example considered above, the TEM wave speed v = c/n  2108 m/s, and the geometric 
dispersion t/l is close to 25 ps/m, i.e. 25,000 ps/km. (This means, for example, that a 1-ns pulse,  being 
distributed between the modes, would spread to a ~25-ns pulse after passing a just 1-km fiber segment.) 
Such disastrous dispersion should be compared with chromatic dispersion that is due to the frequency 
dependence of , and has the steepness (dt/d)/l of the order of 10 ps/kmnm (see the solid pink line in 
Fig. 26b). One can see that through the whole frequency band (d ~ 100 nm) the total chromatic 
dispersion dt/l is of the order of only 1,000 ps/km. 

 Due to the large geometric dispersion, the multimode fibers are used for signal transfer over only 
short distances (~ 100 m), while long-range communications are based on single-mode fibers, with thin 
cores (typically with diameters 2R ~ 5 m,  i. e. of the order of /1/2). For such structures, Eq. (154) 
yields N ~ 1, but in this case the geometric optics approximation is not quantitatively valid, and we 
should get back to the Maxwell equations. In particular, this analysis should take into an explicit 

Number  
of modes 
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account the evanescent wave propagating in the cladding, because its penetration depth may be 
comparable with R.54   

 Since the cross-section of an optical fiber is not uniform and lacks metallic conductors, the 
Maxwell equations cannot be exactly satisfied with either a TEM, or a TE, or a TM solutions. Instead, 
the fibers can carry so-called HE and EH modes, with both fields having longitudinal components 
simultaneously. In such  modes, both Ez and Hz inside the core (   R) have the form similar to Eq. 
(141): 

 inekJff tnl )( , with ,0222   zt kkk     22k ,  (7.156) 

where amplitudes fl (i.e., El and  Hl) may be complex to account for the possible angular shift between 
these components. On the other hand, for the evanescent wave in the cladding, we may rewrite Eq. (102) 
as 

     ,022  ft  with   0222  kkzt  ,    22k    (7.157) 

 Figure 27 illustrates the relation between kt, t, kz, and k; note that the following sum, 

0
222 )(    ttk ,     (7.158) 

is fixed (at fixed frequency) and, for typical fibers, very small (~2k2 << k2). By the way, Fig. 27 shows 
that neither of kt and t can be larger than [(- - +)0]

1/2 = k1/2. In particular, this means that the depth 
 = 1/t of wave penetration into the cladding is at least 1/k1/2 = /21/2 >> /2. This is why the 
cladding layers in practical optical fibers are made as thick as ~50 m, so that only a negligibly small 
tail of this evanescent wave field reaches their outer surfaces. 

 

 

 

 

 

 

  

 In the polar coordinates, Eq. (157) becomes 

           0
11 2

2

2

2




























ft



,    (7.159) 

instead of Eq. (139). From Sec. 2.5 we know that the eigenfunctions of Eq. (159) are the products of the 
angular factor exp{in} by a linear combination of the modified Bessel functions In and Kn, shown in 

54 I believe that the following calculation is important – both for practice, and as a good example of Maxwell 
theory application. However, its results will not be used in the following sections/chapters of the course, so that if 
the reader is not interested in this topic, he or she may safely jump to the beginning Sec. 9. 
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Fig. 7.27. Relation between the transverse 
exponents kt and t  for waves in optical fibers. 
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Fig. 2.20, now of argument t. In our case, the fields should vanish at   , so that only the latter 
functions (of the second kind) can participate: 

 ineKf tn )(    (7.160) 

 Now we have to reconcile Eqs. (156) and (160), using the boundary conditions at  = R for both 
longitudinal and transverse components of both fields, with the latter fields first calculated from using 
Eqs. (121). Such a conceptually simple, but a bit bulky calculation (which I am leaving for reader’s 
exercise :-), yields a system of two linear, homogeneous equations for complex amplitudes El and Hl, 
that are compatible if 
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where prime means the derivative of each function over its full argument: kt  for Jn, and t  for Kn. 

 For any given frequency , the system of Eqs. (158) and (161) determines the values of kt and t, 
and hence kz.  Actually, for any n > 0, this system provides two different solutions: one corresponding to 
the so-called HE wave with larger ratio Ez/Hz, and the EH wave, with a smaller value of that ratio. For 
angular-symmetric modes with n = 0 (for whom we might naively expect the lowest cutoff frequency), 
the equations may be satisfied by fields having just one finite longitudinal component (either Ez or Hz), 
and the HE modes are the usual E waves, while the EH modes are the H waves. For the H modes, the 
characteristic equation is reduced to the requirement that the second parentheses in the left-hand part of 
Eq. (161) equals to zero. Using the identities J’0 = - J1 and K’0 = - K1, this equation may be rewritten as 
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 Using the simple relation between kt and t given by Eq. (158), we may plot both parts of Eq. 
(162) as a function of the same argument, say,   ktR – see Fig. 28.  

 

 

 

 

 

 

 

 

 

 

The right-hand part of Eq. (162) depends not only on  but also on the dimensionless parameter 
V defined as the normalized right-hand part of Eq. (158): 

0 5 10
3

0

3

Fig. 7.28. Two sides of the characteristic 
equation (162), plotted as a function of ktR, 
for two values of its dimensionless 
parameter: V = 8 (blue line) and V = 3 (red 
line). Note that according to Eq. (158), the 
argument of functions K0 and K1 is just 
tR = [V2 – (ktR)2]1/2 = (V2 – 2)1/2. 
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             222
0

22 2)( RkRV    .    (7.163) 

(According to Eq. (155), if V >> 1, it gives the doubled number of the fiber modes – the conclusion 
confirmed by Fig. 28, taking into account that it describes only the H modes.) Since the ratio K1/K0 is 
positive for all values of their argument (see, e.g., the right panel of Fig. 2.20), the right-hand part of Eq. 
(162) is always negative, so that the equation may have solutions only in the intervals where the ratio 
J1/J0 is negative, i.e. at 

           ,..., 12021101   RkRk tt ,    (7.164) 

where nm is the m-th zero of function Jn() – see Table 2.1. The right-hand part of the characteristic 
equation diverges at tR  0, i.e. at ktR  V, so that no solutions are possible if V is below the critical 
value Vc = 01  2.405. At this cutoff point, Eq. (163) yields k. 01/R(2)1/2. Hence, the cutoff 
frequency for the lowest H mode corresponds to the TEM wavelength 
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For typical parameters  = 0.005 and R = 2.5 m, this result yields max ~ 0.65 m, corresponding to the 
free-space wavelength 0 ~ 1 m. A similar analysis of the first parentheses in the left-hand part of Eq. 
(161) shows that at   0, the cutoff frequency for the E modes is similar. 

 This situation may look exactly like that in metallic waveguides, with no waves possible at 
frequencies below c, but this is not so. The basic reason for the difference is that in metallic 
waveguides, the approach to c results in the divergence of the longitudinal wavelength z  2/kz. On 
the contrary, in dielectric waveguides this approach leaves z finite (kz  k+). Due to this difference, a 
certain linear superposition of HE and EH modes with n = 1 can propagate at frequencies well below the 
cutoff frequency for n = 0, which we have just calculated.55 This mode, in the limit +  - (i.e.  << 1) 
allows a very interesting and simple description using the Cartesian (rather than polar) components of 
the fields, but still expressed as functions of polar coordinates  and . The reason is that this mode is 
very close to a linearly polarized TEM wave. (Due to this reason, this mode is referred to as LP01.)  

 Let us select axis x parallel to the transverse component of the magnetic field vector, so that 
Ex=0 = 0, but Ey=0   0, and Hx=0 0, but Hy=0  = 0. The only suitable solutions of the 2D Helmholtz 
equation (that should be obeyed not only by z-components of the field, but also their x- and  y-
components) are proportional to J0(kt), with zero coefficients for Ex and Hy: 

       RHkJHHkJEEE ytxtyx   for ,0),(),(,0 0000 .  (7.166) 

Now we can readily calculate the longitudinal components, using the last two equations of Eqs. (100): 
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where I have used mathematical identities J’0 = - J1, /x = x/ = cos, and /y = y/ = sin. As a 
sanity check, we see that the longitudinal component or each field is a (legitimate!) eigenfunction of the 

55 This fact becomes less surprising if we recall that in the circular metallic waveguide, discussed in Sec. 7,  the 
lowest mode (H11, Fig. 23) also corresponded to n = 1 rather than n = 0. 
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type (141) with n = 1. Note also that if kt << kz (this relation is always true if  << 1 – see Fig. 27), the 
longitudinal components of the fields are much smaller than their transverse counterparts, so that the 
wave is indeed very close to the TEM one. Because of that, the ratio of the electric and magnetic field 
amplitudes is also close to that in the TEM wave: E0/H0  Z-  Z+. 

 Now in order to ensure the continuity of the fields at the core-to-cladding interface ( = R), we 
need to have a similar angular dependence of these components at   R. The longitudinal components 
of the fields are tangential to the interface and thus should be continuous. Using the solutions similar to 
Eq. (160) with n = 1, we get 
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For the transverse components, we should require the continuity of the normal magnetic field Hn, for 
our simple field structure equal to just  Hxcos, of the tangential electric field E = Eysin, and of the 
normal component of Dn = En = Eycos. Assuming that - = + = 0, and +  -,

56
 we can satisfy these 

conditions with the following solutions 
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From here, we can calculate components from Ez and Hz, using the same approach as for   R: 
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 (7.170) 

We see that this equation provides the same functional dependence of the fields as Eqs. (166), i.e. the 
internal and external fields are compatible, but their amplitudes coincide only if 
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 This characteristic equation (which may be also derived from Eq. (161) with n = 1 in the limit 
 0) looks close to Eq. (162), but functionally is much different from it – see Fig. 29. Indeed, its right-
hand part is always positive, and the left-hand part tends to zero at ktR  0. Due to this, Eq. (171) may 
have a solution for arbitrary small values of parameter V, defined by Eq. (163), i.e. for arbitrary low 
frequencies. This is why this mode is used in practical single-mode fibers: there are no other modes that 
can propagate at  < c, so that the geometric dispersion problem is avoided. 

It is easy to use the Bessel function approximations given by the first term of the expansion 
(2.132) and also Eq. (2.157) to show that in the limit V  0 (i.e. V << 1), tR tends to zero much faster 

56 This is the core assumption of this approximate theory which accounts only for the most important effect of the 
difference of dielectric constants + and -: the opposite signs of  the differences (k+

2 – kz
2)  = kt

2 and (k-
2 – kz

2) = -
t

2. For more discussion of accuracy of this approximation and some exact results, let me refer the interested 
reader either to the monograph by A. Snyder and D. Love, Optical Waveguide Theory, Chapman and Hill, 1983, 
or to Chapter 3 and Appendix B in the monograph by Yariv and Yeh, which was cited above. 

LP01 mode’s 
characteristic 

equation 
 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 7           Page 50 of 66 

than ktR  V: tR  2exp{-1/V} << V. This means that the scale c  1/t of the radial distribution of the 
LP01 wave’s fields in the cladding becomes very large. In this limit, this mode may be interpreted as a 
virtually TEM wave propagating in the cladding, just slightly deformed (and guided) by the fiber core. 
The drawback of this feature is that it requires very thick cladding, in order to avoid energy losses in 
outer (“buffer” and “jacket”) layers that defend the silica components from the elements, but lack their 
low optical absorption. Due to this reason, the core radius is usually selected so that parameter V is just 
slightly less than the critical value Vc =  01  2.4 for higher modes, thus ensuring the single-mode 
operation and eliminating the geometric dispersion problem. 

  

 

 

 

 

 

 

 

  

  

In order to reduce the field spread into the cladding, the step-index fibers considered above may 
be replaced with graded-index fibers whose the dielectric constant r is gradually and slowly decreased 
from the center to the periphery. Keeping only the main two terms in the Taylor expansion of the 
function () at  = 0, we may approximate such reduction as 

           





  2

2
1)0()(  ,     (7.172) 

where   - [(d2/d2)/]=0 is a positive constant characterizing the fiber composition gradient.57 
Moreover, if this constant is sufficiently small ( << k2), the field distribution across the fiber’s cross-
section may be described by the same 2D Helmholtz equation, but with the space-dependent transverse 
wave vector: 58   
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Surprisingly for such axially-symmetric problem, because of its special dependence on the radius, this 
equation may be most readily solved in Cartesian coordinates. Indeed, rewriting it as 

57 For an axially-symmetric fiber with a smooth function (), the first derivative d/d should vanish at  = 0. 
58 Such approach is invalid at arbitrary (large) . Indeed, in the macroscopic Maxwell equations, (r) is under the 
differentiation sign, and the exact Helmholtz-type equations for fields have additional terms containing . 
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Fig. 7.29. Two sides of the 
characteristic equation (167) for the 
LP01 mode, plotted as a function of 
ktR, for two values of the 
dimensionless parameter: V = 8 
(blue line) and V = 1 (red line). 
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and separating variables as f = X(x)Y(y), we get 
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so that functions X and Y obey similar differential equations, for example 
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with the separation constants satisfying the following relation: 
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Equation (176) is well known from the elementary quantum mechanics, because the Schrödinger 
equation for the perhaps most important quantum system, a 1D harmonic oscillator, may be rewritten in 
this form. Their eigenvalues are described by a simple formula 
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 (7.178)  

but eigenfunctions Xn(x) and Ym(y) have to be expressed via not quite elementary functions - the Hermite 
polynomials.59 For our purposes, however, the lowest eigenfunctions X0(x) and Y0(y) are sufficient, 
because they correspond to the lowest kx,y and hence to the lowest cutoff frequency: 

       0
2

0
2

0
2 )()()0( yxc kk .    (7.179) 

(Note that at   0, the cutoff frequency tends to zero, as it should be for a wave in a uniform medium.) 
The eigenfunctions corresponding to the lowest eigenvalues are simple: 
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 so that the field distribution follows the Gaussian (“bell curve”) function 
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This is the so-called Gaussian beam, very convenient for some applications. Still, the graded-index 
fibers have higher attenuation than their step-index counterparts, and are not used as broadly. 

 Speaking of the Gaussian beams (or more generally, any beams with axially-symmetric profile 
f0()), I cannot help noticing the very curious option of forming so-called helical waves with complex 
amplitude f0()exp{il}, where l is an integer constant, and  is the azimuthal angle (so that in our 
notation x = cos, y = sin). Let me leave it for reader’s exercise to prove that the electromagnetic 

59 See, e.g., QM Sec. 2.6. 
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field of such a wave has an angular momentum vector L = Lznz, with Lz proportional to l.60 Quantization 
of the helical field gives Lz = l per photon. The case l = 1 is possible for infinite-width beams (i.e. 
plane waves) and means their circular polarization, quantum-mechanically corresponding to spin 1 of 
their photons - see the discussion in the end of Sec. 1. In contrast, the implementation of higher values 
of l requires space-limited beams (with f0  0 at   ) and may be interpreted as giving the wave an 
additional “orbital” angular momentum.61 

 

7.9. Resonators 

 Resonators are the distributed oscillators, i.e. structures that may sustain standing waves (in 
electrodynamics, oscillations of the electric and magnetic field at each point) even without a source, 
until the oscillation amplitude slowly decreases in time due to unavoidable energy losses. If the 
resonator quality (described by the so-called Q-factor, which will be defined and discussed in the next 
section) is high, this decay takes many oscillation periods. Alternatively, high-Q resonators may sustain 
oscillating fields permanently, if fed with a relatively weak incident wave.   

 Conceptually the simplest resonator is the Fabry-Pérot interferometer62 that may be obtained by 
placing two well-conducting planes parallel to each other.63 Indeed, in Sec. 1 we have seen that if a 
plane wave is normally incident on such a “perfect mirror”, located at z = 0,  its reflection, at negligible 
skin depth, results in a standing wave described by Eq. (61) – that may be rewritten as 

               kzeEtzE iti sin2Re),( 2/


 .    (7.182) 

Hence the wave would not change if we had suddenly put the second mirror (isolating the segment of 
length  l from the external wave source) at any position z = l with sin kl = 0, i.e. 

      ,....2,1  where,  ppkl                 (7.183) 

This condition, which also determines the eigen- (or resonance) frequency spectrum of the resonator of 
fixed length l, 
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60 This task should be easier after reviewing results of field’s momentum analysis in Sec. 9.8, in particular Eqs. 
(9.235) and (9.237). 
61 Theoretically, the possibility of separating of the angular momentum of an electromagnetic wave to the “spin” 
and “orbital” parts may be traced back to at least the 1943 work by J. Humblet; however, this issue had not been 
discussed in literature too much until the spectacular 1992 experiments by L. Allen et al. who demonstrated a 
simple way of generating such helical optical beams. (For reviews of this and later work see, e.g., G. Molina-
Terriza et al., Nature Physics 3, 305 (2007) and/or L. Marrucchi et al., J. Opt. 13, 064001 (2011), and references 
therein.) Presently there are efforts to use this approach for so-called “orbital angular moment (OAM) 
multiplexing” of waves for high-rate information transmission – see, e.g., J. Wang et al., Nature Photonics 6, 488 
(2012). 
62 The device is named after its inventors, M. Fabry and A. Pérot; and is also called the Fabry-Pérot etalon 
(meaning “gauge”), because of its initial usage for the light wavelength measurement. 
63 The resonators formed by well conducting (usually, metallic) walls are frequently called the resonant cavities. 
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has a simple physical sense: the resonator length l equals exactly p half-waves of frequency p. Though 
this is all very simple, please note a considerable change of philosophy from what we have been doing 
in the previous sections: the main task in resonator analysis is finding its eigenfrequencies p that are 
now determined by the system geometry rather than by an external wave source. 

 Before we move to more complex resonators, let us use Eq. (62) to present the magnetic field in 
the Fabry-Pérot interferometer: 
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   .    (7.185) 

Expressions (182) and (185) show that in contrast to traveling waves, each field of the standing wave 
changes simultaneously (proportionately) at all points of the Fabry-Pérot resonator, turning to zero 
everywhere twice a period. At those instants the electric field energy of the resonator vanishes, but the 
total energy stays constant, because the magnetic field oscillates (also simultaneously at all points) with 
the phase shift /2. Such behavior is typical for all electromagnetic resonators. 

 Another, more technical remark is that we can readily get the same results (182)-(185) by 
solving the Maxwell equations from the scratch. For example, we already know that in the absence of 
dispersion, losses, and sources, they are reduced to wave equations (3) for any field components. For the 
Fabry-Pérot resonator’s analysis, we can use their 1D form, say, for the transverse component of the 
electric field: 
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and solve it as a part of an eigenvalue problem with the corresponding boundary conditions. Indeed, 
separating time and space variables as E(z, t) = Z(z)T(t), we get 
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Calling the separation constant k2, we get two similar ordinary differential equations, 
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both with sinusoidal solutions, so that their product is a standing wave with a wave vector k and 
frequency  = kv, which may be presented by Eq. (182).64 Now using the boundary conditions E(0, t) = 
E(l, t) = 0,65 we get the eigenvalue spectrum for kp and hence for p = vkp,  given by Eqs. (183) and 
(184).  

64 In this form, the equations are valid even in the presence of dispersion, but with the frequency-dependent wave 
speed: v2 = 1/()(). 
65 This is of course the expression of the first of the general boundary conditions (104). The second if these 
conditions (for the magnetic field) is satisfied automatically for the transverse waves we are considering. 
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 Lessons from this simple case study may be readily generalized for an arbitrary resonator: there 
are (at least :-) two methods of finding the eigenfrequency spectrum:  

 (i) We may look at a traveling wave solution and find where reflecting mirrors may be inserted 
without affecting the wave’s structure. Unfortunately, this method is limited to simple geometries. 

  (ii) We may solve the general 3D wave equation, 
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for field components, as an eigenvalue problem with appropriate boundary conditions. If system 
parameters (and hence coefficient v) do not change in time, the spatial and temporal variables of Eq. 
(185) may be always separated by taking 

              )()(),( ttf TR rr  ,     (7.191)  

where function T(t) always obeys the same equation (189), having the sinusoidal solution of frequency  
= vk. Plugging this solution back into Eq. (190), for the spatial distribution of the field we get the 3D 
Helmholtz equation, 

                0)(22  rRk ,     (7.192) 

whose solution (for non-symmetric geometries) may be much more complex. 

Let us use these methods to find the eigenfrequency spectrum of a few simple, but practically 
important resonators. First of all, the first method is completely sufficient for the analysis of any 
resonator formed as a fragment of a uniform TEM transmission line (e.g., a coaxial cable) between two 
conducting lids perpendicular to the line direction. Indeed, since in such lines kz = k = /v, and the 
electric field is perpendicular to the propagation axis, e.g., parallel to the lid surface, the boundary 
conditions are exactly the same as in the Fabry-Pérot resonator, and we again arrive at the 
eigenfrequency spectrum (184). 

 Now let us analyze a slightly more complex system: a rectangular metallic-wall cavity of volume 
abl – see Fig. 30. In order to use the first method, let us consider the resonator as a finite-length (z = 
l) of the rectangular waveguide stretched along axis z, which was analyzed in detail in Sec. 7. As a 
reminder, for a < b, in the basic H10 traveling wave mode, both E and H do not depend on y, with vector 
E having only y-component. On the contrary, vector H has both components Hx and Hz, with the phase 
shift /2 between them, with component Hx having the same phase as Ey – see Eqs. (131), (137), and 
(138). Hence, if a plane, perpendicular to axis z, is placed so that the electric field vanishes on it, Hx also 
vanishes, so that all the boundary conditions (104) pertinent to a perfect metallic wall are fulfilled 
simultaneously.  

 

 

 

 

 
a

b

l

x

y

z

0 Fig. 7.30. Rectangular metallic resonator as a 
finite section of a waveguide with the cross-
section shown in Fig. 25. 
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 As a result, the H10 wave would not be perturbed by two metallic walls separated by an integer 
number of half-wavelength z/2 corresponding to the wave number given by Eqs. (102) and (133):  
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Using this expression, we see that the smallest of these distances, l = z/2 = /kz, gives resonance 
frequency66 
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with the indices showing the number of half-waves along each dimension of the system. This is the 
lowest (fundamental) eigenfrequency of the resonator (if b < a, l). 

 The field distribution in this mode is close to that in the corresponding waveguide mode H10 
(Fig. 22), with the important difference that phases of the magnetic and electric fields are shifted by 
phase /2 both in space and time, just as in the Fabry-Pérot resonator – see Eqs. (182) and (185). Such 
time shift allows for a very simple interpretation of the H101 mode that is especially adequate for very 
flat resonators, with  b << a, l. At the instant when the electric field reaches maximum (Fig. 31a), i.e. the 
magnetic field vanishes in the whole volume, the surface electric charge of the walls (with density  = 
En/) is largest, being localized mostly in the middle of the broadest (in Fig. 31, horizontal) faces of the 
resonator. At later times, the walls start to recharge via surface currents whose density J is largest in the 
side walls, and reaches its maximal value in a quarter period of the oscillation period of frequency 101 – 
see Fig. 31b. The currents generate the vortex magnetic field, with looped field lines in the plane of the 
broadest face. The surface currents continue to flow in this direction until (in one more quarter period) 
the broader walls of the resonator are fully recharged in the polarity opposite to that shown in Fig. 31a. 
After that, the surface currents stat to flow in the direction opposite to that shown in Fig. 31b. This 
process, that repeats again and again, is conceptually similar to the well-known oscillations in a lumped 
LC circuit, with the role of (now, distributed) capacitance played mostly by the broadest faces of the 
resonator, and that of distributed inductance, mostly by its narrower walls. 

  

 

 

 

 

  

 In order to generalize result (194) to higher oscillation modes, the second method discussed 
above is more prudent. Separating variables as R(r) = X(x)Y(y)Z(z) in the Helmholtz equation (192), we 

66 In most electrical engineering handbooks, the index corresponding to the shortest side of the resonator is listed 
last, so that the fundamental mode is nominated as H110 and its eigenfrequency as 110. 

Fig. 7.31. Fields, charges, and 
currents in the basic H101 mode of a 
rectangular metallic resonator, at two 
instants separated by t = /2101  - 
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see that X, Y, and Z have to be sinusoidal functions of their arguments, with wave vector components 
satisfying the characteristic equation 
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In contrast to the wave propagation problem, now we are dealing with standing waves along all three 
dimensions, and have to satisfy the boundary conditions on all sets of parallel walls. It is straightforward 
to check that the macroscopic boundary conditions (E = 0, Hn = 0) are fulfilled at the following field 
component distribution: 

             

,cossinsin

,sincossin

,sinsincos

3

2

1

zkykxkEE

zkykxkEE

zkykxkEE

zyxz

zyxy

zyxx







 

,sincoscos

,cossincos

,coscossin

3

2

1

zkykxkHH

zkykxkHH

zkykxkHH

zyxz

zyxy

zyxx







  (7.196) 

with each of the wave vector components having the equidistant spectrum similar to the one given by 
Eq. (183): 
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so that the full spectrum of eigenfrequencies is given by the following formula, 
2/1222
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which is a natural generalization of Eq. (194). Note, however, that of 3 integers m, n, and p at least two 
have to be different from zero, in order to keep the fields (196) nonvanishing. 

 Let us use Eq. (199) to evaluate the number of different modes in a relatively small region d3k  
<< k3 (which is still much larger than the reciprocal volume, 1/V = 1/abl, of the resonator) of the wave 
vector space. Taking into account that each eigenfrequency (198), with nml  0, corresponds to two field 
modes with different polarizations,67 the argumentation absolutely similar to the one used in the end of 
Sec. 7 for the 2D case yields 
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This property, valid for resonators of arbitrary shape, is broadly used in classical and quantum statistical 
physics,68 in the following form. If some electromagnetic mode property, f(k), is a smooth function of 
the wave vector, and volume V is large enough, then Eq. (199) may be used to approximate the sum over 
the modes by an integral: 

67 This fact becomes evident from plugging Eq. (196) into the Maxwell equation E = 0. The resulting equation, 
kxE1 + kyE2 + kzE3 =0, with the discrete, equidistant spectrum (197) for each wave vector component, may be 
satisfied  by two linearly independent sets of constants E1,2,3. 
68 See, e.g., QM Sec. 1.1 and SM Sec. 2.6. 
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 Finally, note that low-loss resonators may be also formed by finite-length sections of not only 
metallic waveguides with different cross-sections, but also of the dielectric waveguides. Moreover, even 
the a simple slab of a dielectric material with a / ratio substantially different from that of its 
environment (say, the free space) may be used as a high-Q Fabry-Pérot interferometer (Fig. 32), due to 
an effective wave reflection from its surfaces at normal and especially inclined incidence – see, 
respectively, Eqs. (68) and Eqs. (91) and (95).  

 

 

 

 

 

 

 

 Actually, such dielectric Fabry-Pérot interferometer is frequently more convenient for practical 
purposes than a metallic resonator, due to its natural coupling to environment, that enables a ready way 
of wave insertion and extraction. The back side of the same medal is that this coupling to environment 
provides an additional mechanism of power losses, limiting the resonance quality – see the next section. 

 

7.10. Energy loss effects 

 Inevitable energy losses (“power dissipation”) in passive media lead, in two different situations, 
to two different effects. In a long transmission line fed by a constant wave source at one end, the losses 
lead to a gradual attenuation of the wave, i.e. to the decrease of its amplitude, and hence power P, with 
the distance z along the line. In linear materials, the losses are proportional to the wave amplitude 
squared, i.e. to the time- average of the power itself, so that the energy balance on a small segment dz 
takes the form 

      dzdz
dz

d
d P
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P  loss .     (7.201) 

Coefficient , participating in the last form of Eq. (201) and defined by relation 

       
P

P dzd /loss ,     (7.202) 

 is called the attenuation constant.69 Comparing the evident solution of Eq. (201), 

69 In engineering, attenuation is frequently measured in decibels per meter (acronymed as db/m or just dbm):  
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Fig. 7.32. Dielectric Fabry-Pérot interferometer. 
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               zez  )0()( PP ,     (7.203) 

with Eq. (29), where k is replaced with kz, we see that  may expressed as  

        zkIm2 ,      (7.204) 

where kz is the component of the wave vector along the transmission line. In the most important limit 
when the losses are low in the sense  <<  kz   Re kz, its effects on the field distributions along the 
line’s cross-section are negligible, making the calculation of  rather straightforward. In particular, in 
this limit the contributions to attenuation from two major sources, energy losses in the filling dielectric, 
and the skin effect in conducting walls, are independent and additive.  

 The dielectric losses are especially simple to describe. Indeed, a review of our calculations in 
Secs. 6-8 shows that all of them remain valid if either (), or (), or both, and hence k(), have small 
imaginary parts:  

                      k'k"   2/12/1Im .    (7.205) 

In TEM transmission lines, k = kz, and hence Eq. (205) yields 

               2/12/1
dielectric Im22  k" .    (7.206) 

For dielectric waveguides, in particular optical fibers, these losses are the main attenuation mechanism. 
As we already know from Sec. 8, in practical optical fibers tR >> 1, i.e. most of the field propagates (as 
the evanescent wave) in the cladding, and the wave mode is very close to TEM. This is why it is 
sufficient to use Eq. (206) for the cladding material alone.   

 In waveguides with non-TEM waves, we can readily use the relations between kz and k derived 
above to re-calculate k” into Im kz. (Note that as such re-calculation, values of kt stay real, because they 
are just the eigenvalues of the Helmholtz equation (101), which does not include k.). 

 In waveguides and transmission lines with metallic conductors, much higher energy losses may 
come from the skin effect. Let us calculate them, assuming that we know the field distribution in the 
wave, in particular, the tangential component H of the magnetic field at conductor surface. Then, if the 
wavelength  is much larger than s, as it usually is,70 we may use the results of the quasistatic 
approximation derived in Sec. 6.2, in particular Eqs. (6.27)-(6.28) for the relation between the complex 
amplitudes of the current density in the conductor and the tangential magnetic field 
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,

)1(
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i
kxHkxj .   (7.207) 

The power loss density (per unit volume) may be now calculated by time averaging of Eq. (4.39): 

           



2

2222

loss 22 s

xHxHkxj
x  p ,   (7.208) 

70 As follows from Eq. (78), which may be used for estimates even in cases of arbitrary incidence, this condition 
is necessary for low attenuation:  << k only if F << 1. 
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and its integration along the normal to the surface (through all the skin depth), using the exponential law 
(6.26). This (elementary) integration yields the following power loss per unit area:71 
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loss
loss sHdxx

dA
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P

.    (7.209) 

The total power loss dPloss/dz per unit length of a waveguide, i.e. the right-hand part of Eq. (201), now 
may be calculated by the integration of the ratio Ploss/A along the contour(s) limiting the cross-section of 
all conductors of the line. Since our calculation is only valid for low losses, we may ignore their effect 
on the field distribution, so that the unperturbed distribution may be used both in Eq. (209), i.e. the 
numerator of Eq. (202), and also for the calculation of the average propagating power, i.e. the 
denominator of Eq. (202), as the integral of the Poynting vector over the cross-section of the waveguide. 

 Let us see how this approach works for the TEM mode in one of the simplest TEM transmission 
lines, the coaxial cable (Fig. 19). As we already know from Sec. 6, in the absence of losses, the 
distribution of TEM mode fields is the same as in statics, namely: 

              ,)(,0,0 0 


a
HHHH z      (7.210) 

where H0 is the field’s amplitude on the surface of the inner conductor, and 
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Now we can,  neglecting losses for now, use Eq. (42) to calculate the time-averaged Poynting vector  
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and from it, the total power propagating through the cross-section: 
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 For the particular case of the coaxial cable (Fig. 19), the contours limiting the wall cross-sections 
are circles of radii   = a (where the surface field amplitude H(0) equals, in our notation, H0), and  = b 
(where, according to Eq. (204), the field is a factor of b/a lower). As a result, for the power loss per unit 
length, Eq. (209) yields 
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.  (7.214) 

Note that at a << b, the losses in the inner conductor dominate, despite its smaller surface, because of 
the higher surface field. Now we may plug Eqs. (213)-(214) into the definition (202) of , to calculate 
the part of the attenuation constant associated with the skin effect: 

71 For a normally-incident plane wave, this formula would bring us back to Eq. (78). 
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We see that the relative (dimensionless) attenuation, /k, scales approximately as the ratio s/min[a, b]. 
This result is should be compared with Eq. (78) for the normal incidence of plane waves on a conducting 
surface. 

 Let us evaluate   for the standard TV cable RG-6/U (with copper conductors of diameters 2a = 
1 mm, 2b = 4.7 mm, and   2.2 0,   0). According to Eq. (6.27a), for f = 100 MHz (  6.3108 s-1) 
the skin depth of pure copper at room temperature (with    6.0107 S/m) is close to 6.510-6 m, while 
k = ()1/2 = (/0)

1/2(/c)  3.1 m-1. As a result, the attenuation is rather low: skin  0.016 m-1, so that 
the attenuation length scale L   1/  is about 60 m. Hence the attenuation in a cable connecting a roof 
TV antenna to a TV set in the same house is not a big problem, though using a worse conductor, e.g., 
steel, would make the losses rather noticeable. (Hence the current worldwide shortage of copper.) 
However, an attempt to use the same cable in the X-band (f ~ 10 GHz) is more problematic. Indeed, 
though the skin depth s  -1/2  decreases with frequency, the wave length drops, i.e. k increases, even 
faster (k  ), so that the attenuation skin  1/2 becomes close to 0.16 m, and L  to ~6 m. This is why 
at such frequencies, it is more customary to use rectangular waveguides, with their larger internal 
dimensions a, b ~ 1/k, and hence lower attenuation. Let me leave the calculation of this attenuation, 
using Eq. (209) and the results derived in Sec. 9, for reader’s exercise. 

The power loss effect on free oscillations in resonators is different: there it leads to a gradual 
decay of oscillation energy E in time. The useful measure of this decay, called the Q factor, may be 
introduced by writing the temporal analog of Eq. (201): 

     dt
Q

dtd EPE


 loss ,     (7.216) 

where  in the eigenfrequency in the loss-free limit, and the dimensional Q factor is defined by a 
relation parallel to Eq. (202): 72 
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P loss
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.      (7.217) 

The solution to Eq. (216), 

            






22/

2/
with  ,)0()( / QTQQ

et t  EE ,   (7.218) 

which is an evident temporal analog of Eq. (203), shows the physical meaning of the Q factor: the 
characteristic time  of the oscillation energy decay is (Q/2) times longer than the oscillation period T 
= 2/. (Another interpretation of Q comes from the relation73  

     




Q ,      (7.219) 

72 As losses grow, the oscillation waveform deviates from sinusoidal one, and the very notion of “oscillation 
frequency” becomes vague. As a result, parameter Q is well defined only if it is much higher than 1.   
73 See, e.g., CM Sec. 4.1. 
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where  is the so-called FWHM 74 bandwidth of the resonance, namely the difference between the two 
values of the external signal frequency, one above and one below , at which the energy of forced 
oscillations induced in the resonator by an input signal is twice lower than its resonant value.) 

 In the important particular case of resonators formed by insertion of metallic walls into a TEM 
transmission line of small cross-section (with the linear size scale a much less than the wavelength ), 
there is no need to calculate the Q factor directly if the line attenuation coefficient  is already known. 
In fact, as was discussed in Sec. 9 above, the standing waves in such a resonator, of the length given by 
Eq. (183): l = p(/2) with p = 1, 2,…, may be understood as an overlap of two TEM waves running in 
opposite directions, or in other words, a traveling wave and its reflection from one of the ends, the 
whole roundtrip taking time t = 2l/v = p/v = 2p/ = pT. According to Eq. (201), at this distance the 
wave’s power should drop by exp{-2l} = exp{-p}. On the other hand, the same decay may be 
viewed as happening in time, and according to Eq. (216), result in the drop by exp{-t/} =  exp{-
(pT)/(Q/)} = exp{-2p/Q}. Comparing these two exponents, we get 

       


 k
Q 

2
.       (7.220) 

 This simple relation neglects the losses at wave reflection from the walls limiting the resonator 
length. Such approximation is indeed legitimate at a << ; if this relation is violated, or if we are dealing 
with more complex resonator modes (such as those based on the reflection of E or H waves), the Q 
factor may be smaller than that given by Eq. (220), and needs to be calculated directly. A substantial 
relief for such a direct calculation is that, just at the calculation of small attenuation in waveguides, in 
the low-loss limit (Q >> 1), both the numerator and denominator of the right-hand part of Eq. (217) may 
be calculated neglecting the effects of the power loss on the field distribution in the resonator. I am 
leaving such a calculation, for the simplest (rectangular and circular) resonators, for reader’s exercise.  

 To conclude this chapter, the last remark: in some resonators (including certain dielectric 
resonators and metallic resonators with holes in their walls), additional losses due to wave radiation into 
the environment are also possible. In some simple cases (say, the Fabry-Pérot interferometer shown in 
Fig. 32) the calculation of these radiative losses is straightforward, but sometimes it requires more 
elaborated approaches, which will be discussed in the next chapter. 

 

7.11. Exercise problems 

 7.1.* Find the temporal Green’s function of a medium whose complex dielectric constant obeys 
Eq. (32), using:  

 (i) the Fourier transform, and  
 (ii) the direct solution of Eq. (30), which describes the corresponding model of the medium. 

Hint: For the Fourier transform, you may like to use the Cauchy integral.75  
  
 7.2. The electric polarization of a material responds in the following way to an electric field 
step:76 

74 This is the acronym for “Full Width at Half-Maximum”. 
75 See, e.g., MA Eq. (15.2). 

Q vs.  
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where   is a positive constant. Calculate the complex permittivity () of this material, and discuss a 
possible simple physical model giving such dielectric response. 
 
 7.3. Calculate the complex dielectric constant () for a material whose dielectric-response 
Green’s function, defined by Eq. (23), is 

    /10
 eGG , 

with some positive constants G0 and . What is the difference between this dielectric response and the 
apparently similar one considered in the previous problem? 
 
 7.4. Use the Lorentz oscillator model of an atom, given by Eq. (30), to calculate the average 
potential energy of the atom in a uniform, sinusoidal ac electric field, and use the result to calculate the 
potential profile created for the atom by a standing electromagnetic wave with the electric field 
amplitude E(r). Discuss the conditions of validity of your result. 
 
 7.5. The solution of the previous problem shows that a standing plane wave exerts a time-
averaged force on a non-relativistic charged particle. Reveal the physics of this force by writing and 
solving the equations of motion of a free particle in: 

 (i) a linearly-polarized, monochromatic, plane traveling wave, and 
 (ii) a similar but standing wave. 

Discuss the conditions of validity of your result.  
  
 7.6. Calculate, sketch and discuss the dispersion relation for electromagnetic waves propagating 
in a Lorentz oscillator medium described by Eq. (32), for the case of negligible damping. 
 
 7.7. As was briefly discussed in Sec. 2,77 a wave pulse of a finite but relatively large spatial 
extension r >>   2/k may be represented with a wave packet – a sum of sinusoidal waves with wave 
vectors k within a relatively narrow interval. Consider an electromagnetic plane wave packet of this 
type, with the electric field distribution 

       kdket kkk
k

k

tkzi
 





 2/1with  ,Re),( 
ErE , 

propagating along axis z in an isotropic, linear, and loss-free (but not necessarily dispersion-free) 
medium. Express the full energy of the packet (per unit area of wave’s front) via complex amplitudes Ek, 
and discuss its dependence of time. 
 

76 This function E(t) is of course proportional to the well-known step function   - see, e.g., MA Eq. (14.3). I am 
not using this notion just to avoid a possible confusion between two different uses of the Greek letter . 
77 And in more detail in CM Sec. 5.3, and especially in QM Sec. 2.1. 
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 7.8.* Analyze the effect of a constant, uniform magnetic field B0, parallel to the direction n of 
electromagnetic wave propagation, on the wave dispersion in plasma, within the same simple model that 
was used in the lecture notes for derivation of Eq. (7.38). (Limit your analysis to relatively weak waves, 
whose magnetic field is negligible in comparison with B0.) 

 Hint: You may like to represent the incident wave as a linear superposition of two circularly 
polarized waves, with the left- and right-hand polarization.  
 
 7.9. A monochromatic, plane electromagnetic wave is normally incident from free space on a 
uniform slab of a material with electric permittivity  and magnetic permeability , with the slab 
thickness d comparable with the wavelength.  

 (i) Calculate the power transmission coefficient T , i.e. the fraction of the incident power, that is 
transmitted through the slab.  
 (ii) Assuming that  and  are frequency-independent and positive, analyze in detail the 
frequency dependence of T.  In particular, how does function T () depend on the film thickness d and 

the wave impedance Z = (/)1/2 of its material? 
 
7.10. A monochromatic, plane electromagnetic wave with free-space wave number k0 is 

normally incident on a plane conducting film of thickness d ~ s << 1/k0. Calculate the power 
transmission coefficient of the system, i.e. the fraction of incident wave’s power propagating beyond the 
film. Analyze the result in the limits of small and large ratios d/s. 

 
 
7.11. A plane wave of frequency  is normally incident, from 

free space, on a plane surface of a material with real values of the 
electric permittivity ’ and magnetic permeability ’. To minimize 
wave reflection from the surface, you may cover it with a layer, of 
thickness d, of another transparent material – see Fig. on the right. 
Calculate the optimal values of , , and d. 

 
 
7.12. A monochromatic, plane wave is incident from inside a 

medium with  > 00 on its plane surface, at the angle of incidence  larger than the critical angle c = 
sin-1(00/)1/2. Calculate the depth  of the evanescent wave penetration into the free space and 
analyze its dependence on . Does the result depend on the wave polarization? 

 
7.13. Analyze the possibility of propagation of surface electromagnetic waves along a plane 

boundary between plasma and free space. In particular, calculate and analyze the dispersion relation of 
the waves. 

 Hint: Assume that the magnetic field of the wave is parallel to the boundary and perpendicular to 
the wave propagation direction. (After solving the problem, justify this mode choice.) 

 
7.14. Calculate the characteristic impedance ZW of the long, straight TEM transmission lines 

formed by metallic electrodes with cross-sections shown in Fig. below: 

d

''  ,,, 00
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 (i) two round, parallel wires, separated by distance d >> R, 
 (ii) microstrip line of width w >> d, 
 (iii) stripline with w >> d1 ~ d2, 

in all cases using the macroscopic boundary conditions on metallic surfaces. Assume that the conductors 
are embedded into a linear dielectric with constant  and . 
 
 7.15. Modify results of Problem 10(ii) for a superconductor microstrip line, taking into account 
the magnetic field penetration into both the strip and the ground plane. 
  
 7.16.* What lumped ac circuit would be equivalent to the system shown in Fig. 20, with incident 
wave’s power Pi? Assume that the wave reflected from the load circuit does not return to it. 

 
7.17. Find the lumped ac circuit equivalent to a loss-free 

TEM transmission line of length l ~ , with a small cross-section 
area A << 2, as “seen” (measured) from one end, if the line’s 
conductors are galvanically connected (“shortened”) at the other end 
– see Fig. on the right. Discuss result’s dependence on the signal 
frequency. 
 
 7.18. Represent the fundamental H10 wave in a rectangular waveguide (Fig. 22) with a sum of 
two plane waves, and discuss the physics behind such a representation . 
 
 7.19.* For a metallic coaxial cable with the circular cross-section (Fig. 21), find the lowest non-
TEM mode and calculate its cutoff frequency. 
 
 7.20. Two coaxial cable sections are connected coaxially - see 
Fig. on the right, which shows system’s cut along its symmetry axis. 
Relations (118) and (120) seem to imply that if the ratios b/a of these 
sections are equal, their impedance matching is perfect, i.e. a TEM 
wave incident from one side on the connection would pass it without 
any reflection at all: R = 0. Is this statement correct?  
 
 7.21.* Use the recipe outlined in Sec. 8 to prove the characteristic equation (161) for the HE and 
EH modes in a round, step-index optical fiber.  
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7.22. Find the lowest eigenfrequencies, and corresponding oscillation 

modes, of a round cylindrical resonator (see Fig. on the right) with perfectly 
conducting walls.  

 
  
 7.23. A plane, monochromatic wave propagates through a medium whose Ohmic conductance  
dominates the power losses, while the electric and magnetic polarization effects are negligible. Calculate 
the wave attenuation coefficient and relate the result with some calculation carried out in Chapter 6. 
 
 7.24. Generalize the telegrapher’s equations (110)-(111) by taking into account small energy 
losses in: 

 (i) transmission line’s conductors, and 
 (ii) the media separating the conductors, 

using their simplest (Ohmic) models. Formulate the conditions of validity of the resulting equations. 
 
 7.25. Calculate the skin-effect contribution to the attenuation coefficient , defined by Eq.  
(202), for the basic (H10) mode propagating in a waveguide with the rectangular cross-section – see Fig. 
22. Use the results to evaluate   and L  for a 10 GHz wave in the standard X-band waveguide WR-90 
(with copper walls, a = 23 mm, b = 10 mm, and no dielectric filling), at room temperature. Compare the 
estimate with that, made in Sec. 10, for a standard coaxial cable, for the same frequency. 
 
 7.26.* Calculate the skin-effect contribution to the attenuation coefficient  of 

  (i) the basic (H11) mode, and 
  (ii) the H01 mode 

in a metallic waveguide with the circular cross-section (Fig. 23a), and analyze the low-frequency ( 
c) and high-frequency ( >> c) behaviors of  for each of these modes. 
 
 7.27. For a rectangular metallic-wall resonator with dimensions abl (b  a, l), calculate the Q-
factor in the fundamental (lowest) oscillation mode, due to the skin-effect losses in the walls. Evaluate 
the factor (and the lowest eigenfrequency) for a 232310 mm3 resonator with copper walls, at room 
temperature. 
 
 7.28.* Calculate the lowest eigenfrequency and Q factor (due to the 
skin-effect losses) of the toroidal (axially-symmetric) resonator with 
metallic walls and interior’s cross-section shown in Fig. on the right, 
within the limit d << r, R. 
  
 7.29. Express the contribution to the damping coefficient (the reciprocal Q-factor) of a resonator, 
due to small energy losses in the dielectric that fills it, via dielectric’s complex functions () and () 
of the material. 
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 7.30. For the dielectric Fabry-Pérot resonator (Fig. 32) with the normal wave incidence, find the 
Q-factor due to radiation losses in the limit of strong impedance mismatch (Z >> Z0), using two 
methods: 

 (i) from the energy balance, using Eq. (217), and 
  (ii) from the frequency dependence of the power transmission coefficient, using Eq. (219). 

Compare the results. 
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Chapter 8. Radiation, Scattering, Interference, and Diffraction 

This chapter continues the discussion of the electromagnetic wave propagation, now focusing on the 
results of wave incidence on a passive object. Depending on the object’s shape, the result of this 
interaction is called either scattering, or diffraction, or interference. However, as we will see below, the 
boundary between these effects is blurry, and their mathematical description may be conveniently based 
on a single key calculation - the electric dipole radiation of a spherical wave by a small  source. 
Naturally, I will start the chapter from this calculation, deriving it from an even more general result – 
the “retarded potentials” solution of the Maxwell equations. 

 

8.1. Retarded potentials 

 Let us start from the general solution of the Maxwell equations in a dispersion-free, linear, 
uniform, isotropic medium, characterized by frequency-independent, real  and  - for example, free 
space.1 The easiest way to perform this calculation is to use the scalar () and vector (A) potentials of 
electromagnetic field, that are defined via the electric and magnetic fields by Eqs. (6.106): 

     AB,
A
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t

 .    (8.1) 

As was discussed in Chapter 6, imposing upon the potentials the Lorenz gauge condition (6.108),  
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(which does not affect fields E and B) the macroscopic Maxwell equations for the fields may be recast 
into a pair of very similar, simple equations (6.109) for the potentials: 
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 Let us calculate the fields induced by the stand-alone electric charge and current densities (r, t) 
and j(r, t), thinking of them as known functions.2 The idea how this may be done may be borrowed from 
electro- and magnetostatics. Indeed, for the stationary case (/t = 0), the solutions of Eqs. (8.3) are 
given, by the evident generalization of, respectively, Eq. (1.38) and by Eq. (5.28) to the uniform, linear 
medium: 
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1 When necessary (e.g., at the discussion of the Cherenkov radiation in Sec. 10.4), it will be not too hard to 
generalize these results to dispersive media. 
2 Such thinking would not prevent the results from being valid for the case when (r, t) and j(r, t) should be 
calculated self-consistently. 
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As we know, these expressions may be derived by, first, calculating the potential of a point source, and 
then using the linear superposition principle for a system of such sources. 

 Let us do the same for the time-dependent case, starting from the field induced by a time-
dependent point charge at origin:3 

              )()(),( rr  tqt  ,     (8.5) 

In this case Eq. (3a) is homogeneous everywhere but the origin: 
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Due to the spherical symmetry of the problem, it is natural to look for a spherically-symmetric solution 
to this equation.4 Thus, we may simplify the Laplace operator5 correspondingly, and reduce Eq. (6) to 
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If we now introduce a new variable   r , Eq. (7) is reduced to the 1D wave equation 
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From the discussion in Chapter 7,6 we know that its general solution may be presented as 

             





 






 

v

r
t

v

r
ttr inout),(  ,    (8.9) 

where in and out are (so far) arbitrary functions of one variable. The physical sense of out = out/r is a 
spherical wave propagating from our source (at r = 0) to outer space, i.e. exactly the solution we are 
looking for. On the other hand, in = in/r describes a spherical wave that could be created by some 
distant spherically-symmetric source, that converges on our charge located at the origin – evidently not 
the effect we want to consider here. Discarding this term, and returning to  = /r , we can write the 
solution (7) as  
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3 Admittedly, this expression does not satisfy the continuity equation (4.5), but we will correct this deficiency 
imminently, at the linear superposition stage – see Eq. (17) below. 
4 Let me emphasize that this is not the general solution to Eq. (6). For example, it does nor describe the fields 
created by other sources, that pass by the considered charge q(t). However, such fields are irrelevant for our 
current task: to calculate the field created by the charge q(t) itself.  
5 See, e.g., MA Eq. (10.9). 
6 See also CM Sec. 5.3.  
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 In order to find function out, let us consider distances r so small that the time derivative in Eq. 
(3a), with the right-hand part (5),  
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 ,      (8.11) 

is much smaller that the spatial derivative (that diverges at r  0) . Then Eq. (11) is reduced to the 
electrostatic equation whose solution (4a), for source (5), is 
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Now requiring the two solutions, (10) and (12), to coincide at r << vt, we get out(t) = q(t)/4r, so that 
Eq. (10) becomes 
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 Just as had been done in statics, this result may be readily generalized for the arbitrary position 
r’ of the point charge: 

                       )()()()(),( Rr-rr  tq'tqt  ,    (8.14) 

where R is the distance between the field observation point r and the source position point r’, i.e. the 
length of the vector, 

         'rr R  ,      (8.15) 

connecting these points  - see Fig. 1.   

 

 

 

 

 

 

 

Obviously, Eq. (13) becomes 
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Now we can use the linear superposition principle to write, for the arbitrary charge distribution (r, t), 
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where integration is extended over all charges of the system under analysis. Acting absolutely similarly, 
for the vector potential we get 

Retarded 
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(Now nothing prevents functions (r, t) and j(r, t) from satisfying the continuity relation.)   

 Solutions (17) are called the retarded potentials, the name signifying that the observed fields are 
“retarded” (delayed) in time by t = R/v relative to the source variations, due to the finite speed v of the 
electromagnetic wave propagation. These solutions are so important that they deserve at least a couple 
of general remarks.  

 First, remarkably, these simple expressions are exact solutions of the Maxwell equations (93) in 
a uniform medium for an arbitrary distribution of stand-alone charges and currents. They also may be 
considered as the general solutions of these equations, provided that the integration is extended over all 
field sources in the Universe – or at least in its part that affects our observations.  

Second, if functions (r, t) and j(r, t) include the microscopic (bound) charges and currents as 
well, the macroscopic Maxwell equations (6.93) are valid  with the replacement   0 and   0, so 
that the retarded potentials solutions (17) are also valid - with the same replacement. 

 Finally, Eqs. (17) may be plugged into Eqs. (1), giving (after an explicit differentiation) the so-
called Jefimenko equations for fields E and B – similar in structure to Eqs. (17), but more cumbersome. 
Conceptually, the existence of such equations is a good news, because they are free from the gauge 
ambiguity pertinent to potentials  and A. However, the practical value of these explicit expressions for 
the fields is not too high: for all applications I am aware of, it is easier to use Eqs. (17) to calculate the 
particular expressions for the potentials first, and only then calculate the fields from Eqs. (1). Let me 
present the (apparently most important) example of this approach. 

 

8.2. Electric dipole radiation 

 Consider again the problem that was discussed in electrostatics (Sec. 3.1), namely the field of a 
localized source with linear dimensions a << r (Fig. 1), but now with time-dependent charge and/or 
current distribution. Using the arguments of that discussion, in particular the condition expressed by Eq. 
(3.1), r’ << r, we may apply the Taylor expansion (3.3),  

      ...)()()(  rrrR f'ff  ,    (8.18) 

to function f(R)  R (for which f(r) = R = n, where n  r/r is the unit vector directed toward the 
observation point, see Fig. 1) to approximate distance R as 

                 nr  'rR .       (8.19) 

In each of the retarded potential formulas (17), R participates in two places: in the denominator 
and in the source time argument. If  and j change in time on scale ~1/,  where  is some characteristic 
frequency, then any change of argument (t - R/v) on that time scale, for example due to a change of R on 
the spatial scale ~v/ = 1/k, may substantially change these functions. Thus, expansion (18) may be 
applied to R in the argument  (t - R/v) only if ka << 1, i.e. if the system size a is much smaller than the 
radiation wavelength  = 2/k. On the other hand, function 1/R changes relatively slowly, and for it even 
the first term expansion (19) gives a good approximation as soon as a << r, R. In this approach, Eq. 
(17a) yields  
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where Q(t) is the net electric charge of the localized system Due to the charge conservation, this charge 
cannot change with time, so that the approximation (20) describes gives just a static Coulomb field of 
our localized source, rather than a radiated wave.  

 Let us, however, apply a similar approximation to the vector potential (17b): 
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According to Eq. (5.87), in statics the right-hand part of this expression would vanish, but in dynamics 
this is no longer true. For example, if the current is due to a non-relativistic motion7 of a system of 
charges qk, we can write 

                   ttq
dt

d
tq'rdt'
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kk
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where p(t) is the dipole moment of the localized system, defined by Eq. (3.6). Now, after the integration, 
we may keep only the first term of approximation (19) in the argument (t – R/v) as well, getting 
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 Let us analyze what exactly does this result, valid in the limit ka <<1, describe. The second of 
Eqs. (1) allows us to calculate the magnetic field by the spatial differentiation of A. At large distances r  
>>  (i.e. in the so-called far field zone), where Eq. (23) describes a virtually plane wave, the main 
contribution into this derivative is given by the dipole moment factor:  
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This expression means that the magnetic field, at the observation point, is perpendicular to vectors n and 
(the retarded value of) p , and its magnitude is 
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where   is the angle between those two vectors – see Fig. 2.8 

7 For relativistic particles, moving with velocities of the order of speed of light, one has to be more careful. As the 
result, I will postpone the discussion of their radiation until Chapter 10, i.e. until after the discussion of special 
relativity in Chapter 9.  
8 From the first of Eqs. (1), for the electric field, in the first approximation (23), we would get -A/t = -(1/4vr) 
p (t – r/v) = -(Z/4r) p (t – r/v). The transverse component of this vector (see Fig. 2) is the proper wave field  E = 

ZHn, while its longitudinal component is exactly compensated by (-) in the next term of expansion of Eq. 
(17a) with respect to small parameter r/ << 1. 

Far  
zone 
field



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 6 of 36 

 The most important feature of this result is that the time-dependent field decreases very slowly 
(only as 1/r) with the distance from the source, so that the radial component of the corresponding 
Poynting vector (7.7), Sr = ZH2, drops as 1/r2, i.e. the full power P of the emitted spherical wave, that 
scales as r2Sr, does not depend on the distance from the source – as it should for radiation. Equation (25) 
allows us to be more quantitative; for the instantaneous radiation intensity we may plug it into Eq. (7.9) 
to get 
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 This is the famous formula for the electric dipole radiation; this is the dominating component of 
radiation by a localized system of charges - unless p  = 0. Please notice its angular dependence: the 

radiation vanishes at the axis of the retarded vector p  (where   = 0), and reaches its maximum in the 
plane perpendicular to that axis. Integration of Sr over all directions, i.e. over the whole sphere of radius 
r, gives the total instant power of the dipole radiation:9 
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 In order to find the average power, this expression has to be averaged over a sufficiently long 
time. In particular, if the source is monochromatic, p(t) = Re[pexp{-it}], with time-independent 
vector p, such averaging may be carried out just over one period, giving an extra factor 2 in the 
denominator: 
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 The easiest example of application of the formula is to a point charge oscillating, with frequency 
, along a straight line (that we may take for axis z), with amplitude a. In this case, p = qnzz(t) = qa Re 
[exp{-it}], and if the charge velocity amplitude, a, is much less than the wave speed v, we may use 
Eq. (28) with  p = qa, giving 

9 In the Gaussian units, for free space (v = c), this important formula reads .)3/2( 23 pc P  It was first derived 

in 1897 by J. Larmor for the particular case of a single point charge q moving with acceleration r , when rp  q  

and hence  232 )3/2( rcq P . As a result, Eq. (27) is sometimes referred to as the Larmor formula.  
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Fig. 8.2. Far zone fields of a localized source, 
contributing into its electric dipole radiation. 
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Applied to an electron (q = -e  -1.610-19 C), rotating about a nuclei at an atomic distance a ~ 10-10 m,  
the Larmor formula shows10 that the energy loss due to the dipole radiation is so large that it would 
cause electron’s collapse on atom’s nuclei in just ~10-10 s. In the beginning of the 1900s, this classical 
result was one of the main arguments for the development of quantum mechanics that prevents such 
collapse of electrons in their lowest-energy (ground) state. 

 Another example of a very useful application of Eq. (28) is the radio wave radiation by a short, 
straight, symmetric antenna which is fed, for example, by a TEM transmission line such as a coaxial 
cable – see Fig. 3. 

 

 

 

 

 

 

 

 The exact solution of this problem is rather complex, because the law I(z) of the current 
variation along antenna’s length should be calculated self-consistently with the distribution of the 
electromagnetic field that is induced by the current in the surrounding space. (This fact is unfortunately 
ignored in some textbooks.) However, one may argue that at l << , the current should be largest in the 
feeding point (in Fig. 3, taken for z = 0), vanish at antenna’s ends (z = l/2), and that the only possible 
scale of the current variation in the antenna is l itself, so that the linear function, 
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gives a good approximation - as it indeed does. Now we can use the continuity equation Q/t = I, i.e. -
iQ = I, to calculate the complex amplitude Q(z) = iI(z)sgn(z)/ of the electric charge Q(z, t) = 
Re[Qexp{-it}] of the wire beyond point z, and from it, the amplitude of the linear density of charge 
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From here, the dipole moment’s amplitude is 
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10 Actually, the formula needs a numerical coefficient adjustment to account for electron’s orbital (rather than 
linear) motion – the task left for reader’s exercise. However, this adjustment does not affect the order-of-
magnitude estimate given above. 
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so that Eq. (28) yields 
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where k = /v. The analogy between this result and the dissipation power, P = ReZ (I
2/2), in a lumped 

linear circuit element, allows the interpretation of the first fraction in the last form of Eq. (33) as the real 
part of antenna’s impedance:  

24

)(
Re

2kl
ZZ A  ,     (8.34)

as felt by the transmission line. (Indeed, according to Eq. (7.118), the wave traveling along the line 
toward the antenna is fully radiated, i.e. not reflected back, only if ZA equals to ZW of the line.) As we 
know from Chapter 7, for typical TEM lines, ZW ~ Z0, while Eq. (34), that is only valid in the limit kl << 
1, shows that for radiation into free space (Z = Z0), ReZA is much less than Z0.  

 Hence in order to reach the impedance matching condition ZW = ZA, antenna’s length should be 
increased – as a more involved theory shows, to l ~ /2. However, in many cases, practical 
considerations make short antennas necessary. The most frequently met example met nowadays are the 
cell phone antennas, which use frequencies close to 1 or 2 GHz, with free-space wavelengths  between 
15 and 30 cm, i.e. much larger than the phone size. The quadratic dependence of antenna’s efficiency on 
l, following from Eq. (34), explains why every millimeter counts in the design of such antennas, and 
why the designs are carefully optimized using software packages for (virtually exact) numerical solution 
of time-dependent Maxwell equations for the specific shape of the antenna and other phone parts.11 

 To conclude this section, let me note that if the wave source is not monochromatic, so that p(t) 
should presented as a Fourier series, 

             





tiet pp Re)( ,     (8.35) 

the terms corresponding to interference of spectral components with different frequencies  are 
averaged out at the time averaging of the Poynting vector, so that the average radiated power is just a 
sum of contributions (28) from all substantial frequency components. 

 

8.3. Wave scattering 

 The formalism described above may be immediately used in the theory of scattering – the 
phenomenon illustrated by Fig. 4. Generally, scattering is a complex problem. However, in many cases 
it allows the so-called Born approximation,12 in which scattered wave’s field applied to the scattering 
object is assumed to be much weaker than that of the incident wave, and is neglected. 

11 A partial list of popular software packages of this kind includes both publicly available codes such as NEC -2 
(whose various versions are available online, e.g., at http://alioth.debian.org/projects/necpp/ and
http://www.qsl.net/4nec2/),  and proprietary packages - such as Momentum from Aglient Technologies (now 
owned by Hewlett-Packard),  FEKO from EM Software & Systems, and XFdtd from Remcom. 
12 Named after M. Born, one of the founding fathers of quantum mechanics. Note, however, the basic idea of this 
approach was developed much earlier (in 1881) by Lord Rayleigh – see below. 
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 As the first example of this approach, let us consider scattering of a plane wave, propagating in 
free space (Z = Z0, v = c), by a free13 charged particle whose motion may be described by non-relativistic 
classical mechanics. (This requires, in particular, the incident wave to be of a modest intensity, so that 
the speed of the induced charge motion is much less than the speed of light.) In this case the magnetic 
component of the Lorentz force (5.8), 

         BrF  qm ,     (8.36) 

exerted on the charge by the magnetic field of a plane wave, is much smaller than force Fe = qE exerted 
by its electric field. Indeed, according to Eq. (7.8),  H = E/Z = E/(/)1/2, B = H =E/v, so that the ratio 
Fm/Fe equals to the ratio of particle’e speed, r  , to wave’s speed v ~ c.  

 Thus, assuming that the incident wave is linearly-polarized along axis x, the equation of 
particle’s motion in the Born approximation is just m x  = qE(t), so that for the x-component px = qx of its 
dipole moment we can write 
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q
xqp   .     (8.37) 

As we already know from Sec. 2, oscillations of the dipole moment lead to radiation of a wave with a 
wide angular distribution of intensity; in our case this is the scattered wave – see Fig. 4. Its full power 
may be found by plugging Eq. (37) into Eq. (27): 
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 Since the power is proportional to incident wave’s intensity S, it is customary to characterize 
scattering ability of the object by the ratio, 
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 PP
 ,     (8.39) 

which evidently has the dimension of area and is called the full cross-section of scattering. For this 
measure, Eq. (38) yields the famous result 

13 As Eq. (7.30) shows, this calculation is also valid for an oscillator with eigenfrequency 0 << .  

Fig. 8.4. Scattering (schematically). 
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which is called the Thomson scattering formula,14 especially when applied to an electron. This relation 
is most frequently presented in the form15 
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Constant rc is called the classical radius of the particle (or sometimes the “Thomson scattering length”); 
for electron (q = -e, m = me) it is close to 2.8210-15 m. Its possible interpretation is evident from the 
first form of Eq. (41) for rc: at that distance between two similar particles, the potential energy q2/40r 
of their electrostatic interaction is equal to particle’s rest-mass energy mc2.16  

 Now we have to go back and establish the conditions at which the Born approximation, when the 
field of the scattered wave is negligible, is indeed valid for a point-object scattering. Since the scattered 
wave’s intensity, described by Eq. (26), diverges as 1/r2, according to the definition (39) of the cross-
section, it may become comparable to Sincident at r2 ~ . However, Eq. (38) itself is only valid if  r >> , 
so that the Born approximation does not lead to any contradiction if  

           2  .      (8.42) 

For the Thompson scattering by an electron, this condition means  >> rc ~ 310-15 m and is fulfilled for 
all frequencies up to very hard   rays with energies ~ 100 MeV. 

 Possibly the most notable feature of result (40) is its independence of the wave frequency. As it 
follows from its derivation, particularly from Eq. (37), this independence is intimately related with the 
unbound character of charge motion. For bound charges, say for electrons in a gas molecule, this result 
is only valid if the wave frequency  is much higher all eigenfrequencies j of molecular resonances. In 
the opposite limit,  << j, the result is dramatically different. Indeed, in this limit we can approximate 
the molecule’s dipole moment by its static value (3.39) 

        Ep mol04  .     (8.43)  

In the Born approximation, and in the absence of the molecular field effects discussed in Sec. 3.5, E in 
this expression is just the incident wave’s field, and we can use Eq. (28) to calculate the power of the 
wave scattered by a single molecule:  

14 Named after Sir J. J. Thomson (1856-1940), the discoverer of the electron - and isotopes as well! He is not to 
be confused with his son, G. P. Thomson, who discovered (simultaneously with C. Davisson and L. Germer)  
quantum-mechanical wave properties of the same electron. 
15 In the Gaussian units, this formula looks like rc = q2/mc2 (giving, of course, the  same numerical value: for the 
electron, rc  2.8210-13 cm). This classical quantity should not be confused with particle’s Compton wavelength 
c  h/mc (for the electron, close to 2.2410-12 cm), which naturally arises in quantum electrodynamics – see a 
brief discussion in the next chapter, and QM Chapter 9 for more detail. 
16 It is fascinating how smartly has the relativistic expression mc2 sneaked into the result (40), which was obtained 
using a non-relativistic equation of particle motion. This was possible because the calculation engaged 
electromagnetic waves that propagate with the speed of light, and whose quanta (photons), as a result, may be 
frequently treated as relativistic (moreover, ultra-relativistic) particles - see the next chapter. 
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Now, using the last form of definition (39) of the cross-section, we get a very simple result, 
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showing that in contrast to Eq. (40), at low frequencies   grows as fast as 4.  

 Now let us explore the effect of such Rayleigh scattering17 on wave propagation in a gas, with 
relatively low density nl. We can expect (and will prove in the next section) that due to the randomness 
of molecule positions, the waves scattered by each molecules may be treated as incoherent,  so that the 
total scattering power may be calculated just as the sum of those scattered by each molecule. We can use 
this additivity to write the balance of the incident’s wave intensity on a small volume dV of length 
(along the incident wave direction) dz, and area A in across it. Since such a segment includes ndV = 
nAdz molecules, and, according to definition (39), each of them scatters power S = P/A, the total 

scattered power is nPdz; hence the incident power’s change is 

      dznd PP  .     (8.46) 

Comparing this equation with the general definition (7.202) of the attenuation constant, we see that 
scattering gives the following contribution to attenuation:  = n. From here, using Eq. (3.41) to write  
mol = (r – 1)/4n, and Eq. (45), we get 
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 This is the famous Rayleigh scattering formula, which in particular explains the colors of blue 
sky and red sunsets. Indeed, through the visible light spectrum,  changes almost two-fold; as a result, 
scattering of blue components of sunlight is an order of magnitude higher than that of its red 
components. More qualitatively, for air near the Earth surface, r – 1  610-4, and n ~ 2.51025 m-3 - see 
Sec. 3.3. Plugging these numbers into Eq. (47), we see that the characteristic length L  1/ of 
scattering is ~30 km for blue light and ~200 km for red light.18 The Earth atmosphere is thinner (h ~ 10 
km), so that the Sun looks just a bit yellowish during most of the day. However, elementary geometry 
shows that on sunset, the light should pass length l ~ (REh)1/2  300 km to reach an Earth-surface 
observer; as a result, the blue components of Sun’s light spectrum are almost completely scattered out, 
and even the red components are weakened considerably.  

 To conclude the discussion of Eq. (47), let me note that its comparison with the condition of the 
direct applicability of the Born approximation for a distributed object of size a: 

                       1a ,       (8.48) 

17 Named after Lord Rayleigh (born J. Strutt, 1842-1919), whose numerous contributions to science include the 
discovery of argon. He has also pioneered (for the special case we are considering now) the basic idea of what is 
presently called the Born approximation. 
18 These values are approximate because both n and (r – 1) vary through the atmosphere. 
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implies, in particular, that if the electric polarizability of the material is small, r  1, we may be able to 
use the approximation for an analysis of scattering by even relatively large objects, with size of the order 
of, or even larger than . However, for such extended objects, the phase difference factors (neglected 
above) step in, leading in particular to the important effects of interference and diffraction, to whose 
discussion we now proceed. 

 

8.4. Interference and diffraction 

 These effects show up not as much in the total power of scattered radiation, as in its angular 
distribution. It is traditional to characterize this distribution by the differential cross-section defined as 
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where r is the distance from the scatterer, at which the scattered wave is observed. Both the definition 
and notation become more clear if we notice that according to Eq. (26), at large distances (r >> a), the 
numerator in the right-hand part of Eq. (49), and hence the differential cross-section as the whole, does 
not depend on r, and that its integral over the total solid angle  = 4 coincides with the total cross-
section defined by Eq. (39): 
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 For example, according to Eq. (26), the angular distribution of radiation scattered by a point 
linear dipole, in the Born approximation, is rather broad; in particular, in the low-frequency limit (43), 
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If the wave is scattered by a small dielectric body, with a characteristic size a <<  (i.e., ka << 1), then 
all its parts re-radiate the incident wave coherently. Hence, we can calculate it in the similar way, just 
replacing the molecular dipole moment (43) with the total dipole moment of the object – see Eq. (3.37): 

                   VV r EPp 01   ,     (8.52) 

where V ~ a3 is body’s volume. As a result, the differential cross-section may be obtained from Eq. (51) 
with the replacement mol  V(r – 1)/4:  
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i.e. follows the same sin2  law. The situation for extended objects, with at least one dimension of the 
order, or larger than the wavelength, is different: here we have to take into account that the phase shifts 
introduced by various parts of the body are different. Let us analyze this issue for an arbitrary collection 
of similar point scatterers located at points rj. 

 If wave vector of the incident plane wave is k0, the field the wave has the phase factor 
exp{ik0r} – see Eq. (7.79). At the location of  j-th scattering center, the factor equals to exp{ik0rj}, so 
that the local polarization vector p, and the scattered wave it creates, are proportional to this factor. On 
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its way to the observation point r, the scattered wave, with wave vector k (with k = k0), acquires an 
additional phase factor exp{ik(r – rj)}, so that the scattered wave field is proportional to 

        })(exp{})(exp{)}(exp{ 000 jjjj ieiiii i rkkrkrkkrrkrk rk   . (8.54) 

Since the first factor in the last expression does not depend on rj, in order to calculate the total scattering 
wave, it is sufficient to sum up the elementary phase factors exp{-iqrj}, where vector 

          0kkq        (8.55) 

has the physical sense of the wave vector change at scattering.19 It may look like the phase factor 
depends on the choice of origin. However, according to Eq. (7.42), the average intensity of the scattered 
wave is proportional to EE

*, i.e. to the following real scalar function of vector q: 

           
2

',
' )()}(exp{}exp{}exp{)(

*

qrrqrqrqq IiiiF
jj

jj
j'

j'
j

j 
















  , (8.56) 

where the complex function 

         }exp{)( j
j

iI rqq        (8.57) 

is called the phase sum, may be calculated within any reference frame, without affecting the final result 
(56). The double-sum form of Eq. (56) is convenient to notice that for a system of many (N >> 1) of 
similar but randomly located scatterers, only the terms with j = j’ accumulate at summation, so that F(q) 
scales as N, rather than N2 - thus justifying the above treatment of the Rayleigh scattering problem.  

 Let us start using Eq. (56) by applying it to the simplest problem of just two similar small 
scatterers, separated by a fixed distance a: 

         
2

cos4cos12}exp{}exp{2)}(exp{)( 2
2

1,
'

aq
aqaiqaiqiF a

aaa
j'j

jj  


rrqq , (8.58) 

where qa  qa/a is the component of vector q along vector a connecting the scatterers. The apparent 
simplicity of this result may be a bit misleading, because the mutual plane of vectors k and k0 (and 
hence of vector q) does not  necessarily coincide with the mutual plane of vectors k0 and E, so that the 
scattering angle    between vectors k and k0 is generally different from (/2 - ) - see Fig. 5.  

 

 

 

 

 

 

19 In quantum electrodynamics, q has the sense of the momentum transferred from the scattering object to the 
scattered photon, and this terminology sometimes creeps even into the classical electrodynamic texts. 
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Moreover, vectors q and a may have another common plane, and angle between them is one 
more parameter that may be considered as independent from both  and . As a result, the angular 
dependence of the scattered wave’s intensity (and hence d/d), that depends on all three angles, may 
be rather complex. 

 This is why let me consider only the simple case when vectors k, k0, and a are all in the same 
plane (Fig. 6a), with k0 perpendicular to a (leaving the general analysis for readers’ exercise). Then, 
with our choice of coordinates, qa = qx = ksin, and Eq. (58) is reduced to  

        
2

sin
cos4)( 2 ka

F q .     (8.59)  

This function always has two maxima, at   = 0 and   = , and possibly (if the product ka is large 
enough) other maxima at special angles n that satisfy the famous Bragg condition20 

            nanka nn  sin i.e.,2sin .     (8.60) 

 

 

 

 

 

 

  

 

 As evident from Fig. 6a, this condition may be readily understood as the in-phase addition 
(frequently called the constructive interference) of two coherent waves scattered by the two points, 
when the difference between their paths toward the observer, asin, equals to an integer number of 
wavelengths. At each such maximum, F = 4, due to the doubling of the wave amplitude and hence 
quadrupling its power. 

If the distance between the point scatterers is large (ka >> 1),  the first Bragg maxima correspond 
to small angles,   <<1. For this region, Eq. (59) in reduced to a simple sinusoidal dependence of 
function F on angle . Moreover, within the range of small , the polarization factor sin2  is virtually 
constant, so that the scattered wave intensity, and hence the differential cross-section 

         
2

cos4)( 2  ka
F

d
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q .     (8.61) 

This is of course the well-known interference pattern, well known from the Young’s two-slit 
experiment.21 (As will be discussed in the next section, theoretical description of the two-slit experiment 

20 Named after Sir William Bragg and his son, Sir William Lawrence Bragg, who in 1912 demonstrated X-ray 
diffraction by atoms in crystals. The Braggs’ experiments have made the existence of atoms (before that, a 
hypothetical notion ignored by many physicists) indisputable. 
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is more complex than that of the Born scattering, but is preferable experimentally, because at scattering, 
the wave of intensity (61) has to be observed on the backdrop of a stronger incident wave that 
propagates in almost the same direction,  = 0.) 

 The Bragg condition (60) does not change at scattering from N > 2 similar, equidistant scatterers, 
located along the same straight line (because the condition is applicable to each pair of adjacent 
scatterers), but the interference pattern changes. Leaving the analysis of the case of arbitrary N for 
reader’s exercise, let me jump to the limit N  0, in which we may ignore the scatterer discreteness. 
The resulting pattern is similar to that at scattering by a continuous thin rod, so let us first discuss the 
Born scattering by an arbitrary distributed object - say an extended dielectric body with a constant value 
of r. Transferring Eq. (56) from the sum to an integral, for the differential cross-section we get 
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,  (8.62) 

where I(q) now becomes the phase integral,22  

           
V

r'd'iI 3exp)( rqq ,     (8.63) 

with the dimensionality of volume.  

 Now we may return to the particular case of a thin rod (with both dimensions of the cross-
section’s area much smaller than , but an arbitrary length a), otherwise keeping the same simple 
geometry as for two point scatterers – see Fig. 6b. In this case the phase integral is just 
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where V = Aa is the volume of the rod, and  is a dimensionless parameter defined as 

             
2

sin

2

 kaaqx  .     (8.65) 

The fraction participating in Eq. (64) is met in physics so frequently that is has deserved the special 
name sinc (not “sync”, please!)  function: 

       

 sin

sinc  .     (8.66) 

Obviously, this function, plotted in Fig. 7, vanishes at all points n = n, with integer n, besides point n 
= 0: sinc0 = sinc 0  = 1. 

21 This experiment was described as early as in 1803 by T. Young – one more universal genius of science, who 
has also introduced the Young modulus in the elasticity theory (see, e.g., CM Chapter 7), besides numerous other 
achievements - including deciphering Egyptian hieroglyphs! The two-slit experiment has firmly established the 
wave picture of light, to be replaced by the dualistic photon-vs-wave picture, formalized by quantum 
electrodynamics, only 100+ years later. 
22 Since the observation point’s position r does not participate in this formula explicitly, the prime sign in r’ could 
be dropped, but I keep it as a reminder that the integral is taken over points r’ of the scattering object.  
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 The function F(q) = V2sinc2, resulting from Eq. (64), is plotted by red line in Fig. 8, and is 
called the Fraunhofer diffraction pattern.  

 

 

 

 

 

 

 

  

 

 

 Note that it oscillates with the same argument period (kasin) = 2/ka << 1 as the interference 
pattern (59) from two point scatterers (shown with the blue line in Fig. 8). However, at the interference, 
the scattered wave intensity vanishes at angles n’ that satisfy condition 
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,      (8.67) 

when the optical paths difference asin  equals to a semi-integer number of wavelengths /2 = /k, and 
hence the two waves from the scatterers arrive to the observer in anti-phase (the so-called destructive 
interference). On the other hand, for the diffraction from a continuous rod the minima occur at a 
different set of angles, 

       n
ka n 




2

sin
,     (8.68) 

 i.e. exactly where the two-point interference pattern has its maxima. The reason for this relation is that 
the wave diffraction on the rod may be considered as a simultaneous interference of waves from all its 
fragments, and exactly at the observation angles when the rod edges give waves with phases shifted by 
2n, the interior point of the rod give waves with all possible phases, with their algebraic sum equal to  
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zero. Even more visibly in Fig. 8, at diffraction the intensity oscillations are limited by a rapidly 
decreasing envelope function 1/2. The reason for this fast decrease is that with each Fraunhofer 
diffraction period, a smaller and smaller fraction of the road gives an unbalanced contribution to the 
scattered wave.   

If rod’s length is small (ka << 1, i.e. a << ), then sinc’s argument  is small at all  scattering 
angles , so I(q)  V, and Eq. (64) is reduced to Eq. (53). In the opposite limit, a >> , the first zeros of 
function I(q) correspond to very small angles  , for which sin   1, so that the differential cross-
section is 
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sinc)1(
)4(

22
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24 


 kaVk

d

d
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,    (8.69) 

i.e. Fig. 8 shows the scattering intensity as a function of the diffraction direction – if the pattern is 
observed within the plane containing the rod. 

 

8.5. The Huygens principle 

 The Born approximation allows tracing the basic features of (and the difference between) the 
phenomena of interference and diffraction. Unfortunately, this approximation, based on the relative 
weakness of the scattered wave, cannot be used for more popular experimental implementations of these 
phenomena, for example, the Young’s two-slit experiment, or diffraction on a single slit or orifice – see, 
e.g. Fig. 9. Indeed, at such experiments, the orifice size a is typically much larger than light’s 
wavelength, and as a result, no clear decomposition of the fields to the incident and “scattered” waves is 
possible. 

   

 

 

 

 

 

 

 

 However, for such experiments, another approximation, called the Huygens (or “Huygens-
Fresnel”) principle,23 is very instrumental: the passed wave may be presented as a linear superposition 
of spherical waves of the type (17), as if they were emitted by every point of the orifice (or more 
physically, by every point of the incident wave’s front that has arrived at the orifice). This 
approximation is valid if the following strong conditions are satisfied: 

23 Named after C. Huygens (1629-1695) who had conjectured the wave theory of light (that remained 
controversial for more than a century, until T. Young’s experiments), and A.-J. Fresnel (1788-1827) who has 
developed the mathematical theory of diffraction. 
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      ra  ,      (8.70) 

where r is the distance of the observation point from the orifice. In addition, as we have seen in the last 
section, at small /a the diffraction phenomena are confined to angles  ~ 1/ka ~ /a << 1. For 
observation at such small angles, the mathematical expression of the Huygens principle, for a complex 
amplitude f(r) of a monochromatic wave f(r, t) = Re[fe-it], is given by the following simple formula 

        r'd
R

e
'fCf

ikR
2

orifice

)()(  rr  .    (8.71) 

Here f  is any transverse component  of any of wave’s fields (either E or H),24 R is the distance between 
point r’ at the orifice and the observation point r (i.e. the magnitude of vector R  r – r’), and C is a 
complex constant.   

 Before describing the proof of Eq. (71), let me carry out its sanity check - which also will give us 
the constant C. Let us see what happens if the field under the integral is the usual plane wave f(z) 
propagating along axis z (i.e. there is no opaque screen at all), so we should take the whole x-y plane, 
say with z’ = 0, as the integration area (Fig. 10). 

 

 

 

 

 

 

 

 Then, for the observation point with coordinates x = 0, y = 0, and z >> , Eq. (71) yields 
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  .   (8.72) 

Before specifying the integration limits, let us consider the range x’, y’ << z.  In this range the square 
root, met in Eq. (72) twice, may be approximated as 
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 .  (8.73) 

The denominator of Eq. (72) is a much slower function of x’ and y’ than the exponent, and in it (as we 
will check a posteriori), it is sufficient to keep just the main, first term of expansion (73). With that, Eq. 
(72) becomes 

24 The fact that the Huygens principle is valid for any field component should not too surprising. Due to condition 
a >> , the real boundary conditions at the orifice edges are not important; what is only important that the screen, 
that limits the orifice, is opaque. Because of this, the Huygens principle’s expression (71) is a part of the so-called 
scalar theory of diffraction. (In this course I will not have time to go beyond this approximation.) 
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where Ix and Iy are two similar integrals; for example, 
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where   (k/2z)1/2x’. These are the so-called Fresnel integrals. I will discuss them in more detail in the 
next section, and right now, only one property of these integrals is important for us: if taken in 
symmetric limits [-0, +0],  both of them rapidly converge to the same value, (/2)1/2, as soon as 0 
becomes much larger than 1.25 This means that even if we do not impose any exact limits on the 
integration area in Eq. (72), this integral converges to value   
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 ,  (8.76) 

due to contributions from the central area with linear size of the order of  ~ 1, i.e. 
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so that the contribution by front points r’ well beyond the range (77) is negligible.26 (Within our 
assumptions (70), which in particular require  to be much less than z, the diffraction angle x/z ~ y/z 
~ (/z)1/2, corresponding to the important area of the front, is small.) In order to sustain the plane wave 
propagation, f(z) = f(0)eikz, constant C in Eq. (76) has to be taken equal to k/2i. Thus, the Huygens 
principle’s prediction (71), in its final form, reads 
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e
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ikR
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2
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,    (8.78) 

and describes, in particular, the straight propagation of the plane wave (in a uniform media). 

 Let me pause to emphasize how nontrivial this result is. It would be a natural corollary of Eq. 
(25) (and the linear superposition principle) if all points of the orifice were filled with point scatterers 
that re-emit all the incident waves into spherical waves. However, as it follows from the above proof, 
the Huygens principle is also valid if there is nothing in the orifice but the free space! 

This is why it is important a proof of the principle,27 based on the Green’s theorem (2.207).  Let 
us apply this theorem to function f = f, where f is the complex amplitude of a scalar component of one 
of wave’s fields, which satisfies the Helmholtz equation (7.192), 

25 See, e.g., MA Eq. (6.10). 
26 This result very is natural, because exp{ikR} oscillates fast with the change of r’, so that the contributions from 
various front point are averaged out. Indeed, the only reason why the central part of plane [x’, y’] gives a 
nonvanishing contribution (76) to f(z) is that the phase exponents stops oscillating at (x’2 + y’2) below ~z/k – see 
Eq. (73). 
27 This proof was given in 1882 by G. Kirchhoff. 
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                         0)(22  rfk ,     (8.79) 

and function g = g, which is the time Fourier image of the corresponding Green’s function. It may be 
defined, as usual, as the solution to the same equation with the added delta-functional right-hand part 
with an arbitrary coefficient, for example, 

                         )(4),(22 ''gk rrrr   .    (8.80) 

With Eqs. (79) and (80) used to express the Laplace operators of functions f and g, Eq. (2.207) 
becomes 
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where n is the outward normal to the surface S limiting volume V. Two terms in the left-hand side of this 
relation cancel, so that after swapping r and r’ we get 
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 This relation is only correct if the selected volume V includes point r (otherwise we would not 
get its left-hand part from the integration of the delta-function), but does not include the genuine source 
of the wave (otherwise Eq. (79) would have a nonvanishing right-hand part). Let r be the field 
observation point, V all the source-free half-space (for example, the half-space right of the screen in Fig. 
9), so that S is the surface of the screen, including the orifice. Then the right-hand part of Eq. (82) 
describes the field in the observation point r induced by the wave passing through the orifice points r’. 
Since no waves are emitted by the opaque parts of the screen, we can limit the integration by the orifice 
area.28 Assuming also that the opaque parts of the screen do not re-emit waves “radiated” by the orifice, 
we can take  the solution of Eq. (80) to be the retarded potential for the free space:29  
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Plugging this expression into Eq. (82), we get 
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 This is the so-called Kirchhoff (or “Fresnel-Kirchhoff”) integral.30 Now, let us make the two 
additional approximations. The first of them stems from Eq. (70): at ka >> 1, the wave’s spatial 
dependence in the orifice area may be presented as  

28 Actually, this is a somewhat nontrivial point of the proof. Indeed, it may be shown that the solution of Eq. (79) 
identically equals to zero if f(r’) and f(r’)/n’ vanish together at any part of the boundary. As a result, building 
the solution with the account of exact boundary conditions (which is the task of the vector theory of diffraction) is 
possible but cumbersome. Here we base our solution on the physical intuition.  
29 It follows, e.g., from Eq. (16) with a monochromatic source q(t) = qexp{-it}, at the value q = 4  that fits 
the right-hand part of Eq. (80). 
30 With the integration extended over all boundaries of volume V, this would be an exact result. 
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    }exp{) offunction  slow a()( 0 'i''f rkrr  ,   (8.85) 

where “slow” means a function that changes on the scale of a rather than . If, also, kR >> 1, then the 
differentiation in Eq. (84) may be, in both instances, limited to the rapidly changing exponents, giving 
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Second, if all observation angles are small, we can take kn’  k0n’  -k. With that, Eq. (86) is reduced 
to Eq. (78) expressing the Huygens principle. 

 It is clear that the principle immediately gives a very simple description of the interference of 
waves passing through two small holes in the screen. Indeed, if the hole size is negligible in comparison 
with distance a between them (though still much larger than the wavelength!), Eq. (78) yields 
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where R1,2 are the distances between the holes and the observation point, and A1,2 are the hole areas. For 
the interference wave intensity, Eq. (87) yields 
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The first two terms in this result clearly represent the intensities of partial waves passed through each 
hole, while the last one the result of their interference. The interference pattern’s contrast ratio 

          

2

21

21

min

max

















cc

cc

S

S
R ,     (8.89) 

is largest (infinite) when both waves have equal amplitudes. 

 The analysis of the interference pattern is simple if the line connecting the holes is  perpendicular 
to wave vector  k  k0 – see Fig. 6a. Selecting the coordinate axes as shown in that figure, and using for 
distances R1,2 the same expansion as in Eq. (73), for the interference term in Eq. (88) we get 

                          





  

z

kxa
RRk coscos 21 .    (8.90) 

This means that the intensity does not depend on y, i.e. the interference pattern in the plane of constant z 
presents straight, parallel strips, perpendicular to vector a, with the period given by Eq. (60), i.e. by the 
Bragg law.31 Note that this (somewhat counter-intuitive) result is strictly valid only at (x2 + y2) << z2; it 
is straightforward to use the next term in the Taylor expansion (73) to show that farther from the 
interference pattern center the strips start to diverge.  

 

31 The phase shift   vanishes at the normal incidence of a plane wave on the holes. Note, however, that the 
spatial shift of the interference pattern following from Eq. (90), x = -(z/ka), is extremely convenient for the 
experimental measurement of the phase shift between two waves, especially if it is induced by some factor (such 
as insertion of a transparent object into one of interferometer’s arms, etc.) that may be turned on/off at will. 
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8.6. Diffraction on a slit 

 Now let us use the Huygens principle to analyze a more complex problem: plane wave’s 
diffraction on a long straight slit of constant width a (Fig. 11).  

 

 

 

 

 

 

 

 

 

 According to Eq. (70), in order to use the Huygens principle for the problem analysis we need to 
have  << a << z. Moreover, the simple formulation (78) of the principle is only valid for small 
observation angles,  x  << z. Note, however, that the relation between two small dimensionless 
numbers, z/a and a/ is so far arbitrary; as we will see in a minute, this relation will determine the type 
of the observed diffraction pattern.  

Let us apply Eq. (78) to our current problem (Fig. 11), for the sake of simplicity assuming the 
normal wave incidence, and taking z = 0 at the screen plane: 
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where f0  f(x’, 0) = const is the incident wave’s amplitude. This is the same integral as in Eq. (72), 
except for the finite limits for x’, and may be simplified similarly, using the small-angle condition (x – 
x’)2 +  y’2 << z2:  
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 The integral over y is the same as in the last section: 
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but the integral over x is more complicated, because of its finite limits: 
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It may be simplified in the following two (opposite) limits.  
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 (i) Fraunhofer diffraction takes place when z/a >> a/ - the relation which may be rewritten 
either as a << (z)1/2, or as ka2  << z. In this limit the ratio kx’2/z is negligibly small for all values of x’ 
under the integral, and we can approximate it as 
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   (8.95) 

 so that Eq. (92) yields 
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and hence the relative wave intensity is 
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where S0 is the (average) intensity of the incident wave, and   x/z << 1 is the scattering angle. 
Comparing this expression with Eq. (69), we see that this the diffraction pattern is exactly the same as 
that of a similar (uniform, 1D) object in the Born approximation – see the red line in Fig. 8. Note again 
that the angular width  of the Fraunhofer pattern is of the order of 1/ka, so that its linear width x = 
z ~ z/ka ~ z/a.32 Hence the condition of the Fraunhofer approximation validity may be also presented 
as a << x.  

 (ii) Fresnel diffraction. In the opposite limit of a relatively wide slit, with a >> x = z ~ z/ka ~ 
z/a, i.e. ka2 >> z, the diffraction patterns at two slit edges are well separated. Hence, near each edge 
(for example, near x’ = -a/2) we may simplify Eq. (94) as 
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and express it via the special functions called the Fresnel integrals:33 
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whose plots are shown in Fig. 12. As was mentioned above, at large values of their argument (), both 
functions tend to ½. 

32 Note also that since in this limit ka2 << z, Eq. (97) shows that even the maximum value S(0, z) of the diffracted 
wave intensity is much less than intensity S0 of the incident wave. This is natural, because the incident power S0a 
per unit length of the slit is now distributed over a much larger width x >> a, so that S(0, z) ~ S0 (a/x) << S0. 
33 Slightly different definitions of these functions, mostly affecting constant factors, may also be met in literature. 
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 Plugging this expression into Eq. (92) and (98), for the diffracted wave intensity, in the Fresnel 
limit (i.e. at  x + a/2  << a), we get 
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A plot of this function (Fig. 13) shows that the diffraction pattern is very peculiar: while in the “shade” 
region x < -a/2 the wave intensity fades monotonically, the transition to the “light” region within the gap 
(x > -a/2) is accompanied by intensity oscillations, just as at the Fraunhofer diffraction – cf. Fig. 8.  

 

 

 

 

 

 

 

 

 

 

 This behavior, which is described by the following asymptotes, 
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is essentially an artifact of observing just the wave intensity (i.e. its real amplitude) rather than its phase 
as well. Indeed, as may be seen even more clearly from the parametric presentation of the Fresnel 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8



)(C

)(S

Fig. 8. 12. Fresnel integrals. 
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integrals (Fig. 14), these functions oscillate similarly at large positive and negative values of their 
argument. Physically, this means that the wave diffraction by the slit edge leads to similar oscillations of 
its phase at x < -a/2 and x > -a/2; however, in the latter region (i.e. inside the slit) the diffracted wave 
overlaps the incident wave passing through the slit directly, and their interference reveals the phase 
oscillations, making them visible in the measured intensity as well. 

 

 

 

 

 

 

 

 

 

 

 

  Note that according to Eq. (100), the linear scale of the Fresnel diffraction pattern is (2z/k)1/2 , 
i.e. is complied with estimate (77). If the slit is gradually narrowed, so that width a becomes comparable 
to that scale,34 the Fresnel interference patterns from both edges start to “collide” (interfere). The 
resulting wave, fully described by Eq. (94), is just a sum of two contributions of the type (98) from the 
both edges of the slit. The resulting interference pattern is somewhat complicated, and only a << x it is 
reduced to the simple Fraunhofer pattern (97). Of course, this crossover from the Fresnel to Fraunhofer 
diffraction may be also observed, at fixed wavelength  and slit width a, by increasing z, i.e. by 
measuring the diffraction pattern farther and farther from the slit.  

 Note that the Fraunhofer limit is always valid if the diffraction measured as a function of the 
diffraction angle  alone, i.e. effectively at infinity, z   . This may be done, for example, by 
collecting the diffracted wave with a “positive” (converging) lense, and observing the diffraction pattern 
in its focal plane. 

 

8.7. Geometrical optics placeholder 

 Behind all these details, I would not like the reader to miss the main feature of diffraction, that 
has an overwhelming practical significance. Namely, besides narrow  diffraction “cones” (actually, 
parabolic-shaped regions) with lateral scale x ~ (z)1/2, the wave far behind a slit of width a >>  
repeats the field just behind the slit, i.e. reproduces the unperturbed incident wave inside the slit, and has 
negligible intensity in the shade regions outside it. An evident generalization of this fact is that when a 
plane wave (in particular an electromagnetic wave) passes any opaque object of large size a >> , it 
propagates around it, by distances z up to ~a2/, along straight lines, with virtually negligible diffraction 

34 Note that this condition may be also rewritten as a ~ x, i.e. z/a ~ a/.   
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effects. This fact gives the strict foundation for the very notion of the wave ray (or beam), as the line 
perpendicular to the local front of a quasi-plane wave. In a uniform media such ray is a straight line, but 
changes in accordance with the Snell law at the interface of two media with different wave speed v, i.e. 
different values of the refraction index. The notion of rays enables the whole field of geometric optics, 
devoted mostly to ray tracing in various (sometimes very complex) systems. 

 This is why, at this point, an E&M course that followed the scientific logic more faithfully than 
this one, would give an extended discussion of the geometric and quasi-geometric optics, including (as a 
minimum35) such vital topics as 

 - the so-called lensmaker’s equation expressing the focus length f of a lens via the curvature radii 
of its spherical surfaces and the refraction index of the lens material, 
 - the thin lens formula relating the image distance from the lens via f and the source distance, 
 - the concepts of basic optical instruments such as telescopes and microscopes, 
 - the concepts of the spherical, angular, and chromatic aberrations (image distortions); 
 - wave effects in optical instruments, including the so-called Abbe limit36 on the focal spot size.37 

 However, since I have made a (possibly, wrong) decision to follow the common tradition in 
selecting the main topics for this course, I do not have time left for such discussion. Still, I am placing 
this “placeholder” pseudo-section to relay my conviction that any educated physicist has to know the 
geometric optics basics. If the reader has not had an exposure to this subject during his or her 
undergraduate studies, I highly recommend at least browsing one of  available textbooks.38  

 

8.8. Fraunhofer diffraction from more complex scatterers 

 So far, our discussion of diffraction has been limited to a very simple geometry – a single slit in 
an otherwise opaque screen (Fig. 11). However, in the most important Fraunhofer limit, z >> ka2, it is 
easy to get a very simple expression for the plane wave diffraction/interference by a plane orifice (with 
linear size ~a) of an arbitrary shape. Indeed, the evident 2D generalization of approximation (93)-(94) is 
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35 Admittedly, even this list leaves aside several spectacular effects due to crystal anisotropy, including such a 
beauty as conical refraction in biaxial crystals - see, e.g., Chapter 15 of the classical textbook by M. Born and E. 
Wolf, cited in the end of Sec. 7.1. 
36 Reportedly, due to not only E. Abbe (1873), but also to H. von Helmholtz (1874). 
37 In contrast to other topics of this list, whose study may be based on the ray approach, i.e. on purely geometric 
optics, the description of these effects requires at least an approximate account of wave properties of light. Such 
account may be based either on the Huygens principle or on the so-called paraxial equation 

      aikza yx
2

,)2/1(/  , 

for the complex amplitude a(r) of the field represented in the form f(r) = a(r)eikz. The paraxial approximation 
follows from the Helmholtz equation (7.192) in essentially the same limit (a << k;  x , y << z) as Eq. (78). 
38 My top recommendation for that purpose would be Chapters 3-6 and Sec. 8.6 in Born and Wolf. A simpler 
alternative is Chapter 10 in G. R. Fowles, Introduction to Modern Optics, 2nd ed., Dover, 1989. 
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so that besides the inconsequential total phase factor, Eq. (92) is reduced to 
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where the 2D vector  (not to be confused with wave vector k that is virtually perpendicular to !) is 
defined as 

           0k-kq
ρ
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k ,     (8.104)  

 = {x, y} and ’ = {x’, y’} are 2D radius-vectors in, respectively, the observation and screen planes 
(both nearly normal to vectors k and k0), function T(’) describes screen’s transparency at point ’, and 
the last integral in Eq. (103) is over the whole screen plane z’ = 0. (Though the strict equivalence of the 
two forms of Eq. (103) is only valid if T(’ ) equals to either 1 or 0, its last form may be readily obtained 
from Eq. (78) with f(r’) = T(’ )f0 for any transparency profile, provided that T(’ ) is an arbitrary 
function but changes only at distances much larger than   2/k.) 

 From the mathematical point of view, the last form of Eq. (103) is the 2D spatial Fourier 
transform of function T(’), with the reciprocal variable  revealed by the observation point position:  
= (z/k) = (z/2). This interpretation is useful because of the experience we all have with the Fourier 
transform, mostly in the context of its time/frequency applications. For example, if  the orifice is a single 
small hole, T(’) may be approximated by a delta-function, so that Eq. (103) yields f()  const. This 
corresponds (at least for the small diffraction angles   /z, for which the Huygens approximation is 
valid) to a spherical wave spreading from the point-like orifice. Next, for two small holes, Eq. (103) 
immediately gives the Young interference pattern (90). Let me now use Eq. (103) to analyze the 
simplest (and most important) 1D transparency profiles, leaving 2D cases for reader’s exercise. 

 (i) A single slit of width a (Fig. 11) may be described by transparency 
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Its substitution into Eq. (103) yields  
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naturally returning us to Eqs. (64) and (97), and hence to the red lines in Fig. 8 for the wave intensity. 
(Please note again that Eq. (103) describes only the Fraunhofer, but not the Fresnel diffraction!)   

 (ii) Two narrow similar, parallel slits with a much larger distance a between them, may be 
described by taking 

              )2/()2/()( ax'ax''T  ρ ,    (8.107) 

so that Eq. (103) yields the generic interference pattern, 

          
z

kxaaaiai
ff xxx

2
cos

2
cos

2
exp

2
exp)( 0 


























ρ ,   (8.108) 

General 
Fraunhofer 
diffraction 

pattern 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 28 of 36 

whose intensity is shown with the blue line in Fig. 8.  

 (iii) In a more realistic Young-type two-slit experiment, each slit has width (say, w) which is 
much larger than light wavelength , but still much smaller than slit spacing a. This situation may be 
described by the following transparency function 
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for which Eq. (103) yields a natural combination of results (106) (with a replaced with w) and (108): 
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This is the usual interference pattern modulated by a Fraunhofer-diffraction envelope (shown with the 
dashed blue line Fig. 15). Since function sinc2 decreases very fast beyond its first zeros at  = , the 
practical number of observable interference fringes is close to 2a/w. 

 

 

 

 

 

  

 

 

 

 (iv) A structure very useful for experimental and engineering practice is a set of many parallel 
slits, called the diffraction grating.39 Indeed, if the slit width is much less than the grating period d, then 
the transparency function may be approximated as  
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and Eq. (103) yields 
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 This sum vanishes for all values of xd that are not multiples of 2, so that the result describes 
sharp intensity peaks at diffraction angles 

39 The rudimentary diffraction grating effect, produced by parallel fibers of bird feathers, was discovered as early 
as in 1673 by J. Gregory - who has also invented the reflecting (“Gregorian”) telescope. 
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Fig. 8.15. Young’s double-slit interference pattern for a finite slit width. 
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Taking into account that this result is only valid for small angles m  << 1, it may be interpreted 
exactly as Eq. (59) – see Fig. 6a. However, in contrast with the interference (108) from two slits, the 
destructive interference from many slits kills the net wave as soon as the angle is even slightly different 
from each Bragg angle (60). This is very convenient for spectroscopic purposes, because the diffraction 
lines produced by multi-frequency waves do not overlap even if the frequencies of their adjacent 
components are very close. 

 Two features of practical diffraction gratings make their properties different from this simple 
picture. First, the finite number N of slits, which may be described by limiting sum (112) to interval n = 
[-N/2, +N/2], results in the finite spread, / ~ 1/N, of each diffraction peak, and hence in the reduction 
of grating’s spectral resolution. (Unintentional variations of the inter-slit distance d have a similar effect, 
so that before the advent of high-resolution photolithography, special high-precision mechanical tools 
have been used for grating fabrication.)  

 Second, the finite slit width w leads to the diffraction peak pattern modulation by a sinc2(kw/2) 
envelope, similarly to pattern shown in Fig. 15. Actually, for spectroscopic purposes such modulation is 
a plus, because only one diffraction peak (say, with m = 1) is practically used, and if the frequency 
spectrum of the analyzed wave is very broad (cover more than one octave), the higher peaks produce 
undesirable hindrance. Because of this reason, w is frequently selected to be equal exactly to d/2, thus 
suppressing each other diffraction maximum. Moreover, sometimes semi-transparent films are used to 
make the transparency function T(r’) continuous and close to the sinusoidal one: 
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Plugging the last expression into Eq. (103) and integrating, we see that the output wave consists of just 3 
components: the direct-passing wave (proportional to T0) and two diffracted waves (proportional to T1)  
propagating in the directions of the two lowest Bragg angles, 1 =  /d. 

 Relation (103) may be also readily used to obtain one more general (and rather curious) result 
called the Babinet principle. Consider two experiments with diffraction of similar plane waves on two 
“complementary” screens who together would cover the whole plane, without a hole or an overlap. 
(Think, for example, about an opaque disk of radius R and a large opaque screen with a round orifice of 
the same radius.) Then, according to the Babinet principle, the diffracted wave patterns produced by 
these two screens in all directions with   0 are identical. The proof of this principle is straightforward: 
since the transparency functions produced by the screens are complementary in the following sense: 

       ,1)()()( 21  'T'T'T ρρρ      (8.115) 

and (in the Fraunhofer approximation (103) only!) the diffracted wave is a linear Fourier transform of 
T(’), we get 

          ),()()( 021 ρρρ fff       (8.116) 

where f0 is the wave “scattered” by the composite screen with T0(’)  1, i.e. the unperturbed initial 
wave propagating in the initial direction ( = 0). In all other directions, f1 = - f2, i.e. the diffracted waves 
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are indeed similar besides the difference in sign - which is equivalent to a phase shift by . However, it 
is important to remember that the Babinet principle notwithstanding, in real experiments the diffracted 
waves may interfere with the unperturbed plane wave f0(), leading to different diffraction pattern in 
cases 1 and 2 – see, e.g., Fig. 13 and its discussion. 

 

8.9. Magnetic dipole and electric quadrupole radiation 

 Throughout this chapter, we have seen how many important results may be obtained from Eq. 
(26) for the electric dipole radiation by a small-size source (Fig. 1). Only in rare cases when such 
radiation is absent, for example if the dipole moment p of the source equals zero (or does not change at 
time – either at all, or at the frequency of our interest), higher-order effects may be important. I will 
discuss the main two of them, the quadrupole electric and dipole magnetic radiation – mostly for 
reference purposes, because we would not have much time to discuss their applications.  

 In Sec. 2 above, the electric dipole radiation was calculated by plugging the first, leading term of 
expansion (19) into the exact formula (17b) for the retarded vector-potential A(r, t). Let us make a more 
exact calculation, by keeping the second term of that expansion as well: 
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Since this expansion is only valid if the last term in the second argument is relatively small, in the 
Taylor expansion of j with respect to that argument we may keep just the first two leading terms:  
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so that Eq. (17b) yields A = Ae + A’, where Ae is the electric dipole contribution as given by Eq. (23), 
and A’ is the new term of the next order in small parameter r’ << r: 
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 Just as was done in Sec. 2, let us evaluate this term for a system of non-relativistic particles with 
electric charges qk and radius-vectors rk(t): 
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Using the “bac minus cab” identity of the vector algebra again,40 Eq. (120) may be rewritten as 
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so that the right-hand part of Eq. (120) may be presented as a sum of two terms, A’ = Am + Aq, where 

40 If you need, see, e.g., MA Eq. (7.5). 
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 Comparing the second of Eqs. (122) with Eq. (5.91), we see that m is just the magnetic moment 
of the source. On the other hand, the first of Eqs. (122) is absolutely similar in structure to Eq. (23), with 
p replaced by (mn)/v, so that for the corresponding component of the magnetic field it gives (in the 
same approximation r >> ) the result similar to Eq. (24): 
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According to this expression, just as at the electric dipole radiation, vector B is perpendicular to vector 
n, and its magnitude is also proportional to the sin, where  is now the angle between the direction 
toward the observation point and the second time derivative of vector m rather than p: 
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As the result, the intensity of this magnetic dipole radiation has the similar angular distribution: 
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- cf. Eq. (26). Note, however, that this radiation is usually much weaker than its electric counterpart. For 
example, for a non-relativistic particle with electric charge q, moving on a trajectory with of size ~a, the 
electric dipole moment is of the order of qa, while its magnetic moment scales as qa2, where   is the 
motion frequency. As a result, the ratio of the magnetic and electric dipole radiation intensities is of the 
order of (a/v)2, i.e. the squared ratio of particle’s speed to the speed of emitted waves – that has to be 
much smaller than 1 for our non-relativistic estimate to be valid. 

 The angular distribution of the electric quadrupole radiation, described by Eq. (123), is more 
complicated. In order to show this, we may add to Aq a vector parallel to n (i.e. along the wave 
propagation), getting 
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because this addition does not give any contribution to the transverse component of the electric and 
magnetic fields, i.e. to the radiated wave. According to the above definition of vector Q, its Cartesian 
components may be presented as41 

41 In electrostatics, the symmetric, zero-trace tensor Q determines the next term in the potential expansion (3.5): 
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where Qjj’ are elements of the so-called electric quadrupole tensor Q of the system:42 
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For clarity, let me spell out the tensor in its matrix form: 
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Differentiating the first of Eqs. (127) at r >> , we get  
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Superficially, this expression is similar to Eqs. (24) or (124), but according to Eqs. (127) and (129), 
components of vector Q depend on the direction of vector n, leading to a different angular dependence 
of Sr.  

 As the simplest example, let us consider a system of two equal point electric charges moving at 
equal distances d(t) <<  from a stationary center (Fig. 16).  

  

 

 

 

 

 Due to the symmetry of the system, its dipole moments p and m (and hence its electric and 
magnetic dipole radiation) vanish, but the quadrupole tensor (129) still has nonvanishing components. 
With the coordinate choice shown in Fig. 16, these components are diagonal: 

     .4,2 22 qdqd zzyyxx  QQQ     (8.131) 

With axis x in the plane of the direction n toward the source (Fig. 16), so that nx = sin, ny = 0, nz = cos 
, Eq. (128) yields 

     cos4,0,sin2 22 qdQQqdQ zyx  ,   (8.132) 

42 As a math reminder, tensor is a matrix describing a physical reality independent of the reference frame choice, 
so that the Cartesian elements of the tensor have to change according to certain geometric rules if the reference 
frame is changed - e.g., rotated. This notion is very similar to a physical vector, that may be described by an 
ordered set of its Cartesian components, which change according to certain rules as the result of the reference 
frame’ change. We may be confident that a matrix represents a tensor if it provides a linear relation between 
components of two physical vectors – such a Q and n in Eq. (128).  
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Fig. 8.16. The simplest system emitting electric 
quadrupole radiation. 
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so that the vector product in Eq. (130) has only one nonvanishing Cartesian component: 
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As a result, the radiation intensity is proportional to sin2cos2, i.e. vanishes not only along the 
symmetry axis (as the dipole radiation does), but also in all directions perpendicular to this axis, 
reaching its maximum at   = /4. 

 For more complex systems, the angular distribution of the electric quadrupole radiation may be 
different, but its total power may be always presented in a simple form 
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 Let me finish this section by giving, without proof, one more fact important for applications: due 
to their different spatial structure, the  magnetic dipole and electric quadrupole radiation fields do not 
interfere, i.e. the total power of radiation (neglecting higher multipole terms) may be found as the sum 
of these components, calculated independently. 

 

8.10. Exercise problems 

 8.1.* In the electric dipole approximation, calculate the angular distribution and total power of 
electromagnetic radiation by the following classical model of the hydrogen atom: an electron rotating, at 
a constant distance r, about a much heavier proton. Use the latter result to evaluate the classical lifetime 
of the atom, borrowing the initial value of R from quantum mechanics: R(0) = rB  0.5310-10 m. 

 
 8.2. A non-relativistic particle of mass m with the electric charge q is placed into a uniform 
magnetic field B. Derive the law of decrease of particle’s kinetic energy due to its electromagnetic 
radiation at the cyclotron frequency c = qB/m. Evaluate the rate of such radiation cooling for electrons 
in a magnetic field of 1 T, and estimate the electron energy interval in which this result is qualitatively 
correct. 

 Hint: The cyclotron motion will be discussed in detail (for arbitrary particle velocities v ~ c) in 
Sec. 9.6 below, but I hope that the reader knows that in the non-relativistic case (v << c) the above 
formula for c may be readily  obtained by combining the 2nd Newton law mv

2/R = qvB for the 
circular motion of the particle under the effect of the magnetic component of the Lorentz force (5.10), 
and the geometric relation v = Rc.  (Here v is particle’s velocity within the plane normal to vector B.) 
 
 8.3. Solve the dipole antenna radiation problem discussed in Sec. 2 (see Fig. 3) for the optimal 
length l = /2, assuming43 that the current distribution in each of its arms is sinusoidal:  

  t
l

z
ItzI 

coscos, 0 . 

  

43 As was emphasized in Sec. 2, this is a reasonable guess rather than a controllable approximation. The exact 
(rather involved!) theory shows that this assumption gives errors ~5%. 

Electric 
quadrupole 

radiation 
power 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 34 of 36 

 8.4. Use the harmonic oscillator model of a bound charge, given by Eq. (7.30), to explore the 
transition between two scattering limits discussed in Sec. 3, in particular the resonant scattering taking 
place at   0. In this context, discuss the contribution of scattering into oscillator’s damping. 
 
 8.5.* A sphere of radius R, made of a material with constant permanent electric polarization P0 
and mass density , is free to rotate about its center of mass. Calculate the total cross-section of 
scattering, by the sphere, of a linearly polarized electromagnetic wave of frequency  << R/c, 
propagating in free space, in the limit of small wave amplitude, assuming that the initial orientation of 
the polarization vector P0 is random. 
 
 
 8.6. Use the Born approximation to analyze the interference pattern produced 
by plane wave’s scattering on a set of N similar, equidistant points on a straight line 
normal to the direction of the incident wave’s propagation – see Fig. on the right. 
Discuss the trend(s) of the pattern in the limit N  . 
 
 
 8.7. Use the Born approximation to calculate the differential cross-section of plane wave 
scattering by a dielectric cube of side a, with   0. In the limits ka << 1 and ka >> 1 (where k is the 
wave vector), analyze the angular dependence of the differential cross-section. Calculate the full cross-
section for the simplest case when the incident wave vector is parallel to one of cube’s sides. 
 
 8.8. Use the Born approximation to calculate the differential cross-section of plane wave 
scattering by a nonmagnetic, uniform dielectric sphere with   0, of an arbitrary radius R. In the limits 
kR << 1 and 1 << kR (where k is the wave number), analyze the angular dependence of the differential 
cross-section, and calculate the full cross-section. 
 
 8.9. A sphere of radius R is made of a uniform, nonmagnetic, linear dielectric material. Calculate 
its full cross-section of scattering of a low-frequency monochromatic wave, with k << 1/R, for an 
arbitrary dielectric constant, and compare the result with the solution of the previous problem.  
 
 8.10. Solve the previous problem, also in the low-frequency limit kR << 1, for the case when the 
sphere’s material has a frequency-independent Ohmic conductivity, and opt = 0, and a relatively large 
skin depth (s >> R), and compare the results.  
 
 8.11. Use the Born approximation to calculate the differential cross-section of plane wave 
scattering on a right, circular cylinder of length l and radius R, for arbitrary incidence. 
  

8.12. Formulate the quantitative condition of the Born approximation validity for a uniform 
linear-dielectric scatterer with all linear dimensions of the order of a. 

 
 8.13. Use the Huygens principle to calculate wave’s intensity on the symmetry plane of the slit 
diffraction experiment (i.e. at x = 0 in Fig. 11), for arbitrary ratio z/ka2. 

0k d
Nd

d
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 8.14. A plane wave with wavelength  is normally 
incident on an opaque, plane screen, with a round orifice of 
radius R >> . Use the Huygens principle to calculate  
passed wave’s intensity distribution along system’s 
symmetry axis, at distances z >> R from the screen (see Fig. 
on the right), and analyze the result.  
 

 
8.15. A plane monochromatic wave is normally 

incident on an opaque circular disk of radius R >>  . 
Use the Huygens principle to calculate wave’s intensity 
at distance z >> R behind the disk center (see Fig. on the 
right). Discuss the result. 
 

 
8.16. Use the Huygens principle to analyze the Fraunhofer diffraction of a plane wave normally 

incident on a square-shape hole, of size aa, in an opaque screen. Sketch the diffraction pattern you 
would observe at a sufficiently large distance, and quantify expression “sufficiently large” for this case. 

 
 
8.17. Within the Fraunhofer approximation, 

analyze the pattern produced by a 1D diffraction 
grating with the periodic transparency profile shown 
in Fig. on the right, for the normal incidence of a 
plane, monochromatic wave. 
 
 
 8.18. N equal point charges are attached, at equal intervals, to a circle 
rotating with a constant angular velocity about its center – see Fig. on the right. 
For what values of N does the system emit: 

 (i) the electric dipole radiation? 
 (ii) the magnetic dipole radiation? 
 (iii) the electric quadrupole radiation? 
 
 8.19. The orientation of a magnetic dipole m, of a fixed magnitude, is rotating about a certain 
axis with angular velocity , with angle  between them staying constant. Calculate the angular 
distribution and the average power of its radiation (into free space). 
 
 8.20. Complete the solution of the problem started in Sec. 9, by calculating the full power of 
radiation of the system of two charges oscillating in antiphase along the same straight line - see Fig. 6. 
Also, calculate the average radiation power for the case of harmonic oscillations, d(t) = acost, compare 
it with the case of a single charge performing similar oscillations, and interpret the difference. 
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Chapter 9. Special Relativity 

This chapter starts with a brief review of the special relativity’s basics. This background is used, later in 
the chapter, for the analysis of the relation between electromagnetic field values measured in different 
reference frames moving relative to each other, and discussions of relativistic particle dynamics in the 
electric and magnetic fields, and of analytical mechanics of electromagnetism. 

 

9.1. Einstein postulates and the Lorentz transform 

 As was emphasized at the derivation of expressions for the dipole and quadrupole radiation in 
the last chapter, they are only valid for systems of non-relativistic particles. Thus, these results cannot be 
used for description of such important phenomena as the Cherenkov radiation or synchrotron radiation, 
in which relativistic effects are essential. Moreover, analysis of motion of charged relativistic particles 
in electric and magnetic fields is also a natural part of electrodynamics. This is why I will follow the 
tradition of using this course for a (by necessity, brief) introduction to special relativity theory. This 
theory is based on the idea that measurements of all physical variables (including spatial and even 
temporal intervals between two events) may give different results in different reference frames, in 
particular two frames moving relative to each other translationally (i.e.  without rotation), with a certain 
constant velocity v (Fig. 1).  

  

 

 

 

 

 

 In the non-relativistic (Newtonian) mechanics the problem of transfer between such reference 
frames has a simple solution at least in the limit v << c, because the basic equation of particle dynamics 
(the 2nd Newton law) 1 

      
'

' )(
k

kkkkk Um rrr  ,     (9.1) 

where U, the potential energy of inter-particle interactions, is invariant with respect to the so-called 
Galilean transform (or “transformation”).2 Choosing the coordinate axes of both frames so that axes x 
and x’ are parallel to vector v (Fig. 1), the transform3 may be presented as 

          t'tz'zy'yvt'x'x  ,,, ,    (9.2a)

1 Let me hope that the reader does not need a reminder that in order for Eq. (1) to be valid, the reference frames 0 
and 0’ have to be inertial – see, e.g., CM Sec. 1.3. 
2 It had been first formulated by G. Galilei as early as in 1638 – four years before I. Newton was born! 
3 Note a very unfortunate term “boost”, used sometimes for the transform between the reference frames. (It is 
especially unnatural in the special relativity, not describing any accelerations.) In these notes, this term is avoided. 
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and plugging Eq. (2a) into Eq. (1), we get an absolutely similarly looking equation of motion in the 
“moving” reference frame 0’. Since the reciprocal transform, 

          tt'zz'y'yvtxx'  ,,, ,    (9.2b) 

is similar to the direct one, with the replacement of (+v) with (-v), we may say that the Galilean 
invariance means that there is no any “master” (absolute) spatial reference frame in classical mechanics, 
although the spatial and temporal intervals between different events are absolute (reference-frame 
invariant). 

 However, it is straightforward to use Eq. (2) to check that the form of the wave equation  

           0
1

2

2

22

2

2

2

2

2
























f
tczyx

,    (9.3) 

describing in particular the electromagnetic wave propagation in free space,4 is not Galilean-invariant.5 
For the “usual” (say, elastic) waves, which obey a similar equation albeit with a different speed,6 this 
lack of Galilean invariance is natural and is compatible with the invariance of Eq. (1), from which the 
wave equation originates. This is because the elastic waves are essentially the oscillations of interacting 
particles of a certain medium (e.g., an elastic solid), which makes the reference frame connected to this 
medium, special. So, if the electromagnetic waves were oscillations of a certain special medium (that 
was first called the “luminiferous aether”7 and later just ether), similar arguments might be applicable to 
reconcile Eqs. (2) and (3).  

 The detection of such a medium was the goal of the Michelson-Morley measurements (carried 
out between 1881 and 1887 with better and better precision), that are sometimes called “the most 
famous failed experiment in physics”. Figure 2 shows a crude scheme of their experiments. 

 

 

 

 

 

 

 

 

 

4 Discussions in this chapter and most of the next chapter will be restricted to the free-space (and hence 
dispersion-free) case; some media effects on radiation by relativistic particles will be discussed in Sec.10.4. 
5 It is interesting that the Schrödinger equation, whose fundamental solution for a free particle is a similar 
monochromatic wave (albeit with a different dispersion law), is Galilean-invariant, with a certain addition to the 
wavefunction’s phase – see, e.g., QM Chapter 1. 
6 See, e.g., CM Secs. 5.5 and 7.7. 
7 In the ancient Greek mythology, aether is the clear upper air breathed by the gods residing on Mount Olympus.  
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 A nearly-monochromatic wave is split in two parts (nominally, of equal intensity), using a semi-
transparent mirror tilted by 45º to the incident wave direction. These two partial waves are reflected 
back by two genuine mirrors, and arrive at the same semi-transparent mirror again. Here a half of each 
wave is returned to the light source area (where they vanish without affecting the source), but another 
half passes toward the detector, forming, with its counterpart, an interference pattern similar to that in 
the Young experiment. Thus each of the interfering waves has traveled twice (back and forth) each of 
two mutually perpendicular “arms” of the interferometer. Assuming that the ether, in which light 
propagates with speed c, moves with speed v < c along one of the arms, of length ll, it is straightforward 
(and hence left for reader’s exercise :-) to get the following expression for the difference between light 
roundtrip times: 

              
 

2

222/122 /1/1

2
























c

v

c

l

cv

l

cv

l

c
t lt ,   (9.4) 

where lt is the length of the second, “transverse” arm of the interferometer (perpendicular to v), and the 
last, approximate expression is valid at  lt  ll and v << c.  

 Since Earth moves around the Sun with speed vE  30 km/s  10-4 c, the arm positions relative to 
this motion alternate, due to Earth rotation about its axis, each 6 hours – see the right panel of Fig. 2. 
Hence if we assume that the ether rests in Sun’s reference frame, t (and the corresponding shift of 
interference fringes), has to alternate with this half-period as well. The same alternation may be 
achieved, at a smaller time scale, by a deliberate rotation of the instrument by /2. In the most precise 
version of the Michelson-Morley experiment (1887), this shift was expected to be close to 0.4 of the 
fringe pattern period. The result was negative, with the error bar about 0.01 of the fringe period.8  

 The most prominent immediate explanation of this zero result9 was suggested in 1889 by G. 
FitzGerald and (independently and more qualitatively) by H. Lorentz in 1892: as evident from Eq. (4), if 
the longitudinal arm of the interferometer itself experiences the so-called length contraction, 

           
2/1

2

2

1)0()( 









c

v
lvl ll ,     (9.5) 

while the transverse arm’s length is not affected by the motion relative to the ether, this kills t. This, 
extremely radical, idea received a strong support from the proof, in 1887-1905, that the Maxwell 
equations, and hence the wave equation (3), are form-invariant under the so-called Lorentz transform.10 
For the choice of coordinates shown in Fig. 1, the transform reads 

8 Through the 20th century, the Michelson-Morley-type experiments were repeated using more and more refined 
experimental techniques, always with the zero result for the apparent ether motion speed. For example, recent 
experiments, using cryogenically cooled optical resonators, have reduced the upper limit for such speed to just 
310-15 c –see H. Müller et al., Phys. Rev. Lett. 91, 020401 (2003). 
9 The zero result of a slightly later experiment, namely precise measurements of the torque which should be 
exerted by the moving ether on a charged capacitor, carried out in 1903 by F. Trouton and H. Noble (following G. 
FitzGerald’s  suggestion), seconded the Michelson and Morley’s conclusions. 
10 The theoretical work toward this goal (which I do not have time to review in detail) included important 
contributions by W. Voigt (in 1887), H. Lorentz (1892 - 1904), J. Larmor (1897 and 1900), and H. Poincaré 
(1900 and 1905).  
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It is elementary to solve these equations for the primed coordinates to get the reciprocal transform 

     
   

.
/1

)/(
,,,

/1
2/122

2

2/122 cv

xcvt
t'zz'yy'

cv

vtx
x'









    (9.6b) 

(I will soon present Eqs. (6) in a more elegant form.)  

 The Lorentz transform relations (6) are evidently reduced to the Galilean transform formulas (2) 
at v2 << c2. As will be proved in the next section, Eqs. (6) also yield the Lorentz length contraction (5). 
However, all attempts to give a reasonable interpretation of these equations while keeping the notion of 
the ether have failed, in particular because of the restrictions imposed by results of earlier experiments 
carried out in 1851 and 1853 by H. Fizeau - that were repeated with higher accuracy by the same 
Michelson and Morley in 1886. These experiments have shown that if one sticks to the ether concept, 
this hypothetical medium should be partially “dragged” by any moving dielectric media with a speed 
proportional to (r – 1). Careful reasoning shows that such local drag is irreconcilable with the assumed 
continuity of the ether. 

 In his famous 1905 paper, Albert Einstein has suggested a bold resolution of this contradiction, 
essentially removing the concept of the ether altogether. Moreover, he argued that the Lorentz transform 
is the general property of time and space, rather than of the electromagnetic field alone. He has started 
with two postulates, the first one essentially repeating the principle of relativity, formulated earlier 
(1904) by H. Poincaré in the following form: 

  “…the laws of physical phenomena should be the same, whether for an observer fixed, or for an 
observer carried along in a uniform movement of translation; so that we have not and could not have 
any means of discerning whether or not we are carried along in such a motion.”11 

  The second Einstein’s postulate was that the speed of light c, in free space, should be constant in 
all reference frames. (This is essentially a denial of ether’s existence.)  

 Then, Einstein showed how naturally do the Lorenz transform relations (6) follow from his 
postulates, with a few (very natural) additional assumptions. Let a point source emit a short flash of 
light, at the moment t = t’ = 0 when origins of the reference frames shown in Fig. 1 coincide. Then, 
according to the second of Einstein’s postulates, in each of the frames the spherical wave propagates 
with the same speed c, i.e. coordinates of points of its front, measured in the two frames, have to obey 
equations 

        
.0)()(

,0)()(
2222

2222





z'y'x'ct'

zyxct
     (9.7) 

What may be the general relation between the combinations in the left-hand side of these equations - not 
for this selected pair of events, the light flash and its detection, but in general? A very natural 
(essentially, the only justifiable) choice is 

11 Note that though the relativity principle excludes the notion of the special (“absolute”) spatial reference frame, 
its verbal formulation still leaves the possibility of the Galilean “absolute time” open. The quantitative relativity 
theory kills this option – see Eqs. (6) and their discussion below.

Lorentz 
transform 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 5 of 54 

          )()()()()( 222222222 z'y'x'ct'vfzyxct  .  (9.8) 

Now, according to the first postulate, the same relation should be valid if we swap the reference frames 
(x  x’, etc.) and replace v with (-v). This is only possible if  f 2 = 1, so that excluding option f = -1 
(which is incompatible with the Galilean transform in the limit  v/c  0), we get 

    )()()()( 22222222 z'y'x'ct'zyxct  .   (9.9) 

 For the line y = y’ = 0, z =  z’ = 0, Eq. (9) is reduced to 

          2222 )()( x'ct'xct  .     (9.10) 

It is very illuminating to interpret this relation as the one resulting from a mutual rotation of the 
reference frames (that now have to include clocks to measure time) on the plane of coordinate x and the 
so-called Euclidian time    ict – see Fig. 3. 

 

 

 

 

 

 

 Indeed, rewriting Eq. (10) as 

               2222 x''x   ,     (9.11) 

we may consider it as the invariance of the squared radius at the rotation that is shown in Fig. 3 and 
described by the evident geometric relations 
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     (9.12a) 

with the reciprocal relations 
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xx'
     (9.12b) 

 So far, angle   has been arbitrary. In the spirit of Eq. (8), a natural choice is   = (v), with the 
requirement (0) = 0. In order to find this function, let us write the definition of velocity v of frame 0’, 
as measured in reference frame 0: for x’ = 0, x = vt. In variables x and , this means 

            
ic

v

ict

xx
xx   0'0'

.     (9.13) 

On the other hand, for the same point x’ = 0, Eqs. (12a) yield 

                


tan0' x

x
.     (9.14) 

These two expressions are compatible only if 

Fig. 9.3. The Lorentz transform as a mutual 
rotation of reference frames on the [x, ] plane. x
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where  and  are two very convenient and commonly used dimensionless parameters defined as 
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(Vector  is called the normalized velocity, while scalar , the Lorentz factor.)12 

 Using the relations for  , Eqs. (12) become 

                ,, 'x'i'ix'x       (9.18a) 

                .,   xi'ixx'     (9.18b) 

Now returning to the real variables [x, ct], we get the Lorentz transform relations (6) in a more compact 
form:13 

             ,,,, x'ct'ctz'zy'yct'x'x      (9.19a) 

              .,,, xctct'zz'yy'ctxx'      (9.19b) 

 An immediate corollary of Eqs. (6) is that for   to stay real, we need v2  c2, i.e. that the speed of 
any physical body (to which we could connect a reference frame) cannot exceed the speed of light, as 
measured in any physically meaningful reference frame.14  

 

9.2. Relativistic kinematic effects 

 In order to discuss other corollaries of Eqs. (19), we need to spend a few minutes to discuss what 
do these relations actually mean. Evidently, they are trying to tell us that the spatial and temporal 
intervals are not absolute (as they are in the Newtonian space), but do depend on the reference frame 
they are measured in. So, we have to understand very clearly what exactly may be measured - and thus 
may be discussed in a physics theory. Recognizing this necessity, A. Einstein has introduced the notion 
of numerous imaginary observers that may be distributed all over each reference frame. Each observer 
has a clock and may use it to measure the instants of  local events. He also conjectured that:  

 (i) all observers within the same reference frame may agree on a common length measure (“a 
scale”), i.e. on their relative positions in that frame, and synchronize their clocks,15 and 

12 One more function of , the rapidity defined as   tanh   (so that  = i), is also useful for some calculations. 
13 Still, in some cases below, it will be more convenient to use Eqs. (6) rather than Eqs. (19). 
14 All attempts to rationally conjecture particles moving with v > c, called tachyons, have failed (so far, at least :-). 
Possibly the strongest objection against their existence is the notice that tachyons could be used to communicate 
back in time, thus violating the causality principle – see, e.g., G. Benford et al., Phys. Rev. D 2, 263 (1970). 

Parameters 
 and  
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 (ii) observers belonging to different reference frames may agree on the nomenclature of world 
events (e.g., short flashes of light) to which their respective measurements belong. 

 Actually, these additional postulates have been already implied in our “derivation” of the 
Lorentz transform in Sec. 1. For example, by {x, y, z, and t} we mean the results of space and time 
measurements of a certain world event, about that all observers belonging to frame 0 agree. Similarly, 
all observers of frame 0’ have to agree about results {x’, y’, z’, t’}. Finally, when the origin of frame 0’ 
passes by some sequential points xk of frame 0, observers in that frame may measure its passage times tk 
without a fundamental error, and know that all these times belong to x’ = 0.  

 Now we can analyze the major corollaries of the Lorentz transform, which are rather striking 
from the point of view of our everyday (rather non-relativistic :-) experience. 

 (i) Length contraction. Let us consider a rigid rod, stretched along axis x, with length l = x2 – x1, 
where x1,2 are the coordinates of rod’s ends, as measured in its rest frame 0, at any instant t (Fig. 4). 
What would be the rod’s length l’ measured by the Einstein observers in the moving frame 0’? 

 

 

 

 

 

 

 At a time instant t’ agreed upon in advance, the observers who find themselves exactly at the 
rod’s ends, may register that fact, and then subtract their coordinates x’1,2  to calculate the apparent rod 
length l’ = x2’ – x1’ in the moving frame. According to Eq. (19a), l may be expressed via l’ as 

             l'l''x'xct''xct''xxxl   )()()( 121212 .  (9.20a) 

Hence, the rod’s length, as measured in the moving reference frame is 
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,     (9.20b) 

in accordance with the FitzGerald-Lorentz hypothesis (5). This is the relativistic length contraction 
effect: an object is always the longest (has the so-called proper length l) if measured in its rest  frame. 
Note that according to Eq. (19), the length contraction takes place only in the direction of the relative 
motion of two reference frames. As has been noted in Sec. 1, this result immediately explains the zero 
result of the Michelson-Morley-type experiments, so that they give a convincing evidence (if not an 
irrefutable proof) of Eq. (20). 

15 A posteriori, the Lorenz transform may be used to show that consensus-creating procedures (such as clock 
synchronization) are indeed possible. The basic idea of the proof is that at v << c the relativistic corrections to 
space and time intervals are of the order of (v/c)2, they have negligible effects on clocks being brought together 
into the same point for synchronization very slowly, with velocity v << c. The reader interested in detailed 
discussion of this and other fine points of special relativity may be referred to, e.g., either H. Arzeliès, Relativistic 
Kinematics, Pergamon, 1966, or W. Rindler, Introduction to Special Relativity, 2nd ed., Oxford U. Press, 1991. 
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 (ii) Time dilation. Now let us use Eqs. (19a) to find the time interval t, as measured in frame 0, 
between two world events – say, two ticks of a clock moving with frame 0’ (Fig. 5), i.e. having constant 
values of x’, y’, and z’. 

 

 

 

 

  

 

 Let the time interval between these two events, measured in clock’s rest frame 0’, be t’  t2’ – 
t1’. At these two moments, the clock would fly by certain two Einstein’s observers at rest in frame 0, so 
that they can record the corresponding moments t1,2 shown by their clocks, and then calculate t as their 
difference. According to the second of Eqs. (19a),   

                     t'x''ctx''ct
c

ttt Δ)()(Δ 1212 
 ,   (9.21a) 

so that, finally, 
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This is the famous relativistic time dilation (or “dilatation”) effect: a time interval is longer if measured 
in a frame (in our case, frame 0) moving relatively to the clock, while that in the rest frame is the 
shortest - the so-called proper time interval.   

This counter-intuitive effect is the everyday reality at experiments with high-energy elementary  
particles. For example, in a typical (by no means record-breaking) experiment carried out in Fermilab, a 
beam of charged 200 GeV pions with   1,400 passed distance l = 300 m distance with the measured 
loss of only 3% of the initial beam intensity due to the pion decay (mostly, into muon-neutrino pairs) 
with proper lifetime t0  2.5610-8 s. Without the time dilation, only an  exp{-l/ct0}~10-17 part of the 
initial pions would survive, while the relativity-corrected number exp{-l/ct} = exp{-l/ct0}  0.97 was in 
a full accordance with experimental measurements. As another example, the global positioning system 
(GPS) is designed with the account of the time dilation due to the velocity of its satellites (and also some 
gravity-induced, i.e. general-relativity corrections that I do not have time to discuss) and would give 
large errors without such corrections. So, there is no doubt that time dilation (21) is a reality, though the 
precision of its experimental tests I am aware of has been limited by a few percent, because of almost 
unavoidable involvement of gravity effects.16 

 Before the first reliable observation of the time dilation (by B. Rossi and D. Hall in 1940), there 
had been serious doubts in the reality of this effect, the most famous being the twin paradox first posed 
(together with an immediate suggestion of its resolution) by P. Langevin in 1911. Let us send one of two 
twins on a long star journey with a speed v approaching c. Upon his return to Earth, who of the twins 

16 See, e.g., J. Hafele and R. Keating, Science 177, 166 (1972). 
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would be older? The naïve approach is to say that due to the relativity principle, not one can be (and 
hence there is no time dilation), because each twin could claim that his counterpart, rather than himself, 
was moving, with the same speed v, just in the opposite direction. The resolution of the paradox in the 
general theory of relativity (which can handle gravity and acceleration effects) is that one of the twins 
had to be accelerated to be brought back, and hence the reference frames have to be dissimilar: only one 
of them may stay inertial all the time. Because of that, the twin who had been accelerated (“actually 
traveling”) would be younger than his sibling when they meet.  

 (iii) Velocity transformation. Now let us calculate velocity u of a particle, as observed in 
reference frame 0, provided that its velocity, as measured in frame 0’, is u’ (Fig. 6). 

 

 

 

 

 

 

 Keeping the usual definition of velocity, but with due attention to the relativity of not only 
spatial but also temporal intervals, we may write 
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u  , .     (9.21) 

Plugging in the differentials of the Lorentz transform relations (6a), we get 
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 (9.22) 

and the similar formula for uz. In the classical limit v/c  0, these relations are reduced to   

              ,,, zzyyxx u'uu'uvu'u      (9.23) 

and may be merged into the familiar Galilean vector form 

          cv'  for  v,uu .     (9.24) 

 In order to see how strange the full relativistic rules (22) are, let us first consider a purely 
longitudinal motion, uy = uz = 0; then17  

                 
2/1 cu'v

vu'
u




 ,     (9.25) 

where u  ux and u’  u’x. Figure 7 shows u as the function of u’, given by this formula, for several 
values of the reference frames’ relative velocity v. 

17 With an account of the well-known trigonometric identity tan(a + b) = (tana + tanb)/(1 – tana tanb) and Eq. 
(15), Eq. (25) shows that that rapidities  add up exactly as longitudinal velocities at non-relativistic motion, 
making that notion very convenient for the analysis of transfer between several frames. 
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Fig. 9.6. Relativistic velocity addition. 
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 The first sanity check is that if v = 0, i.e. the reference frames are at rest relative to each other, 
then u = u’, as it should be – see the diagonal straight line. Next, if magnitudes of u’ and v are both 
below c, so is the magnitude of u . (Also good, because otherwise ordinary particles in one frame would 
be tachyons in the other one, and the theory would be in a big trouble.) Now strange things start: even as 
u’ and v are both approaching c, then u is also close to c, but does not exceed it. As an example, if we 
fired ahead a bullet with speed 0.9c from a spaceship moving from the Earth also at 0.9c, Eq. (25) 
predicts the speed of the bullet relative to Earth to be just [(0.9 + 0.9)/(1 + 0.90.9)]c  0.994c < c, 
rather than (0.9 + 0.9)c = 1.8 c > c as in the Galilean kinematics. We certainly should accept this 
strangeness of relativity, because it is necessary to fulfill the 2nd Einstein’s postulate: the independence 
of the speed of light in any reference frame. Indeed, for u’ = c, Eq. (25) yields u = c, regardless of v. 

 In the opposite case of transverse motion, when a particle moves across the relative motion of 
the frames (for example, at our choice of coordinates, u’ x = u’ z = 0), Eqs. (22) yield a less spectacular 
result 

       y
y

y u'
u'

u 


.     (9.26) 

This effect comes purely from the time dilation, because the transverse coordinates are Lorentz-
invariant. 

 In the case when both u x’ and uy’ are substantial (but uz’ is still zero), we may divide expressions 
(22) by each other to relate angles  of particle propagation, as observed in the two reference frames:  
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 .    (9.27) 

This expression describes, in particular, the so-called stellar aberration effect, the dependence of the 
observed direction   toward a star on the speed v of the telescope motion relative to the star – see Fig. 
8. (The effect is readily observable experimentally as the annual aberration due to the periodic change 
of speed v by 2vE  60 km/s because of Earth’s rotation about the Sun. Since the aberration’s main part 
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Fig. 9.7. Longitudinal velocity addition. 
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is of the first order in vE/c ~ 10-4, the effect is very significant and has been known since the early 
1700s.)  

 

 

 

 

 

  

 

 

 

 For the analysis of this effect, it is sufficient to take, in Eq. (27), u’ = c, i.e. v/u’ = , and 
interpret ’ as the “proper” direction to the star, that would be measured at v = 0.18 At  << 1, both Eq. 
(27) and  the Galilean result (which the reader is invited to derive directly from Fig. 8), 

              






'

'

cos

sin
tan ,     (9.28) 

may be well approximated by the first-order term 

            sin ' .     (9.29) 

Unfortunately, it is not easy to use the difference between Eqs. (27) and (28), of the second order in , 
for the special relativity confirmation, because other components of Earth’s motion, such as its rotation, 
nutation and torque-induced precession,19 give masking first-order contributions to the aberration. 

Finally, at a completely arbitrary direction of vector u’, Eqs. (22) may be readily used to 
calculate the velocity magnitude. The most popular form of the resulting expression is for the square of 
relative velocity (or rather relative reduced velocity ) of two particles, 
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ββ

ββββ
 .     (9.30) 

where 1,2  v1,2/c are their normalized velocities as measured in the same reference frame. 

  (iv) The Doppler effect. Now let us consider a plane, monochromatic wave moving along axis x: 

               ftkxftkxiff argcos(expRe  .   (9.31) 

18 Strictly speaking, in order to reconcile the geometries shown in Fig. 1 (for which all our formulas, including 
Eq. (27), are valid) and Fig. 8 (giving the traditional scheme of the aberration), it is necessary to invert signs of u 
(and hence sin’ and cos’) and v, but as evident from Eq. (27), all the minus signs cancel, and the formula is 
valid as is. 
19 See, e.g., CM Secs. 6.4-6.5. 
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Fig. 9.8. Stellar aberration. 
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Its total phase,   kx -t + arg f (in contrast to amplitude f!) cannot depend on the observer’s 
reference frame, because all fields of a traveling wave vanish simultaneously at  = 2n, (for all integer 
n) and such “world events” should take place in all reference frames. The only way to keep  = ’ at all 
times is to have20  

               't'k'x'tkx   .     (9.32) 

 First, let us consider the Doppler effect describing usual non-relativistic waves, e.g., oscillations 
of particles of a certain medium. Using the Galilean transform (2), we may rewrite Eq. (32) as  

      'tk'x'tvtx'k   )( .     (9.33) 

Since this transform leaves all space intervals (including wavelength  = 2/k) intact, we can take k = k’, 
so that Eq. (33) yields 

        kv'   .      (9.34) 

 For a dispersion-free medium, the wave number k is the ratio of its frequency , as measured in 
the reference frame bound to the medium, and the wave velocity vw. In  particular, if the wave source 
rests in the medium, we can bind frame 0 to the medium as well, and frame 0’ to wave’s receiver (so 
that v = vr), so that 

              
wv

k


 ,      (9.35) 

and for the frequency perceived by the receiver, Eq. (34) yields       

                            
w

rw

v

vv
'


  .     (9.36)  

On the other hand, if the receiver and the medium are at rest in reference frame 0’, while the wave 
source is bound to frame 0 (so that v = -vs), Eq. (35) should be replaced with 

       
wv

'
k'k


 ,      (9.37) 

and Eq. (34) yields a different result: 
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w

vv

v
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  ,     (9.38) 

Finally, if both the source and detector are moving, it is straightforward to combine these two results to 
get the general relation 

      
sw

rw

vv

vv
'




  .     (9.39) 

At low speeds of both the source and receiver, this result simplifies, 

20 Strictly speaking, Eq. (32) is valid to an additive constant, but for notation simplicity, it may be always made 
equal to zero by selecting (at it has already been done in all relations of Sec. 1) the reference frame origins and/or 
clock turn-on times so that at t = 0 and x = 0, t’ = 0 and x’ = 0 as well.  
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  ,1 ,    (9.40) 

but at speeds comparable to vw we have to use the more general Eq. (39). Thus, the usual Doppler effect 
is affected not only by the relative speed (vr – vs) of wave’s source and detector, but also of their speeds 
relative to the medium in which waves propagate. 

 Somewhat counter-intuitively, for the electromagnetic waves the calculations are simpler, 
because for them the propagation medium (ether) does not exist, wave velocity equals c in any 
reference frame, and there are no two separate cases: we can always take k = /c, k’ = ’/c. Plugging 
these relations, together with the Lorentz transform (19a), into the phase-invariance equation (32), we 
get 
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 )( .   (9.41) 

This relation has to hold for any x’ and t’, so we may require the net coefficients before these variables 
to vanish. These two requirements yield the same condition: 

                        )1(  ' .     (9.42) 

This result is already quite simple, but may be transformed further to be even more illuminating: 
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' .    (9.43) 

At any sign before , one pair of parentheses cancel, so that 
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' .     (9.44) 

(It may look like the reciprocal expression of  via ’ is different, violating the relativity principle. 
However, in this case we have to change the sign of , because the relative velocity of the system is 
opposite, so we come down to Eq. (44) again.)  

 Thus the Doppler effect for electromagnetic waves depends only on the relative velocity v = c 
between the wave source and detector – as it should be, given the absence of the ether. At velocities 
much below c,  Eq. (43) may be crudely approximated as 

           

 


1

2/1
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' ,     (9.45) 

i.e. in the first approximation in   v/c it coincides with the corresponding limit (38) of the usual 
Doppler effect. However, even at v << c there is still a difference of the order of (v/c)2 between the 
Galilean and Lorentzian relations.  

 If the wave vector k is tilted by angle   to vector v (as measured in frame 0), then we have to 
repeat the calculations, with k replaced by kx, and components ky and kz left intact at the Lorentz 
transform. As a result, Eq. (42) is generalized as 

            cos1' .     (9.46) 
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For the cases cos = 1, Eq. (44) reduces to our previous result. However, at  = /2 (i.e. cos  = 0), the 
relation is rather different: 

           
  2/121 




' .     (9.47) 

 This is the transverse Doppler effect - which is completely absent in the non-relativistic physics. 
Its first experimental evidence was obtained using electron beams (as suggested in 1906 by J. Stark), by 
H. Ives and G. Stilwell in 1938 and 1941. Later, similar experiments were repeated several times, but 
the first unambiguous measurement were performed only in 1979 by D. Hasselkamp et al. who 
confirmed Eq. (47) with a relative accuracy about 10%. This precision may not look too spectacular, but 
besides the special tests discussed above, the Lorentz transform formulas have been also confirmed, less 
directly, by a huge body of other experimental data, especially in high energy physics, being in 
agreement with calculations incorporating the transform as their part. This is why, with every respect to 
the challenging authority spirit, I should warn the reader: you decide to challenge the relativity theory 
(that is called “theory” by tradition only), you would also need to explain all these data.21 Best luck with 
that! 

 

9.3. 4-vectors, momentum, mass, and energy 

 Before proceeding to relativistic dynamics, let us discuss a mathematical language that makes all 
the calculations more compact - and more beautiful. We have already seen that spatial coordinates {x, y, 
z} and product ct are Lorentz-transformed similarly – see Eqs. (19). So it is natural to consider them as 
components of a 4-component vector (or, for short, 4-vector), 

            r,},,,{ 3210 ctxxxx   ,     (9.48) 

with components 

            zxyxxxctx  3210 ,,, .    (9.49) 

According to Eqs. (19), its components are Lorentz-transformed as  
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0'j
j'jj'j x'Lx ,     (9.50) 

where Ljj’ are the elements of the 44 Lorentz transform matrix 
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.     (9.51) 

 Since 4-vectors are a new notion for our course, and are used for much more goals than the just 
the space-time transform, we need to discuss the mathematical rules they obey. Indeed, as was 

21 The same fact, ignored by crackpots, is also valid for other favorite points of their attacks, including the 
Universe expansion and quantum mechanics in physics, and the evolution theory in biology. 
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mentioned in Sec. 8.9, the usual (3D) vector is not just any ordered set (string) of three scalars {Ax, Ay, 
Az}; if we want it to represent a reference-frame-independent physical variable, vector components have 
to obey certain rules at transfer from one reference frame to another. In particular, vector’s 3D norm 
(magnitude squared), 

              2222
zyx AAAA  ,     (9.52) 

should be an invariant at the Galilean transform (2). However,  a naïve extension of this formula to 4-
vectors would not work, because, according to the calculations of Sec. 1, the Lorentz transform keeps 
intact combinations of the type (7), with one sign negative, rather than the sum of all components 
squared. Hence for the 4-vector all the rules of the game have to be reviewed and adjusted – or rather 
redefined from the very beginning. 

 Arbitrary 4-vector is a string of 4 scalars,  

       3210 ,,, AAAA ,     (9.53)  

defined in 4D Minkowski space,22 whose components Aj, as measured in systems 0 and 0’, shown in Fig. 
1,  obey the Lorentz transform similar to Eq. (50): 
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As we have already seen on the example of the space-time 4-vector (48), this means in particular that 
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 This is the so-called Lorentz invariance condition of the norm of the 4-vector. (The difference 
between this relation and Eq. (52), pertaining to the Euclidian geometry, is the reason why the 
Minkowski space is called pseudo-Euclidian.) It is also straightforward to use Eqs. (51) and (54) to 
check that an evident generalization of the norm, the scalar product of two arbitrary 4-vectors,   

                



3

1
00

j
jj BABA ,     (9.56) 

is also Lorentz-invariant. 

 Now consider the 4-vector corresponding to a infinitesimal interval between two close world 
events: 

      rdcdtdxdxdxdx ,},,,{ 3210  ;    (9.57) 

its norm, 
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,    (9.58) 

22 After H. Minkowski who was first to recast (in 1907) the special relativity relations in a form in which space 
coordinates and time (or rather ct) are treated on an equal footing. 
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is of course also Lorentz-invariant. Since the speed of any particle (or signal) cannot be larger than c, for 
any pair of world events that are in a causal relation with each other, dr cannot be larger than cdt, i.e. 
such time-like interval (ds)2 cannot be negative. The 4D surface separating such intervals from space-
like intervals (ds)2 < 0 is called the light cone (Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 Now let us assume that these two close world events happen with the same particle that moves 
with velocity u. Then in the frame moving with a particle (v = u), the last term in the right-hand part of 
Eq. (58) equals zero, so that 

          cdds  ,      (9.59) 

where d   is the proper time interval. But according to Eq. (21), this means that we can write 
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d  ,      (9.60) 

where dt is the time interval in an arbitrary (besides being inertial) reference frame, while   

               
    2/1222/12 /1

1

1

1
  and

cuc 






u

β     (9.61) 

are the parameters (17) corresponding to particle’s velocity (u) in that frame, so that ds = cdt/.23 

 Now, let us explore whether a 4-vector can be formed using spatial components of particle’s 
velocity  
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Here we have a slight problem: as Eqs. (22) show, these components do not obey the Lorentz transform. 
However, let us use d  dt/, the proper time interval of the particle, to form the following string: 

23 I have opted against using special indices (e.g., u, u) to distinguish Eqs. (17) and (61) here and below, in a 
hope that the suitable velocity (of a reference frame or of a particle) will be always clear from the context. 
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Fig. 9.9. 2+1 dimensional image of 
the light cone (which is actually 3+1 
dimensional). 
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.   (9.63) 

As follows from comparison of the first form of this expression with Eq. (48), since the time-space 
vector obeys the Lorentz transform, and   is Lorentz-invariant, string (63) is a legitimate 4-vector. It is 
called the 4-velocity of the particle. 

 Now we are properly equipped to proceed to dynamics. Let us start with such basic notions of 
momentum p and energy E – so far, for a free particle.24 Perhaps the most elegant way to “derive” (or 
rather guess25) expressions for p and E as functions of particle’s velocity u is based on analytical 
mechanics. Due to the conservation of v, the trajectory of a free particle in the 4D Minkowski space is 
always a straight line. Hence, from the Hamilton principle of minimum action,26 we may expect its 
action S, between points 1 and 2, to be a linear function of the space-time interval (59):  
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S ,    (9.64) 

where  is some constant. On the other hand, in analytical mechanics the action is defined as 
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where L  is particle’s Lagrangian function.27 Comparing these two expressions, we get 
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In the non-relativistic limit (u <<c), this function tends to 
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In order to correspond to the Newtonian mechanics, the last (velocity-dependent) term should equal 
mu2/2. From here we find  = -mc, so that, finally, 
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24 I am sorry for using, as in Sec. 6.3, for particle’s momentum, the same traditional notation (p) as had been used 
for the dipole electric moment. However, since the latter notion will be virtually unused in the balance of the 
notes, this may hardly lead to confusion. 
25 Indeed, such a derivation uses additional assumptions, however natural (such as the Lorentz-invariance of S), 
so it can hardly be considered as a real proof of the final results, so that they require experimental confirmation. 
Fortunately, such confirmations have been numerous – see below. 
26 See, e.g., CM Sec. 10.3. 
27 See, e.g., CM Sec. 2.1. 
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 Now we can find Cartesian components pj of particle’s momentum, as the generalized momenta 
corresponding to components rj (j = 1, 2, 3) of the 3D radius-vector r:28 
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Thus for the 3D vector of momentum, we can write the result in the same form as in non-relativistic 
mechanics, 

                 uup Mm   ,     (9.70) 

if we introduce the reference-frame-dependent scalar M (called the relativistic mass) defined as 
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 ,    (9.71) 

m being the non-relativistic mass of the particle. (It is also called the rest mass, because in the reference 
frame in that the particle rests, Eq. (71) yields M = m.) 

 Next, let us return to analytical mechanics to calculate particle’s energy E (which for a free 
particle coincides with the Hamiltonian function H):27 
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Thus, we have arrived at the most famous of Einstein’s formulas (and probably the most famous formula 
of physics as a whole), 

               22 Mccm  E ,     (9.73) 

that expresses the relation between particle’s mass and energy.29 In the non-relativistic limit, it reduces 
to 
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the first term mc2 being called the rest energy of a particle. 

 Now let us consider the following string of 4 scalars:  
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Using Eqs. (70) and (73) to present this expression as 

28 See, e.g., CM Sec. 2.3. 
29 Let me hope that the reader understands that all the layman talk about the “mass to energy conversion” is only 
valid in a very limited sense of the word. While the Einstein relation (73) does allow the conversion of “massive” 
particles (with m  0) into massless particles such as photons, each of the latter particles also has a nonvanishing 
relativistic mass M, and simultaneously the energy E related to M by Eq. (73).  
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,     (9.76) 

and comparing the result with Eq. (63), we immediately see that, since m is Lorentz-invariant, this string 
is a legitimate 4-vector of energy-momentum. As a result, its norm, 
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,      (9.77) 

is Lorentz-invariant, and in particular has to be equal to the norm in the particle rest frame. But in that 
frame, p  = 0, and E = mc2, so that in an arbitrary frame 

              22
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.     (9.78a) 

This very important relation30 between the relativistic energy and momentum (valid for free particles 
only!) is usually presented in the form31  

            2222 )()( pcmc E .     (9.78b) 

 According to Eq. (70), in the ultra-relativistic limit  u  c, p tends to infinity while mc2 stays 
constant, so that pc >> mc2. As follows from Eq. (78), in this limit E  pc. Though the above discussion 
was for particles with finite m, the 4-vector formalism allows us to consider particles with zero rest mass 
as ultra-relativistic particles for which the above energy-to-moment relation, 

            0for ,  mpcE ,     (9.79)  

is exact. Quantum electrodynamics32 tells us that under certain conditions, electromagnetic field quanta 
(photons) may be also considered as such massless particles, with momentum p = k. Plugging (the 
modulus of) the last relation into Eq. (78), for photon’s energy we get E = pc = kc = . Please note 

that according to Eq. (73), the relativistic mass of a photon is finite: M = E/c2 = /c2, so that the term 
“massless particle” has a limited meaning: m = 0. For example, the mass of an optical phonon is of the 
order of 10-36 kg. This is not too much, but still a noticeable (approximately one-millionth) part of the 
rest mass me of an electron.  

 The fundamental relations (70) and (73) have been repeatedly verified in numerous particle 
collision experiments, in which the total energy and momentum of a system of particles are conserved – 
at the same conditions at in the non-relativistic dynamics. (For momentum, this is the absence of 
external forces, and for energy, the elasticity of particle interactions – in other words, the absence of 
alternative channels of energy escape.) Of course, generally, the total energy of the system is conserved, 
including the potential energy of particle interactions. However, at typical particle collisions, the 

30 Please note one more useful relation following from Eqs. (70) and (73): p =(E/c2)u. 
31 It may be tempting to interpret this relation as the perpendicular-vector-like addition of the rest energy mc2 and 
the “kinetic energy” pc, but from the point of view of the total energy conservation (see below), a better definition 
of the kinetic energy is T(u)  E(u) – E(0). 
32 Briefly reviewed in QM Chapter 9. 
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potential energy vanishes so rapidly with the distance between them that we can use the momentum and 
energy conservation using Eq. (73).  

 As an example, let us calculate the minimum energy Emin  of  a proton (pa), necessary for the 

well-known high-energy reaction that generates a new proton-antiproton pair, pa + pb  p + p + p + p , 
provided that before the collision, proton pb has been at rest in the lab frame. This minimum evidently 
corresponds to the vanishing relative velocity of the reaction products, i.e. their motion with virtually 
the same velocity (ufin), as seen from the lab frame – see Fig. 10. 

 

 

 

 

 

 Due to the momentum conservation, this velocity should have the same direction as the initial 
velocity (umin) of proton pa. This is why two scalar equations: of for the energy conservation, 
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and momentum conservation, 
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,    (9.80b) 

are sufficient to find both umin and ufin. After a conceptually simple but rather tedious solution of this 
system of two nonlinear equations, we get 

     cucu
2

3
,

7

34
finmin  .     (9.81) 

Finally, we can use Eq. (73) to calculate the required energy: Emin = 7 mc2. (Note that of the acceleration 

energy 6mc2, only 2mc2 go into the “useful” proton-antiproton pair production.) Proton’s rest mass, mp  
1.6710-27 kg, corresponds to the rest energy mc2  1.50210-10 J  0.938 GeV, so that Emin  6.57 GeV. 

 The second, more intelligent way to solve the same problem is to use the center-of-mass (c.o.m.) 
reference frame that, in relativity, is defined as the frame in which the total momentum of the system 
vanishes.33 In this frame, at E = Emin, the velocity and momenta of all reaction products are equal to  
zero, while velocities of protons pa and pb before the collision are equal and opposite, with some 
magnitude u’. Hence the energy conservation law becomes 
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2/122
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2
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cu'
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,     (9.82) 

33 Note that according to this definition, the c.o.m.’s radius-vector is R = kMkrk/kMk = kkmkrk/kkmk, generally 
different from the well-known expression kmkrk/kmk  of the non-relativistic mechanics. 

Fig. 9.10. High-energy proton 
reaction at E  Emin – schematically.

min

min

u

E

ap bp finu
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readily giving u’ = (3/2) c. This is of course the same result as Eq. (81) gives for ufin. Now we can use 
the fact that the velocity of proton pb in the c.o.m. frame is (-u’), and hence the speed of proton pa is 
(+u’). Hence we may find the lab-frame speed of proton pa using the velocity transform formula (25): 

               
22min /1

2

cu'

u'
u


 .     (9.83) 

This relation gives the same result as the first method, umin = (43/7)c, but in a much simpler way. 

 

9.4. More on 4-vectors and 4-tensors 

 This is a good moment to describe a formalism that will allow us, in particular, to solve the same 
proton collision problem in one more (and arguably, the most elegant) way. More importantly, this 
formalism will be virtually necessary for the description of the Lorentz transform of the electromagnetic 
field, and  its interaction with relativistic particles – otherwise the formulas would be too cumbersome. 
Let us call the 4-vectors we have used before, 

        A,0AA  ,     (9.84) 

contravariant, and denote them with the top index, and introduce also covariant vectors, 

       A ,0AA  ,     (9.85) 

marked by the lower index. Now if we form a scalar product of these vectors using the standard (3D-
like) rule, just as a sum of the products of the corresponding components, we immediately get 

        22
0 AAAAAA  


 .     (9.86) 

Here and below the sign of sum of four components of the product has been dropped.34  

 The scalar product (86) is just the norm of the 4-vector in our former definition, and as we 
already know, is Lorentz-invariant. Moreover, the scalar product of two different vectors (also a Lorentz 
invariant), may be written in any of  two similar forms:35 

     


 BABABA  BA00 ;    (9.87) 

again, the only caveat is to take one vector in the covariant, and another in the contravariant form.  

 Now let us return to our sample problem (Fig. 10). Since all components (E/c and p) of the total 
4-momentum of our system are conserved at the collision, its norm is conserved as well: 

         



 )4()4( pppppp baba  .   (9.88) 

Since now the vector product is the usual math construct, we know that the parentheses in the left-hand 
part of this equation may be multiplied as usual. We may also swap the operands and move constant 
factors around as convenient. As a result, we get 

34 This compact notation may take some time to be accustomed to, but can hardly lead to any confusion, due to 
the following rule: the summation is implied always (and only) when an index is repeated twice, once on the top 
and another at the bottom. In these notes, this shorthand notation will be used only for 4-vectors, but not for the 
usual (spatial) vectors. 
35 Note also that, by definition, for any two 4-vectors, AB = BA. 
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 pppppppp babbaa 162  .   (9.89) 

 Thanks to the Lorentz-invariance of each of the terms, we can calculate each of them in the 
reference frame we like. For the first two terms in left-hand part, as well as for the right-hand part term, 
it is beneficial to use the frames in which that particular proton is at rest; as a result, each of the left-
hand part terms equals (mc)2, while the right-hand part equals 16(mc)2. On the contrary, the last term of 
the left-hand part is better evaluated in the lab frame, because in that frame the three spatial components 
of the 4-momentum pb vanish, and the scalar product is the just the product of scalars E/c for protons a 
and b. For the latter proton this is just mc, so that we get a simple equation, 

        2min22 )(162)()( mcmc
c

mcmc 
E

,    (9.90) 

immediately giving the final result: Emin = 7 mc2 we have already had. 

Let me hope that this example was a convincing demonstration of the convenience of presenting 
4-vectors in the contravariant (84) and covariant (85) forms,36 with Lorentz-invariant norms (86). To be 
useful for more complex tasks, the formalism should be developed a little bit further. In particular, it is 
crucial to know how do the 4-vectors change under the Lorentz transform. For contravariant vectors, we 
already know the answer (54), but let us rewrite it in the new notation: 

        


 A'LA  .     (9.91) 

where 
L  is the mixed Lorentz tensor (51):37 
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00

00





L ,      (9.92) 

Note that though the position of indices  and  in the Lorentz tensor notation is not crucial, because it 
is symmetric, it is convenient to place them using the general index balance rule: the difference of the 
numbers of the upper and lower indices should be the same in both parts of any 4-vector/tensor equality, 
with the top index in the denominator of a fraction counted as a bottom index in the numerator, and vice 
versa. (Check yourself that all our formulas above do satisfy this rule.)  

 In order to rewrite Eq. (91) in a more general form that would not depend on the particular 
orientation of the coordinate axes (Fig. 1), let us use the contravariant and covariant forms of the 4-
vector of the time-space interval (57), 

36 These forms are 4-vector extensions of the notions of contravariance and covariance introduced in the 1850s by 
J. Sylvester for the description of 3D vector change at transfer between different reference frames - e.g., axes 
rotation – cf. Fig. 3. In this case, the contravariance or covariance of a vector is uniquely determined by its nature: 
if Cartesian coordinates of a vector (such as the non-relativistic velocity v = dr/dt) are transformed similarly to the 
radius-vector r, it is called contravariant, while the vectors (such as f/r  f ) that require the reciprocal 
transform, are called covariant. In the Minkowski space, both forms may be used for any 4-vector. 
37 Just as 4-vectors, 4-tensors with two top indices are called contravariant, and those with two bottom indices, 
covariant. Tensors with one top and one bottom index are called mixed. 
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               rr dcdtdxdcdtdx  ,,, 
 ;    (9.93) 

then its norm (58) may be presented as38 

     


 dxdxdxdxdrcdtds  222 )()()( .    (9.94) 

Applying Eq. (91) to the contravariant form of vector (93), we get  

       


 dx'Ldx  .     (9.95) 

But, with our new shorthand notation, we can also write the usual rule of differentiation of each 
component x, considering it as a (in our case, linear) function of 4 arguments x’ , as follows: 
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x
dx




 .     (9.96) 

Comparing Eqs. (95) and (96), we can rewrite the general Lorentz transform rule (92) in the new form, 

                



 A'

x'

x
A




 .     (9.97a) 

which evidently does not depend on the coordinate axes orientation.  

 It is straightforward to verify that the reciprocal transform may be presented as 
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x

x'
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 .     (9.97b) 

However, the reciprocal transform differs from the direct one only by the sign of the relative velocity of 
the frames, so that for the coordinate choice shown in Fig. 1, the matrix is 
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 ,    (9.98) 

Since, according to Eqs. (84)-(85), covariant 4-vectors differ from the contravariant ones by the sign of 
the spatial components, their direct transform is given by matrix (98). Hence their direct and reciprocal 
transforms may be represented, respectively, as 

38 Another way to write this relation is (ds)2 = g dxdx = gdx dx, where double summation over indices  
and  is implied, and  g  is the so-called metric tensor, 
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 gg , 

that may be used, in particular, to a transfer a covariant vector into the corresponding contravariant one 
and back: A = gA,  A = g A

. The metric tensor plays a key role in general relativity, in which it is 
affected by gravity – “curved” by particle masses. 
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 , ,    (9.99)  

evidently satisfying the index balance rule. (Note that primed quantities are now multiplied, rather than 
divided as in the contravariant case.) As a sanity check, let us apply this formalism to the scalar product 
AA . As Eq. (96) shows, the implicit summation notation allows us to multiply and divide any equality 
by the same partial differential of a coordinate, so that we can write:  
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x
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 ,  (9.100) 

i.e. the scalar product AA (as well as AA) is Lorentz-invariant, as it should be. 

 Now, let us consider the 4-vectors of derivatives. Here we should be very careful. Consider, for 
example, the following vector operator  

              














,
)(ctx ,     (9.101) 

As was discussed above, the operator is not changed by its multiplication and division by another 
differential, e.g., x’ (with the corresponding implied summation over ), so that 
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.     (9.102) 

But, according to the first of Eqs. (99), this is exactly how the covariant vectors are Lorentz-
transformed! Hence, we have to consider the derivative over a contravariant space-time interval as a 
covariant 4-vector, and vice versa.39 (This result might be also expected from the index balance rule.) In 
particular, this means that the scalar product 

          A
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ct

A
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x


      (9.103) 

should be Lorentz-invariant for any legitimate 4-vector. A convenient shorthand for the covariant 
derivative, which complies with  the index balance rule, is 

           


x

,      (9.104) 

so that the invariant scalar product may be written just as A. A similar definition of the contravariant 
derivative, 

         
















 ,
)(ctx

 ,     (9.105) 

allows us to write the Lorentz-invariant scalar product (103) in any of two forms: 

     


 AA
ct

A





A
)(

0 .    (9.106) 

39 As was mentioned above, this is also a property of the “usual” transform of 3D vectors. 
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 Finally, let us see how does the general Lorentz transform changes 4-tensors. A second-rank 44 
matrix is a legitimate 4-tensor if both 4-vectors it relates obey the Lorentz transform. For example, if 
two legitimate 4-vectors are related as 

       
 BTA  ,                (9.107)       

we should require that  

      ,
 B'T'A'                 (9.108) 

where A and A’ are related by Eqs. (97), while B and B’, by Eqs. (99). This requirement immediately 
yields 
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 , ,   (9.109) 

with the implied summation over two indices,  and . The rules for covariant and mixed tensors are 
similar.40 

 

9.5. Maxwell equations in the 4-form 

 This 4-vector formalism background is already sufficient to analyze the Lorentz transform of the 
electromagnetic field. Just to warm up, let us consider the continuity equation (4.5), 

       0



j
t


,     (9.110) 

which expresses the electric charge conservation, and, as we already know, is compatible with the 
Maxwell equations. If we now define the contravariant and covariant 4-vectors of electric current as 

          ,,,, j cjcj  
 j      (9.111) 

then Eq. (110) may be presented in the form 

              0 


 jj ,     (9.112) 

showing that the continuity equation is form-invariant41 with respect to the Lorentz transform.  

 Of course, such equation form invariance does not mean that all component values of the 4-
vectors participating in the equation are the same in both frames! For example, let us have some static 
charge density   in frame 0; then Eq. (97b), applied to the contravariant form of 4-vector (111), reads 

              0,0,0,, cjj
x

x'
j' 




 




 .    (9.113) 

40 It is straightforward to check that transfer between the contravariant and covariant forms of the same tensor 
may be readily achieved using the same metric tensor g:  T = gT

g, T
 = gTg

. 
41 Note that in some texts, the equations preserving their form at a transform are called “covariant”, creating a 
possibility for confusion with covariant vectors and tensors. On the other hand, calling such equations  “invariant” 
does not distinguish them properly from invariant quantities, such as scalar products of 4-vectors.
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Using the explicit form (98) of the reciprocal Lorentz matrix for the coordinate choice shown in Fig. 1,  
we see that this relation yields 

              0,,  zyx j'j'vcj''  .   (9.114) 

Since the charge velocity, as observed from frame 0’, is (-v), the non-relativistic result would be j = -v. 
The additional  factor in the relativistic results for both charge density and current is caused by the 
length contraction: dx’ = dx/, so that in order to keep the total charge dQ = d3r = dxdydz inside the 
elementary volume d3r = dxdydz intact,  (and hence jx) should increase proportionally. 

 Next, in the end of Chapter 6 we have seen that Maxwell equations for potentials  and A may 
be presented in a similar form (6.109), under the Lorenz (again, not “Lorentz” please!) gauge condition 
(6.108). For the free space, this condition takes the form 

              0
1

2






tc


A .     (9.115) 

This expression gives us a hint how to form the 4-vector of potentials:42  
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     (9.116) 

indeed, these vectors satisfy Eq. (115) in its 4-vector form: 

              0 


 AA .     (9.117) 

 Since this scalar product is Lorentz-invariant, and derivatives (104)-(105) are legitimate 4-
vectors, this implies that 4-vector (116) is also legitimate, i.e. obeys the Lorentz transform formulas 
(97), (99). A more convincing evidence of this fact may be obtained from Maxwell equations (6.109) for 
the potentials. In free space, they may be rewritten as  
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  (9.118) 

Using definition (116), these equations may be merged to one:43 

         jA 0 ,      (9.119) 

where  is the d’Alembert operator44 that may be presented as either of two scalar products, 

                


 

 2

2

2

)(ct
.    (9.120) 

and hence is Lorentz-invariant. Because of that, and the fact that the Lorentz transform changes both 4-
vectors A and j in a similar way, Eq. (119) does not depend on the reference frame choice. Thus we 

42 In the Gaussian units, the scalar potential should not be divided by c. 
43 In the Gaussian units, coefficient 0 in the right-hand part of Eq. (119) should be replaced, as usual, with 4/c. 
44 Named after J.-B. d’Alembert (1717-1783). Note that in older textbooks, notation 2 may be met for this 
operator. 
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have arrived at a key point of this chapter: we see that Maxwell equations are indeed form-invariant 
with respect to the Lorentz transform. As a by-product, the 4-vector form (119) of these equations (for 
potentials) is extremely simple – and beautiful. 

 However, as we have seen in Chapter 7, for many applications the Maxwell equations for field 
vectors are more convenient; so let us present them in the 4-form. For that, we may express the 
Cartesian components of the usual (3D) field vector vectors 

     ,, AB
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t

      (9.121) 

via those of  the potential 4-vector A. For example, 
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,   (9.122) 
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 .    (9.123) 

Completing similar calculations for other field components, we find that the following asymmetric, 
contravariant field-strength tensor, 

            AAF  ,     (9.124) 

may be expressed via the field components as follows:45 
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so that the covariant form of the tensor is 
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 .            (9.125b) 

 If this expression looks a bit too bulky, note that as a reward, the pair of inhomogeneous 
Maxwell equations, i.e. the two first equations of the system (6.93), which in free space (D = 0E, B = 
0H) may be rewritten as 

       j
E

B
E

00 )(
,  





cct

c
c

 ,    (9.126) 

may be now rewritten in a very simple (and manifestly form-invariant) way, 

45
 In Gaussian units, this formula, as well as Eq. (131) for G, does not have factors c in all the denominators. 
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  jF 0 ,     (9.127) 

which is comparable with Eq. (119) in its beauty and simplicity. Somewhat counter-intuitively, the pair 
of homogeneous Maxwell equations, 

               ,0,0 
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    (9.128) 

look,  in the 4-vector notation, a bit more complicated:46 

      0  FFF .     (9.129) 

Note, however, that Eq. (128) may be also represented in a much simpler form, 
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G ,      (9.130) 

using the so-called dual (and also asymmetric) tensor 
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 ,    (9.131) 

which may be obtained from F , given by Eq. (125), by the following replacements:  

             
cc

E
BB

E
 , .     (9.132) 

 Besides the proof of the form-invariance of the Maxwell equations, the 4-vector formalism 
allows us to achieve our initial goal: find out how do the electric and magnetic field component change 
at the transfer between reference frames. Let us apply to tensor F the reciprocal Lorentz transform 
given by the second of Eqs. (109). Generally, it gives, for each field component, a sum of 16 terms, but 
since (for our choice of coordinates, shown in Fig. 1) there are many zeros in the Lorentz transform 
matrix, and diagonal components of F equal zero as well, the calculations are rather doable. Let us 
calculate, for example, E’x  -cF’01. The only nonvanishing terms in the right-hand part are 
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Repeating the calculation for other 5 components of the fields, we get very important relations 
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    (9.134) 

whose more compact “semi-vector” form is 

46 To be fair, note that just as Eq. (127), Eq. (129) this is also a set of four scalar equations – in the latter case with 
indices , , and   taking any three different values of the set {0, 1, 2, 3}. 
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   (9.135) 

where indices  and  stand, respectively, for the field components parallel and perpendicular to the 
relative velocity v of the two reference frames. In the non-relativistic limit, the Lorentz factor  tends to 
1, and Eqs. (135) acquire an even simpler form 

           EvBBB,vEE 
2

1

c
'' .    (9.136) 

 Thus we see that the electric and magnetic fields actually transform to each other even in the first 
order of the v/c ratio. For example, if we fly across the field lines of a uniform, static, purely electric 
field E (e.g., the one in a plane capacitor) we will see not only the electric field re-normalization (in the 
second order of the v/c ratio), but also a nonvanishing dc magnetic field B’  perpendicular to both vector 
E and vector v, the direction of our motion. This is of course what might be expected from the relativity 
principle: from the point of view of the moving observer (which is as legitimate as that of a stationary 
observer), the surface charges of capacitor plates, that create field E, move back creating dc currents 
(114) which induce the apparent magnetic field. Similarly, motion across a magnetic field creates, from 
the point of view of the moving observer, an electric field. 

 This fact is very important philosophically. One can say there is no such thing in Mother Nature 
as an electric field (or a magnetic field) all by itself. Not only can the electric field induce the magnetic 
field (and vice versa) in dynamics, but even in an apparently static configuration, what exactly we 
measure depends on our speed relative to the field sources – hence the very appropriate term for the 
whole field we are studying: the electromagnetism. 

 Another simple but very important application of Eqs. (134)-(135) is the calculation of the fields 
created by a charged particle moving in free space by inertia, i.e. along a straight line with constant 
velocity u, at the impact parameter47 (the closest distance) b from the observer. Selecting frame 0’ to 
move with the particle in its origin, and frame 0 to reside in the “lab” (in that fields E and B are 
measured), we can take v = u. In this case fields E’ and B’ may be calculated from, respectively, 
electro- and magnetostatics, because in frame 0’ the particle does not move:  
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'4 3
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.     (9.137) 

Selecting the coordinate axes so that at the measurement point x = 0, y = b, z = 0 (Fig. 11a), we may 
write x’ = -ut’, y’ =  b, z’ = 0, so that r’ = (u2t’2 + b2)1/2, and the field components are as follows: 
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. (9.138) 

Now using the last of Eq. (19b), with x = 0, for the time transform, and the equations reciprocal to Eqs. 
(134) for the field transform (it is evident that they are similar to the direct transform with v replaced 
with  –v = -u), in the lab frame we get  

47 This term is very popular in the of particle scattering – see, e.g., CM Sec. 3.7. 
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 These results,48 plotted in Fig. 11b, reveal two major effects. First, the charge passage by the 
observer generates not only an electric field pulse, but also a magnetic field pulse. This is natural, 
because, as was repeatedly discussed in Chapter 5, charge motion is essentially an electric current.49 
Second, Eqs. (139)-(140) show that the pulse duration scale is 
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,     (9.141) 

i.e. shrinks to zero as the charge velocity u approaches the speed of light. This is of course a direct 
corollary of the relativistic length contraction: in the frame 0’ moving with the charge, the longitudinal 
spread of its electric field at distance b from the motion line is of the order of x’ = b. When observed 
from the lab frame 0, this interval, in accordance with Eq. (20), shrinks to x = x’/ = b/, and so does 
the pulse duration scale t = x/u = b/u. 

  

9.6. Relativistic particles in electric and magnetic fields 

 Now let us analyze dynamics of charged particles in electric and magnetic fields. Inspired by 
“our” success of forming the 4-vector (75) of energy-momentum, 
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where u is the contravariant form of the 4-velocity (63) of the particle,  

48 In the next chapter, we will re-derive them in a different way. 
49 It is straightforward to use Eq. (140) and the linear superposition principle to calculate, for example, the 
magnetic field of a string of charges moving along the same line, and separated by equal distances x = a (so that 
the average current, as measured in frame 0, is qu/a), and to show that the time-average of the magnetic field is 
given by Eq. (5.20) of magnetostatics, with b instead of . 
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we may notice that the non-relativistic equation of motion, resulting from the Lorentz-force formula 
(5.10) for the three spatial components of p, at charged particle’s motion in electromagnetic field, 

               BuE
p

 q
dt

d
,     (9.144) 

is fully consistent with the following 4-vector equality (which is evidently form-invariant): 
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 .     (9.145) 

For example, the   = 1 component of this equation reads 
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  (9.146) 

and similarly for two other spatial components ( = 2 and  = 3). We see that these expressions differ 
from the Newton law (144) by the extra factor . However, plugging into Eq. (146) the definition of the 
proper time interval, d = dt/,  and canceling  in both parts, we recover Eq. (144) exactly – for any 
velocity of the particle! The only caveat is that if u is comparable with c, p in Eq. (144) has to be 
understood as the relativistic momentum (70) proportional to the velocity-dependent mass M = m  m 
rather than to the rest mass m. 

 The only remaining task is to examine the meaning of the 0th component of Eq. (145). Let us 
spell it out: 
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Recalling that p0 = E/c, and using d = dt/ again, we see that Eq. (147) looks exactly as the non-
relativistic relation for the kinetic energy change,50 

        uE  q
dt

dE
,      (9.148) 

besides that in the relativistic case the energy has to be taken in the general form (73). 

 No question, the 4-component equation (145) of relativistic dynamics is beautiful in its 
simplicity. However, for the solution of particular problems, Eqs. (144) and (148) are frequently 
preferable. As an illustration of this point, let us now use these equations to explore the relativistic 
effects at charged particle motion in uniform, time-independent electric and magnetic fields. In doing 
that, we will, for the time being, neglect the contributions into the field by the particle itself.51 

50 See, e.g., CM Eq. (1.20) with dp/dt = F = qE. (As a reminder, the magnetic field cannot affect particle’s energy, 
because the magnetic component of the Lorentz force is perpendicular to its velocity.) 
51 As was emphasized earlier in this course, in statics this contribution has to be ignored. In dynamics, this is 
generally not true; these self-action effects will be discussed in Sec. 10.6. 
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 (i) Uniform magnetic field. Let the magnetic field be constant and uniform in the “lab” reference 
frame 0. Then in this frame, Eqs. (144) and (148) yield 

           .0, 
dt

d
q

dt

d E
Bu

p
     (9.149) 

From the second equation, E = const, we get u = const,   u/c = const,   (1 - 2)-1/2 = const, and M  

m = const, so that the first of Eqs. (149) may be rewritten as 

      ,cdt

d
ωu

u
       (9.150) 

where c is the vector directed along the magnetic field B, with the magnitude equal to the cyclotron 
frequency (sometimes called “gyrofrequency”) 
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 .     (9.151) 

 If particle’s initial velocity u0 is perpendicular to the magnetic field, Eq. (150) describes its 
circular motion, with a constant speed u = u0, in a plane perpendicular to B, and frequency (151). In the 
non-relativistic limit u << c, when   1, i.e. M  m, the cyclotron frequency is independent on the 
speed, but as the kinetic energy is increased to comparable to the rest energy of the particle, the 
frequency decreases, and in the ultra-relativistic limit,  

           cu
p

B
qcc  at  , .     (9.152) 

 The cyclotron motion radius may be calculated as R = u/c; in the non-relativistic limit it is 
proportional to particle’s speed, i.e. to the square root of its kinetic energy. However, in the general case 
the radius is proportional to particle’s relativistic momentum rather than its speed: 
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Muu
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,    (9.153) 

so that in the ultra-relativistic limit, when p  E/c, R is proportional to the kinetic energy. 

 This dependence of c and R on energy are the major factors in design of circular accelerators of 
charged particles. In the simplest of these machines (the cyclotron, invented in 1929 by E. Lawrence), 
frequency  of the accelerating ac electric field is constant, so that even it is tuned to c of the initially 
injected particles, the drop of the cyclotron frequency with energy eventually violates this tuning. Due to 
this reason, the maximum particle speed is limited to just ~0.1 c (for protons, corresponding to the 
kinetic energy of just ~15 MeV). This problem may be addressed in several ways. In particular, in 
synchrotrons (such as Fermilab’s Tevatron and CERN’s LHC) the magnetic field is gradually increased 
in time to compensate the momentum increase (B  p), so that both R (148) and  c  (147) stay constant, 
enabling proton acceleration to energies as high as ~ 7 TeV, i.e. ~2,000 mc2.52 

52 For more on this topic, I have to refer the interested reader to special literature, for example either S. Lee, 
Accelerator Physics, 2nd ed., World Scientific, 2004, or E. Wilson, An Introduction to Particle Accelerators, 
Oxford U. Press, 2001. 

Cyclotron 
frequency 

Cyclotron 
radius 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 33 of 54 

 Returning to our initial problem, if particle’s initial velocity has a component u along the 
magnetic field, it is conserved in time, so that the trajectory is a spiral around the magnetic field lines. 
As Eqs. (149) show, in this case Eq. (150) remains valid, but in Eqs. (151) and (153) the full speed and 
momentum have to be replaced with magnitudes of their (also time-conserved) components, u and p,  
normal to B, while the Lorentz factor  in those formulas still requires the full speed of the particle. 

 Finally, in the special case when particle’s initial velocity is directed exactly along the magnetic 
field’s direction, it continues to move by straight line along vector B. In this case, the cyclotron 
frequency (151) remains finite, but does not correspond to any real motion, because R = 0. 

 (ii) Uniform electric field. This problem is (technically) more complex than the previous one, 
because in the electric field, particle’s kinetic energy may change. Directing axis z along the field, from 
Eq. (144) we get 

            0,  

dt

d
qE

dt

dpz p
.     (9.154) 

If the field does not change in time, the first integration of these equations is trivial, 

    )0(const)(,)0()(   pp tqEtptp zz ,   (9.155) 

but the further integration requires care, because the effective mass M = m of the particle depends on its 
full speed: 

      222
 uuu z ,      (9.156) 

making the two motions, along and across the field, mutually dependent.   

 If the initial velocity is perpendicular to field E, i.e. if pz(0) = 0, p(0) = p(0)  p0, the easiest 
way to proceed is to calculate the kinetic energy first: 
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On the other hand, we can calculate the same energy by integrating Eq. (148), 
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qEq
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d
 uE
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,     (9.158) 

over time, with a simple result: 

                              ,)(0 tqEz EE      (9.159) 

where (for the notation simplicity) I took  z(0) = 0. Requiring Eq. (159) to give the same E 2 as Eq. 
(157), we get a quadratic equation for z(t), 
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222
0 tqEzqEtc  EE (9.160) 

 whose solution (with the sign before the square root corresponding to E > 0, i.e. z  0) is 

              
































 11)(

2/12

0

0

E
E cqEt

qE
tz .    (9.161) 



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 34 of 54 

 Now let us find particle’s trajectory. Selecting axis x so that the initial velocity vector (and hence 
the velocity vector at any further instant) is within the [x, z] plane, i.e. y(t)  0, we may use Eqs. (155) to 
calculate trajectory’s slope, at its arbitrary point, as 
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x

z

x

z  .    (9.162) 

Now let us use Eq. (160) to express the numerator of this fraction, qEt, as a function of z: 
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Plugging this expression into Eq. (161), we get 

         2/12
0

2
0

0

1
EE  qEz

cpdx

dz
.    (9.164) 

This differential equation may be readily integrated, separating variables z and x, and using the 
following substitution:   cosh-1(qEz/E0 +1). Selecting the origin of axis x at the initial point, so that 
x(0) = 0, we finally get the trajectory: 
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.     (9.165) 

 At the initial part of the trajectory, where qEx << cp0(0), this expression may be approximated 
by the first nonvanishing term of the Taylor series, giving a parabola: 
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so that if the initial velocity of the particle is much less than c (i.e.  p0  mu0, E0  mc2), we get the 
familiar non-relativistic formula: 
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 This solution may be readily generalized to the case of an arbitrary direction of particle’s initial 
velocity; this generalization is left for reader’s exercise. 

 (iii) Crossed uniform magnetic and electric fields (E  B). In the view of how bulky the solution 
of the previous problem (i.e. the particular case of the current problem for B = 0) was, one might think 
that this problem should be forbiddingly complex for an analytical solution. Counter-intuitively, it is not 
the case, due to the help from the field transform relations (135). Let us consider two possible cases.  

 Case I: E/c < B. Let us consider an inertial frame moving (relatively the “lab” reference frame 0 
in which fields E and B are defined) with velocity 

         
2B

BE
v


 ,      (9.168) 

whose magnitude v = c(E/c)/B < c. Selecting the coordinate axes as shown in Fig. 12, so that 
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      0,0,0;0,,0  zyxzyx BBBEEEE ,   (9.169) 

we see that the Cartesian components of this velocity are vx = v, vy = vz = 0.  

 

  

 

 

 

 

 

 Since this choice of coordinates complies with that used to derive Eqs. (134), we can readily use 
that simple form of the Lorentz transform to calculate field components in the moving reference frame: 
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where the Lorentz parameter   (1 – v2/c2)-1/2 corresponds to velocity (168) rather than that of the 
particle. 

 Thus in this special reference frame the particle only sees a (re-normalized) uniform magnetic 
field B’  B, parallel to the initial field, i.e. perpendicular to velocity (168). Using the result of the above 
example (i), we see that in this frame the particle will move along either a circle or a spiral winding 
about the direction of the magnetic field, with angular speed (151), 

        
2'/c

qB'
'c E
 ,      (9.172)  

and radius (148): 

          
qB'

p'
R'  .      (9.173) 

Hence in the lab frame, the particle will perform such orbital motion plus a “drift” with constant velocity 
v (Fig. 12). As the result, the lab-frame trajectory of the particle (or rater its projection onto the plane 
perpendicular to the magnetic field) is a trochoid-like curve53 that, depending on the initial velocity, 
may be either prolate (self-crossing), as in Fig. 12, or curtate (stretched so much that it is not self-
crossing).  

53 As a reminder, a trochoid may be described as the trajectory of a point on a rigid disk rolled along a straight 
line. Its canonical parametric presentation is x =  + acos , y = asin . (For a > 1, the trochoid is prolate, if a < 
1, it is curtate, and if a = 1, it is called the cycloid.) Note, however, that for our problem, the trajectory in the lab 
frame is exactly trochoidal only in the non-relativistic limit v << c (i.e. E/c << B), because otherwise the Lorentz 
contraction in the drift direction squeezes the cyclotron orbit from a circle into an ellipse.  
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 Such looped motion of electrons (in practice, with v << c) is used, in particular, in magnetrons – 
generators of microwave radiation. In these devices (Fig. 13a), the magnetic field, usually created by 
specially-shaped permanent magnets, is nearly uniform (in the region of electron motion) and directed 
along magnetron’s axis, while the electric field of magnitude E << cB, created by the dc voltage applied 
between the anode and cathode, is virtually radial. As a result, the above simple theory is only 
approximately valid, and electron trajectories are close to epicycloids rather than trochoids. The applied 
electric field is adjusted so that these trajectories pass close to the gap openings to cylindrical 
microwave cavities drilled in magnetron’s bulk anode (Fig. 13b). The fundamental mode of each cavity 
is quasi-lumped, with cylindrical walls working mostly as lumped inductances, and gaps as lumped 
capacitances, with the microwave electric field concentrated in the gap openings. This is why the mode 
is strongly coupled to the passing electrons, and their interaction creates large positive feedback 
(equivalent to negative damping) that results in intensive microwave self-oscillations at cavities’ 
eigenfrequency.54 The oscillation energy, of course, is taken from the dc-field-accelerated electrons; due 
to the energy loss each electron gradually moves closer to the anode and finally lands on its surface. The 
wide use of such generators (in particular, in microwave ovens, which operate in a narrow frequency 
band around 2.45 GHz, allocated for these devices to avoid their interference with wireless 
communication systems) is due to their simplicity and high (up to 65%) efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 Case II: E/c > B. In this case, the speed given by Eq. (168) would be above the speed of light, so 
let us introduce a reference frame moving with a different velocity, 
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 ,      (9.174) 

whose direction is the same as before (Fig. 12), and magnitude v = cB/(E/c) is again below c. A 
calculation absolutely similar to the one performed above for Case I, yields 
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54 See, e.g., CM Sec. 4.4. 

Fig. 9.13. Magnetron. (Adapted from 
http://microwavetubes.iwarp.com.) 
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so that in the moving frame the particle sees only an electric field E’  E. According to the solution of 
our previous problem (ii), the trajectory of the particle in the moving frame is hyperbolic, so that in the 
lab frame it has an “open”, hyperbolic character as well. 

 To conclude this section, let me note that if the electric and magnetic fields are non-uniform, the 
particle motion is much more complex, and in most cases the integration of equations (144), (148) may 
be carried out only numerically. However, if the field  nonuniformity is small, (approximate) analytical 
methods may be very effective. For example, if the magnetic field has a small transverse gradient B in 
a direction perpendicular to the vector B itself, such that 

      
RB

B 1



 ,     (9.177) 

where R is the cyclotron radius  (153), then it is straightforward to use Eq. (150) to show55 that the 
cyclotron orbit drifts perpendicular to both B and B, with speed  
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.     (9.178) 

 The physics of this drift is rather simple: according to Eq. (153), the instant curvature of the 
cyclotron orbit is proportional to the local value of the field. Hence if the field is nonuniform, the 
trajectory bends more on its parts passing through stronger field, thus acquiring a shape close to a curate 
trochoid. 

 For engineering and experimental practice, effects of longitudinal gradients of magnetic field on 
charged particle motion are much more important, but let me postpone their discussion until we have got 
a little bit more analytical tools in the next section. 

 

9.7. Analytical mechanics of charged particles 

 Equation (145) gives a full description of relativistic particle dynamics in electric and magnetic 
fields, just as the 2nd Newton law (1) does it in the non-relativistic limit. However, we know that in the 
latter case, the Lagrange formalism of analytical mechanics allows an easier solution of many 
problems.56 We can fully expect that to be true in relativistic mechanics as well, so let us expand the 
analysis of Sec. 3 to particles in the field.  

 Let recall that for a free particle, our main result was Eq. (68), which may be rewritten as 

        2mcL ,      (9.179) 

showing that this product is Lorentz-invariant. How can the electromagnetic field affect this relation? In 
electrostatics, we could write 

            qTUT L .     (9.180) 

55 See, e.g., Sec. 12.4 in J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, 1999. 
56 See, e.g., CM Sec. 2.2 and beyond. 
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However, in relativity the scalar potential  is just one component of the potential 4-vector (116). The 
only way to get a Lorentz-invariant contribution to L  from the full 4-vector, that would be also 
proportional to the Lorentz force, i.e. to the first power of particle’s velocity (to account for the 
magnetic component of the Lorentz force), is evidently 

       
 Aumc  const2L ,     (9.181) 

where u is the 4-velocity (63). In order to comply with Eq. (180) in electrostatics, the constant factor 
should be equal to (-qc), so that Eq. (182) becomes 

           
 Aqumc  2L ,     (9.182) 

and, finally, 
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L ,     (9.183) 

i.e., in the Cartesian form, 
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 Let us see whether this relation (that admittedly was obtained above by an educated guess rather 
than by a strict derivation) passes a natural sanity check. For the case of unconstrained motion of a 
particle, we can select its three Cartesian coordinates rj (j = 1, 2, 3) as the generalized coordinates, and 
linear velocity components uj as the corresponding generalized velocities. In this case, the Lagrange 
equations of motion are57  
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For example, for r1 = x, Eq. (184) yields 
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so that Eq. (185) takes the form 
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 In equations of motion, field values have to be taken at the instant position of the particle, so that 
the last (full) derivative has components due to both the actual field change (at a fixed point of space) 
and the particle’s motion. Such addition is described by the so-called convective derivative58 
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d
.     (9.188) 

57 See, e.g., CM Sec. 2.1. 
58 Alternatively called the “Lagrangian derivative”; for its (rather simple) derivation see, e.g., CM Sec. 8.3. 
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Spelling out both scalar products, we may group the terms remaining after cancellations as follows: 
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But taking into account relations (121) between the electric and magnetic fields and potentials, this 
expression is nothing more than 

        xyzzyx
x qBuBuEq

dt

dp
BuE  ,    (9.190) 

i.e. the x-component of Eq. (144). Since other Cartesian coordinates participate in Eq. (184) in a similar 
way, it is evident that the Lagrangian equations of motion along other coordinates yield other 
components of the same vector equation of motion. 

 So, Eq. (183) does indeed give the correct Lagrangian function, and we can use it for the further 
analysis, in particular to discuss the first of Eqs. (186). This relation shows that in the electromagnetic 
field, the generalized momentum corresponding to particle’s coordinate x is not px = mux, but59  
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.     (9.191)  

Thus, as was already mentioned in brief in Sec. 6.3, particle’s motion in a field may be is described by 
two momentum vectors: the kinetic momentum p, defined by Eq. (70), and the canonical (or 
“conjugate”) momentum60 

        ApP q .      (9.192) 

 In order to facilitate the discussion of this notion, let us generalize expression (72) for the 
Hamiltonian function H  of a free particle to the case of a particle in the field: 
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Merging the first two terms exactly as it was done in Eq. (72), we get an extremely simple result, 

                 qmc  2H ,     (9.194) 

that may leave us wondering: where is the vector-potential A here - and the field effects is has to 
describe? The resolution of this puzzle is easy: for a practical use (e.g., for the alternative derivation of 
the equations of motion), H  has to be presented as a function of particle’s generalized coordinates (in 
the case of unconstrained motion, these may be the Cartesian components of vector r that serves as an 
argument for potentials A and ), and the generalized momenta, i.e. the Cartesian components of vector 
P (plus, generally, time). Hence, velocity u and factor  should be eliminated from Eq. (194). This may 
be done using relation (192), mu = P – qA. For such elimination, it is sufficient to notice that according 

59 With regrets, I have to use the same (common) notation as was used earlier for the electric polarization – which 
is not discussed below. 
60 In Gaussian units, Eq. (192) has the form  P = p + qA/c. 
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to Eq. (193), difference (H - q) is equal to the right-hand part of Eq. (72), so that the generalization of 
Eq. (78) is61 

            22222 )()()( AP qcmcq  H .    (9.195) 

It is straightforward to verify that the Hamilton equations of motion for three Cartesian coordinates of 
the particle, obtained in the regular way62 from this H, may be merged into the same vector equation 
(144). In the non-relativistic limit, the Taylor expansion of Eq. (195) to the first term in  p2 yields the 
following generalization of Eq. (74):  
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 This expression for H, and Eq. (183) for L, give a clear view of the electromagnetic field effect 

account in analytical mechanics. The electric part of the total Lorentz force q(E + uB) can perform 
work on the particle, i.e. change its kinetic energy - see Eq. (148) and its discussion. As a result, the 
scalar potential , whose gradient gives a contribution into E, may be directly associated with potential 
energy U = q. On the contrary, the magnetic component quB of the Lorentz force is always 
perpendicular to particle’s velocity u, and cannot work on it, and as a result cannot be described by a 
contribution to U. However, if A did not participate in functions L and/or H at all, analytical mechanics 

would be unable to describe effects of magnetic field B = A on particle’s motion. Relations (183) and 
(197) show the wonderful way in which physics (or Mother Nature herself?) solves this problem: the 
vector-potential gives such contributions to both L and H  (if the latter is considered, as it should be, a 
function of P rather than p) that cannot be uniquely attributed to either kinetic or potential energy, but 
ensure the correct equation of motion (144) in both the Lagrange and Hamilton formalisms. 

 I believe I still owe the reader a clear discussion of the physical sense of the canonical 
momentum P. For that, let us consider a particle moving near a region of localized magnetic field B(r,t), 
but not entering this region.  If there is no electrostatic field (no other electric charges nearby), we can 
select such a local gauge that (r, t) = 0 and A = A(t), so that Eq. (144) is reduced to 
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qq
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 ,     (9.197) 

immediately giving 

          0
dt

dP
.      (9.198) 

Hence, even if the magnetic field is changed in time, so that the induced electric field accelerates the 
particle, its conjugate momentum does not change. Hence P is a variable more stable to magnetic field 
changes than its kinetic counterpart p. This conclusion may be criticized because it relies on a specific 
gauge, and generally P  p + qA is not gauge–invariant, because vector-potential A isn’t.63 However, as 

61 This relation may be also obtained from the expression for the Lorentz-invariant norm, pp = (mc)2, of the 4-
momentum (75), p = {E/c, p} = {(H - q)/c, P – qA}. 
62 See, e.g., CM Sec. 10.1. 
63 The kinetic momentum p = Mu is just the usual mu product modified for relativistic effects, so that this variable 
is evidently gauge- (though not Lorentz-) invariant. 
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was already discussed in Sec. 5.3, integral Adr over a closed contour does not depend on the chosen 
gauge and equals to the magnetic flux  through the area limited by the contour – see Eq. (5.65). 
Integrating Eq. (197) over a closed trajectory of a particle (Fig. 14), and over the time of one orbit, we 
get 

             0Δ that  so,ΔΦΔ  
CC

dqd rPrp ,   (9.199) 

where  is the change of flux during that time. This gauge-invariant result confirms the above 
conclusion about the stability of the canonical momentum to magnetic field variations. 

 

 

 

 

 

 Generally, Eq. (199) is invalid if a particle moves inside a magnetic field and/or changes its 
trajectory at the field variation. However, if the field is almost uniform, i.e. its gradient small in the 
sense of Eq. (177), this result is (approximately) applicable. Indeed, analytical mechanics64 tells us that 
for any canonical coordinate-momentum pair {qj, pj}, the corresponding action variable, 

               jjj dqpJ
2
1

,     (9.200) 

is asymptotically constant at slow variations of motion conditions. According to Eq. (191), for a particle 
in magnetic field, the generalized momentum corresponding to Cartesian coordinate rj is Pj rather than 
pj. Thus forming the net action variable J  Jx + Jy + Jz , we may write 

         constΦ2   qddJ rprP .    (9.201) 

 Let us apply this relation to the motion of a non-relativistic particle in an almost uniform 
magnetic field, with a small longitudinal velocity, u / u  0 (Fig. 15).  

  

  

 

 

 

 

 

 In this case,  in Eq. (201) is the flux encircled by a cyclotron orbit, equal to (-R2B), where R is 
its radius given by Eq. (153), and the negative sign accounts for the fact that the “correct” direction of 

64 See, e.g., CM Sec. 10.2. 
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Fig. 9.15. Particle in a magnetic field with 
a small longitudinal gradient B  B. 
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the normal vector n in the definition of flux,  = Bnd2r, is antiparallel to vector B. At u << c, the 
kinetic momentum is just p = mu, while Eq. (153) yields 

          qBRmu  .     (9.202) 

Plugging these relations into Eq. (201), we get 

      qBRqBRqR
m

qRB
mBRqRmuJ 222 )12(222  .  (9.203) 

 This means that even if the circular orbit slowly moves in the magnetic field, the flux encircled 
by the cyclotron orbit should remain constant. One manifestation of this effect is the result already 
mentioned in the end of Sec. 6: if a small gradient of the magnetic field is perpendicular to the field 
itself, particle orbit’s drift is perpendicular to B, so that  stays constant. Now let us analyze the case 
of a small longitudinal gradient, B  B (Fig. 15). If the small initial longitudinal velocity u is directed 
toward the higher field region, in order to keep  constant, the cyclotron orbit has to gradually shrink. 
Rewriting Eq. (202) as 

         
R

q
R

BR
qmu


 



2

,     (9.204) 

we see that this reduction of R (at constant ) should increase the orbiting speed u. But since the 
magnetic field cannot do work on the particle, its kinetic energy, 

       22

2  uu
m

E ,     (9.205) 

should stay constant, so that the longitudinal velocity u has to decrease. Hence eventually orbit’s drift 
has to stop, and then the orbit has to start moving back toward the region of lower fields, being 
essentially repulsed from the high-field region. This effect is very important, in particular, for plasma 
confinement: two coaxial magnetic coils, inducing magnetic fields of the same direction (Fig. 16), 
naturally form a “magnetic bottle” that traps charged particles injected, with sufficiently low 
longitudinal velocities, into the region between the coils. Such bottles are the core components of the 
(generally, very complex) systems used for plasma confinement, in particular in the context of the long-
term efforts to achieve controllable nuclear fusion.65 

 

 

 

 

 

 Returning to the constancy of magnetic flux encircled by free particles, it reminds us of the 
Meissner-Ochsenfeld effect discussed in Sec. 6.3, and gives a motivation for a brief revisit of the  
electrodynamics of superconductivity. As was emphasized in that section, superconductivity is a 

65 For the further reading on this technology, the reader may be referred, for example, to a simple monograph by 
F. C. Chen, Introduction to Plasma Physics and Controllable Fusion, vol. 1, 2nd ed., Springer, 1984, and/or a 
graduate-level theoretical treatment by R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Dover, 2003. 

  

Fig. 9.16. Magnetic bottle (VERY schematically). 

B



Essential Graduate Physics      EM: Classical Electrodynamics 

 

Chapter 9           Page 43 of 54 

substantially quantum phenomenon; nevertheless the notion of the conjugate momentum P helps to 
understand its description. Indeed, the general rule of quantization of physical systems66 is that each 
canonical pair {qj, pj} of a generalized coordinate and the corresponding momentum is described by 
quantum-mechanical operators that obey the following commutation relation 

        ''ˆ,ˆ jjjj ipq  .     (9.206) 

According to Eq. (191), for Cartesian coordinates rj of a particle in electromagnetic field, the 
corresponding generalized momenta are Pj, so that their operators should obey the following 
commutation relations: 

        ''
ˆ,ˆ jjjj iPr  .     (9.207) 

 In the coordinate representation of quantum mechanics, canonical momentum operators are 
described by Cartesian components of the vector operator -i. As a result, ignoring the rest energy mc2 
(which gives an inconsequential phase factor exp{-imc2t/} in the wave function), we can use Eq. (196) 
to rewrite the non-relativistic Schrödinger equation, 

      
Ĥ




t
i ,      (9.208) 

as follows: 
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1
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ˆ
A .   (9.209) 

 Thus, I believe I have finally delivered on my promise to justify the replacement (6.44) which 
had been used in Chapter 6 to discuss electrodynamics of superconductors, including the Meissner-
Ochsenfeld effect.67 

 

9.8. Analytical mechanics of electromagnetic field 

 We have just seen that analytical mechanics of a particle in an electromagnetic field may be used 
to get some important results. The same is true for the analytical mechanics of the field alone, and the 
field-particle system as a whole, which will be discussed in this section. For such a space-distributed 
system as the field, governed by local dynamics laws (Maxwell equations), we need to apply analytical 
mechanics to the local densities l and h of the Lagrangian and Hamiltonian functions, defined by 
relations 

           rdrd 33 , hHlL .     (9.210) 

 Let us start, as usual, from the Lagrange formalism. Some clue on the possible structure of the 
Lagrangian density l may be obtained from that of the description of the particle-field interaction in this 

66 See, e.g., CM Sec. 10.1. 
67 Equation (209) is also the basis for discussion of numerous other magnetic field phenomena, including the 
Aharonov-Bohm and quantum Hall effects – see, e.g., QM Secs. 3.1-3.2.  
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formalism, which was discussed in the last section. For the case of a single particle, the interaction is 
described by the last two terms of Eq. (183): 

             Au  qqintL .     (9.211) 

It is obvious that if charge q is continuously distributed over some volume, we may present L as a 
volume integral of Lagrangian density 

        
 Aj Ajintl .     (9.212) 

 Notice that the density (in contrast to Lint itself) is Lorentz-invariant. (This is due to the 
contraction of the longitudinal coordinate, and hence volume, at the Lorentz transform.) Hence we may 
expect the density of field’s Lagrangian to be Lorentz-invariant as well. Moreover, in the view of the 
simple, local structure of the Maxwell equations (containing only first spatial and temporal derivatives 
of the fields), l  should be a simple function of potential’s 4-vector and its 4-derivative: 

               ),( 


 AA  ll .     (9.213) 

Also, the density should be selected in such a way that the 4-vector analog of the Lagrangian equations 
of motion, 

            0







 


 AA

ll
,     (9.214) 

gave us correct inhomogeneous Maxwell equations (127).68,69 It is clear that the field part lfield of the 

total Lagrangian density l should be a scalar, and a quadratic form of the field strength, i.e. of F, so 
that the natural choice is 

             
 FF constfieldl .     (9.215) 

with implied summation over both indices. Indeed, adding to this expression the interaction Lagrangian 
(212), 

        



 AjFF  constintfield lll ,    (9.216) 

and performing differentiation, we may check that Eq. (214) indeed yields Eqs. (127), provided that the 
constant factor equals (-1/40).70 With that, the field Lagrangian 
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l ,  (9.217) 

where ue is the local density of the electric field energy density (1.67), and um is the magnetic field 
energy density (5.57). 

68 As a reminder, the homogeneous Maxwell equations (129) are satisfied by the very structure (125) of the field 
strength tensor. 
69 Here the implicit summation over index  plays the role similar to the convective derivative (188) in replacing 
the full derivative over time, in a way that reflects the symmetry of time and space in special relativity. I do not 
want to spend more time to justify Eq. (214) because of the reasons that will be clear very soon. 
70 In the Gaussian units, the coefficient is (-1/16). 
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 Let me hope the reader agrees that Eq. (217) is a wonderful result, because the Lagrangian 
function has the structure absolutely similar to the well-known expression L  = T – U of the classical 
mechanics.  So, for the field alone, the “potential” and “kinetic” energies are separable again.71  

As a sanity check, let us explore whether we can calculate a 4-vector analog of the Hamiltonian 
function H. In the generic analytical mechanics,   

              L
L

H 



 
j

j
j

q
q




.     (9.218) 

However, just as for the Lagrangian function, for a field we should find the spatial density h of the 
Hamiltonian, defined by the second of Eqs. (210), for which a natural 4-form of Eq. (218) is 

      l
l

h 




 gA
A






)(

.    (9.219) 

Calculated for the field alone, i.e. using Eq. (217) for l, this definition yields 

               ,field
  Dh      (9.220) 

where tensor  

         





  








 FFgFFg

4

11

0

,    (9.221) 

is gauge-invariant, while the remaining term, 

           





 AFgD 

0

1
,     (9.222) 

is not, so that it cannot correspond to any measurable variables. Fortunately, it is straightforward to 
verify that tensor D may be presented in the form 

             





 AFD 

0

1
,     (9.223) 

and as a result obeys the following relations:  

          ,0,0 30 rdDD


       (9.224) 

so it does not interfere with the conservation properties of the gauge-invariant, symmetric energy-
momentum tensor (also called the symmetric stress tensor) , to be discussed below. 

 Using Eqs. (125), components of the latter tensor may be expressed via the electric and magnetic 
fields. For   =  = 0,  

     uuu
B

E me 
0

2
20

field
00

22 


 h ,    (9.225) 

71 Since the Lagrange equations of motion are homogeneous, the simultaneous change of sign of T and U does not 
change them. Thus, it is not important which of two energy densities, ue or um, we count as the potential energy. 
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i.e. the expression for the total energy density u – see Eq. (6.104b). The other 3 components of the same 
row/column turn out to be just the Cartesian components of the Poynting vector, divided by c: 

         3,2,1for ,
1
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 .   (9.226) 

The remaining 9 components jj’ of the tensor, with  j’ = 1, 2, 3, are usually presented as 

       ,)(
'

' M
jj

jj         (9.227) 

where (M) is the so-called Maxwell stress tensor: 
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 ,   (9.228) 

so that the whole symmetric energy-momentum tensor may be conveniently presented in the following 
symbolic way: 
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.     (9.229) 

 The physical meaning of this tensor may be revealed in the following way. Considering Eq. 
(221) just as the definition of tensor , 72 and using the 4-vector form of Maxwell equations, given by 
Eqs. (127) and (129), it is straightforward to verify an extremely simple result for the 4-derivative of the 
symmetric tensor: 

               


 jF .     (9.230) 

This expression is valid in the presence of the electromagnetic field sources, e.g., for any system of 
charged particles and the field they have created. Of these 4 equations (for 4 values of index ), the 
temporal one (with  =  0) may be simply expressed via the energy density (225) and Poynting vector 
(226): 

              EjS 
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u
,     (9.231) 

while 3 spatial equations (with  = j = 1, 2, 3) may be presented in the form 
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 Integrated over a volume V limited by surface S, with the account of the divergence theorem, Eq. 
(231) returns us to the Poynting theorem (6.103): 

72 In this way, we are using Eqs. (214) and (221) just as a useful guesses, leading to the definition of , and may 
leave their strict justification for more serious field theory courses.  
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while Eq. (232) yields:73 
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where dAj = njdA = njd
2r is the jth   component of the elementary area vector dA = ndA = nd2r that is 

normal to volume’s surface, and directed out of the volume – see Fig.  17.  

 

 

 

 

 

 

  

 Since, according to Eq. (5.10), vector f is nothing else than the density of volume-distributed 
forces applied from the field to the particles, we can use the 2nd Newton law, in its relativistic form 
(144), to rewrite Eq. (234), for a stationary volume V, as 

         Fp
S









 part

3
2

V

rd
cdt
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,     (9.235) 

where ppart is the total mechanical (relativistic) momentum of all particles in volume V, and vector F is 
defined by its Cartesian components: 
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  .     (9.236) 

 Equations (235)-(236) are our main new results. The first of them shows that vector 

           
2c

S
g        (9.237) 

may be interpreted as the density of momentum of the electromagnetic field (per unit volume). This 
classical relation is consistent with the quantum-mechanical picture of photons being considered as 
ultra-relativistic particles, with momentum magnitude  E/c, because then the total flux of the momentum 
carried by photons through a unit normal area per unit time may be presented as either Sn/c or as gnc. It 
also allows us to revisit the Poynting vector paradox that was discussed in Sec. 6.7 – see Fig. 6.9 and its 

73 Just like the Poynting theorem (233), Eq. (234) may be obtained directly from the Maxwell equations, without 
resorting to the 4-vector formalism – see, e.g., Sec. 8.2.2 in D. J. Griffiths, Introduction to Electrodynamics, 3rd 
ed., Prentice-Hall, 1999. However, the derivation discussed above is preferable, because it shows the wonderful 
unity between the laws of conservation of energy and momentum.
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discussion. As has been emphasized at this discussion, vector S = EH in this case does not correspond 
to any measurable energy flow. However, the corresponding momentum (237) of the field is not only 
real, but may be measured by the recoil impulse74 it gives to the field sources (say, to a magnetic coil 
inducing field H and to the capacitor plates creating field E).  

 Now let us turn to our second result, Eq. (236). It tells us that the 33-element Maxwell stress 
tensor complies with the general definition of the stress tensor75 characterizing force F exerted by 
external forces on the boundary of a volume, in this case occupied by the electromagnetic field (Fig. 
17).76 Let us use this important result to analyze two simple examples for static fields. 

 (i) Electrostatic field’s effect on a perfect conductor. Since Eq. (235) has been derived for a free 
space region, we have to select volume V outside the conductor, but we may align one of its faces with 
conductor’s surface (Fig. 18).  

 

 

 

 

 

  

 

From Chapter 2, we know that the electrostatic field has to be perpendicular to the conductor’s surface. 
Selecting axis z in this direction, we have Ex = Ey =0, Ez = E, so that only diagonal components of the 
tensor (228) are not equal to zero:  

         20)(20)()(
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  ,    (9.238) 

Since the elementary surface area vector has just one nonvanishing component, dAz, according to Eq. 
(236), only the last component (that is positive regardless of the sign of E) gives a contribution to the 
surface force F. We see that the force exerted by the conductor (and eventually by external forces that 
hold the conductor in its equilibrium position) on the field is normal to the conductor and directed out of 
the field volume: dFz  0. Hence, by the 3rd Newton law, the force exerted by the field on conductor’s 
surface is directed toward the field-filled space: 

      dAEdFdF z
20

surface 2


 .    (9.239) 

 This important result could be obtained by simpler means as well. For example, one could argue, 
quite convincingly, that the local relation between the force and field should not depend on the global 

74 This impulse is sometimes called the hidden momentum; this term makes sense if the field sources have finite 
masses, so that their velocity change at the field variation is measurable. 
75 See, e.g., CM Sec. 7.2. 
76 Note that the field-to-particle interaction gives a vanishing contribution into the net integral, as it should for any 
internal interaction between internal parts of a system. 
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Fig. 9.18. Electrostatic field near conductor’s surface. 
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configuration creating the field, and consider a planar capacitor (Fig. 2.2) with surfaces of both plates 
charged by equal and opposite charges of density  = 0E. According to the Coulomb law, the charges 
should attract each other, pulling each plate toward the field region, so that Maxwell-tensor result gives 
the correct direction of the force. The force’s magnitude (240) can be verified either by the direct 
integration of the Coulomb law, or by the following simple reasoning. In the plane capacitor, field Ez = 
/0 is equally contributed by two surface charges; hence the field created by the negative charge of the 
counterpart plate (not shown in Fig. 18) is E- = /20, and the force it exerts of the elementary surface 
charge dQ = dA of the positively charged plate is dF = E-dQ = 2dA/20 = 0E

2dA/2, in accordance 
with Eq. (239).77 

 Quantitatively, even for such high electric field as E = 3 MV/m (close to the electric breakdown 
in air), the “negative pressure” (dF/dA) given by Eq. (240) is of the order of 500 Pa (N/m2), i.e. below 
one thousandth of the ambient atmospheric pressure (1 bar  105 Pa). Still, these forces may be 
substantial in some cases, especially in good dielectrics (such as high-quality SiO2, grown at high 
temperature, which is broadly used in integrated circuits) that can withstand fields up to ~109 V/m. 

 (ii) Static magnetic field’s effect on its source78 – say, solenoid’s wall or superconductor’s 
surface (Fig. 19).  

 

 

 

 

 

 

 With the choice of coordinates shown in Fig. 19, we have Bx = B, By = Bz = 0, so that the 
Maxwell stress tensor (228) is diagonal again: 
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  .    (9.240) 

However, but since for this geometry only dAz differs from 0 in Eq. (236), the sign of the resulting force 
is opposite to that in electrostatics: dFz 0, and the force exerted by the magnetic field upon the 
conductor’s surface, 

                 dABdFdF z
2

0
surface 2

1


 ,    (9.241) 

77 By the way, repeating these arguments for a plane capacitor filled with a linear dielectric, we may 
readily see that Eq. (239) may be generalized for this case by replacing 0 for . The similar replacement 
(0  ) is valid for Eq. (241) in a linear magnetic medium. 
78 The causal relation is not important here. Especially in the case of a superconductor, the magnetic field may be 
induced by another source, with the surface supercurrent j just shielding the superconductor’s bulk from its 
penetration – see Sec. 6. 
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corresponds to a positive pressure. For good laboratory magnets (B ~ 10 T), this pressure is of the order 
of 4107 Pa  400 bars, i.e. is very substantial, so the magnets require solid mechanical design. 

 The direction of force (241) could be also readily predicted elementary magnetostatics 
arguments. Indeed, we can imagine the magnetic field volume limited by another, parallel wall with the 
opposite direction of surface current. According to the starting point of magnetostatics, Eq. (5.1), such 
surface currents of opposite directions have to repulse each other – doing that via the magnetic field. 

 Another explanation of the fundamental sign difference between the electric and magnetic field 
pressures may be provided on the electric circuit language. As we know from Chapter 2, the potential 
energy of the electric field stored in a capacitor may be presented in two equivalent forms, 

               
C

QCV
U e 22

22

 .     (9.242) 

Similarly, the magnetic field energy of in an inductive coil is 

                
L

LI
U m 22

22 
 .     (9.243) 

If we do not want to consider the work of external sources on a virtual change of the system dimensions, 
we should use the latter forms of these relations, i.e. consider a galvanically detached capacitor (Q = 
const) and an externally-shorted inductance (  = const).79 Now if we let the electric field forces (239) 
drag capacitor’s plates in the direction they “want”, i.e. toward each other, this would lead to a reduction 
of the capacitor thickness, and hence to an increase of capacitance C, and hence to a decrease of Ue. 
Similarly, for a solenoid, allowing pressure (242) to move its walls would lead to an increase of the 
solenoid volume, and hence of its inductance L, so that the potential energy Um would be also reduced – 
as it should be. It is remarkable (actually, beautiful) how do the local field formulas (239) and (241) 
“know” about these global circumstances. 

 Finally, let us see whether the major results (237) and (241), obtained in this section, match each 
other. For that, let us return to the normal incidence of a plane, monochromatic wave from free space on 
the plane surface of a perfect conductor (see Fig. 7.8 and its discussion), and use those results to 
calculate the time average of pressure dFsurface/dA  imposed by the wave on the surface. At elastic 
reflection from conductor’s surface, electromagnetic field’s momentum retains its amplitude but 
changes its sign, so that the momentum transferred to a unit area of the surface (i.e. average pressure) is  
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where E and H are complex amplitudes of the incident wave. Using relation (7.7) between these 
amplitudes (for  = 0 and  = 0 giving E = cB), we get 
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 .    (9.245) 

79 Of course, this condition may hold “forever” only for solenoids with superconducting wiring, but even in 
normal-metal solenoids with practicable inductances, the flux relaxation constants L/R may be rather large 
(practically, up to a few minutes), quite sufficient to carry out the force measurement.  
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 On the other hand, as was discussed in Sec. 7.4, at the surface of the perfect mirror the electric 
field vanishes while the magnetic field doubles, so that we can use Eq. (241) with B  B(t) = 2Re[Be{-
it}]. Averaging the pressure over time, we get 
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dF ti   ,    (9.246) 

i.e. the same result as Eq. (245). 

 For the physics intuition development, it is useful to estimate the electromagnetic radiation 
pressure’s magnitude. Even for a relatively high wave intensity Sn of 1 kW/m2 (close to that of the direct 
sunlight at Earth’s orbit), the pressure 2cgn = 2Sn/c is somewhat below 10-5 Pa ~ 10-10 bar. Still, this 
extremely small effect was experimentally observed (by P. Lebedev) as early as in 1899, giving one 
more confirmation of the Maxwell’s theory. 

  

9.9. Exercise problems 

 9.1. Use the non-relativistic Doppler effect picture to derive Eq. (4). 
 
 9.2. Show that two successive Lorentz space/time transforms in the same direction, with 
velocities u’ and v, are equivalent to a single transform with velocity u given by Eq. (25).  
 
 9.3. N + 1 reference frames, numbered by index n (taking values 0, 1, …, N), move in the same 
direction as a particle. Express the particle’s velocity in frame n = 0 via its velocity uN in frame number 
N and the set of velocities vn of frame number n relative to the frame number (n - 1).  
 
 9.4. A spaceship, moving with constant velocity v directly from the Earth, sends back brief 
flashes of light with period ts - as measured by spaceship's clock. Calculate the period with which 
Earth's observers receive the signals - as measured by Earth's clock. 
 
 9.5. From the point of view of reference frame 0', a straight rod, parallel to axis x', is moving, 
without rotation, with constant velocity u' directed along axis y'. The reference frame 0' is itself moving 
relative to another ("lab") reference frame 0, with similarly oriented axes, with a constant velocity v 
along axis x, also without rotation - see Fig.  on the right. Calculate: 

 (i) the direction of rod's velocity, and 
 (ii) the orientation of the rod on the [x, y] plane, 

as observed from the lab reference frame. Is the velocity perpendicular to the rod? 
  

 9.6. A relativistic particle moving with velocity u  decays into two particles with zero rest mass.  

 (i) Calculate the smallest possible angle between the decay product velocities (in the lab frame).  
 (ii) What is the largest possible energy of one product particle?  
 
 9.7. Starting from the rest at t = 0, a spaceship moves with a constant acceleration, as measured 
in its instantaneous rest frame. Find its displacement x(t) from the starting point, as measured from the 
lab frame, and interpret the result. 
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9.8. Calculate the first relativistic correction to the frequency of a harmonic oscillator as a 

function of its amplitude.  
 
9.9. A particle with rest mass m decays into two particles, with rest masses m1 and m2. Calculate 

the total energy of the first decay product, in the rest frame of the decayed particle. 
 
 9.10. A relativistic particle, propagating  with velocity v outside of external fields, decays into 
two photons.80 Calculate the angular dependence of the probability of photon detection. 
 
 9.11. Photon with wavelength  is scattered by an 
electron, initially at rest. Considering the photon as an ultra-
relativistic particle (with the rest mass m = 0), find 
wavelength ’ of the scattered photon as a function of the 
scattering angle  - see Fig. on the right.81 
 
 9.12. Calculate the threshold energy of a -photon for the reaction  

0πppγ  , 

if the proton was initially at rest. 

 Hint: For protons mpc
2  938 MeV, while for neutral pions mc

2  135 MeV. 
  
 9.13. A relativistic particle with energy E  and rest mass m collides with a similar particle, 
initially at rest in the laboratory frame. Find: 

 (i) the final velocity of the center of mass of the system, in the lab frame,  
 (ii) the total energy of the system, in the center-of-mass frame, and 
 (iii) the final velocities of both particles (in the lab frame), if they move along the same 
direction. 
  
 9.14. A “primed” reference frame moves with the reduced velocity   v/c = nx  relative to the 
“lab” frame. Use Eq. (109) to spell out components T’00 and T’0j (with j = 1, 2, 3) of an arbitrary 
contravariant 4-tensor T. 
 
 9.15. Static fields E and B are uniform but arbitrary (both in magnitude and in direction). What 
should be the velocity of an inertial reference frame to have the vectors E’ and B’, observed from that 
frame, parallel? Is this solution unique?  

 
 9.16. Two charged particles, moving with the same constant velocity u, are 
offset by distance R = {a, b} (see Fig. on the right), as measured in the lab frame. 
Calculate the forces between the particles - also in the lab frame. 

 

80 Such a decay may happen, for example, with a neutral pion. 
81 This the famous Compton scattering problem. 
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9.17. Each of two very thin, long, parallel beams of electrons of the same velocity u carries 
electric charge of density  per unit length (as measured in the coordinate frame moving with electrons). 

 (i) Calculate the distribution of the electric and magnetic fields in the system (outside the 
beams), as measured in the lab frame. 
 (ii) Calculate the interaction force between the beams (per particle) and the resulting 
acceleration, both in the lab frame and in the system moving with the electrons. Compare the results and 
give a brief discussion of the comparison. 
 
 9.18. Spell out the Lorentz transform of the scalar potential and the vector potential components, 
and use the result to calculate the potentials of a point charge q, moving with a constant velocity u, as 
measured in the lab reference frame. 
 
 9.19. Calculate the scalar and vector potentials created by a time-independent electric dipole p, 
as measured in a reference frame which moves relatively to the dipole with a constant velocity v, with 
the shortest distance (“impact parameter”) equal to b. 
 
 9.20. Calculate the scalar and vector potentials created by a time-independent magnetic dipole 
m, as measured in a reference frame which moves relatively to the dipole with a constant velocity v << 
c, with the shortest distance (“impact parameter”) equal to b. 
 
 9.21. Assuming that the magnetic monopole does exist and has magnetic charge g, calculate the 
change  of magnetic flux in a superconductor ring due to the passage of single monopole through it. 
Evaluate  for the monopole charge conjectured by Dirac, g = ng0  n(2/e), where n is an integer; 
compare the result with the magnetic flux quantum 0 (6.55) and discuss their relation. 
 
 9.22.* Calculate the trajectory of a relativistic particle in a uniform electrostatic field E for the 
case of arbitrary direction of its initial velocity u(0), using two different approaches – one of them 
different from the approach used in Sec. 6 for the case u(0)  E. 
 
 9.23. A charged relativistic particle with velocity u performs planar cyclotron rotation in a 
uniform external magnetic field B. How much would the velocity and orbit radius change at a slow 
change of the field to a new magnitude B'? 
 
 9.24.* Analyze the motion of a relativistic particle in uniform, mutually perpendicular fields E 
and B, for the particular case when E is exactly equal to cB.  
 
 9.25.* Find the law of motion of a relativistic particle in uniform, parallel, static fields E and B. 
  
 9.26. Neglecting relativistic effects, calculate the smallest voltage V that has to be applied 
between the anode and cathode of a magnetron (see Fig. 13 and its discussion) to enable electrons to 
reach the anode in the absence of electron-electron interactions and collisions with the residual gas 
molecules. You may model the cathode and anode as two coaxial round cylinders, of radii R1 and R2, 
respectively, assume that the magnetic field B, directed along their common axis, is uniform, and 
neglect the initial velocity of the electrons emitted by the cathode. (After the solution, estimate the 
validity of the last assumption for reasonable values of parameters.) 
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 9.27. A charged, relativistic particle has been injected into a uniform electric field that oscillates 
in time with frequency . Calculate the time dependence of the particle’s velocity, as observed from a 
lab frame.  
 
 9.28. Analyze motion of a non-relativistic particle in a region where the electric and magnetic 
fields are both constant and uniform, but not necessarily parallel or perpendicular to each other.  
  
 9.29. A static distribution of electric charge in otherwise free space has created a time-
independent distribution E(r) of the electric field. Use two different approaches to express the energy 
density u’ and the Poynting vector S’, as observed in a reference frame moving with constant velocity v, 
via the components of vector E. In particular, is S’ equal to (-vu’)? 
 
 9.30. A plane wave, of frequency  and intensity S, is normally incident on a perfect mirror, 
moving with velocity v in the same direction as the wave.  

 (i) Calculate the reflected wave’s frequency, as observed in the lab reference frame, and 
(ii) use the Lorentz transform of the fields to calculate the reflected wave’s intensity 

- both as observed from the lab reference frame. 
 
 9.31. Carry out the second task of the previous problem by using the relations between wave’s 
energy, power, and momentum.  

 Hint: As a byproduct, this approach should also give you the pressure exerted by the wave on the 
moving mirror. 
 
 9.32. Consider the simple model of plane capacitor charging by a lumped 
current source, shown in Fig. on the right, and prove that the momentum given by 
the constant, uniform external magnetic field B to the current-carrying conductor 
is equal and opposite to the momentum of the electromagnetic field that current 
I(t) builds up in the capacitor. (You may let the capacitor be planar and very 
broad, and neglect the fringe field effects.) 
  
 9.33. Consider an electromagnetic plane wave packet propagating in free space, with the electric 
field represented as the Fourier integral 

kctkzdket kkk
k

k

i  





  and    ,with  ,Re),( ErE . 

Express the full linear momentum (per unit area of wave’s front) of the packet via the complex 
amplitudes Ek. Does the momentum depend on time? (In contrast with Problem 7.7, in this case the 
wave packet is not necessarily narrow.) 
 
 9.34. Calculate the pressure exerted on well-conducting walls of a waveguide with rectangular 
(ab) cross-section by a wave propagating along it in the fundamental (H10) mode. Give an 
interpretation of the result. 
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Chapter 10. Radiation by Relativistic Charges 

In this chapter, we return to the electromagnetic wave radiation by moving charges, because the review 
of the special relativity background in the previous chapter enables an analysis of the radiation effects 
for arbitrary speed of the charged particle. After an analysis of such important particular cases as 
synchrotron radiation and “Bremsstrahlung”  (brake radiation), we will discuss the apparently 
unrelated effect of Coulomb losses, which nevertheless will lead us to such important phenomena as the 
Cherenkov radiation and transitional radiation. In the end of the chapter, I  will briefly review the 
effects of back action of the emitted radiation on the emitting particle, whose analysis reveals some 
limitations of classical electrodynamics.  

 

10.1. Liénard-Wiechert potentials 

 A convenient starting point for the discussion of radiation by relativistic moving charges is 
provided by Eqs. (8.17) for  retarded potentials. In free space these formulas are reduced to 
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. (10.1) 

Here R is the magnitude of the vector,  

           'rrR  ,      (10.2) 

that connects the source point r’ to the observation point r. As a reminder, Eqs. (1) were derived from 
the Maxwell equations without any restrictions, and are very convenient for situations with continuous 
distribution of charge and current. On the other hand, for point charges, with delta-functional  and j, it 
is more convenient to recast these relations into a simpler form that would not require the integration 
over the r’ space.  

This reduction, however, requires care. Indeed, for a single point charge q moving with velocity 
u, such integration of Eqs. (1), if carried out naïvely, would yield the following apparent result: 
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where index r marks the variables to be calculated at time t – Rr/c. This is a good example how the 
science of relativity (even the special one :-) cannot be taken too lightly. Indeed, 4-vectors (9.84)-(9.85), 
formed from potentials (3), would not obey the Lorentz transform rule (9.91), because distance Rr also 
depends on the reference frame it is measured in. 

 In order to correct the error, we need, first of all, to specify what exactly is Rr for a point charge. 
Evidently, in this case, only one space-time point {r’, t’} may contribute to integrals (1) for any 
observation point {r, t}. The point should be found from the retardation condition t’ = t – Rr/c, i.e. 

               )()()( t''tt'tc rr  .     (10.4) 

Figure 1 depicts the graphical solution of this self-consistency equation as the point of intersection of 
the light cone of the observation point (see Fig. 9.9 and its discussion) and the trajectory of the charged
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 particle.1 As in Eq. (3), I will use index r to mark all variables corresponding to the retarded point {r’, 
t’} that satisfies Eq. (4); for example, t’  tr, c(t – tr)  Rr (see Fig. 1), u{r’, tr)  ur, etc, as measured in 
the “lab” reference frame - generally, any inertial frame that moves with the same velocity as the 
observation point at the moment t we are considering. 

  

 

 

 

 

 

 

 

 Now let us write Eqs. (1) for a point charge in another inertial reference frame 0’, whose velocity 
(as measured in the lab frame) coincides, at moment tr, with the same velocity (ur) of the point charge. 
In that frame the charge rests, so that 

                   0,
4 0

 '
R'

q
' A


 ,     (10.5) 

but let us remember that this R’ may not be equal to R, because the latter distance is measured in the 
“lab” reference frame. Let us use the identity 1/0  0c

2 to rewrite Eq. (5) in the form of components of 
a 4-vector similar in structure to Eq. (3): 
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.     (10.6) 

 Now it is easy to guess the correct answer for the whole 4-potential: 
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cu
qA

4
0 ,     (10.7) 

where (just as a reminder), A  {/c, A}, u  {c, u},and R is a 4-vector of the event distance, formed 
similarly to that of a single event – cf. Eq. (9.48): 

           }),({}),({ 't'tct'tcR rrR  .    (10.8) 

Indeed, we need the 4-vector A  that would:  

 (i) obey the Lorentz transform,  
 (ii) have its spatial components Aj scaling as uj, and  
 (iii) be reduced to the correct result (5) in the reference frame moving with the charge.  

1 As Fig. 1 shows, there is always another point {r”, t” }, with t” > t, that is formally also a solution of Eq. (4), 
but it does not fit Eqs. (1), because the field induced at that point would violate the causality principle. 

time
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Fig. 10.1. Graphical solution of Eq. (4). 
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Formula (7) evidently satisfies all these requirements, because the scalar product in its denominator is 
just 

                 nβRβRuRu  1])'([),(, 2 cRRcttct'tccRu 
 , (10.9) 

where n  R/R is a unit vector in the observer’s direction,   u/c is the normalized velocity of the 
particle, and   1/(1- u2/c2)1/2. 2 In the reference frame of the charge (in which  = 0 and  = 1), 
expression (9) is reduced to cR, so that Eq. (7) is correctly reduced to Eq. (6). Now let us spell out 
components of Eq. (7) in the lab frame (in which t’ = tr and R = Rr): 
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 These formulas are called the Liénard-Wiechert potentials.3 In the non-relativistic limit, they 
coincide with the naïve guess (3), but in the general case include the additional factor (1 - n) in the 
denominator, which describes the apparent increase of the effective charge density of the source due to 
the apparent change of distance R, at  ~ 1. In order to understand its origin, let us consider a simple 1D 
model of the radiation: a uniformly charged rod, of length l,  moving directly toward an observer located 
at point r, with a constant speed u (Fig. 2). As a result of this motion, the observer may measure the 
field (1) induced by the rod, within a certain time interval [tstart, tstop]. 

  

 

 

 

 

 

 

 

 That trailing end of this field pulse, observed at t = tstop, is emitted by the far (in Fig. 2, leftmost) 
end of the rod at moment t’stop. Due to the limited speed of the rod, u < c, the moment t’stop comes earlier 
than the moment t’start, at which the front end of the rod emits the field that starts the observed pulse. 
During the positive time interval (t’start – t’stop), the rod passes an additional distance u(t’start – t’stop) – see 
the bottom panel of Fig. 2. Using the evident relations shown on each of the two panels of Fig. 2 to 
express r, and requiring them to give the same result, we get the following relation 

               )()()( startstartstopstartstopstop t'tclt't'ut'tc  .   (10.11) 

2 Note the following identities: 2 = 1/(1-  2) and (2 – 1) =  2/(1-  2) = 22, which may be very handy for the 
relativity-related algebra. 
3 They were derived in 1898 by A.-M. Liénard  and (apparently, independently) in 1900 by E. Wiechert. 
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Fig. 10.2. Geometric effect behind 
factor (1 - n) in the Liénard-Wiechert 
potentials. 
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Using it to express the difference t’(u)  t’start – tstart > 0 in the limit when tstop  tstart, i.e. when the 
observed radiation pulse is short, we get  
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,   (10.12) 

is a factor of 1/(1 - ) smaller than what is would be at negligible source speed. Hence the time interval 
between the retarded moments tr for two ends of the rod is compressed as u is increased. Since the total 
charge of the rod does not depend on u, its linear charge density is increased, and the field in the 
observation point is increased accordingly. Somewhat counter-intuitively, Eq. (12) shows that this field 
re-normalization is independent of the source size l, and hence takes place even in the limit l  0, e.g., 
for a point source.4  

So, the 4-vector formalism has provided a big help for the calculation of field potentials. Now, 
the electric and magnetic field corresponding to the potentials may be found by the plugging Eqs. (10) 
into the general formulas (6.106). This operation should be also performed very carefully, because Eqs. 
(6.106) require the differentiation over the coordinates {r, t} of the observation point, while we want the 
fields to be expressed via particle’s velocity ur  (dr’/dt’)r that participates in Eqs. (10). In order to find 
the relation between derivatives over t and t’, let us differentiate Eq. (4), rewritten as 

      )( rr ttcR  ,      (10.13) 

over t and tr. In order to calculate derivative Rr/tr, let us first differentiate identity R2 = RR: 
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Since Rr/tr = (r – r’)/tr = -r’/tr = -u, Eq. (14) yields 
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Now let us differentiate the same function Rr over t, keeping r fixed. On one hand, Eq. (13) yields 
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On the other hand, according to Eq. (4), if r is fixed, t’ is a function of t alone, so that, using Eq. (15), 
we may write 
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Requiring Eqs. (16) and (17) to give the same result, we get the same factor that participates in the 
Liénard-Wiechert potentials (10) and Eq. (12): 

4 Note that this time compression effect (linear in ) has nothing to do with the Lorentz time dilation (9.21), 
which is quadratic in . (Indeed, all our arguments above are referred to the same, lab frame.) Rather, it is close in 
nature to the Doppler effect. 
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 This relation may be readily interpreted – at least semi-quantitatively. At fixed r, variation t of 
the observation time corresponds to a small vertical shift of the light cone in Fig. 2, while tr is the 
corresponding shift of the retarded time tr, i.e. of the point where the world line r’(t’)  crosses the light 
cone at the observation point r(t). It is evident from that figure that if the particle does not move (i.e. its 
world trajectory in a vertical straight line), then tr = t. On the other hand, if the particles moves fast 
(with speed u  c) toward the observation point, its world line crosses the light cone at a small 
(“grazing”) angle, so that tr >> t, in accordance with Eq. (18). 

 Since the retarded time tr, as the solution of Eq. (3), depends not only on the observation time t, 
but also the observation point r, so we also need to calculate its spatial derivative – the gradient in r-
space. A calculation, absolutely similar to that carried above, yields 
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 Using Eqs. (6.106), (18) and (19), the calculation of fields from Eqs. (10) is straightforward but 
tedious, and is left for reader’s exercise. For the electric field, the result is: 
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The only good news about this uncomfortably bulky result is that a similar differentiation gives 
essentially the same formula for the magnetic field, which may be expressed via Eq. (20a): 5 
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Thus the magnetic and electric fields are always perpendicular to each other, and related just as in a 
plane wave – cf. Eq. (7.6),6 with the only difference that now vector nr may be a function of time. 

 As a sanity check, let us use Eq. (20a) as an alternative way to find the electric field of a charge 
moving without acceleration, i.e. uniformly, along a straight line – see Fig. 9.11 (reproduced in Fig. 3) 
and its discussion in Sec. 5. (This example will also exhibit the challenges of practical application of the 
Liénard-Wiechert formulas.) In this case vector  does not change in time, so that the second term in Eq. 
(20a) vanishes, and all we need to do is to spell out the Cartesian components of the first term. Let us 
select the coordinate axes and time origin in the same way as shown in Fig. 3, and make a clear 
distinction between the actual position, r’ (t) = {ut, 0, 0} of the charged  particle at the instant t we are 

5 An alternative way to derive Eqs. (20) is to plug the 4-vector of potentials, given by Eq. (7), into Eq. (9.124) to 
calculate the field strength tensor. This calculation yields 
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Now the elements of this tensor may be identified with fields components in accordance with Eq. (9.125). 
6 Superficially, Eq. (20b) contradicts the electrostatics where B should vanish while E stays finite. However, note 
that according to the Coulomb law for a point charge, in this case E = En = Enr, so that B  nrE  nrnr = 0. 
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considering, and its retarded position r’(tr), where tr is the solution of Eq. (4), i.e. the moment when the 
particle’s field, moving with the speed of light, reaches the observation point r. In these coordinates 

            ,sin,0,cos,0,0,)(,,0,0,0,0,   rrr utt'b nrrβ  (10.21) 

with cos = -ut’/Rr, so that [(n - )x]r = -ut’/Rr - , and for the longitudinal component of the electric 
field, Eq. (20a) yields 
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 But according to Eq. (13), product Rr may be presented as c(t – tr) = u(t – tr). Plugging this 
expression into Eq. (22), we may eliminate the explicit dependence of Ex on time t’:  
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The nonvanishing transverse component of the field also has a similar form: 
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while Ez = 0. Hence, the only combination of tr and Rr we still need to calculate is [(1 - n)R]r. From 
Fig. 3, nr = cos  = -ut’/Rr, so that (1 - n)Rr = Rr + utr = c(t – tr) + c2tr = ct - ctr/2. What 
remains is to find time tr from the self-consistency equation (13) that in our case (Fig. 3) takes the form 

      22222 )()( rrr utbttcR  .    (10.25) 

After solving this quadratic equation (with the appropriate negative sign before the square root, in order 
to get tr < t),  
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we obtain a simple result: 
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so that the electric field components are  
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 These are exactly Eqs. (9.139),7 which had been obtained in Sec. 9.5 by simpler means, without 
the necessity to solve the self-consistency equation for tr. However, that alternative approach was 
essentially based on the inertial motion of the particle, and cannot be used in problems in which particle 
moves with acceleration. In those problems, the second term in Eq. (20a), describing wave radiation, is 
essential and most important. 

 

10.2. Radiation power 

 Let us calculate the angular distribution of particle’s radiation. For that, we need to return to use 
Eqs. (20) to find the Poynting vector S = EH, and in particular its component Sn = Snr, at large 
distances R from the particle.   Following tradition, let us express the result as the radiated energy per 
unit solid angle per unit time interval dtr of the radiation (rather than its measurement), using Eq. (18): 
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At sufficiently large distances from the particle, i.e. in the limit R  , the contribution of the first 
(essentially, the Coulomb field) term in the square brackets of Eq. (20a) vanishes as 1/R2, so that we get 
a key formula valid for an arbitrary law of particle motion:8 
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 Now, let us apply this important result to some simple cases. First of all, Eq. (30) says that a 
charge moving with constant velocity  does not radiate at all. This might be expected from our analysis 
of this case in Sec. 9.5, because in the reference frame moving with the charge it produces only the 
Coulomb electrostatic field, i.e. no radiation. 

Next, let us consider a linear motion of a point charge with a nonvanishing acceleration – 
evidently directed along the motion line. With the coordinate axes directed as shown in Fig. 4a, each of 
the vectors involved in Eq. (30) has at most two nonvanishing Cartesian components:  

                  ,0,0,,0,0,cos,0,sin  ββn .   (10.31) 

where   is the angle between the directions of particle’s motion and radiation propagation. Plugging 
these expressions into Eq. (30) and performing the vector multiplications, we get 
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7 A similar calculation of magnetic field components from Eq. (20b) gives the results identical to Eqs. (9.140). 
8 If the direction of radiation, n, does not change in time, this formula does not contain the observation point r. 
Hence, from this point on, index r may be safely dropped for brevity, though we should always remember that  
in Eq. (30) is the reduced velocity of the particle at the instant of radiation’s emission, not detection. 
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 Figure 4b shows the angular distribution of this radiation, for three values of particle’s speed. If 
it is relatively low ( << 1), the denominator in Eq. (32) is close to 1 for all observation angles , so that 
the angular distribution of the radiation power is close to sin2  - just as it follows from the general non-
relativistic formula  (8.26). However, as the velocity is increased, the denominator is less than 1 for   < 
/2, i.e. for the forward-looking directions, and is larger than 1 for back directions. As a result, the 
radiation toward particle’s velocity is increased (somewhat counter-intuitively, regardless of the 
acceleration sign!), while that in the back direction is suppressed. For ultra-relativistic particles (  1), 
this trend is enormously exacerbated, and radiation to very small forward angles dominates. In order to 
describe this main part of the distribution, we may expand the trigonometric functions of , participating 
in Eq. (32), into the Taylor series in small , and keep only their leading terms: sin   , cos  1 -  
2/2, so that (1 - cos)  (1 + 2 2)/22. The resulting expression,  
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describes a narrow distribution of radiation, with a maximum at angle 
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Note that due to the axial symmetry of the result, and the fact that according to Eq. (33), dP/d = 0 in 

the exact direction of particle’s propagation ( =0), Eq. (40) describes a narrow circular “hollow cone” 
of radiation. Another important aspect of this result is how fast does the maximum radiation brightness 
grows with the Lorentz factor , i.e. with particle’s energy E = mc2.  

 Still, the total radiated power P  (into all observation angles) at linear acceleration is not too high 
for any practicable values of parameters. In order to show this, it is convenient to calculate P  for an 
arbitrary motion of the particle first. It is possible to do this by a straightforward integration of Eq. (30) 
over the full solid angle, but let me demonstrate how P may be found (or rather guessed) from the 
general relativistic arguments. In Sec. 8.2, we have derived Eq. (8.27) for the electric dipole radiation 
for non-relativistic particle motion. That result is valid, in particular, for one charged particle whose 
electric dipole moment’s derivative over time may be expressed as d(qr)/dt = (q/m)p, where p is 

Fig. 10.4. Radiation at linear 
acceleration: (a) geometry of 
the problem, and (b) the last 
fraction in  Eq. (32) as a 
function of angle . 
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particle’s mechanical momentum (not its electric dipole moment). As the result, the Larmor formula  
(8.27) in free space, i.e. with v = c, reduces to 

      .
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This is evidently not a Lorentz-invariant result, but it gives a clear hint how such an invariant, that is 
reduced to Eq. (35) in the non-relativistic limit, may be formed: 
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 Plugging in the relativistic expressions, p = mc, E = mc2, and d = dt/, the last formula may 
be recast into the Liénard extension of the Larmor formula:9  
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P ,             (10.37) 

which may be also obtained by a direct integration of Eq. (30) over the full solid angle, thus confirming 
our guess. However, for some applications, it is beneficial to express P  the via the time evolution of 
particle’s momentum alone. For that, we may differentiate the fundamental relativistic relation (9.78),   
E 2 = (mc2)2 + (pc)2, over the proper time   to get 
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where, at the last transition, the magnitude of the relativistic vector relation mentioned in Chapter 9, 
c2p/E = u, has been used. Plugging this relation into Eq. (36), we may rewrite it as 
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Note the difference between the squared derivatives in this expression: in the first of them we have to 
differentiate the momentum vector p, and only then form a scalar by squaring the resulting vector 
derivative, while in the second case, only the magnitude of the vector is differentiated. For example, for 
a circular motion with constant speed (to be analyzed in detail in the next section), the second term is 
zero, while the first one is not.  

However, if we return to the simplest case of linear acceleration (Fig. 4), then (dp/d)2 = 
(dp/d)2, and Eq. (39) is reduced to 
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9 The second form of Eq. (10.37), frequently more convenient for applications, may be readily obtained from the 
first one by applying MA Eq. (7.7a) to the vector product. 
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(where t’  tr is the time of emitting radiation as measured as in the lab frame), i.e. formally coincides 
with non-relativistic Eq. (35). In order to get a better feeling of the magnitude of this radiation, we may  
use the fact that dp/dt = dE/dz’.  This allows us to rewrite Eq. (40) in the following form: 
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For the most important case of ultra-relativistic motion (u  c), this result may be presented as 
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where rc is the classical radius of the particle, given by Eq. (8.41). This formula shows that the radiated 
power, i.e. the change of particle’s energy due to radiation, is much smaller than that due to the 
accelerating field, unless energy as large as mc2 is gained on the classical radius of the particle. For 
example, for an electron, such acceleration would require the accelerating electric field of the order of 
(0.5 MV)/(310-15 m) ~ 1014 MV/m, while practicable accelerating fields are below 103 MV/m, limited 
by  the electric breakdown effects. Such smallness of radiative losses of energy is actually a large 
advantage of linear electron accelerators  - such as the famous 2-mile-long SLAC10 that can accelerate 
electrons or positrons to energies up to 50 GeV, i.e. to   105.  

 

10.3. Synchrotron radiation 

 Now let me show that in circular accelerators, the radiation is much larger. Consider a charged 
particle being accelerated in the direction perpendicular to its velocity u (for example by a the magnetic 
component of the Lorentz force), so that its speed u, and hence the magnitude p of its momentum, do not 
change. In this case, the second term in Eq. (39) vanishes, and it yields 
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Comparing this expression with Eq. (40), we see that for the same acceleration magnitude, the 
electromagnetic radiation is a factor of 2 larger. For modern accelerators, with  ~ 104-105, such a factor 
creates an enormous difference. For example, if a particle is on a cyclotron orbit in a constant magnetic 
field (as was analyzed in Sec. 9.6), both u and p = mu obey Eq. (9.150), so that   
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(where R is orbit’s radius), so that for the power of this synchrotron radiation, Eq. (43) yields 
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 According to Eq. (9.153), at fixed magnetic field (in particle accelerators, limited to a few Tesla 
produced by the beam-bending magnets), the synchrotron orbit radius R scales as , so that according to 

10 See, e.g., https://www6.slac.stanford.edu/. 
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Eq. (45), P scales as 2, i.e. grows fast with particle’s energy E  . For example, for typical parameters 
of the first electron cyclotrons (such as the General Electric machine in which the synchrotron radiation  
was first noticed in 1947), R ~ 1 m, E ~ 0.3 GeV ( ~ 600), Eq. (45) gives a very modest electron energy 

loss per one revolution: Pt’  2PR/c ~ 1 keV. However, already by the mid-1970s, electron 
accelerators, with R ~ 100 m, have reached energies E ~10 GeV, and the energy loss per revolution has 
grown to ~ 10 MeV, becoming the major energy loss mechanism.11 However, what is bad for particle 
accelerators and storage rings is good for the so-called synchrotron light sources – the electron 
accelerators designed specially for the generation of intensive synchrotron radiation - with the spectrum 
extending well beyond the visible light range. Let us now analyze the angular and spectral distributions 
of such radiation. 

 To calculate the angular distribution, let us select the coordinate axes as shown in Fig. 5, with 
the origin at the current location of the orbiting particle, axis z along its instant velocity (i.e. vector ), 
and axis x toward the orbit center.  

 

 

 

 

 

 

 

In the general case, the unit vector n toward the radiation observer is not within any of the 
coordinate planes, and hence should be described by two angles – the polar angle  and the azimuthal 
angle   between the x axis and projection 0P of vector n on plane [x, y]. Since the length of segment 0P 
is sin, the Cartesian coordinates of the relevant vectors are as follows: 

               0,0,,,0,0,cos,sinsin,cossin    ββn .  (10.46) 

Plugging these coordinates into the general Eq. (30), we get 
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According to this result, just as at the linear acceleration, in the ultra-relativistic limit, most 
radiation goes to a narrow cone (of width  ~ -1 << 1) around vector , i.e. around the instant direction 
of particle’s propagation. For such small angles, and  >> 1, the second of Eqs. (47) is reduced to  

11 For proton accelerators, such energy loss is much less of a problem, because   of an ultra-relativistic particle 
(at fixed E) is proportional to 1/m, so that the estimates, at the same R, should be scaled back by (mp/me)

4 ~ 1013. 

Nevertheless, in the giant modern accelerators such as the LHC (with R  4.3 km and E  7 TeV), the synchrotron 

radiation loss per revolution is rather noticeable (Pt’ ~ 6 keV), leading not as much to particle deceleration as to 
substantial photoelectron emission from the beam tube walls, creating harmful defocusing effects. 

Fig. 10.5. Geometry of the synchrotron 
radiation problem. ββ
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 Left panel of Fig. 6 shows the angular distribution f(, ) color-coded, on the plane 
perpendicular to particle’s instant velocity (in Fig. 5, plane [x, y]), while its right panel shows the 
intensity as a function of   in two perpendicular directions: within the particle rotation plane (along axis 
x) and perpendicular to this plane (along axis y). The result shows, first of all, that, in contrast to the 
case of linear acceleration, the narrow radiation cone is now not hollow: the intensity maximum is 
reached exactly at  = 0, i.e. in particle’s motion direction. Second, the radiation cone is not axially-
symmetric: the intensity drops faster within the particle rotation plane (and even has nodes at   = 1/).  

 

 

 

 

 

 

 

 

 

 

 

 

  Let us consider the time/frequency structure of the synchrotron radiation, now from the point of 
view of the observer rather than the particle itself. (In the latter picture, due to the axial symmetry of the 
problem, the total radiation power P  is evidently constant.) Its semi-quantitative picture may be 
obtained from the angular distribution we have just analyzed. Indeed, if an ultra-relativistic particle’s 
radiation is observed from a point in (or close to) the rotation plane,12 the observer is being “struck” by 
the narrow radiation cone once each rotation period, each “strike” giving  a pulse of  a short duration t 
<< c – see Fig. 7.  

12 If the observation point is off-plane, or if the rotation speed is much less than c, the radiation is virtually 
monochromatic, with frequency c. 
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Fig. 10.6. Angular distribution of 
the synchrotron radiation at   >> 1. 
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 The evaluation of the time duration t of each pulse requires some care: its estimate t’ ~ 1/c 
is correct for the duration of the time of particle’s motion while its cone is aimed at the observer. 
However, due to the time compression effect, discussed in detail in Sec. 1 and described by Eqs. (12) 
and (18), the pulse duration as seen by observer is a factor of  1/(1 - ) shorter, so that 
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 .    (10.49) 

 From the Fourier theorem, we can expect that the frequency spectrum of the radiation consists of  
numerous (N ~  3 >> 1) harmonics of the rotation frequency c, with comparable amplitudes. However, 
if the orbital frequency fluctuates even slightly (c/c > 1/N ~ 1/3), as it happens in most practical 
systems, the radiation pulses are not coherent, so that the average radiation power spectrum may be 
calculated as that of one pulse, multiplied by number of pulses per second. In this case, the spectrum is 
continuous, extending from low frequencies all the way to approximately 

             .~/1~ 3
max ct        (10.50) 

 In order to verify this estimate, let us calculate the spectrum of radiation, due to a single pulse. 
For that, we should first make the general notion of spectrum quantitative. Let us present an arbitrary 
electric field (say that of the synchrotron radiation we are studying now), considered as a function of the 
observation time t (at fixed r), as a Fourier integral:13 

               




 dtet ti
EE .     (10.51)  

This expression may be plugged into the following formula for the total energy of the radiation pulse 
(i.e. of particle energy’s loss) per unit solid angle:14 

13 In contrast to the single-frequency case (i.e. a monochromatic wave), we may avoid taking real part of the 
complex function (Ee-it) if we require that E- = E*. However, it is important to remember the factor ½ 
required for the transition to a monochromatic wave of frequency 0: E = E0 [( - 0) + ( + 0)]/2.
14 Note that the expression under the integral differs from dP/d defined by Eq. (29) by the absence of term (1 - 

n) = t’/t. This is natural, because this is the wave energy arriving at the observation point r during time 
interval dt rather than dt’. 

Fig. 10.7. (a) Synchrotron radiation cones at  >> 1, and (b) the in-plane component of their electric field, 
observed in the rotation plane, as a function of observation time t – schematically. 
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This substitution, plus a natural change of integration order, yield 
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But the inner integral (over t) is just 2( + ’).15 This delta-function kills one of the frequency 
integrals (say, one over ’), and Eq. (53) gives a result which may be recast as 
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where the evident frequency symmetry of the scalar product EE- has been utilized to fold the integral 
of I() to positive frequencies only. The first of Eqs. (51) and the first of Eqs. (54) make the physical 
sense of function I() clear: this is the so-called spectral density of the electromagnetic radiation (per 
unit solid angle, per unit pulse).16 

 In order to calculate the spectral density, we need to express function E  via E(t) using the 
Fourier transform reciprocal to Eq. (51): 
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In the particular case of radiation by a single point charge, we should use the second term of Eq. (20a): 
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Since vectors n and  are natural functions of the radiation (retarded) time t’, let us use Eqs. (18) to 
change integration in Eq. (52) from the observation time t to time t’: 
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The strong inequality Rr >> r’ that is implied from the beginning of this section allows us to consider the 
unit vector n as constant and, moreover, to use approximation (8.19) to reduce Eq. (57) to  
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Plugging this expression into Eq. (54), we get17 

15 See, e.g. MA Eq. (14.3a). 
16 The notion of spectral density may be readily generalized to random processes – see, e.g., SM Sec. 5.4. 
17 Note that for our current purposes of calculation of spectral density of radiation by a single particle, factor 
exp{ir/c} has got cancelled. However, as we have seen in Chapter 8, this factor plays the central role at 
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 Let me remind the reader that  inside this integral is supposed to be taken at the retarded point 
{r’, t’}, so that Eq. (59) is fully sufficient for finding the spectral density from the law r’(t’) of particle’s 
motion. However, this result may be further simplified by noticing that the fraction before the exponent 
may be presented as a full derivative over t’, 
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and working out the resulting integral by parts. At this operation, the time differentiation of the 
parentheses in the exponent, d(t’ - nr’/c)/dt’  = 1 - nu/c = 1 - n, leads to the cancellation of 
denominator’s remains and hence to a surprisingly simple result: 18 
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 Returning to the particular case of synchrotron radiation, it is beneficial to choose the origin of 
time t’ so that at t’ = 0, angle   takes its smallest value 0, i.e., in terms of Fig. 5, vector n is within  
plane [y, z]. Fixing this direction of axes in time, we can redraw that figure as shown in Fig. 8. In these 
coordinates, 

                        ,cos,0,sin,sin,0,cos1,cos,sin,0 00   βrn RR'  (10.62) 

where   ct’, and an easy multiplication yields 
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interference of radiation from several (many) sources. In the context of synchrotron radiation, such interference 
becomes important in undulators and free-electron lasers -  the devices to be (qualitatively) discussed below.  
18 Actually, this simplification is not occasional. According to Eq. (10b), the expression under the derivative is 
just the transverse component of the vector-potential A (give or take a constant factor), and from the discussion in 
Sec. 8.2 we know that this component determines the electric dipole radiation of the particle (which dominates the 
radiation field in our current case of uncompensated electric charge). 

Fig. 10.8. Deriving the spectral density of 
synchrotron radiation. Vector n is fixed in 
plane [y, z], while vectors r’(t’) and (t’) 
rotate in plane [x, y] with angular velocity c. 
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 As we already know, in the (most interesting) ultra-relativistic limit  >> 1, most radiation is 
confined to short pulses, so that only small angles  ~ ct’ ~  -1 may contribute to the integral in Eq. 
(61). Moreover,  since most radiation goes to small angles   ~  -1, it makes sense to consider only small 
angles 0 ~  -1 << 1. Expanding both trigonometric functions of these small angles, participating in 
parentheses of Eq. (64), into Taylor series, and keeping only terms up to O( -3), we can present them as 
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Since (R/c)c = u/c =   1, in two last terms we may approximate this parameter by 1. However, it is 
crucial to distinguish the difference of two first terms, proportional to (1 - )t’, from zero, and as we 
have done before we may approximate it with t’/22. In Eq. (63), which does not have such critical 
differences, we may be more bold, taking19 
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As a result, Eq. (61) is reduced to  
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where ax and ay are the dimensionless factors,  
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which describe the frequency spectra of two components of the synchrotron radiation, with mutually 
perpendicular directions of polarization. Defining a dimensionless parameter 
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proportional to the observation frequency, and changing the integration variable to   ct’/(0
2 + -2)1/2, 

integrals (68) may be reduced to the modified Bessel functions of the second kind: 
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19 By the way, this expression shows that the in-plane (x) component of the electric field is an odd function of t’ 
(and hence t – see its sketch in Fig. 7), while the perpendicular component is an even function of time. Also notice 
that for an observer exactly in the rotation plane (0 = 0) the latter component vanishes. 
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 Figure 9a shows the dependence of amplitudes ax and ay of the normalized observation frequency 
. It is clear that the in-plane component, proportional to ax, is larger. (The off-plane component 
disappears altogether at 0 = 0, i.e. at observation within the particle rotation plane [x, y], due to the 
evident mirror symmetry of the problem about the plane.) It is also clear that the spectrum changes 
rather slowly (note the log-log scale of the plot!) until the normalized frequency, defined by Eq. (69), 
reaches ~1. For most important observation angles 0 ~   this means that our estimate (50) is indeed 
correct, though theoretically the frequency spectrum extends to infinity.20 

  

 

 

 

 

 

 

 

 

 

 

 Naturally, a similar frequency behavior is valid for the spectral density integrated over the full 
solid angle. Without performing the integration,21 let me give the result (also valid for  >> 1 only) for 
reader’s reference: 
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Figure 8b shows the dependence of this integral on the normalized frequency . (This plot is sometimes 
called the “universal flux curve”.)  In accordance with estimate (50), it reaches maximum at  

     3
maxmax 2

 i.e.,3.0 


 c .    (10.72) 

 For the new National Synchrotron Light Source (NSLS-II), that is under construction in the 
Brookhaven National Laboratory very close to our campus, with the ring circumference of 792 m, the 
electron revolution period T will be 2.64 μs. Calculating c as 2π/T  2.4106 s-1, for the planned    

20 The law of the spectral density decrease at large   may be readily obtained from the second of Eqs. (2.158) 
which is valid even for any (even non-integer) Bessel function index n: ax  ay  -1/2exp{-}. Here the 
exponential factor is certainly most important. 
21 For that, and many other details, the interested reader may be referred, for example, to the fundamental review 
collection by E. E. Koch et al. (eds.) Handbook on Synchrotron Radiation (in 5 vols.), North-Holland, 1983-1991, 
or a more concise monograph by A. Hofmann, The Physics of Synchrotron Radiation, Cambridge U. Press, 2007. 

Fig. 10.9. Synchrotron radiation frequency spectra of: (a) two polarization 
amplitudes and (b) the total (polarization- and angle-averaged) radiation. 
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6103 (E  3 GeV),22 we get max ~ 31017 s-1, corresponding to photon energy max ~ 200 eV, 
corresponding to soft X-rays. In the light of this estimate, the reader may be surprised by Fig. 10 that 
shows the projected spectra of radiation which this facility is designed to produce, with maximum 
photon energies up to a few keV. 

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reason of this discrepancy is that in NLLS-II, and in all modern synchrotron light sources, most 
radiation is produced not by the circular orbit itself, but rather using special devices inserted into the 
electron beam path. These devices include bend magnets with magnetic field stronger than the average 

22 By modern standards, this energy is not too high. The distinguished feature of NSLS-II is its unprecedented 
electron beam intensity (planned average beam current up to 500 mA) which should allow an extremely high 
synchrotron “brightness” I(). 

Fig. 10.10. Design brightness of various synchrotron radiation sources of the NSLS-II facility. For bend 
magnets and wigglers, the “brightness” may be obtained by multiplication of the spectral density I() 
from one electron pulse, calculated above, by the number of electrons passing the source per second. 
(Note the non-SI units, commonly used in the synchrotron radiation community.) However, for 
undulators, there is an additional factor due to the partial coherence of radiation – see below. (Data from 
document NSLS-II Source Properties and Floor Layout, available online at http://www.nsls.bnl.gov/.)  
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field on the orbit (which, according to Eq. (9.112), produce higher effective value of c and hence of 
max), and wigglers and undulators: strings of  several strong magnets with alternating field direction 
(Fig. 11), that induce periodic bending of electron trajectory, with radiation emitted at each bend. 

 

 

 

  

 

 

 

 

 

 The difference between wigglers and undulators is more quantitative than qualitative: the former 
devices have a larger spatial period  (distance between the adjacent magnets of the same polarity, see 
Fig. 11), giving enough space for the electron beam to bend by an angle larger than  -1, i.e. larger than 
the radiation cone angle. As a result, the pulses radiated at each period arrive to an in-plane observer as 
a periodic sequence of individual pulses (Fig. 12a). The shape of each pulse, and hence its frequency 
spectrum, are similar to those discussed above,23 but with much higher local values of c and max – see 
Fig. 9. Another difference is a much higher frequency of the peaks. Indeed, the fundamental Eq. (18) 
allows us to calculate the time distance between them, for the observer, as 
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where the first two relations are valid at  << R (the relation typically satisfied very well, see Fig. 10), 
and the last two relations also require the ultra-relativistic limit. As a result, the radiation intensity, that 
is proportional to the number of poles, is much higher than that from the bend magnets – in the NLSL-II 
case, more than by 2 orders of magnitude, clearly visible in Fig. 10. 

 

 

 

 

 

 

 

 

23 A small problem for the reader: use Eqs. (20) and (63) to explain the difference between the shapes of pulses 
generated at opposite magnetic poles of the wiggler, which is schematically shown in Fig. 12a. 

t

Fig. 10.12. Radiation (with in-plane polarization) from (a) a wiggler and (b) an undulator – schematically. 

(a)       (b) 
ct 22/ 

t

t

Fig. 10.11. The generic magnetic structure 
common for wigglers, undulators and free-
electron lasers. (Adapted from http://www-
xfel.spring8.or.jp/cband/e/Undulator.htm.) 
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 The situation in different in undulators – similar structures with smaller spatial period , in 
which electron’s velocity vector oscillates with angular amplitude smaller that -1. As a result, the 
radiation pulses overlap (Fig. 12b) and the radiation waveform is closer to sinusoidal one. As a result, 
the radiation spectrum narrows to the central frequency24 

             

 c

t

2
2

2 2
0 


 .     (10.74) 

For example, for the LSNL-II undulators with  = 20 mm, this formula predicts the radiation peak at 
phonon energy 0  4 keV, in a reasonable agreement with results of quantitative calculations, shown 
in Fig. 10.25 Due to the spectrum narrowing, the intensity of undulators radiation is higher that that of 
wigglers using the same electron beam. 

 This spectrum-narrowing trend is brought to its logical conclusion in the so-called free-electron 
lasers26 whose basic structure is the same as that of wigglers and undulators (Fig. 11), but the radiation 
at each beam bend is so intense and narrow-focused that it affects the electron motion downstream the 
radiation cone. As a result, the radiation of all bends becomes synchronized, so its spectrum is a narrow 
line at frequency (74), with electromagnetic wave amplitude proportional to the number N of electrons 
in the structure, and hence its power proportional to N2 (rather than to N as in wigglers and undulators).  

 Finally, note that wigglers, undulators, and free-electron lasers may be also used at the end of a 
linear electron accelerator (such as SLAC) that, as was noted above, may provide extremely high values 
of , and hence radiation frequencies, due to the absence of the radiation energy losses at the electron 
acceleration stage. 

 

10.4. Bremsstrahlung and Coulomb losses 

 Surprisingly, a very similar mechanism of radiation by charged particles works at much lower 
spatial scale, namely at their scattering by charged particles of the propagation medium, the so-called 
bremsstrahlung - German for “brake radiation”. This effect responsible, in particular, for the continuous 
part of the frequency spectrum of the radiation produced by standard vacuum X-ray tubes, its incidence 
on a solid “anticathode”. 27 

 The bremsstrahlung in condensed matter is generally a rather complicated phenomenon, because 
of simultaneous involvement of many particles, and some quantum electrodynamic effect involvement. 

24 This important formula may be also interpreted in the following way. Due to the relativistic length contraction 
(9.20), the undulator structure period as perceived by beam electrons is ’ = /, so that the central frequency of 
radiation is 0’ = 2c/’ = 2c/. For the lab-frame observer, this frequency is Doppler-upshifted  according to 
Eq. (9.44): 0 = 0’[(1 + )/(1 - )]1/2  20’, giving the same result as Eq. (74). 
25 Much of the difference is due to the fact that that those plots show the spectral density of the number of photons 
n = E/ per second, which peaks above the density of power, i.e. energy E per second. 
26 This name is somewhat misleading, because in contrast to the usual (“quantum”) lasers, the free-electron laser  
operation is essentially classical and very similar to that of vacuum-tube microwave generators (such as 
magnetrons briefly discussed in Sec. 9.6) – see, e.g., E. Salin et al., The Physics of Free Electron Lasers, 
Springer, 2000. 
27 Such X-ray radiation had been observed experimentally, though not correctly interpreted by N. Tesla in 1887, 
i.e. before the radiation was studied in detail (and much publicized) by W. Röntgen. 
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This is why I will give only a very brief glimpse at the theoretical description of this effect, for the 
simplest case when scattering of incoming, relatively light charged particles (such as electrons, protons, 
-particles, etc.) is produced by atomic nuclei that remain virtually immobile during the scattering event 
(Fig. 13a). This is a reasonable approximation if  the energy of incoming particles is not too low, 
otherwise most scattering is produced by atomic electrons whose dynamics is substantially quantum – 
see below. 

 

 

 

 

 

 

To calculate the frequency spectrum of radiation emitted during a single scattering event, it is 
convenient to use a byproduct of the last section’s analysis, namely Eq. (59) with replacement (60):28 
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 The typical duration   of a single scattering event, that is described by this formula, is of the 
order of a0/c ~ (10-10 m)/(3108 m/s) ~ 10-18 s in solids, and only an order of magnitude longer in gases 
at ambient conditions. This is why for most frequencies of interest, from zero all the way up to at least 
soft X-rays,29 we can use the so-called low-frequency approximation, taking the exponent in Eq. (75) for 
1 through the whole collision event, i.e. the integration interval. This approximation immediately yields  
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 .   (10.76) 

In the non-relativistic limit (ini, fin << 1), this formula in reduced to30 
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where q is the momentum transferred from the scattering center to the scattered charge (Fig. 13b):31 

28 In publications on this topic (whose development peak was in the 1920s and 1930s), Gaussian units are more 
common, and letter Z  is usually reserved for expressing charges as multiples the fundamental charge e, rather 
than for the wave impedance. This is why, in order to avoid confusion, in this section I will use 1/0c  Z0 for the 
free-space wave impedance and, still sticking to the same SI units as used through my lecture notes, will write the 
coefficients in a form that makes the transfer to the Gaussian units trivial: it is sufficient to replace all (qq’/40)SI 
with (qq’)Gaussian. In the (rare) cases when I spell out the charge values, I will use a different font: q  Ze, q’  Z’e. 
29 A more careful analysis shows that this approximation is actually quite reasonable up to much higher 
frequencies of the order of 2/. 
30 Evidently, this result (but not the general Eq. (76)!) may be derived from Eq. (8.27) as well.  
31 Please note the font-marked difference between this variable (q) and particle’s electric charge (q). 

Fig. 10.13. Basic geometry 
of the bremsstrahlung and 
Coulomb loss problems in 
(a) direct and (b) reciprocal 
space. 
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     inifininifin mcmcm βββupp  ΔΔq ,   (10.78) 

and   is the angle between vector q and the direction n toward the observer. 

 The most important feature of result (77) is the frequency-independent (“white”) spectrum of the 
radiation, very typical for any rapid leaps, which may be approximated as theta-functions of time. (Note, 
however, that this is only valid for a fixed value of q, so that the statistics of this parameter, to be 
discussed in a minute, “colors” the radiation.) Note also the angular distribution of the radiation, 
forming the usual “doughnut” shape about the momentum transfer vector q. In particular, this means that 
in typical cases when q ~ p, the bremsstrahlung produces a significant radiation flow in the direction 
back to the particle source – the fact significant for the operation of X-ray tubes.  

 Now integrating over all wave propagation angles, just as we did for the instant radiation power 
in Sec. 8.2, we get the spectral density of the full energy loss, 
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 The main new feature of bremsstrahlung (as of most scattering problems32), is the necessity to 
take into account the randomness of the impact parameter b (Fig. 13a). For elastic (ini = fin  ) 
Coulomb collisions we can use the so-called Rutherford formula for the differential cross-section of 
scattering33 
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Here d = 2bdb is the elementary area of the sample cross-section (as visible from the direction of 
incident particles) corresponding to particle scattering into an elementary body angle34 

             'd''d  sin2 .     (10.81) 

Differentiating the geometric relation that is evident from Fig. 13b, 
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we may present Eq. (80) in a more convenient form 
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   (10.83) 

32 See, e.g., CM Sec. 3.7. 
33 See, e.g., CM Eq. (3.72) with constant  = qq’/40. In the form used in Eq. (80), the Rutherford formula is 
also valid for small-angle scattering of relativistic particles, the criterion being  << 2/. 
34 Angle ’ and differential d’, describing the direction of scattered particles, should not be confused with  and 
d describing directions of the radiation emitted at the scattering event. 
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Now combining Eqs. (79) and (83), we get 
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This product is called the differential radiation cross-section. When averaged it over all values q 
(which is equivalent to averaging over all values of the impact parameter), it gives a convenient measure 
of radiation intensity. Indeed, after the multiplication by the volume density n of independent scattering 
centers, the integral gives particle’s energy loss by unit bandwidth of radiation by unit path length -
d2E/ddx. A technical problem here is that the integral of 1/q formally diverges at both infinite and zero 
values of q. However, these divergences are very weak (logarithmic), and the integral converges due to 
virtually any reason unaccounted for by our simple analysis. The standard simple way to account for 
these effects is to write 
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and then plug, instead of qmax and qmin, scales of the most important effects limiting the small momentum 
range. At classical analysis, according to Eq. (82), qmax = 2p. To estimate qmin, let us note that very small 
momentum transfer takes place when the impact parameter b is very large and hence the effective 
scattering time   ~ b/v is very long. Recalling the condition of the low-frequency approximation, we 
may associate qmin with   ~ 1/ and hence with b ~ u  ~ v/. Since for the small scattering angles, q 

may be estimated as the impulse F ~ (qq’/4π0b
2) of the Coulomb force, so that qmin ~ (qq’/4π0)/u2, 

and Eq. (85) becomes 
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  This is Bohr’s formula for what is called the classical bremsstrahlung. We see that the low 
momentum cutoff indeed makes the spectrum colored, with more energy going to lower frequencies. 
There is even a formal divergence at   0; however, this divergence is integrable, so it does not 
present a problem in finding the total energy radiative losses (-dE/dx) as an integral of Eq. (86) over all 

radiated frequencies . A larger problem for this procedure is the upper integration limit,   , at 
which the integral diverges. This means that our approximate description, which considers the collision 
as an elastic process, becomes wrong, and needs to be amended by taking into account the difference 
between the initial and final kinetic energies of the particle due to radiation of the energy quantum   
of the emitted photon: 

                        
m

p

m

p finini

22

22

.     (10.87) 

As a result, taking into account that the minimum and maximum values of q correspond to, respectively, 
the parallel and antiparallel alignments of vectors pini and pfin, we get 
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Plugged into Eq. (85), this expression yields the so-called Bethe-Heitler formula for quantum 
bremsstrahlung.35 Note that at this approach, qmax is close to that of the classical approximation, but qmin 

~ /u, so that 
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where z and z’ are particles’ charges in units of e, and   is the fine structure (“Sommerfeld”) constant, 
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which is one of the basic notions of quantum mechanics.36 For most cases of practical interest, ratio (89) 
is smaller that 1, and since we have to keep the highest value of qmin, the Bethe-Heitler formula should 
be used. 

 Now nothing prevents us from calculating the total radiative losses of energy per unit length: 
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where max = E  is the maximum energy of the radiation quantum. By introducing the dimensionless 

integration variable   /E = 2/(mu2/2) this integral is reduced to the table one,37 and we get 
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 In my usual style, I would give you an estimate of the losses for a typical case; however, let me 
compare them to a parallel energy loss mechanism, the so-called Coulomb losses, due to the transfer of 
mechanical impulse from the scattered particle to the scattering center. (This energy eventually goes into 
an increase of the thermal energy of the scattering medium.) Using Eqs. (9.139) for the electric field of a 
linearly moving charge, we can readily find the momentum it transfers to charge q’:38 
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35 The modifications of this formula necessary for the relativistic case description are surprisingly minor - see, 
e.g., Chapter 15 of J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley 1999. For more detail, the standard 
reference monograph on bremsstrahlung is W. Heitler, The Quantum Theory of Radiation, 3rd ed., Oxford U. Press 
1954 (reprinted in 2010 by Dover).  
36 See, e.g., QM Secs. 6.3, 9.3, 9.5, and 9.7.  
37 See, e.g., MA Eq. (6.14). 
38 According to Eq. (9.139), Ez =0, and the net impulse of the longitudinal force q’Ex is zero. 
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Hence, the kinetic energy acquired by the scattering center (equal to the loss of energy of the incident 
particle) is  
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 Such energy losses have to be summed up over all collisions, with random values of the impact 
parameter b. At the scattering center density n, the number of collisions per small path length dz per 
small range db is  dN = n2πbdbdx, so that 
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 Here the logarithmic integral over b was treated similarly to that over q in the bremsstrahlung 
theory. This approach is adequate, because the ratio bmax/bmin is much larger than 1. Indeed, bmin may be 
estimated from (p’)max ~ p = mu. For this value, Eq. (93) with q’ ~ q gives bmin ~ rc (see Eq. (8.41) and 
its discussion), which is, for elementary particles, of the order of 10-15m. On the other hand, for the most 
important case when charges q’ belong to electrons (which, according to Eq. (94) are the most efficient 
Coulomb energy absorbers, due to their extremely low mass m’), bmax may be estimated from condition 
  = b/u ~ 1/max, where max ~ 1016 s-1 is the characteristic frequency of electron transitions in atoms. 
(Below this frequency, our classical analysis of scatterer’s motion is invalid.) From here, we have the 
estimate bmax ~ u/max, so that  
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for  ~ 1 and u ~ c  3108 m/s giving bmax ~ 310-8 m, and B ~ 109 (give or take a couple orders of 
magnitude – this does not change the estimate lnB ~ 20 too much). 39 

 Now we can compare the Coulomb losses (95) with those due to the bremsstrahlung, given by 
Eq. (92): 

      ,
ln

1
~ 2

Coulomb

radiation

Bm

m'
'

d

d
ZZ

E
E




    (10.97) 

Since  ~ 10-2 << 1, for non-relativistic particles ( << 1) the Coulomb losses of energy are much 
higher, and only for ultra-relativistic particles, the relation may be opposite. 

 According to Eq. (95), for electron-electron scattering (q = q’ = -e, m’ = me),40 at the value n  
61026 m-3 typical for air at ambient conditions, the characteristic length of energy loss,  

39 A quantum analysis (carried out by H. Bethe in 1940) replaces, in Eq. (95), lnB with ln(22mu2/) -  2, 
where  is the average frequency of the atomic quantum transitions weight by their oscillator strength. This 
refinement does not change the estimate given below. Note that both the classical and quantum formulas describe, 
a fast increase (as 1/) of the energy loss rate (-dE/dx) at   1 and its slow increase (as ln) at    , so that the 

losses have a minimum at ( - 1) ~ 1. 
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for electrons with kinetic energy E = 6 keV is close to 210-4 m = 0.2 mm. (This is why you need 

vacuum in CRT monitors and electron microscope columns!) Since lc  E 2, more energetic particles 
penetrate deeper, until the bremsstrahlung steps in at very high energies. 

 

10.5. Density effects and the Cherenkov radiation 

 For condensed matter, the Coulomb loss estimate made in the last section is not quite suitable, 
because it is based on the upper cutoff bmax ~ u/max. For the example given above, incoming electron 
velocity u is close to 5107 m/s, and for the typical value max ~ 1016 s-1 (max ~ 10 eV), this cutoff 
bmax ~ 510-9 m = 5 nm. Even for air at ambient conditions, this is larger than the average distance (~ 2 
nm) between the molecules, so that at the high end of the impact parameter range, at b ~ bmax, the 
Coulomb loss events in adjacent molecules are not quite independent, and the theory needs corrections. 
For condensed matter, with much higher particle density n, most collisions satisfy condition 

          13 nb ,      (10.99) 

and the treatment of Coulomb collisions as independent events is completely inadequate. However, 
condition (99) enables the opposite approach: treating the medium as a continuum. In the time domain 
formulation, used in the previous sections of this chapter, this would be a very complex problem, 
because it would require an explicit description of medium dynamics. Here the frequency-domain 
approach, based on the Fourier transform in both time and space, helps a lot, provided that functions 
() and () are considered known - either calculated or taken from experiment. Let us have a good 
look at such approach, because it gives some interesting (and practically important) results. 

 In Chapter 6, we have used the macroscopic Maxwell equations to derive Eqs. (6.109), which  
describe the time evolution of potentials in a medium with frequency-independent  and . Looking for 
all functions participating in Eqs. (6.109) in the form of plane-wave expansion41 
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and requiring all coefficients at similar exponents to be balanced, we get their Fourier image: 42 
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40 Actually, the above analysis has neglected the change of momentum of the incident particle. This is legitimate 
at m’ << m, but for m = m’ the change approximately doubles the energy losses. Still, this does not change the 
order of magnitude of the estimate. 
41 All integrals here and below are in infinite limits, unless specified otherwise. 
42 As was discussed in Sec. 7.2, the Ohmic conductivity of the medium (generally, also a function of frequency) 
may be readily incorporated into the dielectric permittivity: ()  ef() + i()/. In this section, I will assume 
that such incorporation, which is especially natural for high frequencies, has been performed, so that the current 
density j(r, t) describes only stand-alone currents – for example, the current (105) of the incident particle.  
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As was discussed in Chapter 7, in such a Fourier form, the Maxwell theory remain valid even for the 
dispersive media, so that Eq. (101) is generalized as 
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 The evident advantage of these equations is that their formal solution is trivial: 
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so that the “only” remaining things to do is to calculate the Fourier transforms of functions (r, t) and 
j(r, t), describing stand-alone charges and currents, using the transform reciprocal to Eq. (100), with one 
factor 1/2 per each scalar dimension,  
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and than carry out the integration (100). 

 For our current problem of a single charge q, uniformly moving in the medium with velocity u,  
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the first task is easy:  
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Since expressions (105) for (r, t) and j(r, t) differ only by a constant factor u, it is clear that the 
absolutely similar calculation for current would give 
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Let us summarize what we have got by now, plugging Eqs. (106) and (107) into Eqs. (103): 
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 Now, at the last step of calculations, namely integration (100), we are starting to pay a heavy 
price for the easiness of the first steps. This is why let us think well what exactly do we need from it. 
First of all, for the calculation of power losses, the electric field is more convenient to use than the 
potentials, so let us calculate the Fourier images of E and B. Plugging expansion (100) into the 
fundamental relations (6.106), and again requiring the balance of exponent’s coefficients, we get 

           ,,,,,,, )()(,)()( kkkkkk ukAkBkuAkE  iiiii k ,  (10.109) 

so that Eqs. (100) and (108) yield 
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With the notation used in Eq. (51), this integral may be partitioned as  
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 Let us calculate the Cartesian components of the partial Fourier image E, at a point separated 
by distance b from particle’s trajectory. Selecting the coordinates and time origin as shown in Fig. 9.11a, 
we have r = {0, b, 0}, so that only Ex and Ey are not vanishing. In particular, according to Eq. (111), 
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The delta-function kills one integral (over kx) of three, and we get: 
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The last integral (over ky) may be readily reduced to the table integral d/(1 + 2), in infinite limits, 
equal to .43 The result may be presented as 
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where parameter  (generally, a complex function of frequency) is defined as 
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The last integral may be expressed via the modified Bessel function of the second kind:44 
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A similar calculation yields 
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 Now, instead of rushing to make the final integration (111) over frequency to calculate E(t), let 
us realize that what we need for power losses is only the total energy loss through the whole time of 
particle passage. Energy loss per unit volume is 
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43 See, e.g., MA Eq. (6.5a). 
44 As a reminder, the main properties of these functions are listed in Sec. 2.5 of these notes – see, in particular, 
Fig. 2.20b and Eqs. (2.157)-(2.158).  
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where j is the current of bound charges in the medium, and should not be confused with the free 
particle’s current (105). This integral may be readily expressed via the partial Fourier image E and the 
similarly defined image j., just as it was done at the derivation of Eq. (54): 
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.  (10.119) 

In our approach, the Ohmic conductance is incorporated into the complex permittivity (), so that, 
according to the discussion in the end of Sec. 7.2, current’s Fourier image is 

         EEj )(ef i .             (10.120) 

As a result, Eq. (119) yields 
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(The last transition is possible due to the property (-) = *(), which was discussed in Sec. 7.2.) 

 Finally, just as in the last section, we have to calculate the energy loss rate averaged over random 
values of the impact parameter b:    
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Note that we are cutting the resulting integral over b from below at some bmin where our theory looses 
legitimacy. (On that limit, we are not doing much better than in the past section). Plugging in the 
calculated expressions (116) and (117) for field components, swapping the integrals, and using 
recurrence relations (2.142), which are valid for any Bessel functions, we finally get: 
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 This general result is valid for an arbitrary linear medium, with arbitrary dispersion relations 
() and (). (The last function participates in Eq. (123) only via Eq. (115) which defines parameter 
.) To get more concrete results, some particular model of the medium should be used. Let us explore 
the Lorentz oscillator model, which was discussed in Sec. 7.2, in its form (7.33) suitable for transition to 
quantum-mechanical description of atoms: 
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If the damping of the effective atomic oscillators is low, j  << j, and particle’s speed u is much lower 
than the typical wave’s phase velocity v (and hence c!), then for most frequencies Eq. (115) gives 
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i.e.   = *  /u is real. In this case, Eq. (123) may be shown to give Eq. (95) with 

Radiation 
intensity 
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 Good news here is that both approaches (the microscopic analysis of Sec. 4 and the macroscopic 
analysis of this section) give essentially the same result. This fact may be also perceived as bad news: 
the treatment of the medium as a continuum does not give any new results here. The situation somewhat 
changes at relativistic velocities at which such treatment provides noticeable corrections (called density 
effects), in particular reducing the energy loss estimates.  

Let me, however, skip these details and focus on a much more important effect described by our 
formulas. Consider the dependence of the electric field components on the impact parameter b, i.e. on 
the closest distance between particle’s trajectory and the field observation point. If 2 > 0, then   is real, 
and we can use, in Eqs. (116)-(117), the asymptotic formula (2.158), 
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to conclude that the complex amplitudes E of both components Ex and Ey of the electric field decrease  
exponentially, starting from b ~ u/. However, let us consider what happens at frequencies where 2 < 
0, i.e.  
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(This condition means that particle’s velocity is larger than the phase velocity of waves, at this particular 
frequency.) In these intervals,  is purely imaginary,45 functions exp{b} become just phase factors, and 
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This means that the Poynting vector drops as 1/b, so that its flux through a surface of a round cylinder of 
radius b, with the axis on the particle trajectory (i.e. power flow), does not depend on b. Hence, this is 
wave emission – the famous Cherenkov radiation.46 

 The direction of its propagation may be readily found taking into account that at large distances 
from particle’s trajectory the emitted wave has to be locally planar, so that the Cherenkov angle   may 
be found from the ratio of the field components (Fig. 14a): 

       
y

x

E

E
tan .               (10.130) 

45 Strictly speaking, inequality 2 < 0 does not make sense for a medium with complex ()() and hence 
complex 2(). However, in a typical medium where particles can propagate over substantial distances, the 
imaginary part of product ()()does not vanish only in very limited frequency intervals, much more narrow 
that the intervals which we are now discussing - please have one more look at Fig. 7.5. 
46 This radiation was observed experimentally by P. Cherenkov (in older Western texts, “Čerenkov”) in 1934, 
with the observations explained by I. Frank and E. Tamm in 1937. Note, however, that the effect had been 
predicted theoretically as early as in 1889 by the same O. Heaviside whose name was mentioned so many times 
above - and whose genius I believe is still underappreciated.  
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This ratio may be calculated by plugging the asymptotic formula (127) into Eqs. (116) and (117) 
and calculating their ratio: 
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so that 
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 Remarkably, this direction does not depend on the emission time t’, so that radiation of 
frequency , at each instant, forms a hollow cone led by the particle. This simple result allows an 
evident interpretation (Fig. 14b): the cone is just the set of all observation points that may be reached by 
“signals” propagating with speed v() < u from all previous points of particle’s trajectory. 

This phenomenon is closely related to the so-called Mach cone in fluid dynamics,47 besides that 
in the Cherenkov radiation there is a separate cone for each frequency (of the range in which v() < u): 
the smaller is the ()() product, i.e. the larger is wave velocity v() = 1/[()()]1/2, and the 
broader is the cone, i.e. the earlier the corresponding “shock wave” arrives to an observer. Please note 
that the Cherenkov radiation is a unique radiative phenomenon: it takes place even if a particle moves 
without acceleration, and (in agreement with our analysis in Sec. 2), is impossible in free space where v 
= c is always larger than u. 

 The intensity of the Cherenkov radiation intensity may be also readily found by plugging the 
asymptotic expression (127), with imaginary , into Eq. (123). The result is 
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For non-relativistic particles (u << c), the Cherenkov radiation condition u > v() may be fulfilled only 
in relatively narrow frequency intervals where the product ()() is very large (usually, due to optical 
resonance peaks of the electric permittivity – see Fig. 7.5 and its discussion). In this case the emitted 
light consists of a few nearly monochromatic components. On the contrary, if the condition u > v(), i.e. 
u2/()() > 1 is fulfilled in a broad frequency range (as it is for ultra-relativistic particles in 

47 See, e.g., a brief discussion in CM Sec. 8.6. 
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Fig. 10.14. (a) Cherenkov radiation’s propagation angle , and (b) its interpretation. 
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condensed media), the radiated power is clearly dominated by higher frequency of the range – hence the 
famous bluish color of the Cherenkov radiation glow in water nuclear reactors– see Fig. 15. 

  

 

 

 

 

 

 

 

 

 

 

 The Cherenkov radiation is broadly used for the detection of radiation in high energy 
experiments for particle identification and speed measurement (since it is easy to pass particles through 
media of various density and hence of the dielectric constant) – for example, in the so-called Ring 
Imaging Cherenkov (RICH) detectors that have been designed for the DELPHI experiment48 at the 
Large Electron-Positron Collider (LEP)  in CERN. 

 A little bit counter-intuitively, the formalism described in this section is also very useful for the 
description of an apparently rather different effect - the so-called transition radiation that takes place 
when a charged particle crosses a border between two media.49 The effect may be understood as result 
of the time dependence of the electric dipole formed by the moving charge and its mirror image in the 
counterpart medium – see Fig. 16. In the non-relativistic limit, the effect allows a straightforward 
description combining the electrostatics picture of Sec. 3.4 (see Fig. 3.9 and its discussion), and Eq. 
(8.27) - slightly corrected for polarization effects of the media. However, if particle’s velocity u is 
comparable with the phase velocity of waves in either medium, the adequate theory of the transition 
radiation becomes very close to that of the Cherenkov radiation. 

 

 

 

 

 

48 See, e.g., http://delphiwww.cern.ch/offline/physics/delphi-detector.html. For a broader view at radiation 
detectors (including Cherenkov ones), the reader may be referred to the classical text by G. F. Knoll, Radiation 
Detection and Measurement, 4th ed., Wiley, 2010, and a newer treatment by K. Kleinknecht, Detectors for 
Particle Radiation, Cambridge U. Press, 1999. 
49 The effect was predicted theoretically in 1946 by V. Ginzburg and I. Frank, and only later observed 
experimentally. 

Fig. 10.15. The Cherenkov radiation glow coming from the 
Advanced Test Reactor of the Idaho National Laboratory. 
Adapted from http://en.wikipedia.org/wiki/Cherenkov_radiation. 

q q'

Fig. 10.16. Physics of the transition 
radiation. )(td )(td
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 In comparison with the Cherenkov radiation, the transition radiation is rather weak, and its 
practical use (mostly for the measurement of the relativistic factor , to which the radiation intensity is 
proportional) requires multi-layered stacks.50 In these systems, the radiation emitted at sequential 
borders may be coherent, and the system’s physics becomes close to that of the undulators discussed in 
Sec. 4. 

 

10.6. Radiation’s back-action 

 An attentive reader could notice that so far our treatment of charged particle dynamics has never 
been fully self-consistent. Indeed, in Sec. 9.6 we have analyzed particle’s motion in various external 
fields, ignoring the fields radiated by particle itself, while in Sec. 8.2 and earlier in this chapter these 
fields have been calculated (admittedly, just for a few simple cases), but, again, their back-action on the 
emitting particle have been ignored. Only in few cases we have taken the back effects of the radiation 
implicitly, via the energy conservation. However, even in these cases, the near-field components of the 
fields (such as the first term in Eq. (20a), that affect the moving particle most, have been ignored.  

 At the same time, it is clear that generally the interaction of a point charge with its own field 
cannot be always ignored. As the simplest example, if an electron is made to fly through a resonant 
cavity, thus inducing oscillations in it, and then is forced to return to it before the oscillations have 
decayed, its motion will be certainly affected by the oscillating fields, just as if they had been induced 
by another source. There is no conceptual problem with applying the Maxwell theory to such “field-
particle rendezvous” effects; moreover, it is the basis of the engineering design of such electron devices 
as klystrons, magnetrons, and undulators.  

 A problem arises only when no finite “rendezvous” point is enforced by boundary conditions, so 
that the most important self-field effects are at R  r – r’ 0, the most evident example being the 
radiation of particle in free space, described earlier in this chapter. We already know that radiation takes 
away a part of charge’s kinetic energy, i.e. has to cause its deceleration. One should wonder, however, 
whether such self-action effects might be described in a more direct, non-perturbative way.  

 As the first attempt, let us try a phenomenological approach based on the already derived 
formulas for radiation power P. For the sake of simplicity, let us consider a non-relativistic point charge 
q in free space, so that P is described by Eq. (8.27), with electric dipole moment’s derivative over time 
equal to qu: 
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P .             (10.133)  

 The most naïve approach would be to write the equation of particle’s motion in the form 

      selfextm FFu  ,              (10.134) 

50 See, e.g., Sec. 5.3 in K. Kleinknecht’s monograph cited above. 
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and try to calculate the radiation back-action force by requiring its instant power, -Fselfu, to be equal to 
P.  However, with Eq. (133), this approach (say, for 1D motion) would give a very unnatural result, 

         
u

u
Fself

2
  ,               (10.135) 

that might diverge at some points of particle’s trajectory. This failure is clearly due to the retardation 
effect: as the reader may recall, Eq. (133) results from the analysis of radiation fields at large distances 
from the particle, e.g., from the second term in Eq. (20a), i.e. when the non-radiative first term (which is 
much larger at small distances, R  0) is ignored.  

 Before exploring the effects of this term, let us, however, make one more try with Eq. (133), 
considering its average effect on some periodic motion of the particle. To calculate the average, let us 
write 
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and integrate this identity, over the motion period, by parts: 
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One the other hand, the back-action force would give  

              
T

self dt
T 0

1
uFP .              (10.138) 

These two averages coincide if51 
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 This is the so-called Abraham-Lorentz force for self-action. Before going after a more serious 
derivation of this formula, let us estimate its scale, presenting Eq. (139) as 
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where constant   evidently has the dimension of time. Recalling definition (8.41) of the classical radius 
rc of the particle, Eq. (140) for   may be rewritten as 
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51 This formula may be readily generalized to the relativistic case: 
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- the so-called Abraham-Lorentz-Dirac force. 
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For the electron,   is of the order of 10-23 s. This means that in most cases the Abrahams-Lorentz force 
is either negligible or leads to the same results as the perturbative treatments of energy loss we have 
used earlier in this chapter.  

 However, Eq. (140) brings some unpleasant surprises. For example, let us consider a 1D 
oscillator of eigenfrequency 0. For it, Eq. (134), with the back-action force given by Eq. (140), is 

             xmxmxm    2
0 .              (10.142) 

 Looking for the solution to this linear differential equation in the usual exponential form, x(t)  
exp{t}, we get the following characteristic equation, 

                  32
0

2   .              (10.143)  

It may look like that for any “reasonable” value of 0 << 1/ ~ 1023 s-1, the right-hand side of this 
nonlinear algebraic equation may be treated as a perturbation. Indeed, looking for its solutions in the 
natural form  = i0 + ’, with ’ << 0, expanding both parts of Eq. (143) in the Taylor series in 
small parameter ’, and keeping only linear terms, we get 
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2
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 ' .              (10.144) 

This means that the energy of free oscillations decreases in time as exp{2’t} = exp{-0
2 t};  this is 

exactly the radiative damping analyzed earlier. However, Eq. (143) is deceiving; it has the third root 
corresponding to unphysical, exponentially growing (so-called run-away) solutions. It is easiest to see 
for a free particle, with 0 = 0. Then Eq. (143) becomes very simple, 

             32   ,               (10.145) 

and it is easy to find all its 3 roots explicitly: 1 = 2 = 0 and 3 = 1/. While the first 2 roots correspond 
the values  found earlier, the last one describes exponential (and extremely fast!) acceleration.. 

 In order to remove this artifact, let us try to develop a self-consistent approach to back action, 
taking into account the near-field terms of particle fields. For that, we need somehow overcome the 
divergence of Eqs. (10) and (20) at R  0. The most reasonable way to do this is to spread particle 
charge over a ball of radius a, with a spherically-symmetric (but not necessarily constant) density (r), 
and in the end of calculations trace the limit a  0.52 Again sticking to the non-relativistic case (so that 
the magnetic component of the Lorentz force is not important), we should calculate 

          
V

rad rdt 3),()( rErF  ,              (10.146) 

where the electric field is that of the charge itself, with field of any elementary charge dq = (r)d3r, 
described by Eqs. (20a). 

52 Note: this operation cannot be interpreted as describing a quantum spread due to the finite extent of point 
particle’s wavefunction. In quantum mechanics, parts of wavefunction of the same charged particle do not interact 
with each other! 
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 In order to make analytical calculations doable, we need to make assumption a << rc, treat ratio 
R/rc ~ a/rc as a small parameter, and expand the result in the Taylor series in small R. This procedure 
yields 
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Distance R cancels only in the term with n = 1, 
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showing that we have recovered (now in an apparently legitimate fashion) Eq. (139) for the Abrahams-
Lorentz force. One could argue that in the limit a  0 the terms higher in R ~ a (with n > 1) could be 
ignored. However, we have to notice that the main contribution to into series (147) is not described by 
Eq. (148) for n = 1, but is given by the larger term with n = 0: 
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This term may be interpreted as the inertial “force” –mefa53 with the effective electromagnetic mass  
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 This is the famous (or rather infamous :-) 4/3 problem that does not allow to interpret the 
electron’s mass as that of its electric field. The (admittedly, rather formal) resolution of this paradox is 
possible only in quantum electrodynamics with its renormalization techniques - beyond the framework 
of this course. Note that these issues are only important for motions with frequencies of the order of 1/ 
~ 1023 s-1, i.e. at energies E ~ / ~ 10-11 J ~ 108 eV, while other quantum electrodynamics effects may 
be observed at much lower frequencies, starting from ~1010 s-1. Hence the 4/3 problem is by no means 
the only motivation for the transfer from classical to quantum electrodynamics.  

 However, the reader should not think that his or her time spent on this course has been lost: 
quantum electrodynamics incorporates virtually all classical electrodynamics results, and transition 
between them is surprisingly straightforward.54 

 

10.6. Exercise problems 

 10.1. A point charge q that had been in a stationary position on a circle of 
radius R, is carried over, along the circle, to the opposite position on the same 
diameter (see Fig. on the right) as fast as only physically possible, and then is kept 
steady at this new position. Calculate and sketch the time dependence of the 
electric field E at the center of the circle. 
 

53 See, e.g., CM Sec. 6.6. 
54 See, e.g., QM Chapter 9 and references therein. 
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 10.2. Express the total radiation power by a relativistic particle with the electric charge q and the 
rest mass m, moving with velocity u, via the external Lorentz force F exerted on the particle. 
 
 10.3. A relativistic particle with electric charge q, initially at rest, is accelerated by a constant 
force F until it reaches certain velocity u, and then moves by inertia. Calculate the total energy radiated 
during the acceleration.  
 
 10.4.* Calculate the power spectrum of the radiation emitted by a relativistic particle with charge 
q, performing 1D harmonic oscillations with frequency  and displacement amplitude a. 

 
10.5. Analyze the polarization and the spectral contents of the synchrotron radiation in the 

direction propagating perpendicular to particle’s rotation plane. How do the results change if not one, 
but N > 1 similar particles move around the circle, at equal angular distances? 
  
 10.6. Calculate the time dependence of the kinetic energy of a charged relativistic particle 
performing synchrotron motion in a constant and uniform magnetic field B, and hence emitting the 
synchrotron radiation. Sketch particle’s trajectory. 

 Hint: You may assume that the energy loss is relatively slow (-dE/dt << cE), but should spell 
out the condition of validity of this assumption. 
  
 10.7. Find the polarization of the synchrotron radiation propagating within particle’s rotation 
plane. 
 
  10.8. The basic quantum theory of radiation shows55 that the electric dipole radiation by a 
particle is allowed only if its angular momentum change at the transition equals .   

 (i) Estimate the change L of the orbital momentum of an ultra-relativistic particle due to its 
emission of a single photon of the synchrotron radiation.  
 (ii) Does the quantum mechanics forbid such radiation? If not, why?  
 
 10.9. A relativistic particle moves along axis z, with velocity uz, through an undulator - a system 
of permanent magnets providing (in the simplest model) a perpendicular magnetic field, whose 
distribution near axis z is sinusoidal:56  

zkBy 00 cosnB  . 

Assuming that the field is so weak that it causes only relatively small deviations of particle’s trajectory 
from the straight line, calculate the angular distribution of the resulting radiation. What condition does 
this assumption impose on system’s parameters?  
  

55 See, e.g., EM Sec. 9.3, in particular Eq. (9.53) and its discussion. 
56 As the Maxwell equation for H shows, such field distribution cannot be created in any nonvanishing volume 
of free space. However, it may be created on a line – e.g., on particle’s straight trajectory.  
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 10.10. Discuss possible effects of the  interference of the undulator radiation from different 
periods of its static field distribution, in particular, calculate the angular positions of maxima of the 
radiation power density.  
 
 10.11. An electron, launched directly toward a plane surface of a perfect conductor, is instantly 
absorbed by it at the collision. Find the angular distribution and frequency spectrum of the 
electromagnetic  waves radiated at this collision, if the initial kinetic energy T of the particle is much 
larger than conductor’s workfunction . Give a semi-quantitative discussion of the limitations of your 
result. 
 
 10.12. A relativistic particle, with the rest mass m and electric charge q, flies with the velocity u 
by an immobile point charge q’, with the impact parameter b so large that the deviations of its trajectory 
from the straight line are negligible. Calculate the total energy loss due to the electromagnetic radiation 
during the passage. Formulate the conditions of validity of your result. 
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Chapter 1. Introduction 

This introductory chapter briefly reviews the major motivations for quantum mechanics. Then its 
simplest formalism - Schrödinger’s wave mechanics - is described, and its main features are discussed 
Much of this material (perhaps except for the last section) may be found in undergraduate textbooks.1 

 

1.1. Experimental motivations 

 By the beginning of the 1900s, physics (which by that time included what we now know as non-
relativistic classical mechanics, classical statistics and thermodynamics, and classical electrodynamics 
including geometric and wave optics) looked as an almost completed discipline, with a lot of 
experimental observations explained, and just a couple of mysterious “dark clouds”2 on the  horizon. 
However, the rapid technological progress and the resulting fast development of experimental 
techniques have led to a fast multiplication of observed phenomena that could not be explained on the 
classical basis. Let me list the most consequential of those experimental findings. 

 (i) Blackbody radiation measurements, started by G. Kirchhoff in 1859, have shown that the in 
the thermal equilibrium, the power of electromagnetic radiation by a fully absorbing (“black”) surface 
per unit frequency interval drops exponentially at high frequencies. This is not what could be expected 
from the combination of the classical electrodynamics and statistics, which predicted an infinite growth 
of the radiation density with frequency. Indeed, the classical electrodynamics shows3 that 
electromagnetic field modes in free space evolve in time as harmonic oscillators, and that the density of 
these modes in a large volume V >> 3  per small frequency interval is 
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where c  3×108 m/s is the free-space speed of light,  its frequency, k = /c the free-space wave 
number, and  = 2/k  is the radiation wavelength. On the other hand, classical statistics4 predicts that in 
the thermal equilibrium at temperature T, the average energy E of each 1D harmonic oscillator should 
equal kBT, where kB is the Boltzmann constant.5 

1 For remedial reading, I can recommend, for example, D. Griffith, Quantum Mechanics, 2nd ed., Cambridge U. 
Press, 2016. 
2 This expression was used in a 1900 talk by Lord Kelvin (born W. Thomson) in reference to the blackbody 
radiation measurements and Michelson-Morley experiment results, i.e. the precursors of the quantum mechanics 
and relativity theory. 
3 See, e.g., EM Sec. 7.9. The degeneracy factor 2 in Eq. (1) is due to two possible polarizations of transverse 
electromagnetic waves. For waves of other physical nature, which obey with the linear (“acoustic”) dispersion 
law, similar relations are also valid, though possibly with a different degeneracy factor - see, e.g.,  CM Sec. 7.7. 
4 See, e.g., SM Sec. 2.2.  
5 In the SI units, used through these notes, kB  1.38×10-23 J/K. Note that in many theoretical papers (and in the 
SM part of my notes), kB is taken for 1, i.e. temperature is measured in energy units. 

 Combining these two results, we readily get the so-called Rayleigh-Jeans formula for the 
average electromagnetic wave energy per unit volume: 
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that diverges at   . On the other hand, the blackbody radiation measurements, improved by O. 
Lummer and E. Pringsheim, and also H. Rubens and F. Kurlbaum to reach a 1%-scale accuracy, were 
compatible with the phenomenological law suggested in 1900 by Max Planck: 
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The law may be reconciled with the fundamental Eq. (1) if the following replacement is made for the 
average energy of each field oscillator: 

        
1)/exp( B
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with a constant factor 
       sJ 10055.1 -34  ,     (1.4) 

now called Planck’s constant.6 At low frequencies ( << kBT), the denominator in Eq. (3) may be 
approximated as /kBT, so that the average energy (3b) tends to its classical value kBT, and the Planck 
law (3a) reduces to the Rayleigh-Jeans formula (2). However, at higher frequencies ( >> kBT), Eq. (3) 
describes the experimentally observed rapid decrease of the radiation density – see Fig. 1.  

 

 

 

 

 

 

 

 

 

 

  

 (ii) The photoelectric effect, experimentally discovered in 1887 by H. Hertz, shows a sharp 
lower bound on the frequency of light that may kick electrons out from metallic surfaces, regardless of 
the light intensity. Albert Einstein, in the first of his three famous 1905 papers, noticed that this 

6 M. Planck himself wrote   as h, where  = /2  is the “cyclic” frequency, measured in Hz (periods per 
second), so that in early texts the term “Planck’s constant” referred to h  2 , while  was called “the Dirac 
constant” for a while. 
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Fig. 1.1. Blackbody radiation density u, expressed 
in units of u0  (kBT)3/22c3, as a function of 
frequency, according to: the Rayleigh-Jeans 
formula (blue line) and the Planck law (red line). 
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threshold min could be readily explained assuming that light consisted of certain particles (now called 
photons) with energy 

 hE   ,      (1.5) 

with the same Planck’s constant that participates in Eq. (3).7 Indeed, with this assumption, at the photon 
absorption by the surface, its energy E =  is divided between a fixed energy W (now called the 
workfunction) of electron binding inside the metal, and the residual kinetic energy mv2/2 > 0 of the freed 
electron – see Fig. 2. In this picture, the frequency threshold finds a natural explanation as min= W/.8 
Moreover, as was shown by S. Bose in 1924, Eq. (5) readily explains9 Planck’s law (3).  

 

 

 

 

 

 

 

 (iii) The discrete frequency spectra of radiation by excited atomic gases, known since the 1600s,  
could not be explained by classical physics. (Applied to the planetary model of atoms, proposed by E. 
Rutherford, it predicts the collapse of electrons on nuclei in ~10-10 s due to electric dipole radiation of 
electromagnetic waves.10) Especially challenging was the observation by J. Balmer (in 1885) that the 
radiation frequencies of simple atoms may be described by simple formulas. For example, for the 
simplest atom, hydrogen, all radiation frequencies may be numbered with just two positive integers n 
and n’: 

      





 

220',
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with 0  1,  2.071016 s-1. The Balmer series, including the value of 0, have found its first 
explanation in the famous 1913 theory by Niels Bohr, which was a semi-phenomenological precursor 
for quantum mechanics. In this theory, n,n’  is interpreted as the frequency of a photon that obeys the 
Einstein’s formula (5), with its energy En,n’ being the difference between two quantized (discrete) energy 
levels of the atom (Fig. 3): 

       0'',  nnnn EEE .     (1.7) 

 

7 As a reminder, A. Einstein received his only Nobel Prize (in 1922) for exactly this work, which essentially 
started quantum mechanics, rather than for his relativity theory. 
8 For most metals, W is between 4 and 5 electron-volts (eV), so that the threshold corresponds to max = 2c/min = 
ch/W   300 nm – approximately at the border between the visible light and ultraviolet radiation. 
9 See, e.g., SM Sec. 2.5. 
10 See, e.g., EM Sec. 8.2. 

E

WE
mv


2

2

Fig. 1.2. Einstein’s explanation of the photoelectric 
effect’s frequency threshold. -e 

Energy  
vs 

 frequency 
 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 1           Page 4 of 26 

 

 

 

 

Bohr showed that the correct11 expression for the levels (relative to the free electron energy), 
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and the correct value of the so-called Hartree energy12 
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(where e  1.60210-19 C is the fundamental electric charge, and me  0.91110-30 kg is electron’s rest 
mass) could be obtained, with a virtually one-line calculation, from the classical mechanics plus just one 
additional postulate, equivalent to the assumption that the angular momentum L = mevr of the electron 
moving on a circular trajectory of radius r about hydrogen’s nuclei (i.e. proton, assumed to stay at rest), 
is quantized as 

             nL  ,      (1.10)  

where  is again the same Planck’s constant (4), and n is an integer. Indeed, in order to derive Eq. (8), it 
is sufficient to solve Eq. (10) together with the 2nd Newton’s law for the rotating electron, 
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for the electron velocity v and radius r, and then plug the results into the non-relativistic expression for 
the full electron’s energy 
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(This non-relativistic approach to the problem is justified a posteriori by the fact the relevant energy 
scale EH is much smaller than electron’s rest energy, mec

2 ~ 0.5 MeV.) By the way, the value of r, 
corresponding to n = 1, i.e. to the smallest possible electron orbit,  
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11 Besides very small corrections due to the finite ratio of the electron mass me to that of the nuclei, and minor 
spin-orbital and relativistic effects - see Secs. 6.3 and 9.7 below. 
12 Unfortunately, another mane, “Rydberg constant” is also frequently used for either this atomic energy unit or 
its half, EH/2  13.6 eV. To add to the confusion, the same term “Rydberg constant” is sometimes used for the 
reciprocal free-space wavelength (1/0 = 0/2c) corresponding to frequency 0 = EH/2.  

Fig. 1.3. Electromagnetic wave radiation at  
system’s transition between its two quantized 
energy levels.  
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and called the Bohr radius, defines the most important spatial scale of phenomena in atomic, molecular 
and condensed matter physics - as well as in chemistry and biochemistry. 

Now note that the quantization postulate (10) may be presented as the condition than an  integer 
number (n) of certain waves13 fits the circular orbit’s perimeter 2r = n. Dividing both parts of this 
relation by , we see that for this statement to be true, the wave number k  2/ of the (then hypothetic) 
de Broglie waves should be proportional to electron’s momentum p = mv: 

      kp  .      (1.14) 

(iv) The Compton effect14 is the reduction of frequency of X-rays at their scattering on free (or 
nearly-free) electrons – see Fig. 4.  

 

 

 

 

 

 

The effect may be explained assuming that the X-ray photon also has a momentum that obeys the 
vector-generalized version of Eq. (14):  
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c


 photon ,     (1.15) 

where k is the wavevector (whose magnitude is equal to the wave number k, and direction coincides 
with that, n, of the wave propagation), and that momenta p of both the photon and the electron are 
related to their energies E by the classical relativistic formula15 

      2222 )()( mccpE  .     (1.16)  

(For a photon, the rest energy is zero, and this relation is reduced to Eq. (5): E = cp = ck = .) Indeed, 
a straightforward solution of the following system of three equations,  

        ,)()( 2/12222 cmcp'cm ee        (1.17) 
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13 This fact was noticed and discussed in detail in 1923 by L. de Broglie, so that instead of discussing 
wavefunctions, especially of free particles, we are still frequently speaking of  de Broglie waves. 
14 This effect was observed (in 1922) and explained a year later by A. Compton.  
15 See, e.g., EM Sec. 9.3. 

Fig. 1.4. Compton effect. 
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(which describe, respectively, the conservation of the full energy of the photon-electron system, and of 
two relevant Cartesian components of its full momentum, at the scattering event – see Fig. 4), yields the 
following result, 
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,      (1.20a) 

which is traditionally represented as the relation between the initial and final values of photon’s 
wavelength  = 2/k = 2/(/c):  
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and is in agreement with experiment.16 

(v) De Broglie wave diffraction. In 1927, following the suggestion by W. Elassger (who was 
excited by de Broglie’s conjecture of “matter waves”), C. Davisson and L. Germer, and independently 
G. Thomson succeeded to observe diffraction of electrons on crystals (Fig. 5). Specifically, they have 
found that the intensity of the elastic reflection from a crystal increases sharply when angle   between 
the incident beam of electrons and crystal’s atomic planes, separated by distance d, satisfies the 
following relation:  

  nd sin2 ,     (1.21)  

where  = 2/k = 2/p is the de Broglie wavelength of electrons, and n is an integer. As Fig. 5 shows, 
this is just the well-known condition17 that the optical path difference l = 2dsin  between the de 
Broglie waves reflected from two adjacent crystal planes coincides with an integer number of , i.e. of 
the constructive interference of the waves.18 

 

 

 

 

 

 

16 The constant c, which participates in this relation, is close to 2.4610-12 m and is called the Compton 
wavelength of the electron. This term is somewhat misleading: as the reader can see from Eqs. (17)-(19), no wave 
in the Compton problem has such a wavelength – either before or after the scattering. 
17 Frequently called the Bragg condition, due to the pioneering experiments by W. Bragg with X-ray scattering 
from crystals (that started in 1912). 
18 Later, spectacular experiments with diffraction and interference of heavier particles, e.g., neutrons and even C60 
molecules, have also been performed – see, e.g., a review by A. Zeilinger et al., Rev. Mod. Phys. 60, 1067 (1988) 
and a later publication by O. Nairz et al., Am. J. Phys. 71, 319 (2003). Nowadays, such interference of heavy 
particles is used for ultrasensitive measurements of gravity – see, e.g., a popular review by M. Arndt, Phys. Today 
67, 30 (May 2014), and recent advanced experiments by P. Hamilton et al., Phys. Rev. Lett. 114, 100405 (2015). 
Moreover, quantum interference between different parts and different quantum states of such macroscopic objects 
as superconducting condensates of millions Cooper pairs has been observed – see Sec. 3.1 below for details. 

Fig. 1.5. Electron scattering from a crystal 
lattice. 
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To summarize, all the listed effects may be explained starting from two very simple (and 
similarly looking) formulas: Eq. (5) for photons, and Eq. (15) for both photons and electrons - both 
relations involving the same Planck’s constant. This might give an impression of sufficient experimental 
evidence to declare light consisting of discrete particles (photons), and, on the contrary, electrons being 
some “matter waves” rather than particles. However, by that time (the mid 1920s) physics has 
accumulated overwhelming evidence of wave properties of light, such as interference and diffraction. In 
addition, there was also a strong evidence for lumped-particle (“corpuscular”) behavior of electrons. It is 
sufficient to mention the famous oil-drop experiments by R. Millikan and H. Fletcher (1909-1913) in 
that only single (and whole!) electrons could be added to an oil drop, changing its total electric charge 
by multiples of electron’s charge (-e) – and never its fraction. It was apparently impossible to reconcile 
these observations with a purely wave picture, in which an electron and hence its charge need to be 
spread over the wave, so that its arbitrary part of it could be cut out using appropriate experimental 
setups. 

Thus the founding fathers of quantum mechanics faced a formidable task of reconciling the wave 
and corpuscular properties of electrons and photons - and other particles. The decisive breakthrough in 
that task has been achieved in 1926 by Ervin Schrödinger and Max Born who formulated what is now 
known as either the Schrödinger picture of non-relativistic quantum mechanics in the coordinate 
representation, or simply as wave mechanics. I will now formulate that picture, somewhat disregarding 
the actual history of its development.  

 

1.2. Wave mechanics postulates 

 Let us consider a spinless,19 non-relativistic point-like particle whose classical dynamics may be 
described by a certain Hamiltonian function H(r, p, t),20 where r is particle’s radius-vector and p is 
coordinate.21 Wave mechanics of such Hamiltonian particles may based on the following set of 
postulates22 that are comfortingly elegant - though their final justification is given only by the agreement 
of all their corollaries with experiment. 

 (i) Wavefunction and probability. Such variables as r or p cannot be always measured exactly, 
even at “perfect conditions” when all external uncertainties, including measurement instrument 
imperfection, macroscopic fluctuations of the initial state preparation, and unintended particle 
interactions with its environment, have been removed.23 Moreover, r and p of the same particle can 

19 Actually, in wave mechanics, the spin of the described particle has not to be equal zero. Rather, it is assumed 
that the spin effects are negligible - as they are, for example, for a non-relativistic electron moving in a region 
without an appreciable magnetic field. 
20 As a reminder, for many systems (including those whose kinetic energy is a quadratic-homogeneous function of 
generalized velocities, like mv2/2), H coincides with the total energy E – see, e.g., CM Sec. 2.3.  
21 Note that this restriction is very important. In particular, it excludes from our current discussion the particles 
whose interaction with environment is irreversible, for example it is the viscosity leading to particle’s energy 
decay. Such systems need a more general quantum-mechanical description that will be discussed in Chapter 7. 
22 Generally, quantum mechanics, as any theory, may be built on different sets of postulates (“axioms”) leading to 
the same conclusions. In this text, I will not try to beat down the number of postulates to the absolute minimum, 
not only because this would require longer argumentation, but chiefly because such attempts typically result in 
making certain implicit assumptions hidden from the reader – the practice as common as regrettable. 
23 I will imply such perfect conditions until the discussion of particle’s interaction with environment, and realistic 
(“physical”) measurements in Chapter 7. 
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never be measured exactly simultaneously. Instead, even the most detailed description of the particle’s 
state, allowed by Nature,24 is given by a certain complex function (r, t), called the wavefunction, that 
generally enables only probabilistic predictions of measured values of r, p, and other directly 
measurable variables (in quantum mechanics, called observables). 

 Specifically, the probability dW of finding a particle inside an infinitesimal volume  dV  d3r  is 
proportional to this volume and may be characterized by the probability density w  dW/d3r that in turn 
is related to the wavefunction as  

               ),(),(),( *2
tttw rrr  ,    (1.22a) 

where sign * means the complex conjugate. As a result, the total probability of finding the particle 
somewhere inside a volume V may be calculated as 

            
VV

rdrwdW 33 * .     (1.22b) 

In particular, if the volume V contains the particle definitely (i.e. with the 100% probability, W = 1), Eq. 
(22b) is reduced to the so-called normalization condition 

                  13* 
V

rd .     (1.22c) 

(ii) Observables and operators. To each observable A, quantum mechanics associates a certain 

linear operator Â , such that, in the perfect conditions mentioned above, the average measured value 
(also called the expectation value) of A is expressed as25 

          
V

rdAA 3ˆ* ,     (1.23) 

where … means the statistical average, i.e. the result of averaging the measurement results over a large 
ensemble (set) of macroscopically similar experiments, and  is the normalized wavefunction – see Eq. 

(22c). For Eqs. (22) and (23) to be compatible,  the identity (“unit”) operator Î , defined by relation 

     Î ,      (1.24) 

has to be associated with a particular type of measurement, namely with particle’s detection. 

 (iii) Hamiltonian operator and the Schrödinger equation. Another particular operator, the 

Hamiltonian Ĥ , whose observable is the particle’s energy E, also plays in wave mechanics a very 
special role, because it participates in the Schrödinger equation,  

 



H
t

i ˆ ,      (1.25) 

24 This is one more important caveat. As we will see in Chapter 7, in many cases even the Hamiltonian particles 
cannot be described by a certain wavefunction, and allow only a more general (and less precise) description, e.g., 
by the density matrix.   
25 This key measurement postulate is sometimes called the Born rule.  
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that determines wavefunction’s dynamics, i.e. its time evolution.  

(iv) Radius-vector and momentum operators. In the coordinate representation accepted in wave 
mechanics, the (vector) operator of particle’s radius-vector r just multiples the wavefunction by this 
vector, while the operator of particle’s momentum26 is represented by the spatial derivative: 

           ip̂ ,      (1.26a) 

where  is the del (or “nabla”) vector operator.27 Thus in the Cartesian coordinates, 
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 (v) Correspondence principle. In the limit when quantum effects are insignificant, e.g., when the 
characteristic scale of action S 28 (i.e. the product of the relevant energy and time scales of the problem) 
is much larger than Planck’s constant , all wave mechanics results have to tend to those given by 
classical mechanics. Mathematically, the correspondence is achieved by duplicating the classical 
relations between observables by similar relations between the corresponding operators. For example, 
for a free particle, the Hamiltonian (that in this case corresponds to the kinetic energy alone) has the 
form 
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so that, taking into account Eq. (26b), in the Cartesian coordinates, 
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 Even before a discussion of physics of the postulates (offered in the next section), we may 
immediately see that they indeed provide a way toward the resolution of the apparent contradiction 
between the wave and corpuscular properties of particles. For a free particle, the Schrödinger equation 
(25), with the substitution of Eq. (27), takes the form 

        

 2
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  ,     (1.28) 

whose particular (but most important) solution is a plane, monochromatic wave,29  

                  )(),( tiaet  rkr ,     (1.29) 

26 For an electrically charged particle in magnetic field, this relation is valid for its canonical momentum – see 
Sec. 3.1 below. 
27 See, e.g., Secs. 8-10 of the Selected Mathematical Formulas appendix (below, referred to as MA). Note that 
according to these formulas, the del operator follows all the geometric rules of the usual (c-number) vectors. This 
is, by definition, true for other vector operators of quantum mechanics to be discussed below. 
28 See, e.g., CM Sec. 10.3. 
29 See, e.g., CM Sec. 7.7 and/or EM Sec. 7.1. 
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where a, k and  are constants. Indeed, plugging Eq. (29) into Eq. (28), we immediately see the plane 
wave, with an arbitrary amplitude a, is indeed a solution of the Schrödinger equation, provided a 
specific dispersion relation between wavevector k and frequency : 

  
m

k

2

)( 2
  .      (1.30) 

Constant a may be calculated, for example, assuming that solution (29) is extended over a certain 
volume V, while beyond it,   = 0. Then from the normalization condition (22c) and Eq. (29), we get30  

   1
2 Va .      (1.31) 

Now we can use Eqs. (23), (26) and (27) to calculate the expectation value of particle’s 
momentum p and energy E (which, for a free particle, coincides with its Hamiltonian function H), The 
result is 

         kp  ,      
m

k
HE

2

)( 2
 ;     (1.32) 

according to Eq. (30), the last equality may be rewritten as E = .  

Next, Eq. (23) enables one to calculate not only the statistical average (in the math speak, the 
first moment) of an observable, but also its higher moments, notably the second moment (in physics, 
usually called either the variance or dispersion): 

             2222~
AAAAA  ,    (1.33) 

 and hence its root mean square (r.m.s.) fluctuation, 

      
2/1

2~
AA  ,        (1.34)  

that characterizes the scale of deviations AAA 
~  of measurement results from the average, i.e. the 

uncertainty of observable A. In application to wavefunction (29), these relations yield E = 0, p = 0, 
while the particle coordinate r (at V  ) is completely uncertain. This means that in the plane-wave, 
monochromatic state (29), the energy and momentum of the particle are exactly defined, so that the 
signs of statistical average in Eqs. (32) might be removed. Thus, these relations are reduced to the 
experimentally-inferred Eqs. (5) and (15), though the relation of frequency  of wavefunction’s 
evolution in time to experimental observations still has to be clarified.  

Hence the wave mechanics postulates may indeed explain the observed wave properties of non-
relativistic particles. (For photons, we would need a relativistic formalism – see Ch. 9 below.) On the 
other hand, due to the linearity of the Schrödinger equation (25), any sum of its solutions is also a 
solution – the so-called linear superposition principle. For a free particle, this means that a set of plane 
waves (29) is also a solution of this equation. Such sets, with close values of k and hence p = k (and, 
according to  Eq. (30), of  as well), may be used to describe spatially localized “pulses”, called wave 
packets –– see Fig.  6. In Sec. 2.1, I will prove (or rather reproduce H. Weyl’s proof :-) that the wave 

30 For infinite space (V  ), Eq. (31) yields a  0, i.e. wavefunction (29) vanishes. This formal problem may be 
readily resolved considering sufficiently long wave packets – see Sec. 2.2 below. 
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packet extension x in any direction (say, x) is related to the width kx of the corresponding component 
of its wave vector distribution as xkx  ½, and hence, according to Eq. (15), to the width px of the 
momentum component distribution as 

        
2


 xpx  .      (1.35) 

   

 

 

 

 

 

 

 

 

This is the famous the famous Heisenberg’s uncertainty principle, which quantifies the first 
postulate’s point that coordinate and momentum cannot be defined exactly simultaneously. However,  
since the Planck’s constant is extremely small on the human scale of things, it still allows for the 
particle’s localization in a very small volume even if the momentum spread in the wave packet is also 
small on that scale. For example, according to Eq. (35), a 0.1% spread of momentum of a 1 keV electron 
(p ~ 1.710-24 kgm/s) allows a wave packet to be as small as ~310-10 m. (For a heavier particle such as 
a proton, the packet would be even tighter.) As a result, wave packets may be used to describe particles 
that are point-like from the macroscopic point of view.  

In a nutshell, this is the main idea of the wave mechanics, and the first part of this course 
(Chapters 1-3)  will be essentially a discussion of various manifestations of this approach. During this 
discussion, we will not only evidence wave mechanics’ many triumphs within its applicability domain, 
but will also gradually accumulate evidence for its handicaps, which force the eventual transfer to a 
more general formalism – to be discussed in Chapter 4 and beyond.  

 

1.3. Postulates’ discussion 

The postulates listed in the previous section look very simple, and they are hopefully familiar to 
the reader from his or her undergraduate studies. However, the physics of these axioms are very deep, 
they lead to several counter-intuitive conclusions, and their in-depth discussion requires solutions of 
several key problems using these axioms. This is why in this section I will give only an initial, 
admittedly superficial discussion of the postulates, and will be repeatedly returning to the conceptual 
foundations of quantum mechanics throughout the course, especially in Secs. 7.7, 10.1, and 10.2. 

 First of all, the fundamental uncertainty of observables, which is in the core of postulate (i),  is 
very foreign to the basic ideas of classical mechanics, and historically has made quantum mechanics so 
hard to swallow for many star physicists, notably including A. Einstein – despite  his 1905 work which 
essentially launched the whole field! However, this fact has been confirmed by numerous experiments, 

0
/xx pk 0k
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Fig. 1.6. (a) Snapshot of a typical wave packet 
propagating along axis x, and (b) the corresponding 
distribution of wave numbers kx, i.e. momenta px. 
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and (more importantly) there have not been a single confirmed experiment which would contradict to 
this postulate, so that quantum mechanics was long ago promoted from a theoretical hypothesis to the 
rank of a reliable scientific theory. 

 One more remark in this context is that Eq. (25) itself is deterministic, i.e. conceptually enables 
an exact calculation of wavefunction’s distribution in space at any instant t, provided that its initial 
distribution, and particle’s Hamiltonian, are known exactly. In classical kinetics, the probability density 
distribution w(r,t) may be also calculated from deterministic differential equations, e.g., the Fokker-
Planck equation or the Boltzmann equation.31 The quantum-mechanical description differs from those 
situations in two important aspects. First, in the perfect conditions outlined above (exact initial state 
preparation, no irreversible interaction with environment, the best possible measurement), the Fokker-
Planck equation reduces to the 2nd Newton law, i.e. the statistical uncertainty disappears. In quantum 
mechanics this is not true: the quantum uncertainly, such as Eq. (35), persists even in this limit. Second, 
the wavefunction (r, t) gives more information than  just w(r, t), because besides the modulus of , 
involved in Eq. (22), this complex function also has phase    arg, and may affect some observables, 
describing, in particular, the interference and diffraction of the de Broglie waves.  

 Next, it is very important to understand that the relation between the quantum mechanics to 
experiment, given by postulate (ii), necessarily involves another key notion: that of the corresponding 
statistical ensemble. Such ensemble may be defined as a set of many experiments carried out at 
apparently (macroscopically)  similar conditions, which nevertheless may lead to different measurement 
results (outcomes). Indeed, the probability of a certain (n-th) outcome of an experiment may be only 
defined for a certain ensemble, as the limit  

     


 
N

n
n

n
Mn MM

M

M
W

1

with  ,lim ,    (1.36) 

where M is the total number of experiments, Mn is the number of outcomes of the n-th type, and N is the 
number of different outcomes. It is clear that a particular choice of an ensemble may affect probabilities 
Wn very significantly.  

For example, if we pull out playing cards at random from a pack of 52 different cards of 4 suits, 
the probability Wn of getting a certain card (e.g., the queen of spades) is 1/52. However, if cards of a 
certain suit (say, hearts) had been taken out from the pack in advance, the probability of getting the 
queen of spades is higher, 1/39. It is important that we would also get the last number for probability 
even if we had used the full 52-card pack, but by some reason ignored results of all experiments giving 
us any rank of hearts.  

Similarly, in quantum mechanics, the probability distributions (and hence expectation values of 
particle coordinate and other observables) depend not only on the experiment setup, but also on the set 
of outcomes we count. Because of the fundamental relation (22) between w and , this means the 
wavefunction also depends on those factors, i.e. on both the experiment set preparation and the subset of 
outcomes taken into account. The insistence on the attribution of the wavefunction to a single 
experiment, both before and after the measurement, may lead to very unphysical interpretations of some 
experiments, including wavefunction’s evolution not described by the Schrödinger equation (the so-
called wave packet reduction), subluminal action on distance, etc. Later in the course we will see that 
minding the statistical nature of the quantum mechanics, and in particular the dependence of the 

31 See, e.g., SM Secs. 5.8 and 6.2, respectively. 

Definition 
of  
probability 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 1           Page 13 of 26 

wavefunction on statistical ensemble’s specification, may readily explain some apparent paradoxes of 
quantum measurements.   

Let me also emphasize that statistics is intimately related to the information theory - and not only 
via their common mathematical background, the probability theory. For example, the question, “What 
subset of experimental results we will count?” may be replaced by the question, “What subset of results 
will we use information about?” As a result, the reader has to be prepared to the use of information 
theory notions for the discussion quantum mechanics, or at least its relation to experiment - i.e. to the 
“physical reality”.  This feature of quantum mechanics makes some physicists uncomfortable, because 
much of classical mechanics and electrodynamics may be discussed without any reference to 
information. In quantum mechanics (as in statistical mechanics), such an abstraction is impossible.  

 Proceeding to postulate (ii) and in particular Eq. (23), a better feeling of this definition may be 
obtained by its comparison with the general definition of the expectation value (i.e. the statistical 
average) in the probability theory. Namely, let each of N possible outcomes in a set of M 
macroscopically similar experiments give a certain value An  of observable A; then 

     n

N

n
n

N

n
nnM WAMA

M
A 


 

11

1
lim .    (1.37) 

Taking into account Eq. (22), which relates W and , the structure of Eq. (23) and the final form of Eq. 
(37) is similar. Their  exact relation will be further discussed in Sec. 4.1.  

 

1.4. Continuity equation 

 The wave mechanics postulates survive one more sanity check: they satisfy the natural 
requirement that the particle does not appear or vanish in the course of the quantum evolution.32 Indeed, 
let us use Eq. (22) to calculate the rate of change of the probability W to find the particle within a certain 
volume V:  

                    rd
dt

d

dt

dW

V

3*  .     (1.38) 

Assuming for simplicity that the boundaries of volume V do not move, it is sufficient to carry out the 
partial differentiation of the product * inside the integral. Using the time-dependent Schrödinger 
equation (25), together with its complex conjugate, 
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we get 
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32 Note that this requirement is not extended to the relativistic quantum theory – see Chapter 9 below. 
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Let the particle move in a field of external forces (not necessarily constant in time), so that its 
classical Hamiltonian function H is a sum of particle’s kinetic energy p2/2m and its potential energy U(r, 
t).33 According to the correspondence principle, the Hamiltonian operator may be presented as the sum34, 

              ),(
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ˆˆ 2
22

tU
m

,tU
m

p
H rr 


.    (1.41) 

 At this stage we should notice that such operator, when acting on a real function, returns a real 
function.35 Hence, the result of its action on an arbitrary complex function  = a + ib (where a and b are 
real) is  

bHiaHibaHH ˆˆ)(ˆˆ  ,     (1.42) 

where aĤ and bĤ are also real, while 

     ** ˆ)(ˆˆˆ)*ˆˆ()ˆ(  HibaHbHiaHbHiaHH .    (1.43) 

This means that Eq. (40) may be rewritten as 
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.  (1.44) 

Now, let us use general rules of vector calculus36 to write the following identity: 

 **** ΨΨΨΨΨΨΨΨ 22 




   ,    (1.45) 

A comparison of Eqs. (44) and (45) shows that we may write 

        ,)( 3 
V

rd
dt

dW
j      (1.46) 

where vector j is defined as 
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where c.c. means the complex conjugate of the previous expression – in this case, (*)*, i.e. *. 
Now using the well-known divergence theorem,37 Eq. (46) may be rewritten as the continuity equation 

          
S

n rdjII
dt

dW 2with ,0 ,    (1.48) 

33 As a reminder, such description is valid not only for potential forces (in that case U has to be time-
independent), but also for any force F(r, t) which may be presented via the gradient of U(r, t) – see, e.g., CM 
Chapters 2 and 10. (A good example when such a description is impossible is given by the magnetic component 
of the Lorentz force – see, e.g., EM Sec. 9.7, and also Sec. 3.1 of this course.) 
34 Historically, this was the main step made (in 1926) by E. Schrödinger on the background of L. de Broglie’s 
idea. The probabilistic interpretation of the wavefunction was put forward, almost simultaneously, by M. Born. 
35 In Chapter 4, we will discuss a more general family of Hermitian operators, which have this property. 
36 See, e.g., MA Eq. (11.4a), combined with the del operator’s definition 2  . 
37 See, e.g., MA Eq. (12.2). 
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where  jn is the projection of vector j on the outwardly directed normal to surface S that limits volume V, 
i.e. the scalar product j·n, where n is the unit vector along this normal. 

Equations (47) and (48) show that if the wavefunction on the surface vanishes, the total 
probability W of finding the particle within the volume does not change, providing the required sanity 
check. In the general case, Eq. (48) says that dW/dt equals to flux I of vector j  through the surface, with 
the minus sign. It is clear that this vector may be interpreted as the probability current density - and I, as 
the total probability current through surface S. This interpretation may be further supported by rewriting 
Eq. (47) for a wavefunction presented in the polar form  = aei, with real a and : 


m

a
2j ,      (1.49) 

- evidently a real quantity. Note that for a real wavefunction, or even for that with an arbitrary but space-
constant phase , the probability current density vanishes. On the contrary, for the traveling wave (29), 
with a constant probability density w = a2, Eq. (49) yields a nonvanishing (and physically very 
transparent) result: 

       v
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kj w
m

w
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,     (1.50) 

where v = p/m is particle’s velocity. If multiplied by the particle’s mass m, the probability density w 
turns into the (average) mass density , and the probability current density into the mass flux density v, 
while if multiplied by the total electric charge q of the particle, with w turning into the charge density , 
j becomes the electric current density, both satisfying the classical continuity equations similar to Eq. 
(48). 38 

 Finally, let us recast the continuity equation, rewriting Eq. (46) as 
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Now we may argue that this equality may is true for any choice of volume V only if the expression 
under the integral vanishes everywhere, i.e. if 

       .0



j
t

w
      (1.52) 

This differential form of the continuity equation is sometimes more convenient than its integral form 
(48). 

 

1.5. Eigenstates and eigenvalues 

  Now let us discuss important corollaries of wave mechanics’ linearity. First of all, it uses only 
linear operators. This term means that the operators must obey the following two rules: 39 

38 See, e.g., respectively, CM 7.2 and EM Sec. 4.1. 
39 By the way, if any equality involving operators is valid for an arbitrary wavefunction, the latter is frequently 
dropped from notation, resulting in an operator equality. In particular, Eq. (53) may be readily used to prove that 
the operators are commutative: 2112

ˆˆˆˆ AAAA  , and associative:    321321
ˆˆˆˆˆˆ AAAAAA  . 
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     ,ˆˆˆˆ
2121  AAAA      (1.53) 

          221122112211
ˆˆˆˆˆ  AcAccAcAccA ,   (1.54) 

where n are arbitrary wavefunctions, while cn are arbitrary constants (in quantum mechanics, 
frequently called c-numbers, to distinguish them from operators and wavefunctions). Most important 
examples of linear operators are given by: 

 (i) the multiplication by a function, such as for operator r̂ in wave mechanics, and 

 (ii) the spatial or temporal differentiation of the wavefunction, such as in Eqs. (25)-(27). 

Next, it is of key importance that the Schrödinger equation (25) is also linear. (We have already 
used this fact when we discussed wave packets in the last section.) This means that if each of functions 
n  are (particular) solutions of Eq. (25) with a certain Hamiltonian, then an arbitrary linear combination 

 
n

nnc       (1.55) 

is also a solution of the same equation.40  

Now let us use the linearity of wave mechanics to accomplish an apparently impossible feat: 
immediately find the general solution to the Schrödinger equation for the most important case when 
system’s Hamiltonian does not depend on time explicitly – for example, like in Eq. (27), or in Eq. (41) 
with time-independent U = U(r). First of all, let us prove that the following product, 

          )()( rnnn tT  ,     (1.56) 

qualifies as a (particular) solution to the Schrödinger equation. Indeed, plugging Eq. (56) into Eq. (25), 
using the fact that for a time-independent Hamiltonian 

      )(ˆ)()()(ˆ rr nnnn HtTtTH   ,     (1.57) 

and dividing both parts of the equation by n = Tnn, we get 
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,      (1.58) 

where (here and below) the dot denotes the differentiation over time. The left hand side of this equation 
may depend only on time, while the right hand one, only on coordinates. These facts may be only 
reconciled if we assume that each of these parts is equal to (the same) constant of the dimension of 
energy, which I will denote as En.41 As a result, we are getting two separate equations for the temporal 
and spatial parts of the wavefunction: 

nnn TETi  ,      (1.59) 

40 It may seem strange that the linear Schrödinger equation correctly describes quantum properties of systems 
whose classical dynamics is described by nonlinear equations of motion (e.g., an anharmonic oscillator – see, e.g., 
CM Sec. 4.2). Note, however, that equations of classical physical kinetics (see, e.g., SM Chapter 6) also have this 
property, so it is not specific to quantum mechanics. 
41 This argumentation, leading to variable separation, is very common in mathematical physics – see, e.g., its 
discussion in EM Sec. 2.5. 
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 nnn EH  ˆ .      (1.60) 

 The first of these equations is readily integrable, giving 

    


n
nnn

E
ωtiT  with ,expconst  ,    (1.61) 

and thus substantiating the fundamental relation (5) between energy and frequency. Plugging Eqs. (56) 
and (61) into Eq. (22), we see that in such a state, the probability w of finding the particle at a certain 
location does not depend on time. Doing the same with Eq. (23) shows that the same is true for the 
expectation value of any operator that does not depend on time explicitly: 

 rdAA nnn

3ˆ*  = const.     (1.62) 

Due to this property, the states described by Eqs. (56), (60), and (61), are called stationary. In contrast 
to the simple and universal time dependence (61), the spatial distributions n(r) of the stationary states 
are often hard to find, and the solution of the stationary (or “time-independent”) Schrödinger equation 
(60),42 which describes the distributions, for various situations is a major focus of wave mechanics. 

The stationary Schrödinger equation (60), with time-independent Hamiltonian (41), 

nnnn EU
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,    (1.63) 

falls into the mathematical category of linear eigenproblems,43 in which eigenfunctions n and 
eigenvalues En should be found simultaneously - self-consistently.44 Mathematics tells us that for the 
such problems with space-confined eigenfunctions n, tending to zero at r  , the spectrum of 
eigenvalues is discrete. It also proves that the eigenfunctions corresponding to different eigenvalues are 
orthogonal, i.e. that space integrals of the products n*n’ vanish for all pairs with n  n’. Moreover, 
due to the Schrödinger equation linearity, each of these functions may be multiplied by a constant 
coefficient to make this set orthonormal: 
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Also, the eigenfunctions form a full set, meaning that an arbitrary function (r), in particular the actual 
wavefunction  of the system in the initial moment of its evolution (which I will take for t = 0, with a 
few exceptions), may be presented as a unique expansion over the eigenfunction set: 

       )()0,( rr 
n

nnc  .     (1.65) 

The expansion coefficients ck may be readily found by multiplying both parts of Eq. (65) by *n’, 
integrating the result over the space, and using Eq. (64). The result is 

42 In contrast, the initial Eq. (24) is frequently called the time-dependent or nonstationary Schrödinger equation.  
43 From German root eigen meaning “particular” or “characteristic”. 
44 Eigenvalues of energy are frequently called eigenenergies, and it is often said that eigenfunction n and 
eigenenergy En together characterize n-th stationary eigenstate of the system. 
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       rdc nn
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Now let us consider the following wavefunction 
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Since each term of the sum has the form (56) and satisfies the Schrödinger equation, so does the sum as 
the whole. Moreover, if coefficients cn are derived in accordance with Eq. (66), then solution (67) 
satisfies the initial conditions as well. At this moment we can again use one more help by 
mathematicians who tell us that the partial differential equation of type (28) with the Hamiltonian 
operator (41) with fixed initial conditions, may have only one (unique) solution. This means that in our 
case of motion in a time-independent potential U = U(r), Eq. (67) gives the general solution of the time-
dependent Schrödinger equation (25) for our case: 
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 .     (1.68) 

We will repeatedly use this key fact through the course, though in many cases, following the physical 
sense of particular problems, will be more interested in certain specific particular solutions of Eq. (68) 
rather in the whole linear superposition (67). 

 In order to get some feeling of functions n, let us consider perhaps the simplest example, which  
nevertheless will be the basis for discussion of many less trivial problems: a particle confined in a 
rectangular quantum well45with a flat “bottom” and sharp and infinitely high “hard walls”: 

   








otherwise.                                                        ,

,0 and,0,0for ,0
)( zyx azayax

U r    (1.69) 

The only way to keep the product Un in Eq. (68) finite outside the well, is to have  = 0 in these 
regions. Also, the function have to be continuous everywhere, to avoid the divergence of its Laplace 
operator. Hence, we may solve the stationary Schrödinger equation (63) only inside the well, where it 
takes a simple form46 
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     (1.70a) 

with zero boundary conditions on all the walls. For our particular geometry, it is natural to express the 
Laplace operator in the Cartesian coordinates {x, y, z} aligned with the well sides, so that we get the 
following boundary problem: 

45 By using the term “quantum well” for what is essentially a potential well I bow to a common, but a very 
unfortunate convention. Indeed, this term seems to imply that the particle’s confinement in such a “quantum well” 
is a phenomenon specific for quantum mechanics, while as we will repeatedly see in this course, that the opposite 
is true: quantum effects do as much as they only can to overcome particle’s confinement in a potential well, 
letting the particle to partly penetrate the “classically forbidden” regions. 
46 Rewritten as 2f + k2f = 0, this is the Helmholtz equation, which describes scalar waves of any nature (with 
wave vector k) in a uniform, linear media – see, e.g., CM Sec. 5.5 and/or EM Secs. 7.7-7.9.
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 (1.70b) 

 This problem may be readily solved using the same variable separation method which was used 
earlier in this section to separate the spatial and temporal variables, now to separate Cartesian spatial 
variables from each other. Let us look for a  particular solution in the form 

          )()()()( zZyYxXr .     (1.71) 

(It is convenient to postpone taking care of proper indices for a minute.) Plugging this expression into 
the Eq. (70b) and dividing by  = XYZ, we get 
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Now let us repeat the standard argumentation of the variable separation method: since each term 
in the parentheses may be only a function of the corresponding argument, the equality is possible only if 
each term is a constant - with the dimensionality of energy. Calling them Ex, etc., we get three 1D 
equations 
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with Eq. (72) turning into the energy-matching condition 

               EEEE zyx  .     (1.74) 

All three ordinary differential equations (73), and their solutions, are similar. For example, for 
X(x), we have a 1D Helmholtz equation 
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and simple boundary conditions: X(0) = X(ax) = 0. Let me hope that the reader knows how to solve this 
well-known 1D boundary problem - describing, for example, usual mechanical waves on a guitar string, 
though with a very much different expression for kx. The problem allows an infinite number of 
sinusoidal standing-wave solutions,47 
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corresponding to eigenenergies  
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47 The front coefficient is selected in a way that ensures the (ortho)normality condition (64). 
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Figure 7 shows this result using a somewhat odd but very graphic and hence common way when the 
eigenenergy values (frequently called energy levels) are used as horizontal axes for plotting 
eigenfunctions, despite their different dimensionality.  

Due to the similarity of all Eqs. (73), Y (y) and Z(z) are similar functions of their arguments, and 
may also be numbered by integers (say, ny and nz) independent of nx, so that the spectrum of the total 
energy (74) is 
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Thus, in this 3D problem, the role of index n in Eq. (67) is played by a set of 3 independent 
integers {nx, ny, nz}. In quantum mechanics, such integers play a key role, and thus have a special name, 
quantum numbers. Now the general solution (67) of our simple problem may be presented as the sum  
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r , (1.79) 

with the coefficients which may be readily calculated from the initial wavefunction (r, 0), using Eq. 
(66), again with the replacement n  {nx, ny, nz}.  This simplest problem is a good illustration of the 
basic features of wave mechanics for a spatially-confined motion, including the discrete energy 
spectrum, and (in this case, evidently) orthogonal eigenfunctions. 

An example of the opposite limit of a continuous spectrum for unconfined motion of a free 
particle is given by plane waves (29) which, with the account of relations E =  and p = k, may be 
viewed as the product of the time-dependent factor (46) by eigenfunction  

               rkkk  ia exp      (1.80) 

that is the solution to the stationary Schrödinger equation (70a) if it is valid in the whole space.48 
The reader should not be worried too much by the fact that the fundamental solution (80) in free 

space is a traveling wave (having, in particular, nonvanishing value (50) of the probability current j), 

48 In some systems (e.g., a particle interacting with a finite-depth quantum well), a discrete energy spectrum 
within a certain interval of energies may coexist with a continuous spectrum in a complementary interval. 
However, the conceptual philosophy of eigenfunctions and eigenvalues remains the same in this case as well. 

Fig. 1.7. Eigenfunctions (solid lines) and  eigenvalues 
(dashed lines) of the 1D wave equation (75) on a finite-
length segment. Solid black lines show the potential 
energy profile of the problem. 0
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while those inside a quantum well are standing waves, with j = 0, even though the free space may be 
legitimately considered as the ultimate limit of a quantum well with volume V = axayaz  . Indeed, 
due to the linearity of wave mechanics, two traveling-wave solutions (80) with equal and opposite 
values of momentum (and hence with the same energy) may be readily combined to give a standing-
wave solution, for example exp{ikr} + exp{-ikr} = 2cos(kr), with the net current j = 0. Thus, 
depending on convenience for solution of a particular problem, we can present the general solution as a 
sum of either traveling-wave or standing-wave eigenfunctions.  

Since in the free space there are no boundary conditions to satisfy, Cartesian components of the 
wave vector k in Eq. (80) can take any real values. (This is why it is more convenient to label the 
wavefunctions and eigenenergies, 

                  0
2

22


m

k
E


k ,     (1.81) 

by their wave vector k rather than an integer index.) However, one aspect of systems with continuous 
spectrum requires a bit more math caution: summation (67) should be replaced by integration over a 
continuous index or indices (in this case, 3 components of vector k). The main rule of such replacement 
may be readily extracted from Eq. (76): according to this relation, for standing-wave solutions, the 
eigenvalues of kx are equidistant, i.e. separated by equal intervals kx = /ax (with the similar relations 
for other two Cartesian components of vector k). Hence the number of different eigenvalues of the 
standing wave vector k (with kx, ky, kz  0), within a volume d3k  >> 1/V of the k space is just dN = 
d3k/(kxkxkx) = V/3. Since in continuum it is more convenient to work with traveling waves, we 
should take into account that, as was just discussed, there are two different traveling wave vectors (k 
and k’ = -k) corresponding to each standing wave vector k. Hence the same number of physically 
different states corresponds to 23 = 8-fold larger k space (which now is infinite in all directions) or, 
equivalently, to a smaller number of states per unit volume d3k: 

               
 

kd
V

dN 3
32

 .     (1.82) 

For dN >> 1, this expression is independent on the boundary conditions,49 and is frequently 
presented as the following summation rule 

         
    kdf

V
dNff

Vk
3

33 )(
2

)()(lim kkk
k 

,   (1.83) 

where f(k) is an arbitrary function of k. This rule is very important for statistical physics. Note also that 
if the same wave vector k corresponds to several  internal quantum states (such as spin – see Chapter 4), 
the right-hand part of Eq. (83) requires multiplication by the corresponding degeneracy factor. 

 

1.6. Dimensionality reduction 

 To conclude this introductory chapter, let me discuss the conditions when the spatial 
dimensionality of a wave mechanics problem may be reduced.50 For example, following our discussion 

49 For a more detailed discussion of this point, the reader may be referred, e.g., to CM Secs. 5.4 (in the context of 
1D mechanical waves), because it is valid for waves of any nature. 
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of the 3D rectangular, flat-bottom quantum well in Sec. 5, let us consider an infinitely deep quantum 
well whose bottom is flat only in one direction, say z: 

              








otherwize.               ,

,0for     ),,(
)( zazyxU

U r     (1.84) 

In this case, we can separate variables only partly, by presenting the eigenfunction as (x,y)Z(z). 
Plugging such  solution into the corresponding form of the stationary Schrödinger equation (63), we see 
that functions Z(z) are again similar to those given by Eq. (76), while function (x,y) satisfies the 
following 2D stationary Schrödinger equation: 
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,    (1.85) 

where  
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 .   (1.86) 

Thus, we have arrived at the boundary problem similar to the initial one, but with the spatial 
dimensionality reduced from 3 to 2, due to what is called the partial confinement51 in direction z. If all 
partial functions Z(z) are normalized to unity, the wavefunction normalization condition (22c) becomes 

        
A

dxdyyxyxW ),(),( * ,    (1.87) 

where A is the total area of the system on the [x, y] plane, and is formally similar to the initial 3D 
normalization condition. However, the effective 2D potential energy Uef(x,y) includes term Ez depending 
on quantum number nz,52 making the physical relevance of such variable separation much less general 
than might be naively expected. There are three possible cases: 

 (i) If there is no strong relation between the energy scale Ex,y of potential Uef(x,y) and Ez, the 
solution of a typical problem has to be presented as a (typically, large) sum of partial solutions 
(x,y)Z(z), each with its own nz, Uef, and Ez. In this general case, the variable separation may not 
provide much relief at all, because eigenenergies of solutions with different nz may be close, so that 
several of them would simultaneously participate in realistic processes. 

 (ii) Ez is much smaller than Ex,y and may be neglected. This may be the case, for example, if the 
potential profile is more steep along axes x and y, than along direction z. Notice, however, that 
condition, az  , does not guarantee the smallness of Ez, because it may be compensated by large 
values of nz. In this case (typical for solid state problems), either summation or integration over nz still 

50 Many textbooks on quantum mechanics jump to solution of 1D without such discussion, and most of my 
beginning graduate students did not understand that in realistic physical systems, such dimensionality restriction 
is only possible under very specific conditions. 
51 The term “quantum confinement”, sometimes used to describe this phenomenon, is as unfortunate as the 
“quantum well”, because of the same reason: the confinement is a purely classical effect, and as we will 
repeatedly see in this course, quantum mechanics reduces it, allowing a partial penetration of the particle into the 
classically forbidden regions with E  > U(r). 
52 The last term in Eq. (86) is frequently referred to as the (partial) confinement energy; despite its inclusion to 
Uef, it is important to remember about the kinetic-energy origin of this contribution. 
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may be needed, though sometimes may be carried out analytically, because functions Z(z) are simple 
sinusoidal waves. 

 (iii) Counter-intuitively, the most robust dimensionality reduction is possible in the opposite 
limit, when az is much smaller than the characteristic scale of motion within the [x, y] plane (Fig. 8a). 
Indeed, in this case the distance between adjacent levels of the confinement energy Ez is much larger 
than the characteristic energy Ex,y of motion within the plane. As a result, if the system was initially 
prepared to be on the lowest, ground level of Ez, , a “soft” motion along x and y cannot excite the system 
to higher levels of Ez.53 Hence, the system keeps the fixed quantum number nz = 1, through the motion, 
so that the confinement energy Ez is constant and, according to Eq. (86), may be treated just as a fixed 
potential energy offset.  

 The last conclusion is true even if the quantum well’s profile in direction z is not rectangular 
(provided that Ez is still much larger than Ex,y). For example, many 2D quantum phenomena, such as the 
quantum Hall effect,54 have been studied experimentally using electrons confined at semiconductor 
heterojunctions (e.g., epitaxial interfaces GaAs/AlxGa1-xAs) where the potential well in the direction 
perpendicular to the interface has a nearly triangular shape, with the splitting of energies Ez is the order 
of 10-2 eV.55 This splitting energy corresponds to kBT at temperature ~100 K, so that careful 
experimentation at liquid helium temperatures (4K and below) may keep the electrons performing 
purely 2D motion in the “lowest subband” (nz = 1). 

 

 

 

 

 

 

 Now, if a quantum well is formed in two dimensions (say, y and z, see Fig. 8b),56 









otherwize.                                    ,

,0  and 0for     ),(
)( zy azayxU

U r    (1.88) 

then repeating the variable separation procedure we see that the 3D Schrödinger equation (68) may be 
satisfied with particular solutions of the type (71), again with sinusoidal standing waves Y(y) and Z(z), 
but generally a more complex function X(x), which has to satisfy the following 1D Schrödinger equation 

                XEXxU
dx

Xd

m x )(
2 ef2

22
,    (1.89) 

53 In the frequent case when motion in the [x, y] plane is free (or almost free), the set of quantum states with the 
same quantum number nz  is frequently called a subband, because their energies form a (quasi-) continuum of 
eigenenergies Ex,y . 
54 To be discussed in Sec. 3.2. 
55 See, e.g., P. Harrison, Quantum Wells, Wires, and Dots, 3rd ed., Wiley, 2010. 
56 This is a reasonable first approximation, for example, for electron motion potential in so-called quantum wires, 
for example in the now-famous carbon nanotubes – see, e.g., the same monograph by P. Harrison. 

Fig. 1.8. Partial confinement in: (a) one  dimension, and (b) two dimensions. 

(a)     (b) 

x x

y
yz z

1D stationary  
Schrödinger 

equation 
 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 1           Page 24 of 26 

with the effective potential energy 

         zy EExUxU  )()(ef .     (1.90) 

Again, if the particle stays in the lowest subband, ny = nz = 1, both Ey and Ez retain their constant values 
Ey1 and Ez1. Repeating the above discussion of the one-dimensional partial confinement, we can expect 
that a wave mechanics problem may be substantially simplified if Ey1 and Ez1 are much larger than the 
energy scale Ex of the motion in direction x. Namely, if: 

(i) the potential profile within the 2D partial confinement plane [y, z] is arbitrary (provided that it 
provides partial confinement scales ay and az much smaller the spatial scale of the motion in direction x), 
and  

(ii) the potential energy U is either constant in time or changes relatively slowly, at a time scale   
>> /Eyz1 (where Eyz1 is the lowest eigenenergy of motion within the [y, z] plane), 

then a large range of experiments may be adequately described by looking for solution of the general 
(time-dependent, 3D) Schrödinger equation in the form of the following product 
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where YZ1 is the lowest (ground-state) eigenfunction of the 2D problem in the [y, z] plane. Substituting 
this solution to the equation, and separating variables {y, z} from {x, t}, we obtain the following time-
dependent, 1D equation 
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 .   (1.92) 

The next chapter will be devoted to a detailed discussion of the wave mechanics described by 
this 1D equation, because it allows to study most basic phenomena and concepts of wave mechanics 
without involving overly complex math. In that chapter, for the notation simplicity, energy Ex 1D 
motion will be referred to just as E. However, one should always remember that each “1D problem” has 
two hidden degrees of freedom and that the genuine  energy of the particle also includes a constant shift 
Eyz1 which is typically much larger than Ex. The Universe is (at least :-) 3-dimensional, and it shows! 

Finally, note that in systems with reduced dimensionality, Eq. (82) for the number of states at 
large k (i.e., for an essentially free particle motion) should be replaced accordingly: in a 2D system of 
area A >> 1/k2, 
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      (1.93) 

while in a 1D system of length l >> 1/k,  

             ,
2

dk
l

dN


       (1.94) 

with the corresponding changes of the summation rule (83). This change has important implications for 
the density of states on the energy scale, dN/dE: it is straightforward (and hence left for the reader :-) to 
use Eqs. (82), (93), and (94) to show that for free 3D particles the density increases with E 
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(proportionally to E1/2), for free 2D particles it does not depend on energy, while for free 1D particles it 
scales as E-1/2, i.e. decreases with energy.  

 

1.7. Exercise problems 

1.1. The actual postulate made by N. Bohr in his original 1913 paper was not directly Eq. (10), 
but an assumption that at quantum leaps between adjacent large (quasiclassical) orbits with n >> 1, 
hydrogen atom either emits or absorbs energy E = , where  is its classical radiation frequency - 
according to classical electrodynamics, equal to the angular velocity of electron’s rotation. Prove that 
this postulate is indeed compatible with Eqs. (8)-(10).  

 
1.2. Use Eq. (53) to prove that linear operators of quantum mechanics are commutative: 

2112
ˆˆˆˆ AAAA  , and associative:    321321

ˆˆˆˆˆˆ AAAAAA  . 

 

 1.3. Prove that for any Hamiltonian operator Ĥ and two arbitrary complex functions f(r) and 
g(r), 

        rdgfHrdgHf 33 ˆˆ rrrr   . 

1.4. Prove that the Schrödinger equation (1.25) with Hamiltonian (1.41) is Galilean-invariant, 
provided that the wave function is transformed as 

   












 2

exp,,
2tmv

i
m

itt'''
rv

rr , 

where the prime sign denotes the variables measured in the reference frame O’ that moves, without 
rotation, with a constant velocity v relatively to the “lab” frame O. Give a physical interpretation of this 
transformation. 

1.5.* Prove the so-called Hellmann-Feynman theorem:57 

n

n HE

 






, 

where  is some parameter, on whom the Hamiltonian Ĥ , and hence its eigenenergies En depend. 
 
1.6. Calculate x, px, x, and px for eigenstate {nx, ny, nz} of a rectangular, infinitely deep 

quantum well (69). Compare product xpx with Heisenberg’s uncertainty relation. 

 

57 Despite the theorem’s name, H. Hellmann (in 1937) and R. Feynman (in 1939) were not the first in the long list 
of physicists who have (apparently, independently) discovered this fact. Indeed, it may be traced back at least to a 
1922 paper by W. Pauli, and was carefully proved by P. Güttinger in 1931. 
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1.7. A particle, placed in a hard-wall, rectangular box with sides ax, ay, and az, is in its ground 
state. Calculate the average force acting on each face of the box.  Can the forces be characterized by a 
certain pressure? 

 
1.8. A 1D quantum particle was initially in the ground state of a very deep, rectangular quantum 

well of width a: 









otherwise.                 ,

,2/2/for ,0
)(

axa
xU  

At some instant, the well’s width is abruptly increased to value a’ > a (leaving the well symmetric about 
point x = 0), and then left constant. Calculate the probability that after the change, the particle is still in 
the ground state of the system. 

1.9. At t = 0, a 1D particle of mass m is placed into a hard-wall, flat-bottom potential well 









otherwise,  ,

,0for  ,0
)(

ax
xU  

in a 50/50 linear superposition of the lowest (ground) and the first excited states, so that its 
wavefunction at that instant is 

    xxCx eg   )0,( , 

where C is the normalization constant which ensures that the particle is (somewhere) in the well with 
probability W = 1. Calculate: 

 (i) the normalized wavefunction (x, t) for arbitrary time t, and 
 (ii) the time evolution of the expectation value x of particle’s coordinate. 

 
1.10. Find the potential profile U(x) for which the following wavefunctions, 

 (i)  ibtaxc  2exp , and 

 (ii)   ibtxac  exp , 

(with real coefficients a > 0 and b), satisfy the Schrödinger equation for a particle with mass m. For each 
case, calculate x, px, x, and px, and compare the product xpx  with Heisenberg’s uncertainty 
relation. 

 
1.11. Calculate the energy density dN/dE of traveling wave states in large rectangular quantum 

wells of various dimensions: d = 1, 2, and 3. 
 
 1.12.* Use the finite difference method with steps a/2 and a/3 to find as many  eigenenergies as 
possible for a particle in the infinitely deep, hard-wall quantum well of width a. Compare the results 
with each other, with the exact formula.58 

58 You may like to start from reading about the finite-difference method - see, e.g., CM Sec. 8.5 or EM Sec. 2.8. 
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Chapter 2. 1D Wave Mechanics 

The main goal of this chapter is the solution and discussion of a few conceptually most important 
problems of wave mechanics for the simplest, 1D case. This lowest dimensionality, and a wide use of 
potential profiles’ approximation by sets of Dirac’s delta-functions, simplify the necessary calculations 
considerably without sacrificing the physical essence of the described phenomena. The reader is 
advised to pay special attention to Sections 6-9, which cover some important material not usually 
discussed in textbooks. 

 

2.1. Probability current and uncertainty relations 

 As was discussed in the end of Chapter 1, in several cases (most importantly, at strong 
confinement within the [y, z] plane), the general (3D) Schrödinger equation may be reduced to the 1D 
equation (1.92): 
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 .   (2.1) 

If the transversal factor – say, the function YZ1 (y, z) that participates in Eq. (1.91), is normalized to 
unity, then the integration of  Eq. (1.22a) over a segment [x1, x2], gives the probability to find the 
particle on this segment: 

  dxtxtxtW
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 .     (2.2) 

If the particle under analysis is definitely inside the system, the normalization of its 1D wavefunction 
(x, t) is provided by extending integral (2) to the whole axis x:   

                    ),(Ψ),(Ψ),(  where,1),( * txtxtxwdxtxw 




.   (2.3) 

A similar integration of Eq. (1.23) shows that the expectation value of any operator depending only on 
coordinate x (and possibly time), may be expressed as 

                




 dxtxAtxtA ),(Ψˆ),(Ψ)( * .    (2.4) 

It is also useful to introduce the probability current along the x-axis (a scalar): 
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where jx is x-component of the probability current density vector j(r,t). Then the continuity equation 
(1.48) for the segment [x1, x2] takes the form 

          0)()( 12  xIxI
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.     (2.6)
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The above formulas are the basis for the analysis of 1D problems of wave mechanics, but before 
proceeding to particular cases, let me deliver on my earlier promise to prove that Heisenberg’s 
uncertainty relation (1.35) is indeed valid for any wavefunction (x,t). For that, let us consider an 
evidently positive (or at least non-negative) integral 

  0
2





 




dx
x

xJ  ,    (2.7) 

where  is an arbitrary real constant, and assume that at the at x  the wavefunction vanishes, 
together with its first derivative. The left-hand part of Eq. (7) may be recast as 
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According to Eq. (4), the first term in the last form of Eq. (8) is just x2. The second and the third 
integrals may be worked out by parts: 
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As a result, Eq. (7) takes the following form: 
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This inequality should be valid for any real , i.e. the corresponding quadratic equation, 2 + a + b = 0, 
can have either one (degenerate) real root - or no real roots at all. This is only possible if its determinant, 
Det = a2 – 4b, is non-positive, leading to the following requirement: 

4

2
22 
xpx .     (2.12) 

In particular, if  x = 0 and px = 0, 1 then according to Eq. (1.33), Eq. (12) takes the form 

             ,
4
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2

22 
xpx      (2.13) 

which, according to the definition (1.34) of r.m.s. uncertainties, is equivalent to Eq. (1.35).  

1 Eq. (13) may be proved even if x and px are not equal to zero, by making the following replacements, x  x - 
x, /x  /x + ip/, in Eq. (7), and then repeating all the calculations – which become rather bulky. We will 
re-derive the uncertainty relations, in a more efficient way, in Chapter 4. 
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Now let us notice that the Heisenberg’s uncertainty relation looks very similar to the 
commutation relation between the corresponding operators: 

                      







  ix
x

i
x

xixppxpx xxx ˆˆˆˆˆ,ˆ .   (2.14a) 

Since this relation is valid for arbitrary wavefunction (x, t), we may present it as an operator equality: 

             0ˆ,ˆ  ipx x .     (2.14b) 

In Sec. 4.5 we will see that the relation between Eqs. (13) and (14) is just a particular case of a general 
relation between the expectation values of non-commuting operators and their commutators. 

 

2.2. Free particle: Wave packets 

 Let us start our discussion of particular problems with free the 1D motion, with U(x,t) = 0. From 
our discussion of Eq. (1.29) in Chapter 1, it is clear that in the 1D case, a similar “fundamental” (i.e. a 
particular but the most important) solution of the Schrödinger equation (1) is a monochromatic wave 

)( 00
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txki
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 .     (2.15) 

According to Eqs. (1.32), it corresponds to a particle with an exactly defined momentum2 p0 = k0 and 
energy E0 = 0 = 2k0

2/2m. However, for this wavefunction, product * does not depend on either x 
or t, so that the particle is completely delocalized, i.e. its probability is spread all over axis x, at all 
times. (As a result, such state is still compatible with Heisenberg’s uncertainty relation (13), despite the 
exact value p0  of momentum p.) 

 In order to describe a space-localized particle, let us form, at the initial moment of time (t = 0),  a 
wave packet of the type shown in Fig. 1.6, by multiplying the sinusoidal waveform (15) by some smooth 
envelope function A(x). As the most important particular example, consider a Gaussian packet 
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(By the way, Fig. 1.6 shows exactly such a packet.) The pre-exponential factor in this envelope function 
has been selected in the way to have the initial probability density,  
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,  (2.17) 

normalized according to Eq. (3), for any parameters x and k0.3  

In order to explore the evolution of this packet in time, we could try to solve Eq. (1) with the 
initial condition (16) directly, but in the spirit of the discussion in Sec. 1.5, it is easier to proceed 

2 From this point on, in this chapter I will drop index x in notation for x-component of vectors k and p. 
3 This may be readily proven using the well-known integral of the Gaussian function (“bell curve”) given by Eq. 
(17) – see, e.g., MA Eq. (6.9b). It is also straightforward to use MA Eq. (6.9c) to prove that for wave packet (16), 
parameter x is indeed the r.m.s. uncertainty (1.34) of coordinate x, thus justifying its notation. 
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differently. Let us  first present the initial wavefunction (16) as a sum (1.65) of eigenfunctions k(x) of 
the corresponding stationary 1D Schrödinger equation (1.60), in our current case 
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that are simply monochromatic waves,  

           ikxeakk  ,      (2.19) 

with a continuum spectrum of possible wave numbers k. For that, sum (1.65) should be replaced with an 
integral: 4 
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kkk   )()0,(  .    (2.20) 

Now let us notice that from the point of view of mathematics, Eq. (20) is just the usual Fourier 
transform from variable k to the “conjugate” variable x, and we can use the well-known formula of the 
reciprocal Fourier transform to calculate 
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This Gaussian integral may be worked out by the following standard method. Let us complement the 
exponent to the full square of a linear combination of x and k, plus a term independent of x:    
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Since the integration in the right-hand part of Eq. (20) should be performed at constant k
~

, in the infinite 

limits, its result would not change if we replace dx by dx’  d[x + 2i(x)2 k
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].5 As a result, we get, 
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so that ak also has a Gaussian distribution, now along axis k, centered to value k0 (Fig. 1.6b), with 
constant k defined as  

xk  2/1 .      (2.24) 

Thus we may present the initial wave packet (16) as 
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From comparison of this formula with Eq. (16), it is evident that the r.m.s. uncertainty of the wave 
number k in this packet is indeed equal to k defined by Eq. (24), thus justifying the notation. The 

4 For notation’s brevity, from this point on the infinite limit signs will be dropped in all 1D integrals. 
5 The fact that the argument shift is imaginary is not important, because function under the integral is analytical, 
and tends to zero at Re x’  . 
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comparison of that relation with Eq. (1.35) shows that the Gaussian packet presents the ultimate case in 
which the product xp = x(k) has the lowest possible value (/2); for any other envelope’s shape the 
uncertainty product may only be larger.  We could of course get the same result for k from Eq. (16) 
using definitions (1.23), (1.33), and (1.34); the real advantage of Eq. (24) is that it can be readily 
generalized to t > 0.  

Indeed, we already know that the time evolution of the wavefunction is given by Eq. (1.67), for 
our case giving6 
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Fig. 1 shows several snapshots of the real part of wavefunction (26), for a particular case k = 0.1 k0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plots clearly show the following effects: 

(i) the wave packet as a whole (as characterized by its envelope) moves along the x axis with a 
certain group velocity vgr,  

6 Note that this packet is equivalent to Eq. (16) and hence is properly normalized to 1 – see Eq. (3). Hence the 
wave packet introduction offers a natural solution to the problem of infinite wave normalization, which was 
mentioned in Sec. 1.2. 
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(ii) the “carrier” wave inside the packet moves with a different, phase velocity vph, which may be 
defined as the velocity the spatial points where wave’s phase (x, t)  arg takes a certain fixed value 
(say,  = /2, where Re vanishes), and 

(iii) the packet’s spatial width gradually increases with time - the packet spreads. 

All these effects are common for waves of any physical nature.7 Indeed, let us consider a 1D 
wave packet of the type (26),   

      dkeatx tkxi
k  )(,  ,     (2.27) 

propagating in a media with an arbitrary (but smooth!) dispersion relation (k), and assume that the 
wave number distribution ak is arbitrary but narrow: k << k  k0 - see Fig. 1.6b. Then we may expand 
function (k) into the Taylor series near the central point k0, and keep only two of its leading terms: 
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and both derivatives are also evaluated at point k = k0. In this approximation,8 the expression in 
parentheses in the right-hand part of Eq. (27) may be rewritten as  
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so that Eq. (27) is reduced to integral 
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First, let neglect the last term in square brackets (which is much smaller than the first term if the 
dispersion relation is smooth enough and/or the time interval t is sufficiently small), and compare the 
result with the initial form of the wave packet (27) 
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The comparison shows that Eq. (30) is reduced to  
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 ,    (2.32) 

where vgr and vph are two constants with the dimension of velocity: 
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 It is clear that Eq. (32) describes effects (i) and (ii) listed above. Let us calculate the group and 
phase velocities for the particular case of de Broglie waves whose dispersion law is given by Eq. (1.30): 

7 See, e.g., brief discussions in CM Sec. 5.3 and EM Sec. 7.2. 
8 By the way, in the particular case of de Broglie wave described by dispersion relation (1.30), Eq. (28) is exact, 
because  = E/ is a quadratic function of k = p/, and all higher derivatives of  over k vanish for any k0. 
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We see that (very fortunately!) the velocity of the wave packet envelope is constant and equals to that of 
the classical particle moving by inertia, in accordance with the correspondence principle.  

 The remaining term in the square brackets of Eq. (30) describes effect (iii), the wave packet’s 
spread. It may be readily evaluated if the packet (27) is initially Gaussian, as in our example (25): 
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In  this case integral (30) is Gaussian, and may be worked out exactly as integral (20), i.e. merging the 
exponents under the integral, and presenting them as a full square of linear combination of x and  k: 
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where I have introduced the following complex function of time:     
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and have used Eq. (24) in the second equality. Now integrating over k
~

, we get 
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The imaginary part of ratio 1/(t) in the exponent gives just an additional contribution to wave’s phase, 
and does not affect the resulting probability distribution 
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This is again a Gaussian bell curve spread over axis x, centered to point x = vgrt, with the r.m.s. width 
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In the particular case of de Broglie waves, d2/dk2 = /m, so that 
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 The physics of the spreading is very simple: if d2/dk2  0, the group velocity d/dk of each 
small group dk of monochromatic components of the wave packet is different, resulting in the gradual 
(eventually, linear) accumulation of the differences of the distances traveled by the groups. The most 
curious feature of Eq. (39) is that the packet width at t > 0 depends on its initial width x’(0) = x in a 
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non-monotonic way, tending to infinity at both  x→ 0 and x → ∞. Because of that, for a fixed t, there 
is an optimal value of x with minimizes x’:  

     
2/1

optmin 2 







m

t
xx'

 .    (2.40) 

This expression may be used for spreading effect estimates. Due to the smallness of the Planck constant 
 on the human scale of things, for macroscopic bodies this effect is extremely small even for very long 
time intervals; however, for light particles it may be very noticeable: for the electron (m = me  10-30 
kg), and t = 1 s, Eq. (40) yields (x’)min ~ 1 cm! 

 Note also that for any t  0, the wave packet retains its Gaussian envelope, but the ultimate 
relation (24) is not satisfied, x’p > /2 - due to a gradually accumulated phase shift between the 
component monochromatic waves. The last remark on this topic: in quantum mechanics, the wave 
packet spreading is not an ubiquitous effect! For example, in Chapter 5 we will see that in a quantum 
oscillator, the spatial width of a Gaussian packet (for that system, called the Glauber state) does not 
grow monotonically but rather either stays constant or oscillates in time. 

 Now let us briefly discuss the case when the initial wave packet is not Gaussian, but is described 
by an arbitrary initial wavefunction. In order to make the forthcoming result more appealing, it is 
beneficial to generalize out calculations to an arbitrary initial time t0; it is evident that if U does not 
depend on time explicitly, it is sufficient to replace t with (t – t0) in all above formulas. With this 
replacement, Eq. (27) becomes 
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and the reciprocal transform (21) reads 
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If we want to express these two formulas with one relation, i.e. plug Eq. (42) into Eq. (41), we 
should give the integration variable x some other name, e.g., x0. The result is 
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Changing the order of integration, this expression may be rewritten in the following general form: 

         00000 ),(,;,),( dxtxtxtxGtx   ,    (2.44) 

where function G, usually called kernel in mathematics, in quantum mechanics is called the 
propagator.9 According to Eq. (43), in our particular case of a free particle the propagator is equal to 

9 Its standard notation by letter G stems from the fact that the propagator is essentially the spatial-temporal  
Green’s function of Eq. (2.18), defined very similarly to Green’s functions of other ordinary and partial 
differential equations describing various physics systems – see, e.g., CM Sec. 4.1 and/or EM Sec. 2.7 and 7.3. 
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The physical sense of the propagator may be understood by considering the following special 
initial conditions:10 

         )(),( 000 x'xtx   ,     (2.46) 

where x’ is a certain point within the domain of particle’s motion. In this particular case, Eq. (44) 
evidently gives 

         ),;,(),(Ψ 0tx'txGtx  .     (2.47) 

Hence, the propagator, considered as a function of x and t only, is just the solution of the linear 
differential equation with -functional initial conditions. Thus while Eq. (41) may be understood as a 
mathematical expression of the linear superposition principle in the momentum (i.e., reciprocal) space 
domain, Eq. (44) is an expression of this principle in the direct space domain: the system’s “response” 
(x,t) to an arbitrary initial condition (x0,t0) is just a sum of its responses to its thin spatial “slices”, 
with propagator G(x,t; x0,t0) representing the weight of each slice in the final sum. 

Calculating integral (45), one should remember that  is not a constant but a function of k, given 
by the dispersion relation for particular waves. In particular, for the de Broglie waves  

                  
















 dktt

m

k
xxkitxtxG )(

2
exp

2

1
),;,( 0

2

000




.   (2.48) 

This is a Gaussian integral again, and may be readily calculated just it was done (twice) above, by 
completing the exponent to the full square. The result is 
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Please note the following features of this complex function (plotted in Fig. 2): 

 

 

 

 

 

 

 

 

 

10 Note that this initial condition is not equivalent to a -functional initial probability density (2). 
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(i) It depends only on differences (x - x0) and (t – t0). This is natural, because the free-particle 
propagation problem is uniform (translation-invariant) both in space and time. 

 (ii) The function shape does not depend on its arguments – they just rescale the same function: 
its snapshot (Fig. 2), if plotted as a function of un-normalized x, just becomes broader and lower with 
time. It is curious that the spatial broadening scales as (t – t0)

1/2 – just as at the classical diffusion, as a 
result of a deep analogy between quantum mechanics and classical statistics – to be discussed further in 
Chapter 7. 

(iii) In accordance with the uncertainty relation, the ultimately compressed wave packet (46) has 
an infinite width of momentum distribution, and the quasi-sinusoidal tails of the free-particle 
propagator, clearly visible in Fig. 2, are the results of the free propagation of the fastest (highest-
momentum) components of that distribution, in both directions from the packet center. In the following 
sections, we will mostly focus on the spatial distribution of stationary, monochromatic wavefunctions 
(that, for unconfined motion, may be interpreted as wave packets of very large spatial width x), only 
rarely coming back to the wave packet discussion. Our excuse is the linear superposition principle, i.e. 
our conceptual ability to restore the general solution from that of monochromatic waves of all possible 
energies. However, the reader should not forget that, as the above discussion has illustrated, 
mathematically this restoration is not always trivial. 

 

2.3. Particle motion in simple potential profiles 

 Now, let us proceed to the cases in which the potential energy U(x,t) is not identically equal to 
zero. The easiest case is that of spatially-uniform but time-dependent potential: U = U(t) = const. 
Indeed, the corresponding Schrödinger equation (1.25) with Hamiltonian 
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allows the variable separation similar to that performed in Sec. 1.5, besides that the time-dependent 
function T(t) obeys an equation of motion that is slightly more general than Eq. (1.59): 

         TtUETi )( ,     (2.51) 

whose solution may be expressed as an evident generalization of Eq. (1.61): 
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Looking at the basic relations (1.22) and (1.23) of wave mechanics, it seems that this additional 
phase factor does not affect the particle probability distribution, or even any observable (including 
energy it is referred to the instant value of U), and hence the phase increment , associated with U(t), is 
just a mathematical artifact. This is certainly true for a single particle, however, the situation changes as 
soon as we recall that the Universe consists of more that one of them.  

 For example, consider two similar, independent particles, each in the same (say, ground) 
eigenstate, but with the potential energies (and hence eigenenergies E1,2) different by a constant U  U1 
– U2. Then, the difference    1 - 2  of their wavefunction phases evolves in time as 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 2           Page 11 of 76 

                   


U

dt

d 



.      (2.53) 

If the particles are in different worlds (or at least in different laboratories :-), this evolution is 
unobservable; however, it should be intuitively clear that a very weak coupling of a certain detector to 
each particle may allow it to observe phase , while keeping the particle dynamics virtually 
unperturbed, i.e. Eq. (53) intact. 

 Perhaps the most dramatic demonstration of this phenomenon is the Josephson effect in 
superconductors.11  Experimentally, the easiest way to observe the effect is by connecting two bulk 
superconductor samples with a weak, short electric contact (called either the weak link or the Josephson 
junction) and bias them with a constant (dc) voltage V, typically in a few-microvolt range – see Fig. 3. 

 

 

 

 

 

 

 

Superconductivity may be explained by a specific coupling between its conduction electrons, 
that leads, at low temperatures, to formation of the so-called Cooper pairs. Such pairs, each consisting 
of two electrons with opposite spins and momenta, behave as Bose particles, and form coherent Bose-
Einstein condensate.12 Most properties of such a condensate may be described by a single wavefunction, 
evolving in time as that of a free particle with the effective potential energy U = q = -2e, where  is 
the electrochemical potential,13 and q = -2e is the total charge of the Cooper pair. As a result, for the 
situation shown in Fig. 3, Eq. (53) takes the form  
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,      (2.54) 

where V = 1 - 2  is the applied voltage. B. Josephson has predicted that, in a particular case when a 
weal link is a tunnel junction, electric current I of Cooper pairs through it should have a simple form:14 

        ,sincII        (2.55) 

11 It was predicted theoretically by B. Josephson (then a graduate student!) in 1962 and observed experimentally 
in less than a year. More recently, analogs of this effect were also observed in superfluid helium and atomic Bose-
Einstein condensates. 
12 See, e.g., SM Sec. 3.4. 
13 For more on this notion see, e.g. SM Sec. 6.4. 
14 Later, Eq. (55) has been shown to be valid for other weak link types as well, though deviations from have also  
been found. These deviations, however, do not affect the fundamental 2-periodicity of function I() – see, e.g., 
EM Sec. 6.4. As a result, no deviations from the fundamental relations (56)-(57) have been found  (yet :-). 
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where Ic is some constant (scaling as the weak link strength). Combining Eqs. (53) and (54), we see that 
if the applied voltage is constant in time, the current oscillates with the so-called Josephson frequency 

               V
e

f J
J

J


2
  where,

2
 




,    (2.56) 

as high as ~ 484 MHz per each microvolt of applied dc voltage. This effect is now well documented, 
though a direct detection of the Josephson radiation is tricky; it is much easier to observe the phase 
locking (synchronization)15 of the radiation by external microwave signal, which results in formation of 
nearly flat dc current steps at dc voltages 

   
e

nVn 2


 ,      (2.57) 

where  is the external signal frequency and n is an integer.16 This effect is now being used in highly 
accurate standards of dc voltage.17  

Now, let us move on to a discussion of the opposite case, when a 1D particle modes in various 
potential profiles U(x) that are constant in time. Conceptually, the simplest of such profiles is a potential 
step – see Fig. 4.  

 

 

 

 

 

  

 

As I am sure the reader knows, in classical mechanics, if a particle is incident on such a step (in 
Fig. 4, from the left), its kinetic energy p2/2m cannot be negative, so that it can only travel through the 
classically accessible region where its (conserved) full energy,  
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xU
m

p
E  ,     (2.58) 

is larger than the local value U(x). Let the initial velocity v = p/m be positive, i.e. directed toward the 
step. Before it has reached the classical turning point xc, defined by equation 

        ExU c )( ,      (2.59) 

15 See, e.g., CM Sec. 4.4. 
16 If  is not too high, this effect may be adequately described combining Eqs. (54)-(55). Let me leave this task 
for the reader. 
17 The most precise proof that the Josephson frequency-to-voltage ratio fJ/V does not depend on superconducting 
material (to at least 15 decimal places!) has been carried out by the group led by J. Lukens here at Stony Brook – 
see  J.-S. Tsai et al., Phys. Rev. Lett. 51, 316 (1983). 
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kinetic energy p2/2m never turns to zero, so that the particle continues to move in the initial direction. 
On the other hand, the particle cannot penetrate that classically forbidden region x > xc,  because there 
its kinetic energy would be negative there. At the point x = xc, particle’s velocity changes sign, i.e. it is 
reflected back from the classical turning point. 

In order to see what the wave mechanics says about this situation, let us start from the simplest, 
sharp potential step shown with bold black lines in Fig. 5: 
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For this choice, and any energy within the interval 0 < E < U0, the classical turning point  is xc = 0. 

 

 

 

 

 

 

 

 

 

 Let us represent an incident particle with a wave packet so long that the spread k ~ 1/x of its 
wave number spectrum, and hence the energy uncertainty E =  = (d/dk)k is negligible in 
comparison with its average value E < U0, as well as with (U0 – E). In this case, E may be considered a 
given constant, and the time dependence of the solution is given by Eq. (1.61), and we can limit 
ourselves to the solution of the 1D version of the stationary Schrödinger equation (1.63), in this case 
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for the spatial part (x) of the wavefunction.18   

At x < 0, i.e. at U = 0, the equation is reduced to the Helmholtz equation (1.75), and may be 
satisfied with two traveling waves, proportional to exp{+ikx} and exp{-ikx} correspondingly, with k 
satisfying the dispersion equation (1.30): 
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Thus the general solution of Eq. (61) in this region may be presented as  

18 Note that this is not the eigenproblem like the one we have solved in Sec. 1.4 for a quantum well. Indeed, now 
energy E is considered fixed – e.g., by the initial conditions that launch a long wave packet upon the potential 
step, from the left. 
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Fig. 2.5. Reflection of a 
monochromatic wave from a potential 
step U0 > E. (This particular 
wavefunction’s shape is for U0 = 5E.) 
The wavefunction is plotted with the 
same schematic vertical offset by E, as 
those in Fig. 1.7. 

A

B

C



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 2           Page 14 of 76 

                 ikxikx BeAex   .     (2.63) 

The second term in the right-hand part evidently describes an (infinitely long) wave packet traveling to 
the left, which represents particle’s reflection from the potential step. If B = -A, this solution is reduced 
to Eq. (1.76) for the potential well with infinitely high walls, but as we will see in a minute, for our 
current case of finite step height U0, the relation between coefficients B and A may be different.  

To show this, let us solve Eq. (61) for x > 0, where U = U0 > E. In this region the equation may 
be rewritten as 
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,      (2.64) 

where  is a real constant defined by the relation similar to Eq. (62): 
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The general solution of Eq. (64) is the sum of exp{+x} and exp{-x}, with arbitrary coefficients. 
However, the wavefunction should be finite at x  , so only the latter exponent is acceptable: 

                    xCex   .     (2.66) 

This penetration of the wavefunction into the classically forbidden region, and hence a finite 
probability to find the particle there, is one of the most fascinating predictions of quantum mechanics, 
and has been repeatedly observed in experiment, e.g., via tunneling experiments – see below. From Eq. 
(66), it is evident that the constant , defined by Eqs. (65), may be interpreted as the reciprocal 
penetration depth. Even for the lightest particles this depth is usually very small. Indeed, for E << U0 
that equation yields 
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 .     (2.67) 

For example, for a conduction electron in a typical metal, that runs, at its surface, into a sharp potential 
step U0, whose height equals to metal’s workfunction W  5 eV (see the discussion of the photoelectric 
effect in Sec. 1.1),   is close to 0.1 nm, i.e. is close to a typical size of an atom. For heavier elementary 
particles (e.g., protons) the penetration depth is correspondingly lower, and for  macroscopic bodies it is 
hardly measurable. 

Returning to our problem, we still should find coefficients A, B, and C from the boundary 
conditions at x = 0. Since E is a finite constant, and U(x) is a finite function, Eq. (61) says that d2/dx2 
should be finite as well. This means that the first derivative should be continuous: 

    0)(lim
2

limlim 000 22

2
















  










 dxExU

m
dx

dx

d

dx

d

dx

d
xx


. (2.68)  

Repeating such calculation for function (x) itself, we see that it also should be continuous at all points, 
including x = 0, so that 
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 Plugging solutions (63) and (66) into these two boundary conditions, we get a system of two linear 
equations 

     ,, CikBikACBA      (2.70) 

whose (elementary) solution enables us to express B and C via A : 
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We immediately see that since the numerator and denominator in the first of these formulas have 
equal moduli, so that B = A. This means that, as we could expect, a particle with energy E < U0 is 
totally reflected from the step. As a result, at x < 0 our solution (63) may be presented by a standing 
wave 
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  .   (2.72) 

Notice that the shift x  /k = (tan-1k/)/k of the standing wave to the right, due to the partial 
penetration of the wavefunction under the potential step, is commensurate with, but generally not equal 
to   1/. Figure 5 shows the full behavior of the wavefunction, for a particular case E = U0/5, at which 
k/ = [E/(U0-E)]1/2= 1/2.  

   According to Eq. (65), as the particle’s energy E is increased to approach U0, the penetration 
depth 1/ diverges. This raises an important issue: what happens at E > U0, i.e. if there is no classically 
forbidden region in the problem? Again, in classical mechanics the incident particle would continue to 
move to the right, though with a reduced velocity, corresponding to the new kinetic energy E – U0, so 
there would be no reflection. In quantum mechanics, however, the situation is different. In order to 
analyze it, it is not necessary to re-solve the whole problem; it is sufficient to note that all our 
calculations, and hence Eqs. (71) are still valid if we take19 
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With this replacement, Eq. (71) becomes20 
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The most important result of this change is that now the reflection is not complete: B < A. In 
order to evaluate this effect qualitatively, it is more fair to use not the B/A or C/A ratios, but rather that 

19 Our earlier discarding of the particular solution exp{x}, now becoming exp{-ik’x}, is still valid, but now on a 
different grounds: this term would describe a wave packet incident on the potential step from the right, and this is 
not the problem under our consideration.
20 These formulas are completely similar to those for the partial reflection of classical waves from a sharp 
interface between two uniform media, at normal incidence (see, e.g., CM Sec. 5.4 and EM Sec. 7.4), with the 
effective impedance Z  of de Broglie waves proportional to their wave number k. 
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of the probability currents (5) corresponding to traveling waves with amplitudes C and A, in the 
corresponding regions (respectively, x > 0 and x < 0): 
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 .   (2.75) 

(T so defined is called the transparency of the inhomogeneity, in our current case of the potential step.) 
The result given by Eq. (75) is plotted in Fig. 6a. Notice its most important features: 

 (i) At U0 = 0, the transparency is full, T = 1 – naturally, for having no step at all. 

 (ii) At U0  E, the transparency tends to zero - giving a proper connection with the case E < U0. 

 (iii) We can use result (75) even for U0 < 0, i.e. for the step-down (or “cliff”) profile – see Fig. 
6b. Very counter-intuitively, the particle is (partly) reflected even from such a cliff, and the transmission 
diminishes (rather slowly) at U0  -. 

 

 

 

 

 

 

 

 

 

 The most important conceptual conclusion of our analysis is that the quantum particle is partly 
reflected from a potential step with U0 < E, in the sense that there is a nonvanishing probability T < 1 to 
find it passed over the step, while there is also probability (1 – T) to have it reflected. 

 The same property is exhibited, for any relation between E and U0, by another simple potential 
profile U(x), the famous tunnel barrier. Figure 7 shows its simple, “rectangular” version: 
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Fig. 2.7. Rectangular tunnel barrier. 

Fig. 2.6. (a) Transparency of a potential step with U0 < E 
as a function of its height, according to Eq. (75), and (b) 
the potential profile at U0 < 0. 
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In order to analyze this problem, it is sufficient to look for the solution to the Schrödinger 
equation in the form (63) at x  -d/2.  At x > +d/2, i.e., behind the barrier, we may use the arguments 
presented above (no wave packet source on the right!) to keep just one traveling wave, 

              ikxFex  )( .      (2.77) 

However, under the barrier, i.e. at -d/2  x  +d/2, we should generally keep both exponential terms,  

       xx DeCexb
  )( ,     (2.78) 

because our previous argument, used in the potential step problem’s solution, is no longer valid. (Here k 
and  are still defined, respectively, by Eqs. (62) and (65).) In order to find the relation between 
coefficients A, B, C, D, and F, we need to plug in the solutions into the boundary conditions similar to 
Eqs. (69), but now at two boundary points, x =  d/2. 

 Solving the resulting system of 4 linear equations for five amplitudes (A, B, C, D, and F), we can 
readily calculate four ratios B/A, C/A, etc., in particular, 
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Figure 8a shows the transparency as a function of particle energy E, for several characteristic 
values of the barrier thickness d, or rather of the ratio d/, where  is defined by Eq. (67). 
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Fig. 2.8. Transparency of the rectangular tunnel barrier as a function of particle’s energy E. 
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 The plots show that for a thin barrier (d < ) the transparency grows gradually with particle’s 
energy. This growth is natural, because the penetration constant  decreases with the growth of E, i.e., 
the wavefunction penetrates more and more into the barrier, so that more and more of it is “picked up” 
at the second interface (x = +d/2) and transferred into the wave Fexp{ikx} propagating behind the 
barrier. As Eq. (79b) shows, for thick barriers (d >> ) , this dependence is dominated by an exponent,  

           de
k

k
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2

22
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 ,     (2.80) 

that may be clearly seen as a straight segments in semi-log plots (Fig. 8b) of T as a function of the 
combination (1 – E/U0)

1/2  which is proportional to  - see Eq. (65).  

 Equation (80) also clearly shows the exponential dependence of the barrier transparency of its 
thickness at d >> . This dependence is the most important factor for various applications of the  
quantum-mechanical tunneling – from the field emission21 of electrons to scanning tunneling 
microscopy.22 Also noted should be substantial negative implications of the effect for modern electronic 
engineering, most importantly imposing a limit for scaling down of field effect transistors in 
semiconductor integrated circuits (and hence the circuit density increase according to the well-known 
Moore’s law), due to increase of tunneling both through the gate oxide and along transistor’s channel.23 

 Another interesting effect visible in Fig. 8a (for case d = 0.3) are the oscillations of T at E > U0. 
This is our first glimpse at one more interesting quantum effect: resonant tunneling. I will discuss this 
effect in detail in Sec. 5 below. 

 

2.4. The WKB approximation 

 Before moving on to exploring more complex potentials, let us see whether the results discussed 
in the previous section hold on in the opposite limit of so-called soft, gradual potential profiles, like that 
sketched in Fig. 4. (The quantitative conditions of the “softness” will be derived below). The most 
efficient analytical tool in this limit is the WKB (or “quasiclassical”) approximation developed by H. 
Jeffrey, G. Wentzel, A. Kramers, and L. Brillouin  in 1926-27.  

 In order to derive its 1D version, let us rewrite the Schrödinger equation (61) as 
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where the local value of wave number k(x) is defined similarly to Eq. (73), 
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but now it may be a function of x. We already know that for k(x) = const, the fundamental solutions of 
this equation have form Aexp{+ikx} and Bexp{-ikx}. Any of them may be presented in a simple form 

21 See, e.g., G. Fursey, Field Emission in Vacuum Microelectronics, Kluwer, New York, 2005. 
22 See, e.g., G. Binning and H. Rohrer, Helv. Phys. Acta 55, 726 (1982). 
23 See, e.g., V. Sverdlov et al., IEEE Trans. on Electron Devices 50, 1926 (2003). 
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                 )()( xiex  ,     (2.83) 

where (x) is a complex function, in this simplest case equal to either (kx – ilnA) or (-kx – ilnB). This is 
why we may try use Eq. (83) to look for solution of Eq. (81) even in the general case, k(x)  const. 
Differentiating Eq. (83) twice, we get 
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Plugging the last expression into Eq. (81) and requiring the factor before exp{i(x)} to vanish, we get 
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This is still an exact, general result. At the first sight, it looks worse than the initial equation 
(81), because Eq. (85) is nonlinear. However, it is more ready for simplification in the limit when the 
potential profile is very smooth, dU/dx  0. Indeed, we know that for a uniform potential, ” = 0. 
Hence, in the “0th” approximation, (x)  0(x), we may try to keep that result, so that Eq. (85) yields 
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Just as in the uniform case, this equation has two roots, 
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,      (2.86b) 

so that its general solution is  
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dx'x'kiBdx'x'kiAx )(exp)(exp)(0 ,   (2.87) 

where x’ is the lower limits of integration affect only constants A and B. The physical sense of this result 
is simple: it is a sum of forward- and back-propagating waves, with the coordinate-dependent local wave 
number k(x) that self-adjusts to the potential profile.  

 Let me emphasize the non-trivial nature of this approximation.24 First, any attempt to address the 
problem with a standard perturbation approach (say,  = 0 + 1 +…, with n proportional to nth power 
of some small parameter,25 in this case scaling d2U/d2x) would fail for most potentials, because even a 
slight but persisting deviation of U(x) from a constant leads to a gradual accumulation of phase 0, 
impossible to describe by any small perturbation of . Second, the dropping of term d2/dx2 in Eq. (85) 
is not too easy to justify. Indeed, since we are committed to the “soft potential limit” dU/dx  0, we 
should be ready to assume the characteristic length a of spatial variation of  to be large, and neglect 

24 Philosophically, this space-domain method is very close to the time-domain rotating wave approximation 
(RWA) used, for example, in the classical and quantum theory of oscillations – see, e.g., CM Secs. 4.2-4.5, and 
Secs. 6.5, 7.6, 7.7, 9.2, and 9.4  of this course. 
25 Such perturbation theories will be discussed in Chapter 6. 
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the terms that are the smallest ones in the limit a  . However, both first terms in Eq. (85) are 
apparently of the same order in a, namely O(a-2); why have we neglected just one of them?  

 The price we have paid for such a “sloppy” treatment is high: Eq. (87) does not satisfy the 
fundamental property of the Schrödinger equation, the probability current conservation. Indeed, since 
Eq. (81) describes a fixed-energy (stationary) spatial part of the general Schrödinger equation, its 
probability density w = * =*, and should not depend on time. Hence, according to Eq. (6), we 
should have I(x) = const. However, this is not true for each component of Eq. (87); for example for the 
forward-propagating component of its right-hand part, Eq. (5) yields 

             )()(
2

0 xkA
m

xI


 ,     (2.88) 

evidently not a constant if k(x)  const.  

 The brilliance of the WKB theory is that the problem may be fixed without revising the 0th 
approximation. Indeed, let us explore the next, 1st approximation instead: 

             )()()( 10WKB xxxx  ,    (2.89) 

where 0 still obeys Eq. (85), while 1 describes a small correction to the 0th approximation, in the 
following sense:26  
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Plugging Eq. (89) into Eq. (85), with the account of the definition (86), we get 
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Using condition (90), we may neglect d21/dx2 in comparison with d20/dx2 in the first parenthesis, and 
d1/dx in comparison with 2d0/dx  in the second parenthesis. As a result, we get the following 
approximate result: 
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(Again, the lower integration limit is arbitrary, but its choice may be incorporated into complex 
constants a and b.) This modification of the 0th approximation (87) overcomes the problem of current 
continuity; for example, for the forward-propagating wave, Eq. (5) gives 

26 For certainty, I will use the discretion given by Eq. (82) to define k(x) as the positive root of its right-hand part. 
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Physically, factor k1/2 in the denominator of the WKB wavefunction’s pre-exponent is easy to 
understand. The smaller the local group velocity (34) of the wave packet, vgr(x) = k(x)/m, the “easier” 
(more probable) it should be to find the particle within a certain interval dx. This is exactly the result 
that WKB gives: dW/dx = w(x) = *  1/k(x)  1/vgr.  

 Another value of the 1st approximation is a clarification of WKB theory’s validity condition: it is 
given by Eq. (90). Plugging into this relation the first form of Eq. (92), and estimating 0” as 0’/a, 
where a is the spatial scale  of a substantial change of 0’ = k(x), we can rewrite the condition as 

            1ka .      (2.96) 

In plain English, this means that the region where U(x), and hence k(x), change substantially should 
contain many de Broglie wavelengths  = 2/k. 

 So far I have implied that k2(x)  E – U(x) is positive, i.e. particle moves in the classically 
accessible region. Now let us extend the WKB approximation to the situation where the difference E - 
U(x) may change sign, for example to the reflection problem sketched in Fig. 4. Just as we did for the 
sharp potential step, we first need to find the appropriate solution for the classically forbidden region, in 
this case x > xc. For that, there is no need to redo our calculations, because they are still valid if we, just 
as in the sharp step problem, take k(x) = i(x), where 
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and keep just one of two possible solutions (with  > 0), in analogy with Eq. (66). The result is 
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with the lower limit at some point with 2 > 0 as well. This is a really wonderful formula! It describes 
the quantum-mechanical penetration of the particle into the classically forbidden region, and provides a 
natural generalization of Eq. (66) - leaving intact, of course, our estimates of the depth  ~ 1/ of such 
penetration.  

 Now we have to do what we have done for the sharp-step problem in Sec. 2: use the boundary 
conditions in the interface point x = xc to relate constants a, b, and c. However, now this operation is a 
tad more complex, because both WKB functions (94) and (98) diverge, albeit weakly, at the classical 
turning point, were both k(x) and (x) tend to zero. This connection problem may be however, solved in 
the following way. 27 Let us use the commitment of potential “softness”, assuming that it allows us to 
keep  just two leading terms in the Taylor expansion of function U(x) at point xc:   
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27 An alternative way to solve the connection problem, without involving the Airy functions but using an 
analytical extension of WKB formulas to the plane of complex argument, may be found, e.g., in Sec. 47 of  
textbook by L. Landau and E. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd ed. Pergamon, 1977. 
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Using this truncated expansion, and introducing a dimensionless variable for coordinate’s deviation 
from the classical turning point, 
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we reduce the Schrödinger equation (61) to the simple Airy equation 
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As for all linear, ordinary differential equations of the second order, the general solution of Eq. (101) 
may be presented as a linear combination of two fundamental solutions, in this case called Airy 
functions Ai( ) and Bi( ), shown in Fig. 9a.   

 

 

 

 

 

 

 

 

 

 

The latter function diverges at   , and thus is not suitable for our current problem (Fig. 4), 
while the former function has the following asymptotic behaviors at   >> 1: 28 
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Now let us apply the WKB approximation to the Airy equation (101). Taking the classical 
turning point ( = 0) for the lower limit, for   > 0 we get (in dimensionless units) 

28 The following (exact!) integral formulas,  
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are often convenient for practical calculation of Airy functions at intermediate values of the argument,  ~ 1. 

Fig. 2.9. (a) Airy functions Ai and Bi, and (b) the WKB approximation for function Ai(). 
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i.e. exactly the exponent in the first line of Eq. (102). Making a similar calculation for  < 0, with the 
natural assumption b = a (full reflection from the potential step), we arrive at the following result: 
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This approximation differs from the exact solution at small values of  , i.e. close to the classical 
turning point – see Fig. 9b. However, at  >> 1, Eqs. (104) describe the Airy function exactly if   
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Hence we can use these connection formulas to express the relations between coefficients a, b, and c of 
the general WKB solutions (94) and (98). In particular, the first of them yields b = -a exp{i/2}, so that 
Eq. (94) becomes 
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This result may be also described by a simple mnemonic rule: reflecting from a “soft” potential step, the 
wavefunction acquires an additional phase shift   = /2, if compared with the reflection from a “hard” 
(vertical) potential wall located at x = xc , for which, according to Eq. (1.76), we would have b = -a. 

 Let us quantify the condition of validity of the connection formulas (105) - in other words, the 
criterion of the step “softness”.  For that, within the region where the WKB approximation differs from 
for the exact Airy equation (  ~ 1, i.e. x - xc ~ x0), the deviation from the linear approximation (99) of 
the potential profile should be relatively small. This deviation may be estimated using the next term of 
the Taylor expansion, d2U/d2xx = xc(x – xc)

2/2. As a result, the softness condition may be expressed as 
d2U/d2xx=xc x0 << dU/dx  x=xc. With the account of Eq. (100) for x0, the condition becomes 
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  As an example of a very useful application of the WKB approximation, let us use it to calculate 
the energy spectrum of 1D particle in a soft 1D quantum well (Fig. 10). As was discussed above, we 
may always consider the standing wave describing an eigenstate n (corresponding to eigenenergy En) 
as a traveling wave going back and forth between the walls, being sequentially reflected by each of 
them. Let us apply the WKB approximation to such a traveling wave. First, according to Eq. (94), 
propagating from the left classical turning point xL to the right point xR, it acquires phase change 
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At the reflection from the soft wall at xR, according to the connection formula (106), the wave 
acquires an additional shift /2.  Now, traveling back from xR to xL the wave gets a shift similar to one 
given by Eq. (108):  = . Finally, at the reflection from xL it gets one more /2. Summing up all 
these contributions, we may write the self-consistency condition (that the wavefunction “catches its own 
tail with its teeth”), in the form 
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Rewriting this result in terms of particle’s momentum p(x) = k(x), we arrive at the famous 1D Bohr-
Sommerfeld quantization rule  
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where the closed path C means the full period of classical motion.29 

  

 

 

 

 

 

 

 Let us see what does this rule give for the very important particular case of a quadratic potential 
profile of a harmonic oscillator of frequency 0. In this case, 
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and the classical turning points are the roots of a simple equation 
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so that xR = xn  (2En/m)1/2/0 > 0, xL = - xn < 0. Due to potential’s symmetry, the integration required by 
Eq. (110) is also simple: 

            
2

2

2
212)(2)(

0

2/1

2/1

2

2
2/12/1 


 n

nn
n

nn

E
xmEdx

x

x
mEdxxUEmdxxp

c

c

c

c

R

L

x

x

x

x

x

x









 









, (2.113) 

29 Note that at motion in more than one dimension, a closed classical trajectory may have no turning points. In this 
case, the constant ½ in the parentheses of Eq. (109), arising from the turns, should be dropped. The simplest 
example is the circular motion of the electron about the proton in Bohr’s picture of the hydrogen atom, for which 
the modified quantization (109) condition takes form (1.10) postulated by N. Bohr. (A similar relation for the 
radial motion is sometimes called the Sommerfeld-Wilson quantization rule.) 
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so that Eq. (110) is satisfied if 
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 In order to estimate the validity of this result, we have to check condition (96) at all points of the 
classically allowed region, and Eq. (107) at the turning points. A straightforward calculation shows that 
both conditions are valid for n >> 1. However, we will see below that Eq. (114) is actually exactly 
correct for all energy levels – thanks to special properties of potential  profile (111). 

 Now, let us look at the second of connection formulas (105), c = a/2. Again, it differs from the 
result (71) for a sharp potential step, that may be rewritten as 
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by both the modulus and phase factor. (In the WKB approximation, the latter factor always equals /4.) 
Hence, again, the WKB approximation’s prediction is not exact for sharp potentials; nevertheless, it is 
broadly used for practical calculations. One of the most important of them is the transparency of an 
arbitrary but smooth potential barrier (Fig. 11). 

  

 

 

 

 

 

 

 Here, just as in the case of a rectangular barrier, we need to take unto consideration five partial 
“waves” (or rather fundamental solutions of the Schrödinger equation): 30 
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where lower limits of integrals are arbitrary (each within the corresponding range of x). Since on the 
right of the left classical point we have two exponents rather than one, and on the right of the second 

30 Sorry, but the same letter, d, is used here for the barrier thickness (defined in this case as the classically 
forbidden region length, xc’ – xc), and the constant in one of the wave amplitudes – see Eq. (116). Let me hope 
that the difference between these uses is absolutely evident from the context. 

Fig. 2.11. 1D potential barrier of 
an arbitrary (but smooth) shape. 

)(xU

x
0

cx 'xc

E
a

b

c f

d

cc x'xd 

maxU

mx

Harmonic 
oscillator’s 

energy 
levels 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 2           Page 26 of 76 

point, one traveling waves rather than two, the connection formulas (105) have to be generalized, using 
asymptotic formulas not only for Ai( ), but also for the second Airy function, Bi( ).  The analysis, 
absolutely similar to that carried out above (though naturally a bit more bulky),31 gives a remarkably 
simple result: 
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with no pre-exponential factor. This formula is broadly used in applied quantum mechanics, despite the 
approximate character of its pre-exponential coefficient for insufficiently soft barriers that do not satisfy 
Eq. (107). For example, Eq. (80) shows that for a thick rectangular barrier with k = , i.e. U0 = 2E, the 
WKB approximation (117) underestimates T by a factor of 4. However, on the logarithmic scale of Fig. 
8b, such factor, about half an order of magnitude, still looks as a small correction. 

 Notice that when E approaches the barrier top Umax (Fig. 11), points xc and xc’ merge, so that, 
according to Eq. (117),  TWKB  1, i.e. the particle reflection vanishes at E = Umax. However, this 
conclusion is incorrect even for smooth barriers where one could naively expect the WKB 
approximation to work perfectly. Indeed, near point x = xm where the potential reaches maximum (i.e. 
U(xm) = Umax), we may always approximate a smooth function U(x) by an inverted parabola, 
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.    (2.118) 

Calculating the derivatives dU/dx and d2U/dx2 of this function and plugging them into condition (107), 
we see that the WKB approximation is only valid if Umax - E >> 0. An exact analysis32 of tunneling 
through barrier (118) gives the following Kemble formula: 

         0max /)(2exp1
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 UE
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 ,    (2.119) 

valid for any sign of difference (E – Umax). This formula describes a gradual approach of T to 1, i.e. a 
gradual reduction of reflection at particle energy’s increase, with T = ½ (rather than 1) at E = Umax. 

 Now the last remark of this section: our discussions of the propagator and the WKB 
approximation open a straight way toward an alternative formulation of quantum mechanics, based on 
the Feynman path integral, but I will postpone its discussion until a more compact (“bra-ket”) notation 
has been introduced in Chapter 4. 

 

2.5. Transfer matrix, resonant tunneling, and metastable states 

 Let us now explore motion in more complex potential profiles. The piecewise-constant and 
smooth-potential models of U(x) are not too convenient here, because they both require “stitching” local 

31 Note, however, that in the most important case TWKB << 1, Eq. (117) may be simply derived from Eqs. (105) – 
an exercise left for the reader. 
32 It was carried out by E. Kemble in 1935. Notice that mathematically the Kemble formula is similar to the Fermi 
distribution in statistical physics, with effective temperature Tef = 0/2kB. This similarity has some interesting 
implications for the statistics of Fermi gas tunneling. 
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solutions in each classical turning point, which may lead to very cumbersome calculations. However, we 
may get a very good insight of the physics phenomena in such profiles, using their approximation by a 
set of Dirac’s delta-functions. For that, let us have a look at what our old result (79) gives in the limit of 
a very thin and high rectangular barrier, d << , E << U0 (giving k  <<  << 1/d): 
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where parameter  is defined as 
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The last product, U0d, is just the “area”  
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of the barrier. This fact implies that the very simple result (120) for the transparency may be correct for 
a barrier of any shape, provided that it is sufficiently thin and high. 

 Indeed, let us consider the tunneling problem for a very thin barrier with d, kd << 1 (Fig. 12), 
approximating it by Dirac’s -function: 

      )()( xxU W .     (2.123) 

 

 

 

 

 

 

We already know the solutions in all points but x = 0 – see Eqs. (63) and (77) – so we only need 
to analyze boundary conditions in that point to find coefficients A, B, and F - or rather the ratios B/A and 
F/A. However, due to the special character of the -function, we should be careful here. Indeed, instead 
of Eq. (68) we now get 
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On the other hand, the wavefunction itself is still continuous: 
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Using these boundary conditions, we readily get the following system of two linear equations, 
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Fig. 2.12. Delta-functional tunnel barrier. 
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whose solution yields 

    .  where,
1

1
,

1 2k

m

iA

F

i

i

A

B



W








 



   (2.127) 

For the barrier transparency T  F/A2, this result again gives Eq. (120). That formula may be recast to 
give a simple expression (valid only for E << Umax) for the transmission coefficient, 
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that shows that as energy becomes larger than parameter E0, the barrier’s transparency approaches unity.  

However, the most important application of Eqs. (126) is for deriving transparency of more 
complex potential profiles. For that, let us first introduce very general notions of the scattering and 
transfer matrices, currently for the 1D case. Consider an arbitrary but finite-length potential “bump” 
(more formally called a scatterer), localized somewhere between points x1 and x2, on the flat potential 
background, say U = 0 (Fig. 13). We know the general solution, with a certain energy E, outside the 
interval are a set of two sinusoidal waves. Let us present them in the form 
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 ,    (2.129) 

where (for now) j = 1 or 2, and (k)2/2m = E. Note that each of the wave pairs (129) has, in this notation, 
its own reference point xj, because this is very convenient for the calculations which follow. 

 

 

 

 

 

 

 As we have already discussed, if the wave/particle is incident from the left, the linear 
Schrödinger equation within the scatterer range (x1 < x < x2), can provide only linear expressions of the 
transmitted (A2) and reflected (B1) wave amplitudes via the incident wave amplitude A1: 

         ,, 11111212 ASBASA       (2.130) 

where S11 and S21 are certain (generally, complex) coefficients. In this case, B2 = 0. Alternatively, if a 
wave, with amplitude B2, is incident from the right, it also may induce a transmitted wave (B1) and 
reflected wave (A2) with amplitudes 

             ,, 22222121 BSABSB       (2.131) 

where coefficients S22 and S12 are generally different from S11 and S21. Now we can use the linear 
superposition principle to argue that if waves A1 and B2 are simultaneously incident on the scatterer (say, 

Fig. 2.13. A single 1D scatterer. 
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because wave B2 has been partly reflected back by some other scatterer located at x > x2), the resulting 
scattered wave amplitudes A2 and B1 are just the sums of their values for separate incident waves: 
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These linear relations may be conveniently presented by the so-called scattering matrix (frequently 
called just “S-matrix”):  
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 Scattering matrices, duly generalized, are an important tool for the analysis of wave scattering in 
more than one dimensions; for 1D problems, however, another matrix is more convenient to present the 
same linear relations (132). Indeed, let us solve this system for A2 and B2. The result is 
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where T is the transfer matrix with elements 

     .
1

,,,
12

22
21

11
21

12

22
12

12

2211
2111 S

T
S

S
T

S

S
T

S

SS
ST     (2.135) 

One can wonder whether matrices S and T obey any universal properties that would be valid for 
an arbitrary (but time-independent) scatterer. Such universal equations may be readily found from the 
probability current conservation and the time-reversal symmetry of the Schrödinger equation. Let me 
leave finding these relations for reader’s exercise. The results show, in particular, that the scattering 
matrix may be rewritten in the following form: 
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where 4 real parameters r, t, , and   satisfy just one universal relation: 

   122  tr                (2.136b) 

(so that only 3 of the parameters are independent). As a result of this symmetry, T11 may be also 
presented in a simpler form, similar to T22: T11 = exp{i}/t = 1/S12

*= 1/S21
*. The last form allows a ready 

expression of scatterer’s transparency via just one coefficient of the transfer matrix: 
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In our current context, the most important property of 1D transfer matrices is that in order to find 
the total transfer matrix T of a system consisting of several (say, N) sequential arbitrary scatterers (Fig. 
14), it is sufficient to multiply their matrices. Indeed, extending the definition (134) to other points xj (j 
= 1, 2, …, N + 1), we can write  

Scattering 
matrix: 

definition 

Transfer 
matrix: 

definition 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 2           Page 30 of 76 

    ,TTT,T
1

1
12

2

2
2

3

3

1

1
1

2

2












































B

A

B

A

B

A

B

A

B

A
    (2.138) 

etc. (where the matrix indices indicate the scatterers’ order on axis x), so that   

     .T...TT 
1

1
11

1

1
























B

A

B

A
NN

N

N      (2.139) 

 

 

 

 

 

 

But we can also define the total transfer matrix similarly to Eq. (134), i.e. as 
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so that finally 

                 11 T...TTT  NN .     (2.141) 

This formula is valid even if the flat-potential gaps between component scatterers vanish, so that 
it may be applied to a scatterer with an arbitrary profile U(x), by fragmenting its length into small 
segments x = xj+1 - xj, and treating each fragment as a rectangular barrier of height (Uj)ef = [U(xj+1) – 
U(xj)]/2 - see Fig. 15. Since very efficient numerical algorithms are readily available for fast 
multiplication of matrices (especially as small as 2×2), this approach is broadly used in practice for the 
computation of transparency of tunnel barriers with complicated profiles U(x). (This is much more 
efficient then the direct numerical solution of the Schrödinger equation.) 

 

 

   

 

 

 

 

 In order to use this approach for several conceptually important systems, let us calculate the 
transfer matrices for a few elementary scatterers, starting from the delta-functional barrier located at x = 
0. Taking x1 = x2 = 0, we can merely change the notation of wave amplitudes in Eq. (127) to get 

Fig. 2.14. A sequence of several 1D 
scatterers.  
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Fig. 2.15. The transfer matrix approach 
to a long tunnel barrier of an arbitrary 
profile.  
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An absolutely similar analysis of the wave incidence from the left yields  
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and using Eqs. (135), we get  
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 The next example may seem strange at the first glance: what if there is no scatterer at all between 
points x1 and x2? If points x1 and x2 coincide, the answer is indeed trivial and can be obtained, e.g., from 
Eq. (143) by taking W = 0, i.e.   = 0: 
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- the so-called identity matrix. However, we are free to choose the reference points x1,2 participating in 
Eq. (129) as we wish. For example, what if x2 – x1 = a? Let us first take the forward-propagating wave 
alone: B2 = 0 (and hence B1 = 0); then  
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Comparison of this expression with the definition (129) for j = 2 shows that A2 = A1 exp{ik(x2 - x1)} = A1 
exp{ika}, i.e. T11 = exp{ika}. Repeating the calculation for the back-propagating wave, we see that T22 = 
exp{-ika}, and since this “no-potential” (space interval) provides no particle reflection, we finally get 
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independently of the mutual position of points x1 and x2. At a = 0, we naturally recover the special case 
(143).  

 Now let us use these results to analyze the double-barrier system shown in Fig. 16. We could of 
course calculate its properties as before, writing down explicit expressions for all 5 traveling waves 
shown by arrows in Fig. 16, and then using boundary conditions (124) and (125) at each of points x1,2 to 
get a system of 4 linear equations, and then solving it for 4 amplitude ratios. 

 

 

 

 

 

 

  

Fig. 2.16. Double-barrier system. Dashed 
lines show (schematically) the position of 
metastable energy levels.  
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However, the transfer matrix approach simplifies the calculations, because we may immediately use 
Eqs. (141), (143), and (146) to write 
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Let me hope that the reader remembers the “row by column” rule of the multiplication of square 
matrices;33 using it for two last matrices, we reduce Eq. (147) to 
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Now there is no need to calculate all elements of the full product T, because, according to Eq. (137), for 
the calculation of barrier transparency T we need only one its element, T11: 
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This result is similar to that following from Eq. (79) for E > U0: the transparency is a -periodic 
function of the product ka, reaching the maximum (T = 1) at some point of each period – see Fig. 17a.  

 

 

 

 

 

 

 

 

 

 

 However, the new result is different in that for  >> 1, the resonance peaks of transparency are 
very narrow, reaching their maxima at ka  kna  n, with n = 1, 2, … Physics of this effect is 
immediately clear from the comparison of this result with our analysis of the simplest quantum well – 
see Fig. 1.7 and its discussion. At k  kn, the incident wave, which undertakes multiple sequential 
reflections from the semi-transparent walls of the well, forms a nearly standing wave, which at  >> 1 
virtually coincides with one of eigenfunctions of the well with infinite walls, with the standing wave 
amplitude much larger that that of the incident wave. As a result, the transmitted wave amplitude is 

33 In the analytical form:   
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Fig. 2.17. Resonant tunneling through a 
quantum well with delta-functional walls : 
(a) transparency a function of ka, and (b) 
calculating resonance’s FWHM at  >> 1. 
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proportionately increased. This is the famous effect of resonant tunneling,34 in mathematical description 
identical to the resonant transmission of light through an optical Fabry-Perot resonator formed by two 
parallel semi-transparent mirrors.35  

 Probably, the most surprising feature of this system is the fact that its maximum transparency is 
perfect (Tmax = 1) even at   , i.e. in the case of a very low transparency of each of two component 
barriers.36 Indeed, the denominator in Eq. (149) may be interpreted as the squared length of the 
difference between two vectors, one of length 2, and another of length (1 - i)2 = 1 + 2, with angle 
  = 2ka + const  between them. At the resonance, the vectors are aligned, and the difference is smallest 
(equal to 1) – see Fig. 17b, so that Tmax = 1.  

We can use the same vector diagram to calculate the so-called FWHM, the common acronym for 
the Full Width [of the resonance curve at] Half-Maximum, i.e. the difference k = k+ - k- between such 
two points on the opposite slopes of the same resonance, at which T = Tmax/2 - see arrows in Fig. 17a. 
Let the vectors in Fig. 17b be slightly misaligned, by an angle   ~ 1/2 << 1, so that the length of the 
difference vector (of the order of 2 ~ 1) is still much smaller than the length of each vector. In order to 
double its length squared, and hence reduce T by a factor of 2 in comparison with its maximum value 1, 
the arc, 2, between the vectors should also become equal 1, i.e. 2(2ka + const) = 1. Subtracting 
these two equations from each other, we finally get 

      .
1

)(
2   k

a
kkk


    (2.150) 

 Now let us use the simple potential shown in Fig. 16 to discuss an issue of large conceptual 
importance. For that, consider what would happen if at some initial moment (say, t = 0) we have placed 
a 1D quantum particle inside the double-barrier well with  >> 1, and left it there alone, without any 
incident wave. To simplify the analysis, let us prepare the initial state so that it coincides with the 
ground state of the infinite-wall well – see Eq. (1.76): 
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At   , this is an eigenstate of the system, and from our analysis in Sec. 1.5 we know its time 
evolution: 
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telling us that the particle remains in the well at all times with constant probability W(t) = W(0) = 1.37 
 However, if parameter   is large but finite, the de Broglie wave should slowly “leak out” from 
the well, so that W(t) would slowly decrease. Let us consider this effect approximately, assuming that 

34 In older literature, it is sometimes called the Ramsauer (or “Townsend”, or “Ramsauer-Townsend”) effect. 
However, it is currently more common to use that name(s) only for a similar 3D effect, especially at scattering of 
low-energy electrons on rare gas atoms – this is how it was first observed, independently, by C. Ramsauer and J.  
Townsend in the early 1920s. 
35 See also , e.g., EM Sec.7.9. 
36 The exact equality Tmax = 1 is correct only if both component barriers are exactly equal.  
37 Probability W(t) should not be confused with the delta-functional barrier’s “area” W, defined by Eq. (122). 
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the slow leakage, with a characteristic time  >> 1/1, does not affect the instant wave distribution 
inside the well, besides the reduction of W.38 Then we can generalize Eqs. (151), (152) as follows: 
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making the probability of finding the particle in the well equal to W. This solution may be presented as a 
sum of two traveling waves: 
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with equal magnitudes of their amplitudes and probability currents 
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But we already know from Eq. (128) that at  >> 1 the delta-functional wall transparency T 
approximately equals 1/2, so that the wave carrying current IA, incident on the right wall from inside, 
induces an outcoming waves outside of the well (Fig. 18) with the following probability current:  
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Absolutely similarly,  
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Now we may combine the 1D version  (6) of the probability conservation law for well’s interior, 
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with Eqs. (156) to write 
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38 This almost evident assumption finds its formal justification in the perturbation theory to be discussed in 
Chapter 6. 

Fig. 2.18. Metastable state’s decay in the simple model of a 1D 
potential well with low-transparent walls – schematically. 
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This is just the standard differential equation,  

 W
dt

dW


1

 ,      (2.159) 

of the exponential decay, with solution W(t) = W(0)exp{-t/}, where constant , in our case equal to 
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is called the metastable state’s lifetime. Using expression (2.34) for the de Broglie waves’ group 
velocity, in our particular wave vector giving vgr = k1/m = /ma, Eq. (159) may be rewritten as 

     ,
T

t A       (2.161) 

where in our case the attempt time tA is equal to a/vgr, and T = 1/2. Relation (161), that is valid for a 
large class of metastable systems,39 may be interpreted in the following semi-classical way. The 
confined particle travels back and forth between the confining walls, with time intervals tA between the 
moments of incidence, each time making an attempt to leak through the wall, with a success probability 
of T, so the reduction of W per each incidence is W = -WT, immediately leading to Eq. (161). 

 Another important look at Eq. (160) may be taken by returning to the resonant tunneling problem 
and expressing the resonance width (150) in terms of incident particle’s energy: 
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Comparing Eqs. (160) and (162), we get a remarkably simple formula 

           E .      (2.163) 

This so-called energy-time uncertainty relation is certainly more general than our simple model; 
for example, it is valid for the lifetime and resonance tunneling width of any metastable state. This 
seems very natural, since because of the energy identification with frequency, E = , typical for 
quantum mechanics, Eq. (163) may be rewritten as  = 1 and seems to follow directly from the 
Fourier transform in time, just as the Heisenberg’s uncertainty relation (1.35) follows from the Fourier 
transform in space. In some cases, these two relations are indeed interchangeable; for example, Eq. (24) 
for the Gaussian wave packet width may be rewritten as Et = , where E = (d/dk)k = vgrk is 
the r.m.s. spread of energies of monochromatic components of the packet, while t  x/vgr is the time 
scale of  the packet passage through a fixed observation point x. 

 However, Eq. (163) it is much less general than Heisenberg’s uncertainty relation (1.35). Indeed, 
in non-relativistic quantum mechanics, Cartesian coordinates (say, x) of a particle, components of its 
momentum (say, px), and energy E are regular observables, presented by operators. In contract, time is 
treated as a c-number argument, and is not presented by an operator, so that Eq. (163) cannot be derived 

39 Essentially the only requirement is to have the attempt time tA to be much longer than the effective time 
(instanton time, see Sec. 5.3 below) of tunneling through the barrier. In the delta-functional approximation for the 
barrier, the latter time vanishes, so that this requirement is always fulfilled. 
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in such general assumptions as Eq. (1.35). Thus the time-energy uncertainty relation should be applied 
with great caution. Unfortunately, not everybody is so careful. One can find, for example, wrong claims 
that due to this relation, the energy dissipated by any system performing an elementary (single-bit) 
calculation during time interval t has to be larger than /t. 40 Another incorrect statement is that the 
energy of a system cannot be measured, during time t, with an accuracy better than /t.41  

 Now let us use our simple model of metastable state’s decay for a preliminary discussion of one 
aspect of quantum measurements. Figure 18 shows (schematically) the traveling wave packets emitted 
by the quantum well after its initial state (152) had been prepared at t = 0. At t >> , the well becomes 
essentially empty (W << 1), and the whole probability distribution is localized in two clearly separated 
wave packets of equal amplitudes, moving from away with speed vgr, each “carrying the particle away” 
with a probability of 50%. Now assume an experiment has detected the particle on the left side of the 
well. Though the formalisms suitable for a quantitative analysis of the detection process will not be 
discussed until Sec. 7.7, due to the wide separation of the packets, we may safely assume that the 
detection may be done without any actual physical effect on the counterpart wave packet.42 But if we 
know that the particle has been found on the left, there is no chance to find it on the right.  

 If we attributed the wavefunction to all stages of this particular experiment, this situation might 
be rather confusing. Indeed, this would mean that the wavefunction within the right packet should 
instantly turn into zero - the so-called wave packet reduction – a process that could not be described by 
either Schrödinger equation or any other law of physics. However, if (as was already discussed in Sec. 
1.3) we attribute the wavefunction to a statistical ensemble of similar experiments, there is no paradox 
here at all. While the two-packet picture we have calculated (Fig. 18) describes the full initial ensemble 
(regardless of the particle detection results), the “reduced packet” picture (with no wave packet on the 
right of the well) describes only a sub-ensemble of experiments with the particle detected on the left 
side. As was discussed on completely classical examples in Sec. 1.3, for such sub-ensemble the 
probability distribution, and hence the wavefunction, may be dramatically different.  

  

2.6. Coupled quantum wells 

 Let us now move on to tunneling through a more complex potential profile shown in Fig. 19: a 
sequence of (N – 1) similar quantum wells separated by N similar delta-functional tunnel barriers. 
According to Eq. (141), its transfer matrix is the following product 

              
  

   terms)1(

TTTTTT

NN

aa



  ... ,     (2.164) 

with the component matrices given by Eqs. (143) and (146), and the barrier height parameter  defined 
by the last of Eqs. (127).  

40 Here I dare to refer the reader to my own old work K. Likharev, Int. J. Theor. Phys. 21, 311 (1982) that 
presented a constructive proof that at reversible computation (introduced in 1973 by C. Bennett) the energy 
dissipation may be lower than this apparent “quantum limit”. 
41 See, e.g., a detailed discussion of this issue in the monograph by V. Braginsky and F.  Khalili, Quantum 
Measurement, Cambridge U. Press, 1992. 
42 This argument is especially convincing if the particle detection time is much shorter than the time tc = 2vgrt/c, 
where c is the speed of light in vacuum, i.e. the maximum velocity of any information transfer (“signaling”). 
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 Remarkably, this multiplication may be carried out analytically,43 giving 
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where q is a new parameter, with the wave number dimensionality, defined by the following relation: 

         .sincoscos kakaqa       (2.166) 

For N = 1, Eqs. (165) and (166) immediately yield our old result (128), while for N = 2 they may be 
reduced to Eq. (149) – see Fig. 17a. Figure 20 shows its predictions for two larger numbers N, and 
several values of parameter . 

 

 

 

 

 

 

 

 

 

 

 

 Let us start discussion of the plots from case N = 3, i.e. two coupled quantum wells. The 
comparison of Fig. 20a and Fig. 17a shows that the transmission patterns, and their dependence on 
parameter , are very similar, besides that in the coupled wells each resonant tunneling peak splits into 
two, with the ka-difference between them scaling as 1/. In order to comprehend the physics of this 
important result, let us analyze an auxiliary system shown in Fig. 21: two similar quantum wells 

43 This formula will be easier to prove after we have discussed properties of Pauli matrices in Chapter 4. 

Fig. 2.20. Transparency of the system shown in Fig. 19 as a function of product ka. Since the 
function T(ka) is -periodic (just like for N = 2, see Fig. 17a), only one period is shown. 
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confined by infinitely high potential walls at x = a, and coupled via a transparent, short tunnel barrier 
at x = 0. 

 

 

 

 

 

 

 

 

 

The barrier may be again, for calculation simplicity, approximated by a delta-function: 
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We already know that the standing-wave eigenfunctions n of the Schrödinger equation in regions with 
U(x) = 0, in our current case, segments  –a < x < 0 and 0 < x < +a, may be always presented as linear 
superpositions of sinkx and coskx. In order to immediately satisfy the boundary conditions  = 0 at x = 
a, we can take these solutions in the form 
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xn    (2.168) 

What remains is to satisfy the boundary conditions at x = 0.  Plugging Eq. (167) into Eqs. (124) and 
(125), we get the following system of two linear equations: 

          kaC
m

kaCCk sin
2

cos)(
2  


W
,    (2.169) 

                 kaCkaC sinsin   .               (2.170) 

The system has two types of solutions, with the two lowest-energy eigenfunctions sketched in Fig. 21: 

 (i) Antisymmetric solutions (which will be marked with index A),  

                ,sin   i.e., xkCCC AAAAA        (2.171) 

with eigenvalues independent of W, 

    ,...2,1,  i.e.    ,0sin  nnknaakak AA     (2.172) 

Notice that these values of k, and hence eigenenergies of these antisymmetric states, 
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Fig. 2.21. Two lowest eigenfunctions and 
eigenenergies of a system of two coupled 
quantum wells – schematically. 
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coincide with those of the simple quantum well of width a – see Fig. 1.7 and its discussion.  

 (ii) Symmetric solutions (index S): 

        ,)(sin   i.e., axkCCC SSSSS       (2.174) 

with Eq. (169) giving the following characteristic equation for constant kS: 

      .
1

tan


akS      (2.175) 

Figure 22 shows the graphic solution of this equation for three values of parameter , i.e. for various  
quantum well coupling strength. For each solution, kSa is confined within interval 

              ,
2

  nakn S      (2.176) 

so that the antisymmetric and symmetric states alternate on the scale of k (and hence of the energy), with 
the difference kA - kS,  for each pair of adjacent states, smaller then /2a for any value of . The physics 
of the splitting between eigenenergies corresponding to the symmetric and antisymmetric states is very 
simple: it is the change of kinetic energy of the particle due to different confinement types – see Fig. 21. 
In each antisymmetric mode, n (0) = n (a) = 0, i.e. the wavefunction is essentially confined within a 
segment of length a; as a result, its energy (173) does not depend on the barrier height. On the contrary, 
in the symmetric mode, that does engage the potential barrier, the wavefunction effectively spreads into 
the counterpart well. As a result, it changes slower, and hence its kinetic energy is also lower that that of 
the adjacent antisymmetric mode. 

 

 

 

 

 

 

 

 

 

 

 By the way, this problem may serve as a toy model of the strongest (and most important) type of 
atom cohesion - the covalent (or “chemical”) bonding in molecules, liquids, and solids. The classical 
example of such bonding is that of hydrogen atoms in a H2 molecule.44 Each of two electrons of this 
system45 reduces its kinetic energy very substantially by spreading its wavefunction around both nuclei 

44 Historically, the development of the fully quantum theory of H2 bonding by W. Heitler and F. London in 1927 
was the breakthrough decisive for the acceptance of then-emerging quantum mechanics by chemists. 
45 Due to the opposite spins, the Pauli principle allows them to be in the same orbital ground state – see Chapter 8. 

Fig. 2.22. Graphical solution of the 
characteristic equation (175) for 
the eigenvalue of ka in the 
symmetric mode, for 3 values of 
parameter , considering it 
independent of ka. The dashed line 
shows approximation (178). 
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protons, rather that being confined near one of them - as it had to be in a single atom. As a result, the 
bonding is very strong: in chemical units, 429 kJ/mol, i.e. 18.6 eV per molecule.46 Somewhat counter-
intuitive, this energy is substantially larger than the strongest classical (ionic) bonding due to electron 
transfer between atoms, leading to the Coulomb attraction of the resulting ions. (For example, the 
atomic cohesion in the NaCl molecule is just 3.28 eV.) 

 In the limit   0 (no partition between the wells), kSa  (n - 1/2), i.e. the eigenstates 
approach the shape and energy of symmetric states of a quantum well of width 2a. In the opposite limit 
 >> 1, kSa  n, and in the vicinity of each such point we may approximate tankSa  with (kSa - n) – 
see the dashed line in Fig. 22. As a result, the characteristic equation (175) is reduced to 

       ,
1


  nakS       (2.177) 

so that the splitting between the wave numbers and eigenenergies of the adjacent symmetric and 
antisymmetric states is small: 
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(By construction, this result is valid only if  >> 1, i.e. n << EA  ES.)   

 Let us analyze properties of the system in this limit in much more detail - first, because the 
results will help us to develop the important tight binding approximation in the band theory, and second,  
because the weakly coupled quantum wells will be our first example of very important two-level (or 
“spin-½-like”) systems. Let us focus on one couple of symmetric and antisymmetric states, 
corresponding to virtually the same En. According to Eqs. (171) and (174), in the limit   , system’s 
eigenfunctions may be approximately represented as follows: 
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 where R,L are the normalized ground states of the completely insulated wells:  
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Let us perform the following conceptually important thought experiment: place the particle, at t 
= 0, into one of the localized states, say R(x), and leave the system alone to evolve. Solving Eqs (180) 
for R, we may present the initial state as a linear superposition of eigenfunctions: 

         )()(
2

1
)()0,( xxxx ASR   .    (2.181) 

Now, according to the general solution (1.67) of the time-independent Schrödinger equation, time 
dynamics may be obtained by just multiplying each eigenfunction by the corresponding factor (1.61): 

46 Unit reminder: 1 kJ/mol  0.0434 eV. 
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Now, introducing the following natural notation, 
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And using Eqs. (179), this expression may be rewritten as 
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  (2.184) 

This result implies, in particular, that the probabilities WR and WL to find the particle, correspondingly, 
in the right and left wells change with time as 

               ,sin,cos 22 tWtW n
L

n
R




     (2.185) 

mercifully leaving the total probability constant WR + WL = 1. (If our calculation had not passed this 
sanity check, we would be in a big trouble.) 

 This is the famous effect of periodic quantum oscillations, with frequency n = 2n/ = (EA – 
ES)/, of the particle between two similar quantum wells, due to their coupling through via tunneling 
through the tunnel barrier. The physics of this effect is straightforward: just as in the single well problem 
discussed in Sec. 5, the particle initially placed into a certain quantum well tries to escape from it via 
tunneling through the semi-transparent wall. However, in our current situation (Fig. 21) the particle can 
only escape into the adjacent well. After the tunneling into that second well, the tries to escape from it, 
and hence comes back, etc. - just as a classical 1D oscillator, initially deflected from its equilibrium 
position.  

 Maybe the most surprising feature of this effect is its relatively high frequency: according to Eq. 
(178), the time period of the quantum oscillations, 

            1,for ,
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is a factor of /2 >> 1 shorter than the lifetime  (160) of the metastable state of the particle in a 
similar but single quantum well limited by delta-functional walls with similar parameter . This is a 
very counterintuitive result indeed: the speed of particle tunneling into a similar adjacent well is much 
higher than that, through a similar barrier, to the free space!   

To see whether this result is an artifact of the delta-functional model of the tunnel barrier, let us 
calculate splitting 2n for system of two similar, symmetric, soft quantum wells formed by a smooth 
potential profile U(x) = U(-x) – see Fig. 23.  
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If the barrier transparency is low, the quasi-localized wavefunctions R(x) and L(x) = R(-x) 
and their eigenenergies may be found approximately by solving the Schrödinger equations in one of the 
wells, neglecting tunneling through the barrier, but finding n requires a little bit more care. Let us write 
the stationary Schrödinger equations for the symmetric and antisymmetric solutions in the form 
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then multiply the former equation by S, the latter one by A, subtract them from each other, and 
integrate the result from 0 to : 
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If U(x), and hence d2A,S/dx2, are finite for all x,47 we may integrate the right-hand side by parts to get  
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So far, this is an exact equation. For weakly coupled wells, we can do more. In this case, the left 
hand side may be approximated as (EA – ES)/2  n, because the integral is dominated by the vicinity of 
point a, where the second terms in each of  Eqs. (179) are negligible, and the integral is equal to ½, due 
to the proper normalization of function R(x). In the right-hand side, the substitution at x =  vanishes 
(due to the wavefunction decay in the classically forbidden region), and so does the first term at x = 0, 
because for the antisymmetric solution A(0) = 0. As a result, we get 
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 It is straightforward to show that within the limits of the WKB approximation validity, Eq. (190) 
may be reduced to 
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47 Since it is not true for potential (167), one should not be surprised that the resulting Eq. (189) is invalid for our 
initial problem, giving n twice larger than the correct expression (178).  
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where tA is the time period of classical motion of the particle inside one of the wells, function (x) is 
defined by Eq. (97), and xc and xc’ are the classical turning points limiting the potential barrier at the 
level En of particle’s energy – see Fig. 23. Comparing this result with Eq. (117), we can notice that 
again, just as in the case of the delta-functional barriers, the transmission coefficient T of a tunnel barrier 
(and hence the reciprocal lifetime of a metastable state  in a potential well separated by such a barrier 
from a continuum) scales as the square of the WKB exponent participating in Eq. (191), so that the 
period of quantum oscillations between the well is much smaller than the lifetime. We will return to the 
discussion of this result, in a more general form, in Chapter 5. 

 Returning for a second to Fig. 20a, we may now readily interpret the results for tunneling 
through the double quantum well: each pair of resonance peaks of transparency corresponds to the 
alignment of  incident particle’s energy with the pair of energy levels EA, ES of the symmetric and 
antisymmetric states of the system. 

 

2.7. 1D band theory 

Let us now return to Eqs. (165) and (166) describing the resonant tunneling, and discuss their 
predictions for larger N – see, for example, Fig. 20b. We see that the increase of N results in the increase 
of the number of resonant peaks per period to (N - 1), and at N   the peaks merge into the so-called 
allowed energy bands (frequently called just the “energy bands”) of relatively high transparency, 
separated from similar bands in the adjacent periods of function T(ka) by energy gaps48 where T  0. 
Notice the following important features of the pattern: 

 (i) at N  , the band/gap edges become sharp for any , and tend to fixed positions 
(determined by   but independent of N); 

 (ii) the larger interwell coupling (  0), the broader the allowed energy bands and narrower the 
gaps between them. 

 Our discussion of resonant tunneling in the previous section gives us an evident clue for a semi-
quantitative interpretation of this pattern: if (N - 1) quantum wells are weakly coupled by tunneling 
through the tunnel barriers separating them, system’s energy spectrum consists of groups (N – 1) energy 
levels. Each level  corresponds to an eigenfunction that is the set of similar local functions in each well, 
but with certain phase shifts   between them. It is natural to expect that, just as for 2 coupled wells (N 
– 1 = 2), that at the upper level,   =  (thus providing the highest confinement), with ka  n at   
, while at the lowest level all   = 0, providing the most loose confinement.49 However, what about 
  for other levels? 

Answers to all these questions are easy to get in the most important limit N  , i.e. for periodic 
structures - which are, in particular, good 1D approximations for solid state crystals, whose samples 
may feature more than 1010 similar atoms or molecules in each direction of the crystal lattice. It is 
almost self-evident that at N  , due to the translational invariance of U(x),  

               ),()( xUaxU       (2.192) 

48 In solid state (especially semiconductor) physics and electronics, term bandgaps is more common. 
49 This expectation is implicitly confirmed by Fig. 20: at  >> 1, the highest resonance peak in each group tends 
to ka = n, and the lowest peak also tend to a position independent of N (though dependent on ). 
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the phase shift  between local wavefunctions in all adjacent quantum wells should be the same for 
each period of the system, i.e. 

              iexax )()(               (2.193a) 

for all x. (A reasonably fair classical image of   is the geometric angle between similar objects - e.g., 
similar paper clips - attached at equal distances to a long, uniform rubber band. If the band’s ends are 
twisted, the twist is equally distributed between the structure’s periods, representing the constancy of 
.50) 

 Equation (193a) is the (1D version of the) much-celebrated Bloch theorem.51 Mathematical rigor 
aside,52 it is a virtually evident fact, because the particle’s density w(x) = *(x)(x), that has to be 
periodic in this a-periodic system, may be so only  is constant. For what follows, it is more 
convenient to present the real number   in the form qa (there is no loss of generality here, because 
parameter q may depend on a as well as other parameters of the system), so that the Bloch theorem takes 
the form 

            iqaexax )()(   .              (2.193b) 

The physical sense of parameter q will be discussed in detail below; for now just note that according to 
Eq. (193b), an addition of (2/a) to it yields the same wavefunction; hence all observables have to be 
(2/a)-periodic functions of q. 53 

 Now let us use the Bloch theorem to find eigenfunctions and eigenenergies for a particular, and 
probably the simplest periodic function U(x): an infinite set of similar quantum wells separated by delta-
functional tunnel barriers (Fig. 24).  

 

 

 

 

 

 

 

50 I am ashamed to confess that, due to the lack of time, this was virtually the only “lecture demonstration” in my 
QM courses.  
51 Named after F. Bloch who applied this concept to wave mechanics in 1929, i.e. very soon after its formulation. 
Admittedly, in mathematics, an equivalent statement, usually called the Floquet theorem, has been known since at 
least 1883.  
52 I will address this rigor in two steps. Later in this section, we will see that the function obeying Eq. (193) is 
indeed a solution of the Schrödinger equation. However, to save time/space, it will be better for us to postpone the 
proof that any eigenfunction of the equation, with periodic boundary conditions, obeys the Bloch theorem, until 
Chapter 4. As a partial reward for the delay, that proof will be valid for an arbitrary spatial dimensionality. 
53 Product q, which has the dimensionality of momentum, is called either the quasi-momentum or (especially in 
the solid state physics) the “crystal momentum” of the particle. 

Fig. 2.24. The simplest periodic potential: 
an infinite set of similar, equidistant, 
delta-functional tunnel barriers. 
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 To start, consider two points separated by distance a: one of them, xj, just left of position of one 
of the barriers, and another one,  xj+1, just left of the following barrier. Eigenfunctions in each of the 
points may be presented as linear superpositions of two simple waves exp{ikx}, and amplitudes of their 
components should be related by a 22 transfer matrix T of the potential fragment separating them. 
According to Eq. (141), this matrix may be found as the product of the matrix (146) of one interval a 
and the matrix (143) of one barrier: 
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However, according to the Bloch theorem (193b), the component amplitudes should be also related as 
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The condition of self-consistency of these two equations leads to the following characteristic equation:  
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In Sec. 5, we have already calculated the matrix product participating in this equation – see Eq. 
(148). Using it, we see that Eq. (196) is reduced to the same simple Eq. (166) that has already jumped at 
us from the solution of the different (resonant tunneling) problem. Let us explore that simple result in 
detail. First of all, the  right hand part of Eq. (166) is a sinusoidal function of ka, with amplitude (1 + 
2)1/2 – see Fig. 25, while its left hand part is a sinusoidal function of qa with amplitude 1.  

 

 

 

 

 

 

 

 

 

  

As a result, within each period (ka) = 2,  the characteristic equation does not have a real 
solution for q inside two intervals of ka - and hence inside two intervals of energy E = 2k2/2m. (These 
intervals are exactly the energy gaps mentioned above, while the complementary intervals of ka and E, 
where a real q exists, are the allowed energy bands.) In contrast, parameter q can take any real values, so 
it is more convenient to plot the eigenenergy E = 2k2/2m as the function of q (or, even more 
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Fig. 2.25. Graphical solution of the characteristic 
equation (166) for a fixed value of parameter . The 
ranges of ka that yield with cos qa < 1, correspond to 
the allowed energy bands, while those with cos qa > 1, 
to gaps between them. 
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conveniently, qa) rather than ka.54 While doing that, we need to recall that parameter , defined by the 
last of Eqs. (127), depends on wave vector k as well, so that if we vary q (and hence k), it is better to 
characterize the structure by a different, k-independent dimensionless parameter, for example  

       ,)(
2

Wma
ka                  (2.197) 

so that Eq. (166) becomes   

        .
sin

coscos
ka

ka
kaqa               (2.198) 

Figure 26 shows the plots of E and k , following from Eq. (198), for a particular, moderate value 
of  parameter . The band structure of the energy spectrum is apparent. Another evident feature is the 
2-periodicity of the pattern, that we have already predicted from the general Bloch theorem arguments. 
(Due to this periodicity, the complete band/gap pattern may be studied on just one interval -  qa  + 
, called the 1st Brillouin zone – the so-called reduced zone picture. For some applications, however, it 
is more convenient to use the extended zone  picture with -  qa  + - see, e.g., the next section.) 

  

 

 

 

54 Perhaps a more important reason for taking q as the argument is that for motion in a general potential U(x), 
particle’s momentum k is not a constant of motion, while (according to the Bloch theorem), the quasi-momentum 
q is.  

Fig. 2.26. (a) “Real” momentum k of a particle in the periodic delta-functional potential profile shown in 
Fig. 24, and (b) its energy E = 2k2/2m (in units of E0  2/2ma2), as functions of the quasi-momentum q, 
for a particular value ( = 3) of the dimensionless potential parameter   (ka) = mWa/2 . Arrows in the 
lower right corner of panel (b) illustrate the definition of the energy band (En) and energy gap (n) widths. 
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However, maybe the most surprising fact, clearly visible in Fig. 26, is that there is a infinite 
number of energy bands, with different energies En(q) for the same value of q. Mathematically, it is 
evident from Eq. (198) – see also Fig. 25. Indeed, for each value of qa there are two solutions ka to this 
equation on each period (ka) = 2 - see also panel (a) in Fig. 26. Each of such solutions gives a 
different value of  particle energy E = 2k2/2m. A continuous set of similar solutions for various qa 
forms a particular energy band. 

Since the band theory is one of the most vital results of quantum mechanics, it is important to 
understand the physics of these different solutions - and hence of the whole band picture. For that, let us 
explore analytically two different potential strength limits. An important advantage of this approach is 
that both analyses may be carried out for an arbitrary periodic potential U(x), rather than for the simplest 
model shown in Fig. 24.  

 (i) Tight-binding approximation. This approximation is sound when eigenenergy En is much 
lower than the height of the potential barriers separating the potential minima (serving as quantum 
wells) – see Fig. 27. As should be clear from our discussion in Sec. 6, the wavefunction is mostly 
localized in the classically allowed regions at points xj of the potential energy minima - see the dashed 
lines in Fig. 27. Essentially the only role of coupling between these quantum well states (via tunneling 
through the separating barriers) is to establish certain phase shifts   = qa between the pairs of adjacent 
quasi-localized wavefunction “lumps” u(x - xj) and u(x – xj+1). 

 

 

 

 

 

 

 

 To describe this effect quantitatively, let us first return to the problem of two coupled wells 
considered in Sec. 6, and recast result (184) as 
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where functions aR and aL  oscillate sinusoidally in time: 
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     (2.200) 

This evolution satisfies the following system of two equations whose structure reminds Eq. (1.59): 

                     ., RnLLnR aaiaai        (2.201) 

Later in the course (in Chapter 6) we will prove that such equations are indeed valid, in the tight-
binding approximation, for any system of two coupled quantum wells. These equations may be readily 
generalized to the case of many similar coupled wells. Here, in this case, instead of Eq. (199), we 
evidently should write 

Fig. 2. 27. Tight binding 
approximation (schematically).
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where En are the eigenenergies, and un the eigenfunctions of each isolated well. In the tight binding 
limit, only the adjacent wells are coupled, so that instead of Eq. (201) we should write an infinite system 
of similar equations 

          11   jnjnj aaai  ,     (2.203) 

for each well number j, where parameters n describe the coupling between two adjacent quantum wells. 
Repeating the calculation outlined in the end of Sec. 6 for our new situation, we get the result essentially 
similar to the last form of Eq. (190): 
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where x0 is the distance between the well bottom and the middle of the tunnel barrier on the right of it – 
see Fig. 27. The only substantial new feature of this expression in comparison with Eq. (190) is that the 
sign of n alternates with the level number n: 1 > 0, 2 < 0, 3 > 0, etc. Indeed, the number of “wiggles” 
(formally, zeros) of eigenfunctions un(x) of any potential well increases as n – see, e.g., Fig. 1.7,55 so 
that the difference of the exponential tails of the functions, sneaking under the left and right barriers 
limiting the well also alternates with n. 

The infinite system of ordinary differential equations (203) allows one to explore a large range 
of important problems (such as the spread of the wavefunction that was initially localized in one well, 
etc.), but our main task now is to find its stationary states, i.e. the solutions proportional to exp{-
i(n/)t}, where  n is a still unknown, q-dependent addition to the background energy En of n-th level. In 
order to satisfy the Bloch theorem (193) as well, such solution should have the form 

              






  constexp)( tiiqxata n
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,     (2.205) 

where a is a constant. Plugging this solution into Eq. (203) and canceling the common exponent, we get 

         qaEeeEEE nnnnnn
iqaiqa cos2   ,   (2.206) 

so that in this approximation,  the energy band width En (see Fig. 26b) equals 4n .  

Relation (206), whose validity is restricted to n << En, describes the particular lowest energy 
bands plotted in Fig. 26b reasonably well. (For larger , the agreement would be even better.) So, this 
calculation explains what the energy bands really are – in the tight binding limit they are best interpreted 
as isolated well’s energy levels En, broadened into bands by the interwell interaction. Also, this result 
gives a clear proof that the energy band extremes correspond to qa = 2l and qa = 2(l + ½), with 
integer l. Finally, the sign alteration of the coupling coefficient n (204) with number n explains why the 
energy maxima of one band are aligned, on the qa axis, with energy minima of the adjacent bands.  

55 Below, we will see several other examples of this behavior. This alternation rule is also in accordance with the 
Bohr-Sommerfeld quantization condition 
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 (ii) Weak-potential limit. Surprisingly, the energy band structure is also compatible with a 
completely different physical picture that can be developed in the opposite limit. Let energy E be so 
high that the periodic potential U(x) may be treated as a small perturbation. Naively, we would have the 
parabolic dispersion relation between particle’s energy and momentum. However, if we are plotting 
energy as a function of q rather than k, we need to add 2l/a, with arbitrary integer l, to the argument. 
Let us show this by expanding all variables into the spatial Fourier series. For a periodic potential 
energy U(x) such an expansion is straightforward:56 
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where the summation is over all integers l”, from -  to + . However, for the wavefunction we should 
show due respect to the Bloch theorem (193). To understand how to proceed, let us define another 
function 

               iqxexxu  )()(  ,     (2.208) 

and study its periodicity: 

            )()()()( )( xuexeaxaxu iqxaxiq    .   (2.209) 

We see that the new function is a-periodic, and hence we can use Eqs. (208)-(209) to rewrite the Bloch 
theorem as 

       ,)()( iqxexux      with )()( xuaxu  .    (2.210) 

 Now it is safe to expand the periodic function u(x) exactly as U(x): 
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so that, according to the Bloch theorem, 
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The only nontrivial part of plugging this expression into the stationary Schrödinger equation (61) is the 
calculation of the product term, using expansions (207) and (211): 
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At fixed l’, we may change summation over l” to that over l  l’ + l” (so that l” = l – l’), and write: 
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56 The benefits of my unusual choice of the summation index (l” instead of, say, l) will be clear in a few lines. 

Bloch 
theorem: 

alternative 
form 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 2           Page 50 of 76 

Now plugging Eqs. (212) (with index l’ now replaced by l) and (214) into the stationary Schrödinger 
equation (61), and requiring the coefficients of each spatial exponent to match, we get an infinite system 
of linear equations for ul:57 
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So far, this system is an equivalent alternative to the initial Schrödinger equation – and, by the 
way, is very efficient for fast numerical calculations, for virtually any potential strength, though in 
systems with tight binding it may require taking into account a large number of harmonics ul. In the 
weak potential limit, i.e. if all the Fourier coefficients Un are small,58 we can complete all the  
calculation analytically.59 Indeed, in the so-called 0th approximation we can ignore all Un, so that in 
order to have at least one ul different from 0, Eq. (215) requires that 
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(ul itself should be obtained from the normalization condition). This result means that the dispersion 
relation E(q) has an infinite number of similar quadratic branches numbered by integer l – see Fig. 28.  

 

 

 

 

 

 

 

 

  

On any branch, the eigenfunction has just one Fourier coefficient, i.e. presents a monochromatic 
traveling wave 
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57 Note that we have essentially proved that the Bloch wavefunction (210) is indeed a solution of Eq. (61), 
provided that the quasi-momentum q is selected in a way to make the system of linear equation (215) compatible, 
i.e. is a solution of its characteristic equation – see, e.g., Eq. (223) below. 
58 Besides the constant potential U0 that, as we know from Sec. 2, may be included into energy in a trivial way, so 
that we may take U0 = 0. 
59 This method is so powerful that its multi-dimensional version is not much more complex than the 1D version 
described here – see, e.g., Sec. 3.2 in the classical textbook by J. M. Ziman, Principles of the Theory of Solids, 2nd 
ed., Cambridge U. Press, 1979. 

Fig. 2.28. 1D band picture in the 
weak potential case (n << E(n)). 
Shading shows the 1st Brillouin zone. 
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This fact allows us to rewrite Eq. (215) in a more transparent form 
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that may be formally solved for ul: 
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If the Fourier coefficients Un are nonvanishing but small, this formula shows that wavefunctions do 
acquire other Fourier components (besides the main one, with the index corresponding to the branch 
number), but these additions are all small, besides narrow regions near the points El = El’ where two 
branches (216) of the dispersion relation E(q), with some specific numbers l and l’, cross. This happens 
when 
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i.e. at q  qm  m/a (with integer m  l + l’)60 corresponding to 
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with integer n  l – l’. (Equation (221) shows that index n is just the number of the branch crossing on 
the energy scale – see Fig. 28.) In such a region, E has to be close to both  El  and El’, so that the 
denominator in just one of the infinite number of terms in Eq. (219) is very small, making the term 
substantial despite the smallness of Un.. Hence we can take into account only one term in each of the 
sums (written for l and l’): 
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Taking into account that for any real function U(x) the Fourier coefficients in series (207) have to be 
related as U-n = Un*, Eq. (222) yields the following simple characteristic equation 
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with solution 
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According to Eq. (216), close to the branch crossing point qm = (l + l’)/a, the fraction 
participating in this result may be approximated as61  

60 Let me hope that the difference between this new integer and particle’s mass, both called m, is absolutely clear 
from the context. 
61 Physically, / = (n/a)m = k(n)/m is just the velocity of a free classical particle with energy E(n). 
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while parameters Eave  (El + El’)/2 = E(n) and UnU
*

n =  Un2 do not depend on q~ , i.e. the distance from 
the central point qm. This is why Eq. (224) may be plotted as the famous level anticrossing (also called 
“avoided crossing”, or intended crossing”, or “non-crossing”) diagram (Fig. 29), with the energy gap 
width n equal to 2 Un, i.e. just double the magnitude of the n-th Fourier harmonic of the periodic 
potential U(x). Such anticrossings are also clearly visible in Fig. 28 that shows the results of the exact 
solution of Eq. (198) for  = 0.5.62 

   

 

 

 

 

 

 

 

  

We will run into the anticrossing diagram again and again in the course, notably at the discussion 
of spin. Such diagram characterizes any quantum systems with two weakly-interacting eigenstates with 
close energies. It is also repeatedly met in classical mechanics, for example at the calculation of 
eigenfrequencies of coupled oscillators.63,64 In our current case of the weak potential limit, the diagram 
describes the weak interaction of two sinusoidal de Broglie waves (216), with oppositely directed wave 
vectors, l and –l’ , via the (l  - l’)th  (i.e. nth) Fourier harmonic of the potential profile U(x). This effect 
exists also for the classical wave theory, and is known as the Bragg reflection, describing, for example, 
the 1D case of the wave reflection by a crystal lattice (Fig. 1.5) in the limit of weak interaction between 
the incident particles and the lattice.  

Returning for the last time to our initial result – the band structure for the delta-functional U(x) 
(Fig. 24), shown in Fig. 26, we may wonder how general it is, taking into account the peculiar properties 
of the delta-function approximation. A partial answer may be  obtained from the band structure for two 
more realistic and relatively simple periodic functions U(x): the sinusoidal potential (Fig. 30a) and the 
rectangular Kronig-Penney potential shown in Fig. 30b.  

For the sinusoidal potential (Fig. 30a), with U(x) = U1cos(2x/a), the stationary Schrödinger 
equation (61) takes the form 

62 From that figure, it is also clear that in the weak potential limit, width En of the n-th energy band is just E(n) – 
E(n - 1) – see Eq. (221). Note that this is exactly the distance between adjacent energy levels of the simplest 1D 
quantum well of infinite depth – cf. Eq. (1.77). 
63 See, e.g., CM Sec. 5.1 and in particular Fig. 5.2. 
64 Actually, we could obtain this diagram earlier in this section, for the system of two weakly coupled quantum 
wells (Fig. 23), if we assumed the wells to be slightly dissimilar. 

Fig. 2.29. Level anticrossing diagram.  
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By the introduction of dimensionless variables  
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where E(1) is defined by Eq. (221), Eq. (226) may be reduced to the canonical form of the well-known 
Mathieu equation65 
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Figure 31 shows the so-called characteristic curves of the Mathieu equation, i.e. the relations 
between parameters  and , corresponding to the energy band edges separating them from the adjacent 
bands. (Such curves may be readily calculated numerically, for example, using Eqs. (215) with the band-
edge values qa = 0 and qa = ). In such “phase plane” plots, the detailed information about the energy 
dependence on the quasi-momentum is lost, but we already know from Fig. 26 that the dependence is 
not too eventful. The most remarkable feature of these plots is the fast (exponential) disappearance of 
the allowed energy bands at 2 >  (in Fig. 31, above the red dashed line), i.e. at E < U1. This may be 
readily explained by our tight-binding approximation result (206): as soon as the eigenenergy drops 
significantly below the potential maximum Umax = U1 (see Fig. 30a), quantum states in the adjacent 
potential wells are only connected by tunneling through the separating potential barriers, with 
exponentially small amplitudes n – see Eq. (204).  

On the other hand, the characteristic curves below the dashed line, i.e. at 2 < , correspond to 
virtually free motion of the particle with energy E above Umax = U1. Naturally, in this region the energy 
bands rapidly expand while gaps virtually disappear. This could be expected from the weak potential 
limit analysis (see Fig. 28 and its discussion); however, based on that analysis one could expect that the 

65 This equation, first studied in the 1860s by É. Mathieu in the context of a rather practical problem of vibrating 
elliptical drumheads (!), has many other important applications in physics and engineering, notably including the 
parametric excitation of oscillations – see, e.g., CM Sec. 4.5. 

Fig. 2.30. Two simple periodic potential 
profiles: (a) the sinusoidal (“Mathieu”) 
potential and (b) the Kronig-Penney 
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energy gaps n  2 Un would disappear more gradually. The fast decline of the gaps at U1  0 (i.e.  
 0) in the Mathieu equation is an artifact of the sinusoidal potential U(x), with no Fourier harmonics 
Un above the first one. (In order to calculate the correct asymptotic behavior n  n at   0, one 
needs to go beyond the first approximation we have used in the weak potential limit analysis.) 

 

 

 

 

 

 

 

 

 

 

 

If one wants to study the details of transition between the two limits in the 1D band theory 
without the artifacts of the delta-functional model shown in Fig. 24 (with infinite number of harmonics 
Un independent of n) and of the Mathieu equation (with all Un = 0 for n  1), the standard way is to 
examine the Kronig-Penney potential shown in Fig. 30b. For this potential, the characteristic equation 
may be readily derived using our rectangular barrier analysis in Sec. 3. For the case E < U0, the result is 
the following natural generalization of Eq. (166): 
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where parameters k and  are defined, as functions of E and U0, by Eqs. (62) and (65). In the opposite 
case E  > U0,  one can use the same formula with the replacement (73). Plots E(q), described by these 
formulas,66 are very similar to those shown in Figs. 26b and 28 above. In order to see some difference, 
one needs to plot the characteristic curves U0(E). This may be done by taking qa = 0 and qa =  (i.e. 
cosqa = 1) in Eq. (229), and solving the resulting transcendental equation for U0 numerically. The 
curves are generally similar to those shown in Fig. 31, but, in accordance with Eq. (224), exhibit a more 
gradual decrease of energy gaps: 
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To conclude this section, let me address the effect of periodic potential on the number of 
eigenstates in 1D systems of large but finite length l  >> a, k-1. Surprisingly, the Bloch theorem makes 
the analysis of this problem elementary, for arbitrary U(x). Indeed, let us assume that l is comprised of 

66 Such plots, for several particular values of parameters, may be found, for example, in Figs. 8.11-8.13 of E. 
Merzbacher’s textbook cited above. 

Fig. 2.31. Characteristic curves of the 
Mathieu equation. In application to the band 
theory, dotted regions correspond to the 
energy gaps, while regions between them, to 
energy bands. The red dashed line 
corresponds to condition  = 2, i.e. E = U1 
 Umax, separating the regions of tunneling 
and over-barrier motion. Figure adapted from 
http://www.enm.bris.ac.uk/teaching/. 
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an integer number of periods a, and its ends are described by the similar boundary conditions – both 
assumptions evidently inconsequential for l >> a (such as a 1-cm-scale crystal with ~ 108 atoms along 
each direction). Then, according to Eq. (210), the boundary conditions impose, on the quasi-momentum 
q, exactly the same quantization condition as we had for k for a free 1D motion. Hence, instead of Eq. 
(1.94) we can write 

 dq
l

dN
2

 ,      (2.231) 

with the corresponding change of the summation rule: 
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Hence, the density of states in 1D q-space, dN/dq = l/2, does not depend on the potential profile 
at all! Note, however, that the profile does affect the density of states on the energy axis,  dN/dE. As an 
extreme example, on the bottom and at the top of each energy band we have dE/dq   0, and hence 
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This divergence (which survives in higher spatial dimensionalities as well) of the state density has 
important implications for the operation of several electron and optical devices, in particular  
semiconductor lasers. 

 

2.8. Effective mass and the Bloch oscillations 

 The band structure of the energy spectrum has profound implications not only on the density of 
states, but also on the dynamics of particles in periodic potentials. In order to see that, let us consider the 
simplest case: motion of a wave packet consisting of Bloch functions (210), all in the same (say, nth) 
energy band. Similarly to Eq. (27) for the a free particle, we can describe such a packet as 
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where the a-periodic functions u(x), defined by Eq. (208), are now indexed to emphasize their 
dependence on the quasi-momentum, and (q)  En(q)/ is the function of q describing the shape of the 
corresponding energy band – see, e.g., Fig. 26b or Fig. 28. If the packet is narrow, i.e. the width q of 
the distribution aq is much smaller than all the characteristic scales of the dispersion relation (q), in 
particular /a, we may simplify Eq. (234) exactly as we have done in Sec. 2 for a free particle, despite 
the presence of factors uq(x) under the integral. In the linear approximation of the Taylor expansion, we 
again get Eq. (32), but now with67 
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67 A generalization of this expression to the case of essential interband transitions is not difficult using the 
Heisenberg picture of quantum mechanics (which will be discussed in Chapter 4 of this course) - see, e.g., Sec. 55 
in E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, Pergamon,1980.  
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where q0 is the central point of the quasi-momentum distribution. Despite the formal similarity with Eq. 
(33) for the free particle, this result is much more eventful; for example, as evident from the dispersion 
relation’s topology (see Figs. 26b, 28), the group velocity vanishes not only at q = 0, but at all values of 
q that are multiples of (/a), at the bottom and on the top of each energy band. At these points, packet’s 
envelope does not move in either direction - though may keep spreading.68  

 Even more fascinating phenomena take place if a particle in the periodic potential is the subject 
of an additional external force F(t). (For electrons in a crystal lattice, this may be, for example, the 
Lorentz force of the applied electric and/or magnetic field.) Let the force be relatively weak, so that 
product Fa (i.e. the scale of energy increment from the additional force per one lattice period) is much 
smaller than the  relevant energy scales the dispersion relation E(q) – see Fig. 26b: 

nnEFa  , .     (2.236) 

This relation allows one to neglect the force-induced interband transitions, so that the wave packet (234) 
includes the Bloch eigenfunctions belonging to only one (initial) energy band at all times. For the time 
evolution of its center q0, theory yields69 an extremely simple equation of motion 
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0 tFq


  .      (2.237) 

This equation is physically very transparent: it is essentially the 2nd Newton law for the time evolution 
of the quasi-momentum q under the effect of the additional force F(t) only, excluding the periodic 
force -U(x)/x of the background potential U(x). This is very natural, because q is essentially the 
particle’s momentum averaged over potential’s period, and the periodic force effect drops out at such an 
averaging.  

Despite the simplicity of Eq. (237), the results of its solution may be highly nontrivial. First, let 
us use Eqs. (235) and (237) find the instant group acceleration of the particle (i.e. the acceleration of its 
wave packet’s envelope): 
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This means that the second derivative of the dispersion relation plays the role of the effective reciprocal 
mass of the particle: 
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For the particular case of a free particle, described by Eq. (216), this expression is reduced to the 
original (and constant) mass m, but generally the effective mass depends on the wave packet’s 
momentum. According to Eq. (239), at the bottom of any energy band, mef is always positive, but 
depends on the strength of particle’s interaction with the periodic potential. In particular, according to 
Eq. (206), in the tight binding limit, the effective mass is very large: 

68 For a Gaussian packet, the spreading is described by Eq. (39), with the replacement k  q; it is curious that at 
the inflection points with d2/dq2 = 0 (which are present in each energy band) the packet does not spread. 
69 The proof of Eq. (237)  is not difficult, but becomes more compact in the bra-ket formalism, to be discussed in 
Chapters 4 and 5. This is why I recommend the proof to the reader as an exercise after reading those two chapters. 
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On the contrary, in the weak potential limit, the effective mass is close to m at most points of each 
energy band, but at the edges of the (narrow) bandgaps it is much smaller. Indeed, expanding Eq. (224) 
in the Taylor series near point q = qm, we get 
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where  and q~  are defined by Eq. (225), so that  
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The effective mass effects in real solids may be very significant. For example, the charge carriers 
in the ubiquitous field-effect transistors of silicon integrated circuits have mef  0.19 me in the lowest 
normally-empty energy band (traditionally called the conduction band), and mef  0.98 me in the lower, 
normally-filled valence band. In some semiconducting compounds the conduction-band electron mass 
may be even smaller - down to 0.0145 me in InSb! 

 However, the absolute value of the effective mass in not the most surprising effect. The more 
shocking corollary of Eq. (239) is that on the top of each energy band the effective mass is negative – 
please revisit Figs. 26, 28, and 29 again. This means that the particle (or more strictly its wave packet’s 
envelope) is accelerated in the direction opposite to the force. This is exactly what electronic engineers, 
working with electrons in semiconductors, call holes, characterizing them by positive mass and positive 
charge. If the particle does not leave a close vicinity of the energy band’s top (say, due to scattering 
effects), such flip of signs does not lead to an error, because the Lorentz force is proportional to 
electron’s charge (q = -e), so that particle’s acceleration agr is proportional to ratio (q/mef).70  

However, at some phenomena the usual image of a hole as a particle with q > 0 and mef > 0 is 
unacceptable. For example, let us form a narrow wave packet at the bottom of the lowest energy band,71 
and then exert on it a constant force F > 0 – say, due to a constant external electric field directed along 
axis x. According to Eq. (237), this would lead to a linear growth of q0 in time, so that in the quasi-
momentum space, the packet’s center would slide, with constant speed, along the q axis – see Fig. 32a. 
Close to the energy band bottom, this motion would correspond to a positive effective mass (possibly, 
somewhat larger than the genuine particle’s mass m), and hence be close to free particle’s acceleration. 
However, as soon as q0 has reached the inflection point, where d2E1/dq2 = 0, the effective mass, and 
hence acceleration (238) change signs to negative, i.e. the packet starts to slow down (in the direct space 

70 The language is which the hole has a positive charge and mass has an additional convenience for states on the 
top of the valence band whose single-particle states are normally filled. Then the simplest, single-particle 
excitation of this multi-particle ground state may be created by giving one electron enough energy to lift it to a 
reference (e.g., Fermi-energy) level EF that is, by definition of the valence band, is higher than all values E-(q). 
Then it is natural to prescribe to the excitation a positive mass mef, because the energy  E = EF – E-(q) necessary 
for the excitation grows with the deviation of q from qm.        
71 Intuition tells us (and statistical physics duly confirms :-) that this may be readily done, for example, by weakly 
coupling the system to a low-temperature environment, and letting it to relax to the lowest possible energy. 
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x) while still moving ahead in the quasi-momentum space. Finally, at the energy band’s top the particle 
stops at certain xmax, while continuing to move in the q-space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we have two alternative ways to look at the further time evolution of the wave packet. 
From the extended zone picture (which is the simplest for this analysis, see Fig. 32a),72 we may say that 
the particle crosses the 1st Brillouin zone boundary and starts going forward in q, i.e. down the lowest 
energy band. According to Eq. (235), this region (up to the next inflection point) corresponds to a 
negative group velocity. After q0 has reached the next minimum of the energy band at qa = 2, the 
whole process repeats again (and again, and again).  

These are the famous Bloch oscillations – the effect that was predicted (by the same F. Bloch) as 
early as in 1929, but evaded experimental observation until the 1980s - see below. Their time period 
may be readily found from Eq. (237): 

     
FaF

a

dtdq

q
t





 2

/

/2

/B 


 ,    (2.243) 

so that the Bloch oscillation frequency  
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 The direct-space motion of the wave packet’s center x0(t) during the Bloch oscillation process 
may be analyzed by integrating Eq. (235) over some time interval t: 

72 This phenomenon may be also discussed from the point of view of the reduced zone picture, but then it 
requires the introduction of instant jumps between the Brillouin zone boundary points (see the dashed red line in 
Fig. 32) that correspond to physically equivalent states of the particle. Evidently, this language is more artificial. 
 

Fig. 2.32. The Bloch oscillations (red lines) and the Landau-Zener tunneling (blue arrows) within: 
(a) the time-domain picture, and (b) the energy-domain picture. On panel (b), the tilted gray strips 
show the allowed energy bands, and the bold red lines, the Wannier-Stark ladder. 
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If interval t is equal to the Bloch oscillation period tB (234), the initial and final moments of E(q0) = 
(q0) are equal, giving x0 = 0: in the end of the period, the wave packet returns to its initial position. 
However, if we carry this integration only from the smallest to the largest values of (q0), i.e. the points 
where the group velocity vanishes, we get the oscillation swing 
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.    (2.246) 

This simple result may interpreted using an alternative energy diagram (Fig. 32b) that results 
from the following arguments. The additional force F may be described not only via the 2nd Newton law 
version (237), but, alternatively, by its contribution UF = - Fx to the total (“Gibbs”73) potential energy  

        FxxUxU  )()(      (2.247) 

of the system. The direct solution of the Schrödinger equation (61) with such potential may be hard to 
find, but if the force is weak in the sense of Eq. (236), as we are assuming now, one can argue that our 
quantum-mechanical treatment including the periodic potential U(x) should be still correct, if the second 
term in Eq. (247) is considered as a constant at the wave packet width scale x, but dependent on 
position x0 of the packet’s center. In this approximation, the total energy of the wave packet may be 
found as 

           00 )( FxqEE  .     (2.248) 

 In a plot of such energy as a function of x0 (Fig. 32b), the information on energy dependence on 
q0 is lost, but we already know it is rather uneventful, and well characterized by the position of band-gap 
edges on the energy axis.74 In this representation, the Bloch oscillations of a relatively wide (x >> a) 
wave packet should keep the full energy E constant, i.e. follow a horizontal line in Fig. 32b, limited by 
the classical turning points corresponding to the bottom and the top of the allowed energy band. The 
distance xmax between these point is evidently given by Eq. (246).       
 Besides this second look at the oscillation swing result, the total energy diagram shown in Fig. 
32b enables one more remarkable result. Let a wave packet be so narrow in the momentum space (q  
0) that 1/q >> xmax; then the horizontal line segment in Fig. 32b presents the spatial extension of the 
eigenfunction of the Schrödinger equation with potential (247). But this equation is evidently invariant 
with respect to the following simultaneous translation in coordinate and energy:  

   FaEEaxx  , .     (2.249) 

This means that it is satisfied with an infinite set of similar solutions, each corresponding to one of the 
horizontal red lines shown in Fig. 32b. This is the famous Wannier-Stark ladder, with the step height 

                      FaES  .      (2.250) 

73 See, e.g., CM Sec. 1.5. 
74 In semiconductor device physics and engineering, such plots are called the band edge diagrams, and are the 
virtually unavoidable components of any discussion or publication.  
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 The importance of this alternative representation of the Bloch oscillations is due to the following 
fact. In most experimental realizations, the power of radiation at frequency (244), that may be extracted 
from the oscillations by their electromagnetic coupling to an external detector, is very low, so that their 
direct detection presents a hard problem.75 However, let us apply to a Bloch oscillator an additional rf 
field at frequency  ~ B. As these frequencies are brought close together, the external signal should 
synchronize (“phase lock”) Bloch oscillations,76 resulting in certain observable changes – for example, a 
resonant absorption of the external radiation. Now let us notice that Eqs. (244) and (250) yield the 
following remarkable relation: 

   B SE .      (2.251) 

This means that the resonant phenomena at   B allow for an alternative (but equivalent) 
interpretation – as the result of rf-induced transitions77 between the steps of the Wannier-Stark ladder! 
(Such occasions when two very different languages may be used for the interpretation of the same 
phenomenon is one of the most beautiful features of physics.) 

 This effect has been used for the first experimental confirmation of the Bloch oscillation theory. 
For this purpose, the natural periodic structures, solid state crystals, are inconvenient due to their very 
small period a ~ 10-10 m. Indeed, according to Eq. (244), such structures require very high forces F (and 
hence high electric fields E = F/e) to bring B to an experimentally convenient range. This problem has 
been overcome by fabricating artificial periodic structures (superlattices) of certain semiconductor 
compounds, such as Ga1-xAlxAs with various degrees x of gallium to aluminum atom replacement, 
whose layers may be grown over each other epitaxially, i.e., without very few crystal structure 
violations. These superlattices, with periods a ~ 10 nm, has allowed a clear observation of resonant 
effects at   B, and hence the measurement of the Bloch oscillation frequency, in particular its 
proportionality to the applied dc electric field, predicted by Eq. (244).78 

 Very soon after this observation, the Bloch oscillations have been observed in small Josephson 
junctions.79 Since this experiment involved two important conceptual issues, let me discuss it in a little 
bit more detail. As was discussed in Sec. 2.3, the Josephson junction dynamics may be reasonably well 
described by two simple equations (54) and (55). They may be combined to calculate the work of an 
external voltage source at Josephson phase change between arbitrary initial (ini) and final (fin) values,  
as the integral of its power IV  over the time interval t of the change:  
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We see that the work depends only on the initial and final values of  (but not on the law phase 
evolution in time), i.e. may be presented as the difference U(fin) – U(ini), where function 

75 In systems with many independent particles (such as semiconductors), the detection problem is exacerbated by 
phase incoherence of the Bloch oscillations performed by each particle. This drawback is absent in atomic Bose-
Einstein condensates whose Bloch oscillations (in a periodic potential created by standing optical waves) were 
eventually observed by M. Ben Dahan et al., Phys. Rev. Lett. 76, 4508 (1996). 
76 A simple analysis of phase locking of a classical oscillator may be found, e.g., in CM Sec. 4.4. 
77 A qualitative theory of such transitions will be discussed in Sec. 6.6 and then in Chapter 7. 
78 E. Mendez et al., Phys. Lev. Lett. 60, 2426 (1988). 
79 L. Kuzmin and D. Haviland, Phys. Rev. Lett. 67, 2890 (1991). 
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may be interpreted as the potential energy of the junction (if we consider the Josephson phase as a 
generalized coordinate). This energy apart, the Josephson junction, as a system of two close, nearly 
isolated (super)conductors, has a certain capacitance C and the associated electrostatic energy EC = 
CV2/2. Using Eq. (54) again, we may present it as 
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This means that from the point of view at phase  as a generalized coordinate, EC should be considered 
the kinetic energy of the system, whose dependence on the generalized velocity d/dt is similar to that 
of a 1D mechanical particle, with an effective mass81 

2

J 2








e
Cm


.      (2.252)  

Hence the total energy of the junction, EC + U(), is formally similar to that of a 1D non-relativistic 
particle in the sinusoidal potential with the -axis period aJ = 2. 

 However, before using the results of the 1D band theory to this system, we have to resolve one 
paradox (that was the subject of a lively discussion just about 30 years ago). When we develop the band 
theory, we imply that its translation by period a is (in principle) measurable, i.e. particle positions x and 
(x + a) are distinguishable – otherwise Eq. (193) with q  0 would not have much sense. For a 
mechanical particle this assumption is very plausible, but less so for a Josephson junction. Indeed, for 
example, if we change  by aJ = 2  via changing the phase of one of superconductors, say 1 (Fig. 3) 
by 2, then its wavefunction becomes  exp{i(1 + 2)} =  exp{i1}, and it is not immediately 
clear whether these two states may be distinguished. In order to resolve this contradiction, it is sufficient 
to have a look at Eq. (54). It shows that if  changes in time by 2  (say, by a fast ramp-up), voltage V 
across the junction exhibits a pulse with “area” 
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Such single-flux-quantum (SFQ) pulses82 not only may be measured experimentally, but even have been 
used for signaling and ultrafast (sub-THz) computation, to the best of my knowledge still keeping the 
absolute records for the highest speed and smallest energy consumption at computation.83 

 Hence, the 2-shifts of phase  are measurable, and in the absence of dissipation the Josephson 
junction dynamics is indeed similar to that of a 1D particle in a periodic (sinusoidal) potential, and its 
energy spectrum forms energy bands and gaps described by the Mathieu equation – see Fig. 31.  
Experimentally, the easiest way to verify this picture is to measure the corresponding Bloch oscillations 

80 This unfortunate slip in the formula numbering can hardly lead to any misunderstanding. 
81 Of course, the dimensionality of mef so defined is different from kg.  
82 This term has originated from the fact that the right-hand part of Eq. (253) equals to the single quantum unit 
(0) of the magnetic flux in superconductors – see Sec. 3.1 below. 
83 See, e.g., P. Bunyk et al., Int. J. on High Speed Electronics and Systems 11, 257 (2001). 
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induced by an external current Iex(t). In order to find the frequency of these oscillations, it is sufficient to 
replace Eq. (237), which expresses the 2nd Newton law averaged over period a of potential U(x), with 
the charge balance equation 

   ,ex tI
dt

dQ
       (2.254) 

where Q is the “quasi-charge” 84, i.e. the electric charge of the capacitor averaged over the period 2  of 
the periodic potential U(). (Notice that at such averaging, current (55) is averaged out from the 
equation, so that is affects the phenomena “only” via its contribution to the energy band structure.) 

 Since the Josephson-junction analog of the genuine wave number k = m(dx/dt)/ of a particle is 
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and CV is the genuine charge on the capacitor, the analog of q (the quasi-momentum divided by ) may 
be obtained just by the replacement of that product with quasi-charge Q: 
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Comparing this expression with Eq. (254), we see that qJ obeys the following equation of motion: 
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so that the role of force F is now played by FJ = I/2e. Hence if Iex(t) = const = I , we can use Eq. (244) 
with that replacement, and also a  aJ = 2, to get   
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This very simple result has the following physical sense.85 In the quantum operation mode, the 
junction is recharged by the external current, following Eq. (256), until its electric charge reaches e (i.e. 
qJaJ = (Q/2e)2 reaches  - see Fig. 32a); then one Cooper pair passes through the junction changing its 
charge to e – (2e) = -e, with the same charging energy (251) – the process analogous to crossing the 
border of the 1st Brillouin zone; then the process repeats again and again. It is remarkable that Eq. (258), 
describing the frequency of such a quantum property of the Josephson phase  as its Bloch oscillations, 
does not include the Planck constant, while Eq. (56), describing the classical motion of , does.86 

84 Eq. (254) tells us that quasi-charge Q has the simple physical sense of the external electric charge being 
inserted into the junction by the external current Iex - just like the physical sense of quasi-momentum q of a 
mechanical particle, according to Eq. (237), is the contribution to particle’s momentum by the external force F. 
85 D. Averin et al., Sov. Phys. – JETP 61, 407 (1985). 
86 Phase locking of the Bloch oscillations, with frequency (258), as well as that of very similar SET oscillations of 
frequency fSET = I/e, by a signal of well characterize frequency, enable fundamental standards of dc current. The  
experimentally achieved accuracy of such standards is close to 10-8, a few times worse than that of a less direct 
way - using the Josephson voltage standard and the resistance standard based on the quantum Hall effect. 
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In this context, one may wonder which of these two types of oscillations would a dc-biased 
Josephson junction generate. For the dissipation-free junction, the answer is: the Bloch oscillations 
(258) with frequency proportional to dc current. However, any practical junction has some energy losses 
that may be (approximately) described by a certain Ohmic conductance G connected in parallel to the 
junction. Very luckily for Dr. Josephson and his Nobel Prize, it is much easier to fabricate and test 
junctions with G >> 1/ RQ, where RQ is the so-called quantum unit of resistance 

        k45.6
2 2e

RQ


,     (2.259) 

the fundamental constant that jumps out at analysis of several other effects as well – see, e.g., Sec. 3.2. 
As will be discussed in Chapter 7, such high energy losses provide what is called dephasing – the 
suppression of the quantum coherence between different quantum states of the system – in our current 
case, between the wavefunctions u( - 2j) localized at different minima of the periodic potential U(), 
and thus make the dynamics of the Josephson phase   virtually classical, obeying equations (54) and 
(55). As we have seen in Sec. 2, dc biasing of such a junction leads to Josephson oscillations with 
frequency (56) proportional to the applied dc voltage. 

 

2.9. Landau-Zener tunneling 

All the Bloch oscillation discussion in the last section was based on the premise that the particle 
stays within one (say, the lowest) energy band. However, just a single look at Fig. 32 shows that this 
assumption becomes unrealistic if the energy gap separating this band from the next one becomes very 
small, 1  0. Indeed, in the weak potential approximation, that is adequate in this limit, at U1  0, 
the two dispersion curve branches (216) cross without any interaction, so that if our particle (the wave 
packet) is driven to approach that point, it should continue to move up in energy - see the dashed blue 
arrow in Fig. 32a. Similarly, in the “energy-domain” presentation shown in Fig. 32b, it is intuitively 
clear that at  1  0, the particle residing at one of the steps of the Wannier-Stark ladder should able to 
somehow overcome the vanishing spatial gap x0 = 1/F and to leak into the next band – see the 
horizontal dashed blue arrow on that panel. 

This process, called the Landau-Zener (or “interband”, or “band-to-band”) tunneling87 is indeed 
possible. In order to analyze it, let us first take F = 0, and consider what happens if a quantum particle 
described by an x-long (i.e. E-narrow) wave packet is incident from the free space upon a periodic 
structure of a large but finite length l >> a. If packet’s energy E is within one of the energy bands, it 
may evidently propagate through the structure (though may be partly reflected from its front end). The 
corresponding quasi-momentum may be found by solving the dispersion relation for q; for example, in 
the weak-potential limit, Eq. (224), which is valid near the gap, yields 

                 )(
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and  is given by the second of Eqs. (225). 

87 It was predicted independently by L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932) and C. Zener, Proc. R. Soc. 
London A 137, 696 (1932).  
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Now, if energy E corresponds to one of the energy gaps n, the propagation is impossible, so that 
the packet is completely reflected back. However, our analysis of the potential step problem in Sec. 3 
implies that the wavefunction would still have an exponential tail protruding into the periodic structure 
and decaying on some length  - see Eq. (67). Indeed, a review of the calculation leading to Eq. (260) 
shows that they remain valid within the gap as well, if the quasi-momentum is understood as a purely 
imaginary number: 
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With such contribution, the Bloch solution (193b) indeed describes an exponential decay of the 
wavefunction at length  = 1/. 

 Now returning to the effects of weak force F in the energy-domain approach, presented by Eq. 
(248) and illustrated in Fig.  32b, we may recast Eq. (261) as  
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where x~  is particle’s (i.e. wave packet center’s) deviation from the mid-gap point. Thus the gap has 
created a potential barrier of a finite width x0 = 2Un/F, through which the wave packet may tunnel 
with a finite probability. As we already know, in the WKB approximation (in our case requiring x0 
>> 1) this probability is just the tunnel barrier’s transparency T, which may be calculated from Eq. 
(117): 
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where xc  x0/2 = Un/F are the classical turning points. Working out this simple integral (which 
may be viewed upon as the quarter of the unit circle’s area, and hence equal to /4), we get 
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 This famous result was obtained by Landau and Zener in a more complex way, whose advantage 
is a constructive proof that Eq. (264) is valid for arbitrary relation between F and Un2, i.e. arbitrary T, 
while our simple derivation was limited to the WKB approximation, i.e. to T << 1.88  

Returning to Eq. (225) and (237), we can rewrite the product F participating in Eq. (264) as 
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where u has the meaning of the “speed” of the energy level crossing in the absence of the gap. Hence, 
Eq. (264) may be presented in a form 

88 Note that Eq. (264) is still limited to the hyperbolic dispersion relation, i.e. (in the band theory) to the weak 
potential limit. In the opposite, tight-binding limit, the interband tunneling may be treated as an excitation of the 
upper band states by sinusoidal Bloch oscillations, and is completely suppressed at B < 1. 
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that is more physically transparent.89 Indeed, the fraction 2Un /u = nu  gives the time scale t of 
energy’s crossing the gap region, and according to the Fourier transform, its reciprocal, max ~ 1/t 
gives the upper cutoff of frequencies involved in the Bloch oscillation process. Hence Eq. (266)  means 
that 
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 .     (2.267) 

This formula allows us to interpret the Landau-Zener tunneling as for system’s excitation across the 
energy gap n, by the maximum energy quantum max available from the Bloch oscillation process.  

The interband tunneling is an important ingredient of several physical phenomena and even some 
practical devices, for example the tunneling (or “Esaki”) diodes. This simple device is just a junction of 
two semiconductor electrodes, one of them is so strongly n-doped by electron donors that the additional 
electrons form a degenerate Fermi gas at the bottom of the conduction band. Similarly, the opposite 
electrode is p-doped so strongly that the Fermi level of electrons in the valence band is lowered below 
the band edge (Fig. 33).  

 

 

 

 

 

 

 

 

 

 

At thermal equilibrium, and in the absence of external voltage bias, the Fermi levels self-align,90 
leading to the build-up of the contact potential difference /e, with  somewhat larger than the energy 
bandgap  - see Fig. 33a. This potential difference creates an internal electric field that tilts the energy  
bands (just as the external field did in Fig. 32b), and leads to the formation of the so-called deletion 
layer in which the Fermi level located is within the energy gap and hence there are no charge carriers 
ready to move. In usual p-n junctions, this layer is broad and prevents any current at applied voltages V 
lower than ~/e . In contrast, in a tunneling diode the depletion layer is so thin (below ~10 nm) that the 

89 In Chapter 6, Eq. (266) will be derived using a different method based on the Golden Rule of quantum 
mechanics. 
90 See, e.g., SM Secs. 1.5 and 6.4. 
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Fig. 2.33. Tunneling diode: (a) the band edge diagram of the device at  zero bias; (b) the same diagram at 
modest positive bias eV ~ /2, and (c) the I-V curve (schematically). Dashed lines show the Fermi level 
positions. 
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interband tunneling is possible and provides a substantial Ohmic current at small applied voltages – see 
Fig. 33c.  

However, at substantial positive bias, eV ~ /2, the conduction band become aligned with the 
middle of the gap in the p-doped electrode, and electrons cannot tunnel there. Similarly, these are no 
electrons in the n-doped semiconductor to tunnel into the available states just above the Fermi level in 
the p-doped electrode – see Fig. 33b. As a result, current drops significantly, to grow again only when 
eV exceeds ~ and allows the electron motion through the within each energy band. Thus the tunnel 
junction’s I-V curve has a part with negative differential resistance (dV/dI < 0). This effect may be used 
for the amplification of analog signals, including self-excitation of electrical oscillators (i.e. rf signal 
generation),91 and signal swing restoration in digital electronics.   

 

2.10. Harmonic oscillator: A brute force approach 

 To complete our review of 1D systems, we have to consider the famous harmonic oscillator, i.e. 
a 1D particle moving in the quadratic-parabolic potential (111). This is just a smooth quantum well 
providing “soft” confinement, whose discrete spectrum we have already found in the WKB 
approximation – see Eq. (114). Let us try to solve the same problem exactly – not because there is 
anything conceptually interesting in it (there is not :-), but because of its enormous importance for 
applications. For that, let us write the stationary Schrödinger equation for potential  (111): 




Ex
m

dx

d

m
 2

2
0

2

22
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.    (2.268) 

From the solution of Exercise Problem 1.5, the reader already knows92 one of the eigenfunctions of this 
equation, 
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 ,     (2.269) 

and the corresponding eigenenergy 

   
2

0
0


E .      (2.270) 

Expression (269) shows that the characteristic scale of wavefunction’s spatial spread93 is equal to 
2/1

0
0 










m
x


.     (2.271) 

Due to the importance of this scale, let us give its crude estimates for several typical systems: 

91 See, e.g., CM Sec. 4.4. 
92 If not yet, I am inviting him or her to check this fact now by the direct substitution of solution (269) into the 
differential equation (268), simultaneously proving Eq. (270). 
93 Quantitatively, as was already mentioned in Sec. 2.1, x0 = 2x = 2x21/2. 
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 (i) Electrons in solids and fluids: m  10-30 kg,  0 ~ 1015 s-1, giving x0 ~ 0.3 nm, comparable 
with inter-atomic distances a. As a result, classical mechanics is not valid at all for the analysis of their 
motion. 

 (ii) Atoms in solids: m  10-24-10-26 kg,  0 ~ 1013 s-1, giving x0 ~ 0.01 - 0.1 nm, i.e. from ~a few 
percent to a few tens percent of a. Because of that, methods based classical mechanics (e.g., molecular 
dynamics) are approximately valid for the analysis of atomic motion, though may miss some fine effects 
of motion of lighter atoms – e.g., quantum tunneling of hydrogen atoms through energy barriers of the 
potential profile created by its neighbors.  

 (iii) Probe masses in modern gravity-wave detectors (Advanced LIGO, VIRGO, KAGRA, 
etc.):94 m ~102 kg, 0 ~ 102 s-1, giving x0 ~ 10-19m. After several decades of development, the sensitivity 
of these instruments is still limited by various noise sources at the level of the order of 10-18 m.95 Thus 
the prospects of observing quantum-mechanical effects in such installations do not look very realistic. 

Returning to the Schrödinger equation (268), let us recast it into a dimensionless form by 
introducing dimensionless variable   x/x0. This gives  

            



 2
2

2

d

d
,     (2.272) 

where   2E/0 = E/E0. In this notation, the ground state wavefunction is proportional to exp{-2/2}, 
so that let us look for the solutions to Eq. (272) in the form 

     )(
2

exp
2

 HC







 ,     (2.273) 

where H() is a new function. With this substitution, Eq. (272) yields 

0)1(2
2

2

 H
d

dH

d

Hd 





.    (2.274) 

It is evident that H = const and  = 1 is one of its solutions, describing the eigenstate (269) with 
energy (270), but what are the other eigenstates and eigenvalues? This equation has been studied in 
detail in the mid-1800s by C. Hermite who has shown that all eigenvalues are given by equation 

,21 nn   with   n = 0, 1, 2,…,    (2.275) 

so that our WKB result (114) is indeed exact for any n, and Eqs. (269) and (270) describe the ground-
state of the oscillator. The eigenfunction corresponding to eigenvalue n is a polynomial (now called the 
Hermite polynomial) of degree n, that may be most conveniently calculated using the following explicit 
formula: 

                  22 expexp1 


 
n

n
n

n d

d
H .    (2.276) 

94 See, e.g., http://www.ligo.caltech.edu/, and a recent update by T. Feder, Phys. Today 68, No. 9, 20 (2015). 
95 According to the recent announcement by B. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016), this sensitivity 
was sufficient for the first direct detection of gravitational waves emitted at a merger of two black holes. 
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It is easy to use this formula to calculate several lowest-degree polynomials – see Fig. 34a: 

      ... 12,48-16 ,128,24,2,1 24
4

3
3

2
210   HHHHH  (2.277) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most important properties of the polynomials are as follows: 

 (i) their “parity” (symmetry-antisymmetry)  alternates with number n, 

 (ii) Hn() crosses the -axis exactly n times (has n zeros), and 

 (iii) the polynomials are mutually orthonormal in the following sense: 

  .!2exp)()( ',
2/12

' nn
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nn ndHH  




    (2.278) 

Fig. 2.34. (a) A few lowest Hermite 
polynomials and (b) the corresponding 
eigenenergies (dashed lines) and 
eigenfunctions (solid lines) of the 
harmonic oscillator. The black dashed 
line shows the potential profile U(x), 
drawn on the same scale as energies En, 
so that the line crossings with the energy 
levels correspond to the classical turning 
points. 
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 Using Eq. (273) to translate this result to functions n(x), we get the following orthonormal 
eigenfunctions of the harmonic oscillator (Fig.34b):96 
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 .   (2.279) 

 Besides its own importance, this is a typical example of eigenstates of particle confined in a soft-
wall quantum well. It is very instructive to compare them with eigenstates of a the rectangular quantum 
well, with its ultimately-hard walls – see Eq. (1.76) and Fig. 1.7. Let us list their similar features: 

    (i) Wavefunctions oscillate in the classically-allowed regions with En > U(x), while 
dropping exponentially beyond the boundaries of that region. 
  (ii) Each step up the energy level ladder increases the number of the oscillation half-
waves (and hence the number of its zeros), by one.97  

 Here are the major features specific for the soft confinement: 

  (i) The spatial spread of the wavefunction grows with n, following the gradual increase of 
the classically allowed region. 
  (ii) Correspondingly, En exhibits a slower growth than the En  n2 law given by Eq. 
(1.77), because of the gradual reduction of confinement, which moderates the growth of kinetic energy.  

 Unfortunately, the brute-force approach to the harmonic oscillator problem, discussed above, is 
not too appealing intellectually. First, the proof of Eq. (276) is rather longish. More importantly, it is 
hard to use Eq. (279) for calculation of the so-called matrix elements of the system – as we will see in 
Chapter 4, virtually the only numbers important for applications. Finally, it is also almost evident that 
there should be some straightforward math leading to any formula as simple as Eq. (114) for En. Indeed, 
there is a much more efficient, operator-based approach to this problem; it will be described in Sec. 5.4. 

 

2.11. Exercise problems 

2.1. The initial wave packet of a free 1D particle is described by Eq. (2.20) of the lecture notes: 

   dkeax ikx
k0, . 

(i) Obtain a compact expression for  the expectation value p of particle's momentum. Does p 
depend on time?  

(ii) Calculate p for the case when function ak2 is symmetric with respect to some value k0.  
 
2.2. Calculate the function ak, defined by Eq. (2.20), for the wave packet with a rectangular 

envelope: 

96 These stationary states of the harmonic oscillator are sometimes called its Fock states, to distinguish them from 
other fundamental solutions (such as Glauber states) which will be discussed in Sec. 5.5 and beyond.. 
97 In mathematics, a slightly more general statement, valid for a broader class of ordinary linear differential 
equations, is frequently called the Sturm oscillation theorem, and is a part of the Sturm-Liouville theory of such 
equations – see, e.g., Chapter 10 in the handbook by G. Arfken et al. recommended in MA Sec. 16. 
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.otherwise                   ,0

,2/2/for     ,exp
)0,( 0 axaxikC

x

Analyze the result in the limit k0a  . 
 
2.3. Prove Eq. (49) for the 1D propagator of a free quantum particle, starting from Eq. (48). 
 
2.4. Express the 1D propagator, defined by Eq. (44), via eigenfunctions and eigenenergies of a 

particle moving in an arbitrary stationary potential U(x). (For the notation simplicity, assume that the 
energy spectrum of the system is discrete.)  
  
 2.5. Calculate the change of the wavefunction of a 1D particle, resulting from a short pulse of an 
external force, which may be approximated by the delta-function:98 

   tPtF  . 

2.6.* Analyze the effect of phase locking of Josephson oscillations on the dc current flowing 
through the junction, assuming that external microwave source applies a fixed sinusoidal ac voltage,  

        tAVtV cos)(  , 

to a junction with sinusoidal current-phase relation (55), using Eq. (54) for time evolution of phase . 
 
2.7. Calculate the transmission coefficient T as a function of particle’s energy E for the 

rectangular potential barrier, 














,2/for              ,0

,2/2/for ,

,2/for               ,0

)( 0

xd

dxdU

dx

xU  

for the case E > U0. Analyze and interpret the result, taking into account that U0  may be either positive 
or negative. (In the last case, we are speaking about particle’s passage over a rectangular potential well 
of finite depth.) 

2.8. Looking at the lower (red) line in Fig. 1.7, it seems plausible that the 1D ground-state 
function X(x)  sin(x/a) of the simple quantum well (1.69) may be well approximated by an inverted 
parabola: 

   xaCxxX trial , 

where C is the normalization constant, and a  ax for brevity. Explore how good this approximation is.99 

2.9. Spell out the stationary wavefunctions of a harmonic oscillator in the WKB approximation, 
and use them to calculate the expectation values x2 and x4 for arbitrary state number n. 

 

98 The constant P is called the force’s impulse. (In higher dimensionalities, it is a vector - just as the force is.) 
99 Solving this problem is a good preparation to the use of the full variational method in the next two problems 
(and beyond). 
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2.10.* A 1D particle of mass m is placed into the following triangular quantum well:100 

  0with  
,0for  ,

,0for  ,









 F
xFx

x
xU . 

 (i) Calculate its energy spectrum using the WKB approximation. 
 (ii) Estimate the ground state energy using the variational method. 
 (iii) Calculate the three lowest energy levels, and also for the 10th level, with at least 0.1% 
accuracy, from the exact solution of the problem. 
 (iv) Compare and discuss the results. 

 Hints:  

 - In Task (ii), try to incorporate a certain parameter  into your trial wavefunction, and then use 
its adjustment to minimize the expectation value of system’s Hamiltonian (mentioned in Chapter 1): 

dxHH trialtrialtrial
ˆ* 





 , 

where the trial function is assumed to be properly normalized. The variational method is based on the 
easily provable101 fact that this expectation value cannot be less than the genuine Eg, coinciding with it 
only if the trial function exactly coincides with the genuine wavefunction g of the ground state. Hence, 
the lower Htrial you reach, the better is your result. 

 - The values of the first zeros of the Airy function, necessary for Task (iii), may be found in 
many math handbooks, for example, in Table 10.13 of the collection edited by Abramowitz and Stegun 
– see MA Sec. 16(i). 

 
2.11. For a 1D particle of mass m placed into a potential well with the following profile, 

  0  and  0with  ,2  saaxxU s , 

 (i) calculate its energy spectrum using the WKB approximation, and 
 (ii) estimate the ground state energy using the variational method. 

Compare the ground state energy results for parameter s equal to 1, 2, 3, and 100. 
 
2.12. Prove Eq. (117) for the case TWKB << 1, using the connection formulas (104). 
 
2.13.  Use the WKB approximation to express the expectation value of the kinetic energy of a 1D 

particle, confined in a soft potential well, in its nth stationary state, via the derivative dEn/dn, for n >> 1. 
 
2.14.* Use the WKB approximation to calculate the transparency T as a function of particle 

energy E, for the following triangular potential barrier: 









,0for ,

,0for        ,0
)(

0 xFxU

x
xU  

100 With F = mg, this is just the well-known bouncing ball problem. 
101 See, e.g., Sec. 8.2 below. 
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with F, U0 > 0.  

 Hint: Be careful treating the sharp potential step at x = 0. 
 
2.15.* Prove that the symmetry of the scattering matrix elements describing an arbitrary time-

independent scatterer allows its representation in the form (136a), with the additional restriction (136b). 
 
2.16. Prove the universal relations between elements of the transfer matrix T of a stationary (but 

otherwise arbitrary) 1D scatterer, which were mentioned in Sec. 5. 
 
2.17. For a deep and narrow 1D quantum well, modeled by a delta-function, 

              0with  ),()(  WW xxU  ,    (*) 

find the localized eigenfunction(s) n (with 0)( xn  at x ), and the corresponding value(s) En. 

 
 2.18. A 1D particle was localized in the delta-functional well, with U(x) = -W(x), such as the 
one analyzed in the previous problem. Then (say, at t = 0) the well’s bottom is suddenly lifted, so that 
the particle  becomes free to move. Calculate the probability density, w(k) to find the particle in a state 
with wave number k at t > 0, and the final total energy of the system. 

2.19. Calculate the lifetime of the metastable localized state of a 1D particle in the potential 

    0with  ,  WW FxxxU  , 

using the WKB approximation. Formulate the condition of validity of the result. 
 
 2.20. Analyze the localized eigenfunction(s) and the characteristic equation(s) for eigenenergies 
of a 1D particle in the following two-well potential 

             0with  ,
22

)( 













 






  WW

a
x

a
xxU  . 

Explore asymptotic behaviors of the eigenenergies in the limits of very strong and very weak potential, 
and find the number of localized states as a function of distance a. 

2.21.* Consider a symmetric system of two quantum wells of the type shown in Fig. 23, but with 
U(0) = U() = 0 – see Fig. on the right. What is the sign of well 
interaction force due to a quantum particle of mass m, shared by 
them, for the cases when the particle is in: 

 (i) a symmetric eigenstate, with s(-x) = s(x)? 
 (ii) an asymmetric eigenstate, with a(-x) = -a(x)? 

Use a different approach to confirm your result for the particular 
case of delta-functional wells, considered in the previous problem. 

 
2.22. Derive and analyze the characteristic equation for eigenvalues for a particle in a 

rectangular well of a finite depth: 

 xU

x0
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otherwise.     ,0

2for    ,
)( 0 ,a/xU

xU  

In particular, calculate the number of localized states as a function of well’s width a, and explore the 
limit U0 << 2/2ma2. 

2.23. Calculate energy E of the localized state in a quantum well of an arbitrary shape U(x), 
provided that its width a is finite, and the average depth is very small: 

 
well

2

2 1
  where,

2
dxxU

a
U

ma
U


. 

 
2.24.* A particle of mass m is moving in a field with the following potential: 

     xxUxU W 0 , 

where U0(x) describes a smooth, symmetric function with U0(0) = 0, growing  monotonically at x  .  

 (i) Use the WKB approximation to derive the characteristic equation for the energy spectrum; 
 (ii) semi-quantitatively describe the spectrum structure evolution at the increase of  W , for both 
signs of this parameter, and make the results more specific for the quadratic potential 

  22
00 2
x

m
xU  . 

 
2.25. Prove Eq. (191), starting from Eq. (190). 

 
 2.26. For the problem explored in the beginning of Sec. 7, i.e. 1D particle’s motion in a delta-
functional periodic potential shown in Fig. 24, 

    0with  ,  




WW
j

jaxxU  , 

(where j are integers), write explicit expressions for its eigenfunctions: 

(i) at the bottom, and  
(ii) at the top  

of the lowest energy band. Sketch both eigenfunctions. 
 
 2.27.* A 1D particle of mass m moves in an infinite periodic system of very narrow and deep 
quantum wells that may be described by delta-functions: 

    0with  ,  




WW
j

jaxxU  . 

 (i) Sketch the energy band structure of the system for relatively small and relatively large values 
of the quantum well’s “area” W, and 
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 (ii) calculate explicitly the ground state energy of the system in the limits of very small and very 
large W. 

2.28.* For the system discussed in the previous problem, write explicit expressions for the 
eigenfunctions of the system, corresponding to: 

 (i) the bottom points of the lowest energy band, and 
 (ii) the top points of that band, and  
 (iii) the lowest points of each higher energy band, 

and sketch the functions. 
 
 2.29.* The 1D “crystal”, analyzed in the last two problems, now extends along only to x > 0, 
while bordering a flat potential step at x = 0:102 

   









 





.0for                                             ,0

,0for  ,0with  ,

0

1

xU

xjax
xU j

WW 
 

Prove that the system can have a set of so-called Tamm states, localized near the “surface” x = 0, and 
calculate their energies in the limit when U0 is very large but finite. (Quantify this condition.) 

 
2.30. Calculate the whole transfer matrix of the rectangular tunnel barrier, specified by Eq. (76), 

for particle energies both below and above U0. 

 

2.31. Use results of the previous problem to 
calculate the transfer matrix of one period of the periodic 
Kronig-Penney potential shown in Fig. 30b (reproduced in 
Fig. on the right).  

 
 
2.32. Using results of the previous problem, derive the characteristic equations for particle’s 

motion in the periodic Kronig-Penney potential, for both E < U0 and E > U0. Try to bring the equations 
to a form similar to that obtained in Sec. 5 for the delta-functional barriers – see Eq. (166). Use the 
equations to formulate the conditions of applicability of the tight-binding and weak-potential 
approximations, in terms of parameters U0, d, and a of the potential profile, and particle’s mass m and 
energy E.  

 
2.33.* For the Kronig-Penney potential, use the tight binding approximation to calculate the 

widths of the allowed energy bands. Compare the results with those of the previous problem (in the 
corresponding limit).  

 

102 In applications to electrons in solid-state crystals, the delta-functional quantum wells model the attractive 
potential of atomic nuclei, while U0 represents the workfunction, i.e. the energy necessary for the extraction of an 
electron from the crystal to the free space – see, e.g., EM Sec. 2.6 and SM Sec. 6.4. 

x

)(xU

0

a

0U
d



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 2           Page 75 of 76 

2.34.* For the same Kronig-Penney  potential, use the weak potential limit formulas to calculate 
the energy gap widths. Again, compare the results with those of Problem 30, in the corresponding limit. 
 
 2.35. 1D periodic chains of atoms may exhibit what is called the so-called Peierls instability, 
leading to the Peierls transition to phase in which atoms are slightly displaced by xj = (-1)jx, with x 
<< a. These displacements lead to the alternation of coupling amplitudes n (see Eq. (204)) between 
some values n

+ and n
-. Use the tight-binding approximation to calculate the resulting change of the nth 

energy band, and discuss the result. 
 
 2.36. Assuming the quantum effects to be small, calculate the lower part of 
the energy spectrum of the following system: a small bead of mass m, free to move 
without friction along a ring of radius R that is rotated about its vertical diameter 
with a constant angular velocity  - see Fig. on the right.103 Formulate a 
quantitative condition of validity of your results. 

 
 
2.37. A 1D harmonic oscillator (with mass m and frequency 0) had been in its ground state; 

then an additional force F was suddenly applied (and retained constant in time). Find the probability of 
the oscillator staying in its ground state. 

2.38. A 1D particle of mass m has been placed into a quadratic potential well (111), 

2
2
0

2
)( x

m
xU


 , 

and allowed to relax into the ground state. harmonic oscillator had been in its ground state. At t = 0, the 
well starts to be moved with velocity v, without changing its profile, so that at t  0 the above formula 
for U is valid with the replacement x  x’  x – vt. Calculate the probability for the system to still be in 
the ground state at t > 0. 

 
2.39. A 1D particle is placed into the following potential well: 









.0for ,2/

,0for            ,
)( 22

0 xxm

x
xU


 

 (i) Find its eigenstates and eigenenergies. 
 (ii) This system had been let to relax into its ground state, and then the potential wall at x < 0 
was rapidly removed, so that the system was instantly turned into the usual harmonic oscillator (with the 
same m and 0). Find the probability for the oscillator to be in its ground state. 

 
2.40. Prove the following formula for the propagator of the 1D harmonic oscillator: 

103 This system was used as the analytical mechanics “testbed problem”  in the CM part of this series, and the 
reader is welcome to use any relations derived there - but remember that they pertain to the classical mechanics 
domain! 
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Discuss the relation between this formula and the propagator of a free 1D particle. 
 
 2.41. Use the variational method to estimate the ground state energy Eg of the following confined 
1D systems: 

 (i) a harmonic oscillator, with U(x)  = m0
2x2/2, and 

 (ii) a particle in the following potential well: U(x)  = -U0exp{-2x2}, and U0 > 0. 

In the latter case, get explicit results in the limits of small and large U0, and give their interpretation. 
 
2.42.* Use the WKB approximation to calculate the lifetime of the metastable ground state of a 

1D particle of mass m in the “pocket” of the potential profile 

                    .
2

)( 32
2
0 xx

m
xU 


   

Contemplate the significance of this problem. 

2.43. In the context of the Sturm oscillation theorem mentioned in Sec. 10, prove that the number 
of zeros of stationary wavefunctions of a particle, confined in an arbitrary potential well, always 
increases with energy. 

 Hint: You may like to use the suitably modified Eq. (189). 
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Chapter 3. Higher Dimensionality Effects 

The coverage of multi-dimensional problems of wave mechanics in this course is minimal: it is limited 
to a few phenomena (such as the AB effect and Landau levels) that cannot take place in one dimension 
due to topological reasons, and a few key 3D problems (such as the Born approximation in scattering 
theory and the Bohr  atom) whose solutions are necessary for numerous applications. 

 

3.1. Quantum interference and the AB effect 

 In the past two chapters, we have already discussed some effects of the de Broglie wave 
interference. For example, standing waves inside a quantum well, or even on the top of a tunnel barrier, 
may be considered as a result of the incident and reflected waves. However, there are some remarkable 
new effects made possible by the spatial separation of such traveling waves, and such separation  
requires a higher (either 2D or 3D) dimensionality. A good example of such separation is provided by 
the Young-type experiment (Fig. 1) in which particles are passed through two narrow holes (or slits) is 
an otherwise opaque partition.  

 

 

 

 

 

 

 

 

 

If the particles emitted by the source do not interact (which is always true if the emission rate is 
sufficiently low), the average rate of particle counting by the detector is proportional to the probability 
density w(r, t) = (r, t) *(r, t) to find a single particle at the detector’s location r, where (r, t) is the 
solution of the single-particle Schrödinger equation (1.25). Let us describe this experiment for the case 
when the particles may be represented by monochromatic waves of energy E (e.g., very r-long wave 
packets), so that the wavefunction may be taken in the form given by Eqs. (1.56) and (1.61): (r, t) = 
(r) exp{-iEt/}. In this case, in the free-space parts of the system, (r) satisfies the stationary 
Schrödinger equation (1.60) with Hamiltonian (1.27a): 

          E
m

 2
2

2


.     (3.1a) 

With the standard definition k  (2mE)1/2/, it may be rewritten as the 3D Helmholtz equation  

022   k      (3.1b)
3D  

Helmholtz 
equation 

Fig. 3.1. Scheme of the “two-slit” 
(Young-type) interference experiment. 
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– an evident 3D generalization of Eqs. (1.75) or (2.81).  

The opaque parts of the partition may be well described as classically forbidden regions, so if 
their size scale a is much larger than the wavefunction penetration depth  (2.67), we can use on their 
surface S the same boundary conditions as for the quantum barrier of infinite height:  

      0S .      (3.2) 

Equations (1) and (2) formulate the standard boundary problem of the theory of propagation of 
scalar waves of any nature. For an arbitrary geometry, such problem does not have a simple analytical 
solution. However, for a conceptual discussion of interference we use certain natural assumptions that 
will allow us to find its particular, approximate solution.  

First, let us discuss wave emission, into free space, by a small-size source located at the origin. 
Naturally, the emitted wave should be spherically-symmetric: (r) = (r). Using the well-known 
expression for the Laplace operator in spherical coordinates,1 we then reduce Eq. (1) to an ordinary 
differential equation 

   0
1 22

2







 

k
dr

d
r

dr

d

r
.     (3.3) 

Let us introduce a new function, f(r) = r(r). Plugging the reciprocal relation  = f/r into Eq. (3), we see 
that it is reduced to the 1D wave equation,  

02
2

2

 fk
dr

fd
,     (3.4) 

whose solutions were discussed in detail in Sec. 2.2. For a fixed k, the general solution of Eq. (4) is   

       ikrikr efeff 
       (3.5) 

so that the full wavefunction 
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    rr . (3.6) 

If the source is located at point r’  0, the obvious generalization of Eq. (6) 

    ' , with  ),( ,
)()( rrRRr    Re

R

f
e

R

f
t tkRitkRi  .  (3.7) 

The first term of this solution describes a spherically-symmetric wave propagating from the 
source outward, while the second one, a wave converging onto the source point r’ from large distances. 
Though the latter solution is possible at some very special circumstances (say, when the outgoing wave 
is reflected back from a spherical shell), for our problem, only the outgoing waves are relevant, so that 
we may keep only the first term (proportional to f+) in Eq. (7). Note that factor R is the denominator 
(that was absent in 1D geometry) has a simple physical sense: it provides the independence of the full 
probability current I = 4R2j(R), with j(R) k*  1/R2, of the distance R between the observation 
point and the source. 

1 See, e.g., MA Eq. (10.9). 
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Now let us assume that the partition’s geometry is not too complicated – for example, it is planar 
as shown in Fig. 1, and consider the region of the particle detector location far behind the partition (at z 
>> 1/k), and at a relatively small angle to it: x << z. Then it should be physically clear that the 
spherical waves (7) emitted by each point inside the slit cannot be perturbed too much by the opaque 
parts of the partition, and their only role is the restriction of the set of such emitting points by the area of 
the slits. Hence, an approximate solution of the boundary problem is given by the following Huygens 
principle: the wave behind the partition looks as if it was the sum of contributions (7) of point sources 
located in the slits, with each source’s strength f+ proportional to the amplitude of the wave arriving at 
this pseudo-source from the real source – see Fig. 1. This principle finds its confirmation in strict wave 
theory, which shows2 that with our assumptions, the solution of the boundary problem (1)-(2) may be 
presented as the following Kirchhoff integral: 

  
i

k
cr'de

R

'
c ikR




2
with  ,

)(
)(

slits

2  
r

r .    (3.8) 

If the source is also far from the partition, its wave front is almost parallel to the slit plane, and 
the slits are not too broad, we can take (r’) constant (1,2) at each slit, so that Eq. (8) is reduced to 

                2,1
2,1

2,1
2,12211 with  ,expexp)( 

l"

cA
a"ikl"a"ikl"a" r ,  (3.9) 

where A1,2 are the slit areas. The wavefunctions on the slits be calculated approximately3 by applying the 
same Eq. (7) to the space before the slits: 1,2  (f+/l’1,2)exp{ikl’1,2}. As a result, Eq. (9) may be 
rewritten as 

                
2,12,1

2,1
2,12,12,12,12211 ,with ,expexp)(

l"l'

Afc
al''l'liklaikla r .  (3.10) 

 (As Fig. 1 shows, each of l1,2 is the length of the full classical path of the particle from the source, 
through the corresponding slit, and further to the observation point r – see Fig. 1).  

According to Eq. (10), the resulting rate of particle counting is proportional to  

             1221

2

2

2

1 cos2)()()( *  aaaaw  rrr ,   (3.11) 

where 

                 )( 1212 llk       (3.12) 

is the difference of the total wave phase accumulations along each of two alternative trajectories. The 
last expression may be evidently generalized as   

2 For a proof of Eq. (8), see, e.g., EM Sec. 8.5. 
3 A possible (and reasonable) concern about the application of Eq. (7) to the field in the slits is that it ignores the 
effect of opaque parts of the partition. However, as we know from Chapter 2, the main role of the classically 
forbidden region is providing the reflection of the incident wave towards its source (i.e. to the left in Fig. 1). As a 
result, the contribution of this reflection to the field inside the slits is insignificant is A1,2 >> 2, and even in the 
opposite case provides just some rescaling of the amplitudes a1,2, which is unimportant for our conceptual 
discussion. 
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C

drk12 ,      (3.13) 

with integration along the virtually closed contour C (see the dashed line in Fig. 1), i.e. from point 1, in 
the positive (i.e. counterclockwise) direction to point 2. (From our experience with the 1D WKB 
approximation we may expect such generalization to be valid even if k changes, sufficiently slowly, 
along the paths.) 

Our result (11) shows that the counting rate oscillates as a function of the difference (l2 – l1) that 
in turn changes with detector’s position, giving the famous interference pattern, with the amplitude 
proportional to the product a1a2, and hence vanishing if any of the slits is closed. For a wave theory, 
this is a well-known result,4 but for particle physics, is was (and still is :-) rather shocking. Indeed, our 
analysis pertains to a very low particle emission/detection rate, so that there is no other way to interpret 
it rather than resulting from particle’s interference with itself, or rather the interference of its 
wavefunction parts passing through each of two slits. 

 Let us now discuss a very interesting effect of magnetic field on the quantum interference. In 
order to make the discussion simpler, let us consider an alternative version of the two-slit experiment, in 
which each of alternative path is fixed to a narrow channel using a partial confinement – see Fig. 2. (In 
this arrangement, moving the particle detector without changing channels’ geometry, and hence local 
values of k may be more problematic in experimental practice, so let us think about its position r fixed.) 

 

 

 

 

 

 

 

In this case, because of the effect of the walls providing the path confinement, we cannot use  
expressions (10) for amplitudes a1,2. However,  from the discussions in Sec. 1.6 and Sec. 2.2, it should 
be clear that the first of expressions (10) remains valid, though may be with a value of k specific for 
each channel.  

The benefit of this geometry is that we can now apply magnetic field B, perpendicular to the 
plane of particle motion, that would pierce contour C, but would not touch the particle propagation 
channels. In classical physics, magnetic field’s effect on a particle with electric charge q is described by 
the Lorentz force5 

          ,B vF qB       (3.14) 

4 See, e.g., a detailed discussion in EM Sec. 8.4. 
5 See, e.g., Sec. 5.1. Note that Eq. (14), as well as all other formulas of this course, are in the SI units; in Gaussian 
units, all terms which include either B or A should be divided by c, the speed of light in free space. 

Fig. 3.2. The AB effect. 
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where B is the field value at the point of its particle’s location, so that for the experiment shown in Fig. 
2, FB = 0, and the field would not affect the particle motion at all. In quantum mechanics, this is not so, 
and the field does affect the probability density w, even if B = 0 in all points where the wavefunction 

(r) is not equal to zero.  

 In order to describe this surprising effect, let us first develop a general framework for account of 
effects of electromagnetic fields on a quantum particle, which will also give us some important by-
product results. In order to do that, we need to calculate the Hamiltonian operator of a charged particle 
in the field. For an electrostatic field, this hardly present any problem. Indeed, from classical 
electrodynamics we know that such field may be presented as a gradient of its electrostatic potential ,  

           ,rE      (3.15) 

so that the force exerted by the field on a particle with electric charge q,           
               E,E qF       (3.16) 

may be described by adding the potential energy of the field,   

          rr qU  ,      (3.17) 

to other (possible) components of the full potential energy of the particle. As we have already discussed, 
such a function of coordinates may be included to the Hamiltonian operator just by adding it to the 
kinetic energy operator (1.27).  

However, magnetic field’s effect is peculiar: since its Lorentz force (14) cannot do any work on 
the particle: 

        ,0)(  dtqdtdrdW vvvFF BBBB    (3.18) 

the field cannot be presented by any potential energy, so it may not be immediately clear how to account 
for it in the Hamiltonian. Help comes from the analytical-mechanics approach to classical 
electrodynamics:6 in the non-relativistic limit, the Hamiltonian function of a particle in electromagnetic 
field looks superficially like that in electrostatic field only: 

   q
m

p
U

mv
H 

22

22

;     (3.19) 

however, the momentum p  mv that participates in this expression is now the difference 

              APp q .      (3.20) 

Here A is the vector-potential, defined by the well-known relations for the electric and magnetic field:7 

 A
A





  B,
t

E ,    (3.21) 

while P is the canonical momentum whose Cartesian components may be calculated (in classics) from 
the Lagrangian function,8 using the standard formula of analytical mechanics,  

6 See, e.g., EM Sec. 9.7. 
7 See, e.g., EM Sec. 6.7, in particular Eqs. (6.106). 
8 Just for reader’s reference, the classical Lagrangian corresponding to Hamiltonian (19) is  
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j

j v

L
P




 .      (3.22) 

To emphasize the difference between the two momenta, p = mv is frequently called the 
kinematic momentum (or “mv-momentum”). The distinction between p and P = p + qA becomes even 
more clear if we notice that vector-potential is not gauge-invariant: according to the second of Eqs. (21), 
at the so-called gauge transformation 

        AA ,     (3.23) 

with an arbitrary single-valued scalar gauge function  = (r, t), the magnetic field does not change. 
Moreover, according to the first of Eqs. (21), if we make the simultaneous replacement 

       
t




 ,      (3.24) 

the gauge transformation does not affect the electric field either. With that, the gauge function does not 
change the classical particle’s equation of motion, and hence the velocity v and momentum p. Hence, 
the kinematic momentum is gauge-invariant, while P is not, because it changes by q. 

Now the standard way of transfer to quantum mechanics is to treat the canonical rather than 
kinematic momentum according to correspondence postulate discussed in Sec. 1.2. This means that in 
the coordinate representation, the operator of this variable is given by Eq. (1.26):9 

    iP̂ .      (3.25) 

Hence the Hamiltonian operator corresponding to the classical function (19) is 

          q
iq

m
qqi

m
H 






 

22
2

22

1ˆ AA



  ,   (3.26) 

so that the Schrödinger equation of a particle moving in electromagnetic field (but otherwise free) is 

            ,
2

22

 Eq
iq
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      (3.27) 

 We may now repeat all the calculations of Sec. 1.4 for the case A  0, and readily get the 
following generalized expression for the probability current density: 
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- see EM Sec. 9.7. Note that this function includes A within a term that cannot be interpreted as either the purely 
kinetic energy (as the first term) or the purely potential energy (as the last term with the minus sign). 
9 The validity of this choice is clear from the fact that if the kinetic momentum was described by this differential 
operator, the Hamiltonian operator corresponding to the classical Hamiltonian function (19) would not include the 
magnetic field at all, and hence solutions of the corresponding Schrödinger equation could not satisfy the 
correspondence principle. 
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We see that the current density is gauge-invariant (as required for any observable) only if the 
wavefunction’s phase   changes as 

        


q
 .     (3.29) 

This may be a point of concern: since the quantum interference is described by the spatial dependence of 
phase , can the observed interference pattern depend on the gauge function choice (which would not 
make sense)? Fortunately, this is not true, because the spatial phase difference between two interfering 
paths, participating in Eq. (11), is gauge-transformed as  

          .121212  


q
     (3.30) 

But  has to be a single-valued function of coordinates, hence in the limit when points 1 and 2 coincide, 
1  = 2, so that   (and hence the interference pattern) is gauge-invariant.  

 However, the difference   may be affected by the magnetic field, even if it is localized outside 
the channels in which the particle propagates. Indeed, in this case the field cannot not affect particle’s 
velocity and current density j:   

                  00 )()(   BB rjrj ,     (3.31) 

so that the last form of Eq. (28) yields 

           Arr


q
  00 )()( BB   .    (3.32) 

Integrating this equation along contour C (Fig. 2), for the phase difference between points 1 and 2 we 
get  

       
C

d
q

rA


012012 BB  ,     (3.33) 

where the integral should be taken along the same virtually closed contour C as before (in Fig. 2, from 
point 1, counterclockwise along the dashed line to point 2). But from the classical electrodynamics we 
know10 that as points 1 and 2 are overlapped, i.e. contour C becomes closed, the last integral is just the 
magnetic flux   Bnd

2r through any smooth surface limited by contour C, so that Eq. (33) may be 
presented as 

          Φ012012


q
  BB  .     (3.34a) 

In terms of the interference pattern, this means a shift of interference fringes, proportional to the 
magnetic flux (Fig. 3). This phenomenon is usually called the “Aharonov-Bohm” (or just the AB) 
effect.11 For particles with a single elementary charge, q = e, this result is frequently presented as 

10 See, e.g., EM Sec. 5.3. 
11 I personally prefer the latter, less personable name, because the effect had been actually predicted by W. 
Ehrenberg and R. Siday in 1949, before it was rediscovered by Y Aharonov and D. Bohm in 1959. To be fair to 
Aharonov and Bohm, it was their work that triggered a wave of interest to the phenomenon, resulting in its first 

AB 
effect 
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   BB ,     (3.34b) 

where the fundamental constant 0’  2/e = h/e  4.1410-15 Wb has the meaning of flux necessary to 
change 12 by 2, i.e. shift the interference pattern (11) by one period, and is called the normal magnetic 
flux quantum, because of the reasons we will soon discuss. 

   

 

 

 

 

 

 

 

 

 

 The AB effect may be “almost explained” classically, in terms of Faraday’s electromagnetic 
induction. Indeed, a change  of magnetic flux in time causes a vortex-like electric field E around it. 
That field is not restricted to the magnetic field’s location, i.e. may reach particle’s trajectories. The 
field’s magnitude (or rather of its integral along contour C) may be readily calculated by integration of 
the first of Eqs. (21):  

               
dt

d
dV

C

Φ
ΔΔ   rE ,     (3.35) 

I hope that in this expression the reader readily recognizes the integral (“undergraduate”) form of 
Faraday’s induction law. Now let us assume that the variable separation described in Sec. 1.5 may be 
applied to the end points 1 and 2 of particle’s alternative trajectories as two independent systems,12 and 
that the magnetic flux’ change by certain amount  does not change the spatial parts j of 
wavefunctions of these systems. Then change (35) leads to the change of potential energy difference U 
= qV between the two points, and repeating the arguments that were used in Sec. 2.3 at the discussion 
of the Josephson effect, we may rewrite Eq. (2.53) as 

dt

dq
V

qU

dt

d 






12

.    (3.36)  

Integrating this relation over the time of magnetic field’s change, we get  

experimental observation by R. Chambers in 1960 and several other groups soon after that. Later, the experiments 
were improved, using ferromagnetic cores and/or superconducting shielding to provide better separation between 
the electron trajectories and the applied magnetic field,– see in the work whose results are shown in Fig. 3. 
12 This assumption may seem a bit of a stretch, but the resulting relation (37) may be indeed proven for a rather 
realistic model, though that would take more time and space that I can afford. 

Fig. 3.3. Typical results of a two-paths interference experiment by A. Tonomura et al., Phys. Rev. 
Lett. 56,  792 (1986), showing the AB effect for electrons well shielded from the applied magnetic 
field. In this particular experimental geometry, the AB effect produces a relative shift of the 
interference patterns inside and outside the dark ring. (a)  = 0’/2, (b)  = 0’. © 1986 APS. 

(a)       (b) 
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q
12 ,     (3.37)  

- superficially, the same result as given by Eq. (34).  

 However, this interpretation of the AB effect is limited. Indeed, it requires the particle to be in 
the system (on the way from the source to the detector) during the flux change, i.e. when the induced  
electric field E may affect its dynamics. On the contrary, Eq. (34) predicts that the interference pattern 
would shift even if the field change has been made when the there is no particle in the system, and hence 
field E could not be felt by it. Experiment confirms the latter conclusion. Hence, there is something in 
the space where a particle propagates (i.e., outside of the magnetic field region), which transfers 
information about even the static magnetic field to the particle. The standard interpretation of this 
surprising fact is as follows: the vector-potential A is not just a convenient mathematical tool, but a 
physical reality (just as its electric counterpart ), despite the large freedom of choice we have in 
prescribing specific spatial and temporal dependences of these potentials without affecting any 
observable – see Eqs. (23)-(24).  

 Let me briefly discuss the very interesting form the AB effect takes in superconductivity. In this 
case, our results require two changes. The first one is simple: since superconductivity may be interpreted 
as the Bose-Einstein condensate of Cooper pairs with electric charge q = 2e, 0’ has to be replaced by 
the so-called superconducting flux quantum13 

          .cmGs1007.2Wb1007.2Φ 2 7 15
0  

e


    (3.38) 

Second, since the pairs are Bose particles and are all condensed in the same quantum state, 
described by the same wavefunction, the total electric current density, proportional to the probability 
current density j, may be extremely large – in real superconducting materials, up to ~1012 A/m2. In these 
conditions, one cannot neglect the contribution of that current into the magnetic field and hence its flux 
, which (according to the Lenz rule of the Faraday induction law) tries to compensate changes in 
external flux. In order to see possible results of this contribution, let us consider a closed 
superconducting loop (Fig. 4).   

 

 

 

 

 

 

 

 

 Due to the Meissner effect (which is just another version of the flux self-compensation), current 
and magnetic field penetrate inside the superconductor by only a small distance (called the London 

13 One more bad, though common, term – a wire can (super)conduct, but a quantum hardly can! 

Fig. 3.4. Flux quantization in a superconducting 
loop. 
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penetration depth) L ~ 10-7 m.14 If the loop is made of a superconducting wire that is considerably 
thicker than L, we can draw a contour deep inside the wire, at that the current density is negligible. 
According to Eq. (28), everywhere at the contour,  

      0 A


q .     (3.39) 

Integrating this equation along the contour as before (from point 1 to the virtually coinciding point 2), 
we need to have the phase difference 12 = 2n, because the wavefunction    exp{i} in the initial 
and final points 1 and 2 should be “essentially” the same, i.e. produce the same observables. As a result, 
we get 

            .
2

Φ 0  nn
e

n
q

d
C

 
rA     (3.40) 

This is the famous flux quantization effect,15 which justifies the term “magnetic flux quantum” for the 
constant 0 given by Eq. (38).  

Here I have to mention in passing very interesting effects of “partial flux quantization”, that arise 
when a superconductor loop is closed by a  Josephson junction, forming the so-called Superconductor 
QUantum Interference Device - “SQUID”.  Such devices are used, in particular, for supersensitive  
magnetometry and ultrafast, low-power computing.16  

  

3.2. Landau levels and quantum Hall effect 

In the last section, we have used the Schrödinger equation (27) for analysis of static magnetic 
field effects in “almost-1D”, circular geometries shown in Figs. 1, 2, and 4. However, this equation 
describes very interesting effects in higher dimensions as well, especially in the 2D case. Let us consider 
a uniform 2D quantum well (say, parallel to the [x, y] plane), with strong confinement in the 
perpendicular direction z. According to the discussion in Sec. 1.6, energy-relaxed particles will always 
reside in the lowest energy subband, with constant quantization energy (Ez)1. Adding this shift to well’s 
flat floor U(x ,y) = const, and taking the resulting constant energy as the reference, for the 2D motion of 
the particle in the well, we reduce Eq. (27) to the similar equation, but with the Laplace operator acting 
only in directions x and y: 

          E
q
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.    (3.41) 

Let us find its solutions for the simplest case when the applied static magnetic field is uniform 
and perpendicular to the plane: 

            znBB .      (3.42) 

14 For more detail, see EM Sec. 6.3. 
15 It was predicted in 1949 by F. London and experimentally discovered (independently and virtually 
simultaneously) in 1961 by two experimental groups: B. Deaver and W. Fairbank, and R. Doll and M. Näbauer. 
16 A brief review of these effects, and recommendations for further reading may be found in EM Sec. 
6.4.  

Flux  
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According to the second of Eqs. (21), this imposes the following restriction on the choice of vector-
potential: 

      
y

A

x

A
xy








B ,     (3.43) 

but the gauge transformations still give us a lot of freedom in its choice. The “natural” axially-
symmetric form, A = nB/2, where   = (x2 + y2)1/2 is the distance from some z-axis, leads to a 
cumbersome math. In 1930, L. Landau realized that the energy spectrum of Eq. (41) may be obtained by 
making a very simple choice 

          ,,0 0xxAA yx  B      (3.44) 

(with arbitrary x0), which evidently satisfies Eq. (43), though it ignores the physical equivalence of the x 
and y directions. Now, expanding the eigenfunction into the Fourier integral in direction y: 

                dkexXyx yyik
k  0)(),( ,    (3.45) 

we see that for each component of this integral, Eq. (41) yields a specific equation  
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Since the vectors inside the square brackets are mutually perpendicular, its square has no crossterms, so 
that Eq. (46) may be rewritten as 
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.  (3.47) 

But this 1D Schrödinger equation is identical to Eq. (2.268) for the 1D harmonic oscillator, but with the 
center at point x0’, and frequency 0 equal to 

         
m

q
c

B
 .      (3.48) 

In this expression, it is easy to recognize the classical cyclotron frequency of particle’s motion in the 
magnetic field. (It may be readily obtained using the 2nd Newton law for a circular  orbit of radius r, 

              BB qvF
r

v
m 

2

,     (3.49) 

and noting that the resulting ratio v/r = qB/m is just the radius-independent angular velocity c of 
particle’s rotation.) Hence, the energy spectrum for each Fourier component of integral (45) is the same: 

              





 

2

1
nE cn  ,     (3.50) 

and does not depend on either x0, or y0, or k. 

 This is an example of a highly degenerate system: for each eigenvalue En, there are many 
different eigenfunctions that differ by the positions {x0, y0} of their center on axis x, and  the rate k of 

Landau 
levels 

 
 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 3           Page 12 of 56 

their phase change along axis y. They may be used to assemble a large variety of linear combinations, 
including 2D wave packets whose centers move along classical circular orbits with some radius r 
determined by initial conditions. Note, however, that such radius cannot be smaller than the so-called 
Landau radius, 

       
2/1
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Bq
r


,     (3.51) 

which characterizes the minimum radius of the wave packet itself, and results from Eq. (2.271) after 
replacement (48). This radius is remarkably independent on particle’s mass, and may be interpreted in 
the following way: the scale BAmin of the applied magnetic field’s flux through the effective area Amin = 

2rL
2 of the smallest wave packet is just one normal flux quantum 0’ = 2/q. 

 A detailed analysis of such wave packets (for which we would not have time in this course) 
shows that magnetic field does not change the average density dN2/dE of different 2D states on the 
energy scale, but just “assembles” them on the Landau levels (see Fig. 5a), so that the number of states 
on each Landau area (per unit area) is 
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This expression may again be interpreted in terms of magnetic flux quanta: nL0’ = B, i.e. there is one 
particular state on each Landau level per each flux quantum.  

 

 

 

 

 

 

 

 

 The most famous application of the Landau levels concept is the explanation of the quantum 
Hall effect17. Generally, the Hall effect18 is observed in the geometry sketched in Fig. 6, where electric 
current I is passed through a thin rectangular conducting sample (frequently called the Hall bar) placed 
into a magnetic field B perpendicular to the sample plane. The classical analysis of the effect is based on 
the notion of the Lorentz force (14). This force the deviates charge carriers (say, electrons) from their 
straight motion from one external electrode to another, bending them to the isolated edges of the bar (in 
Fig. 6, parallel to axis x). Here the carriers accumulate, generating a gradually increasing electric field E, 
until its force (16) exactly balances the Lorentz force (14): 

17 It was first observed in 1980 by K. von Klitzing and coworkers. 
18 Discovered in 1879 by E. Hall.  

Fig. 3.5. (a) “Condensation” of 
2D states on Landau levels, and 
(b) filling the levels by external 
electrons at the quantum Hall 
effect. 
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        BE xy qvq  ,      (3.53) 

where vx is the drift velocity of the electrons along the bar (Fig. 6), providing the sustained balance 
condition Ey/vx = Bz  at each point of the 2D sample. 

 

 

 

 

 

  

 With n2 carriers per unit area, in a sample of width W, this condition yields the following 
classical expression for the so-called Hall resistance RH: 
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This formula is broadly used in practice for the measurement of the carrier density n2, and (in 
semiconductors) the carrier type – negative electrons or positive holes.  

However, in experiments with high-quality (low-defect) 2D quantum wells at very low, sub-
kelvin temperatures19 and high magnetic fields, the linear growth of RH with B, described by Eq. (54), is 
interrupted by virtually horizontal plateaus (Fig. 7) with constant values 

          ,
1

KH R
i

R        (3.55) 

where i (only in this context, following tradition!) is an integer, and value 

     RK  25.812807557 k      (3.56) 

is reproduced with extremely high accuracy (~10-9) from experiment to experiment and from sample to 
sample. Such stability is a very rare exception in solid state physics were most results are noticeably 
dependent on the particular material and particular sample under study. 

Let us apply the Landau level picture. The 2D sample is typically in a weak contact with 3D 
electrodes whose conductivity electrons form a Fermi sea with certain Fermi energy EF, so that at low 
temperatures all states with E < EF are filled with electrons – see Fig. 5b.  As B is increased, spacing 

c between the Landau levels increases, so that fewer and fewer of these levels are below EF and are 
filled, and within broad ranges of field variation, the number i of filled levels is constant. (In Fig. 5b, i = 
2.) So, plugging  n2 = inL and q = e into Eq. (54), we get 
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R

L
H 

B
     (3.57) 

19 Recently, the quantum Hall effect was observed at room temperature in the graphene (a virtually perfect 2D 
sheet of carbon atoms, see Sec. 4 below) – see K. Novoselov et al., Science 315, 1379 (2007). 

Fig. 3.6. Hall bar geometry. Darker 
rectangles show external (3D) electrodes. 
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i.e. exactly the experimental result (55), with 

                   .
2

4
22 ee

h
RK


      (3.58) 

This constant, exactly 4 times the quantum unit of resistance RQ given by Eq. (2.259), is in an excellent 
agreement with experimental value (56), and is sometimes called the Klitzing constant. 

 

 

 

 

 

 

 

 

 

 

 However, this oversimplified explanation of the quantum Hall effect does not take into account 
several important factors, including: 

(i) the role of nonuniformity of the quantum well bottom potential U(x, y), and of the localized 
states this nonuniformity produces, and the surprisingly small effect of these factors on the extraordinary 
accuracy of Eq. (55);20 and 

(ii) the mutual Coulomb interaction of the electrons, in high-quality samples leading to the 
formation of RH plateaus with not only integer, but also fractional values of i (1/3, 2/5, 3/7, etc.).21 

Unfortunately, a thorough discussion of these interesting features is well beyond the framework 
of this course.22 

 

3.3. Scattering and diffraction 

The second class of quantum effects that become more rich in multi-dimensional space is 
typically referred to as either diffraction or scattering - depending on the context. (Diffraction is 
essentially the interference, but of waves emitted by several many coherent sources.) Just as in the two –

20 The explanation of this paradox may be obtained in terms of the so-called quantum edge channels – the quasi-
1D regions of width (51), along the lines were the Landau levels cross the Fermi surface. Particle motion  along 
these channels, which is responsible for electron transfer, is effectively one-dimensional and thus cannot be 
affected by modest uniformities of the potential distribution U(x, y). 
21 This fractional quantum Hall effect was discovered in 1982 by D. Tsui, H. Stormer, and A. Gossard. In 
contrast, the effect described by Eq. (55) with integer i (Fig. 7) is now called the integer quantum Hall effect.  
22 For a comprehensive discussion of these effects I can recommend, e.g., either the monograph by D. Yoshioka, 
The Quantum Hall Effect, Springer, 1998, or the review by D. Yennie, Rev. Mod. Phys. 59, 781 (1987). 

Fig. 3.7. Typical record of the quantum 
Hall effect. The lower trace (with sharp 
peaks) shows the longitudinal component, 
Vx/Ix, of the resistance tensor. (Adapted 
from www.prequark.org/Prequark.htm.) 
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slits in the Young-type experiment (Fig. 1), these sources are most frequently the elementary re-emitters 
of some initial wave from a single source. More generally, such re-emitting is called scattering; this term 
is also applied to particles – even if their quantum properties may be ignored.23 

Figure 8 shows the general scattering situation. Most commonly, the detector of scattered 
particles (in the quantum case, read de Broglie waves) is located at a large distance r >> a from the 
scatterer.24 In this case, the main observable independent of r is the flux (number of particles per unit 
time) of particles scattered in a certain direction, i.e. their flux per unit solid angle. Since such flux is 
proportional to the incident flux of particles per unit area, the ability of the scatterer to re-emit in a 
particular direction may be characterized by the ratio of these two fluxes. This ratio has the 
dimensionality of area per unit angle, and is called the differential cross-section of the scatterer: 

          
areaunit per  particlesincident  offlux 

angle solidunit per  particles scatterd offlux 


d

d
.   (3.58) 

 

 

 

 

 

 

 

 

 Such name and notation stem from the fact that the integral of d/d over all scattering angles,  

             
areaunit per per flux incident 

particles scattered offlux  total
Ω

Ω
  d

d

d ,   (3.59) 

(also with the dimensionality of area), has a simple interpretation as the full cross-section of scattering. 
For the simplest case when a macroscopic solid object scatters all classical particles hitting its surface, 
but does not affect the particles flying by it,   is just the geometrical cross-section of the object, as 
visible from the direction of incoming particles. 

 In classical mechanics,25 we first calculate the particle scattering angle as a function of the 
impact parameter b, and then average the result over all values of b, considered random. In this sense 
the calculations in wave mechanics are simpler, because a parallel beam of incident particles of fixed 
energy E may be fairly presented by a plane de Broglie wave 

                  
rk  0

00

i
ea ,     (3.60) 

23 See, e.g., CM Sec. 3.7. 
24 In optics, this limit is called the Fraunhofer diffraction – see, e.g., EM Secs. (8.6) and (8.8). 
25 For example, in the simplest task of derivation of the so-called Rutherford formula for scattering of a charged 
non-relativistic particle by a point fixed charge, due to their Coulomb interaction – see, e.g., CM Sec. 3.7. 

Fig. 3.8. 3D scattering (schematically). 
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with the free-space wave number k0 = (2mE)1/2/ and constant probability current density (1.49): 

        0

2

00 kj
m
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 .     (3.61)  

This current density is exactly the flux of incident particles per unit area that is used in the denominator 
of definition (58), so the “only” remaining thing to do is to calculate the numerator of that fraction.  

 To do this, let us write the Schrödinger equation for the scattering problem (now in the whole 
space including the scatterer) in the form 

               )(ˆ
0 rUHE  ,     (3.62) 

where  
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222
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 .   (3.63) 

the potential energy U(r) describes the effect of scatterer. Looking for the solution of Eq. (62) in the 
natural form 

s  0 ,      (3.64) 

where 0 is the incident wave (60), and s has the sense of the scattered wave, and taking into account 
that former wave satisfies the free-space equation 

       000
ˆ  EH  ,     (3.65) 

we may reduce Eq. (62) to 

           ss UHE   00
ˆ r .    (3.66) 

 The most straightforward (and common) simplification of this problem is possible if the 
scattering potential U(r) is in some sense weak. (We will derive the exact condition of this smallness 
below.)  Then since at U(r) = 0 the scattering wave s disappears, we may expect that at small but 
nonvanishing U(r), the main part of s is proportional to its scale U0. Then all terms in Eq. (66) are 
proportional to U0, besides the product Us, which is proportional to U0

2. Hence, in the first 
approximation in U0, that term may be ignored, and Eq. (66) reduces to the famous equation of the Born 
approximation:26  

               00
ˆ  rUHE s  .     (3.67a) 

This simplification changes the situation drastically, because the linear superposition principle 
allows finding an explicit solution of this equation (in the form of an integral) for an arbitrary function 
U(r). Indeed, after rewriting Eq. (67a) as 

26 Named after M. Born, who was the first one to apply this approximation in quantum mechanics. However,  the 
basic idea of this approach had been developed much earlier (in 1881) by Lord Rayleigh in the context of  
electromagnetic wave scattering – see, e.g., EM Sec. 8.3. Note that the contents of that section repeats much of 
our current discussion – regrettably but unavoidably so, because the Born approximation is a centerpiece of 
scattering theory for both electromagnetic and de Broglie waves. 

Born 
approximation 
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 ,    (3.67b) 

we may notice that s is just a response of a linear system to a certain “excitation” (represented by the 
right-hand part) that is fixed, i.e. does not depend on the solution. Hence we can present  s  as a sum of 
responses to elementary excitations from elementary volumes d3r’:  

          r'd'G''U
m

s
3

02
),()()(

2
)( rrrrr  


.    (3.68) 

Here G(r, r’) is the spatial Green’s function, defined as such an elementary response of the free-space 
Schrödinger equation to a point excitation, i.e. the solution of the following equation27 

            )(22 'Gk rr   .     (3.69) 

But we already know the physically-relevant spherically-symmetric solution of this equation – see Eq. 
(7) and its discussion: 

               ikRe
R

f
'G ),( rr ,     (3.70) 

so that we need just to calculate the coefficient f+ for Eq. (67). This can be done in several ways, for 
example by noticing that at r << k-1, the second term in Eq. (70) is negligible, and it is reduced to the 
well-known Poisson equation with delta-functional right-hand part, which describes, for example, the 
electrostatic potential generated by a point electric charge. Either recalling the Coulomb law, or 
applying the Gauss theorem,28 we readily get the asymptote 
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4

1
 kr

R
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     (3.71) 

which is compatible with Eq. (70) only if f+ = -1/4, i.e. if 
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Plugging this result into Eq. (68), we get the final solution of Eq. (67): 
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.    (3.73) 

Note that if function U(r) is smooth, the singularity in the denominator is integrable (i.e. not dangerous); 
indeed, the contribution of a sphere of radius R  0, with the center in point r’ = 0, scales as  

    .0244
00
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   (3.74) 

27 Please notice both the similarity and difference between this Green’s function and the propagator discussed in 
Sec. 2.1. In both cases, we use the linear superposition principle to solve wave equations, but while Eq. (68) gives 
the solution of the inhomogeneous equation (67), Eq. (2.44) does that for a homogeneous Schrödinger equation in 
which the wave sources are presented by initial conditions rather than by equation’s right-hand part. 
28 See, e.g., EM Sec. 1.2. 
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 Actually, Eq. (73) gives us more than we wanted: it evaluates the scattered wave at any point, 
including those within of the scattering object, while our goal was to find the wave far from the scatterer 
– please revisit Fig. 8 if you need. However, before going to that limit, we can use the general formula 
to find the quantitative criterion of the Born approximation’s validity. Indeed, let us estimate the 
magnitude of the right hand part of this equation, for a scatterer of linear size ~a, and the potential 
magnitude scale U0, in two limits: 

 (i) If ka << 1, then inside the scatterer (i.e., at distances r’ ~ a), both 0~ exp{ikr} and the 
second exponent under the integral change slowly, so that a crude estimate of the solution is 

            2
0022

~ aU
m

s 





.     (3.75) 

 (ii) In the opposite limit ka >>1, the integration along one of the dimensions (that of the wave 
propagation) is cut out on distances of the order of the de Broglie wavelength k-1, so that the integral is 
correspondingly smaller:  

           
ka

a
U

m 2

002s 2
~ 





.     (3.76) 

Since the reduction of Eq. (66) to Eq. (67) requires s<<0 everywhere within the scatterer, we may 
now formulate the conditions of this requirement as 

          ]1,max[
2

2

0 ka
ma

U


 .     (3.77) 

In the first factor of the right-hand part, we may readily recognize the scale of the kinetic (quantum-
confinement) energy Ea of the particle inside a quantum well of size ~ a, so that the Born approximation 
is valid essentially if the potential energy of particle’s interaction with the scatterer is smaller than Ea. 
Note, however, that estimates (75) and (76) are not valid in special situations when the effects of 
scattering accumulate in some direction. This is frequently the case for small scattering angles in 
extended objects (when ka >> 1 but ka  < 1), and especially in 1D (or quasi-1D) scatterers oriented 
along the incident particle beam. 

 Now let us proceed to large distances r >> r’ ~ a, and simplify Eq. (73) using an approximation 
similar to the dipole expansion in electrodynamics.29 In denominator’s R, we can merely ignore r’ in 
comparison with r, but the exponent requires more care, because even if r’ ~a << r, the product kr’ ~ ka 
may still be larger than 1. In the first approximation in r’, we can take (Fig. 9a): 

 

 

 

 

 

 

29 See, e.g., EM Sec. 8.2. 

Fig. 3.9. (a) Dipole expansion in the Born approximation and (b) definitions of vector q and angles   and . 
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           'r'R r rnrr  ,      (3.78) 

and since the directions of vectors k and r coincide, i.e. k = knr, 

    'iikrikR eee'krkR rkrk    and, ,    (3.79) 

With this replacement, and the incident wave in form (60), the Born approximation yields 
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This relation may be presented in a general form30  
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f
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 ,     (3.81) 

where f(k, k0)  is called the scattering function.31 Its physical sense becomes clear from the calculation 
of the corresponding probability current density js. For that, generally we need to use Eq. (1.47) with the 
gradient operator having all spherical-coordinate components.32 However, at kr >> 1 the main 
contribution to s , proportional to k >> 1/r, is provided by the term exp{ikr} which changes fast in 
the common direction of vectors r and k, so that 

      1at  , 
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so that Eq. (1.47) yields 
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Since this vector is parallel to k and hence to r, the flux in the numerator of Eq. (58), i.e. the probability 
current per unit solid angle, is just r2js. Hence, the differential cross-section is simply 
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,     (3.84) 

and the total cross-section is 

             Ω),(
2

0 df kk ,     (3.85) 

so that the scattering function f(k, k0) gives us everything we need (and in fact more, because the 
function also contains information about the phase of the scattered wave). 

30 It is easy to prove that this form is an asymptotic form of any solution s of the scattering problem (even that 
beyond the Born approximation) at sufficiently large distances r >> a, k-1. 
31 Note that function f  has the dimension of length, and does not account for the incident wave. This is why 
sometimes a dimensionless function, S = 1 + 2ikf,  is used instead. This function S is called the scattering matrix, 
because it may be considered as a natural generalization of the 1D matrix S, defined by Eq. (2.133), to higher 
dimensionality. 
32 See, e.g., MA Eq. (10.8). 
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 According to Eq. (80), in the Born approximation the scattering function may be presented as the 
Born integral 

rdieU
m

f 3
20 )(

2
),(   rqrkk


,    (3.86) 

where for the notation simplicity I have replaced r’ with r, and also introduced the scattering vector 

          0kkq  ,      (3.87) 

with length q = 2k sin(/2), where   is the scattering angle between vectors k and k0 – see Fig. 9b. For 
the differential cross-section, Eq. (86) yields  
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and the total cross-section may be now readily calculated from the first of Eqs. (59).33  

This is the main result of this section; it may be further simplified for spherically-symmetric 
scatterers, with 

      ).()( rUU r       (3.89) 

Here, it is convenient to present the exponent in the Born integral as exp{-iqrcos}, where  is the angle 
between vectors k (i.e. the direction nr toward the detector) and q (rather than the incident wave vector 
k0!) – see Fig. 9b. Now, for fixed q, we can take this vector’s direction as the polar axis of a spherical 
coordinate system, and reduce Eq. (86) to a 1D integral: 
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 As a simple example, let us use the Born approximation to analyze scattering on the following 
spherically-symmetric potential: 
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In this particular case, it is better to avoid the temptation to exploit the spherical symmetry by using Eq. 
(90), and instead use the generic Eq. (88), because it falls apart into a product of three similar Cartesian 
factors: 
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with  

33 Note that according to Eq. (88), in the Born approximation the scattering intensity does not depend on the sign 
of potential U, and also that scattering in a certain direction is completely determined by a specific Fourier 
harmonic of function U(r), namely by the harmonic with the wave vector equal to the scattering vector q. 
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and similar integrals for Iy and Iz. From Chapter 2, we already know that Gaussian integrals like Ix may 
be readily worked out by complementing the exponent to the full square, in our current case giving 
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so that, finally,  
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Now, the total cross-section   is an integral of d/d over all directions of vector k. Since in 
our case the scattering intensity does not depend on the azimuthal angle , the integration is reduced to 
that over the scattering angle   (Fig. 9b): 
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 Let us analyze these formulas. In the low-energy limit, ka << 1 (and hence qa << 1 for any 
scattering angle), the scattered wave is virtually isotropic: d/d   const – a very typical feature of 
scattering by small objects, in any approximation. Notice that in this limit, the Born expression for ,  
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is only valid if  is much smaller than the scale a2 of the physical cross-section of the scatterer.  

 In the opposite, high-energy limit ka >>1, the scattering is dominated by small angles    q/k ~ 
1/ka ~ /a: 
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This is, again, very typical for diffraction. Notice, however, that due to the smooth character of the 
Gaussian potential (91), the diffraction pattern exhibits no oscillations; such oscillations of d/d as 
function of angle naturally appear for potentials with sharp borders – see, e.g., Problems 2 and 3. 

 The Born approximation, while being very simple and used more often than any other scattering 
theory, is not without substantial shortcomings, as is clear from the following example. It is not too 
difficult to prove the following general optical theorem, valid for an arbitrary scatterer: 
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However, Eq. (86) shows that in the Born approximation, function f is purely real at q = 0 (i.e. k = k0), 
and hence cannot satisfy the optical theorem. Even more evidently, it cannot describe such a simple 
effect as a dark shadow (  0) cast by an opaque object (say, with U0 >> E). 

 There are several ways to improve the Born approximation, while still holding the general idea 
of approximate treatment of U. 

 (i) Instead of the main assumption s  U0, we can use a complete perturbation  series:  

      ...21   s      (3.100) 

with n  U0
n, and find successive approximations n one by one. In the 1st approximation we of course 

return to the Born formula, but already the 2nd approximation yields 
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where 1 is the full cross-section calculated in the 1st approximation, so that the optical theorem (99) is 
“almost” satisfied. 34 

 (ii) As was mentioned above, the Born approximation does not work very well for small-angle 
scattering by extended objects. This deficiency may be corrected by the so-called eikonal approximation 
(from Greek word , meaning “icon”) that replaces the plane wave exponent exp{ik0x} 
representation of the incident wave by a WKB-like exponent, though still in the first nonvanishing 
approximation in U  0: 

    




























 










 
xxx

dx'x'U
k

m
xkidx'

x'UEm
idx'x'kixik

00
20

0

2/1

0

0 )(exp
)(2

exp)(expexp


.(3.102) 

This approximation’s results satisfy the optical theorem (99) already in the 1st approximation in U.   

 

3.4. Energy bands in higher dimensions 

 In Sec. 2.5, we have discussed the 1D band theory for potential profiles U(x) that obey the 
periodicity condition (2.192). For what follows, let us notice that that condition may be rewritten as 

          )()( xUXxU  ,     (3.103) 

34 The construction of such series may be facilitated by the following observation. If we retain s in the right-
hand part of Eq. (66), we may write a relation formally similar to Eq. (68) for the full wavefunction   = 0 + s: 
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. 

This is one of forms of the Lipmann-Schwinger equation that is exactly equivalent to the differential Schrödinger 
equation (66) but is more convenient for some applications, in particular for the calculation of higher 
approximations n. Unfortunately, I will have not time to discuss this approach in detail and have to refer the 
reader, for example, to either Chapter 9 of the textbook by L. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, 
1968, or (for even more details) to monograph by J. Taylor, Scattering Theory, Dover, 2006. 
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where X = a, with   being an arbitrary integer. One can say that the set of points X forms a periodic 1D 
lattice in the direct (x-) space. We have also seen that each Bloch state (i.e., each eigenstate of the 
Schrödinger equation for such periodic potential) is characterized by the quasi-momentum q and its 
energy does not change if q is changed by a multiple of 2/a. Hence if we form, in the reciprocal (k-) 
space, a 1D lattice of points Q = lb, with b = 2/a and integer l, any pair of points from these two 
mutually reciprocal lattices satisfies the following rule: 

      1
2

expexp 2 






 liea

a
iliQX  .    (3.104) 

 In this form, the results of Sec. 2.5 may be readily extended to d-dimensional periodic potentials 
whose translational symmetry obeys the following generalization of Eq. (103): 

                         )()( rRr UU  ,     (3.105) 

where points R, which may be numbered by d integers j, form the so-called Bravais lattice35 of points 
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with d primitive vectors aj. The simplest example of a 3D Bravais lattice are given by the simple cubic 
lattice (Fig. 10a), which may be described by the system of mutually perpendicular primitive vectors aj 
of equal length. However, not in any lattice these vectors are perpendicular; for example Figs. 10b and 
10c show possible sets of the primitive vectors describing the face-centered cubic lattice (fcc) and body-
centered cubic lattice (bcc). In 3D, the science of crystallography, based on the group theory, 
distinguishes, by their symmetry properties, 14 Bravais lattices grouped into 7 different lattice 
systems.36 

 

 

 

 

 

 

 

 

 

 Note, however, not all highly symmetric sets of points form Bravais lattices. As probably the 
most striking example, nodes of the very simple 2D honeycomb lattice (Fig. 11a) cannot be described by 

35 Named after A. Bravais, the crystallographer who introduced this notion in 1850. 
36 The strongest motivation for the band theory is provided by properties of solid crystals. Thus it is not surprising 
that perhaps the most clear, well illustrated introduction to the Bravais lattices may be found in Chapters 4 and 7 
of the famous textbook by N. Ashcroft and N. Mermin, Solid State Physics, Saunders College, 1976. 
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Fig. 3.10. The simplest (and most common) 3D Bravais lattices: (a) simple cubic, (b) face-centered cubic 
(fcc), and (c) body-centered cubic (bcc), and possible choices of their primitive vector sets (blue arrows). 
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a Bravais lattice - while the 2D hexagonal lattice, shown in Fig. 11b, can. The most prominent 3D case 
of such a lattice is the diamond structure (Fig. 11c), which describes, in particular, atoms of world’s 
most important crystal – silicon.37 In cases like these, the band theory is much facilitated by the fact that 
the Bravais lattices using some point assemblies (called primitive unit cells) may describe these point 
systems. For example, Fig. 11a shows the possible choice of primitive vectors for the honeycomb 
structure,38 with the primitive unit cell formed by any two adjacent points of the original lattice (say, 
within the dashed ellipses in Fig. 11a). Similarly, the diamond lattice may be described as the fcc 
Bravais lattice with two-point primitive unit cell.39 

Now we are ready for the following generalization of the 1D Bloch theorem, given by Eqs. 
(2.193) and (2.210), to higher dimensions. Any eigenfunction of the Schrödinger equation describing 
particle’s motion in the periodic potential (105) may be presented either as 

          RqrRr  ie)()(  ,     (3.107) 
or as 

      ),()(with  ,)()( rRrrr rq uueu i       (3.108) 

where the quasi-momentum q is again a constant of motion, but now is a vector. 

 

 

 

 

 

 

 

 

 

   

 The key notion of the band theory is the reciprocal lattice in the wavevector space, formed as 
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37 It may be best understood as the sum of two fcc lattices of side a, mutually shifted by vector {1, 1, 1}a/4, so 
that the distances between each point of the combined lattice and its 4 nearest neighbors (see the thick gray lines 
in Fig. 11c) are all equal. 
38 This structure is presently very popular due to the recent discovery of graphene – isolated monolayer sheets of 
carbon atoms arranged in a honeycomb lattice with the interatomic distance of 0.142 nm. 
39 A harder case is presented by quasicrystals (whose idea may be traced down to medieval Islamic tilings, but 
was discovered in natural crystals, by D. Shechtman et al., only in 1984), which obey high (say, 5-fold) rotational 
symmetry, but cannot be described by a Bravais lattice with any finite primitive unit cell. For a popular review of 
quasicrystals see, for example,  P. Stephens and A. Goldman, Sci. Amer. 264, #4, 24 (1991). 

Two forms 
of the 3D 
Bloch 
theorem 
 

Reciprocal 
lattice in 
q-space 

Fig. 3.11. Some important periodic structures that require two-point primitive cells for their Bravais lattice 
presentation: (a) 2D honeycomb lattice and their primitive vectors and (c) 3D diamond lattice. For a contrast, 
panel (b) shows the 2D hexagonal structure which forms a Bravais lattice with a single-point primitive cell.  
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with integer lj, and vectors bj selected in such way that the following generalization of Eq. (104) is valid 
for any pair of points of the direct and reciprocal lattices: 

          1RQie .      (3.110) 

The importance of lattice Q is immediately clear from the first formulation of the Bloch theorem, given 
by Eq. (107): if we add to q any vector Q of the reciprocal lattice, the wavefunction does not change. 
This means that all information about the system is contained in just one elementary cell of the 
reciprocal space q. Its most frequent choice,  called the 1st Brillouin zone, is the set of all points q that 
are closer to the origin than to any other point of lattice Q. 

It is easy to see that primitive vectors bj of the reciprocal 3D lattice40 may be constructed from 
those of the initial, direct lattice as  
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  .  (3.111) 

Indeed, from the “operand rotation rule” of the vector algebra41 it is evident that ajbj’ = 2jj’. Hence, 
the exponent in the left-hand part of Eq. (110) is reduced to 

             3322112exp  llliei  RQ .    (3.112) 

Since all lj and j are integers, the expression in the parentheses is also an integer, so the exponent 
indeed equals 1, thus satisfying the definition of the reciprocal lattice given by Eq. (110). 

 As the simplest example, let us return to the simple cubic lattice of period a (Fig. 10a), oriented 
in space so that   

             ,,, 321 zyx aaa nanana      (3.113) 

According to Eq. (111), its reciprocal lattice is (of course) also cubic: 

       )(
2

zzyyxx lll
a

nnnQ 


,    (3.114) 

so that the 1st Brillouin zone is a cube with side b = 2/a. Almost similarly simple calculations show that 
the reciprocal lattice of fcc is bcc, and vice versa. Figure 12 shows the resulting 1st Brillouin zone of the 
fcc lattice. 

The notion of the reciprocal lattice42 makes the multi-dimensional band theory not much more 
complex than that in 1D, especially for numerical calculations, at least for the single-point Bravais 
lattices. Indeed, repeating all the steps that have led to Eq. (2.218), but now with a d-dimensional 
Fourier expansion of functions U(r) and ul(r), we readily get its generalization:  

       ll
ll

lll uEEuU
'

'' )( 


 ,     (3.115)  

40 For the 2D case (j = 1, 2), one may use, for example, the first two formulas of Eq. (111) with a3 = a1a2.  
41 See, e.g., MA Eq. (7.6). 
42 This notion is also the main starting point of X-ray diffraction studies of crystals, because it allows rewriting 
the well-known Bragg condition for diffraction peaks in an extremely simple form of the momentum conservation 
law: k = k0 + Q, where k0 and k are the wave vectors of the, respectively, incident and diffracted photon.  
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where l is now a d-dimensional vector of integer indices lj. The summation in Eq. (115) should be 
carried over all (essential) components of this vector (i.e. over all relevant nodes of the reciprocal 
lattice), so writing a corresponding computer code requires a bit more care than in 1D; however, this is 
just a homogeneous system of linear equations, and numerous routines of finding its eigenvalues E are 
readily available from both public sources and commercial software packages.43 

 

 

 

 

 

 

  

 

 

 

What is indeed more complex than in 1D is the presentation (and hence the comprehension :-), of 
the calculation results and experimental data. Typically, the presentation is limited to plotting the Bloch 
state eigenenergy as a function of components of vector q along certain special directions the reciprocal 
space of quasi-momentum (see, e.g., the lines shown in Fig. 12), typically plotted on single panel. 
Figure 12 shows perhaps the most famous (and certainly the most practically important) of such plots, 
the band structure of silicon. The dashed horizontal lines mark the “indirect” gap of width  1.12 eV 
between the “valence” and “conduction” energy bands, which is the playground of virtually all silicon-
based electronics. 

 

 

 

 

 

 

 

 

 

 

 

43 See, e.g., MA Sec. 16 (iv).  

Fig. 3.12. 1st Brillouin zone of the fcc lattice, and the 
traditional notation of its main directions. Adapted from 
http://en.wikipedia.org/wiki/Band_structure.  

xq

yq

zq

Fig. 3.13. Band structure of silicon, along the special 
directions shown in Fig. 12. (Adapted from 
http://www.tf.uni-kiel.de/matwis/amat/semi_en/.) 
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In order to understand the reason of this band structure presentation complexity, let us see how 
we would start  to develop the weak-potential approximation for the simplest case of a 2D square lattice 
(which is a subset of the cubic lattice, with 3 = 0). Its 1st Brillouin zone is of course also a square, of 
area (2/a)2. Let us draw the lines of constant energy of a free particle (U = 0) in this zone. Repeating 
the arguments of Sec. 2.7 (see especially Fig. 2.28 and its discussion), we should conclude that Eq. 
(2.216) should now be generalized as follows,  
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with all possible integers lx and ly. Considering the result only within the 1st Brillouin zone, we see that 
as energy E grows, the lines of equal energy evolve as shown in Fig. 14. Just like in 1D, the weak-
potential effects are only important at the Brillouin zone boundaries, and may be crudely considered as 
the appearance of narrow energy gaps, but one can see that the band structure in q-space is complex 
enough even without these effects. 

  

 

 

 

 

 

 

 

 The tight-binding approximation is usually easier to follow. For example, for the same square 2D 
lattice, we may repeat the arguments that have led us to Eq. (2.203), to write 44 

        1,01,00,10,1
0,0

  aaaa
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i n ,    (3.117) 

where indices correspond to the deviations of integers x and y from an arbitrarily selected minimum of 
the potential energy - and hence wavefunction’s “hump” quasi-localized at this minimum. Now, looking 
for the stationary solution of these equations, that corresponds to the Bloch theorem (107), instead of 
Eq. (2.206) we get 

     .coscos2 aqaqEeeeeEEE yxnn
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   (3.118) 

Figure 15 shows this result, within the 1st Brillouin zone, in two forms: as the color-coded lines of equal 
energy and as a 3D plot (also enhanced by color). 

  

44 Actually, using the same values of n in both directions implies some sort of symmetry of the quasi-localized 
states. For example, s-states of axially-symmetric potentials (see the next section) always have such a symmetry. 

Fig. 3.14. Lines of constant energy 
E of a free particle, within the 1st 
Brillouin zone of a square Bravais 
lattice, for: (a) E/E1  0.95, (b) E/E1 
 1.05; and (c) E/E1  2.05, where 
E1  22/2ma2. 
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It is evident that the plots of this function along different lines on the q-plane, for example along 
one of axes (say, qx) and along a diagonal of the 1st Brillouin zone (say, qx = qy) give different curves, 
qualitatively similar to those of silicon (Fig. 13). The latter structure is complicated by the fact that the 
primitive cell of their Bravais lattices contains more than 2 atoms – see Fig. 11c and its discussion. In 
this case, even the tight-binding picture becomes more complex. Indeed, even if the atoms in the 
different positions of the primitive unit cell are similar (as they are, for example, in both graphene and 
silicon), and hence the potential well shape near those points and the corresponding local wavefunctions 
u(r) are similar as well, the Bloch theorem (which only pertains to Bravais lattices!) does not forbid 
them to have different complex amplitudes a(t) whose time evolution should be described by a specific 
differential equation. 

For example, in order to describe the honeycomb lattice shown in Fig. 11a, we have to prescribe 
different amplitudes to the “top” and “bottom” points of its primitive cell - say,  and , 
correspondingly. Since each of these points is surrounded (and hence weakly interacts) with 3 neighbors 
of the opposite type, instead of Eq. (117) we have to write two equations 
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where each summation is over 3 next-neighbor points. (I am using different summation indices just to 
emphasize that these directions are different for the “top” and “bottom” points of the primitive cell – see 
Fig. 11a.) Now using the Bloch theorem (107) in the form similar to Eq. (2.205), we get two coupled 
systems of linear algebraic equations: 
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where rj and r’j’ are the next-neighbor positions, as seen from the top and bottom points, respectively. 
Writing the condition of consistency of this system, we get two equal and opposite values for energy 
correction for each value of q: 
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Fig. 3.15. Allowed band 
energy  n = E – En for a square 
2D lattice, in the tight-binding 
approximation. 
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According to Eq. (120), these two energy bands correspond to the phase shifts (on the top of the regular 
Bloch shift qr) of either 0 or  between the adjacent quasi-localized wavefunctions u(r ). 

The most interesting corollary of such energy symmetry, augmented by the honeycomb lattice 
symmetry, is that for certain values qD of vector q (that turn out to be in each of 6 corners of the 
honeycomb-shaped 1st Brillouin zone), the double sum  vanishes, i.e. the two band surfaces E(q) 
touch each other. As a result, in vicinities of these Dirac points45 the dispersion relation is linear: 

DD

~  where,~ qqqqqq  nn vEE  ,    (3.122) 

with vn  n being a constant with the dimension of velocity (for graphene, close to 106 m/s). Such a 
linear dispersion relation ensures several interesting transport properties of graphene. For their 
discussion, I have to refer the reader to special literature.46 

 

3.5. Axially-symmetric systems 

 I cannot conclude this chapter (and hence our review of wave mechanics) without addressing the 
issue of eigenstates and eigenvalues at full confinement in multi-dimensional potentials U(r). For an 
arbitrary potential, the stationary Schrödinger equation does not have an analytical solution, but a 
substantial symmetry of function U(r) may make such solution possible. This pertains, in particular, to 
the axial symmetry in 2D problems and the spherical symmetry in 3D problems, which are typical for 
several important situations (or their reasonable models), especially in atomic and nuclear physics.  

In rare cases such symmetry may be exploited by the separation of variables in Cartesian 
coordinates. The most famous example is the d-dimensional harmonic oscillator, i.e. a particle moving 
inside the potential  
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Separating the variables exactly as we did for the rectangular quantum well (see Sec. 1.5), for each 
degree of freedom we get the Schrödinger equation (2.268) of a 1D oscillator, whose eigenfunctions are 
given by Eq. (2.278), and the energy spectrum is described by Eq. (2.114). As a result, the total energy 
spectrum may be indexed by a vector n = {n1, n2,…, nd} of d independent integers (quantum numbers): 
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45 This term is based on a (pretty loose) analogy with the Dirac theory of relativistic quantum mechanics, to be 
discussed in Chapter 9 below. Namely, in the vicinity of a Dirac point (122), Schrödinger equations (119), and 

hence the dispersion relation (122), may be obtained from the effective Hamiltonian qσ ~̂ˆˆ  nn vH  . (Since 

vector q~ is two-dimensional, this Hamiltonian employs only two of three Pauli matrices.) This expression 

reminds the first term of Dirac’s Hamiltonian (9.97), which is defined, however, in a different Hilbert space. 
46 See, e.g., a recent review by A. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009). Note that transport 
properties of graphene are determined by coupling of 2pz electron states of carbon atoms, whose wavefunctions 
are proportional to exp{i} rather than are axially-symmetric as implied by Eqs. (120). However, due to the 
lattice symmetry this fact does not affect the dispersion relation E(q). 
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all of them ranging from 0 to . Note that every energy level of this system, with the only exception of 
the ground state, 
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is degenerate: several different wavefunctions, each with its own different set of quantum numbers nj, 
but the same value of their sum, have the same energy.  

 However, the harmonic oscillator problem is an exception: for other central- and spherically-
symmetric problems the solution is made easier by using more appropriate coordinates. Let us start with 
the simplest axially-symmetric problem: the so-called planar rigid rotator (or “rotor”), i.e. a particle 
constrained (confined) to move along a plane, round circle of radius R (Fig. 15).47 

 

 

 

 

 

 

The planar rotator has just one degree of freedom, say the displacement arc l = R . So, its 
classical energy (and Hamiltonian function) is H = pl

2/2m,  pl  mv = m(dl/dt). This function is similar to 
that of a free 1D particle (with the replacement x  l), and hence rotator’s quantum properties may be 
described by a similar Hamiltonian operator: 
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and its eigenfunctions have a similar structure: 

         .iklCe       (3.127) 

The “only” new feature is that in the rotator, all observables should be 2R-periodic functions of l, and 
hence, as we have already discussed in the context of the magnetic flux quantization (see Fig. 4 and its 
discussion), as the particle makes one turn about the center, its wavefunction’s phase kl may only 
change by 2n, with an arbitrary integer n (from - to +),: 

        inelRl nn
 2)()2(  .     (3.128)  

With eigenfunctions (127), this immediately gives condition gives k 2R = 2n. Thus, wavenumber k 
can take only quantized values kn = n/R, so that the eigenfunctions should be indexed by n: 
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47 This is a reasonable model for the confinement of light atoms, notably hydrogen, in some organic compounds.  

Fig. 3.16. Planar rigid rotator. 
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and the energy spectrum is discrete: 
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So, while the free translation motion of a quantum particle is continuous, in the sense that its  
momentum has a continuous spectrum, its rotation is quantized – the most important fact, which has so 
many implications (including the existence of atoms, molecules, and hence us humans, and hence 
science including this  course :-). 

 This simple model allows an exact analysis of external magnetic field effects on a quantum-
confined motion of an electrically charged particle. Indeed, if this field is uniform and directed 
perpendicular to rotator’s plane, it does not violate the axial symmetry of the system. According to Eq. 
(26),  in this case we have to generalize Eq. (126) as 
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Here, in contrast to the gauge choice (44), which was so instrumental in the Landau level problem, it is 
now clearly beneficial to take the vector-potential in a manifestly axially-symmetric form A = A()n, 
where    {x, y} is the 2D radius-vector. Using the well-known expression for curl in cylindrical 
coordinates,48 we can readily check that the requirement A = Bnz, with B = const, is satisfied by the 
following function: 
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For the planar rotator, ρ = R = const, so that the stationary Schrödinger equation becomes  
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 A little bit surprisingly, this equation is still satisfied with the sine-wave eigenfunctions (127). 
Moreover, since the periodicity condition (128) is also unaffected by the applied magnetic field, we 
return to field-independent eigenfunctions (129). However, the field does affect the system’s energy: 
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where   R2B is the magnetic flux through the area limited by the particle’s trajectory, and 0’  

2/q is the “normal” magnetic flux quantum we have already met in the AB effect context – see Eq. 
(34) and its discussion. The field also changes the electric current of the particle in n-th state: 
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Normalizing wavefunction (129) to have Wn = 1, we get Cn 2 = 1/2R, so that Eq. (135) becomes 

48 See, e.g., MA Eq. (10.5). 

Planar rotator 
in magnetic 

field 

Planar rotator: 
eigenenergies 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 3           Page 32 of 56 

       .
2

with  ,
Φ

Φ
20

0
0 mR

q
I

'
nII n 











     (3.136) 

Functions En() and In () are shown in Fig. 17. Note that since 0’  1/q, for any sign of the 
particle’s charge, dIn/d <0. It is easy to check that this means that the current is diamagnetic,49 i.e. 
corresponds to the Lenz rule of the Faraday’s electromagnetic induction: the field-induced current flows 
in such direction that its own magnetic field tries to compensate the external magnetic flux applied to 
the loop.  

 

 

 

 

        

 

 

 

 

  

 

 

 This result may be interpreted as a different implementation of the AB effect.50 In contrast to the 
two-slit interference experiment that was discussed in Sec. 1, in the situation shown in Fig. 17 the 
particle is not absorbed by the detector, but travels around the ring continuously. As a result, its 
wavefunction is rigid: due to the boundary condition (128), the topological quantum number n is 
discrete, and magnetic field cannot change the wavefunction gradually. In this sense, the system is 
similar to a superconducting loop - see Fig. 4 and its discussion. The difference between these systems 
is two-fold:  

(i) For a single charged particle, in a macroscopic systems with practicable values of q, R, and m, 
the current scale I0 is very small. For example, for m = me, q = -e, and R = 1 m, Eq. (136) yields I0  3 
pA.51 The contribution LI ~ 0RI0 ~ 10-24 Wb of the current so small into the net magnetic flux is 

49 This effect, whose qualitative features remain the same for all 2D or 3D localized states (see Chapter 6 below), 
is frequently referred to as the orbital diamagnetism. In magnetic materials consisting of particles with 
uncompensated spins, this effect competes with another effect, spin paramagnetism  - see, e.g., EM Sec. 5.5. 
50 It is straightforward to check that Eqs. (133) and hence (135) remain valid even if the magnetic field lines do 
not touch the particle’s trajectory, and the field is localized well inside rotator’s ring. 
51 Such persistent, macroscopic diamagnetic currents in non-superconducting systems may be experimentally 
observed, for example, by measuring the weak magnetic field generated by electrons in a system of a large 
number (~107) of similar conducting rings – see, e.g., L. Lévy et al., Phys. Rev. Lett. 64, 2074 (1990). Due to the 

Fig. 3.17. Effect of magnetic field on a 
charged planar rotator. Dashed lines show 
possible inelastic transitions between 
metastable and ground states, due to weak 
interaction with environment, as the 
magnetic field is being increased. 
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negligible in comparison with 0’ ~ 10-15 Wb, so that the quantization of n does not lead to the magnetic 
flux quantization. 

 (ii) As soon as the magnetic field raises the eigenstate energy En above that of another eigenstate 
En’, the former state becomes metastable, and weak interactions of the system with its environment 
(which are neglected in our simple model) may induce a quantum transition of the system to the lower-
energy state, thus reducing the diamagnetic current’s magnitude – see the dashed lines in Fig. 17. The 
flux quantization in superconductors is much more robust to such perturbations.52 

 Now let us return, for one more time, to Eq. (129), and see what do they give for one more 
observable, particle’s angular momentum 

          prL  ,      (3.137) 

In our current problem, vector L has just one component perpendicular to the rotator plane, 

          RpLz  .      (3.138) 

In classical mechanics, Lz of the rotator should be conserved (due to the absence of external torque), but 
can take arbitrary values. In quantum mechanics the situation changes: with p = k, our result kn = n/R 
may be rewritten as 

          nkRLL nnzz   )( .     (3.139) 

Thus, the angular momentum is quantized: it may be only a multiple of the Planck constant  - 
confirming Bohr’s guess – see Eq. (1.10). As we will see in Chapter 5, this result is very general (though 
may be modified by spin effects) and that wavefunctions (129) may be interpreted as eigenfunctions of 
the angular momentum operator. 

 In order to implement the planar rotator in our 3D world, we needed to provide rigid 
confinement of the particle both in the motion plane, and along radius . Let us proceed to the more 
general problem when only the former confinement is strict, i.e. to a 2D particle moving in an arbitrary 
centrally-symmetric potential 

      )()( UU ρ .      (3.140) 

Using the well-known expression for the 2D Laplace operator in polar coordinates,53 we may present the 
2D stationary Schrödinger equation in the form 
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Separating the radial and angular variables as54 

dephasing effects of electron scattering by phonons and other electrons, the effect’s observation requires 
submicron samples and millikelvin temperatures. 
52 Interrupting a superconducting ring with a weak link (Josephson junction), i.e. forming a SQUID, we may get 
the switching behavior similar to that shown with dashed arrows in Fig. 17 – see, e.g., EM Sec. 6.3. 
53 See, e.g., MA Eq. (10.3) with /z = 0. 
54 At this stage, I do not want to mark the particular solution (eigenfunction)   and corresponding eigenenergy E 
by any index, because we already may suspect that in a 2D problem the role of this index will be played by two 
integers – two quantum numbers. 
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we get, after the division by   and multiplication by ρ2, the following equation: 
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It is clear that the fraction (d2F/d2)/F should be a constant (because all other terms of the equation may 
be only functions of ρ alone), so that we get for function F() an ordinary differential equation, 
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where 2 is the variable separation constant. The fundamental solution of Eq. (144) is evidently F  
exp{i}. Now requiring, as we did for the planar rotator, the 2 periodicity of any observable, i.e. 

        ineFF  2)()2(  ,     (3.145) 

so that constant   has to be integer (say, n), and we can write:55 

             ,ineCF nn        (3.146) 

Plugging the resulting relation (d2F/d2)/F  = -n2 into Eq. (143), we may rewrite is as  
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The physical interpretation of this equation is that the full energy is a sum, 
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of the radial-motion part 
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and the angular-motion part 
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Now let us notice that a similar separation exists in classical mechanics,56 because the total 
energy of a particle moving in a central field may be presented, within the plane of motion, as                    
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where 

55 Noting that for the planar rotator (Fig. 16) l/R = , we can present Eq. (129) in a similar form. This is natural, 
because the rotator is just a particular case of our current problem - with a rigid confinement along axis . 
56 See, e.g., CM Sec. 3.5. 
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The comparison of the latter relation with Eqs. (139) and (150) gives us grounds to suspect that the 
quantization rule Lz = n may be valid for this problem as well, and may be in other cases as well. In 
Sec. 5.6, we will see that this is indeed the case. 

 Returning to Eq. (147), on the basis of our experience with 1D wave mechanics we may expect 
that this ordinary, linear, second-order differential equation should have (for a motion confined to a 
certain final region of its argument ρ), for any fixed n, a discrete energy spectrum described by some 
other integer quantum number (say, l). This means that eigenfunctions (142), and corresponding 
eigenenergies (148) should be indexed by two quantum numbers. Note, however, that since the radial 
function obeys equation (147), which already depends on n, function R(ρ) should carry both indices, so 
the variable separation is not so “clean” as it was for the rectangular quantum well. Normalizing the 
angular function to the full circle,  = 2, we may rewrite Eq. (142) as 
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 A good (and important) example of a solvable problem of this type is a free 2D particle whose 
motion is rigidly confined to a disk of radius R: 
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In this case, the solutions Rn,l() of Eq. (147) are proportional to the first-order Bessel functions 
Jn(klρ),57 and the spectrum of possible values of parameter kl should found the boundary condition 
Rn,l(R) = 0. Let me leave the detailed solution and analysis of this problem for reader’s exercise. 

  

3.6. Spherically-symmetric systems: Brute force approach 

Now let us address the (mathematically more involved) case of 3D motion, with spherically-
symmetric potential 

      ).()( rUU r       (3.155) 

Let me start, again, with a rigid rotator - now a spherical rotator, i.e. a particle confined to move on the 
surface of a sphere of radius R. It has 2 degrees of freedom, because any position on the spherical 
surface is completely described by two coordinates – say, the polar angle  and the azimuthal angle . In 
this case, the kinetic energy we need to consider is limited to its angular part, so that in the Laplace 
operator in spherical coordinates58 we may keep only those parts, with fixed r = R. Then the stationary 
Schrödinger equation becomes  

57 A short summary of properties of these function, plus a few plots and a useful table of values, may be found in 
EM Sec. 2.4. For more on of Bessel functions, see the literature recommended in MA Sec. 16(ii). 
58 See, e.g., MA Eq. (10.9). 
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(Again, I abstain from attaching any indices to   and E for the time being.) With the usual variable 
separation assumption, 

      )()(  F ,     (3.157) 

Eq. (156), with all terms multiplied by sin2/F, yields  
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Just as in Eq. (143), fraction (d2F/dx2)/F may be a function of  only, and hence has to be constant, 
giving for it an equation similar to Eq. (144). So, the azimuthal functions are just the sine waves (146) 
again, and we can use the same periodicity condition (145) to write them in the normalized form59 
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With that, fraction (d2F/d2)/F equals (-m2), and Eq. (158), after multiplication by /sin2, is reduced to 
the following  ordinary, linear differential equation for function (): 
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It is convenient to recast it into an equation for a new variable P()  (), with   cos  : 
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where a new notation for the normalized energy is introduced: l(l+1)  . The motivation for such  
notation is that, according to a mathematical analysis,60  Eq. (161) with integer m, has solutions only if 
parameter l is integer: l = 0, 1, 2,…, and only if that integer is not smaller than m, i.e. if 

        lml  .      (3.162)  

This immediately gives the following energy spectrum of the spherical rotator: 
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59 Here, rather regrettably, I had to replace the notation of the integer from n to m, in order to comply with the 
generally accepted convention for this so-called magnetic quantum number. Let me hope that the difference 
between this integer and particle’s mass is absolutely clear from the context. 
60 It was carried out by A.-M. Legendre (1752-1833). Just as a historic note: besides many original mathematical 
results, Dr. Legendre has authored the famous textbook Éléments de Géométrie, which dominated teaching 
geometry through the 19th century.

Energy 
spectrum 
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so that the only effect of the magnetic quantum number m here is imposing the restriction (162) on the 
orbital quantum number l. This means, in particular, that each of energy level (163) corresponds to (2l + 
1) different values of m, i.e. is (2l + 1)–degenerate.  

 To understand the physics of this degeneracy, we need to explore the corresponding 
eigenfunctions of Eq. (161). They are naturally numbered by two integers, m and l, and are called the 
associated Legendre functions Pl

m. For the particular, simplest case m = 0, these functions are just 
(Legendre) polynomials Pl()  Pl

0(), which may be either defined as the solutions of the Legendre 
equation following from Eq. (161) at m = 0: 
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or calculated explicitly from the following Rodrigues  formula:61 
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Using this formula, it easy to spell out a few lowest Legendre polynomials: 
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though such expressions become more and more bulky as l is increased. As Fig. 18 shows, as argument 
 is decreased, all these functions start in one point, Pl(+1) = + 1, and end up either in the same point or 
in the opposite point: Pl(-1) = (-1)l. On the way between these two end points, the lth polynomial crosses 
the horizontal axis exactly l times, i.e. has l roots.62 It may be shown that on the segment [-1,+1], the 
Lagrange polynomials form a full orthogonal set of functions, with the following normalization rule: 
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61 Derived independently by B. O. Rodrigues in 1816, J. Ivory in 1824, and C. Jacobi in 1827. 
62 In this behavior, we readily recognize the standing wave pattern typical for all 1D eigenproblems – cf. Fig. 1.7. 
The quantitative deviation from the sinusoidal waveform is due to the different metric of the sphere. 
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For m > 0, the associated Legendre functions may be expressed via the Legendre polynomials 
(165) using the following formula, which reminds Eq. (165): 
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while if the index m  is negative, the following simple relation may be used: 
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On the segment  = [-1, +1], each set of the associated Legendre functions with fixed index m forms a 
full orthogonal set, with the normalization relation, 
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which is evidently a generalization of Eq. (167) for arbitrary m. 

 Since the difference between angles  and  is to some extent artificial (caused by the arbitrary 
direction of the polar axis), physicists prefer to use not the functions ()  m

lP (cos) and Fm()   

exp{im} separately, but their products (157), which are called spherical harmonics: 
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The specific coefficient in Eq. (171) is chosen in a way to simplify the following two relations: the 
equation for negative m,  
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and the normalization relation 
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with integration over the whole solid angle 4. The last relation shows that the spherical harmonics form 
an orthonormal set of functions. This set is also full, so that any function defined on a sphere may be 
uniquely presented as a linear combination of Yl

m.   

Despite a somewhat intimidating formulas given above, they yield rather simple expressions for 
the lowest spherical harmonics: 
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It is important to understand the symmetry of these functions. Since spherical functions with m  
0 are complex, the most popular way of their graphical representation is first to form their real 
combinations corresponding to two opposite values of m,63 
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(for m = 0, Yl0  Yl
0), and then plot the magnitude of these combinations in spherical coordinates as the 

distance from the origin, while using two colors to show their sign – see Fig. 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

63 Such real functions Ylm, which also form the full set of orthonormal eigenfunctions and are frequently called the 
real spherical harmonics, are more convenient than the complex functions Yl

m for several applications, especially 
when the variables of interest are real by definition. 

Fig. 3.19. Several lowest real spherical 
harmonics Ylm. (Adapted from Web site 
http://people.csail.mit.edu/sparis/ .) 
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Let us starting from the simplest case l = 0. According to Eq. (162), there could be only one such 
s state,64 with m = 0. The spherical harmonic corresponding to that state is just a constant, so that the 
wavefunction is uniformly distributed over the sphere. Since the functions does not have gradient in any 
direction, the kinetic energy (163) of the particle equals is zero.  

For l = 1, there could be 3 different p states, with m = -1, 0, and +1. As the second row in Fig. 19 
shows, these states are essentially identical in structure, and are just differently oriented in space, thus 
explaining the 3-fold degeneracy of the kinetic energy – see Eq. (163). This is not quite true for 5 
different d states (l = 2), shown in the bottom row of Fig. 19, as well as states with higher l: despite their 
equal energies, they differ not only by their special orientation. The states with m = 0 have gradient only 
in the  direction, while the states with the ultimate values of m (m = l) change only gradually (as sinl) 
in the polar direction, while oscillating in the azimuthal direction. The states with intermediate values of 
m provide a crossover between these two extremes, oscillating in both directions, stronger and stronger 
in the direction of   as m is increased. Still, the magnetic quantum number, surprisingly, does not 
affect the energy for any l. Another surprising feature of the spherical harmonics follows from the 
comparison of Eq. (163) with the second of classical relations (152). These expressions coincide if we 
interpret constant 

)1(22  llL  ,     (3.178) 

as the value of the full angular momentum squared L2 = L2 (including its both  and  components) in 
the eigenstate with eigenfunction Yl

m. On the other hand, the structure of the azimuthal component F() 
of the wavefunction is exactly the same as in 2D axially-symmetric problems, suggesting that Eq. (139) 
still gives correct values (in our new notation, Lz = m) for the z-component of the angular momentum. 
If this is so, why for any state with l > 0, (Lz)

2 = m22  l22 is less than L2 = l(l + 1)2? In other words, 
what prevents the angular momentum vector to be fully aligned with axis z? 

 Besides that issue, though the above analysis of the spherical rotator is formally 
(mathematically) complete, it is as unsatisfactory on the physics level as the harmonic oscillator analysis 
in Sec. 2.6. In particular, it does not explain the meaning of the extremely simple relations for 
eigenvalues of energy and angular momentum on the backdrop of rather complicated wavefunctions. 

We will obtain natural answers to all these questions and concerns in Sec. 5.6, but now let us 
complete our survey of wave mechanics by extending it to 3D motion in an arbitrary spherically-
symmetric potential (155). In this case we have to use the full form of the Laplace operator in spherical 
coordinates. The variable separation procedure is an evident generalization of what we have done 
before, with the particular solution 
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whose substitution into the stationary Schrödinger equation yields 
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64 The letter names for states with different values of l stem from the history of optical spectroscopy - for 
example, letter “s”, used for l = 0, originally denoted the “sharp” optical line series, etc. The sequence of the 
letters is as follows: s, p, d, f, g, h, and further in the alphabetical order. 
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It is evident that the angular part (the two last terms in square brackets) separates from the radial 
part, and for the former part we get Eq. (156) again, with the only change, R  r. This change does not 
affect the fact that the eigenfunctions of that equation are the spherical harmonics (171), and the angular 
eigenenergy is given by Eq. (163), again with the replacement R  r. This means that for the radial 
function, Eq. (180) gives the following equation, 
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Note that no information about the magnetic quantum number m has not crept into the radial equation 
(besides establishing the limitation (162) for possible values of l), so that this equation depends only on 
the latter quantum number.  

 The radial equation becomes rather simple for U(r) = 0, and may be used, for example, to solve 
the eigenproblem for the free 3D motion of a particle inside the sphere of radius R. Leaving that problem 
for the reader’s exercise, I will proceed to the most important Bohr atom problem, i.e. of motion in the 
so-called attractive Coulomb potential65 
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The natural scales of  r and E are, respectively,66 
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In the normalized units   E/E0 and   r/r0, Eq. (181) looks simpler, 
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but unfortunately its eigenfunctions may be called elementary only in the most generous meaning of the 
word. With the adequate normalization, 
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these (mutually orthogonal) functions may be presented as 

65 Historically, the solution of this problem in 1928, that reproduced the main result (1.8)-(1.9) of the “old” 
quantum theory developed by N. Bohr in 1912, without its restrictive assumptions, was the decisive step for the 
general acceptance of Schrödinger’s wave mechanics. 
66 These two scales are obtained from relations E0  2/mr0

2  C/r0, i.e. from the equality of the natural scales of 
the potential and kinetic energies, dropping all numerical coefficients. For the most important case of the 
hydrogen atom, C = e2/40, these scales are reduced, respectively, to the Bohr radius rB (1.13) and the Hartree 
energy EH (1.9). Note also that for a hydrogen-like atom (or rather ion), with C = Z(e2/40), these two key 
parameters are rescaled as r0 = rB/Z, E0 = Z2EH.  
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Here )(q
pL  are the so-called associated Laguerre polynomials, which may be calculated as 
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from simple Laguerre polynomials Lp()  Lp
0().67 In turn, the easiest way to obtain Lp() is to use the 

following Rodrigues formula:68 
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Notice that in contrast with the associated Legendre functions Pl
m participating in spherical harmonics, 

Lp
q are just polynomials, and those with small indices p and q are indeed simple.  

 Returning to Eq. (186), we see that the natural quantization of the radial equation (184) has 
brought us a new quantum number (integer) n. In order to understand its range, we should notice that 
according to Eq. (188), the highest power of terms in polynomial Lp+q is (p + q), and hence, according to 
Eq. (187), that of Lp

q is p, so that of  the highest power in the polynomial participating in Eq. (186) is (n 
– l – 1). Since the power cannot be negative (to avoid the unphysical divergence of wavefunctions at r 
 0), the radial quantum number n has to obey the restriction n  l + 1. Since l, as we already know, 
may take values l = 0, 1, 2,…, we may conclude that n may only take values 

             ,...2,1n       (3.189) 

What makes this relation important is the following, most surprising result of the theory: the 
eigenenergies corresponding to wavefunctions (179), which are indexed with 3 quantum numbers: 
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depend only on n and agree with Bohr’s formula (1.8): 
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Because of this reason, n is usually called the principal quantum number, and the above relation 
between it and “more subordinate” l is rewritten as 

            1 nl .      (3.192)  

Together with inequality (162), this gives us the most important hierarchy of the 3 quantum 
numbers involved in the problem: 

            ,101 lmlnln     (3.193) 

67 In Eqs. (187)-(188), p and q are non-negative integers, with no relation whatsoever to particle’s momentum or 
electric charge. Sorry for this notation, but it is absolutely common, and can hardly result in any confusion. 
68 Named after the same B. O. Rodrigues, and belonging to the same class as his another key result, Eq. (165). 
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Taking into account the (2l +1)-degeneracy related to the magnetic number m, and using the well-known 
formula for the arithmetic progression,69 we see that each energy level (191) has the following orbital 
degeneracy:  
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Due to its importance for applications, let us spell out the quantum number hierarchy of a few lowest-
energy states, using the traditional notation in which the value of n is followed by the letter that denotes 
the value of l: 
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Figure 20 shows plots of the radial functions (186) of the listed states. The most important of 
them is of course the ground (1s) state with n = 1 and hence E = - E0/2, whose radial function (186) is 
just 
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and the angular distribution is uniform - see Eq. (174). The gap between the ground energy and the 
energy E = - E0/8 of the lowest excited states (with n = 2) in a hydrogen atom (in which E0 = EH  27.2 
eV) is as large as ~ 10 eV, so that their thermal excitation requires temperatures as high as ~105 K, and 
the overwhelming part of all hydrogen atoms in the visible Universe are in their ground state. Since  
atomic hydrogen makes up about 75% of the “normal” matter, we are very fortunate that such simple 
formulas as Eqs. (174) and (198) describe the atomic states most frequently met in Mother Nature!70 

The radial functions of the next states, 2s and 2p, are also not too complex: 
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(Note again that the former of these states (2s) can only have a uniform angular distribution, while three 
2p states have different values of m = 0, 1, and hence have different angular distributions – see  Eq. 
(175) and the second row of Fig. 19.) The most important trend here is a larger radius of decay of the 
exponent (2r0 for n = 2 instead of r0 for n = 1), and hence the radial extension of the states. This trend is 
confirmed by the following general formula:71  

69 See, e.g., MA Eq. (2.5a). 
70 Forgetting for a minute about such new “dark clouds” on the horizon of the modern physics as the hypothetical 
dark matter and dark energy. 
71 Note that even at the largest value of l, equal to (n -1), term l(l + 1) in Eq. (200) cannot compensate term 3n2. 
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The second important trend is that at fixed n, the orbital quantum number l determines how fast 
does the wavefunction change with r near the origin, and how much it oscillates in the radial direction at 
larger r. For example, the 2s eigenfunction R2,0(r) is nonvanishing at r = 0, and makes one “wiggle” (has 
one root) in the radial direction, while eigenfunctions 2p equal zero at r = 0, and do not oscillate at all in 
the radial direction. Instead, those wavefunctions always oscillate as functions of some angle – see the 
second row of Fig. 19. The same trend in clearly visible for n = 3 (see Fig. 20), and continues for the 
higher values of n.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interpretation of these results is that the states with l = lmax = n – 1 may be viewed as analogs  
of the circular motion of a particle in a plane whose orientation defines the quantum number m, with an 
almost fixed radius r  r0(n

2  n). On the other hand, the best classical image of an s-state (l = 0) is the 
purely radial motion of the particle to and from the attracting center. (The latter image is especially 
imperfect, because the motion would need to happen simultaneously in all radial directions.) The 
classical language becomes reasonable only for the so-called Rydberg states, with n >> 1, whose linear 
superpositions may be used to compose wave packets closely following the classical, circular or elliptic 
trajectories of the particle – just as was discussed in Sec. 2.2 for the free 1D motion. 
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Fig. 3.20. The lowest radial functions 
of the Bohr atom problem. 
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Besides Eq. (200), mathematics gives us several other simple relations for the radial functions 
Rn,l (and, since the spherical harmonics are normalized to 1, for the eigenfunctions as the whole), 
including those that we will use later in the course:72 
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In particular, the first of them means that for any eigenfunction n,l,m, with all its complicated radial and 
angular dependencies, there is a simple relation between the potential and full energies: 
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so that the average kinetic energy of the particle, Tn,l = En - Un,l, is equal to En > 0. 

 These simple results are in a sharp contrast with the rather complicated expressions for the 
eigenfunctions, and motivate a search for more general methods of quantum mechanics, which would 
replace or at least complement our brute-force (wave-mechanics) approach, to reveal their real nature. 
Such an approach will be the main topic of the next chapter.  

 

3.7. Atoms 

 Before proceeding to that chapter, let me show that, rather strikingly, the classification of 
quantum numbers in the simple potential well (182), carried out in the last section, together with very 
modest borrowings from the further theory, allows an semi-quantitative explanation of the whole system 
of chemical elements. The “only” two additions we need are the following facts: 

(i) due to interaction with relatively low-temperature environments, atoms tend to relax into their 
lowest-energy state, and 

(ii) due to the Pauli principle (valid for electrons as Fermi particles), each orbital eigenstate 
discussed above can be occupied with 2 electrons with opposite spins.  

Of course, atomic electrons do interact, so that their quantitative description requires quantum 
mechanics of multiparticle systems, which is rather complex. (Its main concepts will be discussed in 
Chapter 8.) However, the lion’s share of this interaction reduces to simple electrostatic screening, i.e. 
the partial compensation of the electric charge of the atomic nucleus, as felt by a particular electron, by 
other electrons of the atom. This screening changes the qualitative results (such as the energy scale) 
dramatically; however, the quantum number hierarchy, and hence their classification, is not affected.  

The system of atoms is most often presented as the famous periodic table of chemical elements,73 
whose simple version is shown in Fig. 21, while Fig. 22 presents a sequential list of the elements with 
their electron configurations. The numbers in table’s cells (and the first column in the list) are the 

72 The first of these relations may be also readily proved using the Heller-Feynman theorem (see Chapter 1); this 
proof is left for reader’s exercise. Note also that the last of the expressions diverges at l = 0, in particular in the 
ground state of the system (with n = 1, l = 0). 
73 Also called the Mendeleev table, after D. Mendeleev who put forward the concept of the periodicity of 
chemical element properties as functions of Z phenomenologically in 1869. (The explanation of the periodicity 
had to wait for 60 more years until the quantum mechanics formulation in the late 1920s.) 
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atomic numbers Z, which physically are the numbers of protons in the atomic nucleus, and hence the 
numbers of electrons in the electrically neutral atom. The electron configuration in Fig. 22 follows the 
convention already used in Eqs. (195)-(197), with the additional upper index showing the number of 
electrons with the indicated values of quantum numbers n and l.  

The lightest atom, with Z = 1, is hydrogen (chemical symbol H) – the only atom for each the 
theory discussed in Sec. 6 is quantitatively correct.74 According to Eq. (191), the 1s ground state of its 
only electron corresponds to quantum numbers n = 1, l = 0, and m = 0 – see Eq. (196). In most versions 
of the periodic table, the cell of H is placed in the top left corner. In the next atom, helium (He, Z = 2), 
the same orbital quantum state (1s) is filled with two electrons with different spins.75 Note that due to 
the twice higher electric charge of the nucleus, i.e. the twice higher value of constant C in Eq. (182), 
resulting in a 4-fold increase of constant E0 (183), the binding energy of each electron is crudely 4 times 
higher than that of the hydrogen atom - though the electron interaction decreases it by about 25% - see 
Sec. 7.2. This is why taking one electron away (i.e. positive ionization) of the helium atom requires a 
very high energy, 23.4 eV, which is not available in usual chemical reactions. On the other hand, a 
neural helium atom cannot bind one more electron (i.e. form a negative ion) either. As a result, helium, 
and all other elements with fully completed electron  shells (sets of states with eigenenergies well 
separated from higher energy levels) is a chemically inert noble gas, thus starting the whole right-most 
column of the periodic table, committed to such elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74 Besides very small “fine-structure” corrections – to be discussed in Chapters 6 and 9. 
75 As will be discussed in detail in Chapter 8, electrons of the same atom are actually indistinguishable, and their 
quantum states are not independent, and frequently entangled. These factors are important for several properties 
of helium atoms (and heavier elements as well), especially for their response to external fields. However, for the 
atom classification purposes, they are not crucial. 

Fig. 21. The periodic table of elements, showing their atomic numbers, as well as their basic 
physical/chemical properties at the so-called ambient (meaning usual laboratory) conditions. 

1 
H 

      2 
He 

3 
Li 

4 
Be 

5 
B 

6 
C 

7 
N 

8 
O 

9 
F 

10 
Ne 

11 
Na 

12 
Mg 

Property legend: 

 alkali metals  transition metals  metalloids 

 alkali-earth metals   nonmetals     halogens 

 rare-earth metals      other metals  noble gases 
13 
Al 

14 
Si 

15 
P 

16 
S 

17 
Cl 

18 
Ar 

19 
K 

20 
Ca 

21 
Sc 

22 
Ti 

23 
V 

24 
Cr 

25 
Mn 

26 
Fe 

27 
Co 

28 
Ni 

29 
Cu 

30 
Zn 

31 
Ga 

32 
Ge 

33 
As 

34 
Se 

35 
Br 

36 
Kr 

37 
Rb 

38 
Sr 

39 
Y 

40 
Zr 

41 
Nb 

42 
Mo 

43 
Tc 

44 
Ru 

45 
Rh 

46 
Pd 

47 
Ag 

48 
Cd 

49 
In 

50 
Sn 

51 
Sb 

52 
Te 

53 
I 

54 
Xe 

55 
Cs 

56 
Ba 

57- 
71 

72 
Hf 

73 
Ta 

74 
W 

75 
Re 

76 
Os 

77 
Ir 

78 
Pt 

79 
Au 

80 
Hg 

81 
Tl 

82 
Pb 

83 
Bi 

84 
Po 

85 
At 

86 
Rn 

87 
Fr 

88 
Ra 

89- 
102 

104 
Rf 

105 
Db 

106 
Sg 

107 
Bh 

108 
Hs 

109 
Mt 

110 
Ds 

111 
Rg 

112 
Cn 

113 
Uut 

114 
Fl 

115 
Uup 

116 
Lv 

117 
Uus

118 
Uuo 

                  
Lanthanides: 57 

La 
58 
Ce 

59 
Pr 

60 
Nd 

61 
Pm 

62 
Sm 

63 
Eu 

64 
Gd 

65 
Tb 

66 
Dy 

67 
Ho 

68 
Er 

69 
Tm 

70 
Yb 

71 
Lu 

Actinides: 89 
Ac 

89 
Ac 

90 
Th 

91 
Pa 

92 
U 

93 
Np 

94 
Pu 

95 
Am 

96 
Cm 

97 
Bk 

98 
Cf 

99 
Es 

100 
Fm 

101 
Md 

102 
Lr 
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 Fig. 3.22. Atomic electron configurations. The upper index shows the number of electrons in states with the 
indicated quantum numbers n (the first digit) and l (letter-coded as listed above). 

Atomic 
number 

Atomic 
symbol 

Electron 
states 

Atomic 
number 

Atomic 
symbol

Electron 
states 

Atomic 
number 

Atomic 
symbol 

Electron 
 states 

77 Ir 4f145d76s2 Period 1  Period 5  [Kr] shell, 
plus: 78 Pt 4f145d96s1 

1 H 1s1 37 Rb 5s1 79 Au 4f145d106s1 
2 He 1s2 38 Sr 5s2 80 Hg 4f145d106s2 

39 Y 4d15s2 81 Tl 4f145d106s26p1 Period 2 [He] shell, 
plus: 40 Zr 4d25s2 82 Pb 4f145d106s26p2 

3 Li 2s1 41 Nb 4d45s1 83 Bi 4f145d106s26p3 
4 Be 2s2 42 Mo 4d55s1 84 Po 4f145d106s26p4 
5 B 2s22p1 43 Tc 4d65s1 85 At 4f145d106s26p5 
6 C 2s22p2 44 Ru 4d75s1 86 Rn 4f145d106s26p6 
7 N 2s22p3 45 Rh 4d85s1 
8 O 2s22p4 46 Pd 4d10 

Period 7 [Rn] shell, 
plus: 

9 F 2s22p5 47 Ag 4d105s1 87 Fr 7s1 
10 Ne 2s22p6 48 Cd 4d105s2 88 Ra 7s2 

49 In 4d105s25p1 89 Ac 6d17s2 Period 3 [Ne] shell, 
plus: 50 Sn 4d105s25p2 90 Th 6d27s2 

11 Na 3s1 51 Sb 4d105s25p3 91 Pa 5f26d17s2 
12 Mg 3s2 52 Te 4d105s25p4 92 U 5f36d17s2 
13 Al 3s23p1 53 I 4d105s25p5 93 Np 5f46d17s2 
14 Si 3s23p2 54 Xe 4d105s25p6 94 Pu 5f67s2 
15 P 3s23p3 95 Am 5f77s2 
16 S 3s23p4 

Period 6 [Xe] shell, 
plus: 96 Cm 5f76d17s2 

17 Cl 3s23p5 55 Cs 6s1 97 Bk 5f97s2 
18 Ar 3s23p6 56 Ba 6s2 98 Cf 5f107s2 

57 La 5d16s2 99 Es 5f117s2 Period 4 [Ar] shell, 
plus: 58 Ce 4f15d16s2 100 Fm 5f127s2 

19 K 4s1 59 Pr 4f36s2 101 Md 5f137s2 
20 Ca 4s2 60 Nd 4f46s2 102 No 5f147s2 
21 Sc 3d14s2 61 Pm 4f56s2 103 Lr 5f146d17s2 
22 Ti 3d24s2 62 Sm 4f66s2 104 Rf 5f146d27s2 
23 V 3d34s2 63 Eu 4f76s2 105 Db 5f146d37s2 
24 Cr 3d44s2 64 Gd 4f75d16s2 106 Sg 5f146d47s2 
25 Mn 3d54s2 65 Tb 4f96s2 107 Bh 5f146d57s2 
26 Fe 3d64s2 66 Dy 4f106s2 108 Hs 5f146d67s2 
27 Co 3d74s2 67 Ho 4f116s2 109 Mt 5f146d77s2 
28 Ni 3d84s2 68 Er 4f126s2 110 Ds 5f146d87s2 
29 Cu 3d94s1 69 Tm 4f136s2 111 Rg 5f146d97s2 
30 Zn 3d104s2 70 Yb 4f146s2 112 Cn 5f146d107s2 
31 Ga 3d104s24p1 71 Lu 4f145d16s2 113 Uut 5f146d107s27p1 
32 Ge 3d104s24p2 72 Hf 4f145d26s2 114 Fl 5f146d107s27p2 
33 As 3d104s24p3 73 Ta 4f145d36s2 115 Uup 5f146d107s27p3 
34 Se 3d104s24p4 74 W 4f145d46s2 116 Lv 5f146d107s27p4 
35 Br 3d104s24p5 75 Re 4f145d56s2 117 Uus 5f146d107s27p5 
36 Kr 3d104s24p6 

 

76 Os 4f145d66s2 

 

118 Uuo 5f146d107s27p6 
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The situation changes dramatically as we move to the next element, lithium (Li), with Z = 3 
electrons. Two of them are still accommodated by the inner shell n = 1 (listed in Fig. 22 as the helium 
shell [He]), but the third one has to reside in the next shell with n = 2 and l = 0, i.e. in the 2s state. 
According to Eq. (191), the binding energy of this electron is much lower, especially if we take into 
account that according to Eq. (200), the 1s electrons of the [He] shell are much closer to the nucleus and 
almost completely compensate two thirds of its electric charge +3e. As a result, the 2s electron is 
reasonably well described by Eq. (199), with binding energy of just 5.39 eV, so that a lithium atom can 
give out that electron rather easily – to either atoms of other elements to form chemical compounds, or 
into the common conduction band of solid state lithium - and as a result it is a typical alkali metal. The 
similarity of chemical properties of lithium and hydrogen, with the chemical valence of one,76 places Li 
as the starting element of the second period (row), with the first period limited to only H and He. 

In the next element, beryllium (Z = 4), the 2s state (n = 2, l = 0) picks up one more electron, with 
the opposite spin. Due to the higher electric charge of the nucleus, Q = 4e, with only half of it 
compensated by 1s electrons of the [He] shell, the binding energy of the 2s electrons is higher than in 
lithium, so that the ionization energy increases to 9.32 eV. As a result, beryllium is also chemically 
active but not as active as lithium, with the valence of two, and is also is metallic in its solid state phase, 
but does not conduct electric current as well as lithium. 

Moving in this way along the second row of the periodic table (from Z = 3 to Z = 10), we see the 
gradual filling of all 4 different orbital states of the n = 2 shell, by 2 electrons each, with gradually 
growing ionization potential (up to 21.6 eV in Ne with Z = 10), i.e. the growing reluctance to have 
metallic conductance or form positive ions. However, the final elements of the row, such as oxygen (O, 
with Z = 8) and especially fluorine (F, with Z = 9) can readily pick up extra electrons to fill their 2p 
states, i.e. form negative ions. As a result, these elements are chemically active, with the double valence 
for oxygen and single valence for fluorine. However, the final element of this row, neon, has its n = 2 
shell full, and cannot form a stable negative ion. This is why it is a noble gas, like helium. Traditionally, 
in the periodic table it is placed right under helium (Fig. 21), to emphasize the similarity of their 
chemical and physical properties. But this necessitates making an at least 6-cell gap in the 1st row. 
(Actually, the gap is often made larger, to accommodate next rows – keep reading.)  

Period 3, i.e. the 3rd row of the table starts exactly like period 2, with sodium (Na, with Z = 11), 
also a chemically active alkali metal whose atom features 10 electrons filling shells with n = 1 and n = 2 
(in Fig. 22 collectively called the neon shell, [Ne]), plus one electron in a 3s state (n = 3, l = 0, m = 0), 
which may be reasonably well described by the hydrogen atom theory – see, e.g., the red trace on the 
last panel of Fig. 20. Naively we could expect that, according to Eq. (194), and with the account of 
double spin degeneracy, this period of the table should have 2n2 = 232 = 18 elements, with gradual 
filling of two 3s states, six 3p states, and ten 3d states. However, here we run into a big surprise: after 
argon (Ar, with Z = 18), a relatively inert element with ionization energy of 15.7 eV due to the fully 
filled 3s and 3p shells, the next element, potassium (K, with Z = 19) is an alkali metal again! 

The reason for that is the difference of the actual electron energies from those of the hydrogen 
atom, which is due mostly to inter-electron interactions and gradually accumulates with the growth of Z. 
It may be semi-quantitatively understood from the results of Sec. 6. In hydrogen-like atoms, electron 
state energies do not depend on the quantum number l (as well as m) – see Eq. (191). However, the 

76 Chemical valence is a relatively vague term describing the number of atom’s electrons involved in chemical 
reactions. For the same atom, the number may depend on the chemical compound formed. 
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orbital quantum number does affect the wavefunction of an electron. As Fig. 20 shows, the larger l the 
less the probability for an electron to be close to the nucleus, where its positive charge is less 
compensated by other electrons. As a result of this effect (and also the relativistic corrections to be 
discussed in Sec. 6.3), electron’s energy grows with l. Actually, this effect was visible even in period 2: 
it manifests itself in the filling order (p states after s states). However, for potassium (K, with Z = 19) 
and calcium (Ca, with Z = 20), energies of 3d states become so high that energies of two 4s states (with 
opposite spins) are lower, and they are filled first. As described by factor 3 in the square brackets of Eq. 
(200), and also by Eq. (201), the effect of the principal number n on the distance from the nucleus is 
stronger than that of l < n, so that 4s wavefunctions of K and Ca are relatively far from the nucleus, and 
determine the chemical valence (equal to 1 and 2, correspondingly) of these elements. The next atoms, 
from Sc (Z = 21) to Zn (Z = 30), with the gradually filled “internal” 3d states, are the so-called 
transition metals whose (comparable) ionization energies and chemical properties are determined by 4s 
electrons. 

This fact is the origin of the difference between various forms of the “periodic” table. In its most 
popular option, shown in Fig. 21, K is used to start the next, period 4, and then a new period is started 
each time and only when the first electron with the next principal quantum number (n) appears.77 This 
topology provides a very clear mapping on the chemical properties of the first element of each period 
(an alkali metal), as well as its last element (a noble gas). This also automatically means making gaps in 
all previous rows. Usually, this gap is made between the atoms with completely filled s states and with 
the first electron in a p state, because here the properties of the elements make a somewhat larger step. 
(For example, the step from Be to B makes the material an insulator, but it is not large enough to make a 
similar difference between Mg to Al.) As a result, elements of the same column have approximately 
similar chemical valence and physical properties. 

However, to accommodate longer lowest rows, such presentation is inconvenient, because the 
whole table would be too broad. This is why the so-called rare earths, including lanthanides (with Z 
from 57 to 70, of the 6th row, with gradual filling of 4f and 5d states) and actinides (Z from 89 to 103, of 
the 7th row,  with gradual filling of 5f and 6d states), are presented as outlet lines (Fig. 21). This is quite 
acceptable for the purposes of standard chemistry, because chemical properties of elements within each 
group are rather close. 

To summarize, the “periodic table of elements” is not periodic in the strict sense of the word. 
Nevertheless, it has had an enormous historic significance for chemistry, as well as atomic and solid 
state physics, and is still very convenient for many purposes. For our course, the most important aspect 
of its discussion is the surprising possibility to describe, at least for classification purposes, such a 
complex multi-electron system as an atom as a set of quasi-independent electrons in certain quantum 
states indexed with the same quantum numbers n, l, and m as those of the hydrogen atom. This fact 
enables the use of various perturbation theories, which give more quantitative description of atomic 
properties. Some of these techniques will be reviewed in Chapters 6 and 8 of this course.78 

77 Another option is to return to the first column as soon an atom has one electron in s state (like it is in Cu, Ag, 
and Au, in addition to the alkali metals). 
78 For a bit more detailed (but still very succinct) discussion of valence and other chemical aspects of atomic 
structure, I can recommend Chapter 5 of the classical text by L. Pauling, General Chemistry, Dover, 1988. 
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3.8. Exercise problems 

3.1. A particle of energy E is incident (in Fig. on the right, within the 
plane of drawing) on a sharp potential step: 









.0for  ,

,0for  ,0
)(

0 xU

x
U r  

Find the particle reflection probability R as a function of the incidence angle  ; 
sketch and discuss the function, for different magnitudes and signs of U0. 
  
 3.2. Use the finite difference method with step 2/ah   to calculate as many eigenenergies as 
possible, for a free particle confined to the interior of: 

(i) a square with side a; 
(ii) a cube with side a.  

For the square, repeat the calculations, using a finer step: h = a/3. Compare the results for different h , 
with the exact formula. 

 Hint: It is advisable to first solve (or review the solution of :-) the similar 1D problem in Chapter 
1, or start from reading about the finite difference method.79 Also, try to exploit problem’s symmetry. 

3.3. Use the variational method to estimate the ground state energy of a particle of mass m, 
moving in a spherically-symmetric potential 

  4arU r . 

  

 3.4. In the classical version of the Landau level problem discussed in Sec. 2, the center of 
particle’s orbit is an integral of motion, determined by initial conditions. Calculate the commutation 
relations between the quantum-mechanical operators corresponding to the Cartesian coordinates of the 
center, and to the sum of their squares. 

3.5.* Analyze how are the Landau levels (3.50) modified by an additional constant electric field 
E, directed along the particle plane. Contemplate 
the physical meaning of your result, and its 
implications for the quantum Hall effect in a 
gate-defined Hall bar. (The area  LW area of 
such a bar [see Fig. 3.6 of the lecture notes] is 
defined by metallic gate electrodes parallel to 
the 2D electron gas plane - see Fig. on the right. 
The negative voltage Vg, applied to the gates, chases the electrons gas out of the confinement plane at 
the remaining sample area.)  
 
 3.6. Analyze how are the Landau levels (50) modified if a 2D particle is confined in an 
additional 1D potential well U(x) = m0

2x2/2 

79 See, e.g., CM Sec. 8.5 or EM Sec. 2.8. 
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 3.7. Find the eigenfunctions of a spinless, charged 3D particle moving in “crossed” 
(perpendicular), uniform electric and magnetic fields. For each eigenfunction, calculate the expectation 
value of particle’s velocity in the direction perpendicular to both fields, and compare the result with the 
solution of the corresponding classical problem. 

Hint: Generalize Landau’s solution for 2D particles, discussed in Sec. 2. 
 
3.8. Use the Born approximation to calculate the angular dependence and the full cross-section 

of scattering of an incident plane wave, propagating along axis x, by the following pair of point 
inhomogeneities: 















 






 

22
)(

aa
WU zz nrnrr  . 

Analyze the results in detail. Derive the condition of the Born approximation’s validity for such delta-
functional scatterers. 

 
3.9. Use the Born approximation to calculate the differential and full cross-sections of a spherical 

scatterer: 



 


otherwise.,0

,for ,
)( 0 RrU

U r  

Analyze both results, especially the angular dependence of d/d, in detail, for kR << 1 and kR >>1. 

3.10. Use the Born approximation to calculate differential and full cross-sections of electron 
scattering by a screened Coulomb field of a point charge Ze, with electrostatic potential 

  re
r

Ze 


 
04

r , 

neglecting the spin interaction effects, and analyzed their dependence on the screening parameter . 
Compare the results with those given by the classical (“Rutherford”) formula80 for the unscreened 
Coulomb potential (  0), and formulate the condition of Born approximation’s validity in this limit.  

3.11. A quantum particle of mass m with electric charge Q is scattered by a localized distributed 
charge with a spherically-symmetric density (r) and zero total charge. Use the Born approximation to 
calculate the differential cross-section of forward scattering (with scattering angle  = 0), and evaluate it 
for scattering of electrons by a hydrogen atom in its ground state. 

 
3.12. Reformulate the Born approximation for the 1D case. Use the result to find the scattering 

and transfer matrices of a “rectangular” scatterer 



 


otherwise.,0

,2/for ,
)( 0 dxU

xU  

80 See, e.g., CM Sec. 3.7, in particular Eq. (3.72). 
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Compare the results with the those of the exact calculations carried out earlier in the course. 
  
 3.13. Use Eq. (88) to show that the Bragg rule for the diffraction wave maxima, k = k0 + Q, 
where Q is any vector of the reciprocal  lattice defined by Eq. (110), is valid not only for 
electromagnetic waves, but also for non-relativistic quantum particle scattering by a periodic (Bravais) 
lattice. 

3.14. In the tight-binding approximation, calculate the eigenstates and eigenenergies of three 
similar, weakly coupled quantum wells located in the vertices of an equilateral triangle. 

3.15. Figure on the right shows a fragment of a periodic 2D lattice, with 
open and solid points showing the location of different local potentials – say, 
different atoms.  

 (i) Find the reciprocal lattice and the 1st Brillouin zone; 
 (ii) Find wave number k of the monochromatic radiation incident along 
axis x, at which the lattice creates the first-order diffraction peak within the [x, y] 
plane, and the direction towards this peak. 
 (iii) Semi-qualitatively, describe the evolution of the intensity of the peak if the local potentials 
represented by the open and solid points tend to each other. 

 
3.16. For the 2D hexagonal lattice (Fig. 11b): 

(i) find the reciprocal lattice Q and the 1st Brillouin zone;  
(ii) use the tight-binding approximation to calculate the dispersion relation E(q) for a 2D particle 

moving in a potential with such periodicity, close to the eigenenergy of an axially-symmetric state 
quasi-localized at the potential minima; 

(iii) analyze and sketch (or plot) the resulting dispersion relation E(q) inside the 1st Brillouin 
zone. 

 
3.17.* Complete the tight-binding approximation calculation of band structure of the honeycomb 

lattice, started in the end of Sec. 4. Analyze the results. Prove that the Dirac points qD are located in the 
corners of the 1st Brillouin zone, and express the velocity vn, participating in Eq. (122), in terms of the 
coupling energy n. Show that the final results do not change if the quasi-localized wavefunctions are 
not axially-symmetric, but are proportional to exp{in} - as they are, with n = 1, for the 2pz electrons of 
carbon atoms in graphene, which are responsible for its transport properties. 

 
3.18. Examine basic properties of the so-called Wannier functions defined as 

qde i

BZ

3)(const)( Rqrr qR
  , 

where q(r) is the Bloch wavefunction (3.108), R is any vector of the Bravais lattice, and the integration 
over quasi-momentum q is extended over any (e.g., the first) Brillouin zone. 

 
3.19. Evaluate the long-range electrostatic interaction (the so-called London dispersion force) 

between two similar, electrically-neutral but polarizable molecules, modeling them as isotropic 3D 
harmonic oscillators. 

a

a

x

y
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Hint: Using the classical expression for the interaction between two electric dipoles,81 try to 
present the total Hamiltonian of the system as a sum of Hamiltonians of several independent harmonic 
oscillators, and calculate their ground-state energy as a function of distance between the molecules.  

 
3.20. Use the variable separation method to find expressions for the eigenfunctions and the 

corresponding eigenenergies of a free 2D particle confined inside a thin round disk of radius R: 









,for ,

0for ,0

R

R,ρ
U  

where   {x, y, 0}. What is the level degeneracy? Calculate 5 lowest energy levels with accuracy better 
than 1%. 
 
 3.21. Calculate the ground-state energy of a 2D particle localized in a shallow flat-bottom 
potential well 

 
2

2

0
0 0with  ,

for        ,0

for  ,

mR
U

R

RU
U



















 . 

 
 3.22. Spell out the explicit form of spherical harmonics ),(0

4 Y and ),(4
4 Y . 

3.23. Calculate x and x2 in the ground state of the planar and spherical rotators of radius R. 
What can you say about averages px and px

2? 

3.24. According to the discussion in the beginning of Sec. 5, eigenfunctions of a 3D harmonic 
oscillator may be calculated as products of three 1D “Cartesian oscillators” - see, in particular Eq. (124), 
with d = 3. However, according to the discussion in Sec. 3.6, wavefunctions of the type (190), 
proportional to spherical harmonics Yl

m, are also eigenstates of this spherically-symmetric system. 
Represent: 

 (i) the ground state of the oscillator, and 
 (ii) each of its lowest excited states,  

taken in the form (190), as linear combinations of products of 1D oscillator wavefunctions. Also, 
calculate the degeneracy of nth energy level of the oscillator. 
 
 3.25. A spherical rotator (with r  (x2 + y2+ z2)1/2 = R = const) of mass m is in the state with 
wavefunction 







   2sin

3

1
const . 

Calculate the system’s energy. 
 
3.26.* Calculate the eigenfunctions and the energy spectrum of a 3D particle free to move inside 

a sphere of radius R: 

81 See, e.g., EM Sec. 3.1. 
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.for ,

0for ,0

rR

R,r
U  

Calculate 5 lowest energy levels with a 1% accuracy, and indicate the degeneracy of each level. 

Hint: The solution of this problem requires the so-called spherical Bessel functions jl(), whose 
description is available in most math handbooks.82 

 
3.27. Find the smallest value of depth U0 for that the spherical quantum well  









,for ,0

,for ,0

rR

RrU
U  

has a bound (localized) eigenstate. Does such a state exist for a very narrow and deep well U = -W(r), 
with a positive and finite W? 

3.28. Calculate the smallest value of depth U0 for that the following spherically-symmetric 
quantum well, 

   ,/ 0,with  00   RUeUrU Rr , 

has a bound (localized) eigenstate. 

 Hint: Try to introduce the following new variables: f  rR  and   Ce-r/2R, with an appropriate 
choice of constant C. 

 
3.29. Calculate the lifetime of the lowest metastable state in the spherical-shell potential 

,0with  ),()(  WW RrrU   

in the limit of large W. Specify the limit of validity of your result. 
 
 3.30. Calculate the condition at which a particle of mass m, moving in the field of a very thin 
spherically-symmetric shell, with 

    0with ,  WW RrU r , 

 has at least one localized (“bound”) stationary state. Compare the result with that for potential 

    0.with ,  000  WW rr U  

 Hint: Note that the first delta-function is one-dimensional, while the second one is three-
dimensional, so that parameters W and W0 have different dimensionalities. 
 
 3.31. A particle, moving in a central potential U(r), with U(r)  0 at r  , has a stationary 
state with the following wavefunction: 

,cos  reCr   

where C, , and  are constants. Calculate: 

82 See, e.g., any of the handbooks recommended in MA Sec. 16(ii). 
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 (i) probabilities of all possible values of quantum numbers m and l, 
 (ii) the confining potential, and 
 (iii) state’s energy. 
 
 3.32. Calculate the energy spectrum of a particle moving in a monotonic, but otherwise arbitrary 
attractive central potential U(r), in the approximation of large orbital quantum numbers l. Formulate the 
quantitative condition(s) of validity of your theory. Check that for the Coulomb potential U(r) = -C/r, 
your result agrees with Eq. (191). 

3.33. An electron had been in the ground state of a hydrogen-like atom/ion with nuclear charge 
Ze, when the charge suddenly changed to (Z + 1)e.83 Calculate the probabilities for the electron of the 
changed system to be: 

 (i) in the ground state, and 
 (ii) in the lowest excited state. 

Evaluate these probabilities for the particular case of the beta decay of tritium, with the formation of a 
single-positive ion of 3He. 

3.34. Calculate x2 and px
2 in the ground state of a hydrogen-like atom. Compare the results 

with Heisenberg’s uncertainty relation. What do these results tell about electron’s velocity in the atom? 
 
 3.35. Apply to Eq. (181) the Hellmann-Feynman theorem (see Problem 1.4) to prove: 

 (i) the first of Eqs. (3.201), and 
 (ii) the fact that for a spinless particle in an arbitrary spherically-symmetric attractive potential 
U(r), the ground state is always an s-state (with the orbital quantum number l = 0). 

3.36. For the ground state of a hydrogen atom, calculate the expectation values of E and E 2, 
where E is the electric field created by the atom at distance r >> r0 from its nucleus. Interpret the 

resulting relation between E2 and E 2 (at the same observation point). 
 
 
 
 
 
 
 
 
 
 
 
 

83 Such a fast change happens, for example, at the beta-decay, when one of nucleus’ neurons suddenly becomes a 
proton, emitting a high-energy electron and a neutrino which leave the system very fast (instantly on the atomic 
time scale), and do not participate in the atom transition’s dynamics. 
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Chapter 4. Bra-ket Formalism 

The objective of this chapter is a discussion of Dirac’s bra-ket formalism of quantum mechanics, which 
not only overcomes some inconveniences of wave mechanics, but also allows a natural description of 
such “internal” properties of particles as their spin. In the course of discussion of the formalism I will 
give several simple examples of its use, leaving more involved applications for the following chapters. 

 

4.1. Motivation 

We have seen that wave mechanics gives many results of primary importance. Moreover, it is 
fully (or mostly) sufficient for many applications, for example, for solid state electronics and device 
physics.  However, in the course of our survey we have filed several grievances about this approach. Let 
me briefly summarize these complaints: 

 (i) Wave mechanics is focused on the spatial dependence of wavefunctions. On the other hand, 
our attempts to analyze the temporal evolution of quantum systems within this approach (beyond the 
trivial time behavior of the eigenfunctions, described by Eq. (1.61)), run into technical difficulties. For 
example, we could derive Eq. (2.159) describing time dynamics of the metastable state, or Eq. (2.185) 
describing quantum oscillations in coupled wells, only for the simplest potential profiles, though it is 
intuitively clear that these simple results should be common for all problem of this kind. Deriving the 
equations of such processes for arbitrary potential profiles is possible using perturbation theories (to be 
reviewed in Chapter 6), but  that in the wave mechanics language they would require very bulky 
formulas.   

(ii) The same is true concerning other issues that are conceptually addressable within wave 
mechanics, e.g., the  Feynman path integral approach, description of coupling to environment, etc. 
Addressing them in wave mechanics would lead to formulas so bulky that I had (wisely :-) postponed 
them until we have got a more compact formalism on hand. 

 (iii) In the discussion of several key problems (for example the harmonic oscillator and  
spherically-symmetric potentials) we have run into rather complicated eigenfunctions coexisting with 
simple energy spectra - that infer some simple background physics. It is very important to get this 
physics revealed. 

 (iv) In the wave mechanics postulates, formulated in Sec. 1.2, quantum mechanical operators of 
the coordinate and momentum are treated very unequally – see Eqs. (1.26b). However, some key 
expressions, e.g., for the fundamental eigenfunction of a free-particle, 

        






 



rp
iexp ,      (4.1)  

or the harmonic oscillator’s Hamiltonian, 

           2
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 ,     (4.2) 

invite a similar treatment of momentum and coordinate. 
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 However, the strongest motivation for a more general formalism comes from wave mechanics’  
conceptual incapability to describe elementary particles’ spins and other internal quantum degrees of 
freedom, such as quark flavors or lepton numbers. In this context, let us review the basic facts on spin 
(which is a very representative and experimentally the most accessible of all internal quantum numbers), 
to understand what a more general formalism should explain - as a minimum.  

Figure 1 shows the conceptual  scheme of the simplest spin-revealing experiment, first carried 
out by O. Stern and W. Gerlach in 1922. 1 A collimated beam of electrons is passed through a gap 
between poles of a strong magnet, where the magnetic field B, whose orientation is taken for axis z in 
Fig. 1,  is non-uniform, so that both Bz and dBz/dz are not equal to zero. As a result, the beam splits into 
two parts of equal intensity. 

  

 

 

 

 

 

 This simplest experiment can be semi-quantitatively explained on classical, though somewhat 
phenomenological grounds by assuming that each electron has an intrinsic, permanent magnetic dipole 
moment m. Indeed, classical electrodynamics2 tells us that the potential energy U of a magnetic dipole 
in an external magnetic field is equal to (-m · B), so that the force acting on the particle, 

          B mF U ,     (4.3) 

has a nonvanishing vertical component     

      
z

mm
z

F z
zzzz 







B

B .    (4.4) 

Hence if we further postulate the existence of two possible, discrete values of mz = , this 
explains the Stern-Gerlach effect qualitatively, as a result of the incident electrons having a random 
sign, but similar magnitude of mz.  A quantitative explanation of the beam splitting angle requires the 
magnitude of  to be equal (or close) to the so-called Bohr magneton3 

     
T

J
109274.0

2
23

B


em

e .    (4.5) 

As we will see below, this value cannot be explained by any internal motion of the electron, say its 
rotation about axis z.  

1 To my knowledge, the concept of spin as an internal rotation of a particle was first suggested by R. Kronig, then 
a 20-year-old student, in January 1925, a few months before two other students, G. Uhlenbeck and S. Goudsmit - 
to whom the idea is usually attributed. The concept was then accepted and developed quantitatively by W. Pauli. 
2 See, e.g., EM Sec. 5.4, in particular Eq. (5.100). 
3 A convenient mnemonic rule is that it is close to 1 K/T. In the Gaussian units, B  e/2mec  0.927410-20. 
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Much more importantly, this semi-classical language cannot explain the results of the following 
set of multi-stage Stern-Gerlach experiments, shown in Fig. 2 - even qualitatively. In the first of the 
experiments, the electron beam is first passed through a magnetic field oriented (together with its 
gradient) along axis z, just as in Fig. 1. Then one of the two resulting beams is absorbed (or otherwise 
removed from the setup), while the other one is passed through a similar but x-oriented field. The 
experiment shows that this beam is split again into two components of equal intensity. A classical 
explanation of this experiment would require a very unnatural suggestion that the initial electrons had 
random but discrete components of the magnetic moment simultaneously in two directions, z and x. 

 However, even this assumption cannot explain the results of the three-stage Stern-Gerlach 
experiment shown on the middle panel of Fig. 2. Here, the previous two-state setup is complemented 
with one more absorber and one more magnet, now with the z-orientation again. Completely counter-
intuitively, it again gives two beams of equal intensity, as if we have not yet filtered out the electrons 
with mz corresponding to the lower beam, in the first, z-stage.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 The only way to save the classical explanation here is to say that maybe, electrons somehow 
interact with the magnetic field, so that the x-polarized (non-absorbed) beam becomes spontaneously 
depolarized again somewhere between magnetic stages. But any hope for such explanation is ruined by 
the control experiment shown on the bottom panel of Fig. 2, whose results indicate that no such 
depolarization happens. 

 We will see below that all these (and many more) results find a natural explanation in the matrix 
mechanics pioneered by W. Heisenberg, M. Born and P. Jordan in 1925. However, the matrix formalism 
is inconvenient for the solution of most problems discussed in Chapters 1-3, and for a time it was 
eclipsed by  Schrödinger’s wave mechanics, which had been put forward just a few months later. 
However, very soon P. A. M. Dirac introduced a more general bra-ket formalism, which provides a 
generalization of both approaches and proves their equivalence. Let me describe it. 
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Fig. 4.2. Three multi-stage  
Stern-Gerlach experiments. 
Boxes SG (…) denote 
magnets similar to one 
shown in Fig. 1, with the 
axis oriented in the 
indicated direction. 
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4.2. States, state vectors, and linear operators 

 The basic notion of the general formulation of quantum mechanics is the quantum state of a 
system.4 To get some gut feeling of this notion, if a quantum state  of a particle may be adequately 
described by wave mechanics, this description is given by the corresponding wavefunction (r, t). 
Note, however, the state as such is not a mathematical object (such as a function),5 and can participate in 
mathematical formulas only as a “pointer” – e.g., the index of function . On the other hand, the 
wavefunction is not a state, but a mathematical object (a complex function of space and time) giving a 
quantitative description of the state - just as the radius-vector as a function of time is a mathematical 
object describing the motion of a classical particle – see Fig. 3. Similarly, in the Dirac formalism a 
certain quantum state   is described by either of two mathematical objects, called the state vectors: the 
ket-vector   and  bra-vector  .6 

One should be cautions with the term “vector” here. Usual “geometric” vectors are defined in the 
usual geometric (say, Euclidean) space. In contrast, bra- and ket-vectors are defined in abstract Hilbert 
spaces of a given system,7 and, despite certain similarities with the geometric vectors, are new 
mathematical objects, so that we need new rules for handling them. The primary rules are essentially 
postulates and are justified only the correct description/prediction of all experimental observations their 
corollaries. While these is a general consensus among physicists what the corollaries are, there are many 
possible ways to carve from them the basic postulate sets. Just as in Sec. 1.2, I will not try too hard to 
beat the number of the postulates to the smallest possible minimum, trying instead to keep their physical 
meaning transparent. 

 

 

 

 

 

  

(i) Ket-vectors. Let us start with ket-vectors - sometimes called just kets for short. Perhaps the 
most important property of the vectors concerns their linear superposition. Namely, if several ket-
vectors j describe possible states of a quantum system, then any linear combination (superposition) 

                
j

jjc  ,     (4.6) 

4 An attentive reader could notice my smuggling term “system” instead of “particle” which was used in the 
previous chapters. Indeed, the bra-ket formalism allows the description of quantum systems much more complex 
than a single spinless particle that is a typical (though not the only possible) subject of wave mechanics. 
5 As was expressed nicely by A. Peres, one of pioneers of the quantum information theory, “quantum phenomena 
do not occur in the Hilbert space, they occur in a laboratory”. 
6 Terms bra and ket were suggested to reflect the fact that pair   and  may be considered as the set of parts 
of combination    (see Eq. (11) below), which reminds an expression in the usual angle brackets. 
7 The Hilbert space of a given system is defined as the set of all its possible state vectors. As should be clear from 
this definition, it is not advisable to speak about a “Hilbert space of quantum states”.  

Fig. 4.3. Particle’s state and its descriptions.
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where cj are any (possibly complex) c-numbers, also describes a possible state of the same system. (One 
may say that vector  belongs to the same Hilbert space as all j.) Actually, since ket-vectors are new 
mathematical objects, the exact meaning of the right-hand part of Eq. (6) becomes clear only after we 
have postulated the following rules of summation of these vectors, 

        ,jj'j'j        (4.7) 

and their multiplication by c-numbers: 

      jjjj cc   .     (4.8) 

Note that in the set of wave mechanics postulates, statements parallel to (7) and (8) were unnecessary, 
because wavefunctions are the usual (albeit complex) functions of space and time, and we know from 
the usual algebra that such relations are valid. 

 As evident from Eq. (6), the complex coefficient cj may be interpreted as the “weight” of state j 
in the linear superposition . One important particular case is cj = 0, showing that state j  does not 
participate in the superposition . By the way, the corresponding term of sum (6), i.e. product 

             j0 ,       (4.9) 

has a special name: the null-state vector. (It is important to avoid confusion between the null-state 
corresponding to vector (9), and the ground state of the system, which is frequently denoted by ket-
vector 0. In some sense, the null-state does not exist at all, while the ground state does – and frequently 
is the most important quantum state of the system.) 

 (ii) Bra-vectors and  inner (“scalar”) products. Bra-vectors , which obey the rules similar to 
Eqs. (7) and (8), are not new, independent objects: if a ket-vector     is known, the corresponding bra-
vector  describes the same state. In other words, there is a unique dual correspondence between   
and ,8 very similar (though not identical) to that between a wavefunction  and its complex conjugate 
*. The correspondence between these vectors is described by the following rule: if a ket-vector of a 
linear superposition is described by Eq. (6), then the corresponding bra-vector is 

       
j

jj
j

jj cc **  .     (4.10) 

 The mathematical convenience of using two types of vectors, rather than just one, becomes clear 
from the notion of their inner product (also called the short bracket): 

                  .     (4.11) 

This is a (generally, complex)9 scalar, whose main property is the linearity with respect to any of its 
component vectors. For example, if a linear superposition  is described by the ket-vector (6),  then 

8 Mathematicians like to say that the ket- and bra-vectors of the same quantum system are defined in two 
isomorphic Hilbert spaces. 
9 This is one of the differences of bra- and ket-vectors from the usual (geometrical) vectors whose scalar product 
is always a real scalar.  
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            j
j

jc   ,     (4.12) 

while if Eq. (10) is true, then 

            j
j

jc * .     (4.13) 

In plain English, c-numbers may be moved either into, or out of the inner products.  

 The second key property of the inner product is 

                *  .     (4.14) 

It is compatible with Eq. (10); indeed, the complex conjugation of both parts of Eq. (12) gives: 

              
j

jj
j

jj cc **** .   (4.15) 

Finally, one more rule: the inner product of the bra- and ket-vectors describing the same state 
(called the norm squared) is real and non-negative, 

               .0
2        (4.16) 

In order to give the reader some feeling about the meaning of this rule: we will show below that if state 
 may be described by wavefunction (r, t), then 

         0* 3   rd .     (4.17) 

Hence the role of the bra-ket is very similar to the complex conjugation of the wavefunction, and Eq. 
(10) emphasizes this similarity. (Note that, by convention, there is no conjugation sign in the bra-part of 
the inner product; its role is played by the angular bracket inversion.)  

 (iii) Operators. One more key notion of the Dirac formalism are quantum-mechanical linear 
operators. Just as for the operators discussed in wave mechanics, the function of an operator is the 

“generation” of one state from another: if  is a possible ket of the system, and Â  is a legitimate 
operator, then the following combination, 

              Â ,      (4.18) 

is also a ket-vector describing a possible state of the system, i.e. a ket-vector in the same Hilbert space 
as the initial vector . As follows from the adjective “linear”, the main rules governing the operators is 
their linearity with respect to both any superposition of vectors: 

        








j
jj

j
jj AccA  ˆˆ ,    (4.19) 

and any superposition of operators: 
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These rules are evidently similar to Eqs. (1.53)-(1.54) of wave mechanics.  

 The above rules imply that an operator “acts” on the ket-vector on its right; however, a 

combination of the type Â  is also legitimate and presents a new bra-vector. It is important that, 

generally, this vector does not represent the same state as ket-vector (18); instead, the bra-vector 
isomorphic to ket-vector (18) is 

            †Â .      (4.21) 

This statement serves as the definition of the Hermitian conjugate (or “Hermitian adjoint”) †Â of the 

initial operator Â . For an important class of operators, called the Hermitian operators, the conjugation 
is inconsequential, i.e. for them 

           AA ˆˆ †  .      (4.22) 

(This equality, as well as any other operator equation below, means that these operators act similarly on 
any bra- or ket-vector.) 10 

 To proceed further, we need an additional postulate, called the associative axiom of 
multiplication: into any legitimate bra-ket expression,11 not including an explicit summation, we may 
insert or remove parentheses (just in the ordinary product of scalars), meaning as usual that the 
operation inside the parentheses is performed first. The first two examples of this postulate are given by 
Eqs. (19) and (20), but the associative axiom is more general and says, for example:  

                  AAA ˆˆˆ  ,    (4.23) 

This equality serves as the definition of the last form, called the long bracket (evidently, also a scalar), 
with an operator sandwiched between a bra-vector and a ket-vector. This definition, when combined 
with the definition of the Hermitian conjugate and Eq. (14), yields an important corollary: 

                *†
*

† ˆˆˆˆ  AAAA 





 





 ,   (4.24) 

which is most frequently rewritten as 

            †* ˆˆ AA  .     (4.25) 

 The associative axiom also enables to readily explore the following definition of one more, outer 
product of bra- and ket-vectors: 

10 If we consider c-numbers as a particular type of operators, then according to Eqs. (11) and (21), for them the 
Hermitian conjugation is equivalent to the simple complex conjugation, so that only a real c-number may be 
considered as a particular case of the Hermitian operator (22). 
11 Here “legitimate” means “having a clear sense in the bra-ket formalism”. Some examples of “illegitimate” 

expressions:  AA ˆ,ˆ , , . Note, however, that the last two expressions may be legitimate if  and   

are states of different systems, i.e. if their state vectors belong to different Hilbert spaces. We will run into such 
tensor products of bra- and ket vectors (sometimes denoted, respectively, as  and ) in Chapters 6-8. 
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             .      (4.26) 

In contrast to the inner product (12), which is a scalar, this mathematical construct is an operator. 
Indeed, the associative axiom allows us to remove parentheses in the following expression: 

              .     (4.27) 

But the last bra-ket is just a scalar; hence the mathematical object (26) acting on a ket-vector (in this 
case, ) gives a new ket-vector, which is the essence of operator’s action. Very similarly, 

                   (4.28) 

- again a typical operator’s action on a bra-vector. 

 Now let us perform the following calculation. We may use the parentheses insertion into the bra-
ket equality following from Eq. (14), 

      *  ,     (4.29) 

to transform it to the following form: 

                  *  .    (4.30) 

Since this equation should be valid for any vectors   and  , its comparison with Eq. (25) gives the 
following operator equality 

                 † .     (4.31) 

This is the conjugate rule for outer products; it reminds rule (14) for inner products, but involves the 
Hermitian (rather than the usual complex) conjugation.  

 The associative axiom is also valid for the operator “multiplication”: 

           BABABABA ˆˆˆˆ,ˆˆˆˆ   ,    (4.32) 

showing that the action of an operator product on a state vector is nothing more than the sequential 
action of the operands. However, we have to be rather careful with the operator products; generally they 

do not commute: ABBA ˆˆˆˆ  . This is why the commutator, the operator defined as 

                 ABBABA ˆˆˆˆˆ,ˆ  ,     (4.33) 

is a very useful option. Another similar notion is the anticommutator:12 

                ABBABA ˆˆˆˆˆ,ˆ  .     (4.34) 

 Finally, the bra-ket formalism broadly uses two special operators: the null operator 0̂  defined   
by the following relations: 

12 Another popular notation for the anticommutator is  BA ˆ,ˆ ; it will not be used in these notes. 
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       00̂,00̂   ,     (4.35) 

for an arbitrary state ; we may say that the null operator “kills” any state, turning it into the null-state. 
Another elementary operator is the identity operator, which is also defined by its action (or rather 
“inaction” :-) on an arbitrary state vector: 

           II ˆ,ˆ .     (4.36) 

   

4.3. State basis and matrix representation 

 While some operations in quantum mechanics may be carried out in the general bra-ket 
formalism outlined above, most calculations are done for specific quantum systems that feature at least 
one full and orthonormal set {u} of states uj, frequently called a basis. These terms mean that any state 
vector of the system may be represented as a unique sum of the type (6) or (10) over its basis vectors: 

            
j

jj
j

jj uu *,  ,    (4.37) 

(so that, in particular, if  is one of the basis states, say uj’, then j = jj’) , and that  

        jj'j'j uu  .     (4.38) 

For the systems that may be described by wave mechanics, examples of the full orthonormal bases are 
represented by any orthonormal set of eigenfunctions calculated in the previous 3 chapters – as the 
simplest example, see Eq. (1.76). 

 Due to the uniqueness of expansion (37), the full set of coefficients j gives a complete 
description of state  (in a fixed basis {u}), just as the usual Cartesian components Ax, Ay, and Az give a 
complete description of a usual geometric 3D vector A (in a fixed reference frame). Still, let me 
emphasize some differences between the quantum-mechanical bra- and ket-vectors and the usual 
geometric vectors:  

  (i) a basis set may have a large or even infinite number of states uj, and  

  (ii) the expansion coefficients j  may be complex. 

 With these reservations in mind, the analogy with geometric vectors may be pushed even further. 
Let us inner-multiply both parts of the first of Eqs. (37) by a bra-vector uj’ and then transform the 
relation using the linearity rules discussed in the previous section, and Eq. (38): 

     
j

j'jj'j
j

jjj'j' uuuuu ,    (4.39) 

Together with Eq. (14), this means that any of the expansion coefficients in Eq. (37) may be presented 
as an inner product: 

      jjjj uu   *, ;     (4.40) 

these relations are analogs of equalities Aj = njA of the usual vector algebra. Using these important 
relations (which we will use on numerous occasions), expansions (37) may be rewritten as 
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j

jj
j

j
j

jj
j

j uuuu ,ˆ,ˆ    (4.41) 

A comparison of these relations with Eq. (26) shows that the outer product defined as 

      jjj uû  ,     (4.42) 

is a legitimate linear operator. Such an operator, acting on any state vector of the type (37), singles out 
just one of its components, for example, 

     jjjjj uuu  ̂ ,    (4.43) 

i.e. kills all components of the linear superposition but one. In the geometric analogy, such operator 
“projects” the state vector on its (jth) “direction”, hence its name – the projection operator. Probably, the 
most important property of the projection operators, called the closure (or completeness) relation, 
immediately follows from Eq. (41): their sum over the full basis is equivalent to the identity operator: 

      Iuu j
j

j
ˆ .     (4.44) 

This means in particular that we may insert the left-hand part of Eq. (44) into any bra-ket relation, at any 
place – the trick that we will use again and again. 

 Let us see how expansions (37) transform all the notions introduced in the last section, starting 
from the short bra-ket (11) (the inner product of two state vectors): 

                   .***

,
'

,
j

j
jjj'j'

j'j
jjj'

j'j
jj uu       (4.45) 

Besides the complex conjugation, this expression is similar to the scalar product of the usual vectors. 
Now, let us explore the long bra-ket (23): 

               j'
jj

jj'jj'j'j
jj

j AuAuA   
',',

** ˆˆ .   (4.46) 

Here, the last step uses a very important notion of matrix elements of the operator, defined as 

                j'jjj uAuA ˆ
'  .     (4.47) 

As evident from Eq. (46), the full set of the matrix elements completely characterizes the operator, just 
as the full set of expansion coefficients (40) fully characterizes a quantum state. The term “matrix” 
means, first of all, that it is convenient to present the full set of Ajj’  as a square table (matrix), with the 
linear dimension equal to the number of basis states uj of the system under the consideration, i.e. the size 
of its Hilbert space. 

 As two simplest examples, all matrix elements of the null-operator, defined by Eqs. (35), are 
evidently equal to zero (in any basis), and hence it may be presented as a matrix of zeros (the null 
matrix): 

      ,

.........

...00

...00

0















      (4.48) 
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while for the identity operator Î , defined by Eqs. (36), we readily get 

              ''''
ˆ

jjjjjjjj uuuIuI  ,    (4.49) 

i.e. its matrix (called the identity matrix) is diagonal – also in any basis: 

                .

.........

...10

...01

I















      (4.50) 

 The convenience of the matrix language extends well beyond the presentation of particular 
operators. For example, let us use definition (47) to calculate matrix elements for a product of two 
operators: 

            ""
ˆˆ)( jjjj uBAuAB  .     (4.51) 

Here we can use Eq. (44) for the first (but not the last!) time, inserting the identity operator between the 
two operators, and then expressing it via a sum of projection operators: 

            
'

"
ˆˆˆˆˆˆˆ)(

j
j'j"jj'

j'
j"j'j'jj"jj"jjj BAuBuuAuuBIAuuBAuAB . (4.52) 

This result corresponds to the standard “row by column” rule of calculation of an arbitrary element of 
the matrix product  

         

































.........

...

...

.........

...

...

AB 2221

1211

2221

1211

BB

BB

AA

AA

.    (4.53) 

Hence the product of operators may be presented (in a fixed basis!) by that of their matrices (in the same 
basis). This is so convenient that the same language is often used to present not only the long bracket, 

     






































............

...

...

,...,ˆ
2

1

2221

1211

21'
'

'
*** 


 AA

AA

AA j
j

jjj ,   (4.54) 

but even the simpler short bracket: 

          






















...

,..., 2

1

21
*** 


 j

j
j ,    (4.55) 

although these equalities require the use of non-square matrices: rows of (complex-conjugate!) 
expansion coefficients for the presentation of bra-vectors, and columns of these coefficients for the 
presentation of ket-vectors. With that, the mapping of states and operators on matrices becomes 
completely general. 

    Now let us have a look at the outer product operator (26). Its matrix elements are just 
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             *
'jjj'jjj'

uu   .    (4.56) 

These are elements of a very special square matrix, whose filling requires the knowledge of just 2N 
scalars (where N is the basis set size), rather than N2 scalars as for an arbitrary operator. However, a 
simple generalization of such outer product may present an arbitrary operator. Indeed, let us insert two 
identity operators (44), with different summation indices, on both sides of any operator: 

    















 

'

ˆˆˆˆˆ
j

j'j'
j

jj uuAuuIAIA ,    (4.57) 

and use the associative axiom to rewrite this expression as 

               
j'j

j'jjj uuAuuA
,

'
ˆˆ .     (4.58) 

But the expression in the middle long bracket is just the matrix element (47), so that we may write 

             
',

''
ˆ

jj
jjjj uAuA .     (4.59) 

The reader has to agree that this formula, which is a natural generalization of Eq. (44), is extremely 
elegant. Also note the following parallel: if we consider the matrix element definition (47) as some sort 
of analog of Eq. (40), then Eq. (59) is a similar analog of the expansion expressed by Eq. (37).  

 The matrix presentation is so convenient that it makes sense to move it by one level lower – from 
state vector products to “bare” state vectors resulting from operator’s action upon a given state. For 
example, let us use Eq. (59) to present the ket-vector (18) as 

                    









',
''

',
''

ˆ
jj

jjjj
jj

jjjj uAuuAuA'  .   (4.60) 

According to Eq. (40), the last short bracket is just j’, so that  

j
j j

jjj
jj

jjjj uAAu'   









'
''

',
''      (4.61) 

But expression in middle parentheses is just the coefficient ’j of expansion (37) of the resulting ket-
vector (60) in the same basis, so that 

      
'

''
j

jjjj A'  .     (4.62) 

This result corresponds to the usual rule of multiplication of a matrix by a column, so that we may 
represent any ket-vector by its column matrix, with the operator action looking like 
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...

...

...
2

1

2221

1211

2

1







AA

AA

'

'

.    (4.63) 

Absolutely similarly, the operator action on the bra-vector (21), represented by its row-matrix, is 
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.........

...

...

,...,...,
2221

1211

2121
††

††

**,** AA

AA

''  .   (4.64) 

 By the way, Eq. (64) naturally raises the following question: what are the elements of the matrix 
in its right-hand part, or more exactly, what is the relation between the matrix elements of an operator 
and its Hermitian conjugate? The simplest way to get an answer is to use Eq. (25) with two arbitrary 
states (say, uj and uj’) of the same basis in the role of  and . Together with the orthonormality relation 
(38), this immediately gives13  

               *†
'

ˆ 













jjjj' AA .     (4.65)  

Thus, the matrix of the Hermitian conjugate operator is the complex conjugated and transposed matrix 
of the initial operator. This result exposes very clearly the essence of the Hermitian conjugation. It also 
shows that for the Hermitian operators, defined by Eq. (22),  

         *
'' jjjj AA  ,      (4.66) 

i.e. any pair of their matrix elements, symmetric about the main diagonal, should be complex conjugate 
of each other. As a corollary, the main-diagonal elements have to be real:  

       .0Im  i.e.,*  jjjjjj AAA      (4.67) 

(Matrix (50) evidently satisfies Eq. (66), so that the identity operator is Hermitian.) 

 In order to fully appreciate the special role played by Hermitian operators in the quantum theory, 
let us introduce the key notions of eigenstates aj (described by their eigenvectors aj and aj) and 

eigenvalues (c-numbers) Aj of an operator Â , defined by the equation they have to satisfy:14 

               jjj aAaA ˆ .     (4.68) 

Let us prove that eigenvalues of any Hermitian operator are real,15   

      ,,...,2,1for,* NjAA jj       (4.69) 

13 For the sake of formula compactness, below I will use the shorthand notation in which the operands of this 
equality are just A†

jj’  and A*j’j. I believe that it leaves little chance for confusion, because the Hermitian 
conjugation sign †  may pertain only to an operator (or its matrix), while the complex conjugation sign * to a 
scalar – say a matrix element.  
14 This equation should look familiar to the reader – see the stationary Schrödinger equation (1.60), which was the 
focus of our studies in the first three chapters. We will see soon that that equation is just a particular (coordinate) 
representation of Eq. (66) for the Hamiltonian as the operator of energy. 
15 The reciprocal statement is also true: if all eigenvalues of an operator are real, it is Hermitian (in any basis). 
This statement may be readily proved by applying Eq. (93) below to the case when Akk’ = Akkk’, with Ak* = Ak. 
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while the eigenstates corresponding to different eigenvalues are orthogonal: 

       .  if,0 '' jjjj AAaa       (4.70) 

 The proof of both statements is surprisingly simple. Let us inner-multiply both sides of Eq. (68) 
by bra-vector aj’. In the right-hand part of the result, the eigenvalue Aj, as a c-number, may be taken out 
of the bra-ket, giving 

         jjjjj aaAaAa ''
ˆ  .     (4.71) 

This equality should hold for any pair of eigenstates, so that we may swap the indices in Eq. (71), and 
complex-conjugate the result: 

        
***

'''
ˆ

jjjjj aaAaAa  .     (4.72) 

Now using Eqs. (14) and (25), together with the Hermitian operator definition (22), we may transform 
Eq. (72) to the following form: 

          jjjjj aaAaAa '''
*ˆ  .     (4.73) 

Subtracting this equation from Eq. (71), we get 

           .0 ''
*

jjjj aaAA 




       (4.74) 

 There are two possibilities to satisfy this equation. If indices j and j’ are equal (denote the same 
eigenstate), then the bra-ket is the state’s norm squared, and cannot be equal to zero. Then the left 
parentheses (with j = j’) have to be zero, i.e. Eq. (69) is valid. On the other hand, if j and j’ correspond to 

different eigenvalues of Â , the parentheses cannot equal zero (we have just proved that all Aj are real!), 
and hence the state vectors indexed by j and j’ should be orthogonal, e.g., Eq. (70) is valid.  

 As will be discussed below, these properties make Hermitian operators suitable for the 
description of physical observables. 

 

4.4. Change of basis and matrix diagonalization 

 From the discussion of last section, it may look that the matrix language is fully similar to, and in 
many instances more convenient than the general bra-ket formalism. In particular, Eqs. (52), (54), (55) 
show that any part of any bra-ket expression may be directly mapped on the similar matrix expression, 
with the only slight inconvenience of using not only columns, but also rows (with their elements 
complex-conjugated), for state vector presentation. In this context, why do we need the bra-ket language 
at all? The answer is that the elements of the matrices depend on the particular choice of the basis set, 
very much like the Cartesian components of a usual vector depend on the particular choice of reference  
frame orientation (Fig. 4), and very frequently it is convenient to use two or more different basis sets for 
the same system. 

With this motivation, let us study what happens if we change from one basis, {u}, to another 
one, {v} - both full and orthonormal. First of all, let us prove that for each such pair of bases, there 

exists such an operator Û  that, first, 

Hermitian 
operator’s 
eigenvectors 
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       jj uUv ˆ ,      (4.75) 

and, second,  

               IUUUU ˆˆˆˆˆ ††  .     (4.76) 

(Due to the last property,16 Û  is called a unitary operator, and Eq. (75), a unitary transformation.)   

 

 

 

 

 

 

 

 A very simple proof of both statements may be achieved by construction. Indeed, let us take 

                j'
j'

j' uvU ˆ ,     (4.77) 

- an evident generalization of Eq. (44). Then 

    jj'j
j'

j'jj'
j'

j'j vvuuvuU   ˆ ,   (4.78) 

so that Eq. (75) has been proved. Now, applying Eq. (31) to each term of sum (77), we get 

              j'
j'

j' vuU †ˆ ,     (4.79) 

so that 

     j
j

jj
j'j

jj'jj
jj

j'jj vvvvvuuvUU   '
,

'
',

†ˆˆ  .   (4.80) 

But according to the closure relation (44), the last expression is just the identity operator, q.e.d.17 (The 
proof of the second equality in Eq. (76) is absolutely similar.)  

 As a by-product of our proof, we have also got another important expression (79). It implies, in 

particular, that while, according to Eq. (77), operator Û  performs the transform from the “old” basis uj 

to the “new” basis vj, its Hermitian adjoint †Û  performs the reciprocal unitary transform: 

      .ˆ †
jj'j

j'
j'j uuvU         (4.81) 

16 An alternative way to express Eq. (76) is to write 1ˆˆ † UU , but I will try to avoid this language. 
17 Quod erat demonstrandum (Lat.) – what needed to be proved. 
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Fig. 4.4. Transformation of 
components of a 2D vector at  
a reference frame rotation. 
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 Now, let us see how do the matrix elements of the unitary transform operators look like. 
Generally, as was stated above, operator’s elements depend on the basis we calculate them in, so we 
should be careful - initially. For example, let us calculate the elements in basis {u}: 

      .ˆ
'''in ' jjjk

k
kjjjujj vuuuvuuUuU 








     (4.82) 

Now performing a similar calculation in basis {v}, we get 

        .ˆ
in j'jj'k

k
kjj'jvjj' vuvuvvvUvU 








     (4.83) 

Surprisingly, the result is the same! This is of course true for the Hermitian conjugate of the unitary 
transform operator as well: 

       .in 'in '
††

j'jvjjujj uvUU       (4.84) 

 These expressions may be used, first of all, to rewrite Eq. (75) in a more direct form. Applying 
the first of Eqs. (41) to state vj’ of the “new” basis, we get 

            
j

jjj
j

jjjj uUvuuv ''' .    (4.85) 

Similarly, the reciprocal transform is 

            
j

jjj
j

jjjj vUuvvu †
''' .    (4.86) 

These equations are very convenient for applications; we will use them already later in this section. 

 Next, we may use Eqs. (83), (84) to express the effect of the unitary transform on expansion 
coefficients (37) of vectors of an arbitrary state . In the “old” basis {u}, they are given by Eq. (40). 
Similarly, in the “new” basis {v},  

               .in  jvj v      (4.87) 

Again inserting the identity operator in the form of closure (44), with internal index j’, and then using 
Eq. (84), we get 

    uj
j

jjj
j

jjj
j

jj
j

jjjvj UuUuuvuuv in '
'

''
'

''
'

'
'

''in 
††   








 . (4.88) 

The reciprocal transform is (of course) performed by matrix elements of operator Û : 

           vj
j

jjuj U in '
'

'in   .     (4.89) 

 Both structurally and philosophically, these expressions are similar to the transformation of 
components of a usual vector at coordinate frame rotation. For example, in two dimensions (Fig. 4): 
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    (4.90) 

(In this analogy, the equality to 1 of the determinant of the rotation matrix in Eq. (90) corresponds to the 
unitary property (76) of the unitary transform operators.) Please pay attention here: while the transform 
(75) from the “old” basis {u} to the “new” basis {v} is performed by the unitary operator, the change 
(88) of a state vectors components at this transformation requires its Hermitian conjugate. Actually, this 
is also natural from the point of view of the geometric analog of the unitary transform (Fig. 4): if the 
“new” reference frame {x’, y’} is obtained by a counterclockwise rotation of the “old” frame {x, y} by 
some angle , for the observer rotating with the frame, vector  (which is itself unchanged) rotates 
clockwise. Due to the analogy between expressions (88) and (89) on one hand, and our old friend Eq. 
(62) on the other hand, it is tempting to skip indices in our new results by writing 

          .ˆ,ˆ
in in in in 

†
vuuv

UU       (4.91) 

Since matrix elements of Û  and †Û do not depend on basis, such language is not too bad; still, the 
symbolic Eq. (91) should not be confused with genuine (basis-independent) bra-ket equalities. 

 Now let us use the same trick of identity operator insertion, repeated twice, to find the 
transformation rule for matrix elements of an arbitrary operator: 

           

















k'k
k'j'ukk'jkj'k'

k'
k'k

k
kjj'jvjj' UAUvuuAuuvvAvA

,
inin

†ˆˆ ; (4.92) 

absolutely similarly, we can get 

       
k'k

k'j'vkk'jkujj' UAUA
,

inin
† .     (4.93) 

In the spirit of Eq. (91), we may present these results symbolically as well, in a compact bra-ket form: 

               .ˆˆˆˆ,ˆˆˆˆ ††
inininin UAUAUAUA vuuv      (4.94) 

As a sanity check, let us apply this result to the identity operator: 

         u
u

v IUUUIUI in
inuin 

in 
ˆˆˆˆˆˆˆ †† 











     (4.95) 

- as it should be. One more invariant of the basis change is the trace of any operator, defined as the sum 
of the diagonal terms of its matrix in a certain basis: 

           
j

jjAA ATr ˆTr .     (4.96) 

The (easy) proof of this fact, using the relations we have already discussed, is left for reader’s exercise. 

 So far, I have implied that both state bases {u} and {v} are known, and the natural question is 
where does this information comes from in quantum mechanics of actual physical systems. To get a 
partial answer to this question, let us return to Eq. (68) that defines eigenstates and eigenvalues of an 
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operator. Let us assume that the eigenstates aj of a certain operator Â  form a full and orthonormal set, 
and find the matrix elements of the operator in the basis of these states. For that, it is sufficient to inner-
multiply both sides of Eq. (68), written for index j’,  by the bra-vector of an arbitrary state aj of the same 
set: 

           j'j'jj'j aAaaAa ˆ .     (4.97) 

The left-hand part is just the matrix element Ajj’ we are looking for, while the right hand part is just 
Aj’jj’. As a result, we see that the matrix is diagonal, with the diagonal consisting of eigenvalues: 

                   jj'jjj' AA  .      (4.98) 

In particular, in the eigenstate basis (but not necessarily in an arbitrary basis!), Ajj means the same as Aj. 
Thus the most important problem of finding the eigenvalues and eigenstates of an operator is equivalent 
to the diagonalization of its matrix,18 i.e. finding the basis in which the corresponding operator acquires 
the diagonal form (98); then the diagonal elements are the eigenvalues, and the basis itself is the 
desirable set of eigenstates. 

 Let us modify the above calculation by inner-multiplying Eq. (68) by a bra-vector of a different 
basis – say, the one, denoted {u}, in which we know the matrix elements Ajj’. The multiplication gives 

           jjkjk aAuaAu ˆ .     (4.99) 

In the left-hand part we can (as usual :-) insert the identity operator, between the operator and the ket-
vector, and then use the closure relation (44), while in the right-hand part, we can move the eigenvalue 
Aj out of the bra-ket, and then insert a summation over a new index, compensating it with the proper 
Kronecker delta symbol: 

       kk'
k

jkjjk'
k'

k'k auAauuAu  
'

'
ˆ .    (4.100) 

Moving out the sign of summation over k’, and using definition (47) of the matrix elements, we get 

        0
'

''' 
k

jkkkjkk auAA  .    (4.101) 

But the set of such equalities, for all N possible values of index k, is just a system of linear, 
homogeneous equations for unknown c-numbers uk’aj. But according to Eqs. (82)-(84), these numbers 
are nothing else than the matrix elements Uk’j of a unitary matrix providing the required transformation 
from the initial basis {u} to the basis {a} that diagonalizes matrix A. The system may be presented in 
the matrix form: 

          0

............
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...
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2221

1211





































j

j
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j

U

U

AAA

AAA

,    (4.102) 

18 Note that expression “matrix diagonalization” is a common and convenient, but dangerous jargon. (A matrix is 
just a matrix, an ordered set of c-numbers, and cannot be diagonalized.) It is OK to use this jargon if you 
remember clearly what it actually means – see the definition above.  
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and the usual condition of its consistency, 

       ,0

.........

...

...

2221

1211




j

j

AAA

AAA

    (4.103) 

plays the role of the characteristic equation of the system. This equation has N roots Aj,; plugging each 
of them back into system (102), we can use it to find N matrix elements Ukj (k = 1, 2, …N) 
corresponding to this particular eigenvalue. However, since equations (103) are homogeneous, they 
allow finding Ukj only to a constant multiplier. In order to ensure their normalization, i.e. the unitary 
character of matrix U, we may use the condition that all eigenvectors are normalized (just as the basis 
vectors are): 

    ,1
2
 

k
kjjk

k
kjjj Uauuaaa     (4.104) 

for each j. This normalization completes the diagonalization.19 

 Now (at last!) I can give the reader some examples. As a simple but very important case, let us 
diagonalize the operators described (in a certain 2-function basis {u}) by the so-called Pauli matrices  

.
10

01
σ,

0

0
σ,

01

10
σ 

















 









 zyx i

i
(4.105) 

Though introduced by a physicist, with a specific purpose to describe electron’s spin, these matrices 
have a general mathematical significance, because together with the 22 identity matrix I, they provide 
a full, linearly-independent 22 basis - meaning that an arbitrary 22 matrix may be presented as 

      ,σσσI0
2221

1211
zzyyxx aaaa

AA

AA









    (4.106) 

with a unique set of 4 coefficients a. 

Let us start with diagonalizing matrix x. For it, the characteristic equation (103) is evidently 

        ,0
1

1





j

j

A

A
     (4.107) 

and has two roots, A1,2 = ±1. (Again, the numbering is arbitrary!) The reader may readily check that the 
eigenvalues of matrices y and z are similar. However, the eigenvectors of the operators corresponding 
to all these matrices are different. To find them for x, let us plug its first eigenvalue, A1 = +1, back into 
equations (101), written for this particular case: 

           
.0

,0

1211

1211





auau

auau
     (4.108) 

19 A possible slight complication here are degenerate cases when characteristic equation gives certain equal 
eigenvalues corresponding to different eigenvectors. In this case the requirement of the mutual orthogonality of 
these states should be additionally enforced.  
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The equations are compatible (of course, because the used eigenvalue A1 = +1 satisfies the characteristic 
equation), and any of them gives  

           .e. i., 21111211 UUauau      (4.109) 

With that, the normalization condition (104) yields 

              
2

12

21

2

11  UU .     (4.110) 

Although the normalization is insensitive to the simultaneous multiplication of U11 and U21 by the same 
phase factor exp{i} with any real , it is convenient to keep the coefficients real, for example taking  
= 0, i.e. to get 

                
2

1
2111 UU .     (4.111) 

 Performing an absolutely similar calculation for the second characteristic value, A2 = -1, we get 
U12 = -U22, and we may choose the common phase to get  

               
2

1
2212  UU ,     (4.112) 

so that the whole unitary matrix for diagonalization of the operator corresponding to x is20 

         ,
11

11

2

1
UU †











 xx      (4.113) 

For what follows, it will be convenient to have this result expressed in the ket-relation form – see Eqs. 
(85)-(86): 

         ,
2

1
,

2

1
212221122212211111 uuuUuUauuuUuUa     (4.114) 

          ,
2

1
,

2

1
212

†
221

†
122212

†
211

†
111 aaaUaUuaaaUaUu       (4.115) 

 These results are already sufficient to understand the Stern-Gerlach experiments described in 
Sec. 1 - with two additional postulates. The first of them is that particle’s interaction with external 
magnetic field may be described by the following vector operator of the dipole magnetic moment:21 

                           Sm ˆˆ  ,      (4.116) 

where the coefficient , specific for every particle type, is called the gyromagnetic ratio,22 and Ŝ  is the 
vector operator of spin. For the so-called spin-½ particles (including the electron), this operator may be 
represented, in the so-called z-basis,  by the following 3D vector of the Pauli matrices (105): 

20 Note that though this particular unitary matrix is Hermitian, this is not true for an arbitrary choice of phases . 
21 This is the key point in the electron’s spin description, developed by W. Pauli in 1925-1927. 
22For an electron, with its negative charge q = -e, the gyromagnetic ratio is negative:  e = -gee/2me, where ge  2 
is the dimensionless g-factor. Due to quantum electrodynamics effects, the factor is slightly higher than 2: ge = 
2(1 + /2 + …)  2.002319304…, where   e2/40c  (EH/mec

2)1/2  1/137 is the fine structure constant. (The 
origin of its name will be clear from the discussion in Sec. 6.3.) 
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   (4.117) 

and nx,y,z are the usual Cartesian unit vectors in 3D space. (In the quantum-mechanics sense, they are just 
c-numbers, or rather “c-vectors”.) The z-basis, in which Eq. (177) is valid, is defined as an orthonormal 
basis of two states, frequently denoted  an , in which the z-component of the vector operator of spin is 
diagonal, with eigenvalues +/2 and -/2. Note that we do not “understand” what exactly these states 
are,23 but loosely associate them with a certain internal rotation of the electron about z-axis, with either 
positive or negative angular momentum component Sz. However, any attempt to use such classical 
interpretation for quantitative predictions runs into fundamental difficulties – see Sec. 5.7 below. 

 The second new postulate describes the general relation between the bra-ket formalism and 
experiment.24 Namely, in quantum mechanics, each real observable A is represented by a Hermitian 

operator ,ˆˆ †AA   and a result of its measurement in a quantum state , described by a linear 
superposition of the eigenstates aj of the operator,  

              
j

jj a ,     with  jj a ,    (4.118) 

may be only one of corresponding eigenvalues Aj.25 If state (118) and all eigenstates j are normalized to 
unity,  

    1,1  jj aa ,     (4.119) 

then the probability of outcome Aj is26 

        jjjjjj aaW  *2
,        (4.120) 

This relation is evidently a generalization of Eq. (1.22) in wave mechanics. As a sanity check, let us 
assume that the set of eigenstates aj is full, and calculate the sum of all the probabilities: 

        1ˆ    IaaW
j j

jjj .    (4.121) 

 Now returning to the Stern-Gerlach experiment, conceptually the description of the first (z-
oriented) experiment shown in Fig. 1 is the hardest for us, because the statistical ensemble describing 
the unpolarized electron beam at its input is mixed (“incoherent”), and cannot be described by a pure 

23 If you think about it, word “understand” typically means that we can explain a new, more complex notion in 
terms of those discussed earlier and considered “known”. In our example, we cannot express the spin states by 
some wavefunction (r), or any other mathematical notion discussed earlier. The bra-ket formalism has been 
invented exactly to enable mathematical analysis of such “new” quantum states. 
24 Here again, just like in Sec. 1.2, the statement implies the abstract (mathematical) notion of “ideal 
experiments”, postponing the discussion of real (physical) measurements until Sec. 7.7. 
25 As a reminder, in the end of Sec. 3 we have already proved that such eigenstates corresponding to different Aj 
are orthogonal. If any of these values is degenerate, i.e. corresponds to several different eigenstates, they should 
be also selected orthogonal, in order for Eq. (118) to be valid. 
26 This key relation, in particular, explains the most common term for the (generally, complex) coefficients j, the 
probability amplitudes. 
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(“coherent”) superposition of the type (6) that have been the subject of our studies so far. (We will 
discuss the mixed ensembles in Chapter 7.) However, it is intuitively clear that its results, and in 
particular Eq. (6), are compatible with the description of its two output beams as sets of electrons in pure 
states  and , respectively. The absorber following that first stage (Fig. 2) just takes all spin-down 
electrons out of the picture, producing an output beam of polarized electrons in a pure  state. For such 
beam, probabilities (120) are W = 1 and W = 0.  This is certainly compatible with the result of the 
“control” experiment shown on the bottom panel of Fig. 2: the repeated SG (z) stage does not split such 
a beam, keeping the probabilities the same.  

 Now let us discuss the double Stern-Gerlach experiment shown on the top panel of Fig. 2. For 
that, let us present the z-polarized beam in another basis of two states (I will denote them as  and ) 

in which, by definition, the matrix of operator xŜ  is diagonal. But this is exactly the set we called a1,2 in 

the x matrix diagonalization problem solved above. On the other hand, states  and  are exactly what 
we called u1,2 in that problem, because in this basis, matrices z and hence Sz are diagonal. Hence, in 
application to the electron spin problem, we may rewrite Eqs. (114)-(115) as  

               ,
2

1
,

2

1
    (4.122) 

                       ,
2

1
,

2

1
    (4.123) 

Currently, for us the first of Eqs. (123) is most important, because it shows that the quantum 
state of electrons entering the SG (x) stage may be presented as a coherent superposition of electrons 
with Sx = +/2 and Sx = -/2. Notice that the beams have equal probability amplitude moduli, so that 
according to Eq. (122), the split beams  and  have equal intensities, in accordance with experiment. 
(The minus sign before the second ket-vector is of no consequence here, though it may have an impact 
on outcome of other experiments – for example if the  and  beams are brought together again.)  

 Now, let us discuss the most mysterious (from the classical point of view) multi-stage SG 
experiment shown on the middle panel of Fig. 2. After the second absorber has taken out all electrons in, 
say, the  state, the remaining electrons in state  are passed to the final, SG (z), stage. But according 
to the first of Eqs. (122), this state may be presented as a (coherent) linear superposition of the  and  
states, with equal amplitudes. The stage separates these two states into separate beams, with equal 
probabilities W = W = ½ to find an electron in each of them, thus explaining the experimental results. 

 To conclude our discussion of the multistage Stern-Gerlach experiment, let me note that though 
it cannot be explained in terms of wave mechanics (which operates with scalar de Broglie waves), it has 
an analogy in classical theories of vector fields, such as the classical electrodynamics. Let a plane 
electromagnetic wave propagate perpendicular to the plane of drawing in Fig. 5, and pass through linear 
polarizer 1. Similarly to the initial SG (z) stages (including the following absorbers) shown in Fig. 2, the 
polarizer produces a wave linearly polarized in one direction – the vertical direction in Fig. 5. Its electric 
field vector has no horizontal component, as may be revealed by wave’s full absorption in a 
perpendicular polarizer 3. However, let us pass the wave through polarizer 2 first. In this case, the 
output wave does acquire a horizontal component, as can be, again, revealed by passing it through 
polarizer 3. If angles between polarization direction 1 and 2, and between 2 and 3, are both equal /4, 
each polarizer reduces the wave amplitude by a factor of 2, and hence intensity by a factor of 2, exactly 
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like in the multistage SG experiment, with polarizer 2 playing the role of the SG (x) stage. The “only” 
difference is that the necessary angle is /4, rather than by /2 for the Stern-Gerlach experiment. In 
quantum electrodynamics (see Chapter 9 below), which confirms the classical predictions for this 
experiment, this difference is explained by that between the integer spin of the electromagnetic field 
quanta, photons, and the half-integer spin of electrons. 

 

 

 

  

 

 

    

4.5. Observables: Expectation values and uncertainties 

 After this particular (and hopefully very inspiring) example, let us discuss the general relation 
between the Dirac formalism and experiment in more detail. The expectation value of an observable 
over any statistical ensemble (not necessarily coherent) may be always calculated using the general rule 
(1.37). For the particular case of a coherent superposition (118), we can combine that definition with Eq. 
(120) and the second of Eqs. (118), and then use Eqs. (59) and (98) to write 

                
j'j

j'j'jj
j

jjj
j

jjj
j

jj aaAaaaAaAWAA
,

ˆ*  .  (4.124) 

Now using the completeness relation (44) twice, with indices j and j’, we arrive at a very simple and 
important formula27 

 AA ˆ .     (4.125) 

This is a clear analog of the wave-mechanics formula (1.23) – and as we will see in the next chapter, 
may be used to derive it. A huge advantage of Eq. (125) is that it does not explicitly involve the 
eigenvector set of the corresponding operator, and allows the calculation to be performed in any 
convenient basis.28 

For example, let us consider an arbitrary state  of spin-½, and calculate the expectation values 
of its components. The calculations are easiest in the z-basis, because we know the operators of the 
components in that basis – see Eq. (117). Representing the ket- and bra-vectors of our state as linear 
superpositions of vectors of the basis states  and , 

  **,    .    (4.126)  

27 This equality reveals the full beauty of Dirac’s notation. Indeed, initially the quantum-mechanical brackets just 
reminded the angular brackets used for statistical averaging. Now we see that in this particular (but most 
important) case, the angular brackets of these two types may be indeed equal to each other!  
28 Note that Eq. (120) may be rewritten in the form similar to Eq. (125):  jjW  ˆ , where jjj aâ  

is the operator (42) of projection upon the jth  eigenstate aj. 
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Fig. 4.5. Light polarization sequence similar to the 3-stage 
Stern-Gerlach  experiment shown on the middle panel of  Fig. 2.
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and plugging these expressions to Eq. (125) written for observable Sz, we get 

    
 

.ˆˆˆˆ

ˆ

****

**








 





zzzz

zz

SSSS

SS




  (4.127) 

Now there are two equivalent ways (both very simple :-) to calculate the bra-kets in this 
expression. The first one is to represent each of them in the matrix form in the z-basis, in which bra- and 
ket-vectors of states  and  are, respectively, matrix-rows (1, 0) and (0, 1), or the similar matrix-
columns. Another (perhaps more elegant) way is to use the general Eq. (59), for the z-basis, to write 

          
2

ˆ,
2

ˆ,
2

ˆ 
zyx SiSS . (4.128) 

For our particular calculation, we may plug the last of these expressions into Eq. (127), and to use the 
orthonormality conditions (119): 

     0,1  .    (4.129) 

Both calculations give (of course) the same result: 

        




  

**

2


zS .     (4.130) 

This particular result might be also obtained using Eq. (120) for probabilities W = * and W = 
*: 

       


























   2222

**  WWSz .   (4.131) 

The formal way (127), based on using Eq. (125), has, however, an advantage of being applicable, 
without any change, to finding the observables whose operators are not diagonal in the z-basis, as well. 
In particular, absolutely similar calculations give 

   ,
2

ˆˆˆˆ ****** 




    

xxxxx SSSSS  (4.132) 

  ,
2

ˆˆˆˆ ****** 




    

iSSSSS yyyyy  (4.133) 

Similarly, we can express, via the same coefficients  and , the r.m.s. fluctuations of all spin 
components. For example, let us have a good look at the spin state . According to Eq. (126), in this 
state  = 1 and  = 0, so that Eqs. (130)-(133) yield: 

          0,
2

 yxz SSS


.     (4.134) 

Now let us use the same Eq. (125) to calculate the spin component uncertainties. According to Eqs. 

(105) and (117), operators of spin component squared are equal to (/2)2 Î , so that the general Eq. (1.33) 
yields 
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ISSSS xxxx            (4.135b) 

        
22

2222

2
ˆ

2
0ˆ 
















ISSSS yyyy .           (4.135c) 

While Eqs. (134) and (135a) are compatible with the classical notion of the spin being 
“definitely in the  state”, this correspondence should not be overstretched to the interpretation of this 
state as a certain (z) orientation of electron’s magnetic moment m, because such classical picture cannot 
explain Eqs. (135b) and (135c). The best (but still imprecise!) classical image I can offer is the magnetic 
moment m oriented, on the average, in the z-direction, but still having x- and y-components strongly 
“wobbling” about their zero average values. 

  It is straightforward to verify that in the x-polarized and y-polarized states the situation is similar, 
with the corresponding change of indices. Thus, in neither state may all 3 components of the spin have 
exact values. Let me show that this is not just an occasional fact, but reflects the most profound property 
of quantum mechanics, the uncertainty relations. Consider 2 observables, A and B, that may be 
measured in the same quantum state. There are two possibilities here. If operators corresponding to the 
observables commute, 

          0ˆ,ˆ BA ,      (4.136) 

then all the matrix elements of the commutator in any orthogonal basis (in particular, in the basis of 
eigenstates aj of operator A) are also zero. From here, we get 

      0ˆˆˆˆˆ,ˆ
'''  jjjjjj aABaaBAaaBAa .   (4.137) 

In the first bra-ket of the middle expression, let us act by operator Â  on the bra-vector, while in the 
second one, on the ket-vector. According to Eq. (68), such action turns operators into the corresponding 
eigenvalues, so that we get 

        .0ˆˆˆ 





  j'jj'jj'jj'j'jj aBaAAaBaAaBaA    (4.138) 

 This means that if eigenstates of operator Â  are non-degenerate (i.e. Aj  Aj’ if j  j’), the matrix 

of operator B̂  has to be diagonal in basis aj, i.e., the eigenstate sets of operators Â  and B̂  coincide. 
Such pairs of observables, that share their eigenstates, are called compatible. For example, in wave 
mechanics of a particle, momentum (1.26) and the kinetic energy (1.27) are compatible, sharing 
eigenfunctions (1.29). Now we see that this is not occasional, because each Cartesian component of the 
kinetic energy is proportional to the square of the corresponding component of the momentum, and any 
operator commutes with an arbitrary power of itself: 

      0ˆˆ...ˆˆˆ...ˆˆˆˆ...ˆˆ,ˆˆ,ˆ 







 AAAAAAAAAAAAAA

nnn

n
 .   (4.139) 
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 Now, what if operators Â  and B̂  do not commute? Then the following general uncertainty 
relation is valid:29 

             BABA ˆ,ˆ
2

1
 .     (4.140) 

The proof of Eq. (140) may be divided into two steps, the first of which proves the so-called Schwartz 
inequality:30 

          
2

  .     (4.141) 

The proof may be started by using postulate (16) - that the norm of any legitimate state of the system 
cannot be negative. Let us apply this postulate to the state with the following ket-vector: 

            ,



       (4.142) 

where  and  are possible, non-null states of the system, so that the denominator in Eq. (142) is not 
equal to zero. For this case, Eq. (16) gives 

         .0




















 








     (4.143) 

Opening the parentheses, we get 

            0
2

 












 .  (4.144) 

After the cancellation of one inner product   in the numerator and denominator of the last term, it 
cancels with the 2rd (or 3rd) term, proving the Schwartz inequality (141).  

 Now let us apply this inequality to states 

            Â
~

   and   B̂
~ ,     (4.145)  

where, in both relations,  is the same (but otherwise arbitrary) possible state of the system, and the 
deviations operators are defined similarly to observable deviations (see Sec. 1.2), for example, 

        AAA  ˆ~̂
.      (4.146) 

With this substitution, and taking into account that the observable operators Â  and B̂  are Hermitian, 
Eq. (141) yields 

                
2

22 ~̂~̂~̂~̂  BABA  .    (4.147) 

29 Note that both sides of Eq. (140) are state-specific; the uncertainty relation statement is that this inequality 
should be valid for any possible quantum state of the system. 
30 This inequality is the quantum-mechanical analog of the usual vector algebra result 22  2. 
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Since state  is arbitrary, we may use Eq. (125) to rewrite this relation as an operator inequality: 

      BABA
~̂~̂

 .     (4.148) 

 Actually, this is already an uncertainty relation, even “better” (stronger) than its standard form  
(140); moreover, it is more convenient in some cases. In order to proceed to Eq. (140), we need a couple 
more steps. First, let us notice that the operator product in Eq. (148) may be recast as  

    









 BAiCC

i
BABA

~̂
,

~̂ˆ  where,ˆ
2

~̂
,

~̂

2

1~̂~̂
.    (4.149) 

Any anticommutator of Hermitian operators, including that in Eq. (149), is a Hermitian operator, and its 
eigenvalues are purely real, so that its expectation value (in any state) is also purely real. On the other 
hand, the commutator part of Eq. (149) is just 

                    BAiABBAiAABBiBBAAiBAiC ˆ,ˆˆˆˆˆˆˆˆˆ~̂
,

~̂ˆ 



 . (4.150) 

Second, according to Eqs. (52) and (65), the Hermitian conjugate of any product of Hermitian operators 

Â  and B̂  is just the product of swapped operators. Using the fact, we may write 

                CBAiBAiABiABiBAiBAiC ˆˆ,ˆˆˆˆˆ)ˆˆ()ˆˆ(ˆ,ˆˆ ††††  ,  (4.151) 

so that operator Ĉ  is also Hermitian, i.e. its eigenvalues are also real, and thus its average is purely real 
as well. As a result, the square of the average of the operator product (149) may be presented as 

222
ˆ

2

1~̂
,

~̂

2

1~̂~̂
CBABA 





 .    (4.152) 

Since the first term in the right-hand part of this equality cannot be negative,  

      
222

ˆ,ˆ
2

ˆ
2

1~̂~̂
BA

i
CBA  ,    (4.153) 

and we can continue Eq. (148) as 

        BABABA ˆ,ˆ
2

1~̂~̂
 ,    (4.154) 

thus proving Eq. (140).  

 For the particular case of operators x̂  and xp̂ (or a similar pair of operators for another Cartesian 

coordinate), we can readily combine Eq. (140) with Eq. (2.14b) and to prove the original Heisenberg’s 
uncertainty relation (2.13). For the spin-1/2 operators defined by Eq. (117), it is straightforward (and 
highly recommended to the reader) to show that 

                   ,ˆˆ,ˆ
zyx SiSS        (4.155) 

with similar relations for other pairs of indices taken in the “correct” order (from x to y to z to x, etc.). 
As a result, the uncertainty relations (140) for spin-1/2 particles, notably including electrons, are 
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           zyx SSS
2


 ,  etc.     (4.156) 

In particular, in the  state, the right-hand part of this relation equals (/2)2, and neither of the 
uncertainties Sx, Sy can equal zero. As a reminder, our direct calculation earlier in this section has 
shown that each of these uncertainties is equal to /2, i.e. their product equals to the lowest value 
allowed by the uncertainty relation (156). In this aspect, the spin-polarized states are similar to the 
Gaussian wave packets studied in Sec. 2.2. 

  

4.6. Quantum dynamics: Three pictures 

 So far in this chapter, I shied away from the discussion of system dynamics, implying that the 
bra- and ket-vectors of the system are their “snapshots” at a certain instant t. Now we are sufficiently 
prepared to examine their time dependence. One of the most beautiful features of quantum mechanics is 
that the time evolution may be described using either of three alternative “pictures”, giving exactly the 
same final results for expectation values of all observables. 

 From the standpoint of our wave mechanics experience, the Schrödinger picture is the most 
natural. In this picture, the operators corresponding to time-independent observables (e.g., to the 
Hamiltonian function H of an isolated system) are also constant, while the bra- and ket-vectors of the 
quantum state of the system evolve in time as 

           )(),(ˆ)(),,(ˆ)()( 0000
† tttutttutt   ,   (4.157) 

where ),(ˆ 0ttu  is the time-evolution operator, which obeys the following differential equation: 

          ,ˆˆˆ uHui        (4.158) 

where Ĥ  is the Hamiltonian operator of the system (that is always Hermitian, HH ˆ†ˆ  ), and the dot 
means the differentiation is over argument t, but not t0. While this equation is a very natural replacement 
of the wave-mechanical equation (1.25), and is also frequently called the Schrödinger equation,31 it still 
should be considered as a new, more general postulate, which finds its final justification (as it is usual in 
physics) in the agreement between its corollaries with experiment - more exactly, in having not a single 
credible contradiction with experiment.  

 Starting the discussion of Eqs. (157)-(158), let us first consider the case of a system described by 
a time-independent Hamiltonian, whose eigenstates an and eigenvalues En obey Eq. (68),32 

      nnn aEaH ˆ ,     (4.159) 

and hence are also time-independent. (Similarly to the wavefunctions n defined by Eq. (1.60), an are 
called the stationary states of the system.) Let us use Eqs. (157)-(159) to calculate the law of time 
evolution of the expansion coefficients n, defined by Eq. (118), in the stationary state basis: 

31 Moreover, we will be able to derive Eq. (1.25) from Eq. (154) – see Sec. 5.2. 
32 Here I intentionally use index n rather than j, to emphasize the special role played by the stationary eigenstates 
an in quantum dynamics. 
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 (4.160) 

This is the same simple equation as Eq. (1.59), and its integration yields a similar result – cf. Eq. (1.61), 
just with the initial time t0 rather than 0: 

             






  00 exp)()( ttE

i
tt nnn


 .    (4.161) 

In order to illustrate how does this result work, let us consider spin-½ dynamics in a time-
independent, uniform external magnetic field B, taking its direction for axis z. To construct the system’s 
Hamiltonian, we may apply the correspondence principle to the classical expression for the energy of a 
magnetic moment m in the external magnetic field B, 33 

        B mU .      (4.162) 

In quantum mechanics, the operator corresponding to the moment m is given by Eq. (116) (suggested by 
W. Pauli), so that the spin-field interaction is described by the so-called Pauli Hamiltonian: 

               ,ˆˆˆˆ
zSH B  BB Sm     (4.163) 

where zŜ  is the operator of the z-component of electron’s spin. According to Eq. (117), in the z-basis of 

states  and , the matrix of operator (163) is 

       .Ωwith  ,σ
2

Ω
σ

2
H B

B 
 zz


    (4.164) 

The constant  so defined coincides with the classical frequency of the precession of a symmetric top, 
with an angular momentum S and magnetic moment m = S, about axis z, induced by external torque   
= mB: 34 

             B
B 


S

m

S
Ω .             (4.165a) 

For an electron, with its negative gyromagnetic ratio e = -gee/2me, neglecting the minor difference 
between factors ge and 2, we get 

                    B
em

e
 ,               (4.165b) 

i.e. the frequency’s magnitude coincides with that of the cyclotron frequency c – see Eq. (3.48). 

 In order to apply the general Eq. (161), at this stage we would need to find the eigenstates an and 
eigenenergies En of our Hamiltonian. However, with our (smart :-) choice of the direction of axis z, the 
Hamiltonian matrix is already diagonal: 

33 See, e.g., EM Eq. (5.100). As a reminder, we have already used this expression for the derivation of Eq. (3). 
34 See, e.g., CM Sec. 6.5, in particular Eq. (6.72), and EM Sec. 5.5, in particular Eq. (5.114) and its discussion. 
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meaning that  and  are the eigenstates of the system, with eigenenergies, respectively,  

                
2

    and
2





 


EE .    (4.167) 

(Note that their difference, 

       B   ΩΔ EEE ,    (4.168) 

corresponds to the classical energy 2mB of flipping the magnetic dipole with moment m = /2, 
oriented along the direction of field B.35) With that, Eq. (161) immediately yields following expressions 
for the time evolution of the expansion coefficients: 

           ,
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allowing a ready calculation of time evolution of the expectation values of any observable.  

 In particular, we can calculate the expectation value of Sz as a function of time by applying Eq. 
(130) to an arbitrary time moment t: 
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.  (4.170) 

Thus the expectation value of the spin component parallel to the applied magnetic field remains 
constant, regardless of the initial state of the system. However, this is not true for the components 
perpendicular to the field. For example, Eq. (132), applied to moment t, gives 
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. (4.171) 

Clearly, this expression describes sinusoidal oscillations with frequency (165). The amplitude 
and phase of these oscillations depend on initial conditions. Indeed, solving Eqs. (132)-(133) for the 
expansion coefficient products, we get relations  

                      tSitStttSitStt yxyx  
** ,     (4.172) 

valid for any time t. Plugging their values for t = 0 into Eq. (171), we get 
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  (4.173) 

An absolutely similar calculation using Eq. (133) gives 

35 Note also that if the product B  is positive, so is , so that E is negative, while E is positive. This is in the 
correspondence with the classical picture of a magnetic dipole m having negative potential energy when it is 
aligned with the external magnetic field B – see Eq. (162).   
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            .sin0cos0)( tStStS xyy      (4.174) 

 These formulas show, for example, if at moment t = 0 the spin’s state was , i.e. Sx(0) = Sy(0) 
= 0, then the amplitude of oscillation of the both “lateral” component of spin vanishes. On the other 
hand, if the spin was initially in state →, i.e. had the definite, maximum possible value of Sx , equal to 
/2 (in classics, we would say “the spin /2 was oriented in direction x”), then both expectation values 
Sx and Sy oscillate in time36 with this amplitude, with the phase shift /2 between them. These 
formulas may be interpreted as the torque-induced precession of the Cartesian components of the spin 
vector of length S = /2, confined in plane [x, y], with classical frequency  = B about axis z 

(counterclockwise if B > 0).  

 Thus, the gyromagnetic ratio is just the angular frequency of the torque-induced precession of 
spin (about field’s direction) per unit magnetic field; for electrons, e  1.7611011 s-1T-1; for protons, 
the ratio is much smaller because of their larger mass: p  2.675108 s-1T-1, and for larger spin-½  
nuclei,  may be much smaller still – e.g., 8.681106 s-1T-1 for the 57Fe nucleus.37  

 Note, however, that this classical language does not describe large quantum-mechanical 
uncertainties of these observables, which are absent in the classical picture of the precession – at least 
when it starts from a definite orientation of the angular momentum vector. 

Now let us return to the discussion of the general Schrödinger equation (158) and prove the 
following fascinating fact: it is possible to write the general solution of this operator equation. In the 
easiest case when the Hamiltonian is time-independent, this solution is an exact analog of Eq. (161),  

       .ˆexpˆˆexp),(ˆ),(ˆ 00000
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  (4.175) 

To start its proof we should, first of all, understand what does a function (in this case, the exponent) of 
an operator mean. In the operator (and matrix) algebra, such functions are defined by their Taylor 
expansions; in particular, Eq. (175) means that 
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 (4.176) 

where ,ˆˆˆˆ,ˆˆˆ 32 HHHHHHH   etc. Working with such series of operator products is not as hard as one 
could imagine, due to their regular structure. For example, let us differentiate Eq. (176) over t: 

36 This is one more (hopefully, redundant :-) illustration of the difference between averaging over the statistical 
ensemble and over time: in Eqs. (170), (173)-(174), and quite a few relations below, only the former averaging 
has been performed, so the results are still functions of time.  
37 Such composite particles as nuclei (and, from the point of view of high-energy physics, even such hadrons as 
protons) may be characterized by a certain net spin (and hence by certain ) only if during the considered process 
their internal degrees of freedom remain in a certain (usually, ground) quantum state. 
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 (4.177) 

so that the differential equation (158) is indeed satisfied. On the other hand, Eq. (175) also satisfies the 
initial condition 

        ,ˆ),(ˆ),(ˆ 0000
† Ittuttu       (4.178) 

which immediately follows from the definition (157) of the evolution operator, so it is indeed the 
(unique) solution for the time evolution operator – in the Schrödinger picture. 

 Now let us allow operator Ĥ  to be a function of time, but with the condition that its “values” (in 
fact, operators) at different instants commute with each other: 

                t"t't"Ht'H ,any for ,0)(ˆ),(ˆ  .    (4.179) 

(An important example of such a Hamiltonian is that of a particle under the effect of a classical, time-
dependent force F(t): 

                 .ˆ)(ˆ rF  tH F      (4.180) 

Indeed, the radius-vector operator r̂  does not depend explicitly on time and hence commutes with itself, 
as well as with c-numbers F(t’) and F(t”).) In this case it is sufficient to replace, in all above formulas, 

product )(ˆ
0ttH   with the corresponding integral over time; in particular, Eq. (175) is generalized as 
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    (4.181) 

This replacement means that the first form of Eq. (176) should be replaced with   
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 (4.182) 

The proof that the first form of Eq. (182) satisfies Eq. (158) is absolutely similar to the one carried out 
above.  

 We may now use Eq. (181) to show that the time-evolution operator is unitary at any moment, 
even for the time-dependent Hamiltonian. Indeed, from that formula, 
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.  (4.183) 

Since each of the exponents may be presented with the Taylor series (182), and, thanks to Eq. (179), 
different components of these sums may be swapped at will, expression (183) may be manipulated 
exactly as the product of c-number exponents, in particular rewritten it as 

Evolution 
operator: 
explicit 
expression 
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This property ensures, in particular, that the system state’s normalization does not depend on time:  

             )()()()(ˆ)(ˆ)()()( 000000
† tttt,tut,tuttt   .   (4.185) 

 The most difficult cases for the explicit solution of Eq. (158) are those when Eq. (179) is 
violated.38 It may be proven that in these cases the integral limits in the last form of Eq. (182) should be 
truncated, giving the so-called Dyson series 
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   (4.186) 

Since we would not have time to use this relation in our course, I will skip its proof.39  

  Let me now return to the general discussion of quantum dynamics to outline its alternative, 
Heisenberg picture. For that, let us recall that according to Eq. (125), in quantum mechanics the 
expectation value of any observable A is a long bra-ket. Below we will see that other quantities (say, the 
rates of quantum transitions between pairs of different states, say  and ) may also be measured in 
experiment; the most general form for all such measurable quantities is the following long bracket: 

            Â .      (4.187) 

As has been discussed above, in the Schrödinger picture the bra- and ket-vectors of the states are time-
dependent, while the variable operators stay constant (if the corresponding variables do not explicitly 
depend on time), so that Eq. (187), applied to moment t, may be presented as 

      )(ˆ)( S tAt  ,     (4.188) 

where index “S” emphasizes the Schrödinger picture. Let us apply to the bra- and ket-vectors in this 
expression the evolution law (157): 

       .)(),(ˆˆ),(ˆ)(ˆ
00S00

† tttuAttutA       (4.189) 

This equality means that if we form a long bracket with bra- and ket-vectors of the initial-time states, 
together with the following time-dependent Heisenberg operator40 

          ),(ˆ)(ˆ),(ˆ),(ˆˆ),(ˆ)(ˆ
00H00S0H

†† ttutAttuttuAttutA  ,   (4.190) 

all experimentally measurable results will remain the same as in the Schrödinger picture: 

            .)(),(ˆ)(ˆ
00H0 tttAtA       (4.191) 

38 We will run into such situations in Chapter 7, but will not need to apply Eq. (186). 
39 It may be found, for example, in Chapter 5 of J. Sakurai’s textbook – see References. 
40 Note this relation is similar in structure to the symbolic Eqs. (94). 
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Let us see how does the Heisenberg picture work for the same simple (but very important!) 
problem of the spin-½ precession in a z-oriented magnetic field, described (in the z-basis) by the 
Hamiltonian matrix (164). In that basis, Eq. (158) for the time-evolution operator reads 
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 .  (4.192) 

We see that in this simple case the equations for different matrix elements of the evolution operator 
matrix are decoupled, and readily solvable, using the universal initial condition (178):41 
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Now we can use Eq. (190) to find the Heisenberg-picture operators of spin components. Dropping index 
“H” for brevity (the Heisenberg-picture operators are clearly marked by their dependence on time 
anyway), we get 
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  (4.194) 

Absolutely similar calculations of the other spin components yield 

                 tttt
ie

iet xyxyy ti

ti










 



sin)0(Scos(0)Ssinσcosσ

20

0
2

)(S


,   (4.195) 

                    .)0(σ
210

01

2
)(S zzz St 













                        (4.196) 

 A practical advantage of these formulas is that they describe system’s evolution for arbitrary 
initial conditions, thus making the analysis of the initial state effects very simple. Indeed, since in the 
Heisenberg picture the expectation values of observables are calculated using Eq. (191) (with  = ), 
with time-independent bra- and ket vectors, such averaging of Eqs. (194)-(196) immediately returns us 
to Eqs. (170), (173), and (174), obtained in the Schrödinger picture. Moreover, these equations for the 
Heisenberg operators formally coincide with the classical equations of the torque-induced precession for 
c-number variables. (In the next chapter, we will see that the same exact mapping is valid for the 
Heisenberg picture of the orbital motion.)  

41 We could of course use this equation result, together with Eq. (157), to obtain all the above results for this 
system within the Schrödinger picture. In our simple case, the use of Eqs. (161) for this purpose was more 
straightforward, but in some cases (e.g., for time-dependent Hamiltonians) an explicit calculation of the time-
evolution matrix may be the only practicable way to proceed. 
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 In order to see that the last fact is by no means a coincidence, let us combine Eqs. (158) and 
(190) to form an explicit differential equation of the Heisenberg operator evolution. For that, let us 
differentiate Eq. (190) over time: 
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      (4.197) 

Plugging in the derivatives of the time evolution operator from Eq. (158) and its Hermitian conjugate, 
and multiplying both parts of the equation by i, we get 
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               (4.198a) 

If for the Schrödinger-picture Hamiltonian the condition similar to Eq. (179) is satisfied, then, according 
to Eqs. (177) or (182), the Hamiltonian commutes with the time evolution operator and its Hermitian 
conjugate, and may be swapped with any of them.42 Hence, we may rewrite Eq. (198a) as 
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Now using the definition (190) again, for both terms in the right-hand part, we may write 
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This is the so-called Heisenberg equation of motion.43  

 Let us see how does this equation look for the same problem of spin-½ precession in a z-
oriented, time-independent magnetic field, described in the z-basis by the Hamiltonian matrix (164), 
which does not depend on time. In this basis, Eq. (199) for the vector operator of spin reads44 
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Once again, the equations for different matrix elements are decoupled, and their solution is elementary: 
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42 Due to the same reason, SSSH
ˆˆˆ†ˆˆˆ†ˆˆ HHuuuHuH   ; this is why the index of the Hamiltonian operator may 

be dropped in Eqs. (198)-(199).  
43 Reportedly, this equation was derived by P. A. M. Dirac, who was so generous that he himself gave the name 
of his colleague to this key result, because “Heisenberg was saying something like this”. 
44 Using commutation relations (155), this equation may be readily generalized to the case of arbitrary magnetic 
field B(t) and arbitrary state basis – the exercise highly recommended to the reader. 
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According to Eq. (190), the initial “values” of the Heisenberg-picture matrix elements are just the 
Schrödinger-picture ones, so that using Eq. (117) we may rewrite this solution in either of two forms: 
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  (4.202) 

 The simplicity of the last expression is spectacular. (Remember, it covers any initial conditions, 
and all 3 spatial components of spin!) On the other hand, for some purposes the former expression may 
be more convenient; in particular, its Cartesian components immediately give our earlier results (194)-
(196). 

 One of advantages is that the Heisenberg picture is that it provides a more clear link between the 
classical and quantum mechanics. Indeed, analytical classical mechanics may be used to derive the 
following equation of time evolution of an arbitrary function A(qj, pj, t) of generalized coordinates and 
momenta of the system, and time: 45 
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 ,     (4.203) 

where H is the classical Hamiltonian function of the system, and {..,..} is the so-called Poisson bracket 
defined, for two arbitrary functions A(qj, pj, t) and B(qj, pj, t), as 
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Comparing Eq. (203) with Eq. (199), we see that the correspondence between the classical and quantum 
mechanics (in the Heisenberg picture) is provided by the following symbolic relation46 

                 BA
i

BA ˆ,ˆ,


 .     (4.205) 

45 See, e.g., CM Eq. (10.17). Also, please excuse my use, for the Poisson bracket, the same (traditional) symbol 
{…,…} as for the anticommutator. We will not run into the Poisson brackets again in the course, leaving very 
little chance for confusion. 
46 Since we have run into the commutator of Heisenberg-picture operators, let me note emphasize again that the 
“values” of such an operator at different moments of time often do not commute. Perhaps the simplest example is 

the operator x̂  of coordinate of a free 1D particle, with  Hamiltonian mpH 2/ˆˆ 2 . Indeed, in this case Eq. (199) 

yields equations   mpiHxxi /ˆˆ,ˆˆ    and   0ˆ,ˆˆ  Hppi  , with simple solutions (similar to those for classical 

motion of the corresponding observables):     0ˆconstˆ ptp  ,       mtpxtx /0ˆ0ˆˆ  , so that 

            0 if ,0//ˆ,ˆ/0ˆ,0ˆˆ,0ˆ SS  tmtimtpxmtpxtxx  . 
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This relation may be used, in particular, for finding appropriate operators for system’s observables, if 
their form is not immediately evident from the correspondence principle. We will develop this 
argumentation further in the next chapter where we revisit the wave mechanics, and also in Chapter 9. 

 Finally, let us discuss one more alternative picture of quantum dynamics. It is also attributed to 
P. A. M. Dirac, and is called either the “Dirac picture”, or (more frequently) the interaction picture. The 
last name stems from the fact that this picture is very useful for the perturbative (approximate) 
approaches to systems whose  Hamiltonians may be partitioned into two parts, 

int0
ˆˆˆ HHH  ,     (4.206) 

where 0Ĥ  is the sum of relatively simple Hamiltonians of non-interacting component sub-systems, 

while their second term in Eq. (206) represents their weak interaction. (Note, however, that the relations 
in the balance of this section are exact and not based on these assumptions.) In this case, it is natural to 
consider, together with the genuine unitary operator  0,ˆ ttu of the time evolution of the system, which 

obeys Eq. (158), a similarly defined unitary operator of evolution of the “unperturbed system” described 

by Hamiltonian 0Ĥ  alone: 

             ,ˆˆˆ 000 uHui        (4.207) 

and also the following interaction evolution operator,  

    uuuI ˆˆˆ †
0 .      (4.208) 

 The sense of this definition becomes more clear if we insert the reciprocal relation, 

                     Iuuuuuu ˆˆˆˆˆˆ 000
†  ,     (4.209) 

 and its Hermitian conjugate, 

                     ††††
00 ˆˆˆˆˆ uuuuu II  ,     (4.210) 

into the basic Eq. (190) – which is valid in any picture: 

             )(,ˆ,ˆˆ,ˆ,ˆ)()(),(ˆˆ),(ˆ)(ˆ
0000S000000S00

††† tttuttuAttuttuttttuAttutA II   . (4.211) 

This relation shows that all calculations of the observable expectation values and transition rates 
(i.e. all the results of quantum mechanics that may be experimentally verified) are expressed by the 
following formula, with the standard bra-ket structure (187),  

)()(ˆ)(ˆ ttAtA III   ,    (4.212) 

if we assume that both the state vectors and operators evolve in time, with the vectors evolving due to 
the interaction operator Iû , 

   ,)(),(ˆ)(),,(ˆ)()( 0000
† tttutttutt IIII      (4.213) 

while the operators’ evolution being governed by the unperturbed operator 0û : 

      00S00 ,ˆˆ,ˆ)(ˆ † ttuAttutAI  .     (4.214) 
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 These relations describe the interaction picture of quantum dynamics. Let me defer an example 
of its convenience until the perturbative analysis of open quantum systems in Sec. 7.6, and here end the 
discussion with a proof that the interaction evolution operator satisfies the Schrödinger equation, 

 ,ˆˆˆ III uHui        (4.215) 

in which IĤ  is the interaction Hamiltonian transformed in accordance with rule (214): 

      00int00 ,ˆˆ,ˆˆ † ttuHttutH I  .     (4.216) 

The proof is very straightforward: first using definition (208), and then Eqs. (158) and the Hermitian 
conjugate of Eq. (207), we may write 
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 (4.217) 

Since †
0û may be presented as an integral of 0Ĥ  (similar to Eq. (181) relating û  and Ĥ ), these operators 

commute, so that the parentheses in the last form of Eq. (217) vanish. Now plugging û  from Eq. (209), 
we get the equation, 

           III uuHuuuHuui ˆˆˆˆˆˆˆˆ 0int00int0
††  ,    (4.218) 

that is equivalent to the combination of Eqs. (215) and (216). 

 Equation (215) shows that if the energy scale of interaction Hint is much weaker than the 

background energy H0, operators Iû and †ˆ Iu , and hence the state vectors (213) evolve relatively slowly. 
Such an exclusion of fast background oscillations is especially convenient for the perturbative 
approaches to complex interacting systems, in particular to the open quantum systems that weakly 
interact with their environment – see Sec. 7.6.  

 

4.7. Exercise problems 

4.1. Let  and   be two possible quantum states of the same system, and Â  be a linear operator. 
Which of the following expressions are legitimate (i. e. have a well-defined meaning) within the bra-ket 
formalism? 

   1.       2.   
2   3.      4.   *Â    5.   Â  

   6.   Â   7.   Â   8.   
2   9.  2Â    10.   †  

4.2. Prove that if Â  and B̂  are linear operators, then:  

 (i)   AA ˆˆ ††  ;   (ii)   †† ˆˆ AiAi  ;  (iii)   ††† ˆˆˆˆ ABBA  ; 

 (iv) operators †ˆˆAA and AA ˆˆ †  are Hermitian. 
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 4.3. Prove that for any linear operators ,ˆ,ˆ,ˆ,ˆ DCBA  

         BDACBDCADBCADCBADCBA ˆˆ,ˆˆˆˆˆ,ˆˆ,ˆˆˆˆˆ,ˆˆˆˆ,ˆˆ  . 
 
 4.4. Calculate all possible binary products jj’ (for j, j’ = x, y, z) of the Pauli matrices (105), 

,
10

01
σ,

0

0
σ,

01

10
σ 

















 









 zyx i

i
 

and their commutators and anticommutators (defined similarly to those of the corresponding operators). 
Present the results using the Kronecker delta and Levi-Civita permutation symbols.47 

 
4.5. Calculate the following expressions, 

(i) (c)n, and then 
(ii) (bI + c)n, 

for the scalar product c of the Pauli matrix vector   nxx + nyy + nzz by an arbitrary c-number 
vector c, where n  0 is an integer, and b is an arbitrary scalar c-number. 

Hint: For task (ii), you may like to use the binomial theorem,48 and then transform the result in a 
way enabling you to use the same theorem backwards. 

 
4.6.* Use the results of the previous problem to derive Eqs. (2.165)-(2.166) for the transparency 

T of a system of N similar, equidistant, delta-functional tunnel barriers. 
 
4.7. Use result of Problem 5 to spell out the following the following matrix: exp{in}, where 

 is the vector of Pauli matrices, n is a c-number vector of unit length, and  is a c-number scalar. 
 
 4.8. Use the result of Problem 5(ii)  to calculate exp{A}, where A is an arbitrary 22 matrix.  

4.9. Express elements of matrix B = exp{A} explicitly via those of the 22 matrix A. Spell out 
your result for the following matrices: 

,A,A 





















ii

ii
'

aa

aa
 

with real a and . 
 
4.10. Prove that for arbitrary square matrices A and B,  

)BA(Tr)AB(Tr  . 
Is each diagonal element (AB)jj  necessarily equal to (BA)jj? 

  

47 See, e.g., MA Eqs. (13.1) and (13.2). 
48 See, e.g. MA Eq. (2.9). 
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 4.11. Prove that the matrix trace of an arbitrary operator does not change at an arbitrary unitary 
transformation. 

4.12. Prove that for any two full and orthonormal bases uj, vj of the same Hilbert space, 

            .Tr jj'j'j uvvu   

 
4.13. Is the 1D scattering matrix S, defined by Eq. (133), unitary? What about the 1D transfer 

matrix T defined by Eq. (134)? 

4.14. Calculate the trace of the following matrix: 

   σbσa  ii expexp , 

where  is the Pauli matrix vector, while a and b are usual (c-number) geometric vectors. 
 

 4.15. Let Aj be eigenvalues of some operator Â . Express the following two sums, 

 
j

j
j

j AA 2
21 , , 

via the matrix elements Ajj’ of this operator in an arbitrary basis. 
 
4.16. Calculate z  of a two-level system in a quantum state with the following ket-vector: 

  const , 

where  (,  )  and (, ) are eigenstates of the Pauli matrices z and x, respectively.  

Hint: Double-check whether the solution you are giving is general. 

4.17. An electron is fully polarized in the positive z-direction. Calculate the probabilities of the 
alternative outcomes of a perfect Stern-Gerlach experiment with the magnetic field B oriented in the 
direction of some axis n, performed on this electron. 

4.18. A perfect Stern-Gerlach instrument makes a single-shot measurement of the following 
combination, (Sx + Sz)/2, of two spin components of a z-polarized electron; after that, component Sz of 
the same particle is measured. What are the possible outcomes of these measurements and their 
probabilities?  

4.19. In a certain basis, the Hamiltonian of a spin-½ (two-level) system is described by matrix 

21
2

1 with  ,
0

0
H EE

E

E









 , 

and the operator of some observable A, by matrix 











11

11
A . 
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For the system’s state with the energy equal exactly to E1, find the possible results of measurements of 
observable A and the probabilities of the corresponding measurement outcomes. 

4.20.* States u1,2,3 form an orthonormal basis of a system with Hamiltonian 

  ,h.c.ˆ
133221  uuuuuuH   

where  is a real constant, and h.c. means the Hermitian conjugate of the previous expression. Calculate 
its stationary states and energy levels. Can you relate this system with any other(s) discussed earlier in 
the course? 
 
 4.21. Suggest a Hamiltonian describing particle’s dynamics in an infinite 1D set of similar 
quantum wells in the tight-binding approximation, in the bra-ket formalism, and verify that is yields the 
correct dispersion relation (2.206). 

4.22. Calculate eigenvectors and eigenvalues of the following matrices: 





































0001

0010

0100

1000

B,

010

101

010

A  

 
4.23. Find eigenvalues of the following matrix: 

zzyyxx aaa σσσA  σa , 

where ax,y,z are real c-numbers (scalars), and σx,y,z are the Pauli matrices. Sketch the dependence of the 
eigenvalues on parameter az, with ax and ay fixed. Compare the result with Fig. 29. 
 
 4.24. Derive a differential equation for the time evolution of the expectation value of an 
observable, using both the Schrödinger picture and the Heisenberg picture of quantum mechanics. 

4.25. At t = 0, a spin-½ particle, whose interaction with an external field is described by 
Hamiltonian  

zzyyxx σaσaσaH ˆˆˆˆˆ  σa , 

(where ax,y,z are real and constant c-numbers, and zyx ,,̂  are the operators that, in the z-basis, are 

represented by the Pauli matrices σx,y,z), was in state , one of two eigenstates of operator ẑ . Use the 
Schrödinger picture equations to calculate the time evolution of: 

 (i) the ket-vector   of the system (in any stationary basis you like), 

 (ii) the probabilities to find the system in states  and  , and 

 (iii) the expectation values of all 3 spatial components ( ,ˆ
xS etc.) of the spin vector operator 

σS ˆ)2/(ˆ  .  

Analyze and interpret the results for the particular case ay = az = 0. 
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 4.26. For the same system as in the previous problem, use the Heisenberg picture equations to 
calculate the time evolution of: 

 (i) all three spatial components ( ,ˆ
xS etc.) of the spin operator HŜ (t), 

 (ii) the expectation values of the spin components. 

Compare the latter results with those of the previous problem. 
 
4.27. For the same system as in two last problems, calculate the matrix elements of operator ẑ  

in the basis of eigenstates a1, a2.  

Hint: In contrast to the cited problems, the answer evidently does not depend on the initial 
conditions. 

4.28. In the Schrödinger picture of quantum mechanics, three operators satisfy the following 
commutation relation: 

  CBA ˆˆ,ˆ  . 

What is their relation in the Heisenberg picture (at the same time instant)? 
 
 4.29. A spin-½ particle is placed into a magnetic field B(t), which  is an arbitrary function of 
time. Derive the differential equations describing the time evolution of: 

(i) the vector operator Ŝ  of particle’s spin (in the Heisenberg picture), and 
 (ii) the expectation value S of spin’s vector. 

Contemplate the relative merits of the latter equation for the description of a single spin and of a large 
collection of similar, non-interacting spins. 
  
 4.30.* Prove the Bloch theorem given by either Eq. (3.107) or Eq. (3.108). 

Hint: Consider the translation operator RT̂ , defined by the following result of its action on an 
arbitrary function f(r): 

)()(ˆ RrrR  ffT , 

where R is an arbitrary vector of the Bravais lattice (3.106). In particular, analyze the commutation 
properties of the operator, and apply them to an eigenfunction (r) of the stationary Schrödinger 
equation for a particle in a 3D periodic potential described by Eq. (3.105). 
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Chapter 5. Some Exactly Solvable Problems 

This describes several simplest but important applications of the bra-ket formalism, notably including a 
few wave-mechanics problems we have already started to discuss in Chapters 2 and 3. 

 

5.1. Two-level systems 

 In the course of discussion of the bra-ket formalism in the last chapter, we have already 
considered several examples of how it works for electron’s spin. We have seen, in particular, that in 
magnetic field the electron has eigenenergies (4.167), i.e. two energy levels. As will be shown later in 
the course, such two-energy-level picture is valid not only for electrons and other spin-½ elementary 
particles (such as muons and neutrinos), but also may give a good approximation for other important 
quantum systems. For example, as was already mentioned in Chapter 2, two energy levels are sufficient 
for an approximate description of dynamics of two weakly coupled quantum wells (Sec. 2.6), and of 
level anticrossing in the weak-potential approximation of the band theory (Sec. 2.7). Such two-level 
systems (alternatively called “spin-½-like” systems) are nowadays the focus of additional attention in 
the view of prospects of their possible use for information processing and encryption. (In the last 
context, to be discussed in Sec. 8.5, a two-level system is usually called a qubit.) 

 This is why before proceeding to other problems, let us summarize in brief what we have already 
learned about properties and dynamics of two-level systems, in a more convenient language. According 
to the general Eq. (4.6), a ket- (or bra-) vector of an arbitrary pure (coherent) state  of such a system 
may be presented, at any instant,  as a linear combination of two basis vectors, for example 

           ,     (5.1) 

and hence is completely described by two complex coefficients (c-numbers) – say,  and . These two 
numbers are not completely arbitrary; they are restricted by the normalization condition. If the basis 
vectors are normalized, then to have the system in some basis state with a 100% probability, we need 

           1
22****   W . (5.2) 

This requirement is automatically satisfied if we take the moduli of   and  equal to the sine and 
cosine of the same (real) angle. Thus we can write, for example, 

       )(

2
sin,

2
cos    

ii ee .    (5.3) 

Moreover, according to the general Eq. (4.125), if we deal with just one system,1 the common phase 
factor exp{i} is unimportant for calculation of any expectation values, and we can take  = 0, so that 
Eq. (3) is reduced to 

 

1 To recall why this condition is crucial, please revisit the beginning of Sec. 2.3. Note also that, in particular, the 
mutual phase shifts between different qubits are very important for quantum information processing (see Chapter 
7 below), so that most discussions of these applications have to start from Eq. (3) rather than Eq. (4). 
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   .
2

sin,
2

cos  ie       (5.4) 

The reason why the argument of sine and cosine functions is usually taken in the form /2, 
becomes clear from Fig. 1a: Eq. (4) conveniently maps each state   on a certain representation point of 
a unit-radius Bloch sphere,2 with polar angle  and azimuthal angle . In particular, state  (with  = 1 
and  = 0) corresponds to the North Pole of the sphere ( = 0), while state  (with  = 0 and  = 1), 
to its South pole ( = ).3 Similarly, states  and , described by Eqs. (4.122), i.e. having  = 1/2 
and  = 1/2, correspond to points with  = /2 and to, respectively,  = 0 and  = . Two more 
special points (denoted in Fig. 1a as ⊙ and ) are also located on sphere’s equator (at  = /2 and  = 
/2); it is easy to check that they correspond to the eigenstates of matrix y (in the same z-basis).  

In order to understand why such mutually perpendicular location of these three special point 
pairs on the Bloch sphere is not occasional, let us plug Eqs. (4) into Eqs. (4.131)-(4.133) for the 
expectation values of spin components. The result is   

              cos
2

,sinsin
2

,cossin
2


 zyx SSS ,  (5.5) 

showing that the radius-vector of the representation point on the sphere is (after multiplication by /2) 
just the expectation value of the spin vector S. 

 

 

 

 

 

 

 

 

 

 

 

Now let us see how does the representation point moves in various cases. First of all, according 
to Eqs. (4.157)-(4.158), in the absence of an external field (when the Hamiltonian operator is equal to 
zero and hence the time-evolution operator is constant) the point does not move at all. Now, if we apply 
to an electron a magnetic field directed along axis z, then, according to Eqs. (4.202), the Heisenberg 
operator of Sz (and hence the expectation value Sz) remains constant, while angle  in Eq. (5) evolves 

2 Named after the same F. Bloch who has pioneered the energy band theory that was discussed in Chapters 2-3. 
3 In the quantum information literature, ket-vectors  and  of these two states of a qubit are usually denoted as 
1 (“quantum one”) and 0 (“quantum zero”).  

Fig. 5.1. Bloch sphere: (a) notation, and presentation of spin precession in magnetic fields directed 
along: (b) axis z, and (c) axis x.  

(a)      (b)          (c) 
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in time as t + const. This means that the torque-induced precession of the spin in a constant field B = 
nzB is described by a circular rotation of the representation point about axis z (in Fig. 1b, in the 

horizontal plane) with the classical precession frequency . This is essentially the classical picture of 
rotation of the angular momentum vector about the precession axis z, with both its length and the z-
component conserved.4  

 It is straightforward to repeat all calculations of Sec. 4.6 for a field of a different orientation and 
prove the (virtually evident) result that the representation point performs a similar rotation about the 
field direction. (Fig. 1c shows such rotation for an x-directed field.) Finally, note that it is sufficient to 
turn off the field to stop the precession instantly. (Since Eq. (4.158) is the first-order differential 
equation, the representation point has no effective inertia.5) Hence changing the direction and magnitude 
of the external field, it is possible to move spin’s representation point to any position on the Bloch 
sphere. (In Chapter 6 we will examine another method of manipulating the point position, that is based 
on external rf field and is more convenient for some two-level systems.)  

In the context of quantum information, this means that in the absence of uncontrollable 
interaction with environment, it is possible to prepare a qubit in any pure quantum state, and then keep it 
unchanged. From here it is clear that a qubit is very much different from and a classical bistable system 
used to store single bits of information – such as the voltage state of a usual SRAM cell (a positive-
feedback loop of two transistor-based inverters). As Eq. (4) shows, qubit’s state is determined by two 
independent, continuous parameters  and , so it may store much more information than one bit. (The 
difference is even more spectacular in qubit systems, to be discussed in Sec. 8.5.) However, classical 
bistable systems, due to their nonlinearity, are stable with respect to small perturbations, so that their 
operation is rather robust with respect to unintentional interaction with their environment. In contrast, 
qubit’s state may be readily disturbed (i.e. its representation point on the Bloch sphere shifted) by even 
minor perturbations, and does not have an internal state stabilization mechanism.6 Due to this reason, 
qubit-based systems are rather vulnerable to environment-induced drifts, including dephasing and 
relaxation effects, which will be discussed in Chapter 7. 

 

5.2. Revisiting wave mechanics 

 In order to use the bra-ket formalism for the description of the “orbital” motion of a particle as a 
whole, we have to either rewrite or even modify some of its formulas for the case of observables with 
continuous spectrum of eigenvalues. (One example we already know well are the momentum and kinetic 
energy of a free particle.) In that case, all the above expressions for states, their bra- and ket-vectors, and 
eigenvalues, should be stripped of discrete indices, like the index j in the key equation (4.68), which  
determines eigenstates and eigenvalues of observable A. For that, Eq. (4.68) may be rewritten in the 
form 

4 Still, it is crucial to appreciate the difference between the expectation values (5), i.e. c-numbers, and the actual 
observables Sx, Sy, and Sz which are described in quantum mechanics by operators. For example, according to Eq. 
(4.156), for any position on the Bloch sphere, it is impossible to have exact values of Cartesian components, as it 
is in the classical picture. 
5 The same is true for the angular momentum L at the classical torque-induced precession – see, e.g., CM Sec.6.5 
and in particular Eq. (6.71). 
6 In this aspect as well, the information processing systems based on qubits are closer to classical analog 
computers rather then classical digital ones. 
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       AA aAaA ˆ .     (5.6) 

 More essentially, all sums over such continuous eigenstate sets should be replaced by integrals. 
For example, for a full and orthonormal set of eigenstates (6), the closure relation (4.44) should be 
replaced with 

              IaadA AA
ˆ ,     (5.7) 

where the integral should be taken over the whole interval of possible values of observable A. Applying 

this relation to the ket-vector of an arbitrary state  (generally, not an eigenstate of operator Â ), we get 

      AAAA aadAaadAI  ˆ .   (5.8) 

This integral replaces sum (4.37) for the representation of an arbitrary ket-vector as an expansion over 
eigenstates of an operator. For the particular case when  = aA’ , this relation requires7 

           );(' A'Aaa AA        (5.9) 

this formula replaces the orthonormality condition (4.38). 

 According to Eq. (8), in the continuous case the bra-ket aA still plays the role of the 
coefficient whose modulus squared determines state aA’s probability – see the last form of Eq. (4.120). 
However, in the continuous spectrum case the probability to find the system exactly in a particular state 
is infinitesimal. Instead we should speak about the probability density w(A)   aA 2 to find the 
observable within a small interval dA about a certain value A. The coefficient in that relation may be 
found by making the similar change from summation to integration (without any additional coefficients) 
in the normalization condition (4.121): 

                      .1  AA aadA      (5.10) 

Since the total probability of the system to be in some state should also equal  dAAw )( , this means that 

                        
2

)( AAA aaaAw   .    (5.11) 

 Now let us see how we can calculate expectation values of continuous observables, i.e. their 
ensemble averages. If we speak about the same observable A whose eigenstates are used as the basis (or 
any compatible observable), everything is simple. Inserting Eq. (11) into the general statistical relation 

                    AdAAwA )( ,     (5.12)  

which is just the evident continuous version of Eq. (1.37), we get  

       . dAaAaA AA       (5.13) 

Presenting this expression as a double integral,  

      ,)(    A'A aA'AAadA'dAA     (5.14)  

7 Notice that in the contrast to the discrete spectrum case, the dimensionality of the bra- and ket-vectors so 
normalized is different from 1. 
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and using the continuous-spectrum version of Eq. (4.98),  

       )(ˆ A'AAaAa A'A   ,     (5.15)  

we may write 

         ,ˆˆ
''  AaaAaadA'dAA AAAA       (5.16)  

so that Eq. (4.125) remains valid in the continuous-spectrum case without any changes.  

The situation is a bit more complicated for the expectation values of operators that do not 
commute with the base-creating operator, because the matrix of such an operators in that may not be 
diagonal. We will consider (and overcome :-) this technical difficulty very soon, but otherwise we are 
ready for the discussion of wave mechanics. (For the notation simplicity I will discuss its 1D version; 
the generalization to the 2D and 3D cases is straightforward.)  

 Let us consider what is called the coordinate representation, postulating the (intuitively almost 
evident) existence of a quantum state basis, whose with ket-vectors will be called x, corresponding to a 
certain, exactly defined value x of particle’s coordinate. Writing the following evident identity: 

        xxxx  ,      (5.17) 

and comparing this relation with Eq. (6), we see that they do not contradict each other if we assume that 
x in the left-hand part of this equation is considered as the coordinate operator x̂  whose action on a ket- 
(or bra-) vector is just its multiplication by c-number x. (This looks like a proof, but is actually a 
separate, independent postulate, no matter how plausible.) 

 In this coordinate representation, the inner product aA(t) becomes x(t), and Eq. (11) takes 
the form 

          )()()()(),(
*

txtxtxxttxw   .   (5.18) 

Comparing this formula with the basic postulate (1.22) of wave mechanics, we see that they coincide if 
the Schrödinger’s wavefunction of time-evolving state (t) is identified with that bra-ket:8 

             )(),( txtx   .     (5.19) 

This key formula provides the connection between the bra-ket formalism and wave mechanics, 
and should not be too surprising for the (thoughtful :-) reader. Indeed, Eqs. (4.45) shows that any inner 
product of vectors describing two states is a measure of their coincidence - just as the scalar product of 
two geometric vectors. (The orthonormality condition (4.38) is a particular manifestation of this fact.) In 
this language, value (19) of wavefunction   at point x and moment t characterizes “how much of a 
particular coordinate x” does the state  contain at that particular instance. (Of course this informal 
language is too crude to describe the fact that (x, t) is a complex function, which has not only a 
modulus, but also a phase.) 

8 I do not quite like expressions like  x used in some papers and even textbooks. Of course, one is free to 
replace   with any other letter ( including) to denote a quantum state, but then it is better not to use the same 
letter to denote the wavefunction, i.e. an inner product of two state vectors, to avoid confusion. 
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 Let us rewrite the most important formulas of the bra-ket formalism (so far, in the Schrödinger 
picture) in the wave mechanics notation. In particular, let us use Eq. (19) to calculate the (partial) time 
derivative of the wavefunction, multiplied by the usual coefficient i: 

         .)(tx
t

i
t

i 








      (5.20) 

Since the coordinate operator x̂  does not depend on time explicitly, its eigenstates x are stationary, and 
we can swap the time derivative and the time-independent ket-vector and hence x. Making use of the 
Schrödinger-picture equations (4.157) and (4.158), and then inserting the identity operator in the 
continuous form (7) of the closure relation, written for the coordinate eigenstates, 

                 Ix'x'dx' ˆ ,     (5.21) 

we may continue to develop the right-hand part of Eq. (20) as 

    
.),(Ψˆ)(ˆ

)(ˆ)(),(ˆˆ)(),(ˆ)( 0000

 









tx'x'Hxdx'tx'x'Hxdx'

tHxtttuHxtttu
t

ixt
t

ix



 
  (5.22) 

 For a general Hamiltonian operator, we have to stop here, because if it does not commute with 
the coordinate operator, its matrix in the x-basis is not diagonal, and integral (22) cannot be worked out 
explicitly. However, there exists a broad set of space-local operators9 whose arguments include just one 
value of the spatial coordinate, for which we can move ket-vector x to the right10 

        )(),(ˆ),(ˆ),(ˆ x'xtxAx'xtx'Atx'x'Ax   .   (5.23) 

where operator Â  in the last two forms should be understood as its coordinate representation that is 
defined by Eq. (23) - if it is valid for a particular operator. For example, consider the 1D version of 
operator (1.40), 

           ),ˆ(
2

ˆˆ
2

txU
m

p
H x  ,     (5.24) 

which was the basis of all our discussions in Chapter 2. Its potential-energy part commutes with 
operator x̂ , so its matrix in the x-basis is diagonal, meaning that this part of Hamiltonian (24) is clearly 
local, with its coordinate representation given merely by the c-number function U(x,t). The situation 
with the kinetic energy, which is a function of momentum operator xp̂ , not commuting with x̂ , is less 

evident. Let me show that this operator is also local, and in the same shot derive (the 1D version of) Eq. 
(1.26), if we postulate the commutation relation (2.14): 

Iixppx xx
ˆˆˆˆˆ  .     (5.25) 

9 Of all the operators we will encounter in this course, only the statistical operator ŵ  is substantially non-local – 
see Sec. 7.2.  
10 In the second equality, I have use Eq. (9) for variable x. 

Space- 
local 
operators 
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 For that, let us consider the following matrix element, x'xppxx xx ˆˆˆˆ  . On one hand, we may 

use Eq. (25) to write 

     )(ˆˆˆˆˆ x'xix'xix'Iixx'xppxx xx   .   (5.26) 

On the other hand, since '''ˆ xxxx  and xxxx ˆ , we can write 

      x'pxxxx'x'ppxxx'xppxx xxxxx ˆ'ˆˆˆˆˆˆ  .   (5.27) 

Comparing Eqs. (26) and (27), we may write 

 '
)'(

ˆ
xx

xx
ix'px x 





      (5.28a) 

Thus xp̂ is a local operator. Since Eq. (28a) may be rewritten as11 

)'(ˆ xx
x

ix'px x 



  ,     (5.28b) 

its comparison with Eq. (23) shows that the formula used so much in Chapter 2, 

  
x

ipx 


 ˆ ,      (5.29) 

is indeed valid, but only for the coordinate representation of the momentum operator. (Later in this 
section we will see that in an alternative, momentum representation, this operator looks completely 
differently.)  

It is straightforward to show (and virtually evident) that any operator )ˆ( pf  is local as well, with 
its coordinate representation being 

  











x

if  .      (5.30)  

In particular, this pertains to the kinetic energy operator in Eq. (24), so that Eq. (20) is reduced to the 

Schrödinger equation in its familiar wave-mechanics form (1.28), if by Ĥ we mean its coordinate 
representation: 

                   ),(
2

),(
2

1ˆ
2

222

txU
xm

txU
x

i
m

H 

















 .   (5.31) 

 Now let us return, as was promised, to operators that do not commute with operator x̂ , and 
hence do not have to share its continuous spectrum. Inner-multiplying both parts of the general Eq. 
(4.68) by ket-vector x, and inserting into the left-hand part the identity operator in form (21), we get 

              jjj axAax'x'Axdx'  ˆ ,    (5.32)  

11 The equivalence of the two forms of Eq. (28) may be readily proven, for example, by comparison of their effect 
on any differentiable function f(x, x’), using its Taylor expansion over argument  x at point x’ = x – a simple but 
good exercise for the reader. 
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i.e., using the wavefunction definition (19),  

             ),(),(ˆ txAtx'x'Ax'dx jjj  .    (5.33) 

If the operator A is space-local, i.e. satisfies Eq. (23),  then this result is immediately reduced to 

          ),,(),(ˆ txAtxA jjj       (5.34)  

(where the left-hand part implies the coordinate representation of the operator), even if the operator does 
not commute with operator x̂ .12 The most important case of this coordinate-representation form of the 
eigenproblem (4.68) is the familiar Eq. (1.60) for eigenvalues En of energy. Hence, the energy spectrum 
of a system (that, as we know very well from the first chapters of the course, may be discrete) is nothing 
more than the set of eigenvalues of its Hamiltonian operator – a very important conclusion indeed. 

 The operator locality also simplifies the expression for its expectation value. Indeed, plugging 
the completeness relation in the form (21) into the general Eq. (4.125) twice (written in the first case for 
x and in the second case for x’), we get 

),(ˆ),()(ˆ)( * tx'x'Axtxdx'dxtx'x'Axxtdx'dxA      . (5.35) 

Now, Eq. (23) reduces this result to just 

               dxtxAtxx'xtxAtxdx'dxA ),(ˆ),(),(ˆ),( **
  .  (5.36) 

i.e. to Eq. (1.23), which we had to postulate in Chapter 1.  

 So, we have essentially derived all basic relations of wave mechanics from the bra-ket 
formalism, which will also allow us to get some important new results in that area. Before doing that, let 
us have a look at a pair of very interesting relations, together called the Ehrenfest theorem. In order to 
derive them, let us calculate the following commutator:13 

           .ˆˆˆˆˆˆˆ,ˆ 2 xppppxpx xxxxx       (5.37) 

Rewriting Heisenberg’s commutation relation (25) as  

      ,ˆˆˆˆ ixppx xx       (5.38) 

we can use it twice in the first term of the right-hand part of Eq. (37) to sequentially move the 
momentum operators  to the left: 

      .ˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ xxxxxxxxxxxxx pixpppiixpppipxppixpppx    (5.39) 

12 In some systems of quantum mechanics postulates, the Schrödinger equation (1.28) itself is considered as a sort 
of eigenstate/eigenvalue problem (34) for operator i/t. Notice that such construct is very close to that of the 
momentum operator -i/x, and similar arguments may be given for both expressions, starting from the 
invariance of the quantum state of a free particle with respect to translations in time and space, respectively. 
13 It is not important whether we speak about the Schrödinger or Heisenberg picture here. Indeed, if three 

operators in the former picture are related as [ SS
ˆ,ˆ BA ] = SĈ , then according to Eq. (4.190), in the latter picture 

      HSSSHHHHHHHH
ˆˆˆˆˆˆ,ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆˆˆˆ,ˆ †††††††† CUCUUBAUUAUUBUUBUUAUUBUUAUBA  . 

Operator’s 
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The first term of the result cancels with the second term of Eq. (37), so that the commutator is rather 
simple: 

        .ˆ2ˆ,ˆ 2
xx pipx        (5.40) 

Let us use this equality to calculate the Heisenberg-picture equation of motion for operator x̂ , 
applying the general Heisenberg equation (4.199) to the orbital motion, when the Hamiltonian has the 
form (31), with time-independent potential U(x):14 

             .)ˆ(
2

ˆ
,ˆ

1ˆ,ˆ
1ˆ 2









 xU

m

p
x

i
Hx

idt

xd x


    (5.41) 

The potential energy operator commutes with the coordinate operator. Thus, the right-hand part of Eq. 
(41) is proportional to commutator (40): 

             .
ˆˆ

m

p

dt

xd x       (5.42) 

In that operator equality, we readily recognize the classical relation between particle’s momentum and 
is velocity. 

 Now let us see what does a similar procedure give for the momentum’s derivative: 

      .)ˆ(
2

ˆ
,ˆ

1ˆ,ˆ
1ˆ 2
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    (5.43) 

The kinetic energy operator commutes with the momentum operator, and hence may be dropped from 
the right-hand part of this equation. In order to calculate the remaining commutator of the momentum 
and potential energy, let us use the fact that any smooth potential profile may be represented by its 
Taylor expansion: 

           k
k
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,     (5.44) 

where the derivatives of U should be understood as c-numbers (evaluated at x = 0), so that we may write 
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Applying Eq. (38) k times to the last term in the parentheses, exactly as we did it in Eq. (39), we get 
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But the last sum is just the Taylor expansion of the derivative U/x. Indeed, 
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  (5.47) 

14 Since this Hamiltonian is time-independent, we may replace the partial derivative over time t with the full one. 
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where at the last step I have replaced the notation of the summation index from k’ to k - 1. As a result, 
Eq. (43) yields: 

               ).ˆ(
ˆ

ˆ
xU

xdt

pd x




      (5.48) 

This equation again coincides with the classical equation of motion! Discussing spin dynamics in 
Sec. 4.6 and 5.1, we have already seen that this is very typical of the Heisenberg picture. Moreover, 
averaging Eqs. (42) and (48) over the initial state (as Eq. (4.191) prescribes15), we get similar results for 
the expectation values:16 

            
x

U

dt

pd

m

p

dt

xd xx




 , .    (5.49) 

However, it is important to remember that the equivalence between these quantum-mechanical 
equations and similar equations of classical mechanics is superficial, and the degree of the similarity 
between the two mechanics very much depends on the problem. As one extreme, let us consider the case 
when a particle’s state, at any moment between t0 and t, may be accurately represented by one, relatively 
narrow wave packet. Then we may interpret Eqs. (49) as equations of essentially classical motion for the 
wave packet’s center, in accordance with the correspondence principle. However, even in this case it is 
important to remember about the purely quantum mechanical effects of nonvanishing wave packet width 
and its spreading in time, which were discussed in Sec. 2.2.  

 In the opposite extreme, Eqs. (49), though valid, may tell almost nothing about system’s 
dynamics. Maybe the most apparent example is the “leaky” quantum well that was discussed in Sec. 2.5 
- see Fig. 2.18 and its discussion. Since both the potential U(x) and the initial state are symmetric 
relative to point x = 0, the right-hand parts of both Eqs. (49) identically equal zero. Of course, the result 
(that average values of both momentum and coordinate stay equal zero at all times) is correct, but it does 
not tell us too much about the rich dynamics of the system (the finite lifetime of the metastable state, the 
formation of two wave packets, their waveform and propagation speed), and about the important insight 
the solution gives for the quantum measurement theory. Another similar example is the band theory 
(Sec. 2.7), with its purely quantum effect of the allowed energy bands and forbidden gaps, of which Eq. 
(49) gives no clue. 

 To summarize, the Ehrenfest theorem is important as an illustration of the correspondence 
principle, but its predictive power should not be exaggerated. 

 Now we are ready to patch some holes left during our studies of wave mechanics in Chapters 1-
3. First of all, I have promised you to develop a more balanced view at the monochromatic de Broglie 
waves (4.1), which would be more respectful to the evident r  p symmetry of the coordinate and 
momentum. Let us do this for the 1D case when the wave may be presented as17 

15 Indeed, acting exactly as at derivation of Eq. (36), for a space-local Heisenberg operator we get 

  dxtxttAtxtA ),(Ψ),(ˆ),(Ψ 00H0
* . 

16 The set of equations (49) constitute the Ehrenfest theorem. 
17 From this point on, for the sake of brevity I will drop index x in the notation of the momentum – just as it was 
done in Chapter 2. 
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 .   (5.50) 

Let us have a good look at this function. Since it satisfies equation (34) for the 1D momentum operator 
xip  /ˆ  , 

,ˆ pp pp    `     (5.51) 

p is an eigenfunction of the momentum operator. But this means that we can also write Eq. (6) for the 
corresponding ket-vector: 

 pppp ˆ ,      (5.52) 

and according to Eq. (19) the wavefunction may be presented as 

      pxxp )( .     (5.53) 

. Expression (53) is quite remarkable in its x  p symmetry - which may be pursued further on. 
Before doing that, however, we have to discuss normalization of such functions. Indeed, in this case, the 
probability density w(x) (18) is constant, so that its integral  

      dxxxdxxw pp )()()( *








      (5.54) 

diverges if ap  0. Earlier in the course, we discussed two ways to avoid this divergence. One is to use a 
very large but finite integration volume – see Eq. (1.31). Another way to avoid the divergence is to form 
a wave packet of the type (2.20), possibly of a very large length and very narrow spread of momenta p. 
Then integral (54) may be required to equal 1 without any conceptual problem.  

However, both these methods violate the x  p symmetry, and hence are inconvenient for our 
current purposes. Instead, let us continue to identify the bra- and ket-vectors aA and aA of the general 
theory, developed in the beginning of this section, with eigenvectors p and p of momentum – just as 
we have already done in Eq. (52). Then the normalization condition (9) becomes 

             ).( p'pp'p        (5.55) 

Inserting the identity operator in the form (21) (with the integration variable x’ replaced by x) into the 
left-hand side of this equation, we can translate this normalization rule to the wavefunction language: 

            ).()()(* p'pxxdxp'xxpdx p'p       (5.56) 

Now using Eq. (50), this requirement turns into the following condition: 

   ),()(2
)(

exp
2* p'pp'padx

xp'p
iaa pp'p 







 









  (5.57) 

so that, finally, ap = exp{i}/(2)1/2, where   is an arbitrary (real) phase, and Eq. (50) becomes18  

18 Repeating the calculation for each Cartesian component of a plane monochromatic wave of arbitrary 
dimensionality d, we get  p = (2)-d/2exp{i(pr/ + )}. 



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 5           Page 12 of 50 

  













  






px
ixp exp

2

1
)(

2/1
  (5.58) 

 As was mentioned above, for finite-length wave packets such normalization is not really 
necessary. However, frequently it makes sense to keep the pre-exponential coefficient in Eq. (58) even 
for wave packets, because of the following reason. Let us form a wave packet of the type (2.20), based 
on wavefunctions (58) - taking   = 0 for the notation brevity, because it may be incorporated into 
function (p): 
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ipx  
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 .    (5.59) 

From the mathematical point of view, this is just the equation of a 1D Fourier spatial transform, and its 
reciprocal is 

          
 

dx
px

ixp  








exp)(

2

1
)(

2/1



 .    (5.60) 

These expressions are completely symmetrical, and present the same wave packet; this is why functions 
(x) and (p) are frequently called, respectively, the coordinate (x-) and momentum (p-) representations 
of the (same) state of the particle. Using Eqs. (53) and (58), they may be presented in an even more 
manifestly symmetric form, 

dxxpxpdppxpx   )()(,)()(  ,   (5.61) 

in which the scalar products satisfy the basic postulate (4.14) of the bra-ket formalism: 
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.    (5.62) 

 We already know that in the x-representation, i.e. in the usual wave mechanics, the coordinate 
operator x̂  is reduced to the multiplication by x, and the momentum operator is proportional to a 
derivative over x: 

       .ˆ,ˆ inin x
ipxx xx 


       (5.63) 

It is natural to guess that in the p-representation, the expressions for operators would be reciprocal:  

        ,ˆ,ˆ inin pp
p

ix pp 



       (5.64) 

with the difference in one sign only, due to the opposite signs of the Fourier exponents in Eqs. (59) and 
(60). The proof of Eqs. (64) is straightforward; for example, acting by the momentum operator to 
wavefunction (59), we get 
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  (5.65) 
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and similarly for operator x̂  acting on function (p). Hence, the action of the operators (63) on 
wavefunction   (i.e. state’s x-representation) gives the same results as the action of operators (64) on 
function  (i.e. its p-representation). 

 It is interesting to have one more, different look at this coordinate-to-momentum duality. For 
that, notice that according to Eqs. (4.82)-(4.84), we may consider the bra-ket xp as an element of the 
(infinite-size) matrix Uxp of the unitary transform from the x-basis to p-basis. Now let us derive the 
operator transform rule that would be a continuous version of Eq. (4.92). Say, we want to calculate a 
matrix element of some operator in the p-representation: 

           p'Ap ˆ .      (5.66) 

Inserting two identity operators (21) into this bra-ket, and then using Eq. (53) and its complex conjugate, 
and also Eq. (23) (again, valid only for space-local operators!), we get 
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 (5.67) 

For example, for the momentum operator itself, this relation yields: 
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 (5.68) 

Due to Eq. (52), this result is equivalent to the second of Eqs. (64). 

 A natural question arises: why is the momentum representation used much less frequently than 
the coordinate representation - i.e., the wave mechanics? The answer is purely practical: besides the 
special case of the harmonic oscillator (to be revisited in Sec. 4 below), the orbital motion Hamiltonian 
(31) is not x  p symmetric, with the potential energy U(x) being typically a more complex function 
than the kinetic energy, which is quadratic in momentum. Because of that, it is easier for problem 
solution to keep the potential energy operator just a wavefunction multiplier, as it is in the coordinate 
representation.  

The most significant exception of this rule is the motion in a periodic potential, especially in the 
presence of additional external force F(t), which may result in the effects discussed in Secs. 2.8 and 2.9 
(the Bloch oscillations, Landau-Zener tunneling etc.). Indeed, in this case the dispersion relation En(q), 
typically rather involved, plays the role of the effective kinetic energy, while the effective potential 
energy Uef = –F(t)x in the field of the additional force is a simple function of x. This is why discussions 
of the listed and more complex issues of the band theory (such as quasiparticle scattering, mobility, 
diffusion, etc.) in solid state physics theory are most typically based on the momentum representation. 

 

5.3. Feynman’s path integrals 

 As has been already mentioned, even within the realm of wave mechanics, the bra-ket language 
allows to streamline some calculations that would be very bulky using the notation used in Chapters 1-3. 
Probably the best example in the famous alternative, path integral formulation of quantum mechanics, 
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developed in 1948 by R. Feynman.19 I will review this important concept - admittedly cutting one math 
corner for brevity.20 (This shortcut will be clearly marked.) 

Let us inner-multiply both parts of Eq. (4.157), which is essentially the definition of the time-
evolution operator, by the bra-vector of state x, 

       ,)(),(ˆ)( 00 tttuxtx        (5.69) 

insert the identity operator before the ket-vector in the right-hand part, and then use the closure 
condition in the form of Eq. (21), with x’ replaced with x0: 

        .)(),(ˆ)( 00000 txxttuxdxtx       (5.70) 

According to Eq. (19), this equality may be presented as 

           ),(),(ˆ),( 00000 txxttuxdxtx  .    (5.71) 

Comparing this expression with Eq. (2.44), we see that the bra-ket in this relation is nothing else than 
the 1D propagator, which was discussed in Sec. 2.2: 

       ),;,(),(ˆ 0000 txtxGxttux  .    (5.72) 

As a reminder, we have already calculated the propagator for a free particle – see Eq. (2.49). 

 Now let us break the time segment [t0, t] into N (for the time being, not necessarily equal) parts 
by inserting (N – 1) intermediate points (Fig. 2) 

      ttttt Nk  110 ...... ,     (5.73) 

and rewrite the time evolution operator in the form  

            ),(ˆ),(ˆ)...,(ˆ),(ˆ),(ˆ 01122110 ttuttuttuttuttu NNN  ,   (5.74) 

whose correctness is evident from the very definition (4.157) of the operator. Plugging Eq. (74) into Eq. 
(72), let us insert the identity operator, again in the form (21) but written for xk rather than x’, between 
each two partial evolution operators including time argument tk. The result is 

   .),(ˆ...),(ˆ),(ˆ...);,( 00112211111210,0 xttuxxttuxxttuxdxdxdxtxtxG NNNNNNNN     (5.75) 

19 According to Feynman’s memories, his work was motivated by a “mysterious” remark by P. A. M. Dirac in his 
pioneering 1930 textbook on quantum mechanics.  
20 For a more thorough discussion of the path-integral approach, see the famous text R. Feynman and A. Hibbs, 
Quantum Mechanics and Path Integrals first published in 1965. (For its latest edition by Dover in  2010, the book 
was emended by D. Styler.) For a more recent monograph that reviews more applications, see L. Schulman, 
Techniques and Applications of Path Integration, Wiley, 1981. 

Fig. 5.2. Time partition and coordinate 
notation at the initial stage of the 
Feynman’s path integral derivation. 

tttttt NNk 1210 ...... 

0x 1x kx 2Nx 1Nx x
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The physical sense of each integration variable xk is the wavefunction’s argument at time tk - see 
Fig. 2. The key Feynman’s breakthrough was the realization that if all intervals are similar and 
sufficiently small, tk – tk-1 = d → 0, all the partial bra-kets participating in Eq. (75) may be readily 
expressed via Eq. (2.49), even if the particle is not free, but moves in a stationary potential profile U(x). 
To show that, let us use either Eq. (4.175) or Eq. (4.181), which, for a small time interval d, give the 
same result: 

     .ˆ
2

ˆ
expˆexp),(ˆ
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  (5.76) 

 Generally, an exponent of a sum of two operators may be treated as that of c-number arguments, 
and in particular factored into a product of two exponents, only if the operators commute. (Indeed, in 
this case we can use all the standard algebra for exponents of c-number arguments.) In our case, this is 
not so, because operator p̂  does not commute with x̂ , and hence with U( x̂ ). However, it may be 

shown21 that for an infinitesimal time interval d, the nonvanishing commutator  

            ,0)ˆ(,
2

ˆ 2









 dxUd
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p
     (5.77) 

proportional to (d)2, is so small that in the first approximation in d  its effects may be ignored. As a 
result, we may factor the right-hand part in Eq. (76) by writing 
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.   (5.78) 

(This approximation is very much similar in spirit to the rectangle-formula approximation for a usual 1D 
integral, which in also asymptotically impeachable.) 

 Since the second exponential function in the right-hand part of Eq. (78) commutes with the 
coordinate operator, we can move it out of each partial bra-ket participating in Eq. (75), with U(x) 
turning into a c-number function: 

     .)(exp
2

ˆ
exp),(ˆ

2
















    dxU

i
xd

m

pi
xxdux dd


  (5.79) 

But the remaining bra-ket is just the propagator of a free particle, and we can use Eq. (2.49) for it: 
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As the result, the full propagator (75) takes the form 
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21 A strict proof of this intuitively evident statement would take more space and time than I can afford. 



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 5           Page 16 of 50 

At N   and hence d  (t – t0)/N  0, the sum under the exponent in this expression tends to an 
integral: 
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  (5.82) 

and the expression in square brackets is just the particle’s Lagrangian function L.22 The integral of the 
function over time is the classical action S calculated along a particular “path” x().23 As a result, 
defining the (1D) path integral as 
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  (5.83a) 

we can bring our result to a superficially simple form 

          )]([)(exp);,( 0,0  xDx
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.    (5.83b) 

 The name “path integral” for the mathematical construct (83a) may be readily explained if we 
keep the number N of time intervals large but finite, and also approximate each of the enclosed integrals 
by a sum over M >> 1 discrete points along the coordinate axis (Fig. 3a).  

 

 

 

 

 

 

 

 Then the path integral is a product of (N - 1) sums corresponding to different values of time , 
each of them with M terms, each of the terms representing the function under the integral at a particular 
spatial point. Multiplying those (N – 1) sums, we get a sum of (N - 1)M terms, each evaluating the 
function at a specific spatial-temporal point [x, ]. These terms may be now grouped to represent all 
possible different continuous classical paths x[] from the initial point [x0,t0] to the finite point [x,t]. It is 
evident that the last  interpretation remains true even in the continuous limit N, M   – see Fig. 3b. 

Why does such representation of the sum has sense? This is because in the classical limit the 
particle follows just a certain path, corresponding to the minimum of action S .22 Hence, for all close 
trajectories, the difference (S  – Scl) is proportional to the square of the deviation from the classical 

trajectory. Hence, for a quasiclassical motion, with Scl >> , there is a substantial bunch of close 

trajectories, with (S  – Scl) << , that give similar contributions to the path integral. On the other hand, 

22 See, e.g., CM Sec. 2.1. 
23 See, e.g., CM Sec. 10.3. 
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strongly non-classical trajectories, with (S  – Scl) >> , give phases S/ rapidly oscillating from one 
trajectory to the next one, and their contributions to the path integral are averaged out.24 As a result, for 
the quasiclassical motion, the propagator’s exponent may be evaluated on the classical path: 
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The sum of the kinetic and potential energies is the full energy E of the particle, that remains constant 
for motion in a stationary potential U(x), so that we may rewrite the expression under the integral as25 
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(5.85) 

With that replacement, Eq. (83b) yields 
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where p is the classical momentum of the particle. But (at least, leaving the pre-exponential factor alone) 
this is exactly the WKB approximation result that was derived and studied in detail in Chapter 2!  

 One may question the value of a calculation that yields the results that could be readily obtained 
from Schrödinger’s wave mechanics. The Feynman’s approach, is indeed not used too often, but it has 
its merits. First, it has an important philosophical (and hence heuristic) value. Indeed, Eq. (83) may be 
interpreted by saying that the essence of quantum mechanics is the exploration, by the system, of all 
possible paths x(), each of them classical-like in the sense that the particle’s coordinate x and velocity 
dx/d (and hence its momentum) are exactly defined simultaneously at each point. The resulting 
contributions to the path integral are added up coherently to form the final propagator G, and via it, the 
final probability W  G2 of the particle propagation from [x0,t0] to [x,t]. Of course, as the scale of action 
(i.e. of the energy-by-time product) of the motion decreases and becomes comparable to , more and 
more paths produce substantial contribution to this sum, and hence to W, ensuring a larger and larger 
difference between the quantum and classical properties of the system. 

 Second, the path integral provides a justification for some simple explanations of quantum 
phenomena. A typical example is the quantum interference effects discussed in Sec. 3.1 – see, e.g., Fig. 
3.1 and the corresponding text. At that discussion, we used the Huygens principle to argue that at the 
two-slit interference, the WKB approximation might be restricted of effects by two paths that pass 
through different slits, but otherwise consisting of straight-line segments. To have another look at that 
assumption, let us generalize the path integral to multi-dimensional geometries. Fortunately, the simple 
structure of Eq. (83b) makes such generalization virtually evident: 

24 This fact may be proved by expanding the difference (S – Scl) in the Taylor series in path variations (leaving 
only  the leading quadratic terms) and working out the resulting Gaussian integrals. It is interesting that the 
integration, together with the pre-exponential coefficient in Eq. (83a), gives exactly the pre-exponential 
factor that we have already found in Sec. 2.4 when refining the WKB approximation. 
25 The same trick is often used in analytical classical mechanics – say, for proving the Hamilton principle, and for 
the derivation of the Hamilton – Jacobi equations (see, e.g. CM Secs. 10.3-4). 
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where definition (83a) of the path integral should be also modified correspondingly. (I will not go into 
these technical details.) For the Young-type experiment (Fig. 3.1), where a classical particle could reach 
the detector only after passing through one of the slits, the classical paths are the straight-line segments 
shown in Fig. 3.1, and if they are much longer than the de Broglie wavelength, the propagator may be 
well approximated by the sum of two integrals of Ld = ip(r)dr/  - as it was done in Sec. 3.1. 

 Last but not least, the path integral allows simple solutions of some problems that would be hard 
to get by other methods. As the simplest example, let us consider the problem of tunneling in multi-
dimensional space, sketched in Fig. 4 for the 2D case - just for graphics’ simplicity. Here, potential U(x, 
y) has the “saddle” shape. (Another helpful image is a mountain path between two summits, in Fig. 4 
located on the top and at the bottom of the drawing.) A particle of energy E may move classically in the 
left and right regions with U(x, y) < E, but can pass from one of these regions to another one only via the 
quantum-mechanical tunneling under the pass. Let us calculate the transparency of this tunnel barrier in 
the WKB approximation, ignoring the possible pre-exponential factor. 

  

 

 

 

 

 

 

 

According to the evident multi-dimensional generalization Eq. (86), for the classically forbidden 
region, where E < U(x, y), the contributions to propagator (87) are proportional to  
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where the magnitude of vector  at each point may be calculated just in the 1D case - see, e.g.,  Eq. 
(2.97), 
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while its direction should be tangential to the path trajectory in space. Now the path integral is actually 
much simpler than in the classically-allowed region, because the spatial exponents are purely real and 
there is no complex interference between them. Because of the minus sign in the exponent, the largest 

Fig. 5.4. Saddle-type 2D potential 
profile and the instanton trajectory of 
a particle of energy E (dashed line, 
schematically). 
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contribution to G evidently comes from the trajectory (or rather a narrow bundle of trajectories) for 
which the functional 
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)( 'd'    (5.90) 

has the smallest value, and the barrier transmission coefficient may be calculated as 
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where r and r0 are certain points on the opposite classical turning-point surfaces: U(r) = U(r0) = E.26 

Thus the tunneling problem is reduced to finding the trajectory (including points r and r0) that 
connects the two surfaces and minimizes functional (90). This is of course a well-known problem of the 
calculus of variations,27 but it is interesting that the path integral provides a simple alternative way of 
solving it. Let us consider an auxiliary problem of particle’s motion in a potential profile Uinv(r) that is 
inverted relative to particle’s energy E, i.e. is defined by the following equality: 

            ).()(inv rr UEEU        (5.92) 

As was discussed above, at fixed energy E, the path integral for the WKB motion in the classically 
allowed region of  potential Uinv(x,y) (that coincides with the classically forbidden region of the original 
problem) is dominated by the classical trajectory corresponding to the minimum of 
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where kinv should be determined from the relation 
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But comparing Eqs. (89), (92), and (94), we see that kinv = κ at each point of space! This means that the 
tunneling path (in the WKB limit) corresponds to the classical (so-called instanton)28 trajectory of the 
same particle in the inverted potential Uinv(r). If the initial point r0 is fixed, this trajectory may be 
readily found by the means of classical mechanics. (Note that the initial velocity of the instanton 
launched from point r0 should be zero, because by the classical turning point definition: Uinv(r0) = U(r0) 
= E.) Thus the problem is reduced to a simpler task of maximizing the transparency (91) over the 
position of r0 on the equipotential surface U(r0) = E. Moreover, for many symmetric potentials, the 
position of this point may be readily guessed without calculations. 

26 One can argue that the pre-exponential coefficient in Eq. (91) should be close to 1, just like in Eq. (2.117), 
especially if the potential is smooth in the sense of Eq. (2.107), where x is the coordinate along the trajectory. 
27 For a concise introduction to the field see, e.g., I. Gelfand and S. Fomin, Calculus of Variations, Dover, 2000, 
or L. Elsgolc, Calculus of Variations,  Dover, 2007. 
28 In quantum field theory, the instanton concept may be formulated somewhat differently, and has more complex 
applications - see, e.g. R. Rajaraman, Solitons and Instantons, North Holland, 1987. 
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 Note that besides the calculation of barrier transparency, the instanton trajectory has one more 
important implication: the so-called traversal time t of the classical motion along it, in the inverted 
potential, defined by Eq. (94), plays the role of the most important (though not the only one) time scale 
of particle’s tunneling under the potential barrier.29 

 

5.4. Revisiting harmonic oscillator 

 Let us return to the 1D harmonic oscillator, i.e. any system described by Hamiltonian (2.50) with 
potential energy (2.111): 
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2 xm

m
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 .     (5.95) 

In Sec. 2.10 we have used the “brute-force” (wave-mechanics) approach to analyze the eigenfunctions 
n(x) and eigenvalues En of this Hamiltonian, and found that, unfortunately, that approach  required 
relatively complex math that obscures the physics of these stationary (“Fock”) states. Now let us use the 
bra-ket formalism to make the properties of these states much more transparent, using very simple 
calculations. 

 First, introducing normalized (dimensionless) operators of coordinates and momentum:30 
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       (5.96) 

where x0  (/m0)
1/2 is the natural coordinate scale (2 the r.m.s. spread of ground-state wavefunction) 

which was discussed in detail in Sec. 2.10, we can present Hamiltonian (95) in a very simple and x  p 
symmetric form: 
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H .     (5.97) 

Now, let us introduce a new operator 
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    (5.98a) 

Since both operators  ˆ  and  ˆ  correspond to real observables, i.e. have real eigenvalues and hence are 
Hermitian (self-adjoint), the Hermitian conjugate of operator â  is simply its complex conjugate: 
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    (5.98b) 

Solving the system of two equations (98) for  ˆ  and  ˆ , we may readily get reciprocal relations 

29 See, e.g., M. Buttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982), and references therein. 
30 This normalization is not really necessary, it just makes the following calculations less bulky - and thus more 
aesthetically appealing. 
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Our Hamiltonian (97) includes squares of these operators. Calculating them, we have to be careful to 
avoid swapping the new operators, because they do not commute.  Indeed, for the normalized operators 
(96), Eq. (2.14) gives 
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      (5.100) 

so that Eqs. (98) yield 
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With such due caution, Eq. (99) gives 

   .ˆˆˆˆˆˆ
2

1ˆ,ˆ†ˆˆˆˆˆ
2

1ˆ †††††
2

22
2

22 
















 aaaaaaaaaaaa    (5.102) 

Plugging these expressions back into Eq. (97), we get 
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.     (5.103) 

This expression is elegant enough, but may be recast into an even more convenient form. For 
that, let us rewrite the commutation relation (100) as 

Iaaaa ˆˆˆˆˆ ††  (5.104) 

and plug it into Eq. (103). The result is 

         





 





  INIaaH ˆ

2

1ˆˆˆˆ2
2

ˆ
0

0 † 





,    (5.105)  

where, in the last form, one more (evidently, Hermitian) operator, 

          aaN ˆˆˆ † ,      (5.106) 

has been introduced. Since, according to Eq. (105), operators Ĥ  and N̂  differ only by the addition of 
an identity operator and the multiplication by a c-number, these operators commute. Hence, according to 
the general arguments of Sec. 4.5, they share the set of stationary (Fock) eigenstates n, and we can write 
the eigenproblem for the new operator as 

        nNnN nˆ ,     (5.107) 

where Nn are some eigenvalues that, according to Eq. (105), determine also the energy spectrum of the 
oscillator: 
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 So far, we know only that all eigenvalues Nn are real, but not much more. In order to calculate  
them, let us carry out the following calculation - splendid in its simplicity and efficiency. Consider the 

result of action of operator N̂ on the ket-vector â †n. Using the definition (106) and the associative 
rule, we may write 

        naaanaaanaN 





















 ††††† ˆˆˆˆˆˆˆˆ .    (5.109) 

Now using the commutation relation (104), and then Eq. (107), we may continue as 

             .ˆ11ˆˆˆˆˆˆˆˆˆˆˆ ††††††† 










 





 naNnNanINanIaaanaaa nn  (5.110) 

Let us summarize the result of this calculation: 

       .ˆ1ˆˆ †† 










 naNnaN n      (5.111) 

Performing an absolutely similar calculation with operator â , we can also get another formula: 

             naNnaN n ˆ1ˆˆ  .     (5.112) 

 It is time to stop calculations and translate these results into plain English: if n is an eigenket of 

operator N̂  with eigenvalue Nn, then â †n and â n are also eigenkets of that operator, with 
eigenvalues (Nn + 1), and (Nn - 1), respectively. This statement  may be presented with  the ladder 
diagram shown in Fig. 5.  

 

 

 

 

  

 

 

 

 Operator â † moves the system a step up the ladder, while operator â  brings it one step down. In 
other words, the former operator creates a new excitation of the system,31 while the latter operator kills 
(“annihilates”) such excitation. This is why â † is called the creation operator, and â , the annihilation 

operator. In its turn, according to Eq. (107), operator N̂  does not change the state of the system, but 
“counts” its position on the ladder: 

         .ˆ
nn NnNnnNn       (5.113) 

31 For the electromagnetic field oscillators, such excitations are called photons; for the mechanical wave field 
oscillators, phonons, etc. 

Fig. 5.5. Hierarchy (the “ladder diagram”) of eigenstates 
of a 1D harmonic oscillator. Arrows show the actions of 
the creation and annihilation operators on the 
eigenstates. 
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This is why N̂  is called the number operator, in our current context meaning the number of the 
elementary excitations of the oscillator. 

This calculation still needs a completion. Indeed, we still do not know whether the ladder shown 
in Fig. 5 shows all eigenstates of the oscillator, and what exactly the numbers Nn are. Fascinating 
enough, both questions may be answered by exploring a single paradox. Let us start with some state 
(step of the ladder), and keep going down it, applying operator â  again and again. Each time, 
eigenvalue Nn is decreased by one, so that eventually it should become negative. However, this cannot 
happen, because any real eigenstate, including the states presented by kets d  â n  and n, should 
have a positive norm – see Eq. (4.16). Comparing the norms, 

        ,ˆ, †22
nnNnNnnaandnnn n


   (5.114) 

we see that the both of them cannot be positive simultaneously if Nn is negative. 

 The way toward the resolution of this paradox is to notice that the action of the creation and 
annihilation operators on the stationary states may consist in not only their promotion to the next step of 
the ladder diagram, but also by their multiplication by some c-numbers: 

        .1ˆ,1ˆ †  nA'nanAna nn     (5.115) 

(Linear relations (111) and (112) clearly allow that.) Let us calculate coefficients An assuming, for 
convenience, that all eigenstates, including states n and (n -1), are normalized: 
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.  (5.116) 

From here, we get An  = (Nn)
1/2, i.e. 

            1ˆ 2/1  neNna n
n

i
,     (5.117) 

where n is an arbitrary real phase. Now let us consider what happens if all numbers Nn are integers. 
(Because of the definition of Nn, given by Eq. (107), it is convenient to call these integers n, i.e. by the 
same letter as the corresponding eigenstate.)  Then when we have come down to state with n = 0, an 
attempt to make one more step down gives 

        100ˆ a .      (5.118)  

But in accordance with Eq. (4.9), the state in the right-hand part of this equation is the “null-state”, i.e. 
does not exist.32 This gives the (only known :-) resolution of the state ladder paradox: the ladder has the 
lowest step with Nn = n = 0. 

 As a by-product of our discussion, we have obtained a very important relation Nn = n, which  
means, in particular, that the state ladder includes all eigenstates of the oscillator. Plugging this relation 
into Eq. (108), we see that the full spectrum of eigenenergies of the harmonic oscillator is described by 
the simple formula 

32 Please note again the radical difference between the null-state in the right-hand part of Eq. (118) and the state 
described by ket-vector 0 in the left-hand side of that relation. The latter state does exist and, moreover, presents 
the most important, ground state of the system, with n = 0 - see Eq. (2.269). 



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 5           Page 24 of 50 

              ...2,1,0,
2

1
0 






  nnEn  ,    (5.119) 

which was already discussed in Sec. 2.10. It is rather remarkable that the bra-ket formalism has allowed 
us to derive it without calculation of the corresponding (rather cumbersome) wavefunctions n(x) – see 
Eqs. (2.279).  

Moreover, the formalism may be also used to calculate virtually any bra-ket pertaining to the 
oscillator, without using n(x). In order to illustrate that, let us first calculate A’n participating in the 
latter of relations (115). This can be done absolutely similarly to the above calculation of An; otherwise, 
since we already know that An = (Nn)

1/2 = n1/2, we may notice that according to Eqs. (106) and (115), 
the eigenproblem (107), that in our new notation for Nn becomes 

  nnnN ˆ ,      (5.120)  

may be rewritten as  

    nAAnAanaann '
nnn 11ˆˆˆ ††
 .    (5.121) 

Comparing the first and the last form of this equality, we see that A’n-1 = n/An = n1/2, i.e. A’n = (n + 
1)1/2exp(in’). Taking all phases n and n’ equal to zero for simplicity, we may reduce Eqs. (115) to 
their final, standard form33 

                1ˆ,11ˆ 2/12/1†  nnnannna .   (5.122) 

Now we can use these formulas to calculate, for example, the matrix elements of operator x̂  in 
the Fock state basis: 
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To complete the calculation, we may now use Eqs. (122) and the Fock state orthonormality: 

        .'nnnn'        (5.124) 

The result is 
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 (5.125) 

Acting absolutely similarly, for the momentum bra-kets we get a similar expression:  
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   (5.126) 

Hence the matrices of both operators in the Fock-state basis have only two diagonals, adjacent to the 
main diagonal; all other elements (including the diagonal ones) are zeros.  

33 A useful mnemonic rule is that the c-number coefficient in any of these relations is equal to the square root of 
the largest number of the two states it relates. 
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Matrix elements of higher powers of these operators, as well as their products, may be handled 
similarly, though the higher is the power, the bulkier is the result. For example,34  
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For applications, the most important of these matrix elements are those on its main diagonal: 
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This expression shows, in particular, that the expectation value of oscillator’s potential energy in n-th 
Fock state is 
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This is exactly ½ of the total energy (119) of the oscillator. As a sanity check, an absolutely similar 
calculation of the kinetic energy shows that 

          ,
2

1

2
ˆ

2

1

2
02

2







  nnpn

mm

p 
    (5.130) 

i.e. both partial energies equal En/2, just as in a classical oscillator.35  

 

5.5. The Glauber and squeezed states 

 There is evidently a huge difference between a quantum stationary (Fock) state of the oscillator 
and its classical state. Indeed, let us write the classical Hamilton equations of motion of the oscillator 
(using capital letters to distinguish the classical variables from arguments of quantum wavefunctions): 

               ., 2
0 Xm

x

U
P

m
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      (5.131) 

On the “phase plane” with Cartesian coordinates x and p (Fig. 6), these equations describe clockwise 
rotation of the representation point {X(t), P(t)} along an elliptic trajectory starting from the initial point 
{X(0), P(0)}. (The normalization of momentum by m0, similar to the one performed by the second of 
Eqs. (96), makes the trajectory pleasingly circular, with a constant radius equal to oscillation’s 
amplitude A, reflecting the constant full energy 

34 The first line of Eq. (127), evidently valid for any time-independent system, is the simplest of the so-called sum 
rules, which will be repeatedly discussed below. 
35 Still note that operators of the partial (potential and kinetic) energies do not commute with either each other or 
with the full-energy (Hamiltonian) operator, so that the Fock states n are not their eigenstates. 
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determined by the initial conditions.) 

For the forthcoming comparison with quantum states, it is convenient to describe this classical 
solution by the following dimensionless complex variable 
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which is essentially the standard complex-number representation of system’s position on the 2D phase 
plane, with   A/2x0. With this definition, Eqs. (131) are conveniently merged into one equation, 

                    ,0 i       (5.134) 

with an evident, very simple solution 

                
ti

et 0)0()(
  ,     (5.135) 

where the constant (0) may be complex, and is just the (normalized) classical complex amplitude of 
oscillations.36 This equation describes sinusoidal oscillations of both X(t)  Re[(t)] and P  Im[(t)], 
with a phase shift of /2 between them. 

 

 

   

 

 

 

 

 

 

 

 

  

On the other hand, according to the basic Eqs. (4.157)-(4.158), the time dependence of a Fock 
state, as of a stationary state of the oscillator, is limited to the phase factor exp{-iEnt/} not in 
observables, but rather in the wavefunction, and a result, gives time-independent expectation values of x, 
p, or of any function thereof. (Moreover, as Eqs. (125) and (126) show, x = p = 0.) Taking into 

36 See, e.g., CM Chapter 4, especially Eqs. (4.4) and Fig. 4.9 and its discussion. 

2/

Fig. 5.6. Schematic representation of various states of a 
harmonic oscillator on the phase plane. The bold black 
point represents a classical state, with the dashed line 
showing its trajectory. (Very imperfect) classical images 
of the Fock states with n = 0, 1, and 2 are shown in blue, 
while the blurred red spot is the (equally schematic) 
Glauber state’s image. Finally, the magenta elliptical 
spot is a classical image of a squeezed ground state. 
Arrows show the direction of states’ evolution in time. 
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account Eqs. (129) and (130), the closest (though very imperfect) geometric image37 for such a state on 
the phase plane is a blurred circle of radius An = x0(2n + 1)1/2, along which the wavefunction is 
uniformly spread as a wave – see the blue rings in Fig. 6. For the ground state (n = 0), with 
wavefunction (2.269), a better image is a blurred round spot, of radius ~x0, at the origin. 

 However, the Fock states n are not the only possible quantum states of the oscillator: according 
to  the basic Eq. (4.6), a state described by ket-vector 







0n

n n      (5.136) 

with any set of (complex) c-numbers n, is also its legitimate state, subject only to the normalization 
condition  = 1, giving 
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 It is natural to ask: can we select coefficients n in such a special way that the state properties 
would be closer to the classical ones; in particular the expectation values x and  p of coordinate and 
momentum would evolve in time just as the classical values X(t) and P(t), while the uncertainties of 
these observables would be time-independent and the same as in the ground state:  
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,             (5.138) 

with the smallest possible value of the uncertainty product, xp = /2.38 Let me show that such a 
Glauber state,39 which is schematically represented in Fig. 6 by a blurred red spot around the classical 
point {X(t), P(t)}, is indeed possible.  

 Conceptually the simplest way to find the corresponding coefficients n  would be to calculate 
x, p, x and p for an arbitrary set of  n, and then try to optimize these coefficients to reach our goal. 
However, this problem may be solved much easier using wave mechanics. Indeed, let us consider the 
following wavefunction 
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m
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2
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 .   (5.139) 

Its comparison with Eqs. (2.16) and (2.269) shows that this is just a Gaussian wave packet with the 
average momentum P and the coordinate width x given by Eq. (138), but shifted along axis x by X. 

37 I have to confess that such geometric mapping of a quantum state on the phase plane [x, p] is not exactly 
defined; you may think about colored areas in Fig. 6 as regions of pairs {x, p} most probably obtained in 
measurements. A quantitative definition of such a mapping will be given in Sec. 7.3 using the Wigner function, 
though, as we will see, even such imaging definition has certain internal contradictions. Still such cartoons may 
have considerable cognitive/heuristic value, if their limitations are kept in mind. 
38 In the quantum theory of measurements, Eqs. (138) are frequently referred to as the standard quantum limit. 
39 Named after R. J. Glauber who studied these states in detail in 1965, though they had been discussed in brief by 
E. Schrödinger as early as in 1926. Another popular name, “coherent”, for the Glauber states is very misleading, 
because all the quantum states we have studied so far (including the Fock states) may be presented as coherent 
(pure) superpositions of the basis states. 
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Hence, this wavefunction satisfies all the above requirements, and a straightforward (though a bit bulky) 
differentiation over x and t shows it also satisfies oscillator’s Schrödinger equation, provided that that 
functions X(t) and P(t) satisfy classical Eqs. (131).  

 This fact is true even for a more general situation when the oscillator, initially in its ground 
state40 comes under effect of a classical force F(t). (Evidently, for its description its is sufficient to add 
this function to the right-hand part of the second of Eqs. (131).) Moreover, the electromagnetic radiation 
formed in “good” (single-mode) lasers is also in the Glauber state. (As will be discussed in Chapter 9, 
the experimental formation of Fock states n, with the only exception of n = 0, i.e. the ground state, is 
much harder.)  This is why the Glauber states are so important. 

 Though Eq. (139) gives the full wave-mechanics description of a Glauber state, there is a 
substantial place for the bra-ket formalism here too. For example, in order to calculate the corresponding 
coefficients in expansion (136), 

         dxxxxxndxn nn )()(*
   ,   (5.140) 

we would need to use not only the simple Eq. (139), but also the Fock state wavefunctions n(x), which 
are not very appealing – see Eq. (2.279). Instead, this calculation may be readily done in the bra-ket 
formalism, giving us one important byproduct result.  

Let us start from expressing the double shift of the ground state (by X and P), that has led us to 
Eq. (139), in the operator language. Forgetting about the P for a minute, let us find a translation 

operator XT̂  that produces the desirable shift of coordinate by X of an arbitrary wavefunction (x) – say 
represented as the standard wave packet (59). Evidently, the result of its action, in the coordinate 
representation, is 
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Hence, the shift may be achieved by the multiplication of each Fourier component of the packet, with 
momentum p, by exp{-ipX/}. This gives us a hint that the general form of the translation operator, valid 
in any representation, should be 

             










Xp
iX

ˆ
expT̂ .     (5.142) 

The proof of this formula is provided by the fact that any operator is uniquely determined by the set of 
its matrix elements in any full and orthogonal basis, in particular the basis of momentum states p. 
According to Eq. (141), the analog of Eq. (23) for the p-representation, applied to the translation 
operator (which is evidently local), is 

             )(exp)()(ˆ p
pX

ip'pp'p'p X 









T ,   (5.143) 

so that operator (142) does exactly the job we need it to. 

40 As will be discussed in Chapter 7, the ground state may be readily formed, for example, by providing a weak 
coupling of the oscillator to a low-temperature (kBT << 0) environment. 
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 The operator that provides the shift of momentum by P is absolutely similar - with the opposite 
sign under the exponent, due to the opposite sign of the exponent in the reciprocal Fourier transform, so 
that the simultaneous shift by both X and P may be achieved by the following translation operator: 

           






 




XpxP
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T .                           (5.144) 

As we already know, for a harmonic oscillator the creation-annihilation operators are more natural, so 
that we may use Eqs. (96) and (99) to recast Eq. (144) as 

    ,ˆˆexpˆ *†





  aa T   with  ,ˆˆexpˆ †*†





  aαaT                         (5.145) 

where the c-number  (generally, a function of time) is defined by Eq. (133). Now, according to Eq. 
(139), we may form the Glauber state’s ket-vector just as 

        0ˆ
 T .      (5.146) 

 This formula looks nice and simple, but making practical calculations (say, calculating 
expectation values of variables) with the translation operator (144) is not too easy because of its 
exponent-of-operators form. Fortunately, it turns out that a much simpler representation for the Glauber 
state is possible. To show than, let us start with the following general (and very useful) property of 
exponential functions of operators: if 

            ,ˆˆ,ˆ IBA        (5.147) 

(where Â and B̂ are arbitrary operators, and   is a c-number), then41 

          .ˆˆˆexpˆˆexp IBABA      (5.148) 

Let us apply Eqs. (147)-(148) to two cases, both with   

      ,ˆˆˆ †* aaA      so that      .ˆˆexp,ˆˆexp †
 TT  AA   (5.149) 

First, let us take IB ˆˆ  , then Eq. (147) is valid with  = 0, and Eq. (148) yields 

          Îˆˆ †  TT ,      (5.150) 

This equality means that the translation operator is unitary – not a big surprise, because if we shift a 
classical point on the complex phase plane by (+) and then by (-), we certainly must come back to the 
initial position. Relation (150) means merely that this fact is also true for any quantum state as well.  

 Second, let us take aB ˆˆ  ; in order to verify Eq. (147) and find the corresponding , let us 
calculate the commutator. Using, at the due stage of calculation, Eq. (104), we get 

        ,ˆˆ,ˆˆ,ˆˆˆ,ˆ ††* Iaaaa-aBA  







     (5.151) 

41 The proof of Eq. (148) may be readily achieved by expanding operator    ABAf ˆexpˆˆexp)(ˆ    in the 

Taylor series in the c-number parameter , and then evaluating the result at   = 1. 
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so that in this case  = , and Eq. (148) yields 

               .ˆˆˆˆˆ † Iaa  TT      (5.152) 

We have approached the summit of this beautiful calculation. Let us consider operator 

          TTT ˆˆˆˆ †a .      (5.153) 

Using Eq. (150), we may reduce this expression to T̂â , while the application of Eq. (151) to the same 

expression yields  TT ˆˆˆ a . Hence, we get the following operator equality 

                  TTT ˆˆˆˆˆ  aa ,     (5.154) 

which may be applied to any state. Now acting by these two operators on the ground state 0 and using 

the facts that â 0 is the null-state, while  0T̂ , we finally get a very simple and elegant result:42 

        â .                (5.155) 

Thus any Glauber state is just one of eigenstates of the annihilation operator, namely the one 
with the eigenvalue equal to parameter , i.e. to the complex representation (133) of the classical state 
which is the center of the Glauber  state’s distribution.43 This fact makes the calculations of the Glauber 
state properties much simpler. As the simplest example, let us use Eq. (155) to find x in the Glauber 
state: 






 





   †† ˆˆ

2
ˆˆ

2
ˆ 00 aa

x
aa

x
xx .  (5.156) 

In the first term in the parentheses, we can apply Eq. (155) directly, while in the second term, we can 

use the bra-counterpart of that relation, *†ˆ  a . Now assuming that the Glauber state is 

normalized,  = 1, and using Eq. (133), we get 

           X
xx

x  **

22
00  ,   (5.157) 

Acting absolutely similarly, we may readily extend this sanity check to verify that p = P, and that x 
and p indeed obey Eq. (138). 

 As a more thorough sanity check, let us use Eq. (155) to re-calculate Glauber state’s 
wavefunction (139). Inner-multiplying both sides of that relation by bra-vector x, and using definition 
(98a) of the annihilation operator, we get 

42 It is also rather counter-intuitive. Indeed, according to Eq. (122), the annihilation operator â , acting on a Fock 
state n, “beats it down” to the lower-energy state (n – 1) – see Eq. (119). However, according to Eq. (155), its 
action on a Glauber state  does not lead to the state change and hence to an energy decrease! The resolution of 
this paradox may be achieved via representation of the Glauber state as a series of Fock states – see Eq. (165) 
below. Operator â  indeed transfers each Fock component to a lower-energy state, but it also re-weighs each term 
of the expansion, so that the complete energy of the Glauber state remains constant. 
43 Note that the spectrum of eigenvalues  of eigenproblem (155) is continuous – it may be any complex number! 
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Since x is the bra-vector of the eigenstate of the Hermitian operator x̂ , they may be swapped, with the 
operator giving its eigenvalue x; acting on that bra-vector by the (local!) operator of momentum, we  
have to use it in the coordinate representation (63). As a result, we get 

       


 xx
xm

xx
x













002

1 
.   (5.159) 

But x is nothing else than the Glauber state’s wavefunction , so that Eq. (153) gives for it a first-
order differential equation 

            .
2

1

00
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x
x


    (5.160) 

Chasing  and x to the opposite sides of the equation, and using definition (133) of parameter , we 
may bring this equation to a form 

         x
m

P
iXx

m





















0

0









.    (5.161) 

Integrating both parts, we return to Eq. (139) that had been derived by wave-mechanics means.  

 Now that we can use Eq. (155) for finding coefficients n in the expansion (136) of the Glauber 
state  in series over the Fock states n. Plugging Eq. (136) into each side of Eq. (155), using the first of 
Eq. (122) in the left-hand part, and requiring the coefficients at each ket-vector n in both parts to be 
equal, we get the following recurrence relation for the coefficients: 

               .
)1( 2/11 nn n




      (5.162)  

Assuming some value of 0, and applying the relation sequentially for n = 1, 2, etc., we get 

      .
)!( 02/1


n

n

n       (5.163) 

Now we can find 0 from the normalization requirement (137), getting 

      .1
!0

2
2

0 


n

n

n


      (5.164) 

In this sum, we may readily recognize the Taylor expansion of  function exp{2}, so that the final 
result (besides an arbitrary common phase multiplier) is 

               















0
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 .    (5.165) 
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It means in particular that the probability Wn  nn* of finding the system energy on n-th 
energy level  (119) obeys the well-known Poisson distribution (Fig. 7): 
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!
,     (5.166) 

where in our particular case 

         
2n .      (5.167)  

For applications, perhaps the most important mathematical property of this distribution is   

         
2/1

nn  ;      (5.168) 

note also that at 1n , and hence nn  , the Poisson distribution approaches the Gaussian 

(“normal”) one. 

 Now let us discuss the evolution of the Glauber state in time. In the Schrödinger language, it is 
completely described by dynamics (131) of the c-number shifts X(t) and P(t) participating in 
wavefunction (139). Note again that, in contrast to the spread of the wave packet of a free particle, 
discussed in Sec. 2.2, in the harmonic oscillator the Gaussian packet of special width (138) does not 
spread at all!  

An alternative and equivalent way of dynamics description is to use the Heisenberg equation of 
motion. As Eqs. (42) and (48) tell us, such equations for Heisenberg operators of coordinate and 
momentum they have to be similar to the classical equation (131): 

.ˆˆ,
ˆ

ˆ H
2
0H

H
H xmp

m

p
x       (5.169) 

Now using Eqs. (98), for the Heisenberg-picture creation and annihilation operators we get equations 

                ,†ˆ†ˆ,ˆˆ H0HH0H aiaaia        (5.170) 

that are completely similar for the classical equation (134) for the c-number parameter  and its 
complex conjugate, and hence have the solutions identical to Eq. (135): 
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Fig. 5.7. The Poisson distribution for 
several values of n. Note that Wn are 
defined only for integer values of n; lines 
are only guides for the eye. 

n

nW 3.0n

0.1

0.3
10

r.m.s. 
fluctuation 

Poisson 
distribution 
 



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 5           Page 33 of 50 

           
titi

eataeata 0
HH

0
HH )0(ˆ)(ˆ)0(ˆ)(ˆ ††

,
  

.    (5.171) 

As was discussed in Sec. 4.6, such equations are very convenient because they enable simple  
calculation of time evolution of observables for any initial state of the oscillator (Fock, Glauber, or any 
other) using Eq. (4.191). Applied to a Glauber state (0), such calculation gives the same results as have 
already been derived earlier in this section, in particular confirms that the Gaussian wave packet of the 
special width (138) does not spread in time. 

 Now let us consider what happens if the initial wave packet is still Gaussian, but has a different 
width, say x < x0/2. As we already know from Sec. 2.2, the momentum spread p will be 
correspondingly larger, still with the smallest uncertainty product: xp = /2. Such squeezed ground 
state s, with zero expectation values of x and p, may be generated from the Fock/Glauber ground state: 

         0ˆ
sSs  ,               (5.172a) 

using the so-called squeezing operator, 
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1
expˆ aaaa ssS s ,             (5.172b) 

which depends on a complex c-number parameter s = rei. Parameter’s modulus r determines the 

squeezing degree; it is straightforward to use Eq. (172) for checking that if s  is real ( = 0,  = r), then  
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 .  (5.173) 

 On the phase plane (Fig. 6), this  state, with r > 0, may be represented by an oval spot squeezed 
along axis x (hence the state’s name) and stretched along axis p; the same formulas but with r < 0 
describe the opposite squeezing. On the other hand, phase  of the squeeze parameter s determines the 

angle  /2 of oval’s turn about the phase plane origin – see the magenta ellipse in Fig. 6; if   0, Eqs. 
(173) are valid for variables {x’, p’} obtained from {x, p} via clockwise rotation by that angle. For any 
of such origin-centered squeezed states, time evolution is reduced to an increase of the angle with rate 
0, i.e. to the clockwise rotation of the ellipse, without its deformation, with angular velocity 0 – see 
the magenta arrows in Fig. 6. As a result, uncertainties x and p oscillate in time with double frequency 
20, while  their product is constant at its minimal possible value /2.  

 Such squeezed ground states have important implications for quantum measurements (see Sec. 
7.7 below) and may be formed, for example, by parametric excitation of the oscillator,44 with a 
parameter modulation depth close to, but still below the threshold of parametric oscillations excitation. 
Unfortunately, I do have time for a further discussion of this interesting topic,45 but still need to mention 

44 For a discussion and classical theory of this effect, see, e.g., CM Sec. 4.5. 
45 See, e.g.,  Chapter 7 in C. Gerry and P. Knight, Introductory Quantum Optics, Cambridge U. Press, 2005, and 
the spectacular measurements of the Glauber and squeezed states of electromagnetic (light) oscillators by G. 
Breitenbach et al., Nature 387, 471 (1997), very large (ten-fold) squeezing in such oscillators by H. Vahlbruch et 
al., Phys. Rev. Lett. 100, 033602 (2008); and recent first measurements of the (so far, slight) squeezing in 
mechanical resonators, with eigenfrequency 0/2 as low as 3.6 MHz, by E. Wollman et al., Science 349, 952 
(2015). 
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a more general class of squeezed states, centered to an arbitrary point {X, P} rather than the origin, that 
may be formed by an additional action of the displacement operator (144) on the squeezed ground state 
(172). Calculations similar to those that led us from Eq. (145) to Eq. (155), but now for the product 

operator sST ˆˆ
  rater than bare T̂ , show that such a general squeezed state is an eigenstate of the 

following mixed operator    

     rearab i sinhˆcoshˆˆ †  ,              (5.174a) 

with eigenvalue 

     rer i sinhcosh *   .              (5.174b) 

For the particular case  = 0, Eq. (174b) yields  = 0, i.e. the action of operator (174a) on the squeezed 
ground state s  with the same r and   yields the null-state, thus generalizing Eq. (118), which is valid for 
the “usual” (non-squeezed) ground state. 

 

5.6. Revisiting spherically-symmetric problems 

 One more blank spot to fill has been left in our study of wave mechanics of spherically-3D 
symmetric systems in Sec. 3.6. Indeed, while the eigenfunctions describing axially-symmetric 2D 
systems, and the azimuthal components of those in spherically-symmetric 3D systems, are very simple, 

         
 

,...2,1,0,
2

1
2/1

 meim
m




     (5.175) 

the polar components of the eigenfunctions in the latter case (i.e., of spherical harmonics) include the 
associate Legendre functions  Pl

m(cos) that may be expressed via elementary functions only indirectly 
– see Eqs. (3.165) and (3.168). This makes all the calculations less than transparent and, in particular, 
does not allow a clear insight into the origin of the very simple eigenvalue spectrum – see, e.g., Eq. 
(3.163). The bra-ket formalism, applied to the angular momentum operator, allows one to get such 
insight, and also produces a very convenient tool for many calculations involving spherically-symmetric 
potentials. 

 Let us start from using the correspondence principle to spell out the quantum-mechanical 
operator of the orbital angular momentum L  rp of a point particle: 

        etc.  ,ˆˆˆˆˆ  i.e.,

ˆˆˆ

ˆˆˆˆˆˆ
yzx

zyx

zyx

pzpyL

ppp

zyx 
nnn

prL ,    (5.176) 

From this definition, we can readily calculate the commutation relations for all Cartesian components of 

operators prL ˆ and ,ˆ,ˆ ; for example, 

                        ,ˆˆ,ˆˆˆ,ˆˆˆˆˆ,ˆ ziypzypzpyyL yyzx      (5.177) 

etc. Using the sequential numbering of coordinate axes (x = r1, etc.), the summary of these calculations 
may be presented in similar, compact (and beautiful!) forms: 
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                 jj'j"j"jjjj'j"j"j'jjj'j"j"j'j LiLLpipLrirL  ˆˆ,ˆ,ˆˆ,ˆ,ˆˆ,ˆ
'   ,  (5.178)  

where each of indices j and j’ and j” may take any of values 1, 2, and 3, j” is the complementary index 
of the same set (not equal to either j or j’), and jj’j” is the Levi-Civita symbol (or “permutation 
symbol”).46 Also introducing in the natural way a (scalar!) operator of the observable L2 = L2,  

               ,ˆˆˆˆ 2222
zyx LLLL       (5.179) 

it is straightforward to check that this operator commutes with each of the Cartesian components: 

           .0ˆ,ˆ2 jLL       (5.180) 

This result, at the first sight, may seem to contradict the last of Eqs. (178). Indeed, haven’t we 

learned in Sec. 4.5 that commuting operators (e.g., 2L̂  and any of jL̂ ) share their eigenstate sets? If yes, 

shouldn’t that mean that this set has to be common for all 4 operators?47 The resolution in this paradox 
may be found in the condition that was mentioned just after Eq. (4.138), but (sorry!) not sufficiently 
emphasized there. According to that relation, if an operator has degenerate eigenstates (i.e. if Aj = Aj’ 
even for j  j’), they should not be necessarily shared by another compatible operator. This is exactly the 
situation with the orbital angular momentum operators, that may be schematically shown at a Venn 

diagram (Fig. 8):48 the set of eigenstates of operator 2L̂  is highly degenerate,49 and is broader than those 

of the component operators jL̂  (that, as will be shown below, are non-degenerate until we consider 

particle’s spin).  

  

 

 

 

 

 

 

  

46 See, e.g., MA Eq. (13.2). 
47 The importance of this issue stems from the following fact: it is easy (and is hence left to the reader :-)  to use 
Eqs. (5.178) to prove that operators of all Lj and of L2 commute with the Hamiltonian of a particle in the 
spherically-symmetric potential U(r), and hence all their eigenstates are the stationary states in such a field. 
48 This is just a particular example of Venn diagrams (introduced in the 1880s by J. Venn) that show possible 
relations (such as intersections, unions, complements, etc.) between various sets of objects, and are a very useful 
tool in the general set theory. 
49 Note that this particular result is consistent with the classical picture of the angular momentum vector: even 
when is length is fixed, the vector may be oriented in various directions, corresponding to different values of its 
Cartesian components. However, in the classical picture, all these component may be fixed simultaneously, while 
in the quantum picture this is not true. 

Fig. 5.8. Venn diagram showing (schematically) the  

partitioning of the set of eigenstates of operator 2L̂ . Each 
inner sector corresponds to the states shared with one of 

Cartesian component operators jL̂ , while the outer 

(shaded) ring presents the eigenstates of 2L̂  that are not 

shared with either of jL̂  - e.g., all linear combinations of 

eigenstates of different component operators. 
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 Let us focus on just one of these 3 joint sets of eigenstates – by tradition, of operators 2L̂  and zL̂ . 
(This tradition is due to the canonical form of spherical coordinates, in which the polar angle is 
measured from axis z. Indeed, using Eqs. (63), in the coordinate representation we get the following 
expression, 

                

























  i
x

iy
y

ixpypxL xyz ˆˆˆ .   (5.181) 

Writing the standard eigenproblem for the operator in this representation, mzmz LL  ˆ , we see that it 

is satisfied by eigenfunctions (175), with eigenvalues Lz = m - at was already conjectured in Sec. 3.5.) 
More specifically, let us consider a set of eigenstates {l, m} corresponding to a certain degenerate 

eigenvalue of operator 2L̂  but all possible eigenvalues of operator zL̂ , i.e. all possible quantum numbers 

m. (At this point, l is just some parameter that determines the eigenvalue of 2L̂ ; it will be defined more 
explicitly  in a minute.) In order to analyze this set, it is instrumental to introduce the so-called ladder 
(also called, respectively, “raising” and “lowering”) operators 

      yx LiLL ˆˆˆ        (5.182) 

- note a substantial similarity between this definition and Eqs. (98). It is straightforward to use this 
definition and the last of Eqs. (178) to calculate the following commutators: 

               LLLLLL zz
ˆˆ,ˆ  and,ˆ2ˆ,ˆ  ,      (5.183) 

and use Eq. (179) to prove another important relation: 

            LLLLL zz
ˆˆˆˆˆ 22  .     (5.184) 

 Now let us rewrite the last of Eqs. (183) as 

              LLLLL zz
ˆˆˆˆˆ  ,     (5.185) 

and act by its both parts on the ket-vector l, m of the set specified above:           

       .,ˆ,ˆˆ,ˆˆ mlLmlLLmlLL zz        (5.186) 

Since eigenvalues of operator zL̂  are equal to m, in the first term of the right-hand part we may write 

              .,,ˆ mlmmlLz       (5.187) 

With that, Eq. (186) may be recast as 

                  .,ˆ1,ˆˆ mlLmmlLLz        (5.188) 

In a spectacular similarity with Eqs. (111)-(112) for the harmonic oscillator, Eq. (188) means 

that states mlL ,ˆ
  are also the eigenstates of operator zL̂ , corresponding to eigenvalues (m  1). Thus 

the ladder operators act exactly as the creation and annihilation operators in the oscillator, moving the 
system up or down a ladder of eigenstates (Fig. 9). The most significant difference is that now the state 
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ladder must end in both directions, because an infinite increase of m , with whatever sign, would cause 
the expectation values of operator 

              2222 ˆˆˆˆ
zyx LLLL  ,     (5.189) 

which corresponds to a non-negative observable, to become negative. Hence there should be two states 
on both ends of the ladder, l, mmax and l, mmin, for whom 

          .0,ˆ,0,ˆ
minmax   mlLmlL     (5.190) 

Due to the symmetry of the whole problem with respect to the replacement m  -m, we should have 
mmin = - mmax. This mmax is exactly the quantum number that is traditionally called l, so that 

                  .lml        (5.191) 

 

 

 

 

 

 

 

 

 

 

Evidently, this relation of quantum numbers m and l is compatible with the almost-classical 
image of various orientations of the angular momentum vector of the same length in various directions, 
with its z-component taking several (2l + 1) possible values m. In this simple picture, however, L2 
would be equal to square of (Lz)max, i.e. to (l)2; however, this is not so. Indeed, applying the operator 
equality (184) to the top state l, mmax  l, l, we get 

                      
  .,1

0,,,ˆˆ,ˆ,ˆ,ˆ

2

22222
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  (5.192) 

Since by our initial assumption, all eigenvectors l, m correspond to the same eigenvalue of operator 2L̂ , 
this result means that all these eigenvalues are equal to 2l(l + 1). Just as in case of the spin-½ vector 
operators, the deviation of this result from 2l2 may be interpreted as the result of unavoidable 
uncertainties (“fluctuations”) of the x- and y-components of the angular momentum, that give a finite 
positive contribution to L2 even if the angular momentum vector is aligned in the best possible way with 
the z-axis. 

Fig. 5.9. Hierarchy (ladder diagram) of the 

common eigenstates of operators 2L̂ and zL̂ . 
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Now let us compare our results with those of Sec. 3.6. Using the expression of Cartesian 
coordinates via the spherical ones exactly as was done in Eq. (181), we get the following expressions for 
the ladder operators (182) in the coordinate representation: 

        














 
 




 ancotˆ ieL i .    (5.193) 

Now plugging this equation, together with Eq. (181), into Eq. (184), we get 
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L .   (5.194) 

But this is exactly the operator (besides its division by constant parameter 2mR2) that stands in the left-
hand part of Eq. (3.156). Hence that equation, which was explored by the “brute-force” (wave-

mechanical) approach in Sec. 3.6, may be understood as the eigenproblem for operator 2L̂  in the 
coordinate representation, with eigenfunctions Yl

m(,) corresponding to eigenkets {l, m}, and 
eigenvalues L2 = 2mR2E. As a reminder, the main result of that, rather involved analysis was expressed 
by Eq. (3.163), which now may be rewritten as 

  )1(2 222  llEmRL ll  ,     (5.195) 

in a full agreement with what was obtained in this section by much more efficient means based on the 
bra-ket formalism. In particular, it is fascinating to see how easy are now many operations with 
eigenvectors l, m, albeit wavefunctions of these states, spherical harmonics Yl

m(,), have rather 
complex spatial behavior – please have one more look at Eq. (3.171) and Fig. 3.19.50 

 

5.7. Spin and its addition to orbital angular momentum 

Surprisingly, the theory described in the last section is useful for much more than orbital motion 
analysis. In particular, it helps to generalize the spin-½ results discussed in Chapter 4 to other values of 
spin s – the parameter still has to be defined. For that, let us notice that the commutation relations that 
were derived, for s = ½, from the Pauli matrix properties, may be rewritten in exactly the same form as 
Eqs. (178) and (180) for the orbital momentum: 

    0ˆ,ˆ,ˆˆ,ˆ 2  jjj'j"j"j'j SSSiSS  (5.196) 

It has been postulated (and confirmed by numerous experiments) that these relations hold true 
for any quantum particle. Now note that all the calculations of the last section have been based almost 
exclusively on such relations – the exception will be discussed imminently. Hence, we may repeat them 
for spin operators, and get the relations similar to Eq. (187) and (192): 

50 The reader is challenged to use the commutation relations discussed above to prove one more important 

property of the common eigenstates of operators zL̂  and 2L̂ : 

both.or   ,'or    ,1either  if,0,ˆ, mmll'm'l'rml j   

This property is the basis  of the selection rules for dipole quantum transitions, to be discussed later in the course, 
especially in Sec. 9.3. 
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smssmsssmsSmsmmsS ssssssz  ,0,,)1(,ˆ,,,ˆ 22  , (5.197) 

where ms is a quantum number similar to the orbital number m, and the non-negative constant s is 
defined as the maximum value of ms. This parameter is exactly what is called particle’s spin - in the 
narrow sense of the word.  

Now let us return to the only part of our orbital moment calculations that has not been derived 
from the commutation relations. This was the fact, based on solution (175) of the orbital motion 
problems, that quantum numbers m (the analog of ms) are integer. For spin, we do not have such a 
solution, so that the spectrum of numbers ms (and hence its limits s) should be found from the more 
loose requirement that the eigenstate ladder, extending from –s to + s, has an integer number of steps. 
Hence, 2s has to be integer, i.e. spin s of a quantum particle may be either integer (as it is, for example, 
for photons and gluons), or half-integer (e.g., for all quarks and leptons including electrons).51  

For s = ½, this picture yields all spin properties of electron that were derived in Chapter 4 from 

postulate (4.117). In particular, operators 2Ŝ  and zŜ  have only 2 common eigenstates, with Sz = ms = 

/2, and both with  S2= s(s +1)2 = (3/4)2. Note that this analogy with the angular momentum sheds a 
new light on the symmetry properties of electrons. Indeed, the fact that m in Eq. (175) is integer was 
derived in Sec. 3.5 from the requirement that making a full circle around axis z, we should find a similar 
value of wavefunction m, which differs from the initial one by an inconsequential factor exp{2im}. 
With the replacement m  ms = ½, such operation would multiply the wavefunction by exp{i}, i.e. 
reverse its sign. On course, spin cannot be described by a usual wavefunction, but this odd parity of 
electrons (and all other spin-½ particles) is clearly revealed in multiparticle systems – see Chapter 8. 

Now we are sufficiently equipped to analyze particles that have both the orbital momentum and 
the spin. In classical mechanics, such a particle would be characterized by the total angular momentum 
vector J = L + S. Following the correspondence principle, we may make an assumption that quantum-
mechanical properties of this observable may be analyzed using the similarly defined vector operator: 

         SLJ ˆˆˆ  ,      (5.198) 

with Cartesian components 

 zzz SLJ ˆˆˆ  ,      (5.199) 

etc, and the magnitude squared equal to 

             .ˆˆˆˆ 2222
zyx JJJJ       (5.200) 

 Let us examine the properties of this vector operator. Since its two components describe 
different degrees of freedom of the particle (again, you may say “belong to different Hilbert spaces”), 
they may be considered as completely commuting: 

             0ˆ,ˆ,0ˆ,ˆ 22  SLSL j'j .     (5.201) 

51 As a reminder, in the Standard Model of particle physics, such hadrons as mesons and baryons (notably 
including protons and neutrons) are essentially composite particles, with the spin equal to the sum of its 
component quark spins. However, at non-relativistic energies, protons and neutrons may be considered 
fundamental particles with s = ½. 

Spin 
operators: 

eigenstates 
and 

eigenvalues 

Total 
angular 

momentum 
operator 
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These above equalities are sufficient to derive the commutation rules of the total angular momentum, 
and, not surprisingly, they turn out to be absolutely similar to those of its components: 

                0ˆ,ˆ,ˆˆ,ˆ 2  jjj'j"j"j'j JJJiJJ  .    (5.202) 

Now repeating all arguments of the last section, we may derive the following expressions for the 

common eigenstates of operators  2Ĵ  and zĴ :

,,0,,)1(,ˆ,,, 22 jmjjmjjjmjJmjmmjJ jjjjjjz   (5.203)

where j and mj are new quantum numbers. Repeating the arguments made for ms, we may conclude that j 
and mj may be either integer or half-integer. 

 Before we proceed, one remark on notation: it is very convenient to use the same letter m for 
numbering eigenstates of all momentum components participating in Eq. (199), with corresponding  
indices (j, l, and s), in particular, to replace what we called m with ml. With this replacement, the main 
results of the last section may be summarized in the form similar to Eqs. (197) and (203): 

.,0,,)1(,ˆ,,,ˆ 22 lmllmlllmlLmlmmlL llllllz   (5.204) 

 In order to understand which eigenstates used is Eqs. (197), (203), and (204) are compatible with 
each other, let us use Eqs. (198)-(202) to calculate the mutual commutators of the operators squared and 
their z-components. The result is  

            ,0ˆ,ˆ,0ˆ,ˆ 2222  SJLJ      (5.205) 

            .0ˆ,ˆ,0ˆ,ˆ 22  zz SJLJ      (5.206) 

This result may be presented schematically on the following Venn diagram (Fig. 10), in which the 
crossed arrows indicate the only non-commuting pairs of operators. 

 

 

    

 

  

 

 

This means that just as for each component angular momentum (J, L, and S) considered 
separately we could select a group of common eigenstates for its magnitude squared and the z-
component, we also may find eigenstates shared by two broader groups of operators, encircled with 

colored lines in Fig. 10. The first group (within the red circle), consists of all operators but .ˆ 2J  This 
means that there are eigenstates  shared by 5 remaining operators, and they may be characterized by 
certain values of the corresponding quantum numbers: l, ml, s, ms, and mj.  Actually, only 4 of these 

Total 
momentum: 
commutation 
relations 

Fig. 5.10. Venn diagram for angular momentum 
operators, and their mutually-commuting groups. 
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numbers are independent, because due to Eq. (199) for these compatible operators, for each eigenstate of 
the group, their “magnetic” quantum numbers m have to satisfy the following relation: 

       .slj mmm       (5.207) 

Hence the common eigenstates of the operators of this group are fully defined by just 4 quantum 
numbers, for example, l, ml, s, and ms. For some calculations, especially those for systems whose 
Hamiltonians include only operators of this group, it is convenient to the use this set of eigenstates as 
the basis; frequently this is called the uncoupled representation.  

However, in some situations we cannot ignore interactions between the orbital and spin degrees 
of freedom (in the common jargon, the spin-orbit coupling), which leads in particular to splitting (called 
the fine structure) of atomic energy levels even in the absence of external magnetic field. I will discuss 
these effects in detail in the next chapter, and now will only note that they may be described by a 

separate term, proportional to product SL ˆˆ  , in the system’s Hamiltonian. If this term is not negligible,  
the uncoupled representation becomes inconvenient. Indeed, writing 

             ,ˆˆ2ˆˆ)ˆˆ(ˆ 2222 SLSL  SLJ     (5.208) 

and looking at Fig. 10 again, we see that the operator SL ˆˆ  , describing the spin-orbit coupling, does not 

commute with operators zL̂  and zŜ . This means that stationary states of the system with such term in 
the Hamiltonian do not belong to the uncoupled representation basis. On the other hand, Eq. (208) 

shows that operator SL ˆˆ   does commute with all 4 operators of another group, encircled with the blue 
line in Fig. 10. According to Eqs. (201), (202), and (205), all operators of that group also commute to 
each other, so that they have common eigenstates that may be marked by the corresponding quantum 
numbers, l, s, j, and mj. This group is the basis for the coupled representation of particle’s state.  

Excluding the quantum numbers l and s, common for both groups, from notation, it is convenient 
to denote the common ket-vectors of each group as, respectively, 

                     
basis. stion'representa coupled for the  ,,

basis, stion'representa uncolpled for the,,

j

sl

mj

mm
   (5.209) 

As we will see in the next chapter, for solution of some important problems (e.g., the fine structure of 
atomic spectra and the Zeeman effect), we will need the relation between the kets j, mj and the kets ml, 
ms. This relation may be represented as the usual linear superposition, 

           jsl
mm

slj mjmmmmmj
sl

,,,,
,
 ,    (5.210) 

whose bra-kets (c-numbers), essentially the elements of the unitary matrix of the transformation between 
two eigenstate bases (209), are called the Clebsch-Gordan coefficients. 

The best (though imperfect) classical interpretation of Eq. (210) I can offer is as follows. If the 
lengths of vectors L and S (in quantum mechanics associated with numbers l and s, respectively), and 
also their scalar product LS, are all fixed, then so is the length of vector J = L + S (whose length in 
quantum mechanics is described by quantum number j). Hence, the classical image of a specific 
eigenket j, mj, in which l, s, j, and mj are all fixed, is a state in which L2, S2, J2, and Jz are fixed. 

Coupled and 
uncoupled 

bases 

Definition of 
Clebsch- 

Jordan 
coefficients 
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However, this fixation still allows for an arbitrary rotation of the pair of vectors L and S (with a fixed 
angle between them, and hence fixed LS and J2) about the direction of vector J - see Fig. 11.  

 

 

 

 

 

 

Hence the components Lz and Sz in these conditions are not fixed, and in classical mechanics 
may take a continuum of values, two of which (with the largest and smallest possible values of Sz) are 
shown in Fig. 11. In quantum mechanics, these components are quantized, with their states represented 
by eigenkets ml, ms, so that a linear combination of such kets is necessary to represent ket j, mj. This 
is exactly what Eq. (210) does.  

Some of properties of the Clebsch-Gordan coefficients ml, ms j, mj may be readily established. 
For example, the coefficients do not vanish only if the involved magnetic quantum numbers satisfy Eq. 
(207); let us prove this fact.52 All matrix elements of the null-operator  

               0̂)ˆˆ(ˆ  zzz SLJ      (5.211) 

should equal zero in any basis; in particular  

             .0,)ˆˆ(ˆ,  slzzzj mmSLJmj     (5.212) 

Acting by operator zĴ  on the bra-vector, and by the sum )ˆˆ( zz SL   on the ket-vector, we get 

              ,0,,)(  sljslj mmmjmmm     (5.213) 

thus proving that ml, ms j, mj  j, mjml, ms* = 0, if mj – (ml + ms)  0. 

For the most important case of spin-½ particles (s = ½, and hence ms = ½), whose uncoupled 
representation basis includes 2(2l + 1) states, restriction (207) enables the representation of all 
nonvanishing Clebsch-Gordan coefficients on the simple diagram shown in Fig. 12. Indeed, each 
coupled-representation eigenket j, mj, with mj = ml + ms = ml   ½, may be related with non-zero 
Clebsch-Gordan coefficients to at most two uncoupled-representation eigenstates  ml, ms. Since ml may 
only take integer values from –l to +l, mj may only take semi-integer values on the interval [- l - ½, l + 
½]. Hence, by the definition of j as (mj)max, its maximum value has to be l + ½,  and for mj = l + ½, this 
is the only possible value. This means that the uncoupled state with ml = l and ms = ½ should be 
identical to the coupled-representation state with j = l + ½ and mj = l + ½: 

                   
2

1
,

2

1

2

1
,

2

1
 sjlj mmmlmlj .   (5.214) 

52 One may think that Eq. (207) is a trivial corollary of Eq. (199). However, now we should be a bit more careful, 
because in the Clebsch-Gordan coefficients, these quantum numbers characterize different groups of eigenstates. 
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L Fig. 5.11. Classical image of two 
quantum states with the same l, s, j, 
and mj, but different ml and ms. 
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However, already for the next value, mj = l – ½, we need to have two values of j, so that two ml, 
ms kets is to be related to two j, mj kets by two Clebsch-Gordan coefficients. Since l changes in unit 
steps, these values of j have to be l  ½. This choice, 

          2/1 lj ,      (5.215) 

evidently satisfies all lower values of mj (again, with only one value, j = l + ½, necessary for the lowest 
mj = -l - ½) – see Fig. 12. Note that the total number of the coupled-representation states is 1 + 22l + 1 
= 2(2l + 1), i.e. the same as in the uncoupled representation. So, each sum (210), for fixed j, mj (and 
fixed common parameter l), has at most 2 terms, i.e. involves at most 2 Clebsch-Gordan coefficients.  

 These coefficients may be calculated in a few steps, all but the last one rather simple even for 

arbitrary spin s. First, the matrix elements of ladder operators L̂  in the standard z-basis (i.e. in the basis 

of kets ml) may be calculated from Eq. (184). Next, the similarity of vector operators SJ ˆ and ˆ  to 

operators L̂ , expressed by Eqs. (197), (203), and (204), may be used to argue that the matrix elements 

of operators  JS ˆ  and ˆ , defined absolutely similarly to L̂ , have similar matrix elements in the bases 

of kets ms and mj, respectively. After that, acting by operator   SLJ ˆ ˆ ˆ upon both parts of Eq. 

(210), and then inner-multiplying the result by the bra vector ml, ms and using the above matrix 
elements, we get recurrence relations for the Clebsch-Gordan coefficients. Finally, these relations may 
be recurrently applied to the adjacent states in both representations, starting from any of the two states 
common for them – for example, from state with ket-vectors (214), corresponding to the top right point 
in Fig. 12. Let me leave these straightforward but a bit tedious calculations for reader’s exercise and just 
cite the final result of this procedure for s = ½:53              
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                    (5.216a) 

53 For arbitrary spin s, the calculations and even the final expressions for the Clebsch-Gordan coefficients are 
rather bulky. They may be found, typically in a table form, mostly in special monographs – see, e.g., A. R. 
Edmonds, Angular Momentum in Quantum Mechanics, Princeton U. Press, 1957.  
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Fig. 5.12. All possible sets of eigenvalues ml, ms for a particle with fixed l, and s = ½. Each 
uncoupled-representation state is represented by a dot, while each the coupled-representation state, 
by a single sloped line connecting the dots.
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For applications, it may be more convenient to use this result in the following equivalent form: 
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(5.216b) 

 We will use this relation in Sec. 6.4 for an analysis of the anomalous Zeeman effect, based on the 
perturbation theory. Moreover, most of the angular momentum addition theory described above is 
immediately applicable to the addition of angular momenta in multiparticle systems, so we will revisit it 
in Chapter 8. 

 To conclude this section, I have to note that the Clebsch-Gordan coefficients (for arbitrary s) 
participate also in the so-called Wigner-Eckart theorem that expresses matrix elements of certain 
spherical tensors, in the coupled-representation basis j, mj, via a reduced set of matrix elements. 
Unfortunately, a discussion of this theorem and its applications would require a higher mathematical 
background than I can expect from my readers, and more time/space than I can afford.54 

 

5.8. Exercise problems 

5.1. Use the discussion of Sec. 1 to find an alternative solution of Problem 4.17. 
 

5.2. A two-level system is in a quantum state , described by ket-vector  =  + , with 
given (generally, complex) c-number coefficients . Prove that we can always select a 3-component 
vector a = {ax, ay, az} of real c-numbers, such that   is an eigenstate of operator σa ˆ , where σ̂  is the 
operator described, in z-basis, by the Pauli matrix vector. Find all possible values of a satisfying this 
condition, and the second eigenstate of operator σa ˆ , orthogonal to the given . Give a Bloch-sphere 
interpretation of your result. 
 

5.3. A spin-½ particle is in a constant vertical field, so that its Hamiltonian 

,ˆ
2

ˆ
zσH





 

but its spin’s initial state is an eigenstate of a different Hamiltonian:55 

zzyyxxini σaσaσaH ˆˆˆˆˆ  σa . 

Use any approach you like to calculate the time evolution of the expectation values of the spin 
components. Interpret the results. 
 

5.4. For any periodic motion of a single particle in a confining potential U(r), the virial theorem 
of non-relativistic classical mechanics56 is reduced to the following equality: 

54 For the interested reader I can recommend, either Sec. 17.7 in E. Merzbacher, Quantum Mechanics, 3rd ed., 
Wiley, 1998, or Sec. 3.10 in J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1994. 
55 Cf. Problems 4.22, 4.23, 5.2. 
56 See, e.g., CM Problem 1.12. 
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UT  r
2

1
, 

where T is particle’s kinetic energy, and the top bar means averaging over the period of motion. Prove 
the quantum-mechanical version of the theorem for an arbitrary stationary quantum state, in the absence 
of spin effects: 

UT  r
2

1
, 

where the angular brackets mean, as everywhere in these notes, the expectation value of the variable 
inside them. 

 Hint: Mimicking the proof of the classical virial theorem, consider the time evolution of operator 

pr ˆˆˆ G . 
 
5.5. A constant force F is applied to an (otherwise free) 1D particle of mass m. Calculate the 

eigenfunctions of the problem, using 

 (i) the coordinate representation, and 
 (ii) the momentum representation. 

Discuss the relation between the results. 
 

 5.6. The momentum representation of an operator, defined in the Hilbert space of 1D orbital 
states of a particle, equals p-1. Find its coordinate representation. 

 
5.7.* For a particle moving in a 3D periodic potential, develop the bra-ket formalism for the q-

representation, in which a complex amplitude similar to aq in Eq. (2.234) (but generalized to 3D and all 
energy bands) plays the role of the wavefunction. In particular, calculate operators r and v in this 
representation, and use the result to prove Eq. (2.237) for 1D motion in the low-field limit. 

 Hint: Try to generalize the analysis of the momentum representation in Sec. 5.2. 
 

5.8. In the Heisenberg picture of quantum dynamics, find the operator of velocity and 
acceleration, 

dt

d

dt

d v
a

r
v

ˆ
ˆ  and

ˆ
ˆ  , 

of an electron moving in an arbitrary electromagnetic field. Compare the results with the corresponding 
classical expressions. 

 
5.9. Calculate, in the WKB approximation, the transmission coefficient T for tunneling of a 2D 

particle with energy E < U0 through a saddle-shaped potential “pass” 

,1),(
20 





 

a

xy
UyxU  

where U0  and a are real constants. 
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 5.10. Calculate the so-called Gamow factor57 for the alpha decay of atomic nuclei, i.e. the 
exponential factor in the transparency of the tunnel barrier, resulting from the following simple model of 
the particle’s potential energy as a function of its distance from the nuclear center: 

 











,for  ,
4

,for     0,

0

2
0

rR
r

ZZ'e
RrU

rU


 

(where Ze = 2e > 0 is the charge of the alpha-particle, Z’e > 0 is that of the nucleus after the decay, and 
R is the nucleus’ radius), in the WKB approximation. 
 
 5.11. For a 1D harmonic oscillator with mass m and frequency 0, calculate: 

  (i) all matrix elements 'ˆ3 nxn , and 

  (ii) diagonal matrix elements nxn 4ˆ , 

where n are the Fock states.  
 
 5.12. Calculate the sum (over all n > 0) of the so-called oscillator strengths, 

         2

02
0ˆ

2
xnEE

m
f nn 


, 

of quantum transitions between the nth energy level and the ground state, for 

 (i) a 1D harmonic oscillator, and  
 (ii) a 1D particle confined in an arbitrary stationary potential. 
 
 5.13.*  Prove the so-called the Bethe sum rule, 

 
m

k
enEE n'ikx

n'
nn' 2

222 
  

(where k is a c-number), valid for a 1D particle moving in an arbitrary time-independent potential U(x), 
and discuss its relation with the Thomas-Reiche-Kuhn sum rule, whose derivation was the subject of the 
previous problem. 

 Hint: Calculate the expectation value, in a stationary state n, of the following double 
commutator, 

  ikxikx eeHD  ,,ˆˆ , 

in two ways – first, just spelling out both commutators, and, second, using the commutation relations 
between operators p̂  and eikx, and compare the results. 

 
5.14. Simplify the following operators: 

 (i)    xiapxia x ˆexpˆˆexp  , and 

57 Named after G. Gamow, who made this calculation as early as in 1928. 
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 (ii)    xx piaxpia ˆexpˆˆexp  , 

where a is a c-number. 
 
5.15. Use the Heisenberg equation of motion for a direct derivation of time evolution law (5.171) 

of the creation and annihilation operators of a harmonic oscillator.   
 
 
 5.16. Calculate: 

(i) the expectation value of energy, and  
(ii) the laws of time evolution of expectation values of the coordinate and momentum  

for a 1D harmonic oscillator, provided that in the initial moment (t = 0) it was in state 

 1615
2

1
 , 

where n are ket-vectors of the stationary (Fock) states of the oscillator. 
 

5.17.* Re-derive the London dispersion force potential between two 3D harmonic oscillators 
(already calculated in Problem 3.19), using the language of mutually-induced polarization. 
 

5.18. The discussion of the Glauber state properties in Sec. 5 has used the following general 
statement: if 

  ,ˆˆ,ˆ IBA   

where Â and B̂ are arbitrary operators, and  is an arbitrary c-number, then 

    .ˆˆˆexpˆˆexp IBABA   
Prove the statement. 

 Hint: One (of several) ways to prove the statement is to expand operator 

   ABAf ˆexpˆˆexp)(ˆ    into the Taylor series in c-number , and then evaluate it at   = 1. 
 

5.19. An external force pulse F(t), of a finite time duration T, is exerted on a 1D harmonic 
oscillator, initially in its ground state. Use the Heisenberg-picture equations of motion to calculate the 
expectation value of oscillator’s energy at the end of the pulse.  
 
 5.20. Calculate the energy of the squeezed ground state s  of a harmonic oscillator, defined by 
Eq. (172). 

5.21. Use Eqs. (5.178) of the lecture notes to prove that operators jL̂  and 2L̂ commute with the 

Hamiltonian of a spinless particle placed in any central potential field. 
 

5.22. Prove the following relations for the operators of the angular momentum: 

.ˆˆˆˆˆˆˆˆˆ 222
zzzz LLLLLLLLL     
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(One of them, Eq. (184), was already used in Sec. 6.) 
 

5.23. According to Eqs. (188) and their discussion, action of the ladder operators on the common 

eigenkets l, m of operators 2L̂  and zL̂ may be described as 

   1,,ˆ )(   mlLmlL m . 

Calculate coefficients L
(m), assuming that the eigenstates are normalized: l, ml, m = 1. 

 

 5.24. In the basis of common eigenstates of operators zL̂  and 2L̂ , described by eigenkets l, m: 

 (i) calculate matrix elements 21 ,ˆ, mlLml x  and 2
2

1 ,ˆ, mlLml x ; 

 (ii) spell out your results for diagonal matrix elements (with m1 = m2) and their y-axis 
counterparts; and 

 (iii) calculate diagonal matrix elements mlLLml yx ,ˆˆ,  and mlLLml xy ,ˆˆ, . 

 

 5.25. For the state described by the common eigenket l, m of operators zL̂  and 2L̂ in a reference 

frame {x, y, z}, calculate the expectation values Lz’ and  Lz’
2 in the reference frame whose axis z’ 

forms angle  with axis z. 
 

5.26. Write down the matrices of the following angular momentum operators: 

LLLL zyx
ˆ  and ,ˆ,ˆ,ˆ , in the z-basis of states with l = 1. 

5.27. Find the angular part of the orbital wavefunction of a particle with a definite value of L2, 
equal to 62, and the largest possible value of Lx. What is this value?  
 

5.28.* A charged 2D particle is trapped in a soft in-plane potential well U(x, y) = m0
2(x2 +y2)/2. 

Calculate its energy spectrum in the presence of an additional uniform magnetic field B, normal to the 
plane. 
 
 5.29. Calculate the spectrum of rotational energies of an axially-symmetric, rigid molecule. 
 

5.30. For the state with wavefunction  = Cxye-r,  with a real, positive , calculate: 

(i) the expectation values of observables Lx, Ly, Lz and L2, and  
(ii) the normalization constant C. 
 
5.31. An angular state of a spinless particle is described by the following ket-vector: 

 1,30,3
2

1
 mlml . 

Find the expectation values of the x- and y-components of its angular momentum. Is it sensitive to a 
possible phase shift between two component eigenkets? 
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5.32.* Simplify the following double commutator:   '
2 ˆ,ˆ,ˆˆ

jjjj' rLrA  . 

 

5.33. Express the commutators listed in Eq. (206),  zLJ ˆ,ˆ 2  and  zSJ ˆ,ˆ 2 , via jL̂  and jŜ . 

 

5.34. Find the operator T̂  describing the state rotation by angle  about a certain axis, using the 

similarity of this operation with the shift of a Cartesian coordinate, discussed in Sec. 5. Then use it to 
calculate the probabilities of measurements of a beam of particles with z-polarized spin-½, by a Stern-
Gerlach instrument turned by angle  within the [z, x] plane (where y is the axis of particle propagation 
– see Fig. 4.1).58 
 

 5.35. The rotation (“angle translation”) operators T̂ , analyzed in the previous problem, and the 

coordinate translation operator XT̂ , discussed in Sec. 5.5 of the lecture notes, have a similar structure: 















C
i

ˆ
expT̂ , 

where  is a real c-number, characterizing shift’s magnitude, and Ĉ  is a Hermitian operator that does 
not explicitly depend on time. 

 (i) Prove that all such operators T̂ are unitary. 

 (ii) Prove that if the shift by , induced by operator T̂ , leaves the Hamiltonian of some system 

unchanged for any , then the variable C, corresponding to the operator Ĉ , is a constant of motion. 

 (iii) Discuss what does the last conclusion give for the particular operators XT̂  and T̂ . 

 
5.36. A particle is in a state   with the orbital wavefunction proportional to the spherical 

harmonic ).,(1
1 Y  Find the angular dependence of the wavefunctions corresponding to the following 

ket-vectors: 

  (i) xL̂ , (ii) yL̂ , (iii) zL̂ ,    (iv) LL ˆˆ ,  and  (v) 2L̂ . 

  
 5.37. For a state with definite quantum numbers l and j, prove that observable LS also has a 
definite value, and calculate this value. 
 
 5.38.* Derive the general recurrence relations for the Clebsh-Gordan coefficients. 

 Hint: Using the similarity of commutation relations, discussed in Sec. 7, generalize the solution 
of Problem 19 to all angular momentum operators, and apply them to Eq. (198). 

5.39. The byproduct of the solution of the previous problem is the general relation for the spin 
operators (valid for any spin s), which may be rewritten as 

58 Note that the last task is just a particular case of Problem 4.17 (see also Problem 1). 
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    2/11ˆ1 ssss msmsmSm    , 

provided that all other quantum numbers are fixed. Use this result to spell out the matrices Sx, Sy, Sz, and 
S2 of a particle with s = 1, in the z-basis - defined as the basis in which the matrix Sz is diagonal. 
 
 5.40.* For a particle with spin s, moving in a spherically-symmetric field, find the ranges of 
possible values of quantum numbers mj and  j, necessary to describe, in the coupled representation basis: 

 (i) all states with a definite quantum number l, and 
 (ii) a state with definite value of not only l, but also ml and ms. 
Give an interpretation of your results in terms of the classical geometric vector diagram (see Fig. 11). 
 
 5.41. A spin-½  particle moves in a centrally-symmetric potential U(r). Using Eqs. (216) for the 
Clebsch-Gordan coefficients,  

(i) write explicit expressions for the ket vectors for states that would be simultaneously the 

eigenstates of operators zJJL ˆ and ,ˆ,ˆ 22 , via spin eigenkets  and ; 
(ii) for each such state, find all the possible values of observables L2, Lz , S2, and Sz, the 

probability of each listed value, and the expectation value for each of the observables. 
 

 5.42. Taking into account electron’s spin, find the energy spectrum of an electron, free to move 
within a plane, besides being placed into a uniform magnetic field B, normal to the plane. Compare the 
result with the Landau level picture discussed in Sec. 3.2.  
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Chapter 6. Perturbation Theories 

This chapter discusses several perturbative approaches to problems of quantum mechanics, and their 
simplest applications including the Stark effect, the fine structure of atomic levels, and the Zeeman 
effect. Moreover, the discussion of the perturbation theory of transitions to continuous spectrum and the 
Golden Rule of quantum mechanics in the end of this chapter will naturally bring us to the issue of open 
quantum systems – to be discussed in more detail in the next chapter. 

 

6.1. Eigenvalue/eigenstate problems 

 Unfortunately, only a few problems of quantum mechanics may be solved exactly in the 
analytical form. Actually, in the previous chapters we have solved a substantial fraction of such 
problems for a single particle, and for multi-particle problems the exactly solvable cases are even more 
rare. However, most practical problems of physics feature a certain small parameter, and this smallness 
may be exploited by various approximate analytical methods. Earlier in the course, we have explored 
one of them, the WKB approximation, which is adequate for a particle moving through a slowly 
changing potential profile. Now I will discuss alternative approaches that are more suitable for other 
cases. The historic name for these approaches is the perturbation theory, but it is more fair to speak 
about several such theories, because they differ depending on the type of the problem. 

 The simplest perturbation theories address eigenproblems for systems described by time-
independent Hamiltonians of the type 

`              ,ˆˆˆ )1()0( HHH       (6.1a) 

where the perturbation operator )1(Ĥ is “small” - in the sense its addition to the unperturbed operator 
)0(Ĥ  results in a relatively small change of eigenvalues En of the system. A typical problem of this type 

is the 1D weakly anharmonic oscillator (Fig. 1) described by Hamiltonian (1a) with 

                      ...ˆˆˆ,ˆ
22

ˆˆ 43)1(2
2
0

2
)0(  xxHx

m

m

p
H 


   (6.1b) 

with small coefficients , , ….   

I will use the anharmonic oscillator as our first particular example, but let me start from 
describing the perturbative approach to the general time-independent Hamiltonian (1a). In the bra-ket 
formalism, the eigenproblem for the perturbed system is 

         nEnHH n )ˆˆ( )1()0( .     (6.2) 

Let the eigenstates and eigenvalues of the unperturbed Hamiltonian, which satisfy equation  

           )0()0()0()0(ˆ nEnH n ,     (6.3) 

be known. In this case, to solve problem (2) means to find, first, its perturbed eigenvalues En and, 
second, coefficients n’(0)n of the expansion of perturbed state vectors n in series over the unperturbed 
ones, n’(0): 

Weakly 
anharmonic 

oscillator 
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            .
'

)0()0(
n

nn'n'n      (6.4) 

 

 

 

 

 

 

 

Let us plug Eq. (4), with the summation index n’ replaced with n”, into both parts of Eq. (2): 

       
n"

n
n"n"

n"Enn"n"Hnn"n"Hnn" )0()0()0()1()0()0()0()0( ˆˆ , (6.5) 

and then inner-multiply all terms by an arbitrary unperturbed bra-vector n’(0). Assuming that the system 
of unperturbed eigenstates is orthonormal, n’(0)n”(0) = n’n”, and using Eq. (3) in the first term of the 
left-hand part, we get the following system of linear equations 

        )( )0()0()1()0(
n'n

n"
n'n" EEnn'Hnn"  ,    (6.6) 

where the matrix elements of the perturbation are calculated in unperturbed bra-kets: 

         )0()1()0()1( ˆ n"Hn'H n'n"  .     (6.7) 

The linear equation system (6) is still exact,1 and is frequently used for numerical calculations. 
(Since the matrix coefficients (7) typically decrease when n’ and/or n” become very large, the sum in 
the left-hand part of  Eq. (6) may be typically truncated, still giving acceptable accuracy of the solution.) 
For getting analytical results we need to make more explicit approximations. In the simple perturbation 
theory we are discussing now, this is achieved by the expansion of both eigenenergies and coefficients 
into the Taylor series in a certain small parameter  of the problem: 

              ...,)2()1()0(
nnnn EEEE       (6.8) 

      ...,
)2()0()1()0()0()0()0( nn"nn'nn'nn'     (6.9) 

where2  

        .
)()0()( kkk

n nn'E       (6.10) 

1 Please note its similarity with Eq. (2.215) of the 1D band theory. Indeed, the latter equation is not much more 
than a particular form of Eq. (6) for 1D wave mechanics, and a specific (periodic) potential U(x) considered as 
perturbation. Moreover, the approximate treatment of the weak potential limit in Sec. 2.7 was essentially a 
particular case of the more general perturbation theory we are discussing now.  
2 Note that, by definition, n’(0)n(0) = n’n. 

Fig. 6.1. The simplest problem for the 
perturbation theory application: a 1D 
weakly anharmonic oscillator. (Dashed 
lines characterize the unperturbed, 
harmonic oscillator.) 
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In order to explore the 1st-order approximation, which ignores all terms O(2) and higher, let us 
plug only the two first terms of expansions (8) and (9) into the basic system of equations (6): 

        )( )0()1()0()1()0()1()0()1(
n'nnn'n

n"
n"nn'n" EEEnn'nn"H 





 





   .  (6.11) 

Now let us open the parentheses, and disregard all the remaining terms O(2). The result is  

        ),( )0()0()1()0()1()1(
n'nnn'nn'n EEnn'EH       (6.12) 

This equation is valid for any set of indices n and n’; let us start from the case n = n’ and immediately 
get a very simple (and the most important!) result: 

     )0()1()0()1()1( ˆ nHnHE nnn  .    (6.13) 

 For example, let us see what does this result give for two first perturbation terms in the weakly 
anharmonic oscillator (1b) 

        )0(4)0()0(3)0()1( ˆˆ nxnnxnEn   .    (6.14) 

 As the reader should know from the solution of Problem 5.6, the first term is zero, while the second one 
yields3 

       122
4

3 24
0

)1(  nnxEn  .     (6.15) 

 Naturally, there should be some contribution from the (typically, larger) term  proportional to , 
so we need to explore the 2nd approximation of the perturbation theory. However, before doing that, let 
us complete our discussion of its 1st order. For n’  n, Eq. (12) may be used to calculate the eigenstates 
rather than the eigenvalues: 

             .for ,
)0()0(

)1(
)1()0( nn'

EE

H
nn'

n'n

n'n 


     (6.16) 

This means that the eigenket’s expansion  (4), in the 1st order, may be represented as  

         .)0()0(
)0(

'
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EE

H
n

nn' nn
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    (6.17) 

Coefficient C cannot be found from Eq. (12), however, requiring the final state n to be normalized, we 
see that other terms may provide only corrections O(2), so in the 1st order we should take C = 1. The 

3 The result for n = 0 may be readily calculated in the wave-mechanics style as well, using Eq. (2.269) for 
unperturbed ground state wavefunction, and the table integral MA Eq. (6.9d): 
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but for higher values of n, such calculations are much harder, because of more involved Eq. (2.279) for n
(0). Note 

also that at n >> 1, Eq. (15) gives predictions which coincide with those of the classical theory of weakly 
nonlinear oscillations – see, e.g., CM Sec. 4.2, in particular, Eq. (4.49). 
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most important feature of Eq. (17) is its denominator: the closer the (unperturbed) eigenenergies of two 
states, the larger is their mutual contribution (hybridization), created by the perturbation.  

This feature also affects the 1st approximation’s validity condition that may be quantified using 
Eq. (16): the magnitudes of all the bra-kets it describes have to be much less then the unperturbed 
product nn(0) = 1, so that all elements of the perturbation matrix have to be much less that the 
difference between the corresponding unperturbed energies. For the anharmonic oscillator’s energy 
correction (15), this requirement is reduced to En

(1) << 0. 

  Now we are ready for going after the 2nd second order approximation to Eq. (6). Let us focus on 
the case n’ = n, because as we already know, only this term will give us a correction to eigenenergies. 
Moreover, we see that since the left-hand side of Eq. (6) already has the small factor H(1)

n’n”  , the 
bra-ket coefficients in that part may be taken from the 1st order result (16). As a result, we get 

     .
)0(

"
)0(

)1()1(
)1()1()0()2( 

 


nn" nn

nn"n"n
nn"

n"
n EE

HH
Hnn"E     (6.18) 

Since )1(Ĥ  represents an observable (energy), and hence has to be Hermitian, we may rewrite this 
expression as 

              
 





nn' n'nnn' nn

n'n

n EE

nHn'

EE

H
E

)0()0(

2
)0()1()0(

)0(
'

)0(
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ˆ

.   (6.19) 

 This is the much celebrated 2nd order perturbation result that frequently (in sufficiently 
symmetric problems) is the first nonvanishing correction to the state energy – for example, from the 
cubic term (proportional to ) in our weakly anharmonic oscillator problem (1). In order to calculate the 
corresponding correction, we may use another result of Problem 5.6: 
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(6.20) 

So, according to Eq. (19),  we need to calculate 
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 (6.21) 

The summation is actually not as cumbersome as may look, because all mixed products are proportional 
to different Kronecker deltas and hence vanish, so that we need to sum up only the squares of each term: 
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Please notice that all energy level corrections are negative, regardless of the sign of . On the 
contrary, the 1st order correction En

(1) (15) depends on the sign of parameter , so that the net correction, 
En

(1) + En
(2), may be of any sign.  

 Results (17) and (19) are clearly inapplicable to the degenerate case where, in the absence of 
perturbation, several states correspond to the same energy level, because of the divergence of their 
denominators.4 This divergence hints that the largest effect of the perturbation in that case is the 
degeneracy lifting, e.g., splitting of the initially degenerate energy level E(0) (Fig. 2), and that for the 
analysis of this case we can, to the first approximation, ignore the effect of all other energy levels. (A 
careful analysis shows that this is indeed the case until the level splitting becomes comparable with the 
distance to other energy levels.)  

 

 

 

 

  

  

 Limiting the summation in Eq. (6) to the group of N degenerate states with equal En’
(0)  E(0), we 

reduce it to 

         )( )0()0(

1

)1()0( EEnn'Hnn" n

N

n"
n'n" 



.    (6.23) 

where n’ and n” number N states of the degenerate group.5 For n = n’, Eq. (23)  may be rewritten as  

          .  where,0' )0()1(

1

1
"

)1()0( EEEEHnn" nn

N

n"
n'n"nn'n" 



   (6.24) 

For each n = 1, 2, …N, this is a system of N linear, homogenous equations (with N terms each) for 
unknown coefficients n”(0)n’. In this problem, we readily recognize the problem of diagonalization of 
the perturbation matrix H(1) - cf. Sec. 4.4 and in particular Eq. (4.101). As in the general case, in the 
condition of self-consistency of the system, we can change the notation of the lower index of E(1), for 
example to n: 
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n

n

EHH

HEH

.    (6.25) 

4 This is exactly the reason why such perturbation theories run into serious problems for systems with continuous 
spectrum, and other approximate techniques (such as the WKB approximation) are often necessary. 
5 Note that the choice of the basis is to some extent arbitrary, because due to the linearity of equations of quantum 
mechanics, any linear combination of states n”(0) is also an eigenstate of the unperturbed Hamiltonian. However, 
for using Eq. (24), these combinations have to be orthonormal, as was suggested at the derivation of Eq. (6). 

Fig. 5.2. Lifting the energy 
level degeneracy by a 
perturbation (schematically).  
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According to the definition (24) of En
(1), the resulting N energy levels En may be found as E(0) + En

(1), 
where En

(1) are the N roots of Eq. (25).  

If the perturbation matrix is diagonal, the result is extremely simple, 

     )1()1()0(
nnnn HEEE  ,     (6.26) 

and formally coincides with Eq. (13) for the non-degenerate case, but now may give a different result for 
each of N previously degenerate states n.  

 Let us see what does this theory give for several important examples. First of all, let us consider 
a two-level system (or a system with two degenerate states with energy far from all others levels), with 
an  arbitrary perturbation matrix6 

              









2221

1211)1(H
HH

HH
.     (6.27a) 

Since that both the unperturbed Hamiltonian and the operator of its perturbation are Hermitian, the 
diagonal elements of matrix H(1) are real, and its off-diagonal elements are complex conjugates of each 
other. As a result, we can present the matrix in the same form as in Eq. (4.106): 

   .IσσσIH 00
0

0)1( σa 










 aaaaa
aaiaa

iaaaa
zzyyxx

zyx

yxz  (6.27b) 

where scalar a0 and the Cartesian components of vector a are real c-number coefficients. The 
corresponding characteristic equation,  
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,    (6.28) 

has the solution that is familiar to the reader from Chapters 2 and 4: 
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aaaaaaEEE zyx . (6.29) 

 Let us discuss physics of this simple result. Parameter a0 = (H11 + H22)/2 is evidently the 
correction to the average energy of both states, that does not give any contribution to the level splitting. 
The splitting, E = E+ - E-, is a hyperbolic function of coefficient az = (H11 – H22)/2 that describes the 
direct contributions (13) to the eigenstates due to the perturbation. A plot of this function is the famous 
level-anticrossing diagram (Fig. 3) that has already been discussed in Sec. 2.5 in a particular context  of 
the weak potential limit of the 1D band theory – see Fig. 2.29. 

Now we see that this is a general result for any two-level system. The examples of this behavior 
that we already know include the coupled quantum wells (see Fig. 2.29 and its discussion), band theory 
in the weak coupling limit (Sec. 2.5), and spin-½  systems discussed through Chapter 4 and in Sec. 5.1. 
By the way, from Sec. 4.4 we already know the perturbed states in the middle of the anticrossing 

6 For brevity, I am dropping the upper index (1) in the matrix elements.  
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diagram (at az = 0). For example, if ay = 0, then our perturbation Hamiltonian matrix (27), besides the 
trivial term proportional to a0, is proportional to x, and hence we can use the result (4.114) to write:7 

            )0()0( 21
2

1
 ,     (6.30) 

where 1(0) and 2(0) are  system’s states in the absence of the perturbation. 

 

 

 

 

 

 

 

 

   

 This analysis shows that other results of our discussions of particular two-level systems in Sec. 
2.6 and 4.6 are also general. For example, if we put such any two-level system into an initial state 
different from one of the eigenstates , the probability of its finding it in any of states 1(0) or 2(0) will 
oscillate with frequency 

       


 



EEE

.     (6.31) 

Hence, for a spin-½  particle in a z-oriented magnetic field, the periodic oscillations of the x- and y-
components of spin vector, described by Eqs. (4.196) and (4.202), may be interpreted not only as the 
torque-induced precession of spin within the [x, y] plane, but alternatively as the quantum oscillations of 
the of the z-component of spin between states  and   with energies E and E given by Eq. (4.167).  

Some other examples of such oscillations may be rather unexpected. For example, the 
ammonium molecule NH3 (Fig. 4) has two symmetric states which differ by the inversion of the 
nitrogen atom relative to the plane of the three hydrogen atoms, and are coupled due to quantum-
mechanical tunneling of the nitrogen atom through the plane of hydrogen atoms.8 Since for this 
molecule, the level splitting E corresponds to an experimentally convenient frequency /2  24 GHz, 
it played an important historic role for the initial development of first atomic frequency standards and 
microwave quantum generators (masers) in the 1950s,9 which paved the way toward the development of 
the laser technology. 

7 Alternatively, if ax = 0, then   = (1/2)( 1(0) i2(0)). Note that besides a phase coefficient, these states are 
similar in that they present a coherent superposition of the unperturbed states, with a 50/50 chance to find the 
perturbed system in any of those states. In that sense, the effects of perturbation coefficients ax and ay are similar. 
8 Since the hydrogen atoms are much lighter, it is more fair to speak about their correlated tunneling around the 
(nearly immobile) nitrogen atom. 
9 In particular, these molecules were used in the demonstration of the first maser by C. Townes’ group in 1954. 

Fig. 6.3. Level-anticrossing diagram for an 
arbitrary two-level system. 
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6.2. The Stark effect 

 Another example of the level degeneracy lifted by a perturbation is the linear Stark effect – 
atomic level splitting by an external electric field. Let us study this effect, in the linear approximation, 
for a hydrogen-like atom. Taking the direction of external electric field E  (which is practically uniform 
on the atomic scale) for the z-axis, the perturbation may be represented by the following Hamiltonian:10 

        cosˆˆ )1( rqzqH EE  .     (6.32) 

(Since we will work in the coordinate representation, we may skip the operator sign from this point on.)  

 As you (should :-) remember, energy levels of a hydrogen-like atom depend only on the main 
quantum number n - see Eq. (3.191); hence all states but the ground state n = 1 (“1s” in the 
spectroscopic nomenclature) in which l = m = 0, have some degeneracy that grows rapidly with n. This 
is why I will carry out the calculations only for the lowest degenerate level with n = 2. Since generally 0 
 l  n –1, here l may be equal either 0 (one 2s state, with m = 0) or 1 (three 2p states, with m = 0, 1). 
Due to this 4-fold degeneracy, H(1) is a 44 matrix with 16 elements: 
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   (6.33) 

However, please do not be scared. First, due to the Hermitian character of the operator, only 10 
of the matrix elements (4 diagonal ones and 6 off-diagonal elements) may be substantially different. 
Moreover, due to a high symmetry of the problem, there are a lot of zeros even among these elements. 
Indeed, let us have a look at the angular components Yl

m of the corresponding wavefunctions, described 
by Eqs. (3.174)-(3.175). For states with m = 1, the azimuthal parts of wavefunctions are proportional to 
exp{i}; hence the off-diagonal elements H34 and H43 of matrix (33), relating these functions, are 
proportional to  

10 If there is any doubt why, please revisit the discussion of Eq. (2.247), in which we should now take F = qE. 
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Fig. 6.4. Ammonia molecule and its inversion. 
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The azimuthal-angle symmetry also kills the off-diagonal elements H13, H14, H23, H24 (and hence 
their complex conjugates H31, H41, H32, and H42), because they relate states with m = 0 and m  0, and 
are proportional to  

            .0ˆΩ
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1
1

)1(0
1
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 iedYHYd     (6.35) 

 For the diagonal elements H33 and H44, corresponding to m = 1, the azimuthal-angle integral 
does not vanish, but since the spherical functions depend on the polar angle as sin, the matrix elements 
are proportional to 

           ),(coscos1cossincossinsinˆ 2
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   (6.36) 

i.e. are equal to zero as any limit-symmetric integral of an odd function. Finally, for states 2s and 2p 
with m = 0, the diagonal elements H11 and H22 are also killed by the polar-angle integration: 

     0)(coscoscossinˆ
1

10

0
0

)1(0
0

*  





ddYHYd ,   (6.37a) 
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Hence, the only nonvanishing matrix elements are two off-diagonal  elements H12 and H21 relating 
different states with m = 0, because they are proportional to 
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What remains is to use Eqs. (3.199) for the radial parts of these functions to finish the calculation of 
those two matrix elements:  





0

1,20,2
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rrrdrr
q
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E

, (6.39) 

where the radial functions are given by Eqs. (3.199). Due to the structure of function R2,0(r), the integral 
falls into a sum of two parts, both of the type we have already met.11 The final result is 

                    ,3 02112 rqHH E      (6.40) 

where r0 is the radius scale given by Eq. (3.183); for the hydrogen atom it is just the Bohr radius rB 
(1.13). 

Thus, for our case the perturbation matrix (33) is reduced to 

11 See, e.g., MA Eq. (6.7d). 
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so that the condition (25) of self-consistency is 
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giving a very simple characteristic equation 
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with the roots  
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2,1 rqEE E      (6.44) 

so that the degeneracy is only partly lifted - see Fig. 5. 

 

 

 

 

 

 

  

 

 Generally, in order to understand the nature of states corresponding to these levels, we should go 
back to Eq. (24) with each calculated value of En

(1), and calculate the corresponding expansion 
coefficients n”(0)n, which describe the perturbed states. However, in our simple case the outcome of 
the procedure is clear in advance. Indeed, since the states with m =  1 are not affected by the 
perturbation (in the linear approximation in electric field), their degeneracy is not lifted, and energy 
unaffected – see the middle level in Fig. 5. On the other hand, the perturbation matrix connecting states 
2s and 2p, i.e. the top left 22 part of the full matrix (41), is proportional to the Pauli matrix x, and we 
already know the result of its diagonalization – see Eqs. (4.114). This means that the upper and lower 
split levels correspond to very simple linear combinations of the previously degenerate states, 

             ps 22
2

1
 .     (6.45)  

both with m = 0. 

Fig. 6.5. Linear Stark effect for level n 
= 2 of a hydrogen-like atom. 
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 Finally, let us estimate the magnitude of the linear Stark effect for a hydrogen atom. For a very 
high electric field of E = 3106 V/m,12 q = e  1.610-19 C, and r0 = rB  0.510-10 m, we get a level 

splitting of 3qEr0  0.810-22 J  0.5 meV. This number is much lower than the unperturbed energy of 

the level, E2 = -EH/222  -3.4 eV, so that the perturbation result is quite valid. On the other hand, the 
splitting is much larger than the resolution limit imposed by the natural linewidth (~ 10-7 E2, see Chapter 
9), so that the effect is quite observable even in substantially lower electric fields. 

 

6.3. Fine structure of atomic levels 

 Now let us analyze, for the simplest case of a hydrogen-like atom, the so-called fine structure of 
atomic levels – their degeneracy lifting even in the absence of external fields. In the limit when the 
effective speed v of electron motion is much smaller than the speed of light c (as it is in the hydrogen 
atom), the fine structure may be analyzed as a sum of two small relativistic effects. To analyze the first 
of these effects, let us expand the well-known classical relativistic expression13 for the kinetic energy T 
= E – mc2 of a free particle with the rest mass m, 
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into the Taylor series with respect to the small ratio (p/mc)2  (v/c)2: 
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and neglect all the terms besides the first (non-relativistic) one and the next term representing the first 
nonvanishing relativistic correction of T.  

In accordance with the correspondence principle, the quantum-mechanical problem in this 
approximation may be described by the perturbative Hamiltonian (1a), where the unperturbed (non-
relativistic) Hamiltonian of the problem, whose eigenstates and eigenenergies were discussed in Sec. 
3.5, is 
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while the small kinetic-relativistic perturbation is 
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Using Eq. (48), we may rewrite the last formula as 

12 This value approximately corresponds to the threshold of electric breakdown in air, due to the impact ionization 
on the surface of typical metallic electrodes. (Reducing air pressure only enhances the ionization and lowers the 
breakdown threshold.) As a result, experiments with higher fields are rather difficult. 
13 See, e.g., EM Sec. 9.3, in particular Eq. (9.78) - or any undergraduate text on special relativity. 
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so that its matrix elements, participating in the characteristic equation (25) for a given degenerate energy 
level (3.191), i.e. a given principal quantum number n, are 
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where the bra- and ket vectors describe the unperturbed eigenstates whose eigenfunctions (in the 
coordinate representation) are given by Eq. (3.190): n,l,m = Rn,l(r)Yl

m(,). 

 It is straightforward (and hence left for the reader :-) to prove that all off-diagonal elements of 
the set (50) are equal to 0. Thus we may use Eq. (26) for each set of quantum numbers{n, l, m}:  
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where index m has been dropped, because the radial wavefunctions Rn,l(r), which affect the averages, do 
not depend on that quantum number. Now using Eqs. (3.183), (3.191) and the first two of Eqs. (3.201), 
we finally get 
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 Let us discuss this result. First of all, its last form confirms that that correction (52) is indeed 
much smaller than the unperturbed energy En (and hence the perturbation theory is solid) if the latter is 
much smaller than the relativistic rest energy mc2 of the particle. Next, since in the Bohr problem n  l + 
1, the first fraction in the parentheses of Eq. (52) is always larger than 1, so that the relativistic 
correction to kinetic energy is negative for all n and l.  (This is already evident from Eqs. (6.49), which 
show that the correction Hamiltonian is a negatively defined form.) Finally, at a fixed principal number 
n, the negative correction’s magnitude decreases with the growth of l. This fact may be classically 
interpreted using Eq. (3.200): the larger is l (at fixed n), the smaller is particle’s average distance from 
the center, and hence the smaller is its effective velocity, the smaller is the magnitude of the quantum-
mechanical average of the negative relativistic correction (49a) to the kinetic energy. 

 Result (52) is conceptually valid for any physics of interaction U(r) = -C/r. However, if the 
interaction is Coulombic, say between an electron with charge (-e) and a nucleus of charge (+Ze), there 
is also another relativistic correction to energy, due to the so-called spin-orbit interaction. Its physics 
may be understood from the following semi-qualitative, classical reasoning: from the “the point of 
view” of an electron rotating about the nucleus at constant distance r with velocity v, it is the nucleus, of 
charge Ze, that rotates about the electron with velocity (-v) and hence time period T = 2r/v. From the 
point of view of magnetostatics, such circular motion of electric charge Q = Ze is equivalent to the 
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constant circular electric current I = Q = (Ze)(v/2r) which creates, at electron’s location, i.e. in the 
center of the current loop, a magnetic field with magnitude14 
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B .    (6.53) 

The field’s direction n is perpendicular to the apparent plane of the nucleus’ rotation (i.e. that of the real 
rotation of the electron), and hence its vector may be readily expressed via the similarly directed vector  
L of electron’s angular (orbital) momentum: 
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where the last transition is due to the basic relation between the SI unit constants: 0  1/0c
2.  

A more careful (but still classical) analysis of the problem15 brings both good and bad news. The 
bad news is that result (54) is wrong by a factor of 2 even for the circular motion, because the electron 
moves with acceleration, and the reference frame bound to its cannot be considered inertial (as was 
implied in the above reasoning), so that the actual magnetic field felt by the electron is 
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e
B .     (6.55) 

 The good news is that, so corrected, the result is valid (on the average) for not only circular but 
arbitrary (elliptic16) orbital motion in the Coulomb field U(r). Hence from the discussion in Sec. 4.1 and 
Sec. 4.4 we may expect that the quantum-mechanical description of the interaction between this 
apparent magnetic field and electron’s spin moment (4.116) is given by the following perturbation 
Hamiltonian  
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where the small correction to value ge = 2 of electron’s g-factor has been ignored, because Eq. (56) is 
already a small correction. This expression is confirmed by the fully-relativistic Dirac theory, to be 
discussed in Sec. 9.7 below: it yields, for an arbitrary central potential U(r), the following Hamiltonian 
of the spin-orbit coupling: 
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e

.     (6.56b) 

For the Coulomb potential U(r) = -Ze2/40r, this formula is reduced to Eq. (56a). 

 As we already know from the discussion in Sec. 5.7, such Hamiltonian commutes with all 

operators diagonal in the coupled representation (inside the blue line in Fig. 5.10): 2L̂ , 2Ŝ , 2Ĵ , and zĴ  . 
Hence, using Eq. (5.208) to rewrite the spin-orbit Hamiltonian as 

14 See, e.g., EM Sec. 5.1, in particular, Eq. (5.24). 
15 It was carried out first by L. Thomas in 1926; see, e.g., R. Harr and L. Curtis, Am. J. Phys. 55, 1044 (1987). 
16 See, e.g., CM Sec. 3.6. 
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we may conclude that this operator is diagonal in the coupled representation with fixed quantum 
numbers l, s, j, and mj. As a result, in this representation, we may again use Eq. (26) for each set {l, j, 
mj}: 
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where the indices irrelevant for each particular term have been dropped. (As a reminder, the spin 
quantum number s is fixed by particle’s nature; for our case of an electron, s = ½.) Now using the last of 
Eqs. (3.201),  and similar expressions (5.192), (5.197), and (5.203), we get an explicit expression for the 
spin-orbit corrections17 
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The last form of its right-hand part shows very clearly that this correction has the same scale as 
the kinetic correction (52),18 so that they should be considered together. In the first order of the 
perturbation they may be just added, giving a very simple formula for the net fine structure of level n:  
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This simplicity, as well as the independence of the result of the orbital quantum number l,  will become 
less surprising when (in Sec. 9.7) we see that this formula follows in one shot from the Dirac theory, in 
which the Bohr atom’s  energy spectrum in numbered only with n and j, but not l. 

 Let us recall (see Sec. 5.7) that for an electron (s = ½), the quantum number j may take n positive 
half-integer values, from ½ to n – ½.  With the account of this fact, Eq. (60) shows that the fine structure 
of nth Bohr’s energy level has n sub-levels – see Fig. 6.  

 

 

 

 

 

 

17 The factor l  in the denominator does not give a divergence at l = 0, because in this case j = s = ½, and the 
numerator turns into 0 as well. A careful analysis of this case (which may be found, e.g., in G. K. Woolgate, 
Elementary Atomic Structure, 2nd ed., Oxford, 1983), as well as the exact solution of the Bohr atom problem 
within the Dirac theory (Chapter 9) show that the final result (60), which is independent of l, is valid even in this 
case.  
18 This is natural, because the magnetic interaction of charged particles is an essentially relativistic effect, of the 
same order (~v2/c2) as the kinetic correction (49a)   – see, e.g., EM Sec. 5.1, in particular Eq. (5.3). 
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Please note that according to Eq. (5.203), each of these sub-levels is still (2j + 1)-times 
degenerate in quantum number mj. This degeneracy is very natural, because in the absence of external 
field the system is still isotropic. Moreover, on each fine-structure level, besides the lowest (j = ½) and 
the highest (j = n – ½) ones, each of the mj-states is doubly-degenerate in the orbital quantum number l = 
j  ½ - see the labels of l in Fig. 6. (According to Eq. (5.215), each of these states, with fixed j and mj, 
may be represented as a linear combination of two states with adjacent values of l, and hence different 
electron spin orientations, ms = ½, weighed with the Clebsch-Gordan coefficients.) 

These details aside, one may crudely say that the relativistic corrections make the total 
eigenenergy to grow with l, contributing to the effect already mentioned at our analysis of the periodic 
table of elements in Sec. 3.7. The relative scale of this increase may be evaluated from the largest 
deviation from the unperturbed energy En, reached for the state with j = ½ (and hence l = 0): 
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where  is the fine structure (“Sommerfeld”) constant, 
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 ,     (6.62) 

that was already mentioned in Sec. 4.4.19 These expressions show that the fine structure is indeed a very 
small effect (~2 ~ 10-6) for the hydrogen atom, but it rapidly grows (as Z2) with the nuclear charge (i.e. 
the atomic number) Z, and becomes rather substantial for the heaviest atoms with Z ~ 100. 

 

6.4. The Zeeman effect 

 Now, we are ready to review the Zeeman effect - the lifting of atomic level degeneracy by an 
external magnetic field.20 Using Eq. (3.26) (with q = -e) for the description of electron’s orbital motion 
in the field, and Eq. (4.116) for the operator of electron’s magnetic moment due to its spin-½, we see 
that even for a hydrogen-like (i.e. single-electron) atom, neglecting the relativistic effects, the full 
Hamiltonian is rather bulky:  
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    (6.63) 

There are several simplifications we may make. First, let us assume that the external field is 
spatial-uniform on the atomic scale (which is a very good approximation for most cases), so that we can 
take the vector-potential in an axially-symmetric gauge – cf. Eq. (3.132): 

19 See the Selected Physical Constants appendix for the more exact value of this constant. Its expression in 
Gaussian units,  = e2/c, makes even more evident the fact that  is the just fundamental constant ratio which 
characterizes the strength (or rather the weakness :-) of electromagnetic effects in quantum mechanics - that in 
particular makes the perturbative quantum electrodynamics possible. The alternative expression  = EH/mec

2, 
where EH is the Hartree energy (1.9), i.e. the scale of all energies En, is also very revealing. 
20 It was discovered experimentally in 1896 by P. Zeeman who, amazingly, was fired from the University of 
Leiden for an unauthorized use of lab equipment for this work – just to receive a Nobel Prize for it in a few years. 
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Second, let us neglect the terms proportional to B2, which are small in practical magnetic fields of the 
order of a few Tesla.21 The remaining term in the effective kinetic energy, describing the interaction 
with the magnetic field, is linear in the momentum operator, so that we may repeat the standard classical 
calculation22 to reduce it to the product of B by the orbital magnetic moment’s component mz  = -
eLz/2me - besides that both mz and Lz should be understood as operators now. As a result, the 

Hamiltonian reduces to Eq. (1a), ,ˆˆ )1()0( HH   where )0(Ĥ  is that of the atom at B = 0, and  
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 The form of the perturbation immediately reveals the major complication with the Zeeman effect 
description. Namely, in comparison with its contribution (5.198) to the total angular momentum of the 
electron, its spin-1/2 produces a twice larger contribution into the magnetic moment, so that the right-
hand part of Eq. (65) is not proportional to the total angular moment. As a result, the effect description is 
simple only in two limits.  

If the magnetic field is so high that its effects are much stronger than the relativistic (fine-
structure)  effects discussed in the last section, we may treat two terms in Eq. (48) as independent 
perturbations of different (orbital and spin) degrees of freedom. Since in the z-basis each of the 
perturbation matrices is diagonal, we can again use Eq. (26): 
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This result describes splitting of each 2(2l + 1)-degenerate energy level, with certain n and l, into (2l 
+3) levels (Fig. 7), with the adjacent level splitting of  BB, equal to ~10-23 J ~ 10-4 eV/T. Note that all 
levels, besides the top and bottom one, remain doubly degenerate. This limit of the Zeeman effect is 
sometimes called the Paschen-Back effect – which simplicity was recognized only in the 1920s, due to 
the need in very high magnetic fields for its observation. 

  

 

 

 

 

 

21 Despite its smallness, the quadratic term is necessary for description of the negative contribution of the orbital 
motion to the magnetic susceptibility m (the so-called orbital diamagnetism, see EM Sec. 5.5), whose analysis, 
using Eq. (63), is left for reader’s exercise. 
22 See, e.g., EM Sec. 5.4, in particular Eqs. (5.95) and (5.100). 

Fig. 6.7. The Paschen-Back effect. 
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In the opposite limit of low magnetic field, the Zeeman effect takes place on the background of 
the fine structure splitting. As was discussed in Sec. 3, at B = 0 each split sub-level has a 2(2l + 1)-fold 
degeneracy corresponding to (2l + 1) different values of the half-integer quantum number mj, ranging 
from –j to +j, and 2 values of integer l = j  ½ - see Fig. 6. The magnetic field lifts this degeneracy.23 
Indeed, in the coupled representation discussed in Sec. 5.7, perturbation (48) is described by the matrix 
with elements 
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Now plugging into the last term the Clebsh-Gordan expansions (5.216a) for the bra- and ket-vectors, 

and taking into account that operator zŜ  gives non-zero bra-kets only for ms = m’s, matrix (67) becomes 
diagonal, and may again use Eq. (26) to get  
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  (6.68) 

where two signs correspond to the two possible values of l = j  ½ - see Fig. 8.  

 

 

 

 

 

 

 

 

 

We see that the magnetic field splits each sub-level of the fine structure, with a given l, into 2j + 
1 levels, with the distance between the levels depending on l. In the end of the 1890s, when the Zeeman 
effect was first observed, there was no notion of spin at all, so that this puzzling result was called the 
anomalous Zeeman effect. (In this terminology, the normal Zeeman effect is the one with no spin 
splitting, i.e. without the second terms in the parentheses of Eqs. (66)-(68); it may be observed 
experimentally in atoms with the net spin s = 0.) 

23 In almost-hydrogen-like, but more complex atoms (such as those of alkali metals), the degeneracy in l is lifted 
by  electron-electron interaction even in the absence of the external magnetic field. 

Fig. 6.8. Anomalous Zeeman effect in a hydrogen-like atom – schematically. 
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The strict quantum-mechanical analysis of the anomalous Zeeman effect for arbitrary s (which is 
important for applications to multi-electron atoms) is not that complex, but requires explicit expressions 
for the corresponding Clebsch-Gordan coefficients, which are rather bulky. Let me just cite the 
unexpectedly simple result of this analysis: 

                ,Δ B gmE jB      (6.69) 

where g is the so-called Lande factor:24 
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For s = ½ (and hence j = l  ½), this factor is reduced to the parentheses in the last form of Eq. (68). 

It is remarkable that Eqs. (69)-(70) may be readily derived using very plausible classical 
arguments, similar to those used in Sec. 5.7 - see Fig. 5.11 and its discussion. As we have seen above, in 
the absence of spin, the quantization of observable Lz is an extension of the classical torque-induced 
precession of the corresponding vector (say, L) about the magnetic field direction, so that the interaction 
energy, proportional to BLz = BL, remains constant (Fig. 9a). At the spin-orbit interaction without 

external magnetic field, the Hamiltonian includes the operator of product SL, so that it has to be 
quantized, i.e. constant, together with J2, L2, and S2. Hence, this system’s classical image is a rapid 
precession of vectors S and L about the direction of vector J = L + S, so that the spin-orbit interaction 
energy, proportional to product LS, remains constant (Fig. 9b). On this backdrop, the anomalous 
Zeeman effect in a relatively weak magnetic field B = Bnz corresponds to a slow precession of vector J 
(“dragging” the rapidly rotating vectors L and S with it) about axis z. 

 

 

 

 

 

 

 

This picture allows us to conjecture that what is important for the slow precession rate are only 
the vectors L and S averaged over the period of the much faster precession about vector J - in other 
words, only their components LJ and SJ directed along vector J. Classically, these components may be 
calculated as 
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      (6.71) 

The scalar products participating in these expressions may be readily expressed via the squared length of 
the vectors, using the following evident formulas: 

24 This formula is frequently used with capital letters J, S, and L, which denote the quantum numbers of the atom 
as a whole. 

Fig. 6.9. Classical images of (a) the 
orbital angular momentum’s quantization 
in external magnetic field and (b) the 
fine-structure level splitting. 
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As a result, we get the following time average: 

  

   

.
2

1
2

)(2)(

2222

2

222

2

222222

222








 











 






J

LSJ
J

J

LSJSLJ
J

J

J

JJ
SL

zz

z

z
zJJzz JSJLJ

JS
J

JL
SL

  (6.73) 

The last move is to smuggle in some quantum mechanics by using, instead of vector lengths 
squared, and the z-component of Jz,  their eigenvalues given by Eqs. (5.197), (5.203), and (5.204). As a 
result, we immediately arrive at the exact result given by Eqs. (69)-(70). This coincidence encourages 
thinking about quantum mechanics of angular momenta in classical terms of torque-induced precession, 
and turns out to be very fruitful in more complex problems of atomic and molecular physics.  

The high-field limit and low-field limits of the Zeeman effect, described respectively by Eqs. 
(66) and (68), are separated by a medium field strength range in which the Zeeman splitting is of the 
order of the fine-structure splitting analyzed in Sec. 3. There is no time in this course for a quantitative 
analysis of this crossover.25 

 

6.5. Time-dependent perturbations 

 Now let us proceed to the case when perturbation )1(Ĥ  in Eq. (1a) is a function of time, while 
)0(Ĥ  is time-independent. The adequate perturbative approach to this problem, and its results, depend 

critically on the relation between the characteristic frequency (or the characteristic reciprocal time)  of 
the perturbation and the distance between the initial system’s energy levels: 

      'nn EE  .     (6.74) 

 In the easiest case when all essential frequencies of a perturbation are very small in the sense of 
Eq. (74), we are dealing with the so-called adiabatic change of parameters, that may be treated 
essentially as a time-independent perturbation (see the previous sections of this chapter). The most 
interesting observation here is that the adiabatic perturbation does not allow any significant transfer of 
system’s probability from one eigenstate to another. For example, in the WKB limit of the orbital 
motion, the Bohr-Sommerfeld quantization rule (2.110), and its multi-dimensional generalization, 
guarantee that integral 

            
C

drp ,      (6.75) 

taken along the particle’s classical trajectory, is an adiabatic invariant, i.e. does not change at a slow 
change of system’s parameters. (It is curious that classical mechanics also guarantees the invariance of 
integral (75), but its proof there26 is much harder than the quantum-mechanical derivation of this fact, 

25 For a more complete discussion of the Stark, Zeeman, and fine-structure effects in atoms, I can recommend, for 
example, either the monograph by G. Woolgate cited above, or the one by I. Sobelman, Theory of Atomic Spectra, 
Alpha Science, 2006. 
26 See, e.g., CM Sec. 10.2. 
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carried out in Sec. 2.4.) This is why even if the perturbation becomes large with time (while changing  
sufficiently slowly), we can expect the eigenstate and eigenvalue classification to persist. 

 Now let us proceed to the more important (and more complex) case when both sides of Eq. (74) 
are comparable, and use for its discussion the Schrödinger picture of quantum mechanics given by Eqs. 
(4.157) and (4.158). Combining these equations, we get the Schrödinger equation in the form 

             )()(ˆ)( )1()0( ttHHt
t

i  



 .    (6.76) 

Very much in the spirit of our treatment of the time-independent case in Sec. 1, let us represent the time-
dependent ket-vector of the system with its expansion,           

     )()( tnnt
n

  ,     (6.77) 

over the full and orthonormal set of the unperturbed, stationary ket-vectors defined by equation 

           nEnH n)0(ˆ ,     (6.78) 

where bra-kets n(t) are time-dependent coefficients. Plugging expansion (77), with n replaced with 
n’, into both sides of Eq. (76), and then inner-multiplying both its parts by bra-vector n of another 
unperturbed (and hence time-independent) state of the system, we get a set of linear, ordinary 
differential equations for the expansion coefficients: 

            ,)()()()(
'

)1(
'

n
nnn tn'tHtnEtn

dt

d
i     (6.79)  

where the matrix elements of the perturbation in the unperturbed state basis, defined similarly to Eq. (7), 
are now functions of time:  

          n'tHntH nn )(ˆ)( )1()1(
'  .     (6.80) 

The set of differential equations (79), which are still exact, may be useful for numerical 
calculations, because for virtually all practical problems the set of eigenstates n’ may be restricted with 
an acceptable error in the final result.27 However, Eq. (79) has a certain technical inconvenience, which 
becomes clear if we consider its (evident) solution in the absence of  perturbation:28 

             






 t

E
intn n


exp)0()(  .    (6.81) 

We see that the solution oscillates very fast, and its numerical modeling may present a challenge for 
even fastest computers. These spurious oscillations (whose frequency, in particular, depends of the 
energy reference level) may be partly tamed by looking for the general solution of Eqs. (79) in a form 
inspired by Eq. (81): 

27 Even if the problem under analysis may be described by the wave-mechanics Schrödinger equation (1.25), a  
direct numerical integration of that partial differential equation is typically less convenient than that of the 
ordinary differential equations (79). 
28 This is of course just a more general form of Eq. (1.61) of wave mechanics of time-independent systems. 
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Here an(t) are new functions of time (essentially, the stationary states’ probability amplitudes), which 
may be used, in particular, to calculate the time-dependent level occupancies, i.e. the probabilities Wn to 
find the perturbed system on the corresponding energy levels of the unperturbed system: 

                22
)()( tatntW nn   .    (6.83) 

Plugging Eq. (65) into Eq. (79), for these functions we readily get a slightly modified system of 
equations: 

    






 


n'

nn'
nn'n'

n

n'n
nn'n'n

ti
etHat

EE
itHaai ,)(exp)( )1(

'

)1( 


    (6.84) 

where factors nn’, defined by relation 

                n'nnn' EE       (6.85) 

have the physical sense of frequencies of potential quantum transitions between the n-th and n’-th 
energy levels of the unperturbed system. (The conditions when such transitions indeed take place will be 
discussed later in this chapter.) An advantage of Eq. (84) over Eq. (79) for numerical calculations is the 
absence of any dependence on the energy reference selection, and lower frequencies of oscillations of 
the right hand part terms, especially when the energy levels of interest are close to each other. 

 In order to continue our analytical treatment, let us restrict ourselves to a particular but very 
important case of a sinusoidal perturbation turned on at some moment - for example, at t = 0: 
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where the perturbation amplitude operators Â  and †Â , and hence their matrix elements, 

             ,ˆ,ˆ *†
n'nnn' An'AnAn'An      (6.87) 

are time-independent.29 In this case, for t > 0, Eq. (84) yields 
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 .   (6.88) 

 This is, generally, still a complex system of coupled differential equations; however, it allows 
simple and explicit solutions in two very important cases. First, let us assume that our system is initially 
in one eigenstate n’ (say, on the ground energy level), and that the occupancies Wn of all other levels 
stays very low all the time. (We will find the corresponding condition a posteriori - from the solution.) 
With the corresponding assumption  

29 The notation of the amplitude operators in Eq. (86) is justified by the fact that the perturbation Hamiltonian has 
to be self-adjoint (Hermitian), and hence each term in the right-hand part of that relation has to be a Hermitian 
conjugate of its counterpart, which is evidently true only if the amplitude operators are also the Hermitian 
conjugates of each other. Note, however, that each of the amplitude operators is generally not Hermitian. 
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              ,'for ,1;1 nnaa nn'      (6.89) 

Eq. (88) may be readily integrated, giving 
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 (6.90) 

We see that the probability Wn (83) of finding the system on each energy level of the system oscillates in 
time, and that our assumption (89) is satisfied as soon as the excitation amplitude is not too large,30 

             nn'nnA   ' .     (6.91) 

 Expression (90) also shows that this phenomenon has a clearly resonant character: the  maximum 
occupancy Wn of a level grows infinitely when the corresponding detuning,31 

       nn'nn   ' ,     (6.92) 

tends to zero. In this limit, our initial assumption (89) may become a liability; in order to overcome it we 
may perform the following trick - very similar to the one we used for transfer to the degenerate case in 
Sec. 1. Let us assume that for a certain level n,  

           n'nn"n"n'n"nnn , allfor ,,,'      (6.93) 

- the condition illustrated in Fig. 10. Then, according to Eq. (90), we may ignore the occupancy of all 
but two levels, n and n’, and also the second, non-resonant terms with frequency nn’ +    2  >> nn’ 
in Eqs. (88) written for an and an’.32  

 

 

 

 

 

 

 

 

As a result, in this two-level approximation (that is of course not an approximation at all for two-
level systems, such as spin-½  - see Sec. 5.1), we get a simple system of two linear equations: 
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     (6.94) 

30 Strictly speaking, another condition is that the number of “resonant” levels is also not too high – see Sec. 6. 
31 The notion of detuning is also very useful in the classical theory of oscillations – see, e.g., CM Chapter 4. 
32 Such omission of non-resonant terms is usually called the Rotating Wave Approximation (RWA); it is very 
instrumental not only in quantum mechanics, but also in the classical theory of oscillations - see, e.g., CM Secs. 
4.3-4.5. 

nE

'nE


0'  nn

"nE Fig. 6.10. Resonant excitation of 
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where I have used shorthand notation A  Ann’ and   nn’  - and will use it for a while - until other 
energy levels become involved (in the beginning of the next section). This system of linear differential 
equations may be solved exactly by the introduction of a new variable (for one of the levels only!) 

       .tieab nn
       (6.95) 

According to this formula,  

                ,tieba nn
      .tiebiba nnn

      (6.96) 

Plugging these relations into Eq. (94), we see that both equations of the system loose their explicit time 
dependence: 

                  ,, *AbaiAabibi nn'n'nn       (6.97) 

and now may be readily solved by regular methods. For example, we may differentiate the first 
equation, and then use the second one to eliminate variable an’: 
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From mathematics we know that the resulting linear, second-order differential equation, with 
time-independent coefficients, has the following general solution, 
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)( ,     (6.99) 

whose characteristic exponents  may be readily found by plugging any of the exponential functions 
into Eq. (98). In our case, both roots of the resulting characteristic equation, 
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are purely imaginary:  = i(/2  ), where 
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 The coefficients b are determined by initial conditions. If, as before, the system was completely 
on level n’ initially, i.e. an’ (0) = 1, an(0) = bn(0) = 0; then Eq. (99) immediately yields b- = - b+, so that  

      
 ibateibtateibtb nnn

titi 2)0(,sin2)(,sin2)( 2/2/  .  (6.102) 

Now the coefficient b+  may be readily found from the comparison of the last equality in Eq. (102) with 
the first of Eqs. (94), taken for t = 0, when an’ = 1.  This comparison yields 2ib+= A/i, and hence 
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so that the nth level occupancy is 

Rabi 
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This is the famous Rabi formula.33 It shows that an increase of the perturbation amplitude A 
leads not only to an increase of the amplitude of the probability oscillations, but also of their frequency 
2 described by Eq. (101) – see Fig. 11.  

  

 

 

 

 

 

 

 

 

 

Ultimately, at A >>  (for example, at the exact resonance,  = 0) Eqs. (101)-(102) give  = 
A/ and (Wn)max = 1, i.e. describe a periodic, full “repumping” of the system from one level to another 
and back, with a frequency proportional to the perturbation amplitude. This effect gives a very 
convenient tool for manipulating two-level-systems (qubits, in the quantum information context). For 
example, limiting the external excitation time to t = /2 (or an odd number of such intervals) we may 
completely transfer the system from one eigenstate (say, ) to the opposite one ().34 On the Bloch 
sphere (Fig. 5.1), this transfer corresponds to the representing point’s drive from the South Pole to the 
North Pole. 

Note, however, that according to Eq. (90), if the system has energy levels other than n and n’, 
they also become occupied to some extent. Since the sum of occupancies should be 1, this means that 
(Wn)max may approach 1 only if the excitation amplitude is very small, and hence the state switching 
time t = /2 = /2A is very long. The ultimate limit in this sense is provided by the harmonic 
oscillator where all energy levels are equidistant, and probability repumping between all of them occurs 
with the same rate. Hence, in that particular system, the implementation of the full Rabi oscillations is 
impossible even at the exact resonance.35 In the opposite limit, when the detuning is large in comparison 
with A/, though still small in the sense of Eq. (93), the frequency of Rabi oscillations is completely 
determined by the detuning, and their amplitude is small: 

33 It was derived in 1952 by I. Rabi, in the context of his group’s pioneering experiments with microwave 
excitation of quantum states, using molecular beams in vacuum. 
34 In the quantum information science language, this is just a logic operation NOT performed on a single qubit. 
35 We, of course, already know what happens to the ground state of an oscillator at its external sinusoidal (or any 
other) excitation: it turns into the Glauber state, i.e. a superposition of all Fock states – see Sec. 5.5.  

Fig. 6.11. Rabi oscillations. 
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However, I would not like these quantitative details to obscure from the reader the most 
important qualitative (OK, maybe semi-quantitative :-) conclusion of this section’s analysis: the 
resonant increase of interlevel transition intensity at   nn’. Using the fundamental Kramer-Kronig 
dispersion relations,36 based essentially only on very general causality arguments, it is easy to show 
(and hence left for reader’s exercise) that in a medium incorporating many similar quantum systems 
(e.g., atoms or molecules), this increase of quantum transitions is accompanied by a sharp increase of 
external field’s absorption. This effect has numerous practical applications including systems based on 
the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, 
which are broadly used in material science, chemistry, and medicine. Unfortunately, I will not have time 
to discuss the related technical issues (in particular, interesting pulsing spectroscopy techniques) in 
detail, and have to refer the reader to special literature.37 

 

6.6. Quantum-mechanical Golden Rule 

The last result of the past section, Eq. (105), may be used to derive one of the most important 
results of quantum mechanics – its so-called Golden Rule. For that, let us consider the case when the 
perturbation causes quantum transitions from a discrete energy level En’ into a group of eigenstates En 
with a dense (virtually continuous) spectrum – see Fig. 12a. If, for all states n of the group, the 
following conditions are satisfied 

        2'
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' nnnnnnA   , (6.106) 

then Eq. (105) coincides with the result that would follow from Eq. (90). This means that we may apply 
Eq. (105), with indices n and n’ duly restored, to any level n of our tight group. As a result, the total 
probability of having our system transferred from level n’ to that group is  
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36 See, e.g., EM Sec. 7.3, in particular, the correspondence between Eqs. (7.55) and (7.56). 
37 For introductions see, e.g., J. Wertz and J. Bolton, Electron Spin Resonance, 2nd ed., Wiley, 2007; J. Keeler, 
Understanding NMR Spectroscopy, 2nd ed., Wiley, 2010. 

Fig. 6.12. Deriving the Golden 
Rule: (a) the energy level 
scheme, and (b) the function 
under integral (108). 
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Now comes the main, absolutely beautiful trick: let us assume that the summation over n will be 
limited to a tight group of very similar states for which the matrix elements Ann’ are virtually similar (we 
will check the validity of this assumption later on), so that we can take it out of the sum (107) and then 
replace the sum with the corresponding integral:    
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 (6.108) 

where n is the density of eigenstates n on the energy axis: 
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 .      (6.109) 

This density, as well as the matrix element Ann’, have to be evaluated at nn’ = 0, i.e. at energy En = En’ + 
, and are assumed to be constant within the final state group. At fixed En’, the function under integral 
(108) is even and decreases fast at nn’t >> 1 – see Fig. 12b. Hence we may introduce a dimensionless 
integration variable   nn’t, and extend integration over this variable formally from -  to +. Then 
Eq. (108) is  reduced to a table integral,38  and yields 
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where  constant 

               nnn'A  22


 .     (6.111) 

is the called the transition rate.39 

 This is one of the most famous and useful results of quantum mechanics, its Golden Rule 
(sometimes, rather unfairly, called the “Fermi Golden Rule”40), which deserves much discussion. First 
of all, let us reproduce the reasoning already used in Sec. 2.5 to show that the meaning of rate  is much 
deeper than Eq. (110) seems to imply. Indeed, due to the conservation of the total probability, Wn’ + W 

= 1, we can rewrite that equation as 

        .0 tn'W       (6.112) 

Evidently, this result cannot be true for t  , otherwise probability Wn’ would become negative. The 
reason for that apparent contradiction is that result (110) was obtained in the assumption that initially 
the system was completely on level n’: Wn’(0) = 1. Now, if in the initial moment the value of Wn’ is 

38 See, e.g., MA Eq. (6.12). 
39 In some texts, the density of states in Eq. (111) is replaced with expression  (En – En’ - ). Indeed, the 
integration of this expression over any final energy interval En gives the same result n = (dn/dEn)En = nEn 
as Eq. (111). Such replacement may be useful in some cases, but should be used with utmost care, and for most 
applications the more explicit form (111) is preferable. 
40 Actually, this result was developed mostly by the same P. A. M. Dirac in 1927; E. Fermi’s role was not much 
more than advertising it, under the name of “Golden Rule No. 2”, in his lecture notes on nuclear physics, which 
were published much later, in 1950. (To be fair to Fermi, he has never tried to pose as the Golden Rule’s author.) 
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different, result (110) has to be multiplied by that number, due to the linear relation (88) between dan/dt 
and an’. Hence, instead of Eq. (112) we get a differential equation similar to Eq. (2.159), 

        ,n'n' WW       (6.113) 

which, for time-independent , has the evident solution, 

            ,)0()( Γ
''

teWtW nn
      (6.114) 

describing an exponential decay of the initial state’s occupancy, with time constant   = 1/. 

 I would ask the reader to think again about this fascinating mathematical result: by summation of 
periodic oscillations (105) over many levels n, we have got an exponential evolution (114) of the 
probability. The main trick here is of course that the effective range E of states En, giving the 
dominating contribution into integral (108), shrinks with time: En ~ /t.41 By the way, since most of the 
decay takes place at times t ~    1/, the range of participating final energies may be estimated as 

       



~nE .     (6.115) 

This estimate is very instrumental for the formulation of conditions of validity of the Golden Rule (111). 
First, we have assumed that the matrix elements of the perturbation and the density of states do not 
depend on energy within interval (115). This gives the following requirement 

                   ~~ n'nn EEE  ,     (6.116) 

Second, for the transfer from sum (107) to integral (108), we need the number of states within that 
energy interval, Nn = nEn, to be much larger than 1. Merging Eq. (116) with Eq. (93) for all energy 
levels  n”  n, n’ not participating in the resonant transfer, we may summarize all conditions of the 
Golden Rule validity as 

        n'n"n   Γ1 .     (6.117) 

(The reader may ask whether I have forgotten the condition expressed by the first of Eqs. (106). 
However, for nn’ ~ En/ ~ , this condition is just Ann’2 << ()2, so that plugging it into Eq. (111), 
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 22

 


,     (6.118) 

and canceling one  and one , we see that this requirement coincides with the left relation in Eq. (117) 
above.)  

 Let us have a look at whether these conditions may be satisfied in practice, at least in some 
cases. For example, let us consider the optical ionization of an atom, with the released electron confined 
in a volume of the order of 1 cm3 = 10-6 m3.  According to Eq. (1.82), with E  of the order of the atomic 
ionization energy En – Em =  ~ 1 eV, the density of electron states in that volume is of the order of 
1017 1/eV. Thus conditions (117) provide an approximately 15-orders-of magnitude range for acceptable 

41 Here we have run again, in a more general context, into the “energy-time uncertainty relation” which was 
already discussed in the end of Sec. 2.5. Let me advise the reader to revisit that important discussion. 
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values of . This illustration should give the reader a taste of why the Golden Rules is applicable to so 
many situations. 

 Finally, the physical picture of initial state’s decay (which will also be the key for our discussion 
of quantum mechanics of “open” systems in the next chapter) is also very important. According to Eq. 
(114), the external excitation transfers the system onto the continuous spectrum of levels n, and it never 
comes back on the initial level n’. However, it was derived from quantum mechanics of Hamiltonian 
systems, whose equations are invariant with respect to time reversal. This paradox is a result of the 
generalization (113) of the exact result (112), that breaks the time reversal symmetry, but is absolutely 
adequate for the physics under study. Some gut feeling of the physical sense of this irreversibility may 
be obtained from the following observation. From our wave-mechanics experience, we know that the 
distance between adjacent orbital energy levels tends to zero only if the system size goes to infinity. 
This means that the assumption of continuous energy spectrum of final states n essentially requires these 
states to be infinitely extended in space – essentially being free de Broglie waves. The Golden Rule 
approach corresponds to the (physically justified) assumption that in an infinitely large system the 
traveling waves excited by a local source and propagating outward from it, would never come back, and 
even if they do, the unpredictable phase shifts introduced by the uncontrollable perturbations on their 
way would never allow them to sum up in the way necessary to bring the system back into the initial 
state n’. 42 

 Maybe the best illustration of this interpretation is given by the following problem - which is a 
toy model of the photoelectric effect that was briefly discussed in Sec. 1.1(iii). A 1D particle is initially 
trapped in the ground state of a narrow quantum well, 

).()( xxU W      (6.119) 

Let us use the Golden Rule to find rate  of particle’s “ionization” (i.e. its excitation into an extended, 
delocalized state) by a weak classical sinusoidal force of amplitude F0 and frequency . As a reminder, 
finding the initial, localized state (n’) of such particle was the task of Problem 2.14, and its solution was 
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Extended states n with continuous spectrum, for this problem exist only at energies En > 0, so that the 
excitation rate is different from zero only for frequencies 
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The weak sinusoidal force may be described by the following perturbation Hamiltonian,   
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so that according to Eq. (86), that serves as the amplitude operator definition, in this case 

42 This situation is very much similar to the entropy increase in macroscopic systems, which is postulated in 
thermodynamics, and justified in statistical physics, even though it is based on time-reversible laws of mechanics 
– see, e.g., SM Sec. 1.2 and Sec. 2.2.  
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Now the matrix elements Ann’ that participate in Eq. (111) may be calculated in the coordinate 
representation: 
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Since, according to Eq. (120), the initial n’ is a symmetric function of x, a nonvanishing  
contribution to this integral is given only by asymmetric functions n(x), proportional to sinknx, with 
wavenumber kn related to the final energy by the well-familiar equality (1.77): 
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As we know from Sec. 2.5 (see in particular Eq. (2.124) and its discussion), such asymmetric functions, 
with n(0) = 0, are not affected by the zero-centered delta-functional potential (119), and their density 
n is the same as in a completely free space, and we can use Eq. (1.94). (Actually, since that relation was 
derived for traveling waves, it is more prudent to repeat the calculation that has led to that result, 
confining the waves on an artificial segment [-l/2, +l/2] - so long, 

1, llkn  ,       (6.126) 

that it does not affect the initial localized state and the excitation process. Then the confinement 
requirement n(l/2) = 0 immediately yields the condition knl/2 = n, so that Eq. (1.94) is indeed valid, 
but only for positive values of kn, because sinknx with kn  –kn does not give an independent standing-
wave eigenstate.)  Hence the final state density is 
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It may look troubling that the density of states depends on artificial segment’s length l, but the 
same l also participates in the final wavefunction normalization factor,43 
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and hence the matrix element (124): 
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These two integrals may be readily worked out by parts. Taking into account that, according to 
condition (126), their upper limits may be extended to , the result is 

43 The normalization to infinite volume, using Eq. (5.55), is also possible, but less convenient in such problems. 



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 6           Page 30 of 40 

2220

2/1

' )(

22













n

n
nn k

k
F

l
A ,    (6.130) 

so that finally we get an expression for the rate, which is independent of the artificially introduced l: 
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  (6.131) 

 Note that due to the above definitions of kn and , the expression in parentheses in the 
denominator of the last formula does not depend on the quantum well parameter W, and is a function of 
only the excitation frequency  (and particle’s mass): 
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As a result, Eq. (131) may be recast simply as 
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What is still hidden here is that kn, defined by to Eq. (125) with En = En’ + , is a function of 
frequency, changing as 1/2 at   >> t  (so that  drops as -7/2 at   ), and as ( - t)

1/2 when  
approaches the “red boundary” t  En’/ = mW2/23 of the ionization effect, so that   ( - t)

1/2   
0 in that limit as well. We see that our toy model does describe this main feature of the photoelectric 
effect, whose explanation by Einstein was essentially the starting point of quantum mechanics - see Sec. 
1.1. The (very similar) analysis of this effect in a more realistic model, the hydrogen atom’s ionization, 
is left for reader’s exercise. 

 

6.7. Golden Rule for step-like perturbations 

 Now let us reuse some of our results for a perturbation being turned on at t = 0, but after that 
time-independent: 

               








.0,constˆ
,0                 ,0

)(ˆ
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t
tH      (6.134) 

A superficial comparison of this equation and our former Eq. (69) seems to indicate that we may use all 
our previous results, taking  = 0. However, that conclusion does not take into account the fact that 
analyzing both the two-level approximation and the Golden Rule for continuous spectrum, we have 
neglected the second (non-resonant) term in Eq. (90). This why it is more prudent to use the general Eq. 
(86),  

         ,
'

'
'

)1(
'

n

nn
nnnn

ti
eHaai


      (6.135) 

in which the matrix element of the perturbation is now time-independent. We see that it is formally 
equivalent to Eq. (88) with only the first (resonant) term kept, if we make the following replacements: 

Step-like 
perturbation 
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          '''
)1( ,ˆˆ

nnnnnnHA   .    (6.136) 

As a sanity check, let us revisit a two-level system such as two quantum wells coupled by 
tunneling – see Fig. 13a. It is convenient to include the energy difference En - En’ between the two levels 
into the unperturbed Hamiltonian, so that perturbation (134) describes only the localized state coupling 
due to tunneling through the energy barrier separating the wells. (The turning on of the coupling, 
described by Eq. (134), may be achieved, for example, by a rapid lowering of the barrier at t = 0.) Then, 
after replacements (136), we are getting an analog of Eq. (104): 

  t
H

aW
nn'

nn 
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,     (6.137) 

where frequency  of the periodic “probability repumping” between levels n’ and n is now described, 
instead of Eq. (104), by relation     
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 .   (6.138) 

But these are exactly the quantum oscillations that have already been discussed in Sec. 2.6 – now 
derived for an arbitrary quantum wells and tunnel barrier shape.  

 

 

 

 

 

 

 

 

The similarity of Eqs. (104) and (137) shows that the Rabi oscillations and the “usual” quantum 
oscillations have essentially the same physical nature, besides that in the former case the external rf 
signal quantum   bridges over the state energy difference. We may also compare result (138) with our 
analysis of a two-level system, with a similar time-independent perturbation, in Sec. 1. According to Eq. 
(29), its eigenenergies differ by 

            .4)(
2/1

2112
2

2211 HHHHEE       (6.139) 

But this is exactly the result given by Eq. (138), provided that we consider (H11 - H22) as the difference 
(En – En’) of unperturbed state energies rather than as a perturbation, as we certainly have a right to do. 

 Now let us consider the effect of perturbation (134) in the case when it creates coupling between 
the initial (discrete) energy level and a dense group of states with a quasi-continuum spectrum, in the 
same energy range. Figure 13b shows an example of such a system: a quantum well separated by a 

(a)                               (b) 

Fig. 6.13. Quantum-well implementation of coupling of a discrete-energy state n’ to (a) another 
discrete-energy state, and (b) a state continuum, due to tunneling through a potential barrier. 

n' n
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penetrable tunnel barrier from an extended region with a quasi-continuous energy spectrum. Making 
replacements (136) in Eq. (111), we may present the Golden Rule for this case as 

      ,
2 2)1(

' nnnH 


      (6.140) 

where states n and n’ now have the same energy.44  

It is very informative to compare this result with Eq. (138) for a symmetric (En = En’) double 
quantum well using the same tunnel barrier – see Fig. 13. For the latter case, Eq. (138) yields 

       
con

)1(
'

1
nnH


 .     (6.141) 

Here I have used index “con” (from “confinement”) to emphasize that this matrix element is rather 
different from the one participating in Eq. (140). Indeed, in the latter case, the matrix element, 

 dxHn'HnH nnnn  )1(
'

)1()1(
'

ˆˆ * ,    (6.142) 

has to be calculated  for two similar wavefunctions n and n’ confined to spatial intervals of the same 
scale lcon, while in Eq. (140), wavefunctions n  are extended to a much larger distance l >> lcon – see 
Fig. 13. As Eq. (129) tells us, in the 1D model we are considering now, this means an additional factor 
small factor of the order of (lcon/l)

1/2. Now using Eq. (128) as a crude but suitable model for the final-
state wavefunctions, we arrive at the following estimate: 
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where En’ ~ 2/ml2
con  is the scale of the differences between eigenenergies of the particle in an 

unperturbed quantum well. Since the condition of validity of the perturbative formula (140) is  << 
En’, we see that45  

            .~ 



 



mE

.     (6.144) 

Hence the rate of (irreversible) quantum tunneling into continuum is always much lower that the 
frequency of (reversible) quantum oscillations between states separated with the same potential barrier – 
at least for the case when both are much lower than En’/, so that the perturbation theory is valid. A 
handwaving interpretation of this result is that the confined particle wonders beyond the barrier and 
back many times before finally “deciding” to perform an irreversible transition into unconfined 
continuum.46 

44 The condition of its validity is again given by Eq. (117), but with    0 in the upper limit. 
45 It is straightforward to show that in this form, the estimate is valid for a similar problem of any spatial 
dimensionality, not just the 1D case we have analyzed. 
46 This qualitative picture may be verified, for example, using the experimentally observable effects of dispersive 
electromagnetic environment on electron tunneling - see P. Delsing et al., Phys. Rev. Lett. 63, 1180 (1989). 
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Let me conclude this section (and this chapter) with the application of Eq. (140) to an important 
case, which will provide us with a smooth transition to the next chapter’s topics. Consider a composite 
system consisting of two parts, a and b, with the energy spectra sketched in Fig. 14. 

  

 

 

 

 

 

 

Let the systems be completely independent initially. The independence means that in the absence 
of perturbation, the total Hamiltonian of the system at t < 0 may be presented as a sum 

         ),(ˆ)(ˆˆ )0( bHaHH ba       (6.145) 

where arguments a and b symbolize the non-overlapping sets of variables of the two systems. Then 
eigenkets of the system may be naturally factored as47 

              ba nnn  ,     (6.146) 

while its eigenenergies separate into a sum, just as the Hamiltonian (145) does: 
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  (6.147) 

Analysis of such a composite system is much easier when the interaction of its components may 
be presented as a product of two Hermitian operators, each depending only on the degrees of freedom of 
only one component system: 

               )(ˆ)(ˆˆ )1( bBaAH  .     (6.148) 

A typical example of such a bilinear interaction Hamiltonian is the electric-dipole interaction between 
an atomic-scale electron system (with a size of the order of the Bohr radius rB ~ 10-10 m) and the 
electromagnetic field at optical frequencies   ~ 1016 s-1, with wavelength  = 2c/ ~ 10-6 m >> rB: 48 

             
k

kkq,H rdd ˆˆwith  ˆˆˆ )1( E ,    (6.149) 

where the dipole electric moment d depends only on positions rk of charged particles (numbered with 
index k), while that of electric field E is a function of only the electromagnetic field’s degrees of 
freedom – see Chapter 9 below. 

47 Sign  is used to denote the formation of a joint ket-vector from kets of independent systems (“belonging to 
different Hilbert spaces”). Evidently, the order of operands in such a “product” may be changed at will. 
48 See, e.g., EM Sec. 3.1, in particular Eq. (3.16), in which letter p is used for the electric dipole moment. 

Fig. 6.14. Energy relaxation in 
system a due to its coupling with 
system b (which serves as the 
environment of a). 
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 Returning to the general situation shown in Fig. 14, if the component system a was initially in an 
excited state n’a, interaction (148) may bring it to another discrete state na of a lower energy - for 
example, the ground state. In the process of this transition, the released energy, in the form of energy 
quantum 

      naan EE  ' ,     (6.150) 

is picked up by system b: 

      .'  bnnb EE      (6.151) 

(In typical applications, though not always, the initial state n’b of that system is its ground state.) If the 
final state nb of the system is inside a state group with quasi-continuous energy spectrum (Fig. 14), the 
process has the exponential character (114)49 and may be interpreted as the effect of energy relaxation 
of system a, with the released energy quantum  absorbed by system b. Note that since the quasi-
continuous spectrum essentially requires a system of large spatial size, such model is very convenient 
for description of the environment of system a. (In physics, the “environment” typically means all the 
Universe less the system under consideration.) 

 The relaxation rate  may be described by the Golden Rule. Since perturbation (148) does not 
depend on time explicitly, and the total energy of the composite system does not change, we may use 
Eq. (140) that, with the account of Eqs. (146) and (148), takes the form  

        bbnnaannnnnnn n'BnBn'AnABA ˆ,ˆ  where,
2

''

2

'

2

'  


,  (6.152) 

with n  being the density of the final states of system b, at the relevant energy Enb = En’b +   = En’b + 
(En’a – Ena). In particular, Eq. (152), with the dipole Hamiltonian (149), enables a very simple 
calculation of the natural linewidth of atomic electric dipole transitions. However, such calculation has 
to be postponed until Chapter 9 in which we will discuss the electromagnetic field quantization - i.e., the 
exact nature of states nb and n’b for this problem. Instead, I will proceed to a discussion of the effects of 
interaction of quantum systems with their environment, toward which the situation shown in Fig. 14 
provides a clear path.  

 
6.8. Exercise problems 

6.1. Use Eq. (13) to prove the Hellmann-Feynman theorem:50 

n
H

n
En

 




 ˆ

, 

where  is an arbitrary c-number parameter. 

 
6.2. Analyze the relation between Eq. (15) and the results of classical analysis51 of a similar 

anharmonic (“nonlinear”) oscillator. 

49 The process is evidently spontaneous, i.e. does not require any external agent, and starts as soon as either the 
interaction (127) has been turned on, or (if it is always on) as soon as system a is placed into the excited state n’a. 
50 As a reminder, its proof for the particular case of wave mechanics was the subject of Problem 1.4. 

Golden 
Rule 
for coupled 
systems 
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6.3. A weak additional force F is applied to a 1D particle that was placed into a hard-wall 

quantum well with 

 








     otherwise.     ,

,0for               ,0 ax
xU  

Calculate, sketch, and discuss the first-order perturbation of its ground-state wavefunction. 
 
6.4. A 2D quantum particle is confined in a square-shaped quantum well with infinitely high 

walls and slightly skewed floor: 









otherwise.                                ,

 ,0 and  0for , LyLxxy
U


 

In the first order in the small parameter , find energies of the ground state and the lowest excited state 
of the system. Formulate the conditions of validity of your result. 

Hint: To save reader’s time on a straightforward but longish integration by parts, I can offer the 
following integral: 

.
9

8
)2sin()sin(

2

1

0 
  d  

6.5. Calculate the lowest-order relativistic correction to the ground-state energy of a 1D 
harmonic oscillator. 
 
 6.6. A 1D particle of mass m is localized at a narrow potential well which may be approximated 
with a delta-function: 

    0. with  ,  WW xxU   

Calculate the change of its ground state energy by an additional weak, time-independent force F, in the 
first nonvanishing approximation of the perturbation theory. Discuss the limits of validity of this result, 
taking into account that at F  0, the localized state of the particle is metastable. 
 
 6.7. Use the perturbation theory results to calculate the eigenvalues of the observable L2, in the 
limit l  m >> 1, by purely wave-mechanical means.  

 Hint: Try the following substitution: () = f()/sin1/2 . 
 
 6.8. In the first nonvanishing order of the perturbation theory, calculate the shift of the ground-
state energy of an electrically charged spherical rotator (i.e. a particle of mass m, free to move over a 
spherical surface of radius R) due to a weak, uniform, time-independent electric field E. 
 
 6.9. Use the perturbation theory to evaluate the effect of a constant electric field E on the ground 
state energy Eg of a hydrogen atom. In particular: 

51 See, e.g., CM Sec. 4.2. 
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 (i) calculate the 1st-order shift of Eg,  
 (ii) bring the expression for the 2nd-order shift (neglecting the extended unperturbed states with E 
> 0) to the simplest possible analytical form, 
 (iii) find the lower and upper bounds on the result, and 
 (iv) discuss the simplest manifestations of the shift (called the quadratic Stark effect). 
 
 6.10.* A particle of mass m, with electric charge q, is in its ground s-state with known energy Eg 
< 0, being localized by a very short-range, spherically-symmetric potential well. Calculate its electric 
polarizability . 
 
 6.11. In the first nonvanishing order of the perturbation theory, calculate the correction to 
energies of the ground state and all lowest excited states of a hydrogen-like atom/ion, due to electron’s 
penetration into its nucleus, modeling it as a spinless, uniformly charged sphere of radius R << rB/Z. 
 
 6.12. A spin-½ particle is placed into a magnetic field 

zxxxzz BBBB  with  ,nnB . 

Calculate its energy levels: 

 (i) exactly, and 
 (ii) in the first nonvanishing order of the perturbation theory in small Bx. 

Compare the results of the two approaches. 
 
 6.13. Use the perturbation theory to analyze the orbital diamagnetism. Namely, calculate the 
magnetic susceptibility m of a dilute gas due to the orbital motion of a single electron confined inside 
each gas particle. 

 Hint: You may like to use the well-known formula for the magnetic energy u per unit volume of 
a linear medium: 

2/2Bu , 

where B  is the applied magnetic field, and  is the magnetic permeability, related to the susceptibility 

as  m  10 .52 

 
6.14.* Analyze the statistics of the spacing S  E+ - E- between energy levels of a two-level 

system, assuming that all elements Hjj’ of its Hamiltonian matrix (6.27) are independent random 
numbers, with equal and constant probability densities within the energy interval of interest. Compare 
the result with that for a purely diagonal matrix, with the similar probability distribution of the diagonal 
elements. 
  
 6.15. Discuss how to calculate the energy level degeneracy lifting in the second order of the 
perturbation theory, assuming that it is not lifted in the first order. Carry out such a calculation for a 
plane rotator of mass m and radius R, carrying electric charge q, and placed into a weak, uniform, 
constant electric field E. 

52 See, e.g., EM Sec. 5.5, in particular Eqs. (5.127) and (5.112). 
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6.16. Use the single-particle approximation to find the complex dielectric constant () of a 

dilute gas of similar atoms, due to their induced electric polarization by a weak external ac field, for a 
field frequency  very close to one of quantum transition frequencies nn’ defined by Eq. (85). 

Hint: In the single-particle approximation, atom’s response to an external field is described as 
that of Z similar, non-interacting electrons moving in an effective static attracting potential – generally 
induced not only by the nuclei but also by other electrons. 

 
 6.17. Use the solution of the previous problem to generalize the expression for the London 
dispersion force between two electroneutral molecules (whose calculation in the harmonic oscillator 
model was the subject of Problems 3.18 and 5.11) to the single-particle model with an arbitrary energy 
spectrum. 
 
 6.18.  Use the solution of the previous problem to express the potential energy of interaction of 
two hydrogen atoms, both in their ground state and separated by distance r >> rB, in the simplest 
analytical form, and use the result to estimate the energy. 
 
 6.19. In a certain quantum system, distances between three lowest 
energy levels are slightly different - see Fig. on the right ( << 1,2). Find the 
time necessary to populate the first excited level almost completely (with a 
given precision   << 1), using the Rabi oscillation effect, if at t = 0 the system 
is completely in its ground state. 

 Hint: Assume that all matrix elements of the perturbation Hamiltonian 
are known, and are all proportional to the external rf field amplitude. 
  
 6.20. A weak external force pulse F(t), of a finite time duration, is applied to a 1D harmonic 
oscillator that initially was in its ground state.  

 (i) Calculate, in the lowest nonvanishing order of the perturbation theory, the probability that the 
pulse drives the oscillator into an excited state.  
 (ii) Formulate the condition of validity of the result, and compare it with the exact solution of the 
problem. 
 (iii) Spell out the perturbative result for a Gaussian-shaped waveform, 

   22
0 /exp tFtF  , 

and analyze its dependence on the effective duration   of the pulse. 
 
 6.21. A charged plane rotator, initially in its ground state, is placed into a spatially-uniform, but 
time-dependent external field E(t), applied at t = 0.  

(i) Calculate, in the lowest nonvanishing order in field’s strength, the probability that the pulse 
drives the rotator oscillator into its nth excited state.  
 (ii) Spell out and analyze your results for a rotating field. 
 (iii) Same for an ac field with fixed polarization. 

 

0E
1
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6.22.  

 (i) Develop the general theory of excitations of the higher levels of a discrete-spectrum system, 
initially in the ground state,  by a weak time-dependent perturbation, up to the 2nd order. 
 (ii) Apply the theory to the system analyzed in the previous problem (a plane rotator driven by a 
time-dependent electric field) to find out what excitations, forbidden in the 1st order of the perturbation 
theory, are allowed in its 2nd order. 
 

6.23. A heavy, relativistic particle, with the electric charge q = Ze, passes by a hydrogen atom, 
initially in its ground state, with the impact parameter (shortest distance) b within the limits rB << b <<  
rB/, where   1/137 is the fine structure constant. Calculate the probability of atom’s transition to its 
lowest excited states. 
 
 6.24.* A particle of mass m is initially in the localized ground state, with the known energy Eg < 
0, of a very small, spherically-symmetric potential well. Calculate the rate of its delocalization 
(“ionization”) by an applied force F(t) = nFF0cost, with a time-independent orientation nF, and discuss 
its dependence on frequency . 

 
6.25.* Calculate the rate of ionization of a hydrogen atom, initially in its ground state, by a 

classical, linearly polarized electromagnetic wave with electric field’s amplitude E0, and frequency   
within the range 

,
B

2
B r

c

rme

 
 

where rB is the Bohr radius. Recast your result in terms of the cross-section of this electromagnetic wave 
absorption process. Discuss semi-quantitatively what changes would be necessary in the theory if either 
of the above conditions had been violated. 
 

6.26. For the system of two weakly coupled quantum wells (see Fig. 13a), write the system of 
differential equations for the probability amplitudes an defined by Eq. (2.199), and in particular prove 
Eqs. (2.201) - which were just guessed in Sec. 2.7. 

 
6.27.* Use the quantum-mechanical Golden Rule to derive the general expression for the electric 

current I through a weak tunnel junction between two conductors, biased with dc voltage V, treating the 
conduction electrons as a Fermi gas, in which the electron-electron interaction is limited to the Pauli 
exclusion principle. Simplify the result in the low-voltage limit. 

 Hint: The electric current flowing through a weak tunnel junction is so low that its perturbation 
of the electron states inside each conductor is negligible. 
  

6.28.* Generalize the result of the previous problem to the case when a weak tunnel junction is 

biased with voltage tAVtV cos)(  , with  generally comparable with Ve  and eA . 

 
6.29.* Use the quantum-mechanical Golden Rule to derive the Landau-Zener formula (2.266). 
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6.30. Calculate, in the 2nd order of the perturbation theory, the rate  of transitions between 
different states of a continuous group (of virtually the same energy En), induced by a monochromatic 
perturbation of frequency , with  comparable to the distances between other, discrete levels of the 
system. 
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Chapter 7. Open Quantum Systems 

This chapter discusses the effects of interaction of a quantum system with its environment, and in 
particular, with the instruments used for measurements. Some part of this material is on the fine line 
between quantum mechanics and (quantum) statistical physics. Here I will only cover those aspects of 
this field which are of key importance for the basic goals of this course, in particular for the discussion 
of quantum measurements in the end of the chapter.1 

 

7.1. Open systems and the density matrix 

 All the way until the very end of the previous chapter, we have discussed quantum systems 
isolated from their environment. Indeed, from the very beginning we have assumed that we are dealing 
with the statistical ensembles of systems as similar to each other as only allowed by laws of quantum 
mechanics. Each member of such an ensemble, called pure or coherent, may be described by the same 
quantum state  - in the wave mechanics case, by the same wavefunction . Even our discussion of the 
Golden Rule in the end of the last chapter, in particular its form in which one component system (in Fig. 
6.13, system b) may be used as a model of the environment of another component (a), was still based on 
the assumption of a pure initial state (6.146) of the system. Since the interaction of two component 
systems was described by a certain Hamiltonian (the one given by Eq. (6.145) for example), for the state 
 of the system as a whole at arbitrary instant we might write  

                  ba
n

n
n

n nnn    ,    (7.1) 

with a unique correspondence between eigenstates states na and nb. 

However, in many important cases our knowledge of quantum system’s state is incomplete. This 
is especially unavoidable2 when a relatively simple quantum system s of our interest (say, an electron or 
an atom) is in a contact with environment e – here understood in a most general sense, say, as all the 
whole Universe less system s – see Fig. 1. Then there is virtually no chance of making two or more 
experiments with exactly the same composite system, because it would imply a repeated preparation of 
the whole environment (including the experimenter :-) in a certain quantum state - a rather challenging 
task, to put it mildly. In this case, it makes much more sense to consider a statistical ensemble of another 
kind, with random quantum states of the environment, though possibly with known macroscopic 
parameters (e.g., temperature, pressure, etc.).  

 In classical physics, such mixed ensembles are the subject of statistical (classical) mechanics.3 
Let us see how they may be described in quantum mechanics. For the beginning, we need to assume

1 For a broader discussion of statistical mechanics and physical kinetics, including those of quantum systems, the 
reader is referred to the SM part of this lecture note series.  
2 Most of the mixed ensemble analysis in this chapter will pertain also to the cases when the systems of interest 
are not in a contact with the environment currently, and our knowledge about them is incomplete by some other 
reason – for example, if they had been in such a contact at some time between their perfect preparation (in a 
certain quantum state) and the observation, or if such a perfect preparation is impossible (or impracticable, or 
undesirable :-). 
3 See, e.g., SM Sec. 2.1. 
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again that the coupling between the system of interest and its environment is weak in the sense accepted 
in the perturbation theory.4 In this case we can still use the bra- and ket-vectors of unperturbed states, 
that depend on different sets of variables (again, “belonging to different Hilbert spaces”). Then the most 
general quantum state of the whole Universe, still assumed to be pure,5 may be described as the 
following linear superposition:  

            
kj

kjjk es
,

 .     (7.2) 

 The “only” difference between the description of such an entangled state and the superposition 
of separable states, described by Eq. (1), is that coefficients jk  in the right-hand part of Eq. (2) are 
numbered with two indices: index j listing the quantum states of system s, and k numbering the 
(enormously large) set of quantum states of the environment. So, in a mixed ensemble a certain state sj 
of the system of interest may coexist with different states of its environment.6 Of course, the enormity of 
the Hilbert space of the environment, i.e. the number of k-components in sum (2), strips us of any 
opportunity to make direct calculations using that sum. For example, according to the basic Eq. (4.125), 
in order to find the expectation value of an arbitrary observable A in state (2), we would need to 
calculate 

           
k'j'j

k,k'
j,j'

kj'k'jk esAseAA   ˆˆ * .   (7.3) 

Even if we assume that {s} and {e} are sets of the basis states of, respectively, the system and the 
environment, and that each is full and orthonormal, Eq. (3) still includes a double sum over the 
enormous basis state set of the environment! 

 

 

 

 

 

 

 

 However, let us consider a limited but the most important subset of operators – those of intrinsic 
observables, which depend only on the degrees of freedom of the system of interest (s). These operators 
commute do not act on environment’s degrees of freedom, and hence in Eq. (3) we may move the 
environment bra-vector ek over all the way to ket-vector ek’. Assuming, again, that the set of 
environmental eigenstates is full and orthonormal, Eq. (3) is now reduced to 

4 In the opposite case, the very partition of the Universe into the system and the environment is impossible. 
5 Whether this assumption is true is an interesting issue, still being debated (more by philosophers than by 
physicists), but it is widely believed that its solution is not critical for the validity of the results of this approach. 
In Sec. 6, I will offer a strong argument for this opinion - albeit not its strict proof. 
6 Actually, such coexistence has been implied (but well hidden :-) in the derivation of the quantum-mechanical 
Golden Rule, which in all fairness, also belongs to the open systems class. 

Fig. 7.1. Quantum system and its environment 
(VERY schematically :-). 
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           .ˆ   
jj' k

j'kjkjj'

k,k'
j,j'

k'kj'jj'k'jk ααAeesAsααA **    (7.4) 

 This is already some relief, because we have “only” a single sum over k, but the main trick7 is 
still ahead. After the summation over k, the second sum in the last form of Eq. (4) is some function w of 
indices j and j’, so that, according to Eq. (4.96), this relation may be presented as  

       ,)Aw(Tr 
'

'' 
jj

jjjj wAA      (7.5)  

where matrix w, with elements 

         
k

j'kjkjj'
k

j'kjkj'j ww **   i.e.    ,  ,    (7.6) 

is called the density matrix of the system. Most importantly, Eq. (5) shows that the knowledge of this 
matrix allows the calculation of the expectation value of any intrinsic observable A (and, according to 
Eqs. (1.33)-(1.34), its  r.m.s. fluctuation as well if necessary), even for the very general statistical 
ensemble of states (2). This is why let us have a very good look at the density matrix.  

 First of all, as we know very well by now that the expansion coefficients in superpositions of the 
type (2) may be always expressed as bra-kets; in our current case, we may write 

             . jkjk se        (7.7) 

Plugging this expression into Eq. (6), we get 

            .ˆ '''
*

jjj
k

kkj
k

j'kjkjj swsseesw 







     (7.8)  

We see that from the point of our system (i.e. in its Hilbert space whose basis states may be numbered 
by indices j only), the density matrix is indeed just the matrix of some construct,8 

               
k

kk eew ˆ ,     (7.9) 

that is called the statistical (or “density”) operator. As evident from its definition (9), in contrast to the 
density matrix this operator does not depend on the choice of a particular basis sj – just as all previous 
operators considered in this course, but in contrast to them, the statistical operator does depend on 
composite system’s state , including the state of system s as well. However, in the j-space it is 
mathematically still an operator whose matrix elements obey all formulas of the bra-ket formalism.  

 In particular, due to its definition (6), the density operator is Hermitian: 

            
k

j'jjkj'k
k

j'kjkjj' ww ,***      (7.10) 

7 First suggested in 1927 by J. von Neumann. 
8 Of course the “bra-kets” in this expression are not c-numbers, because state  is defined in a larger Hilbert space 
(of the environment plus the system of interest) than the basis states ek (of the environment only). 
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so that according to the general analysis of Sec. 4.3, there should be a certain basis {w} in which the 
matrix of this operator is diagonal: 

      'in ' jjjwjj ww  .     (7.11) 

Since any operator, in any basis may be presented in form (4.59), in basis {w} we may write 

             jj
j

j wwww ˆ .     (7.12) 

This expression reminds, but is not equivalent to Eq. (4.44) for the identity operator, that has been used 
so many times in this course, and in the basis wj has the form 

                 j
j

j wwI ˆ .     (7.13) 

In order to comprehend the meaning of coefficients wj participating in Eq. (12), let us use Eq. (5) 
to calculate the expectation value of any observable A whose eigenstates coincide with those of the 
special basis set {w}:  

        
j

jj
jj

jj'jjj' wAwAA
'

)Aw(Tr  .    (7.14) 

where Aj is just the expectation value of observable A in state wj. Hence, in order to comply with the 
general Eq. (1.37), real c-numbers wj must have the physical sense of probabilities Wj of finding the 
system in state j. As the result, we can rewrite Eq. (12) in the form 

             jj
j

j wWww ˆ .     (7.15) 

 In one ultimate case when only one of probabilities (say, Wj”) is different from zero,  

            jj"jW  ,      (7.16) 

the system is evidently in a coherent (pure) state wj”. Indeed, it is fully described by one ket-vector wj”, 
and we can use the general rule (4.86) to present it in another (arbitrary) basis {s} as a coherent 
superposition 

           j'
j

jjj'
j

jj'j" sUsUw  
'

'
'

*† ,    (7.17) 

where U is the unitary matrix of transform from basis {w} to basis {s}. According to Eqs. (11) and (16), 
in such a pure state the density matrix is diagonal in the {w} basis, 

                j"j'j"jwjj'w ,,in  ,     (7.18a) 

but not in an arbitrary basis. Indeed, using the general rule (4.92), we get 

              j"j'j"jj"j'jj"l'j'
ll

wll'jlsjj' UUUUUwUw *††

',
in in  .   (7.18b) 

To make this result more transparent, let us denote matrix elements Uj”j  = wj”sj (that, for fixed 
j”, depend on just one index j) by j; then   
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                        j'jsjjw *
in '  ,     (7.19) 

so that N2 elements of the whole NN matrix is determined by just one string of N c-numbers j. For 
example, for a two-level system (N = 2), 

         .
**

**
w

2221

1211
in 


















s      (7.20) 

We see that the off-diagonal terms are, colloquially, “as large as the diagonal ones”, in the following 
sense: 

                 .22112112 wwww       (7.21) 

Since the diagonal terms have the sense of probabilities W1,2 to find the system in the corresponding 
state, we may present Eq. (20) in the form  

        .
)(

)(
w

2
2/1

21

2/1
211
















 WeWW

eWWW
i

i




    (7.22) 

The physical sense of the (real) constant   is the phase shift between the coefficients in the linear 
superposition (17) that presents the pure state wj” in basis s1,2. 

 Now let us consider a different statistical ensemble of two-level systems, that includes member 
states identical in all aspects (including similar probabilities W1,2 in the same basis s1,2), besides that the 
phase shifts  are random, with the phase probability uniformly distributed over the trigonometric circle. 
Then the ensemble averaging is equivalent to averaging over  from 0 to 2, so that it kills the off-
diagonal terms of the density matrix (22), and the matrix becomes diagonal. For a system with a time-
independent Hamiltonian, such averaging is especially plausible in the basis of stationary states n of the 
system, in which phase  is just the difference of integration constants in Eq. (4.158), and randomness is 
naturally produced by minor fluctuations of the energy difference E1 – E2. (In Sec. 3 we will study the 
dynamics of such dephasing process.) The mixed statistical ensemble of systems with the density matrix 
diagonal in the stationary state basis is called the classical mixture, and presents the limit opposite to the 
pure (coherent) state. 

 After that example, the reader should not be much shocked by the main claim9 of statistical 
mechanics that any large ensemble of similar systems in thermodynamic (or “thermal”) equilibrium is 
exactly such a classical mixture. Moreover, for systems in the thermal equilibrium with a much larger 
environment with fixed temperature T (such environment is usually called a heat bath or a thermostat) 
statistical physics gives10 a very simple expression, called the Gibbs distribution, for probabilities Wn:  

            









Tk

E

Z
W n

n
B

exp
1

.     (7.23a) 

9 This is essentially an alternative formulation of the basic postulate of statistical physics, called the 
microcanonical distribution - see, e.g., SM Sec. 2.2. 
10 See. e.g., SM Sec. 2.4. The Boltzmann constant kB is only needed if temperature is measured in non-energy 
units, say in kelvins.  
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where En is the eigenenergy of the corresponding stationary state, and Z is the normalization coefficient 
called the statistical sum 

            









n

n

Tk

E
Z .exp

B

     (7.23b) 

 A detailed analysis of classical and quantum ensembles in thermodynamic equilibrium is the 
focus of statistical physics courses (such as my SM) rather than this course of quantum mechanics. 
However, I would still like to attract reader’s attention to the key fact that, in contrast with the similarly-
looking Boltzmann distribution for single particles,11 the Gibbs distribution is absolutely general and is 
not limited to classical statistics. In particular, for quantum gases of indistinguishable particles, it is 
absolutely compatible with quantum statistics (such as the Bose-Einstein or Fermi-Dirac distributions) 
of the component particles. For example, if we use Eq. (23) to calculate the average energy of a 1D 
harmonic oscillator of frequency 0 in thermal equilibrium,  we easily get12 
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B
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,    (7.25) 

               1/exp22
coth
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EWE
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.  (7.26a) 

An alternative way to present the last result is to write 

           1/exp

1
with  ,

2 B0
0

0




Tk
nnE








,   (7.26b) 

and to interpret it as the fact that in addition to the so-called zero-point energy 0/2 of the ground state, 
the oscillator (on the average) has n thermally-induced excitations, with energy 0 each. In the 
harmonic oscillator, whose energy levels are equidistant, such a language is completely appropriate, 
because the transfer from any level to one just above it adds the same amount of energy, 0, to the 
system. The above expression for n is actually the Bose-Einstein distribution (for the particular case of 
zero chemical potential);13 we see that it does not only contradict the Gibbs distribution (for the total 
energy of the system), but immediately follows from it.14 

11 See, e.g., SM Sec. 2.8. 
12 See, e.g., SM Sec. 2.5 - but mind a different energy reference level, E0 =  , used in Eqs. (2.68)-(2.69), 
affecting the expression for Z. Actually, the calculation is so straightforward (just the summation of a geometric 
progression for the enumeration of Z) that it is highly recommended to the reader as a simple exercise.  
13 See, e.g., SM Sec. 2.8. 
14 Because of the fundamental importance of Eq. (26) for many fields of physics, let me remind the reader of its 
main properties. At low temperatures, kBT << 0, there are virtually no thermal excitations, n  0, and the 
average energy of the oscillator is dominated by that of its ground state. In the opposite limit of high temperatures, 
n  kBT /0 >> 1, and E approaches the classical value kBT (following, for example, from the equipartition 
theorem, which assigns energy kBT/2 to each quadratic contribution to system’s energy – in the 1D oscillator case, 
to one potential and one kinetic energy term). 
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7.2. Coordinate representation and the Wigner function 

 For many applications of the density matrix to wave mechanics, its coordinate representation is 
convenient. (I will only discuss it for 1D case; the generalization to multi-dimension case is 
straightforward.) Following Eq. (4.47), it is natural to define the following function of two arguments 
(frequently also called the density matrix): 

              x'wxx'xw ˆ),(  .     (7.27) 

Inserting, into the right-hand part of this definition, two closure conditions (4.44) for an arbitrary (full 
and orthonormal) basis {s}, and then using Eq. (5.19), we get15 

             
',

in '
',

)()(ˆ),( *

jj
j'sjjj

jj
j'j'jj x'wxx'sswssxx'xw  .  (7.28) 

In the special basis {w}, in which the density matrix is diagonal, this expression is reduced to 

     
j

jjj x'Wxx'xw )()(),( * .    (7.29) 

 Let us discuss the properties of this function. At coinciding arguments, x = x’, this is just the 
probability density:16 

              
j

jj
j

jjj xwWxwxWxxxw )()()()(),( * .   (7.30) 

However, the density matrix gives more information about the system than just the probability density. 
As the simplest example, let us consider a pure quantum state, with Wj = j,j’, so that (x) = j’(x), and 

          )()()()(),( **
'' x'xx'xx'xw jj   .    (7.31) 

We see that the density matrix carries the information not only about the modulus but also the phase of 
the wavefunction. (Of course one may argue rather convincingly that in this ultimate limit the density-
matrix description is redundant, because all this information is contained in the wavefunction itself.) 

 How may be the density matrix interpreted? In the simple case (31), we can write 

                  )()()()()()(),(),(),( **2
x'wxwx'x'xxx'xwx'xwx'xw *   ,  (7.32) 

so that the modulus squared of the density matrix may is just as the joint probability density to find the 
system at point x and point x’. For example, for a simple wave packet with the spatial extent x, w(x,x’) 
is appreciable only if the both points are not farther than x from the packet center, and hence from each 
other. The interpretation becomes more complex if we deal with an incoherent mixture of several 
wavefunctions, for example the classical mixture describing the thermodynamic equilibrium. In this 
case, we can use Eq. (23) to rewrite Eq. (29) as follows: 

15 For now, I will focus on a fixed time instant (say, t = 0), and hence write (x) instead of (x, t). 
16 This fact is the historic origin of density matrix’ name. 
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)()(),( **  .  (7.33) 

As the simplest example, let us see what is the density matrix of a free (1D) particle in the 
thermal equilibrium. As we know very well, in this case, the set of energies Ep = p2/2m of stationary 
states (monochromatic waves) forms a continuum, so that we need to replace sum (33) by an integral, 
taking  “delta-normalized” traveling wavefunctions (5.59) as eigenstates:   
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.  (7.34) 

This is a usual Gaussian integral, and may be worked out, as we have done repeatedly in Chapter 2 and 
beyond, by complementing the exponent to the full square of momentum plus a constant. The statistical 
sum Z may be also readily calculated, 17 

            ,2 2/1TmkZ B      (7.35) 

However, for what follows it is more useful to write the result for product wZ (the so-called un-
normalized density matrix): 
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.   (7.36) 

This is a very interesting result: the density matrix depends only on the difference of its 
arguments, dropping to zero fast as the distance between points x and x’ exceeds the following 
characteristic scale (called the correlation length) 

                
 

.
2/1

B

2/12

Tmk
x'xxc


     (7.37) 

This length may be interpreted in the following way. It is straightforward to use Eq. (23) to verify that 
the average energy Ep = p2/2m of a particle in the thermal equilibrium, i.e. in the classical mixture (33), 
equals kBT/2 – this is just one more manifestation of the equipartition theorem. Hence the average 
momentum magnitude may be estimated as 

            ,2 2/12/12/12 TmkEmpp Bc      (7.38) 

so that xc is of the order of the minimal length allowed by the Heisenberg-like “uncertainty relation”: 

          .
c

c p
x


       (7.39) 

17 Due to the delta-normalization of the eigenfunction, the density matrix for the free particle (and any system 
with continuous eigenvalue spectrum) is normalized as 

.1),(),(  








Zdxx'xwZdx'x'xw  
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Notice that with the growth of temperature, the correlation length (37) goes to zero, and the 
density matrix (36) tends to the -function:   

      )(),( x'xZx'xw T   .     (7.40) 

Since in this limit the average kinetic energy of the particle is larger than its potential energy in any 
fixed potential profile, Eq. (40) is the general property of the density matrix (33).  

 Let us discuss the following curious feature of Eq. (36): if we replace kBT with /i(t - t0), and x’ 
with x0, the un-normalized density matrix wZ for a free particle turns into the particle’s propagator – see 
Eq. (2.49). This is not just an occasional coincidence. Indeed, in Chapter 2 we saw that the propagator of 
a system with an arbitrary stationary Hamiltonian may be expressed via the stationary eigenfunction as 

        






 

n
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n
n xtt

E
ixtxtxG )(exp)(),;,( 0000
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.   (7.41)  

Comparing this expression with Eq. (33), we see that the replacements 
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Tk

tti
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B

0 ,
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,     (7.42) 

turn the pure-state propagator G into the un-normalized density matrix wZ of the same system in 
thermodynamic equilibrium. This important fact, rooted in the formal similarity of the Gibbs distribution 
(23) with the Schrödinger equation’s solution (1.67), enables a theoretical technique of the so-called 
thermodynamic Green’s functions, which is especially productive in condensed matter physics.18  

 For our purposes, we can use Eq. (42) to recycle some of wave mechanics results, in particular 
the following formula for the harmonic oscillator’s propagator  
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. (7.43) 

that may be readily proved to satisfy the Schrödinger equation for Hamiltonian (5.95), with the 
appropriate initial condition, G(x, t0; x0, t0) = (x – x0). Making substitution (42), we immediately get 
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 (7.44) 

As a sanity check, at very low temperatures, kBT << 0, both hyperbolic functions, participating in this 
expression, are very large and nearly equal, and Eq. (44) yields  
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. (7.45) 

18 I will have no time to discuss this technique, and have to refer the interested reader to special literature. 
Probably, the most famous text of that field is A. Abrikosov, L. Gor’kov, and I. Dzyaloshinski, Methods of 
Quantum Field Theory in Statistical Physics, Prentice-Hall, 1963. (Later reprintings are available from Dover.) 
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In each of the square brackets we can readily recognize the ground state’s wavefunction (2.269), while 
the middle exponent is just the statistical sum (24) in the low-temperature limit when it is dominated by 
the ground-level contribution: 
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T 2
exp 0
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.     (7.46) 

As a result, Z in both parts of Eq. (45) may be cancelled, and the density matrix in this limit is described 
by Eq. (31), with the ground state as the only state of the system. This is natural when temperature is too 
low for the excitation of any other state. 

 Returning to arbitrary temperatures, Eq. (44) in coinciding arguments gives the following 
expression for the probability density:19 
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  (7.47) 

This is just a Gaussian function of x, with the following variance: 
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 .     (7.48) 

In order to compare this result with our earlier ones, it is useful to recast it as 
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     (7.49) 

Comparing this expression with Eq. (26), we see that the average value of potential energy is exactly 
one half of the total energy - the other half being the average kinetic energy. This is what we could 
expect, because according to Eqs. (5.129)-(5.130), such relation holds for each Fock state and hence 
should also hold for their classical mixture. 

 Unfortunately, besides the trivial case (30) of coinciding arguments, it is hard to give a 
straightforward interpretation of the density function in terms of system measurements. This is a 
fundamental difficulty that has been well explored in terms of the Wigner function (sometimes called the 
“Wigner-Ville distribution”)20 defined as 

       Xd
XiPX

X
X

XwPXW
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exp

2
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,

2
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2

1
),(

















  

.   (7.50) 

19 I have to confess that this notation is imperfect, because from the point of view of rigorous mathematics, w(x, 
x’) and w(x) are different functions, and so are w(p, p’) and w(p) used below. In the perfect world, I would use 
different letters for them all, but I desperately want to stay with “w” for all the probability densities, and there are 
not so many good different fonts for this letter. Let me hope that the difference between these functions is clear 
from their arguments, and from the context. 
20 It was introduced in 1932 by E. Wigner on the basis of a general (Weyl-Wigner) transform suggested by H. 
Weyl in 1927, and re-derived in 1948 by J. Ville on a different mathematical basis. 
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From the mathematical standpoint, this is just the Fourier expansion of the density matrix in one of two  
new coordinates (Fig. 2) defined by relations 

       .
2

~
,

2

~
X

Xx'
X

Xx       (7.51) 

Physically, the new argument X = (x + x’)/2 may be understood as the average position of the 

particle during the time interval (t – t’), while x'xX ~
 as the distance passed by the particle during 

that time interval, so that P may be interpreted as the characteristic momentum of a particle during that 
motion. As a result, the Wigner function is a construct intended to characterize the system spread 
simultaneously in the coordinate and momentum space - for 1D systems, on the phase plane [X, P] that 
we considered before – see Fig. 5.6. Let us see how fruitful these intentions are.  

 

 

 

 

 

 

 

 First of all, we may write the Fourier transform reciprocal to Eq. (50): 
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For the particular case 0
~ X , this relation yields 

             dPPXWXXwXw ),(),()( .    (7.53) 

Hence the integral of the Wigner function over momentum P gives the probability density to find the 
system at point X. 

 Actually, the function has the same property for integration over X. To prove that, we should 
first introduce the momentum representation of the density matrix, in the full analogy with its coordinate 
representation (27): 

            .ˆ),( p'wpp'pw       (7.54) 

Inserting, as usual, two identity operators, in the form given by Eq. (5.21), into the right hand part of this 
equality, we can get the following relation between the momentum and coordinate representations: 
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Fig. 7.2. Coordinates X and X
~

 employed in the Weyl-
Wigner transform (50). They differ from the coordinates 
obtained by the rotation of the reference frame by angle 
/2 only by coefficients 2, describing scale stretching. 
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This is of course nothing else than the unitary transform of an operator from the x-basis to p-basis, and is 
similar to the first form of Eq. (5.67).21 For coinciding arguments, p = p’ , Eq. (55) is reduced to  
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Using Eq. (29) and then Eq. (5.60), this function may be presented as 
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and hence interpreted as the probability density of the particle’s momentum at point p. Now, in variables 
(51), Eq. (56) has the form 
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   (7.58) 

Comparing this equality with definition (50) of the Wigner function, we see that 

            dXPXWPw ),()( .     (7.59) 

Thus, according to Eqs. (53) and (59), the integrals of the Wigner function over either the 
coordinate or momentum give the probability densities to find them at certain values of these variables. 
This is of course the main requirement to any candidate joint probability density, (X,P), to find a 
classical representation point of a stochastic system on the phase plane [X, P].22  

 Let us look how does the Wigner function look for the simplest systems in the thermodynamic 
equilibrium. For a free 1D particle, we can use Eq. (34), ignoring for simplicity the normalization issues: 
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The usual Gaussian integration yields: 
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.    (7.61) 

We see that the function is independent of X (as it should be for this translational-invariant system), and 
coincides with the Gibbs distribution (23). We could get the same result directly from classical statistics. 
This is natural, because as we know from Sec. 2.2, the free motion is essentially not quantized – at least 
in terms of its energy and momentum. 

 Now let us consider a substantially quantum system, the harmonic oscillator. Plugging Eq. (44) 
into Eq. (50), for that system in thermal equilibrium it is easy to show (and hence is left for reader’s 
exercise) that the Wigner function is also Gaussian, but now in both its arguments: 

21 Note that the last line of Eq. (5.67) is invalid for the density operator ŵ , because it is not local! 
22 Such density, which would express the probability dW to find the system in a small area of the phase 
plane as dW = (X, P)dXdP, is the basic notion of (1D) classical statistics – see, e.g., SM Sec. 2.1. 
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   (7.62) 

though coefficient C is now different from 1/kBT , and tends to that limit only at high temperatures, kBT 
>>  0. Moreover, for the Glauber state it also gives a very plausible result – a Gaussian distribution 
similar to Eq. (62), but shifted to the central point of the state – see Sec. 5.5.23  

 Unfortunately, for some other possible states of the harmonic oscillator, e.g., any pure Fock state 
with n > 0, the Wigner function takes negative values in some regions of the [X, P] plane - Fig. 3.24  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same is true for most other quantum systems. Indeed, this fact could be predicted just by 
looking at definition (50) applied to a pure quantum state, in which the density function may be factored 
– see Eq. (31): 

23 Please note that in notations of that section, arguments {X, P} of the Wigner function should be replaced with 
{x, p}, and capital letters saved for the Cartesian coordinates of the central point (5.133), i.e. the classical complex 
amplitude of the oscillations. 
24 Spectacular experimental measurements of this function (for n = 0 and n = 1) were carried out recently by E. 
Bimbard et al., Phys. Rev. Lett. 112, 033601 (2014). 

Fig. 7.3. The Wigner function of several Fock states of a 
harmonic oscillator: (a) n = 0, (b) n = 1; (c) n = 5. Adapted 
from http://en.wikipedia.org/wiki/Wigner_function. 
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.   (7.63) 

Changing argument P (say, at fixed X), we are essentially changing the spatial “frequency” 
(wavenumber) of the wavefunction product’s Fourier component we are calculating, and we know that 
Fourier images typically change sign as the frequency is changed. Hence the wavefunctions should have 
some high-symmetry properties to avoid this effect. Indeed, the Gaussian functions (describing, for 
example, the Glauber states, and as the particular case, the ground state of the harmonic oscillator) have 
such a symmetry, but many other functions do not. 

Hence the Wigner function cannot be used in the role of classical probability density (X, P), 
otherwise we would get a negative probability for measurement in certain intervals dXdP – the notion 
hard to interpret. However, the Wigner function is still used for a semi-quantitative interpretation of 
states of open quantum systems. 

 

7.3. Open system dynamics: Dephasing 

 So far we have discussed the density matrix as something given. Now let us discuss the 
evolution of the matrix in time, starting from the simplest case when the system is in state (15) with 
time-independent probabilities Wj. In the Schrödinger picture we can rewrite Eq. (15) as 

       
j

jjj twWtwtw )()()(ˆ .     (7.64) 

Differentiating this equation by parts, and using Eqs. (4.157)-(4.158), with the account of the Hermitian 
nature of the Hamiltonian operator, we get 
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(7.65) 

Now using Eq. (64) again (twice), we get the so-called von Neumann equation25 

         wHwi ˆ,ˆˆ  .      (7.66) 

This equation is similar in structure to Eq. (4.199) describing the time evolution of the Heisenberg-
picture operators: 

       .ˆ,ˆˆ HAAi  ,      (7.67) 

besides the operator order in the commutator, i.e., the sign of the right-hand part. This is quite natural, 
because Eq. (66) belongs to the Schrödinger picture, while Eq. (67) to the Heisenberg picture of the 
quantum dynamics.  

25 In many texts, it is called the “Liouville equation”, due to the philosophical proximity to the classical Liouville 
theorem for the distribution function (X, P) or its multi-dimensional analog – see, e.g., SM Sec. 6.1, in particular 
Eq. (6.5).  
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 In the general case when a system, initially out of equilibrium, comes into a contact with the 
environment, probabilities Wj change, and dynamics is described by equations more complex than Eq. 
(66). However, we still can use this equation to discuss, using a simple model, the second (after the 
energy relaxation) major effect of the environment, dephasing (also called “decoherence”).26 Let us 
consider the following model of a system interacting (weakly!) with environment:27 

            int
ˆˆˆˆ HHHH es   .     (7.68) 

Let us consider the simplest, two-level system, taking its Hamiltonian in the simplest form,  

         zzs aH ̂ˆ  ,      (7.69) 

(as we know from Sec. 4.6, such Hamiltonian is sufficient to avoid the energy level degeneracy), and a 
factorable (bilinear) interaction - cf. Eq. (6.148) and its discussion: 

                  zfH  ˆˆˆ
int  .     (7.70) 

Here f̂  is a Hermitian operator depending only on the set {} of environmental degrees of freedom 
(“coordinates”). These coordinates belong to the Hilbert space different from that of the two-level 

system, and hence operators  f̂  and  eĤ (that describes the environment) commute with ẑ - and 

any other intrinsic operator of the two-level system. Of course, any realistic  eĤ  is very complex, so 

that it may be surprising how much we will be able to achieve without specifying it.  

 Before we proceed to solution, let me remind the reader of the important two-level systems that 
may be described by this model. The first example is an electron in an external magnetic field of a fixed 
direction (taken for axis z), which includes both an average component zB and a random (fluctuating) 

component zB~ . As it follows from the discussion in Chapter 4, it may be described by Hamiltonian (68)-
(70) with    

        zzz fa BB ~̂ˆ, BB   .     (7.71) 

The second important example is a particle in a double-quantum-well potential (Fig. 4), with a 
barrier between them sufficiently high to be impenetrable, and an additional force F(t) exerted by the 
environment. If the force is sufficiently weak, we can neglect its effects on the shape of quantum wells 
and hence on the localized wavefunctions L,R, so that the force effect is reduced to the variation of the 
difference  EL – ER = F(t)x  between well eigenenergies. As a result, it may described by Eqs. (608)-
(70) with 

              2/
~̂ˆ;2/ xFfxFaz  .    (7.72) 

26 Another example when Wj are constant in time, and hence Eq. (66) is valid, is the thermodynamic equilibrium. 
However, in this case the statistical operator is diagonal in the stationary state basis and hence commutes with the 
Hamiltonian. Hence the right-hand part of Eq. (66) vanishes, and it shows that the density matrix does not evolve 
in time at all – as it should.  
27 Though this model works very well in many cases (see the examples given below), it is not adequate for a 
particle interacting with the environment of similar particles. In this case the methods discussed in the next 
chapter are more relevant.  
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 Returning to the general model (68)-(70), let us start its analysis from writing the usual equation 
of motion for the Heisenberg operator ẑ :28 

                ,0ˆ,ˆ)ˆ(ˆ,ˆˆ  zzzzz faHi      (7.73) 

so that operator ẑ  does not evolve in time. What does this mean for the observables? For an arbitrary 
density matrix of the two-level system, 
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we can readily calculate the trace of operator ẑ  (since operator traces are basis – independent, we can 
do this in any basis, in particular in the usual z-basis): 
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 .  (7.75) 

 Hence, according to Eq. (5), ẑ  may be considered the operator for observable W1 – W2, so that 
in the case (73), the difference W1 – W2 does not depend on time, and since the sum of the probabilities 
is also fixed, W1 + W2 = 1, both of them are constant. (The physics of this result is especially clear for 
the model shown in Fig. 4: since the potential barrier separating the quantum wells is so high that 
tunneling through it is negligible, the interaction with environment cannot move the system from well 
into another one. It may look like nothing interesting may happen in such situation, but in a minute we 
will see this is not true.) Hence, we may use the von Neumann  equation (66) for the density matrix 
evolution (in the Schrödinger picture). In the usual z-basis: 
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 (7.76) 

28 This can be done because we may consider the whole system, including the environment, as a Hamiltonian one 
– see Eq. (68). 

Fig. 7.4. Dephasing in a double quantum 
well system. 
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This means that though the diagonal elements, i.e., the probabilities of the states, do not evolve in time 
(as we already know), the off-diagonal coefficients do change; for example, 

              1212 )ˆ(2 wfawi z  ,     (7.77) 

with a similar but complex-conjugate equation for w21.  The solution of the linear differential equation  
(77) is straightforward, and yields 
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.   (7.78) 

The first exponent is a deterministic c-number factor, while in the second one  )(ˆ)(ˆ tftf   is still an 
operator in the Hilbert space of the environment, and, from the point of view of the system of our 
interest, a random function of time.  

 Let us start from the limit when the environment behaves classically.29 In this case, the operator 
in Eq. (78) may be considered as a classical random function of time f(t), provided that we average the 
result over the ensemble of many functions f(t) describing many (macroscopically similar) experiments. 
For a small time interval t = dt  0, we can use the Taylor expansion of the exponent, truncating it after 
the quadratic term: 
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 (7.79) 

Here we have used the fact that the first average is equal to zero (it is evident from Eqs. (69)-(70) that if 
f had any average component, it could be included into parameter a), while the second average, called 
the correlation function, in a statistically- (i.e. macroscopically-) stationary state of environment may 
only depend on the time difference    t’ – t”: 

             ).()()()( ff Kt"t'Kt"ft'f      (7.80) 

If this difference is much larger than some time scale c, called the correlation time of the random force, 
the values f(t’) and f(t”) are completely independent (uncorrelated), as illustrated in Fig. 5a, so that the 
correlation function has to tend to zero. On the other hand, at   = 0, i.e. t’ = t”, the correlation function 
is just the variance of  f: 

      ,)0( 2fK f       (7.81) 

and has to be positive. As a result, the function looks (qualitatively) like the sketch in Fig. 5b. 

29 This assumption is not in any contradiction with the quantum treatment of the two-level system, because a 
typical environment has very dense energy spectrum, so that the distances between them may be readily bridged 
by thermal excitations of energies ~ kBT << 2az, often making its essentially classical. 
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 Hence, if we are only interested in time differences  much longer than c, we may approximate 
Kf() with a delta-function. Let us take it in the following convenient form 

             )()( 2  DK f  ,     (7.82) 

where D is a positive constant called the phase diffusion coefficient. The origin of this term stems from 
the very similar effect of diffusion of atoms or small solid particles in real space – the so-called (the 
Brownian motion.30 Indeed, if a small classical particle moves in a highly viscous medium, its velocity 
is approximately proportional to the external force. Hence, if the random hits of a 1D particle by the 
molecules may be described by a force which obeys a law similar to Eq. (82), the velocity (along any 
Cartesian coordinate) is also delta-correlated: 

         ).(2)()(     ,0)( t"t'Dt"vt'vtv       (7.83) 

Now we can integrate the kinematic equation ,vx   to calculate particle’s deviation from the initial 
position, 

          
t

dt't'vxtx
0

,)()0()(      (7.84) 

and its the variance: 
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    (7.85) 

This is the famous law of diffusion, showing that the r.m.s. deviation of the particle from the initial point 
grows with time as (2Dt)1/2, where constant D is called the diffusion coefficient. 

 Returning to the diffusion of the quantum-mechanical phase, using Eq. (82), the last double 
integral in Eq. (79) yields 2Dφdt, so that 

     dtDdt
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exp)0()( 1212 










.   (7.86) 

Applying this formula to sequential time intervals, 

30 The theory of this phenomenon, first observed experimentally by biologist R. Brown in the early 1800s, was 
pioneered by A. Einstein in 1905 (see in particular Eq. (206) below) and developed in detail by M. Smoluchowski 
in 1906-1907, and A. Fokker in 1913. 

Fig. 7.5. (a) Typical random 
process and (b) its correlation 
function – schematically.  
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etc., for a finite time t = Ndt, in the limit N → ∞ and dt → 0 (at fixed t) we get, 31 
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By the definition of the natural logarithm base e,32 this limit is just exp{-2Dt}, so that, finally: 
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 So, due to coupling to environment, the off-diagonal elements of the density matrix decay with 
the characteristic dephasing time T2 = 1/2D, providing a natural evolution from the density matrix (22) 
of a pure state, to the diagonal matrix, 
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,     (7.89) 

with the same probabilities W1,2, describing a fully dephased (incoherent) classical mixture. 

 Our simple model offers a very clear look at the nature of decoherence: “force” f(t), exerted by 
the environment, “shakes” the energy difference between two eigenstates of the system and hence the 
instant velocities 2(az - f)/ of their mutual phase shift φ(t) – cf. Eq. (24). Due to randomness of the 
force, φ(t) performs a random walk around the trigonometric circle, so that eventually, averaging of its 
trigonometric functions exp{±iφ} over the possible states of environment  yields zero, killing the off-
diagonal elements of the density matrix. Our analysis, however, has left open two important issues: 

 (i) Is it approach valid for a quantum description of a typical environment? 

 (ii) If yes, what is D? 

 

7.4. Fluctuation-dissipation theorem 

 Similar questions may be asked about a more general situation, when the Hamiltonian sĤ of the 

system of interest (s), in the composite Hamiltonian (68), is not specified at all, but the interaction 
between that system its environment still has the bilinear form similar to Eqs. (70) and (6.130): 

,ˆ}{ˆˆ
int xFH       (7.90) 

31 This result is valid only if approximation (82) may be applied at time interval dt which, in turn, should be much 
smaller than T2 , i.e. if the dephasing time is much longer that the environment’s correlation time c. This 
requirement is usually well satisfied, because in most environments, c very short. For example, in the original 
Brownian motion experiments with few-m ink particles in water, it is of the order of the average interval 
between sequential molecular impacts, of the order of 10-21 s.  
32 See, e.g., MA Eq. (1.2a). 
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where x is some observable of the subsystem s (say, a generalized coordinate or a generalized 
momentum). It may look incredible that in this very general situation one may make a very simple and 
powerful statement about the statistical properties of the generalized external force F, under only two 
(interrelated) conditions – which are satisfied in a huge number of cases of interest: 

 (i) the coupling of system s of interest to environment e is weak - in the sense of the perturbation 
theory (see Chapter 6), and  

 (ii) the environment may be considered as staying in thermodynamic equilibrium, with certain 
temperature T, regardless of the process in the system of interest.33 

 This famous statement is called the fluctuation-dissipation theorem (FDT).34 Due to the 
importance of this fundamental result, let me derive it.35 

 Since by writing Eq. (68) we treat the whole system (s + e) as a Hamiltonian one,36 we may use 
the Heisenberg equation (4.199) to write 

       eHFHFFi ˆ,ˆˆ,ˆˆ  ,     (7.91) 

because, as was discussed in the last section, operator  F̂  commutes with operators sĤ  and x̂ . 

Generally, very little may be done with this equation, because the time evolution of the environment’s 
Hamiltonian depends, in turn, on that of the force. This is where the perturbation theory becomes 
indispensable. Let us decompose the external force’s operator into the following sum: 

            0)(
~̂

with  ),(
~̂ˆˆ  tFtFFF  ,    (7.92) 

where (until further notice) sign … means the statistical averaging over the environment alone.37 From 
the point of view of system s, the first term of the sum (still an operator!) describes the average response 

33 The most frequent example of violation of these conditions is environment’s overheating by the energy flow 
from the subsystem. I leave it to the reader to estimate the overheating of a standard physical laboratory room by a 
typical dissipative quantum process – the emission of an optical photon by an atom. (Hint: extremely small.) 
34 The FDT was first derived by H. Callen and T. Welton in 1951, on the background of an earlier derivation of 
its classical limit by H. Nyquist in 1928, and the pioneering 1905 work by A. Einstein – see below. 
35 The FDT may be proved in several ways which are different from, and shorter than the one given in this section 
– see, e.g., either SM Secs. 5.5 and 5.6 (based on H. Nyquist’s arguments), or the original paper by H. Callen and 
T. Welton, Phys. Rev. 83, 34 (1951) - wonderful in its clarity. The longer approach I describe here, besides giving 
the important Kubo formula (109) as a byproduct, is a very useful exercise in the operator manipulation and the 
perturbation theory in its integral form, different from the differential form used in Chapter 6. If the reader is not 
interested in this exercise, he or she may skip the derivation and jump directly to the result expressed by Eq. 
(134), which uses the notions defined by Eqs. (114) and (123). 
36 We can always do that if the local environment is large enough, so that the processes in our subsystem would 
not depend on the type of boundary between it and the external environment; in particular we may assume the 
total system closed, i.e. Hamiltonian. 
37 For usual (“ergodic”) environments, without intrinsic long-term memories, this statistical averaging over an 
ensemble of environments is equivalent to averaging over relatively short times - much longer than the correlation 
time c of the environment, but still much shorter than the characteristic time of evolution of the system under 
analysis, such as the dephasing time T2 and the energy relaxation time T1 – both still to be calculated. As was 
already mentioned, in most practical environments, c is very short. Thus, for relatively “massive” (inertial) 
systems of interest the separation of the averaging into two steps is well justified.  
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of the environment to the system dynamics (possibly, including such irreversible effects as friction), and 
has to be calculated with account of their interaction – as will do later in this section. On the other hand, 
the second term in Eq. (92) presents fluctuations of the environment, which exist even in the absence of 
system s. Hence, in the first nonvanishing approximation in the interaction strength, the fluctuation part 
may be calculated ignoring the interaction, i.e. treating the environment as being in the thermodynamic 
equilibrium:38 





 eq

ˆ,
~̂~̂

eHFFi


 .     (7.93) 

 Since in this approximation the environment’s Hamiltonian does not have an explicit dependence 
of time, the solution of this equation may be written combining Eqs. (4.175) and (4.190): 
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Let us use this relation to calculate the correlation function of fluctuations, defined similarly to Eq. (80), 
but paying close attention to the order of the time arguments (very soon we will see why): 

                ,ˆexp0ˆˆexpˆexp0ˆˆexp
~~































 t'H

i
Ft'H

i
tH

i
FtH

i
t'FtF eeee


 (7.95) 

where the thermal equilibrium of environment is implied. We are at will to calculate this expectation 
value in any basis, and the best choice is evident, because in the environment’s stationary state basis, its 
Hamiltonian, the exponents in Eq. (95), and the density operator of the environment are all represented 
by diagonal matrices. Using Eq. (5), the correlation function becomes 
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 (7.96) 

Here Wn are the Gibbs distribution probabilities, given by Eq. (23) with environment’s temperature T, 
and Fnn’ are the Schrödinger-picture matrix elements of the interaction force operator.  

We see that correlator (96) is a function of the difference   t – t’ only (as it should be for 
fluctuations in a macroscopically stationary system), but may depend on the order of the operands. This 
is why let us denote this particular correlation function by upper index “+”, 

          n'nnn'
nn

nF EEE
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iFWt'FtFK 
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 ,  (7.97) 

38 Here we assume that for the equilibrium, Eq. (92) has zero average, because if this is not so, this average part of 
force may be always included into the Hamiltonian of subsystem s. 
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and its counterpart by upper index “-”: 
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So, in contrast with classical processes, in quantum mechanics the correlation function of fluctuations 

F
~

  is not necessarily time-symmetric:  
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so that  tF̂  gives a good example of a Heisenberg-picture operator whose “values”, taken in different 
moments of time, generally do not commute – the opportunity already mentioned in Sec. 4.6.39 

Now let us return to the force decomposition (92), and calculate the first (average) component of 
the force. In order to do that, let us write the formal solution of Eq. (91) as follows: 
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.     (7.100) 

In the right-hand part of this relation, we cannot treat the Hamiltonian of the environment as an 
unperturbed (equilibrium) one, because the result would have zero statistical average. Hence, we should 
make one more step in our perturbative treatment, and take into account (in the first nonvanishing 
approximation) the effect of our system of interest (s) on the environment. To do this, let us write the (so 
far, exact) Heisenberg equation of motion for the environment’s Hamiltonian, 

    FHxHHHi eee
ˆ,ˆˆˆ,ˆˆ 

 ,     (7.101) 

and its formal solution, similar to Eq. (100), but for an arbitrary time t’ rather than t: 
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.    (7.102) 

Plugging this equality into the right-hand part of Eq. (100), and averaging the result (again, over the 
environment only!), we get 
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.   (7.103) 

As we will see imminently, this expression gives a nonvanishing result even if the right-hand-
part averaging is carried over the unperturbed (thermal-equilibrium) environment, so that unless we are 
interested in higher-order corrections, there is no need to refine the result any further. This fact enables 
us to calculate the average in the right-hand part of Eq. (103) absolutely similarly to that in Eq. (96), 
using Eq. (94): 

39 A good sanity check here is that at  = 0, the difference (99) between KF() and KF(-) vanishes. 
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 (7.104) 

Now, if we try to integrate each term of this sum, as Eq. (103) seems to require, we will see that 
the lower-limit substitution (at t’, t”  - ) is uncertain, because the exponents oscillate without decay. 
This technical difficulty may be overcome by the following reasoning. As illustrated by the example 
considered in the previous section, coupling to a disordered environment makes the “memory horizon” 
of the subsystem of our interest (s) finite: its current state does not depend on its history beyond certain 
time scale – in that example, the dephasing time T2. (Actually, this is true for virtually all real physical 
systems, in contrast to the idealized models such as a dissipation-free pendulum that swings for ever and 
ever with the same amplitude.) As a result, the functions under integrals of Eq. (103), i.e. the sum (104), 
should self-average at a certain finite time. One simple technique for expressing this fact mathematically 
is just dropping the lower-limit substitution; this would give the correct result for Eq. (103). However, a 
better (mathematically more acceptable) trick is to first multiply the function under each integral by, 
respectively, exp{(t – t’)} and exp{(t – t’)}, where   is a very small positive constant, then carry out 
the integration, and after that take the limit   0. The physical justification of this procedure may be 
provided by saying that system’s behavior should not be affected if its interaction with the environment 
was not kept constant but was turned on gradually – say, exponentially with an infinitesimal rate . With 
this modification, Eq. (103) becomes  
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This double integration is over the area shaded in Fig. 6, so that the order of integration may be changed 
to the opposite one as 
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where ’  t – t’, and    t – t”.  
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 As a result, Eq. (105) may be rewritten as a single integral, 

           ,)(ˆ)()(ˆ)(ˆ
0

 dtxGdt"t"xt"tGtF
t

 




   (7.107) 

whose kernel,  
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  (7.108) 

does not depend on the particular law of evolution of the subsystem (s) under study, i.e. provides a 
general characterization of its coupling to the environment. 

In Eq. (107) we may readily recognize the most general form of the linear response of a system 
(in our case, the environment), taking into account the causality principle, where G() is the response 
function (also called the “temporal Green’s function”) of the environment.40 Comparing Eq. (108) with 
Eq. (99), we get a wonderfully simple universal relation,41 
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 .     (7.109) 

that emphasizes once again the quantum nature of the correlation function’s time asymmetry. However, 
the relation between G() and the force anti-commutator, 
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is much more important because of the following reason. Relations (97)-(98) show that the so-called 
symmetrized correlation function,   
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that is evidently an even function of time difference , looks very similar to the response function (108), 
“only” with another trigonometric function under the sum. This similarity my be used to obtain an exact 
algebraic relation between the Fourier images of these two functions of . Indeed, function (111) may be 
represented as the Fourier transform42  

40 For a more detailed discussion of this function and the causality principle, see, e.g., CM Sec. 4.1. 
41 This relation, called the Kubo (or “Green-Kubo”) formula, after the works by M. Green (1954) and R. Kubo 
(1957), does not come up in the easier derivations of the FDT, discussed in the beginning of this section. 
42 Due to their practical importance, and certain mathematical issues with their justification for random functions, 
Eqs. (112)-(113) have their own grand name, the Wiener-Khinchin theorem, though the math rigor aside, they are 
just a straightforward corollary of the Fourier integral transform (115) – see, e.g., SM Sec. 5.4. 
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with the reciprocal transform 

         





0

cos)(
1

)(
2

1
)( 





  dKdeKS FFF

i .   (7.113) 

via the symmetrized spectral density of variable F, defined as 
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where F̂  (also an operator rather than a c-number!) is defined as 
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The physical meaning of function SF() becomes evident if we write Eq. (112) for the particular 
case   = 0:  
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This formula implies that if we pass function F(t) through a linear filter cutting from its frequency 
spectrum a narrow band dω of real (positive) frequencies, then variance Ff

2 of the filtered signal Ff(t) 
would be equal to 2SF(ω)dω – hence the name “spectral density”.43 

 Let us use Eqs. (111) and (113) to calculate the spectral density for our model: 
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Now it is a convenient time to recall that each of the two summations here is over the eigenenergy 
spectrum of the environment whose spectrum is virtually continuous because of its large size, so that we 
may transform each sum into an integral just as this was done in Sec. 6.6: 

   nn
n

dEEdn   ......... ,    (7.118) 

43 An alternative popular measure of spectral density is SF()  Ff
2/d = 4SF(), where  = /2 is the 

“cyclic” frequency (measured in Hz). 
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where (E) is the density of environment’s states at a given energy. This transformation yields 
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Since the square bracket depends only on a specific linear combination of two energies, ,
~

n'n EEE   it 

is convenient to introduce also another, linearly-independent combination of the energies, for example, 
the average energy   2/n'n EEE   , so that the state energies may be presented as 
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With this notation, Eq. (119) becomes 
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Due to the smallness of parameter   (which should be much less than all real energies, including kBT, 
, En, and En’), each of the internal integrals is dominated by an infinitesimal vicinity of one point, 

E
~

, in which the spectral density, matrix elements, and the Gibbs probabilities do not change 
considerably, and may be taken out of the integrals, so that they may be worked out explicitly:44 
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 (7.122) 

where indices  mark function values at the special points E
~

, i.e. En = En’  . The physics of 
these points becomes simple if we interpret state n, that is the argument of the equilibrium Gibbs 
distribution function Wn, as the initial state of the environment, and n’ as its final state. Then the top-
sign point corresponds to En’ = En - , i.e. to the emission of one energy quantum  of the 
“observation” frequency   by the environment into subsystem s of interest, while the bottom-sign point 
En’ = En + , corresponds to the absorption of such quantum by the environment. As Eq. (122) shows, 
both processes give similar positive contributions into force fluctuations.  

44 Using, e.g., MA Eq. (6.5a). (The imaginary parts of the integrals vanish, because integration in infinite limits 
may be always re-centered to finite points .) A mathematically enlightened reader may have noticed that the 
integrals might be taken without the introduction of small , using the Cauchy theorem – see MA Eq. (15.1). 
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The situation is different for the Fourier image of the response function G(),45 
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)()( ,     (7.123) 

that is frequently called either the generalized susceptibility or the response function - in our case, of the 
environment. Its physical meaning is that the complex function () = ’() + i”() relates the 
Fourier amplitudes of the generalized coordinate and generalized force:46 
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The physics of its imaginary part ”() is especially clear. Indeed, if both F and x represent a 
sinusoidal classical process, say 
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Then, in accordance with the correspondence principle, Eq. (124) should hold for the c-number complex 
amplitudes F and x, enabling us to calculate the time dependence of force, 
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 (7.126) 

We see that ”() scales the part of the force that is /2-shifted from the coordinate oscillations, i.e. is 
in phase with those of velocity, and hence characterizes the time-average power flow from the system 
into the environment, i.e. the energy dissipation rate:47 
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 Let us calculate this function from Eqs. (108) and (123), just as we have done for the spectral 
density of fluctuations: 
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45 Integration in Eq.  may be extended to the whole time axis, -  <  < +, if we complement definition (107) of 
G() for  > 0 with its definition as G( ) = 0 for  < 0, in correspondence with the causality principle. 
46 In order to prove this relation, it is sufficient to plug expression ti

s exx 


 ˆˆ , or any sum of such exponents, 

into Eqs. (107) and then use definition (123). This simple exercise is highly recommended to the reader. 
47 The expression xFP   = Fv used for the instant power flow is evident if x is the usual Cartesian coordinate of 
a mechanical system. According to analytical mechanics (see, e.g., CM Chapters 2 and 10), it is valid for any 
generalized coordinate – generalized force pair which forms the interaction Hamiltonian (90). 
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Making the transfer (118) from the double sum to the double integral, and then the integration variable 
transfer (120), we get 
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Now using the same argument about the smallness of parameter  as above, we may take the spectral 
densities, matrix elements of force, and the Gibbs probabilities out of the integrals, and work out the 
integrals, getting a result very similar to Eq. (122): 
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EdFWFW"         (7.130) 

In order to relate these results, it is sufficient to notice that according to Eq. (23), the Gibbs 
probabilities W are related by coefficients dependent on only the temperature T and observation 
frequency : 
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so that both the spectral density and the dissipative part of susceptibility may expressed via the same 
integral over environment energies: 
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and hence are universally related as 
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This is the Callen-Welton’s fluctuation-dissipation theorem (FDT). It reveals the fundamental, 
intimate relation between dissipation and fluctuations induced by environment (“no dissipation without 
fluctuations”) – hence the name.48 In the classical limit,  << kBT, the FDT is reduced to 

48 A curious feature of the FDT is that Eq. (134) includes the exactly same function of temperature as the average 
energy (26) of a quantum oscillator of frequency , though, as the reader could witness, the notion of the 
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In most systems of interest the last fraction tends to a finite (positive) constant in a substantial range of 
relatively low frequencies. Indeed, expanding Eq. (123) in the Taylor series in small , we get 
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Since the temporal Green’s function is real by definition, the Taylor expansion of ”()  Im() starts 
with the linear term i, where  is a certain real coefficient, and unless  = 0, is dominated by this 
term at small . (The physical sense of constant  becomes clear if we consider an environment that 
provides viscous friction with the simple law 

            .0,ˆˆ   xF       (7.137) 

For the Fourier images of coordinate and force this gives the relation F = ix, so that according to Eq. 
(124), 
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Hence, even in the general case, coefficient  describes an effective low-speed drag (kinematic friction) 
provided by the environment.)  

In this case Eq. (134) turns into the Nyquist formula:49 
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2B 4 i.e.,)(  .    (7.139) 

According to Eq. (112), if such a constant spectral density50 persisted at all frequencies, it would 
correspond to a delta-correlated process F(t), with 

         )(2)()0(2)( B  TkSK FF  ,    (7.140) 

similar to already discussed above – see Eq. (82).  

oscillator was by no means used in its derivation. As will see in the next section, this fact leads to rather 
interesting consequences and even conceptual opportunities. 
49 Actually, the 1928 work by H. Nyquist was about electronic noise in resistors, just discovered experimentally 
by his Bell Labs colleague J. Johnson. For an Ohmic resistor, as a dissipative “environment” of the electric circuit 
it is connected with, Eq. (137) is just the Ohm’s law, and may be recast as either V = -R(dQ/dt) = RI, or I = -
G(d/dt) = GV. Thus for voltage V in an open circuit,   corresponds to resistance R, while for current I in the 
short circuit, to conductance G = 1/R. In this case, the fluctuations described by Eq. (139) are referred to as the 
Johnson-Nyquist noise. (Because of this important application, any model leading to Eqs. (136)-(137) is 
frequently referred to as Ohmic dissipation, even if the physical nature of variables x and F is quite different.) 
Another note: the Nyquist formula (139) should not be confused with the Nyquist-Shannon theorem describing 
the minimum sampling rate of an analog signal. 
50 A random process whose properties may be reasonably approximated by constant spectral density is frequently 
called the white noise, because then it is a random mixture of all possible sinusoidal components with equal 
weights, reminding natural white light’s composition. 
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 Since in the classical limit the right-hand part of Eq. (109) is negligible, and the correlation 
function may be considered an even function of time, the symmetrized function under the integral in Eq. 
(113) may be rewritten just as F()F(0). In the limit of low observation frequencies (in the sense that  
is much smaller than not only the quantum frontier kBT/, but also the frequency scale of function 
”()/), Eq. (138) may be used to recast Eq. (135) in the form51 
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 To conclude this section, let me return for a minute to the questions formulated in our earlier 
discussion of dephasing in the two-level model. In that problem, the dephasing time scale is T2 = 1/2D. 
Hence the classical approach to the environment, used in Sec. 3, is adequate if D << kBT. Next, we 

may identify operators f̂  and ẑ  participating in Eq. (70) with, respectively, operators F̂  and x̂  of the 
general Eq. (90). Then the comparison of Eqs. (82), (88) and (140) yields   

            ,
4

2
1

2
B

2




Tk
D

T
      (7.142) 

so that, for the model described by Eq. (137) with temperature-independent drag coefficient , the 
dephasing rate is proportional to temperature. 

  

7.5. The Heisenberg-Langevin approach 

 The fluctuation-dissipation theorem opens a very simple and efficient way for analysis of the 
system of interest (s in Fig. 1). It is to write its Heisenberg equations (4.199) of motion for relevant 
operators, which would now include the environmental force operator, and explore these equations 
using the Fourier transform and the Wiener-Khinchin theorem (112)-(113). Such approach to classical 
equations of motion is commonly associated with the name of Langevin,52 so that its extension to 
dynamics of Heisenberg-picture operators is frequently referred to as the Heisenberg-Langevin (or 
“quantum Langevin”) approach to open system analysis.53 

 Perhaps the best way to describe this method is to demonstrate how it works for the very 
important case of a 1D harmonic oscillator, so that the generalized coordinate x of Sec. 4 is just the 
oscillator’s coordinate. For the sake of simplicity, let us assume that the environment provides the 
simple Ohmic dissipation described by Eq. (137) - which is a good approximation in many cases. As we 
already know from Chapter 5, the Heisenberg equations of motion for operators of coordinate and 
momentum of the oscillator, in the presence of external force, are 

51 In some fields (especially in physical kinetics and chemical physics), this particular limit of the 
Nyquist formula, is called the Green-Kubo (or just “Kubo”) formula. As was discussed above, these 
names may be more reasonably associated with Eq. (109). 
52 After P. Langevin, whose 1908 work was the first systematic development of Einstein’s ideas (1905) of the 
Brownian motion theory in the random force language, as an alternative to M. Smoluchowski’ s approach using 
the probability density language – see Sec. 6 below.   
53 Perhaps the largest credit for this extension belongs to M. Lax whose work, in the early 1960s, was motivated 
mostly by quantum electronics applications – see, e.g., his monograph M. Lax, Fluctuation and Coherent 
Phenomena in Classical and Quantum Physics, Gordon and Breach, 1968, and references therein. 
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so that using Eqs. (92) and (137), we get 
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Combining Eqs. (144), we may write their system as a singe differential equation  

     tFxmxxm
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ˆˆˆ 2
0   ,     (7.145) 

that is absolutely similar to the classical equation of motion.54 (In the view of Eqs. (5.42) and (5.48), 
whose corollary the Ehrenfest theorem (5.49) is, this should be by no means surprising.) For the Fourier 
images of the operators, defined similarly to Eq. (115), Eq. (145) gives the following relation,   
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that should be also well known to the reader from the classical theory of forced oscillations. However, 
since the Fourier components are still Heisenberg-picture operators, and their “values” for different   
do not commute, we have to tread carefully. The best way to proceed is to write a copy of Eq. (146)  for 
frequency (-’), and then combine these equations to form a symmetrical combination similar that used 
in Eq. (114). The result is 
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Since the spectral density definition similar to Eq. (114) is valid for any observable, in particular for x, 
Eq. (147) allows us to relate the symmetrized spectral densities of coordinate and force: 
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Now using an analog of Eq. (116) for x, we can calculate coordinate’s variance:  

        
   



 


0
2222

0
2

2 )(
2)()0(






m

dS
dSKx F

xx ,   (7.149) 

where now, in contrast to the notation used in Sec. 4, sign … means the averaging over the usual 
statistical ensemble of many systems of interest – in our current case, of many harmonic oscillators.  

If the coupling to environment is so weak that drag coefficient η is small (in the sense that the 
oscillator’s dimensionless Q-factor48 is large, Q  mω0/η >> 1), this integral is dominated by the 
resonance peak in a narrow vicinity,  - 0   ≪ 0, of its resonance frequency, and we can take 
the relatively smooth function SF() out of the integral, thus reducing it to a table integral:55 

54 See, e.g., CM Sec. 4.1. 
55 See, e.g., MA Eq. (6.5a). 
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With the account of the FDT (134) and Eq. (138), this gives 
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But this is exactly Eq. (48) that was obtained from the Gibbs distribution, without any explicit account 
of the environment - though keeping it in mind by using the notion of the thermally-equilibrium 
ensemble.56 (Notice that the drag coefficient , which characterizes the oscillator-to-environment 
interaction strength, has cancelled!)  Does this mean that we have toiled in vain?  

 By no means. First of all, the FDT result has an important conceptual value. For example, let us 
consider the low-temperature limit kBT << 0, when Eq. (151) is reduced to  
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      (7.152) 

Let us ask a naïve question: What exactly is the origin of this coordinate uncertainty? From the point of 
view of the usual quantum mechanics of closed (Hamiltonian) systems, there is no doubt: this 
nonvanishing variance of coordinate is the result of the final spatial extension of the ground-state 
wavefunction, reflecting the Heisenberg’s uncertainty relation (that in turn results from the fact that the 
operators of coordinate and momentum do not commute) – see Eq. (2.271). However, from the point of 
view of the Heisenberg-Langevin equation (145), variance (152) is an unalienable part of the oscillator’s 

response to the fluctuation force  tF
~

exerted by the environment at frequencies   0. Though it is 
impossible to refute the former, absolutely legitimate point of view, in many applications it is much 
easier to subscribe to the latter standpoint, and treat the coordinate uncertainty as the result of the so-
called quantum noise of the environment. This notion has received numerous confirmations in 
experiments that did not include any oscillators with the eigenfrequencies 0 close to the noise 
measurement frequency .57 

The advantage of the  Heisenberg-Langevin approach is that for any  > 0 it is possible to 
calculate the (experimentally measurable!) distribution Sx(), i.e. decompose the fluctuations into 
spectral components. This procedure is not restricted to the limit of small  (large Q factors); for any 
damping we may just plug the FDT (134) into Eq. (149) and integrate. As an example, let us have a look 
at the so-called quantum diffusion. A free 1D particle may be considered as the particular case of a 1D 
harmonic oscillator with 0 = 0, so that combining Eqs. (134) and (149), we get 

56 By the way, the simplest way to calculate SF(), i.e. to derive the FDT, is to require that Eqs. (48) and (150) 
give the same result for an oscillator with any eigenfrequency . This is exactly the approach used by H. Nyquist 
(for the classical case) – see also SM Sec. 5.5.
57 See, for example, R. Koch et al., Phys. Lev. B 26, 74 (1982)..  



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 7           Page 33 of 58 

      
   











d
Tkmm

dS
x

B

F

2
coth

2)(

1
2

)(

)(
2

0
222

0
222

2 







 .  (7.153) 

This integral has two divergences. The first one, of the type d/2 at the lower limit, is just a 
classical effect: according to Eq. (85), particle’s displacement variance grows with time, so it cannot 
have a finite time-independent value that Eq. (153) tries to calculate. However, we still can use that 
result to single out the quantum noise effect on diffusion - say, by comparing it with a similar but purely 
classical case. These effects are prominent at high frequencies, especially if the quantum noise 
overcomes the thermal noise before the dynamic cut-off, i.e. if 
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      (7.154) 

In this case there is a broad range of frequencies where the quantum noise gives a substantial 
contribution to the integral: 
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Formally, this contribution diverges at either m  0 or T  0, but this logarithmic (i.e. extremely weak) 
divergence is readily quenched by an almost any change of the environment model at very high 
frequencies, where the “Ohmic” approximation given by Eq. (136) becomes unrealistic. 

 The Heisenberg-Langevin approach is extremely simple and powerful,58 but is has its limitations. 
The main one is that if the equations of motion for the Heisenberg operators are not linear, there is no 
linear relation, such as Eq. (146), between the Fourier images of the generalized force and generalized 
coordinate, and as the result there is no simple relation, such as Eq. (148), between their spectral 
densities. In other words, if the Heisenberg equation of motion are nonlinear, there is no regular simple 
way to use them to calculate statistical properties of  the observables. For example, let us return to the 
dephasing problem described by Eqs. (68)-(70), and assume that the generalized force is characterized 
by relations similar to (93) and (134). Now writing the Heisenberg equations of motion for the two 
remaining spin operators, and using the commutation relations between them, we get 
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2ˆ,ˆ
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~̂

2ˆ





 



 .    (7.156) 

These equations do not provide a linear relation between the Pauli operators and the fluctuation force, so 
even if we know spectral properties of the latter from the FDT, this does not help too much - unless we 
return to the approximate, classical approach described in Sec. 3 above. 59 

58 Its natural generalizations enable analyses of fluctuations in arbitrary linear systems, i.e. the systems described 
by linear differential (or integro-differential) equations of motion, including those with many degrees of freedom, 
and distributed systems (continua). 
59 For some calculations, this problem may be avoided by linearization: if we are only interested in small 
fluctuations, the Heisenberg equations of motion may be linearized about their expectation values (see, e.g., CM 
Sec. 4.2), and the linear equations for variations solved either as has been shown above, or (if the expectation 
values evolve in time) by their Fourier expansions. 
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7.6. Density matrix approach 

 The main alternative approach, that is essentially a generalization of that used in Sec. 2, is to 
extract the final results from the dynamics of the density matrix of our subsystem s of interest (which, 
from this point on, will be called ws). I will discuss this approach in detail,60 cutting just a few technical 
corners, in each case referring the reader to special literature. 

We already know that the density matrix allows the calculation of the expectation value of any 
observable of system s – see Eq. (5). However, our initial recipe (6) for the density matrix calculation, 
which requires the knowledge of the exact state (2) of the whole Universe, is not too practicable, while 
the von Neumann equation (66) for the density matrix evolution is limited to cases in which 
probabilities Wj of the system states are fixed – thus excluding such important effects as the energy 
relaxation. However, such effects may be analyzed using a different assumption – that the system of 
interest interacts only with some local environment (say, with the lab room) that is in the thermally-
equilibrium state described by a diagonal density matrix – see Eqs. (15) and (23).  

This calculation is facilitated by the following observation. Let us number the basis states of the 
full local system (the system of our interest plus its local environment) by index l, and apply Eq. (5) to 
write  

       
l,l'

lwl'l'AlwAwAA
l'l

llll ˆˆˆˆTr
,

'' ,   (7.157) 

where ŵ  is the statistical operator of this full composite system. At weak interaction between the 
system s and local environment e, their variables reside in different Hilbert spaces, so that we can write 

kj esl  .     (7.158) 

and if observable A depends only on the coordinates of system s, Eq. (157) yields 
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 (7.159) 

where sŵ  is defined as 

           wewew k
k

kks ˆTrˆˆ   .    (7.160) 

Since Eq. (159) is similar to Eq. (5), sŵ  may serve as the statistical operator defined in the Hilbert space 

of the system of our interest. The huge advantage of Eqs. (159)-(160) is that they are valid for an 
arbitrary state of the local environment, including the case when it is in the thermodynamic equilibrium. 
By the way, the similarity of Eqs. (5) and (159) may serve as the strong argument, promised in Sec. 1, 
for the validity of the former relation even if the Universe as a whole is not in a pure state. (The 
argument is, however, imperfect, because the latter relation has been derived from the former one.) 

60 As in Sec. 4, the reader not interested in the derivation of the basic equation (181) for the density matrix 
evolution may immediately jump to the discussion of this equation and its applications. 
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Now, since at a sufficiently large size of the local environment e, the composite system (s + e) 
may be considered Hamiltonian, with fixed probabilities of its states, for the description of time 
evolution of its statistical operator ŵ  (again, in contrast to that, sŵ , of the system of our interest) we 

may use the von Neumann equation (66). Partitioning its right-hand part in accordance with Eq. (68), we 
get: 

          wHwHwHwi es ˆ,ˆˆ,ˆˆ,ˆˆ int .    (7.161) 

The next step is to use the perturbation theory to solve this equation in the lowest order in intĤ  that 

yields nonvanishing results due to the interaction. For that, Eq. (161) is not very convenient, because its 
right-hand part contains two other terms, which are much larger than the interaction Hamiltonian. To 
mitigate this technical difficulty, the interaction picture (which was discussed in the end of Sec. 4.6), is 
very handy - though not absolutely necessary.  

As a reminder, in that picture (whose entities will be marked with index I, with the unmarked 
operators assumed to be in the Schrödinger picture), both the operators and the state vectors (and hence 
the density matrix) depend on time. However, the time evolution of the operator of any observable A is 
described by Eq. (67) with the unperturbed part of the Hamiltonian only – see Eq. (4.214). In our 
current case (68), this means 

 0
ˆ,ˆˆ HAAi II 


 .     (7.162) 

where the unperturbed Hamiltonian consists of two independent parts: 

 es HHH ˆˆˆ
0  .     (7.163) 

On the other hand, the state vector evolution is governed by the interaction evolution operator Iû that 
obeys Eqs. (4.215). Since this equation, using the interaction-picture Hamiltonian (4.216), 

0int0 ˆˆˆˆ † uHuH I  ,     (7.164) 

is absolutely similar to the ordinary Schrödinger equation using the full Hamiltonian, we may repeat all 
arguments given in the beginning of Sec. 3 to conclude that the dynamics of the density matrix in the 
interaction picture of a Hamiltonian system is governed by the following analog of the von Neumann 
equation (66):  

                     III wHwi ˆ,ˆˆ  .     (7.165) 

Since this equation is similar in structure (with the opposite sign) to the Heisenberg equation (66), we 
may use solution Eq. (4.190) of the latter equation to write its analog:61 

                    0.ˆ)0(ˆ0,ˆˆ † tuwtutw III  .     (7.166) 

It is also straightforward to verify that in this picture, the expectation value of any observable A may be 
found from the expression similar to the basic Eq. (5): 

61 Notice the opposite order of the unitary operators, which results from the already mentioned sign difference. 

Note also that we could write a similar expression in the Schrödinger picture:   †ˆ)0(ˆˆˆ uwutw  , where û  is the full 

time-evolution operator. 
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 II wAA ˆˆTr ,     (7.167) 

so that the interaction and Schrödinger pictures give the same final results.  

In the most frequent case of bilinear interaction (90),62 Eq. (162) is readily simplified, in 

different ways, for the both operators participating in the product. In particular, for xA ˆˆ  , it yields 

                     eIsIII HxHxHxxi ˆ,ˆˆ,ˆˆ,ˆˆ 0  .    (7.168) 

Since operator of coordinate is defined in the Hilbert space of system s, it commutes with the 
Hamiltonian of the environment, so that we finally get 

 sII Hxxi ˆ,ˆˆ  .     (7.169) 

On the other hand, taking FA ˆˆ  , we should take into account that the last operator is defined in the 
Hilbert space of the environment, and commutes with the Hamiltonian of the unperturbed system s. As a 
result, we get 

          eII HFFi ˆ,ˆˆ 
 .      (7.170) 

This means that with our time-independent unperturbed Hamiltonians sĤ  and eĤ , the time evolution of 

the interaction-picture operators is rather simple. In particular, the analogy between Eq. (170) and Eq. 
(93) allows us to immediately write the following analog of Eq. (94): 
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,    (7.171) 

so that in the stationary (eigenstate) basis of the environment, 
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and similarly (but in the basis of the eigenstates of system s) for operator x̂ . As a result, Eq. (164) may 
be also factored: 
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 (7.173) 

Now, as in Sec. 4, we may rewrite Eq. (165) in the integral form: 

      dt't'wt'H
i

tw
t

III 


 ˆ,ˆ1
ˆ


;    (7.174) 

62 A similar analysis of a more general case, when the interaction with environment may be represented as a sum 
of products of the type (90), may be found in a monograph by K. Blum, Density Matrix Theory and Applications, 
3rd ed., Springer, 2012.  
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plugging this result, for time t’,  into the right-hand part of Eq. (174) again, we get 

                    



t

I

t

IIII dt't'wt'Ft'xtFtxdtt'wt'HtHtw )(ˆ),(ˆ)(ˆ),(ˆ)(ˆ
1

'ˆ,ˆ,ˆ1
ˆ

22 
 , (7.175) 

where, for the notation brevity, from this point on I will strip operators x̂  and F̂  of their index I. (Their 
time dependence indicates the interaction picture clearly enough.)  

 So far, this equation is exact (and cannot be solved analytically), but this is the right time to 
notice that even if we take the density matrix in its right-hand part equal to its unperturbed value 
(corresponding to no interaction between system s and its thermally-equilibrium environment e), 

    'ˆwith  ,ˆˆˆ nnnn'enesI Wewewt'wt'w  ,   (7.176) 

where en are the stationary states of the environment and Wn are the Gibbs probabilities (23), Eq. (175) 
would still provide some nonvanishing time evolution of the density operator. This is exactly the first 
nonvanishing perturbation we have been looking for. Now using Eq. (160), we find the equation of 
evolution of the density operator of our system of interest: 

             



t
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1

ˆ
2

 ,  (7.177) 

where the trace is over the stationary states of the environment. In order to spell out the right-hand part 
of Eq. (177), note again that the coordinate and force operators commute with each other (but not with 
themselves at different time moments!) and hence may be swapped, so that we may write 
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 (7.178) 

Since the summation on both indices n and n’ in this expression is over the same energy level set (of all 
eigenstates of the environment), we may swap the indices in any of the sums. Doing that in the terms 
with factors Wn’,  we turn them into Wn, so that this factor becomes common: 
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Now using Eq. (172), we get 
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 (7.180) 

where {…,…} means the anticommutator – see Eq. (4.34). Comparing the two double sums 
participating in this expression with Eqs. (108) and (111), we see that they are nothing else than, 
respectively, the symmetrized correlation function and the Green’s function (multiplied by /2) of the 
time-difference argument   = t – t’  0. As the result, Eq. (177) takes a very simple form: 
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 . (7.181) 

 Let me hope that the reader enjoys this beautiful result as much as I do, and that it is a sufficient 
intellectual award for his or her effort of following its derivation. It gives a self-sufficient equation for 
time evolution of the density matrix of the system of our interest (s), with the effects of its environment 
represented only by two real algebraic functions of τ – one (KF) describing environment’s fluctuations 
and another one (G) representing its the average response to system’s dynamics. And most 
spectacularly, these are exactly the same functions as participate in the Heisenberg-Langevin approach 
to the problem, and hence related to each other by the fluctuation-dissipation theorem (134). 

After a short celebration, let us acknowledge that Eq. (181) is still an integro-differential 
equation that needs to be solved together with Eq. (169). Such equations do not allow explicit analytical 
solutions except for very simple (and not very interesting) cases. For most applications, further 
simplifications should be made. One of them is based on the fact (which was already discussed in Sec. 
3) that both environmental functions participating in Eq. (181) tend to zero when their argument   
becomes larger that certain environment correlation time c, which is frequently much shorter that the 
time scales Tnn’ of the evolution of the density matrix elements.  Moreover, the characteristic time scale 
of the coordinate operator evolution may be also short on the scale of Tnn’. In this limit, all arguments t’ 
of the density operator giving substantial contributions to the right-hand part of  Eq. (172) are so close to 
t that it does not matter whether its argument is t’ or just t. This simplification (t’  t) is known as the 
Markov approximation.63 However, this approximation alone is still insufficient for finding the general 
solution of Eq. (181). Substantial further progress is possible in two important cases. 

The most important of them is when the intrinsic Hamiltonian sĤ  of our system of interest is 

time-independent and has a very discrete eigenenergy spectrum En,64 with well-separated levels: 

63 Named after A. Markov (1856-1922; in older literature, “Markoff”), because the result of this approximation is 
a particular case of the Markov process whose future development is completely determined by its present state.  
64 Rather reluctantly, I will use this standard notation, En, for the eigenenergies of our system of interest (s), in  
hope that the reader would not confuse these discrete energy levels with the quasi-continuous energy levels of its 
environment, participating in particular in Eqs. (108) and (111). As a reminder, by this stage of our calculations 
the environment levels have disappeared, leaving behind their “trace functions” KF() and G(). 

Density 
matrix’ 
time 
evolution 
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 .     (7.182)  

Let us see what does this condition yield for Eq. (181) rewritten for the matrix elements in the stationary 
state basis (from this point on, I will drop index s for brevity): 
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after spelling out the commutators, it includes 4 operator products, which differ “only” by the operator 
order. Let us have a good look at the first product,  

              
m,m'

m'n'mm'nmnn' wt'xtxwt'xtx )()(ˆ)(ˆ)(ˆ ,    (7.184) 

where indices m and m’ run over the same set of eigenenergies of the system s of our interest as indices 
n and n’. According to Eq. (169) with a time-independent Hs, matrix elements xnn’ (in the stationary state 
basis) oscillate in time as exp{inn’t}, so that 

           
m'm

m'n'mmnmmm'nmnn' wt'tixxwt'xtx
,

'expˆ)(ˆ)(ˆ  ,   (7.185) 

where the coordinate matrix elements are in the Schrödinger picture now, and I have used the natural 
notation (6.85) for the quantum transition frequencies: 

n'nnn' EE  .     (7.186)  

According to condition (182), frequencies nn’ with n  n’ are much higher than the speed of evolution 
of the density matrix elements (in the interaction picture!) – in both the left-hand and right-hand parts of 
Eq. (183). As we already know from Sec. 6.5, this means that in the right-hand part of Eq. (183) we may 
keep only the terms that do not oscillate with frequencies nn’, because they would give negligible 
contribution to the density matrix dynamics.65 For that, in the double sum (185) we may keep only the 
terms proportional to difference (t – t’), because they will give (after integration over t’) a slowly 
changing contribution to the right-hand part.66 These terms should have nm + mm’ = 0, i.e. (En – Em) + 
(Em – Em’)  En – Em’ = 0. For a non-degenerate energy spectrum, this requirement means m’ = n; as a 
result, the double sum is reduced to a single one:  

               
m

nn'nmnm
m

nn'nmmnnmnn' wt'tixwt'tixxwt'xtx  expexpˆ)(ˆ)(ˆ
2

. (7.187) 

Another product,  nn'txt'xw )(ˆ)(ˆˆ , that appears in the right-hand part of Eq. (183), may be simplified 

absolutely similarly, giving 

     
m

nn'n'mn'mnn' wtt'ixtxt'xw exp)(ˆ)(ˆˆ
2

.   (7.188) 

65 This is essentially the same rotating-wave approximation (RWA) that is so instrumental in other fields of not 
only quantum mechanics, but classical physics as well – see, e.g., CM Secs. 4.2-4.5. 
66 As was already discussed in Sec. 4, the lower-limit substitution (t’ = - ) in integrals (174) gives zero, due to 
the finite-time “memory” of the system, expressed by the decay of the correlation and response functions at large 
values of the time delay  = t – t’. 
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These expressions hold true whether n and n’ are equal or not. The situation is different for two 
other products in the right-hand part of Eq. (183), with w sandwiched between x and x’. For example, 

               
m'm

m'n'nmm'n'mm'nm
m'm

m'n'mm'nmnn' t'tixwxt'xwtxt'xwtx
,,

exp)()()(ˆˆ)(ˆ  . (7.189) 

For this term, the same requirement of having a fast oscillating function of (t – t’) only yields a different 
condition: nm + m’n’ = 0, i.e. 

       0 n'm'mn EEEE .     (7.190) 

Here the double sum reduction is possible only if we make an additional assumption that all interlevel 
energy distances are unique, i.e. our system of interest has no equidistant levels (such as in the harmonic 
oscillator). For diagonal elements (n = n’), the RWA requirement is reduced to m = m’, giving  sums 
over all diagonal elements of the density matrix: 

      
m

mmnmnmnn wt'tixt'xwtx exp)(ˆˆ)(ˆ
2

.   (7.191) 

(Another similar term  nntxwt'x )(ˆˆ)(ˆ , is just a complex conjugate of Eq. (191).) However, for off-

diagonal matrix elements (n  n’), the situation is different: Eq. (190) may be satisfied only if   m = n 
and also m’ = n’, so that the double sum is reduced to just one, non-oscillating term: 

          'for  ,)(ˆˆ)(ˆ nnxwxt'xwtx n'n'nn'nnnn'  .    (7.192) 

The second similar term,  nntxwt'x )(ˆˆ)(ˆ , is exactly the same, so that in one of the integrals of Eq. (183), 

these terms add up, while in the second one, they cancel. 

This is why the final equations of evolution look differently for diagonal and off-diagonal 
elements of the density matrix. For the former case (n = n’), Eq. (183) is reduced to the so-called master 
equation67 relating diagonal elements wnn of the density matrix, i.e. the energy level occupancies Wn: 68 
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  (7.193) 

where   t – t’. Changing the summation index notation from m to n’, we may rewrite the master 
equation in its canonical form 
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where coefficients 
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   (7.195) 

67 The master equations, first introduced to quantum mechanics in 1928 by W. Pauli, are sometimes called the 
“Pauli master equations”, or “kinetic equations”, or “rate equations”.  
68 As Eq. (193) shows, the term with m = n would vanish, and thus may be legitimately excluded from the sum. 
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are called the interlevel transition rates.69 Equation (194) has a very clear physical meaning of the level 
occupancy dynamics (i.e. the balance of probability flows W) due to the quantum transitions between 
the energy levels (Fig. 6), in our current case caused by the interaction between the system of our 
interest and its environment.70  

 

 

 

 

 

 

 

The Fourier transforms (113) and (123) enable us to express two integrals in Eq. (195) via, 
respectively, the symmetrized spectral density SF() of environment force fluctuations and the 
imaginary part ”() of the generalized susceptibility, both at frequency  = nn’. After that we may use 
the fluctuation-dissipation theorem (134) to exclude the former function, getting finally 
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.  (7.196) 

Note that since the imaginary part of the generalized susceptibility is an odd function of 
frequency, Eq. (196) is in compliance with the Gibbs distribution for arbitrary temperature. Indeed, 
according to this equation, the ratio of “up” and “down” rates for each pair of levels equals 
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 (7.197) 

On the other hand, according to the Gibbs distribution (23), in thermal equilibrium the level populations 
should be in the same proportion, satisfying the so-called detailed balance equations, 

         ,nn'n'n'nn WW         (7.198) 

for each pair {n, n’}, so that all right-hand parts of all Eqs. (194) could vanish – as they should. Thus, 
the stationary solution of the master equations indeed describes the thermal equilibrium.  

The closed system of master equations (194), sometimes complemented by additional right-
hand-part terms that describe interlevel transitions due to other factors (e.g., by an external ac force with 
a frequency close to one of nn’), is the key starting point for practical analyses of many quantum 

69 As Eq. (193) shows, the result for nn’ is described by Eq. (195) as well, provided that indices n and n’ are 
swapped in all components of its right-hand part, including the swap nn’  n’n  = -nn’.  
70 It is straightforward to show that at relatively low temperatures (kBT << En’ - En), Eq. (196) gives the same 
result as the Golden Rate formula (6.134) – see Exercise 2. (The low temperature limit is necessary to ensure that 
the initial occupancy of the excited level is negligible, as was assumed at the derivation of Eq. (6.134).) 

Fig. 7.6. Probability flows between the energy 
levels, described by the master equation (186).  
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systems including quantum generators (masers and lasers). It is important to remember that it is strictly 
valid only in the rotating-wave approximation, i.e. if Eq. (182) is well satisfied for all n and n’. 

For a particular but very important case of a two-level system (with, say, E1 > E2),  the rate 12 
may be interpreted (especially in the low-temperature limit kBT << 12 = E1 – E2, when 12 >> 21 ) 
as the reciprocal characteristic time 1/T1  12 of the energy relaxation process that brings the 
diagonal elements of the density matrix to their thermally-equilibrium values (24). For the Ohmic 
dissipation described by Eqs. (137)-(138), Eq. (196) yields 
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Of course, time T1 should not be confused with the characteristic time T2 of relaxation of the off-
diagonal elements, i.e. dephasing, which was already discussed in Sec. 3. By the way, let us see what do 
Eqs. (183) say about the dephasing rate. Taking into account our intermediate results (187)-(192), and 
merging the non-oscillating components (with m = n and m = n’) of sums Eq. (187) and (188) with the 
terms (192), that also do not oscillate in time, we get the following equation:71  
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In contrast with Eq. (194), the right-hand part of this equation includes both a real and an imaginary 
part, and hence it may be presented as  

               nn'nn'nn'nn' wiTw  /1 ,     (7.201) 

where both factors 1/Tnn’ and nn’ are real.72 As should be clear from Eq. (201), the second term in the 
right-hand part of this equation causes slow oscillations of the matrix elements wnn’, that, after returning 
to the Schrödinger picture, add just small corrections73 to the unperturbed frequencies (186) of their 
oscillations, and are hence are not important for most applications. More important is the first term,  

71 Because of the reason explained above, this (relatively :-) simple result is not valid for systems with equidistant 
energy spectra, most importantly, for the harmonic oscillator (while Eq. (7.194) is). For the oscillator,  with its 
simple matrix elements xnn’, it is straightforward to repeat the above calculations, starting from (7.183), to obtain  
an equation similar to Eq. (7.200), but with two other terms, proportional to wn1,n’1, in its right-hand part. Since 
for the harmonic oscillator the Heisenberg-Langevin approach allows obtaining most results in a much simpler 
way, I will skip the derivation  of this equation and the discussion of its solutions. The interested reader may find 
such a discussion, for example, in a paper by B. Zeldovich et al., Sov. Phys. JETP 28, 308 (1969). 
72 Sometimes Eq. (200) (in any of its numerous alternative forms) is called the Redfield equation, after the 1965 
work by A. Redfield. Note, however, that several other authors, notably including (in the alphabetical order) H. 
Haken, W. Lamb, M. Lax, W. Louisell, and M. Scully, also made key contributions into the very fast 
development of the density-matrix approach to open quantum systems in the mid-1960s. 
73 This correction is frequently called the Lamb shift, because it was first observed experimentally in 1947 by W. 
Lamb and R. Retherford, as a minor, ~1 GHz shift between energy levels of 2s and 2p states of hydrogen, due to 
the electric-dipole coupling of hydrogen atoms to the free-space electromagnetic environment. (These levels are 
equal not only in the non-relativistic theory (Sec. 3.6), but also in the relativistic, Dirac theory (Sec. 9.7), if the 
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because it describes the effect absent without the environment: an exponential decay of the off-diagonal 
matrix elements, i.e. dephasing. Comparing the first 2 terms of Eq. (202) with Eq. (195), we see that the 
dephasing rates may be described by a very simple formula: 
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  (7.203) 

where the low-frequency drag coefficient  is again defined as lim0”()/ - see Eq. (138).  

 This result shows that two effects yield independent contributions into dephasing. The first of 
them may be interpreted as a result of the “virtual” transitions of the system to other energy levels m;  
according to Eq. (187), it is proportional to the strength of coupling to environment at relatively high 
frequencies nm and n’m. (If the energy quanta  of these frequencies are much larger than the thermal 
fluctuation scale kBT,  only the lower levels, with Em < max[En, En’] are important.) On the contrary, the 
second contribution is due to low-frequency, essentially classical fluctuations of the environment, and 
hence to the low-frequency dissipative susceptibility. If the susceptibility (more exactly, the ratio  = 
”()/) is frequency-independent, both contributions are of the same order, but their exact relation 
depends on the relation between the matrix elements xnn’ of a particular system. 

Returning again to the two-level system discussed in Sec. 3, the high-frequency contributions 
vanish because of the absence of transitions between its energy levels, while the low-frequency 
contribution yields 
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thus exactly reproducing the result (142) of the Heisenberg-Langevin approach.74  Note also that Eq. 
(204) for T2 is very close in structure to Eq. (199) for T1. For our simple interaction model (70), the off-
diagonal elements of operator zx ̂ˆ   in the stationary-state z-basis vanish, so that T1  . For the two-
well implementation of the model (see Fig. 4 and its discussion), this result corresponds to a very high 
energy barrier between the wells, that inhibits tunneling, and hence any change of well occupancies WL 

electromagnetic environment is ignored.) The explanation of the shift, by H. Bethe in the same 1947, has 
launched the whole field of quantum electrodynamics – to be briefly discussed in Chapter 9.  
74 The first form of Eq. (203), as well as the analysis of Sec. 3, imply that low-frequency fluctuations of any other 
origin, not taken into account in own current calculations (say, unintentional noise from experimental equipment), 
may also cause dephasing; such “technical fluctuations” are indeed a serious challenge at the experimental 
implementation of coherent qubit systems – see Sec. 8.5 below. 
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and WR. However, T1 may become finite, and comparable with T2, if tunneling between the wells is 
substantial. 75 

Now let us briefly discuss dissipative systems with continuous spectrum. Unfortunately, for them 
the only (relatively :-) simple results that may be obtained from Eq. (181) are essentially classical in 
nature. As an illustration, let us consider the simplest example of a 1D particle that interacts with a 
thermally-equilibrium environment, but otherwise is free to move (unconfined). As we know from 
Chapters 2 and 5, in this case the most convenient basis is that of momentum eigenstates p. In the 
momentum representation, the density matrix is just the c-number function w(p, p’), defined by Eq. (54), 
that has already been discussed in brief in Sec. 2. On the other hand, the coordinate operator, that also 
participates in the right-hand part of Eq. (181), has the form given by the first of Eqs. (5.64),  

    
p

ix



 ˆ ,      (7.205) 

dual to the coordinate representation formula (5.29). As we already know, such operators are local – see, 
e.g., Eq. (5.28b). Due to this locality, the whole right-hand part of Eq. (181) is local as well, and hence 
(within the framework of our perturbative treatment) the interaction with environment affects essentially 
only the diagonal values w(p, p) of the density matrix, i.e. the momentum probability density w(p). Let 
us find the equation governing the evolution of this function in time. 

 Generally, in the interaction picture, matrix elements of operators x̂  and ŵ  acquire some time 
dependence, but in the limit p’  p, this dynamics lacks the high frequencies (186) that have been so 
helpful for the derivation of master equations. As a result, the only serious simplification of Eq. (181) is 
possible in the Markov approximation, when the time scale of the density matrix evolution is much 
longer than the correlation time c of the environment, i.e. the time scale of functions KF() and G(). In 
this approximation, we may take the matrix elements out of the first integral of Eq. (181),  
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and calculate the double commutator in the Schrödinger picture. This may be done either using an 
explicit expression for the matrix elements of the coordinate operator, dual to Eq. (5.28b), or in a 
simpler way, using the same trick as at the derivation of the Ehrenfest theorem in Sec. 5.2. Namely, 
expanding an arbitrary function f(p) into the Taylor series in one of its arguments (say, p),  
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and applying Eq. (205) to each term, we can prove the following simple commutation relation: 

75 The tunneling may be  described without altering Eq. (70), just by adding, to the unperturbed Hamiltonian (69), 
terms proportional to other Pauli matrices. The reader is encouraged to spell out the equations for the time 
evolution of the density matrix elements of this system, and analyze their main properties – at least in the low-
temperature limit. 
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Now applying this result sequentially, first to w(p, p’) and then to the resulting commutator, we get   
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 It may look like the second integral in Eq. (181) might be simplified similarly. However, it 
vanishes at p’  p, and t’  t, so that in order to calculate the first nonvanishing contribution from that 
integral for p = p’, we have to take into account the small difference   t – t’ ~ c between the 
arguments of the coordinate operators under that integral. This may be done using Eq. (169) with the 
free-particle Hamiltonian consisting of the kinetic-energy contribution alone: 
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where the exact argument of the operator in the right-hand part is already unimportant, and may be taken 
for t. As a result, we may use the last of Eqs. (136) to reduce the second term in the right-hand part of 
Eq. (181) to 
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In the momentum representation, the momentum operator and the density matrix w are just c-numbers 
and commute, so that, applying Eq. (208) to product pw, we get 
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and may finally reduce the integro-differential equation Eq. (181) to a partial differential equation: 
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 This is the 1D form of the famous Fokker-Planck equation describing the classical statistics of 
motion of a free 1D particle in a medium with a linear drag characterized by the coefficient . The first, 
drift term in the right-hand part of Eq. (213) describes particle’s deceleration due to the average viscous 
force (137), F = -v = -p/m, provided by the environment, while the second, diffusion term describes 
the effect of fluctuations: particle’s random walk that obeys Eq. (85) with the diffusion coefficient  

   TkD B .      (7.214) 

This fundamental Einstein relation,76 shows again the intimate connection between the dissipation 
(friction) and fluctuations, in this classical limit represented by their thermal energy scale kBT.77 

76 It was the main result of A. Einstein’s pioneering analysis of such Brownian motion in 1905. (The development 
of this analysis in 1906-1908 by M. Smoluchowski has led in 1912 to the Fokker-Planck theory.)  
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 Just for reader’s reference, let me note that the Fokker-Planck equation (213) may be readily 
generalized to the 3D motion of a particle under the effect of an additional external force Fext(r, t):78 
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where w = w(r, p, t) is the time-dependent probability density in the 6D phase space, and p is the 
nabla/del operator of differentiation over the momentum components, defined similarly to its coordinate 
counterpart . The Fokker-Planck equation in this form is the basis for many important applications; 
however, due to its classical character, its discussion is left for the SM part of my lecture notes.79 

 To summarize our discussion of the two alternative approaches to the analysis of quantum 
systems interacting with a thermally-equilibrium environment, described in the last three sections, let 
me emphasize that they give descriptions of the same phenomena, and are characterized by the same two 
functions G(τ) and KF(τ), but from two different points of view. Namely, in the Heisenberg-Langevin 
approach we describe the system by operators that change (fluctuate) in time, even in thermal 
equilibrium, while in the density-matrix approach the system is described by non-fluctuating probability 
functions, such as Wn(t) or w(p), that are stationary in equilibrium. In the (relatively rare) cases when a 
problem may be solved by either method, they give identical results for all observables. 

 

7.7. Quantum measurements 

 Now we have got a sufficient quantum mechanics background for a brief discussion of  quantum 
measurements.80 Let me start with reminding the reader the only postulate of quantum mechanics that 
relates this theory with experiment. In Chapter 4 it was formulated for a pure state described with ket-
vector  

                   
j

jj a ,     (7.216) 

77 This classical relation may be derived using several other ways – including those much simpler than used 
above. For example, since the Brownian particle’s motion may be described by a linear Langevin equation, Eq. 
(214)  may be readily obtained from the Nyquist formula (139) – see, e.g., SM Sec. 5.5. 
78 Moreover, Eq. (213) may be generalized to the motion in an additional periodic potential U(r). In this case, an 
analog of Eq. (215) for the probability density of quasi-momentum q (rather than the genuine momentum p) 
includes an additional energy band index (say, n), an additional force Fn= -En (where En(q) is the energy band 
structure that was discussed in Secs. 2.7 and 3.4), and an additional term similar to the right-hand part of Eq. 
(194), describing interband transitions with quasi-momentum-dependent rates nn’(q). These rates are still 
expressed by Eq. (196), but with the matrix elements xnn’ replaced by those of the vector operator qi rΩ ˆˆ  of 

interband transitions, which was discussed in Chapter 5. For details and a particular example of a sinusoidal 
potential see, e.g., K. Likharev and A.  Zorin, J. Low Temp. Phys. 59, 347 (1985). 
79 For a more detailed analysis and several examples of quantum effects in dissipative systems with continuous 
spectra see, e. g., U. Weiss, Quantum Dissipative Systems, 2nd ed., World Scientific, 1999, or H.-P. Breuer and F. 
Petruccione, The Theory of Open Quantum Systems, Oxford U. Press, 2007. 
80 “Quantum measurements” is a very unfortunate term; it would be more sensible to speak about “measurements 
of quantum mechanical observables”. However, the former term is so common and compact that I will use it. 
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where aj and Aj are, respectively, the eigenstates of the operator of observable A, defined by Eq. (4.68). 
According to the postulate, the outcome of each particular measurement of observable A may be 
uncertain,81 but is restricted to the set of eigenstates Aj, with the probability of outcome Aj equal to 

   
2

jjW  .      (7.217) 

Since we know now that the state of the system (or rather of the statistical ensemble of similar systems 
we are using for measurements) is generally not pure, this postulate should be re-worded as follows: 
even if the system is in the least uncertain state (216), the measurement outcomes are still probabilistic, 
and obey Eq. (133).82 

 Quantum measurement may be understood as a procedure of transferring the “microscopic” 
information contained in coefficients j into “macroscopically” available information about the 
outcomes of particular experiments, that may be recorded and reliably stored – say, on paper, or in a 
computer, or in our minds. If we believe that such transfer may be always done well enough, and do not 
worry too much how exactly, we are subscribing to the mathematical notion of measurement, that was 
(rather reluctantly) used in these notes – up to this point. However, every physicist should understand 
that measurements are performed by physical devices that also should obey the laws of quantum 
mechanics, and it is important to understand the basic laws of their operation. 

 The founding fathers of quantum mechanics have not paid much attention to these issues, 
probably because of the following two reasons. First, at that time it looked like the experimental 
instruments (at least the best of them :-) were doing exactly what postulate (217) was telling. For 
example, had not the z-oriented Stern-Gerlach experiment turned two complex coefficients  and , 
describing the incoming electron beam, into particle counter clicks with rates proportional to, 
respectively, 2 and 2? Also, the crude internal nature of these instruments made more detailed 
questions unnatural. For example, the electron rate counting with a Geiger counter involves an effective 
disappearance of each incoming electron inside a zillion-particle electric discharge avalanche. Thinking 
about such devices, it was hard to even imagine measurements that would not disturb the quantum state 
of the particle being measured.  

 However, since that time the experimental techniques, notably including high vacuum, low 
temperatures, and low-noise electronics, have much improved, and eventually more inquisitive 
questions started to look not so hopeless. In my scheme of things, these questions may be grouped as 
follows: 

 (i) What are the main laws of a quantum measurement as a physical process? In particular, 
should it always involve time irreversibility? a human/intelligent observer? (The last question is not as 
laughable as it may look – see below.) 

 (ii) What is the state of the measured system just after a single-shot measurement - meaning the 
measurement process limited to a time interval much shorter that the time scale of measured system’s 
evolution? This question is naturally related to the issues of repeated measurements and continuous 
monitoring of system’s state. 

81 Besides the trivial case j = jj’ (so that Wj = jj’), when the system is in a certain eigenstate (aj’) of operator Â . 
82 The reader in doubt is invited to compare entropy S = -jWjlnWj, the measure of system’s disorder (see, e.g., 
SM Sec. 2.2) of the pure state (S = 0) with that in any state with several nonvanishing values of Wj (S > 0). 
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(iii) If a measurement of observable A produced a certain outcome Aj, can we believe that the 
system had been in the corresponding state j  just before the measurement?  

The last question is most closely related to various interpretations of quantum mechanics, and 
will be discussed in the concluding Chapter 10, and now let me provide some input on the first two 
groups of issues.  

First of all, I am happy to report that these is a virtual consensus of physicists on the two first 
questions of series (i). According to this consensus, any quantum measurement needs to result in a 
certain, distinguishable state of a macroscopic output component of the measurement instrument - see 
Fig. 7. (Traditionally, its component is called a pointer, though its role may be played by a printer or a 
plotter, an electronic circuit sending out the result as a number, etc.). 

This requirement implies that the measurement process should have the following features: 

- be time-irreversible , 
- provide large “signal gain”, i.e. mapping the quantum process with its -scale of action (i.e. of 

the energy-by-time product) onto a macroscopic motion of the pointer with a much larger action scale, 
and 

- if we want high measurement fidelity, the process should introduce as little additional 
uncertainty as permitted by the law of physics. 

 

 

 

 

 

 

All these requirements are fulfilled in a good Stern-Gerlach experiment. However, since the 
internal physics of the particle detector at this measurement is rather complex, let me give an example of 
a different, more simple single-shot scheme83 capable of measuring the instant state of a typical two-
level system, for example, a particle in a double quantum well potential (Fig. 8).84 Let the system be, at t 
= 0, in a pure quantum state described by ket-vector 

         ,     (7.218) 

83 This scheme may be implemented, for example, using a simple Josephson-junction circuit called the balanced 
comparator - see, e.g., T. Walls et al., IEEE Trans. on Appl. Supercond. 17, 136 (2007), and references therein. 
Experiments by V. Semenov et al., IEEE Trans. Appl. Supercond. 7, 3617 (1997) have demonstrated that this 
system may have measurement accuracy dominated by quantum-mechanical uncertainty at relatively modest 
cooling (to ~ 1K). One of advantages of such implementation of this measurement scheme is that it is based on 
externally-shunted Josephson junctions – devices whose quantum-mechanical model is in a quantitative 
agreement with experiment - see, e.g., D. Schwartz et al., Phys. Rev. Lett. 55, 1547 (1985). Colloquially, the 
balanced comparator is an instrument with a “well-documented Hamiltonian” including its part describing 
coupling to environment. 
84 As a reminder, dynamics of this system was discussed in Sec. 2.6 and then again in Sec. 6.1. 
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where the component states  and  may be described by wavefunctions localized near the potential 
well bottoms at xs ~ x0 – see the blue lines in Fig. 8b. Let us rapidly change the potential profile of the 
system at t = 0, so that at t > 0, and near the origin, it may be well approximated by an inverted parabola 
(see the red line in Fig. 8b): 
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It is straightforward to verify that the Heisenberg equations of motion in such inverted potential 
describe an exponential growth of operator sx̂  in time (proportional to exp{t} and hence a similar 

growth of the expectation value xs and its r.m.s. uncertainty xs.85 At this “inflation” stage, the 
coherence between the two component states  and  is still preserved, i.e. the time evolution is 
reversible. 

Now let the system be weakly coupled to a dissipative (e.g., Ohmic) environment. As we already 
know, the environment performs two functions. First, it provides motion with the drag coefficient  
(141), so that the system would eventually come to rest at one of the relatively distant minima, xf, of 
the inverted potential (Fig. 8a). Second, the dissipative environment ensures state’s dephasing on some 
time scale T2. If we select the measurement system parameters in such a way that  

   fxTxx  }exp{ 200  ,     (7.220) 

then the process, after the potential inversion, consists of the following stages, well separated in time: 

- the “inflation” stage, preserving the component state coherence but providing an exponential 
increase of its energy, 

85 Somewhat counter-intuitively, the latter growth plays a positive role for measurement fidelity. Indeed, it does 
not affect the intrinsic “signal-to-noise ratio” xs/xs, while making the intrinsic (say, quantum-mechanical) 
uncertainty much larger that possible noise contribution by the latter measurement stage(s).  

Fig. 7.8. Potential inversion on (a) “macroscopic” and (b) “microscopic” scales of coordinate x. 
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- the dephasing stage, at which the coherence is suppressed, and the density matrix of the system 
is reduced to a diagonal form describing the classical mixture of the probability packets propagating to 
the left and to the right, and  

- the stage of settling to a new stationary state – a classical mixture of two states located near 
points xs = xf, with probabilities (217) equal to, respectively, W = 2 and W = 2 = 1 - 2. 

If the final states are macroscopically distinguishable (i.e. may play the role of a bistable 
pointer), as they are in the balanced-comparator implementation, there is absolutely no need, at any of 
these stages, to involve any mysterious “another mechanism of wavefunction change” (different from 
the regular, Schrödinger evolution) for the measurement process description.  

This may be the only appropriate time to mention, very briefly, the famous - or rather infamous  
Schrödinger cat paradox so much overplayed in popular press. (The only good aspect of this popularity 
is that the formulation of this paradox is certainly so well known to the reader, that I do not need to 
repeat it.) In this thought experiment, there is no need to discuss the (rather complex :-) physics of the 
cat. As soon as the charged particle, produced at the radioactive decay, reaches the Geiger counter, the 
process rapidly becomes irreversible, so that the coherent state of the system is reduced to a classical 
mixture of two possible states: “decay” – “no decay”, leading, correspondingly, to the “cat alive” – “cat 
dead” states. So, despite attempts by numerous authors, typically without proper physics background, to 
present this situation as a mystery whose discussion needs the involvement of professional philosophers, 
hopefully by this point the reader knows enough about dephasing to pay any attention. Let me, however, 
note the two non-trivial features of this gedanken experiment, that are met in most real experiments as 
well, including that with the potential inversion (Fig. 8). 

First, the role of the measured coordinate of the system under observation (s) may be played not 
by a coordinate of a single fundamental particle, but a certain combination of coordinates of many 
microscopic components of a macroscopic body. In particular, in Josephson junction systems such as the 
balanced comparator we essentially measure the persistent electric current (“supercurrent”) - a certain 
linear combination of Cartesian components of the momenta of the electrons that constitute the Bose-
Einstein condensate of Cooper pairs. At that, the role of the local environment (that contributes 
significantly to dissipative phenomena) is played by the same electrons, with other linear combinations 
of electron momenta playing the role of environmental degrees of freedom - which were called {} in 
the last few sections. This makes the coupling to environment somewhat less apparent (at least for the 
people who do not know what a linear combination is :-). 

Second, one may argue that even after the balanced comparator (in our first example) or the cat 
(in the second example) has reached its final macroscopic state, human observer’s realization that in this 
particular experiment the bistable pointer is in a certain state instantly decreases the probability (for the 
same observer!) of its being in the opposite state to zero. However, as was already discussed in Sec. 2.5, 
this is a very classical problem of the statistical ensemble redefinition that may be (or may be not) 
performed at observer’s will. Such redefinition, if performed, is the only possible role of a human (or 
otherwise intelligent :-) observer in the measurement process; if we are only interested in an objective 
recording of results of a pre-fixed sequence of experiments, there is no need to include such observer 
into any discussion. 
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The ensemble redefinition at measurement leads to several other paradoxes, of which the so-
called quantum Zeno paradox is perhaps most spectacular.86 Let us return to a two-level system with the 
unperturbed Hamiltonian given by Eq. (4.166), with 2/ much longer than the single-shot 
measurement time, in which the system initially (at t = 0) is in a certain quantum well. Then, as we 
know from Secs. 2.6 and 4.6, before the first measurement, the probability to find state in the initial state 
at time t is 

            
2

Ω
cos)( 2 t

tW  .     (7.221) 

If the time is small enough (t = dt << 1/), we may use the Taylor expansion to write 
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dtW  .     (7.222) 

 Now, let us return the two-level system, after its measurement, into the same quantum well, and 
let it evolve with the same Hamiltonian. Since the occupation of the opposite state is very small, the 
evolution of W will closely follow the same law as in Eq. (221), but with the initial value given by Eq. 
(222) Thus, when the system is measured again at time 2dt,   
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After repeating this cycle N times (with the total time t = Ndt still much less than N1/2/), the probability 
that the system is still in the initial state is  
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 .   (7.224) 

Comparing this result with Eq. (222), we see that the process of system transfer to the opposite quantum 
well has been slowed down rather dramatically, and in the limit N   (at fixed t), its evolution is 
completely stopped by the measurement process. There is of course nothing mysterious here; the 
evolution slowdown is due to statistical ensemble’s redefinition.  

Now let me proceed to question group (ii), in particular to the general issue of the back action of 
the instrument upon the system under measurement (symbolized with the back arrow in Fig. 7). In 
instruments like the Geiger counter or the balanced comparator, such back action is very large, because 
the instrument essentially destroys (“demolishes”) the initial state of the system under measurement. 

86 This name, coined by E. Sudarshan and B. Mishra in 1997 (though the paradox had been discussed in detail by 
A. Turing in 1954); is due to the apparent similarity of this paradox to classical paradoxes by ancient Greek 
philosopher Zeno of Elea. By the way, just to have a minute of fun, let us have a look what happens when Mother 
Nature is discussed by people to do not understand math and physics. The most famous of the classical Zeno 
paradoxes is the Achilles and Tortoise case: a fast runner Achilles can apparently never overtake a slower 
Tortoise, because (in the words by Aristotle) “the pursuer must first reach the point whence the pursued started, so 
that the slower must always hold a lead”. For a physicist, the paradox has a trivial resolution, but let us listen what 
a philosopher (D. Burton) writes about it - not in some year BC, but in 2010 AD:  "Given the history of 'final 
resolutions', from Aristotle onwards, it's probably foolhardy to think we've reached the end.” For me, this is a sad 
symbol of modern philosophy. 
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However, in the 1970s it was realized that this is not really necessary. In Sec. 3, we have already 
discussed an example of a two-level system coupled with environment (in our current context, with 
measurement instrument) and described by Hamiltonian  

     ,ˆˆ,ˆˆwith  ,ˆˆˆˆ
intint zzses fHaHHHHH     (7.225) 

so that 

  0ˆ,ˆ
int HH s .      (7.226) 

Comparing this equality with Eq. (67) we see that in the Heisenberg picture, the Hamiltonian operator 
(and hence the energy) of the system of our interest does not change with time. On the other hand, the 
interaction can change the state of the instrument, so it may be used to measure its energy – or another 
observable whose operator commutes with the interaction Hamiltonian. Such trick is called either the 
quantum non-demolition (QND) or back-action-evading (BAE) measurements.87 Let me present a fine 
example of a real measurement of this kind - see Fig. 9.88 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In this experiment, a single electron is captured in a Penning trap – a combination of a (virtually) 
uniform magnetic field B and a quadrupole electric field.89 Such electric field stabilizes cyclotron orbits 
but does not have any noticeable effect on electron motion in the plane perpendicular to the magnetic 
field, and hence on its Landau level energies (see Sec. 3.2): 

87 For a detailed survey of this field see, e.g., either V. Braginsky and F. Khalili, Quantum Measurements, 
Cambridge U. Press, 1992, or H. Wiseman and G. Milburn, Quantum Measurement and Control, Cambridge u. 
Press, 2010. 
88 S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999). 
89 Similar to the one discussed in EM Sec. 2.4 (see in particular Eq. (2.77) and Fig. 2.7), but with additional 
rotation about one of the axes – either x or y. 

Fig. 7.9. QND measurement of single electron’s energy by Peil and Gabrielse: (a) the core of experimental 
setup, and (b) a record of the thermal excitation and spontaneous relaxation of Fock states. © 1999 APS.  

(a)         (b) 
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(In the cited work, at B  5.3 T, the cyclic frequency c/2 was about 147 GHz, so that the level 
splitting ℏc was close to 10-22 J, i.e. corresponded to temperature ~ 10 K, while the physical 
temperature of the system might be reduced well below that, down to ~80 mK). Now note that the 
analogy between a particle on a Landau levels and a harmonic oscillator goes beyond the energy 
spectrum. Indeed, since the Hamiltonian of a 2D particle in a perpendicular magnetic field may be 
reduced to that of a 1D oscillator, we may repeat all procedures of Sec. 5.4 and rewrite it in the terms of 
creation-annihilation operators: 

       





 

2

1
ˆˆˆ †aaH cs  .     (7.228) 

In the Peil and Gabrielse experiment, the electron had one more degree of freedom – along the 
magnetic field. The electric field of the Penning trap creates a soft confining potential along this 
direction (vertical in Fig. 9a; let us take it for axis z), so that small electron oscillations along that axis 
could be well described as a 1D harmonic oscillator of much lower eigenfrequency, in that particular 
experiment with z/2  64 MHz. This frequency could be measured very accurately (with error ~1 Hz) 
by sensitive electronics whose electric field affects z-motion of the electron, but not its motion in the 
perpendicular plane. In an exactly uniform magnetic field, the two modes of electron motion would be 
completely uncoupled. However, the experimental setup included two special superconducting rings 
made of niobium (Fig. 9a), which slightly distorted the magnetic field and created an interaction 
between the modes, which might be well approximated by Hamiltonian90 

    2
int ˆ

2

1
ˆˆconstˆ † zaaH 






  ,    (7.228) 

so that the main condition (226) of a QND measurement was well satisfied. At the same time, coupling 
(228) ensured that a change of the Fock state number n by 1 changed the z-oscillation eigenfrequency by 
~12.4 Hz. Since this shift was substantially larger than electronics noise, spontaneous changes of n (due 
to an uncontrolled coupling of the electron to environment) could be readily observed – moreover, 
continuously monitored – see Fig. 9b. (These data imply that there is virtually no effect of the measuring 
instrument on the statistics on n – at least on the scale of minutes, i.e. as many as ~1013 cyclotron  orbit 
periods.) Of course, any measurement – QND or not - cannot avoid the Heisenberg uncertainty 
relations; in this particular case, a permanent monitoring of the Fock state number n keeps its quantum 
phase fully uncertain. 

It is natural to wonder whether the QND measurement concept may be extended from quadratic 
forms like the energy to “usual” observables such as coordinates and momenta whose uncertainties are 
bound by the fundamental Heisenberg’s relation. The answer is yes, but the required methods are a bit 
more tricky. For example, let us place an electrically charged particle into a uniform electric field E = 
nxE(t) of the instrument, so that their interaction Hamiltonian is 

90 I am simplifying the real situation a bit. Actually, in the experiment there was an electron spin’s contribution to 
the interaction Hamiltonian as well, but since the large magnetic field polarized the spins quite reliably, their only 
role was a constant shift of frequency z.  



Essential Graduate Physics        QM: Quantum Mechanics 

 

Chapter 7           Page 54 of 58 

xtqH ˆ)(ˆˆ
int E .     (7.229) 

Such interaction certainly passes the information on the time evolution of coordinate x to the instrument. 
However, since Eq. (226) is not satisfied - at least for the kinetic-energy part of system’s Hamiltonian; 
as a result the interaction simultaneously distorts the time evolution of particle’s momentum. Indeed, 
writing the Heisenberg equation of motion (4.199) for the x-component of momentum, we get 

)(ˆˆˆ 0 tqpp EE  
 .     (7.230) 

Integrating Eq. (5.139) for the coordinate operator evolution, 91 we get expression, 

   dt't'p
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xtx
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)0(ˆ)(ˆ ,     (7.231) 

that shows that the perturbations (230) of the momentum would eventually find their way to the 
coordinate evolution. 

 However, for such an important particular system as a harmonic oscillator, the following trick is 
possible. For this system, Eqs. (5.170) and (230) may be readily combined to give a second-order 
differential equation for the coordinate operator, that is absolutely similar to the classical equation of 
motion, and has a similar solution:92 

        'sin)(ˆ)0(ˆ)(ˆ
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q
xtx

t

  


E .   (7.232)  

This formula confirms that generally the external field E(t) (in our case, the sensing field of the 
measurement instrument) affects the time evolution law. Note, however, that if the field is applied only 
at moments t’n separated by intervals T/2, where T = 2/0 is the oscillation period, its effect on 
coordinate vanishes at similarly spaced observation instants tn = tn’ + (m +1/2)T. This the idea of 
stroboscopic QND measurements. Of course, according to Eq. (230), even such measurement strongly 
perturbs the oscillator momentum, so that even if values xn are measured with high accuracy, the 
Heisenberg’s uncertainty relation is not violated. 

 Experimental implementation of such measurements is not simple (and to the best of my 
knowledge they have never been successfully demonstrated), but this initial idea has opened a way to 
more practicable solutions. For example, it straightforward to use the Heisenberg equations of motion to 
show that if coupling of two harmonic oscillators, with coordinates x and X, and unperturbed 
eigenfrequencies  and ,  is modulated in time as 

       ttXxH  coscosˆˆˆ
int  ,     (7.233) 

91 This simple equation is limited to 1D systems with Hamiltonians of the type (2.50), but the reader should agree 
that this is a pretty general form. 
92 See, e.g., CM Sec. 4.1. Note in particular that function sin0 (with   t – t’) under the integral, divided by 0, 
is nothing more than the temporal Green’s function G(), of a loss-free harmonic oscillator. 
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then the process in one of oscillators (say, that with frequency ) does not affect dynamics of one of the 
quadrature components of another oscillator, defined by relations93 
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txxt
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ˆ
cosˆˆ 21  ,   (7.234) 

while this component’s motion does affect the dynamics of one of quadrature components of the 
counterpart oscillator. (For the counterpart couple of quadrature components, the information transfer 
goes in the opposite direction.)  This scheme has been successfully used for QND measurements in the 
optical range, with coupling (233) provided by the optical Kerr effect.94 

 Please note that the last two QND measurement examples are based on the idea of modulation of 
a certain parameter in time – either in a short-pulse or sinusoidal form. So, the reader should not be 
surprised that if the only role of a QND measurement is a sensitive measurement of a weak classical 
force acting on a quantum probe system,95 i.e. a 1D oscillator of eigenfrequency 0, it may be 
implemented much simpler – just by modulating the oscillator parameter with frequency   20. From 
classical dynamics, we know that if the depth of such modulation exceeds a certain threshold value, it 
results in excitation of the so-called parametric oscillations with frequency /2, and one of two opposite 
phases.96 In the language of Eq. (234), parametric excitation means an exponential growth of one of the 
quadrature components, with the sign depending on initial conditions, while the counterpart component 
is suppressed. Close to, but below the excitation threshold, the parameter modulation boosts all 
perturbations of the almost-excited component (including its quantum-mechanical uncertainty), and 
suppresses (squeezes) those of the counterpart component. The result is a squeezed state, already 
discussed in Sec. 5.5 above (see in particular Fig. 5.6), that allows one to notice the effect of external 
force on the oscillator on the backdrop of a quantum uncertainty smaller that the standard quantum limit 
(5.138) – see the first of Eqs. (5.174). 

 In electrical engineering, this fact may be conveniently formulated in terms of noise parameter 
N of a linear amplifier – the instrument for continuous monitoring of an input “signal” – e.g., a 
microwave or optical waveform.97 Namely, N of “usual” (say, transistor or maser) amplifiers which are 
equally sensitive to both quadrature components of the signal, N has a minimum value /2, due to the 
quantum uncertainty pertinent to the quantum state of the amplifier itself (which therefore plays the role 

93 The physical sense of these relations should be clear from Fig. 5.6: they define a system of coordinates rotating 
clockwise with angular velocity , so that the point representing unperturbed classical oscillations with that 
frequency is at rest in that rotating frame. (The “probability cloud” presenting a Glauber state is also stationary in 
coordinates [x1, x2].)  The reader familiar with the classical theory oscillations may notice that x1 and x2 are 
essentially the RWA variables u and v, i.e. the Poincaré plane coordinates – see, e.g., CM Sec. 4.3-4.6, and 
especially Fig. 4.9. 
94 See, e.g., P. Grangier et al., Nature 396, 537 (1998), and references therein. This was, however, not the first 
QND implementation in optics – for a review see J. Roch et al., Appl. Phys. B 55, 291 (1992). 
95 As it is, for example, for gravitational wave detectors – see the discussion and references in Sec. 2.10. 
96 See, e.g., CM Sec. 4.5. 
97 For the exact definition of the latter parameter, suitable for the quantum  sensitivity range (N ~ ) as well, 
see, e.g., I. Devyatov et al., J. Appl. Phys. 60, 1808 (1986). In the classical noise limit (N >> ), it coincides 
with kBTN, where TN is a more popular measure of electronics noise, called the noise temperature.  
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of its “quantum noise”).98 On the other hand, a degenerate parametric amplifier, sensitive to just one 
quadrature component, may have N well below /2, due to the squeezing of its ground state.99 

 Finally, let me note that the parameter-modulation schemes of the QND measurements are not 
limited to harmonic oscillators, and may be applied to other important quantum systems, notably 
including two-level (i.e. spin-½-like) systems.100 

     

7.8. Exercise problems 

7.1. Calculate the density matrix of a two-level system described by Hamiltonian with matrix 

zzyyxx aaa σσσH  σa , 

where k are the Pauli matrices, and ak are c-numbers, in thermodynamic equilibrium. 

 
7.2. Find the Wigner function of a harmonic oscillator in: 

 (i) at the thermodynamic equilibrium at temperature T,  
 (ii) in the ground state, and 
 (ii) in the Glauber state with dimensionless complex amplitude . 
Discuss the relation between the first of the results and the Gibbs distribution. 

 
7.3. Calculate the Wigner function of a harmonic oscillator, with mass m and frequency 0, in its 

first excited stationary state (n = 1). 
 

7.4. Show that the quantum-mechanical Golden Rule (6.111) and the master equation (196) give 
the same results for the rate of spontaneous quantum transitions n’  n in a system with discrete energy 
spectrum, weakly coupled to a low-temperature the heat bath (kBT << nn’).  

Hint: Try to establish a relation between  function Im(nn’) that participates in Eq. (196), and 
the density of states n that participates in the Golden Rule formulas, by considering a particular case of 
sinusoidal oscillations in the system of interest. 

 
7.5.* A harmonic oscillator is weakly coupled to an Ohmic environment. 

(i) Use the rotating-wave approximation to write equations of motion for the Heisenberg 
operators of the complex amplitude of oscillations.  

(ii) Calculate the expectation values of the correlators of the fluctuation force operators, 
participating in these equations, and express them via the average number n of thermally-induced 
excitations in equilibrium, given by the second of Eqs. (26b). 

 
 7.6. For a harmonic oscillator with weak Ohmic dissipation: 

 (i) Spell out the system of differential equations for the energy level occupancies Wn. 

98 This fact was recognized very early – see, e.g., H. Haus and J. Mullen, Phys. Rev. 128, 2407 (1962). 
99 See, e.g., the spectacular experiments by B. Yurke et al., Phys. Rev. Lett. 60, 764 (1988). 
100 See, e.g., D. Averin, Phys. Rev. Lett. 88, 207901 (2002). 
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(ii) Use this system to find the time evolution of the expectation value E of oscillator’s energy. 
 (iii) Compare the last result with that following from the Heisenberg-Langevin approach. 

 
7.7. Derive Eq. (209) in an alternative way, using an expression dual to Eq. (5.28b). 
 

 7.8.* A particle in a system of two coupled quantum wells (see, e.g., Fig. 4) is weakly coupled to 
an Ohmic environment.  

(i) Derive the equations of time evolution of the density matrix elements. 
(ii) Solve these equations in the low-temperature limit, when the energy level splitting is much 

larger than kBT, to calculate the time evolution of the probability WL(t) of finding the particle one of the 
wells, after it had been placed there at t = 0. 

 
7.9.* A spin-½  particle is placed into magnetic field   )(

~
0 tt BBB   with an arbitrary but small 

time-dependent component ( 0

~ BB  ), and is also weakly coupled to dissipative environment. Derive 

the differential equations describing the time evolution of the expectation values (Sx, etc.) of  spin’s 
Cartesian components. 
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Chapter 8. Multiparticle Systems 

This chapter is a brief introduction to quantum mechanics of systems of similar particles, with a special 
attention to the case when they are indistinguishable. For such systems, the theory predicts (and 
experiment confirms) very specific effects  even in the case of negligible explicit (“direct”)  interaction 
between the particles. The effects notably include the Bose-Einstein condensation of bosons, and the 
Pauli exclusion principle and exchange interaction  for fermions. 

 

8.1. Distinguishable and indistinguishable particles 

 The importance of quantum systems of many similar particles is probably self-evident; just the 
very fact of that most atoms include several/many electrons is sufficient to attract our attention. There 
are also important systems where the number of electrons is much higher than in one atom; for example, 
a cubic centimeter of a typical metal features ~1023 conduction electrons that cannot be attributed to 
particular atoms, and have to considered as common (and interacting!) pats of the system as the whole. 
Though quantum mechanics offers virtually no exact analytical solutions for systems of  strongly 
interacting particles,1 it reveals very important new effects even in the simplest case when  particles do 
not interact, and least explicitly (directly).  

 If non-interacting particles are either different from each other by their nature (say, an electron 
and a proton), or physically similar but still distinguishable because of other reasons (say, because of 
their reliable spatial separation) everything is simple – at least, conceptually. Then, as was already 
discussed in Sec. 6.7, a system of two particles, 1 and 2, each in a pure quantum state, may be described 
by a ket vector 

              
21

'  ,     (8.1a)  

where the single-particle states  and ’ are defined in different Hilbert spaces. (Below, I will frequently 
use the following convenient shorthand, 

  '  ,      (8.1b) 

in which the state position within a vector codes the particle number.) Hence the permuted state  

               
21

ˆ   β'''P ,    (8.2) 

where P̂  is the permutation operator, is clearly different from the initial one. 

1 An important conceptual question is why not treat one particle of such a collection as an open quantum system, 
and apply to it the powerful methods discussed in the last chapter, based on the separation of the whole Universe 
into the “system of our interest” and the “environment” – see Fig. 7.1. Such separation is very natural and works 
very well in cases when one, relative “massive” (inertial) particle, or a specific collective degree of freedom (also 
relatively inertial), is surrounded by a sea of “lighter particles”, which serve the role of an environment - 
frequently in or close to thermal equilibrium. On the other hand, in most systems of identical particles, such 
separation is more artificial and may lead to errors, because the quantum state of the “particle of interest” may be 
substantially correlated (in particular, entangled) with that of similar particles of its “environment” – see the 
discussion later in this section. 

Pure state  
of 2 

distinguish- 
able 

particles 
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Again, such description is valid even for identical particles if they are still distinguishable by their 
spatial separation. (The separation does not preclude particles from interacting with each other, e.g., 
electrostatically.) Such systems of similar but clearly distinguishable particles (or subsystems) are 
broadly discussed nowadays, for example in the context of quantum computing and encryption – see 
Sec. 8.5 below. This is why it is unfortunate that term “identical particles” is frequently used in the 
sense of indistinguishable particles. I will try to avoid this confusion by using the latter term, despite it 
being rather unpleasant grammatically. 

 Now comes the most important experimental fact: identical elementary particles,2 if they are not 
reliably separated, are genuinely indistinguishable, i.e. their Hilbert spaces are not separable. Hence, 
instead of Eq. (1), for a set of two particles, we need to use a linear combination of products like ’ 
and ’ for the construction of genuine quantum states.3 In order to comprehend what exactly linear 
combinations should be used, it is convenient to discuss properties of the permutation operator defined 
by the first of Eqs. (2).  

 Let us consider an observable A, and a system of eigenstates of its operator: 

       jjj aAaA ˆ .      (8.3)  

If the particles are indistinguishable indeed, the observable expectation value should not be affected by 

their permutation. Hence operators Â  and P̂  have to commute, and share their eigenstates. This is why 

eigenstates of operator P̂  are so important: in particular, they are also eigenstates of the Hamiltonian, 

i.e. the stationary states of the system of particles. 

Now let us have a look at the operation described by the square of the permutation operator, on 
an elementary ket-vector product: 

         ''''   PPPP ˆˆˆˆ 2 ,    (8.4) 

2 Here by “elementary particles” I mean any of the following two options:  
 (i) particles like electrons, which (at least at this stage of development of physics) are considered as 
structure-less entities; 
 (ii) any object (e.g., a hadron or meson) which may be considered as a system of “more elementary” 
particles (e.g., quarks), but still may be reliably placed in a definite (say, ground) quantum state. 
 From that point of view, even complex atoms or molecules of a certain chemical element, each in its 
ground state, may be considered on the same footing as elementary particles. 
3 A very legitimate question is why, in this situation, we need to introduce particle’s number to start with. A 
partial answer is that in this approach it is much simpler to derive (or guess) problem Hamiltonians from the 
correspondence principle. For example for a system of two spinless particles, each in an external potential U(r), 
and with the interaction energy Uint(r1 – r2), the correct Hamiltonian is 

 21int21

2
2

2
1 ˆˆ)ˆ()ˆ(
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ˆ

2

ˆˆ rrrr  UUU
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p
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p
H

Later in this chapter, we will discuss an alternative approach (the so-called “second quantization”) in which 
tracing a certain particle is avoided. While for indistinguishable particles this is more logical, in that approach 
writing adequate Hamiltonians (which, in particular, would avoid spurious self-interaction of the particles) is 
much more challenging – see Sec. 3 below. 
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i.e. 2P̂  brings the state back to its original form. Since any pure state of a two-particle system may be 

represented as a linear combination of such products, this result does not depend on the state, and may 
be represented as an operator relation:  

            .̂ˆ 2 IP       (8.5) 

Now let us find the possible eigenvalues Pj of the permutation operator. Acting by both sides of 

Eq. (5) on any of eigenstates j of the permutation operator, we get a very simple equation for its 
eigenvalues: 

            12 jP ,      (8.6) 

with two possible solutions: 

            1jP .      (8.7) 

 Let us find the eigenstates of the permutation operator in the simplest case when each of the 
component particles can be only in two single-particle states - say,  and ’. Evidently, none of the 
simple products ’ and ’, taken alone, does qualify for the eigenstate - unless states  and ’ are 
identical. Let us try their linear combination 

           , 'b'aj       (8.8) 

so that 

             'b'ajjj   PP̂ .    (8.9) 

For the case Pj = +1 we have to require states (8) and (9) to be the same, so that a = b. Assuming also 

that the single-particle states   and ’ are normalized, and requiring the same for the composite state , 
we get the so-called symmetric eigenstate4 

               '' 
2

1
.     (8.10) 

Similarly, for Pj = -1 we get a = - b, and the antisymmetric eigenstate 

                     '' 
2

1
.     (8.11) 

where the front coefficients guarantee the orthonormality of the two-particle states, provided that the 
single-particle states are orthonormal. These are typical examples of entangled states, defined as multi-
particle states whose state vectors cannot be factored into a product of single-particle vectors. 

 So far, our math does not preclude either sign of Pj, in particular the possibility that the sign 
depends on the state (i.e. index j). Here, however, comes in another crucial experimental fact: all 
elementary particles fall into two groups: 5 

4 As in many situations we met before, kets (10) and (11) may be multiplied by exp{i} with an arbitrary real 
phase . However, until we discuss coherent superpositions of various states , there is no good motivation for 
taking the phase different from 0; that would only clutter the notation. 
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 (i) bosons, particles with integer spin s, for which Pj  = +1 for any j, and 

 (ii) fermions, particles with half-integer spin, with Pj  = -1, also for any j.  

 In the non-relativistic theory we are discussing now, this key fact should be considered as 
experimental one. (The relativistic quantum theory, to be discussed in Chapter 9, offers a proof that half-
integer-spin particles cannot be bosons and integer-spin ones cannot be fermions, but not more than 
that.) However, our discussion of spin in Sec. 5.7 allows the following interpretation of the fermion-
boson difference. In free space, the permutation of particles 1 and 2 may be viewed as a result of 
rotation of this pair by angle  about a certain axis. As we have seen in Sec. 5.7, at a rotation by such 
an angle, the state vector  of a particle with quantum number ms (that ranges from –s to +s , and hence 
may take only integer values for integer s, and only half-integer values for half-integer s) changes by 
factor exp{ims}, so that the state product ’ changes by exp{i2ms}, i.e. by factor +1 for integer 
s, and by factor (-1) for half-integer s. 

 Since eigenvalues Pj do not depend on the particular state of the system, we can write explicit 
expressions for the permutation operator: 

       







fermions.for    ,1

bosons,for      ,1ˆˆ IP      (8.12) 

 The most impressive corollaries of Eqs. (10) and (11) are for the case when the partial states of 
the two particles are the same:  = ’. The corresponding Bose state + is possible; in particular, at 
sufficiently low temperatures, a set of non-interacting Bose particles condenses on the ground state of 
each of them – the so-called Bose-Einstein condensate (“BEC”).6 Its examples include superfluid fluids 
like helium, the Cooper-pair condensate in superconductors, and the BEC of weakly interacting atoms. 
Perhaps the most fascinating feature of a multiparticle Bose-Einstein condensate is that dynamics of its 
observables is governed by laws of quantum mechanics, while (for nearly all purposes) may be treated 
as c-numbers – see, e.g., Eqs. (2.54)-(2.55).7 

 On the other hand, if we take  = ’  in Eq. (11), we see that state - vanishes, i.e. cannot exist at 
all. This is the mathematical expression of the Pauli exclusion principle: two indistinguishable fermions 
cannot be in the same quantum state.8 (As will be discussed below, this is true for systems with more 
than two fermions as well.) Probably, the key importance of this principle is self-evident: if it was not 
valid for electrons (that are fermions), all electrons of each atom would condense on its ground (1s) 
level, and all the usual chemistry (and biochemistry, and biology, including dear us!) would not exist. 
The Pauli principle effectively makes fermions interacting even if they do not interact directly, in the 
usual sense of this word. 

5 Traditionally, people speak about two different “statistics”: the Bose-Einstein statistics of bosons, and Fermi-
Dirac statistics of fermions, because their statistical distributions in thermal equilibrium are indeed different - see, 
e.g., SM Sec. 2.8. However, as evident from the above discussion, their difference is deeper, and actually we are 
dealing with two different quantum mechanics.  
6 For a quantitative discussion of the Bose-Einstein condensation see, e.g., SM Sec. 3.4. 
7 Such possibility follows from the fact that for the Bose-Einstein condensate of N  >> 1 particles, the Heisenberg 
uncertainty relation may be reduced to N > 1, where  is the condensate wavefunction’s phase, so that it may 
have N/N << 1 and  << 1 simultaneously. 
8 It was formulated by W. Pauli in 1925, on the basis of less general rules suggested by G. Lewis (1916), I. 
Langmuir (1919), N. Bohr (1922), and E. Stoner (1924) for the explanation of experimental spectroscopic data.  
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8.2. Singlets, triplets, and the exchange interaction 

 Now let us discuss possible approaches to analysis of identical particles on a simple but very 
important example of a pair of spin–½ particles (say, electrons) whose interaction with either each other 
or the external world does not involve spin. Then the ket-vector of a total state is factorable as 

               1212 so  ,     (8.13) 

with the orbital function o12 and the spin function s12 (that depends on the state of both spins of the 
pair) belonging to different Hilbert spaces. It is frequently convenient to use the coordinate 
representation of such state, sometimes called the spinor: 

              122112122121 ),(,, sso rrrrrr   .   (8.14) 

 Since spin- ½ particles are fermions, the particle permutation, 

             122121121221 ),(),(),(ˆ sss rrrrrr  P ,   (8.15) 

has to change the sign of either the spin part or the orbital factor of the spinor. In the case of a 
symmetric orbital factor, 

              ),,(),( 2112 rrrr        (8.16) 

the spin factor has to obey relation 

                  .1221 ss        (8.17) 

 Let us use the ordinary z-basis (where z, in the absence of external magnetic field, is an arbitrary 
spatial axis) for each of the spins. In this basis, any ket-vector ms of spin orientation of two particles 
may be represented as a linear combination of four single-spin basis vectors: 

                 and,,, .    (8.18) 

The first two kets evidently do not satisfy Eq. (17), and cannot participate in the state. Applying to the 
remaining kets the same argumentation as has resulted in Eq. (11), we get 

           . -
2

1
12 s      (8.19) 

Such orbital-symmetric and spin-asymmetric state is called the singlet. The origin of this name 
becomes clear from the analysis of the opposite (orbital-asymmetric and  spin-symmetric) case: 

          .),,(),( 21122112 ss  rrrr      (8.20) 

For the composition of such symmetric spin state, the first two kets of Eq. (18) are completely 
acceptable (with arbitrary weights), and so is a specific symmetric combination of two last kets, similar 
to Eq. (10): 

               . 
2

1
012   cccs    (8.21) 

2-particle 
spinor 
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states 
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We may use this composite state with any values of coefficients c (satisfying the normalization 
condition), because they correspond to the same orbital wavefunction and hence the same energy. 
However, each of these three states has a specific value of the z-component of the net spin (respectively, 
+, -, and 0).9 Because of this, an even small external magnetic field lifts their degeneracy, splitting the 
energy level in three, and giving it the natural name of triplet. 

In the particular case when the particles do not interact at all, for example10 

2,1),(ˆ
2

ˆˆ,ˆˆˆ
2

21  kU
m

p
hhhH k

k
k r ,    (8.22) 

the 2-particle Schrödinger equation for the symmetrical orbital wavefunction (16) is obviously satisfied 
by the simple product, 

),()(),( 2'121 rrrr nn        (8.23) 

of single-particle eigenfunctions, with arbitrary sets n, n’ of quantum numbers. For the particular (but 
very important!) case n = n’, this means that the eigenenergy of the singlet state, 

   -)()(
2

1
21 rr nn  ,    (8.24) 

is just 2n, where n is the single-particle energy level. It may be proved that the lowest energy of the 
triplet state is always higher than that. Hence, for the limited (but extremely important!) goal of finding 
ground-state energies of multi-electron systems, we may ignore the actual singlet structure of spinor 
(24), and reduce the Pauli exclusion principle to the semi-qualitative picture of single-particle levels, 
each “occupied” with 2 independent particles. 

 As a very simple example, let us find the ground energy of a deep, cubic-shaped, 3D quantum 
well with side a, filled with 5 fermions, ignoring their direct interaction. From the solution of the single-
particle Schrödinger equation in Sec. 1.5, we know the single-particle energy spectrum of the system: 

   ,...2,1,,   and,
2

with   ,
2

22

0
222

0,,  zyxzyxnnn nnn
ma

nnn
zyx

   (8.25) 

so that the lowest-energy orbital states are:  

 - one ground state with {nx,ny,nz} = {1,1,1}, and energy 111= (12+12+12)0 = 30, and 

 - three excited states, with {nx,ny,nz} equal to {2,1,1}, {1,2,1}, and {1,1,2}, with equal energies 
211= 121 = 112 = (22+12+12)0 = 60. 

According to the Pauli principle, each of these energy levels states can accommodate up to 2 
electrons. Hence the lowest-energy (ground) state of the 5-electron system is achieved by placing 2 of 

9 Note that in the sense of Eq. (5.197), all three triplet states of a two-electron system behave as a single integer 
spin with s = 1; for example, S2 equals 22, rather than 0 as one could expect for the last component of Eq. (21) – 
see Problem 1. 
10 In this chapter, I try to use lower-case letters for observables of single particles (in particular,  for their 
energies), in order to distinguish them as clearly as possible from system’s variables, including the total energy E 
of the system, typeset in capital letters. 
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them on the ground level 111 = 30, and the remaining 3 particles, in any of the degenerate “excited” 
states of energy 60 . Hence the ground energy of the system is 

      .
12

246332
2

22

000 ma
Eg

      (8.26) 

In many cases of relatively weak interaction between particles, it does not blow up such a simple 
quantum state classification scheme, and the Pauli principle allows tracing the order of single-particle 
state filling with Fermi particles. This is exactly the approach that has been used at our discussion of 
atoms in Sec. 3.7. 

 Now let us describe the results of particle interaction more quantitatively, on the simplest  
example11 of the lowest energy states of a neutral atom12 of helium - more exactly, helium-4, usually 
denoted 4He, consisting of a nucleus with two protons and two neutrons, of the total electric charge q = 
+2e, and two electrons “rotating” about it. Neglecting the small relativistic effects that was discussed in 
Sec. 6.3, the Hamiltonian describing the electron motion may be represented as  
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k .  (8.27) 

As most problems of multiparticle quantum mechanics, the eigenvalue/eigenstate problem for 
this Hamiltonian does not have an exact analytical solution, so let us start an approximate analysis 
considering the electron-electron interaction as a perturbation. As was discussed in Chapter 6, we have 
to start with the “0th-order” approximation in which the perturbation is ignored, so that the Hamiltonian 
is reduced to sum (22). In this approximation, the ground state g of the atom is the singlet (24), with the 
orbital factor 

     )()(),( 2100110021 rrrr  g ,     (8.28) 

and energy 2g. Here each operand 100(r) is the single-particle wavefunction of the ground (1s) state of 
the hydrogen-like atom with Z = 2, with quantum numbers n = 1, l = 0, m = 0. According to Eqs. (3.174) 
and (3.198), 

        
2

with  ,
2

4

1
)(),()( BB

0
0

2/3
0

0,1
0

0100

/ r

Z

r
re

r
rY

rr  


 Rr ,   (8.29) 

so that according to Eq. (3.191), in this approximation the total ground state energy is  

          eV. 1094
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ZZn

gg


   (8.30) 

This is still somewhat far (though not terribly far!) from the experimental value Eg  -78.8 eV – see  the 
bottom level in Fig. 1a. 

11 It is also very important, since helium makes up more than 20% of all “ordinary” matter of our Universe. 
12 Evidently, the positive ion He+1 of such atom, with just one electron, is very well described by the hydrogen-
like atom theory with Z = 2, whose ground-state energy, according to Eq. (3.191), is –Z2EH/2 = - 2EH  - 55.4 eV. 
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Making a small detour from our main topic, electron indistinguishability effects, let us note that 
we can get a much better agreement with experiment by calculating the electron interaction energy in 
the 1st order of the perturbation theory. Indeed, in application to our system, Eq. (6.13) reads 

             ).,(),(),(ˆ 2121int212
3

1
3

int
)1( * rrrrrr ggg urdrdgugE     (8.31) 

Plugging in Eqs. (27)-(29), we get 

   .
)(2

exp
4

4

4

1

0

21

210

2

2
3

1
3

2

3
0

)1(







 










   r

rre
rdrd

r
Eg rr

   (8.32) 

As may be readily evaluated analytically (this exercise is left for the reader), this expression equals 
(5/4)EH, so that the corrected ground state energy, 

                 eV 8.74
4

5
4 H

)1()0( 





  EEEE ggg ,   (8.33) 

is much closer to experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is still a room for improvement - that may be made, for example, using the  variational 
method,13 based on the following, very general observation. Let n be the exact, full and orthonormal set 
of stationary states of a quantum system, and use it as the basis for expansion of a normalized but 
otherwise arbitrary trial state   (defined in the same Hilbert space): 

      ,
n

n n       (8.34) 

13 See also Problems 2.6-2.8, 2.34, and 3.3. 

Fig. 8.1. The lowest energy levels of a helium atom: (a) experimental data and (b) a schematic structure 
of an excited state with fixed n and l in the first order of the perturbation theory. On panel (a), all 
energies are referred to that (-2EH  -55.4 eV) of the ground state of ion He+1, so that their magnitudes 
are the (readily measurable) energies of atom’s ionization starting from the corresponding bound state. 

(a)                         (b) 
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with the energy that may be calculated using the general (4.125): 

           .0     where,ˆ 2   nn
n

nn WEWHE     (8.35) 

Since, by definition, the exact ground state energy Eg is the lowest one of the set En, we can use Eq. (35) 
to compose the following inequality: 

              .g
n

ng
n

gn EWEEWE       (8.36) 

Thus, the ground state energy is always lower then (or equal to) the energy of any trial state . Hence, if 
we make several attempts with reasonably selected trial states, we may expect the lowest of the results 
to approximate the genuine ground state energy reasonably well.  

 For our particular case of a 4He atom, we may try to use, as the trial state, the wavefunction 
given by Eqs. (28)-(29), but with the atomic number Z considered as an adjustable parameter Zef < Z = 2 
rather than a fixed number. The physics behind this idea is that each the electric charge density (r) = –
e(r)2 of each electron forms a negatively charged “cloud” that reduces the effective charge of the 
nuclei, as seen by another electron, to Zefe

2, with some Zef < 2. As a result, the single-particle 
wavefunction spreads further in space (r0 = rB/Zef  > rB/Z), while keeping its functional form (29) nearly 
intact. Since the kinetic energies T in system’s Hamiltonian are proportional to r0

-2, while the potential 
energies scale as r0

-1, we can write 
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Now we can use the fact that according to Eq. (3.202), for any stationary state of a hydrogen-like atom 
(just as for the classical circular motion in the Coulomb potential), U = 2E, and hence T = E - U = -
E.  Using Eq. (8.30), and adding the correction Ug

(1) = -(5/4)EH calculated above, to the potential energy, 
we get 
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     (8.38) 

The minimum of function Eg(Zef)  and the corresponding “optimal” value of Zef are as follows: 

                eV 5.7785.2,6875.1
32

5
12)( Hminoptef 






  EEZ g .  (8.39) 

Given the trial function crudeness, this number is in a surprisingly good agreement with experimental 
value cited above, with a difference of the order of 1%.14 

 Now let us return of our basic topic – the effects of electron indistinguishability. As we have just 
seen, the ground level energy of the helium atom is not affected directly by this fact, but the situation is 

14 This example explains why the variational method is broadly used for approximate treatment of complex 
quantum systems, although it is based more or less intuitive guesses of trial functions, i.e. in contrast with the 
perturbation theories discussed in Chapters 6 and 7, does not guarantee asymptotically correct results in any 
particular limit, unless such correctness is manually incorporated into the trial state choice. 

Variational 
method’s 

justification 
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different for its excited states – even the lowest ones. The reasonably good convergence of the 
perturbation theory, that we have seen for the ground state, tells us that we can base our analysis of 
wavefunctions (e) of the lowest excited state orbitals, on products like 100(rk)nlm(rk’), with n > 1. 
However, in order to satisfy the fermion permutation rule, Pj = -1, we have to take the orbital part of the 
state in an either symmetric or asymmetric form: 

        ,)()()()(
2

1
),( 21001211002 rrrrrr1  nmlnmle     (8.40) 

with the proper total permutation asymmetry provided by the corresponding spin part given by, 
respectively, Eq. (19) or Eq. (21), so that the upper/lower signs in Eq. (40) correspond to the 
singlet/triplet spin state. Let us calculate the expectation values of the total energy of the system in the 
first order of the perturbation theory. Plugging Eq. (40) into the 0th order expression  

            ),(ˆˆ),( 2121212
3

1
3)0( * rrrr eee hhrdrdE   ,   (8.41) 

we get two groups of similar terms that differ only by the particle index. We can merge the terms of 
each pair by changing the notation as (r1  r, r2  r’ ) in one of them, and (r1  r’, r2  r) in the 
other term. Using Eq. (27), and the mutual orthogonality of wavefunctions 100(r) and nlm(r), we get 
the following result, 
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 (8.42) 

which may be interpreted as the sum of eigenenergies of two separate single particles, one in the ground 
state 100, and another in the excited state nlm - despite that actually the electron states are entangled. 
Thus, in the 0th order of the perturbation theory, the electron entanglement does not affect their energy. 

However, the potential energy of the system also includes the interaction term uint (27) that does 
not allow such separation. As a result, in the first approximation of the perturbation theory, the total 
energy of the system may be represented as  

               ,)1(
int100 EE nlme        (8.43a) 

   ),(),(),( 2121int212
3

1
3

int
)1(

int
* rrrrrr ee UrdrdUE     (8.43b) 

Plugging Eq. (40) into this result, using the symmetry of uint with respect to the particle number 
permutation, and the same particle coordinate re-numbering as above, we get 

                ,exdir
)1(

int EEE       (8.44) 

with deceivingly similar expressions for the operands: 

     ,)()(),()()( 100int100
33

dir
** ''u'r'drdE nlmnlm rrrrrr     (8.45a) 

     .)()(),()()( 100int100
33

ex
** ''u'r'drdE nlmnlm rrrrrr     (8.45b) 

Orbital 
functions of 
orthohelium 
and  
parahelium 

Exchange 
interaction 
energy 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 8           Page 11 of 48 

 Since the single-particle orbitals can be always made real, both components are positive (or at 
least non-negative). However, their physics is completely different. Integral (45a), called the direct 
electron-electron interaction, allows a simple semi-classical interpretation as the Coulomb energy of 
interacting electrons, each distributed in space with the electric charge density nml(r) = -
enml*(r)nml(r):15 
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where (r) is the electrostatic potential created, at point r, by the counterpart electron’s “electric charge 
cloud”:16 

 
'

'
r'd nlm

rr

r
r


 

)(

4

1
)( 3

0




 .     (8.47) 

However, integral (45b), called the exchange interaction, evades a classical interpretation, and 
(as it is clear from its derivation) is the direct corollary of the electron indistinguishability. The 
magnitude of Eex is also very much different from Edir, because the function under integral (45b) 
disappears in those regions where single-particle wavefunctions do not overlap. This is in a full 
agreement with the discussion in Sec. 1: if two particles are identical but well separated, i.e. their 
wavefunctions do not overlap, the exchange interaction disappears, because all effects of particle 
indistinguishability vanish.  

 Historically, the fact of having two different hydrogen-like spectra (48) and (49) was taken as an 
evidence for two different species of 4He, called, respectively, the parahelium and orthohelium. Figure 
1b shows the structure of an excited energy level, with certain quantum numbers n > 1, l, and m, given 
by Eqs. (44)-(45). The upper level, with energy 

      ,100exdir100para nlmnlm EEE       (8.48) 

corresponds to the “parahelium”, i.e. the symmetric orbital state and hence to the singlet spin state (19), 
with zero net spin, s = 0. The lower level, with 

         ,paraexdir100ortho EEEE nlm       (8.49) 

corresponds to “orthohelium”, i.e. the antisymmetric orbital, and hence to the triplet spin state(s) with s 
= 1 - see Eq. (21).  Its degeneracy may be lifted by magnetic field, so that the splitting is identical to that 
of an elementary particle with spin s = 1.  Calculations of the direct and exchange interaction integrals 
(45) for various values of n and l show that the perturbation theory explains the experimental spectrum 
of the orthohelium and parahelium (Fig. 1) pretty well.  

 Encouraged by this success, and motivation by the very important task of description of atoms, 
molecules, and metals, we may try to apply the same approach to systems with N > 2 electrons. In this 
case the mathematical expression of the Pauli principle for fermions is 

15 See, e.g., EM Sec. 1.3, in particular Eq. (1.54). 
16 Note that the result for Edir correctly reflects the basic fact that a charged particle does not interacts with itself, 
even if its wavefunction is quantum-mechanically spread over a finite space volume. Unfortunately, this is not 
true for some other approximate theories of multi-particle systems – see Sec. 4 below. 
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     .,...,2,1, allfor ,1ˆ
' Nk'kkk P ,    (8.50) 

where operator '
ˆ

kkP  permutes particle with numbers k and k’. In order to understand how common 

eigenstates of all such operators may be formed, let us return for a minute to two non-interacting 
electrons, and rewrite Eq. (11) in the following compact form: 
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In this way, the Pauli principle is mapped on the well-known property of matrix determinants: if any of 
two columns of a matrix coincide, its determinant vanishes. This Slater determinant approach may be 
readily generalized to N  fermions in N  (not necessarily lowest) single-particle states , ’, etc: 
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    (8.52) 

 Even though the Slater determinant form is extremely nice and compact (in comparison with 
direct writing of a sum of N! products, each of N ket factors), there are two major problems with using it 
for practical calculations: 

 (i) For the calculation of any bra-ket product (say, within the perturbation theory) we need to 
spell out each bra- and ket-vector as a sum of component terms. Even for a limited number of electrons 
(say N ~ 102 in a typical atom), the number N! ~ 10160 of terms in such a sum is impracticably large for 
any analytical calculation. 

 (ii) In the case of interacting fermions, Slater determinants do not describe the eigenvectors of 
the system; rather the stationary state is a superposition of such determinants - each for a specific 
selection of N states from the general set of single-particle states – that is generally different from N. 

These challenges make the development of a more general theory that would not use particle 
numbers (which are superficial for indistinguishable particles to start with) a must for getting any final 
results for multiparticle systems. 

 

 8.3. Second quantization 

The most useful  formalism for this purpose, that avoids particle numbering at all, is called the 
second quantization.17 Actually, we have already discussed a particular version of this formalism, for 

17 It was invented (first for photons and then for arbitrary bosons) by P. Dirac in 1927, and then modified in 1928 
for fermions by E. Wigner and P. Jordan. The term “second quantization” is rather misleading for the non-
relativistic applications we are discussing, but finds certain justification in the quantum field theory. 

Slater 
determinant 
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the a case of 1D harmonic oscillator’s excitations, in Sec. 5.4. As a reminder, we have used Eqs. (5.98) 
to define the “creation” and “annihilation” operators via the usual operators of coordinate and 
momentum, and then proved their key property (5.122), 

                   1ˆ,11ˆ 2/12/1†  nnnannna ,     (8.53) 

where n are the stationary (Fock) states of the oscillator. This property allows an interpretation of 
operators’ actions as the creation/annihilation of a single excitations of energy 0 - thus justifying the 
operator names. In the next chapter, we will show that such an excitation of an electromagnetic field 
mode may be considered as a massless boson with s = 1, called the photon. 

 In order to generalize this approach to arbitrary bosons, not appealing to a specific system such 
as the harmonic oscillator, we may use relations similar to Eq. (53) to define the creation and 
annihilation operators. The definition looks simple in the language of the so-called Dirac states, with 
ket-vectors 

          ,...,..., 21 jNNN ,     (8.54) 

where Nj are the state occupancies, i.e. the numbers of bosons in each single-particle state j. Let me 
emphasize that here indices 1, 2, …j,…, are the positions of each number in the Dirac ket vector, i.e. are 
the numbers of single-particle states (including their spin parts) rather than particles. Thus the very 
notion of individual particle numbers is completely (and for indistinguishable particles, very relevantly) 
absent from this formalism. Generally, the set of single-particle states participating in the Dirac state 
may be selected in an arbitrary way (provided that it is full and orthonormal),  

 ......
2211

2121 ,,,,
jj

j
'
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''

N'NN'NN'N...N...,NN...N...,NN  ,   (8.55) 

though for system of non- (or weakly) interacting bosons, using the stationary states of individual 
particles in the system under analysis are almost always the best choice.  

 Now we can define the particle annihilation operator as follows: 

              .,...1,...,,...,...,ˆ 21
2/1

21  jjjj NNNNNNNa    (8.56) 

Note that the pre-ket coefficient, similar to that in Eq. (53), guarantees that an attempt to annihilate a 
particle in an unpopulated state gives the non-existing (null) state: 

           0,...0,...,ˆ 21 jj NNa ,     (8.57) 

where symbol 0j means zero occupancy of j-th state. An alternative way to write Eq. (56) is 
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According to Eq. (4.65), the matrix element of the Hermitian conjugate operator †ˆ ja  is 

Dirac  
state 

Boson 
annihilation 

operator 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 8           Page 14 of 48 

                      
  ,...1

...,...1,...,,...,...,,

,...,...,ˆ,...,...,,,...,...,ˆ,...,...,

,2211

2/1

,2211

2/1

21

2/1

21

21212121

1...

1...

*†

j
j

j

'
j

'
j

'''
jj

'
j

''
jjjj

'
j

''

N'NN'NN'N

N'NN'NN'N

j

j

N

NN,NNNNNN

N,NNaNNNNNNaN,NN













  (8.59) 

meaning that 

           ,,...1,...,,1,...,...,,ˆ 21
2/1

21
†  jjjj NNNNNNNa    (8.60) 

in the total compliance with the first of Eqs. (53). In particular, this particle creation operator †ˆ ja  allows 

the description of the generation of a single particle from the vacuum (not null!) state ,...0,0 : 

            ,0,...1,...,0,00,...,0,...,0,0ˆ†
jjja      (8.61) 

and hence a product of such operators may create, from the vacuum, a multiparticle state with an 
arbitrary set of occupancies: 18 
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 Next, combining Eqs. (56) and (60), we get 

    ,,...,...,,,...,...,ˆˆ 2121
†

jjjjj NNNNNNNaa      (8.63) 

so that, just as for the particular case of harmonic oscillator excitations, operator  

         jjj aaN ˆˆˆ †       (8.64) 

conserves the numbers of particles in all single-particle states, and simultaneously “counts” their number 
in the j-th state. Acting by the creation-annihilation operators in the reverse order, we get 

              .,...,...,,1,...,...,,ˆˆ 2121
†

jjjjj NNNNNNNaa     (8.65) 

This result shows that for any state of a multiparticle system (which always may be represented as a 
linear superposition of Dirac states with different sets of  Nj), we can write 

       ,ˆˆ,ˆˆˆˆˆ ††† Iaaaaaa jjjjjj 



     (8.66) 

again in agreement with what we had for the 1D oscillator – cf. Eq. (5.101). According to Eq. (55), the 
creation and annihilation operators corresponding to different single-particle states do commute, so that 
Eq. (66) may be generalized as 

18 The resulting Dirac state is not an eigenstate of every multiparticle Hamiltonian. However, we will see below 
that for a set of non-interacting particles it is an eigenstate, and thus may be used in the basis for perturbation 
theories of systems of weakly interacting particles. 
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                ''
ˆˆ,ˆ †

jjjj Iaa 



 ,     (8.67) 

and that similar bosonic creation and annihilation operators commute, regardless of which states do they 
act upon:  

         .0ˆ,ˆˆ,ˆ †† 









j'jj'j aaaa      (8.68) 

Relations (66)-(68) are the mathematical expression of the independence of occupancies of different 
boson states. 

 As was mentioned earlier, a major challenge in the Dirac approach is to rewrite the Hamiltonian 
of a multiparticle system, that naturally carries particle numbers k (see, e.g., Eq. (22) for k = 1, 2), in the 
second quantization language, in which there are no these numbers. Let us start with single-particle 
components of such Hamiltonians, i.e. operators of the type 

         



N

k
kfF

1

ˆˆ .      (8.69) 

where all N operators kf̂  are similar, besides that each of them acts on one specific (k-th) particle, and N 

is the total number of particles in the system, that is naturally equal to the sum of single-particle state 
occupancies: 

        .
j

jNN       (8.70) 

The most important examples of such operators are the kinetic energy of N similar single particles, and 
their potential energy in an external field: 

     



N

k

k

m

p
T

1

2

2

ˆˆ ,    .)(ˆˆ
1




N

k
kuU r     (8.71) 

 In order to express a particle-separable operator of the type (69) in terms of the Dirac formalism, 
we need to return for a minute to the particle-number representations used in the beginning of this 
chapter. Instead of the Slater determinant (52), for bosons we have to write a similar expression, but 
without the sign changes (sometimes called the permanent): 

               









P N

j
j "'

N

NN
NN


operands 

2/1

1
1 ......

!

!...!...
,...,...  .   (8.72) 

Note again that the left-hand part of this relation is written in the Dirac notation (that does not 
use particle numbering), while in its right-hand part, just in relations of Secs. 1-2, particle numbers are 
coded with the positions of the single-particle states inside the ket-vectors, and the sum is over all 
different permutations of the states in the ket – cf. Eq. (10). (According to the elementary 
combinatorics,19 there are N!/(N1!...Nj!...) such permutations, so that  the coefficient before the sum 
ensures the proper normalization of the single-particle states.) Let us use Eq. (72) to spell out the 
following bra-ket of a system with (N -1) particles: 

19 See, e.g., MA Eq. (2.3). 
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 (8.73) 

where all non-specified occupation numbers in the corresponding positions of the bra- and ket-vectors 

are equal to each other. Each single-particle operator kf̂ , participating in the operator sum, acts on the 

bra- and ket-vectors of states  j and j’, respectively, in a certain (say, kth) position, giving the result that 
does not depend on the position number: 

            jj'j'jj'kj fff
kk

  ˆˆ
position in position n ththi

.  (8.74) 

Since in both permutation sets participating in Eq. (73), with (N - 1) vectors each, all positions are 
equivalent, we can fix the position (say, take the first one) and replace the sum over k by the 
multiplication by factor (N – 1). The fraction of permutations with the necessary bra-vector (with 
number j ) in that position is Nj/(N - 1), while that with the necessary ket-vector (with number j’) in the 
same position in Nj’/(N - 1). As the result, the permutation sum in Eq. (73) reduces to 

                         ,............
11

)1(
2 2

'
'  

 


NP NP
jj

jj "'"'f
N

N

N

N
N     (8.75) 

where our specific position k is now excluded from both the bra- and ket-vector permutations. Each of 
these permutations now includes only (Nj – 1) states j and (Nj’ – 1)  states j’, so that, using the state 
orthonormality, we finally arrive at a very simple result: 
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 (8.76) 

 Now let us calculate matrix elements of the following operator: 

        
',

ˆ†ˆ
jj

j'jjj' aaf .      (8.77) 

A direct application of Eqs. (56) and (60) shows that the only nonvanishing of them are 

                    '
2/1

''''' ,...,...,1...ˆ†ˆ,...1,...... jjjjjjjjjjjj fNNNNaafNN  .  (8.78) 

But this is exactly the last form of Eq. (76), so that in the basis of Dirac states, operator (69) may be 
represented as  

                
j'j

j'jjj' aafF
,

ˆˆˆ † .     (8.79) 

 This beautifully simple equation is the most important formula of the second quantization theory, 
and is essentially the Dirac-language analog of Eq. (4.59) of the single-particle quantum mechanics. 
Each term of the sum may be described by a very simple mnemonic rule: if an operator “connects” two 
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single-particle states j and j’, move the particle from state j’ into state j, and weigh the result with the 
corresponding single-particle matrix element. (One of the corollaries of Eq. (79) is that the expectation 
value of an operator whose eigenstates coincide with the Dirac states, is  

         ,,......ˆ,...... 
j

jjjjj NfNFNF     (8.80) 

with an evident physical interpretation as the sum of single-particle expectation values over all states, 
weighed by state occupancies.) 

 Proceeding to fermions, which have to obey the Pauli principle, we immediately notice that any 
occupation number Nj may only take two values, 0 or 1. In order to account for that, and also make the 
key equation (76) valid for fermions as well, the creation-annihilation operators are now defined by 
relations 

              ,,...0,...,,)1(,...1,...,,ˆ,0,...0,...,,ˆ 212121
)1,1(

jjjjj NNNNaNNa j   (8.81) 

              .0,...1,...,,ˆ,,...1,...,,)1(,...0,...,,ˆ 212121
†)1,1(†  

jjjjj NNaNNNNa j   (8.82) 

In these relations, symbol (J, J’) means the sum of all occupancy numbers in state positions from J to 
J’, including the border points: 

                ,),( 



J'

Jj
jNJ'J      (8.83) 

so that the sum participating in Eqs. (81) and (82) is the total occupancy of all states with the numbers 
below j. (The states have to be numbered in a fixed albeit arbitrary order.)  As a result, Eqs. (81)-(82) 
may be readily summarized in the verbal form: if an operator replaces the jth state occupancy with the 
opposite one (1 with 0, or vice versa), it also changes sign before the result if (and only if) the total 
number of particles in states with j’ < j  is odd. 

 One of corollaries of this (somewhat counter-intuitive) rule of sign alternation is that the sign of 
the ket-vector of a completely filled two-state system depends on how exactly it has been formed from 
the vacuum state. Indeed, if we start from creating the fermion in state 1, we get 

      ,1,11,1)1(0,1ˆ0,0ˆˆ,0,10,1)1(0,0ˆ 1
212

0
1

††††  aaaa   (8.84) 

while if the operator order is different, the result’s sign is opposite: 

      .1,11,1)1(1,0ˆ0,0ˆˆ,1,01,0)1(0,0ˆ 0
121

0
2

††††  aaaa   (8.85) 

Since the action of any of these operator products on any initial state rather than vacuum gives the null 
ket, we can write the following operator equality: 

      .0ˆ,ˆˆˆˆˆ ††††††
211221 




 aaaaaa     (8.86) 

It is straightforward to check that this result is valid for the Dirac vector of an arbitrary length, and does 
not depend on the occupancy of other states, so that we can always write 
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             0ˆ,ˆˆ,ˆ †† 














j'jj'j aaaa ;     (8.87) 

these equalities hold for j = j’ as well. On the other hand, the absolutely similar calculation shows that 
the mixed creation-annihilation operator products do depend on whether the states are different or not:20 

                jj'j'j Iaa ̂ˆ,ˆ † 






 .     (8.88) 

 These equations look very much like Eqs. (67)-(68) for bosons, “only” with the replacement of 
commutators with anticommutators. Since the core laws of quantum mechanics, including the operator 
compatibility (Sec. 4.5) and the Heisenberg equation (4.199) of operator evolution in time, involve 
commutators rather than anticommutators, so that one might think that all the behavior of bosonic and 
fermionic multiparticle systems should be dramatically different.  However, the difference is not as huge 
as one could expect, for one, a straightforward check shows that the sign factors in Eqs. (81)-(82) 
compensate those in the Slater determinant, and make the key relation (79) valid for the fermions as 
well. (Indeed, this is the very goal of the introduction of these factors.)  

As the simplest example, let us examine what does the second quantization formalism say about 
dynamics of non-interacting particles in the system whose single-particle properties we know well, 
namely two nearly-similar, coupled quantum wells – see Fig. 2.23. If the coupling (tunneling) between 
the wells is so small that the states localized in the wells are only weakly perturbed, in the basis of these 
states, the single-particle Hamiltonian of the system may be represented by 22 matrix (6.27). Selecting 
the origin of energy at the middle between energies of unperturbed states, so that coefficient a0 in Eq. 
(6.27) vanishes, we can reduce the matrix to 

        ,,h yx
z

z iaaa
aa

aa











 


σa     (8.89) 

with eigenvalues  

            .,
2/1222

zyx aaaaa  a     (8.90) 

Now following recipe (79), we can represent the Hamiltonian of the whole system of particles in terms 
of the creation-annihilation operators: 

      ,ˆ†ˆˆ†ˆˆ†ˆˆ†ˆˆ
22122111 aaaaaaaaaaaaH zz       (8.91) 

where †
2,1â and 2,1â are the operators of creation and annihilation of a particle localized in the 

corresponding quantum well. According to Eq. (64), the first and the last terms of the right-hand part of 
Eq. (91) describe particle energies in uncoupled wells, 

            ,ˆˆˆ,ˆˆˆ 22221111
†† NaaaNaaa zz       (8.92) 

20 A by-product of this calculation is a proof that operator (64) counts the number of particles Nj (now equal to 
either 1 or 0), just at it does for bosons.   
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while the sum of middle two terms is the second-quantization description of tunneling between the 
wells.  

 Now we can use the general Eq. (4.199) of the Heisenberg picture to find the equations of 
motion for the creation-annihilation operators. For example, 

         .ˆ†ˆ,ˆˆ†ˆ,ˆˆ†ˆ,ˆˆ†ˆ,ˆˆ,ˆˆ 22112121111111 















  aaaaaaaaaaaaaaaaHaai zz

  (8.93) 

Since the Bose and Fermi operators satisfy different commutation relations, one could expect the right 
hand part of this equation would be different for bosons and fermions. However, it is not so. Indeed, all 
commutators in the right-hand part of Eq. (93) have the following form: 

               .ˆˆˆˆˆˆˆˆ,ˆ †††
jj"j'j"j'jj"j'j aaaaaaaaa 



     (8.94) 

According to Eqs. (67) and (88), the first pair product of the operators may be recast as 

                     ,ˆˆˆˆˆ ††
jj'jj'j'j aaIaa         (8.95) 

where the upper sign pertains to bosons and the lower to fermions, while according to Eqs. (68) and 
(87), the very last pair product is 

               ,ˆˆˆˆ j"jjj" aaaa        (8.96) 

with the same sign convention. Plugging these expressions into Eq. (94), we see that regardless of the 
particle statistics, two last terms cancel, and we arrive at a universal (and generally very useful) 
commutation rule 

             jj'j"j"j'j aaaa ˆˆˆ,ˆ † 



 ,     (8.97) 

valid for particles of both kinds. As a result, the Heisenberg equation of motion for operator 1â , and the  

equation for 2â (that may be obtained absolutely similarly), are also statistics-independent:21 

                  
.ˆˆˆ

,ˆˆˆ

212

211

aaaaai

aaaaai

z

z












     (8.98) 

Thus we have got a system of coupled, linear differential equations that are  identical to 
equations for the c-number probability amplitudes of single-particle wavefunctions of a two-level 
system – see Eq. (2.201) and Problem 4.10. Their general solution is a linear superposition of  
exponents: 

                      .expˆ)(ˆ )(
2,12,1 




 tcta       (8.99) 

21 Equations of motion for creation operators 
†ˆ 2,1a are just the Hermitian-conjugates of Eqs. (98), and do not add 

any new information about system’s dynamics. 
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As usual, in order to find exponents  , it is sufficient to plug in a particular solution  
 tcta expˆ)(ˆ 2,12,1   into Eq. (98) and require that the determinant of the resulting homogeneous, linear 

system for “coefficients” (actually, time-independent operators) 2,1ĉ  equals zero. This gives us the 

following characteristic equation 

        0















iaa

aia

z

z ,     (8.100) 

with two roots  = i/2, where   2a/. Now plugging each of the roots, one by one, into the system 
of equations for 2,1ĉ , we can find these operators, and hence the general solution of system (98) for 

arbitrary initial conditions.  

Let us consider the simple case ay = az = 0 (meaning in particular that the well eigenenergies are 
exactly aligned), so that /2  a = ax; then the solution of Eq. (98) is 

             .
2

cos)0(ˆ
2

sin)0(ˆ)(ˆ,
2

sin)0(ˆ
2

cos)0(ˆ)(ˆ 212211

t
a

t
aita

t
ai

t
ata











  (8.101) 

Multiplying the first of Eqs. (101) by its Hermitian conjugate, and ensemble-averaging the result, we get 
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  (8.102) 

Let us consider the particular case when the initial state of the system is a Dirac state, i.e. has a 
definite number of particles in each well; in this case only two first terms in the right hand part are 
different from zero:22  

        .
2

sin)0(
2

cos)0( 2
2

2
11

t
N

t
NN





     (8.103) 

For one particle, initially placed in either well, this gives us our old result (2.185) describing quantum 
oscillations of the particle between two wells with frequency . However, Eq. (103) is valid for any set 
of initial occupancies; let us use it. For example, starting from two particles, with initially one particle in 
each well, we get N1 = 1, regardless of time. So, the occupancies do not oscillate, and no experiment 
may detect the quantum oscillations, though their frequency  is still formally present in the time 
evolution equations. This fact may be interpreted as the simultaneous quantum oscillations of two 
particles exactly in anti-phase. For bosons, we can go to even larger occupancies by preparing the 
system, for example, in the state with N1(0) = N, N2(0) = 0. Equation (103) says that in this case we see 
that the quantum oscillation amplitude increases N-fold; this is a particular manifestation of the general 
fact that bosons can be (and evolve in time) in the same quantum state. On the other hand, for fermions 
we cannot increase initial occupancies beyond 1, so that the largest oscillation amplitude we can get is if 
we initially fill just one well. 

22 For the second well’s occupancy, the result is complementary, N2(t) = N1(0)sin2t + N2(0)cos2t , giving in 
particular a good sanity check: N1(t) + N2(t) = N1(0) + N2(0) = const. 
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 The Dirac approach may be readily generalized to more complex systems. For example, an 
arbitrary system of quantum wells with weak tunneling coupling between the adjacent wells may be 
described by Hamiltonian 

              
j j'j

j'jjj'jjj aaaaH ,h.c. ˆˆˆ
,

††      (8.104) 

where symbol j,j’ means that the second sum is restricted to pairs of next-neighbor wells – see, e.g., 
Eq. (2.203) and its discussion. Note that this Hamiltonian is still a quadratic form of the creation-
annihilation operators, so the Heisenberg-picture equations of motion of these operators are linear, and 
its exact solutions, though possibly cumbersome, may be studied in detail. Due to this fact, Hamiltonian 
(104) is widely used for the study of some phenomena, for example the very interesting Anderson 
localization effect, in which a random distribution of eigenenergies j prevents particles within certain 
energy range from spreading to unlimited distances.23,24 

 

8.4. Perturbative approaches 

 The situation becomes much more difficult if the problem requires an account of direct 
interactions between the particles. Let us assume that the interaction may be reduced to that between 
pairs – as it is the case at their Coulomb interaction25 and most other interactions, so that it may be 
described with the following “pair-interaction” Hamiltonian  

                  ,),(ˆ
2

1ˆ

'
1',

intint 




N

kk
kk

k'kuU rr      (8.105) 

with the front factor of ½ compensating the double-counting of each particle pair. The translation of this 
operator to the second-quantization form may be done absolutely similarly to the derivation of Eq. (77), 
and gives a  similar (though naturally more bulky) result26 

       ,ˆˆˆˆ
2

1ˆ
,,,

int
††

l'lj'j
ll'j'jjj'll' aaaauU      (8.106) 

where the two-particle matrix elements are defined similarly to Eq. (74): 

         .ˆint l'lj'jjj'll' uu       (8.107) 

 Even in this case, the resulting Heisenberg equations of motion are nonlinear, so that solving 
them and calculating observables from the results is usually impossible, at least analytically. The only 

23 For a review of the 1D version of this problem, see, e.g., J. Pendry, Adv. Phys. 43, 461 (1994). 
24 To complete this section, I have to note, at least in passing, a different form of the second-quantization 
formalism, based on the so-called field operators.  It will be more natural for me to discuss it in the next chapter. 
25 Another important example is the so-called Hubbard model in which there may be only two particles on each of 
localized sites, with the negligible interaction of particles on different sites – which are only connected by the 
next-neighbor tunneling – see Eq. (104). 
26 The only new feature is a specific order of the indices of the creation operators. Note the mnemonic rule of 
writing this expression, similar to that for Eq. (79): each term corresponds to moving a pair of particles from 
states l and l’ to states j’ and j, factored with the corresponding two-particle matrix element (107). 
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case when some general results may be obtained is the weak interaction limit. In this case the 
unperturbed Hamiltonian contains only single-particle terms such as in Eqs. (71), so we can always (at 
least conceptually :-) find such a basis of orthonormal single-particle states j in which that Hamiltonian 
is diagonal in the Dirac representation: 

              
j

jjj aaH ˆˆˆ †)0()0(  .     (8.108) 

Now we can use Eq. (6.13) in this basis to calculate the interaction energy as a first-order perturbation: 
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  (8.109) 

Since, according to Eqs. (81)-(82), the Dirac states with different occupancies are orthogonal, the last 
average yields nonvanishing results only for three particular subsets of the indices: 

 (i) j  j’, l = j, and l’ = j’. In this case the 4-operator product in Eq. (109) equals ,ˆˆˆˆ ††
jj'j'j aaaa and 

applying the commutation rules twice, we can bring it to the so-called normal ordering, with each 
creation operator standing to the right of the corresponding annihilation operator, thus forming the 
particle number operator (64): 

   j'jj'j'jjj'j'jjj'jj'jjj'j'j NNaaaaaaaaaaaaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ †††††††† 




 ,  (8.110) 

with the similar sign of the final result for bosons and fermions.  

 (ii) j  j’, l = j’, and l’ = j. In this case the 4-operator product equals j'jj'j aaaa ˆˆˆˆ †† , and bringing it to 

the form j'j NN ˆˆ  requires only one commutation: 

        j'jj'j'jjj'j'jjj'jj'j NNaaaaaaaaaaaa ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ †††††† 




 ,   (8.111) 

with the upper sign for bosons and lower sign for fermions. 

 (iii) All indices equal to each other, giving jjjjll'j'j aaaaaaaa ˆˆˆˆˆˆˆˆ ††††  . For fermions, such operator 

(that “tries” to create or kill two particles in a row, in the same state) immediately gives the null vector. 
In the case of bosons, we may use Eq. (66) to commute the internal pair of operators, getting 

       )ˆˆ(ˆˆˆˆˆˆˆˆˆˆ †††† INNaIaaaaaaa jjjjjjjjjj 




  .   (8.112) 

Note, however, that this formula formally covers the fermion case as well (always giving zero). As a 
result, Eq. (109) may be rewritten in the following universal form: 
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   (8.113) 
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 The consequences of this result are very different for bosons and fermions. In the former case, 
the last term usually dominates, because the matrix elements (107) are typically the largest when all 
basis functions coincide. Note that this term allows a very simple interpretation: the number of the 
diagonal matrix elements it sums up for each state (j) is just the number of interacting particle pairs 
residing in that state.  

In contrast, for fermions the last term is zero, and the interaction energy is the difference of two 
terms inside the first parentheses. In order to spell them out, let us consider the case when there is no 
direct spin-orbit interaction. Then vectors j of the single-particle state basis may be represented as 
products ojmj of their orbital and spin orientation parts. (Here, for brevity, I am using m instead of  
ms.) For spin-½ particles (say, electrons), these orientations m may equal only +1/2 and -1/2; in this case 
the spin part of the matrix element ujj’jj’ equals  

      m'mm'm  ,     (8.114) 

where, as in the general Eq. (107), the position of a particular vector in a product codes the particle 
number. Now since spins of different electrons are defined in different Hilbert spaces, we may move 
their vectors around to get 

           1
21
 m'm'mmm'mm'm ,   (8.115) 

for any pair of j and j’. On the other hand, ujj’j’j is proportional to  

       mm'mm'm'mmm'm'm 
21

.   (8.116) 

In this case, it is convenient to rewrite Eq. (113) in the coordinate representation, using single-
particle wavefunctions called spin-orbitals  

             
jjj moj  rrr  )( .    (8.117) 

They differ from the “usual” orbital wavefunctions of the type (5.19) only by that their index j should be 
understood as the set of the orbital state index and the spin orientation index m.27 Also, due to the Pauli-
principle restriction of numbers Nj to either 0 or 1, Eq. (113) may be also rewritten without the 
occupancy numbers, with the understanding that the summation is extended only over the pairs of 
occupied states. As a result, Eq. (113) becomes 
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  (8.118) 

If, for a system of 2 electrons, we limit the summation to 2 states (j, j’ = 1, 2), we get the result 
absolutely similar to Eqs. (44)-(45), with the minus sign in Eq. (44). Hence, Eq. (118) may be 
considered as the generalization of the direct and exchange interaction balance picture to an arbitrary 
number of orbitals and an arbitrary total number N of electrons. Note, however, that this equation cannot 

27 Constructs (117) are also close to spinors (14), besides that the spin s of a single particle is fixed, so that the 
spin-orbital should be indexed by spin’s orientation m  ms rather than the full spin s. Also, the orbital index 
should be clearly distinguished from j (which, again, is the set of that orbital index and m). This is why I believe 
that the frequently met notation of spinors as j,s(r) may lead to confusion.  
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correctly describe the energy of the excited singlet state, corresponding to the plus sign in Eq. (44).28 
The reason is that the description of entangled spin states, given by Eq. (19) and the last term of Eq. 
(21), require linear superpositions of different Dirac states, and hence not covered by our assumption 
(108). 

Now comes a very important fact: the approximate result (118), added to the sum of unperturbed 
energies j

(0), equals the sum of exact eigenenergies of the so-called Hartree-Fock equation:29 
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 (8.119) 

where u(r) is the external-field potential acting on each particle separately – see Eq. (71). An advantage 
of this equation in comparison with Eq. (118) is that it allows the (approximate) calculation of not only 
the energy of the system, but also the corresponding spin-orbitals, taking into account the electron-
electron interaction. 

 In the limit when the single-particle wavefunction overlaps are small and hence the exchange 
interaction is negligible, the last term in square brackets may be ignored, term j(r) may be taken out of 
the integral, and becomes similar to the single-particle Schrödinger equation with the following effective 
potential 

         



jj'

j'j r'd''u'uuuu 3
int'dirdiref )(),()()(),()()( * rrrrrrrr  .  (8.120) 

This is the so-called Hartree approximation - that gives reasonable results for some systems.30 However, 
in dense electrons systems (such as typical atoms, molecules, and condensed matter) the exchange 
interaction, described by the second term in the square brackets of Eq. (119), is typically of the order of 
30% of the direct interaction, and frequently this effect cannot be ignored. In this case, Eq. (119) is an 
integro-differential rather than just differential equation.  

There are efficient methods of numerical solution of such equations, typically based on iterative 
methods, though they require large memory and CPU-cycle resources even for systems of ~102 
electrons.31 This is why the Hartree-Fock approximation is the de-facto baseline of all so-called ab-initio 

28 Note that due to condition j’  j, and Eq. (116), the exchange interaction is limited to electron state pairs with 
the same spin direction - again in a good correspondence with the triplet states (like  or ) of a two-electron 
system, in which the contribution of Eex (8.45b) to the total energy is also negative. 
29 This equation was suggested in 1929 by D. Hartree for the direct interaction, and extended to the exchange 
interaction by V. Fock in 1930. In order to verify its equivalence to Eq. (118), it is sufficient to multiply all terms 
of Eq. (119) by *j(r), integrate them over all r space (so that the right-hand part would give j), and then sum 
these single-particle energies over all occupied states  j. 
30 An extreme expression of the Hartree approximation is the very simple Thomas-Fermi model of heavy atoms 
(with the atomic number Z >> 1), in which the gradient of the electrostatic potential is also neglected, i.e. the 
atomic electrons are treated essentially as an ideal Fermi gas – see SM Chapter 3. 
31 Surprisingly, this is sufficient to describe, with reasonable accuracy, many properties of condensed matter, by 
breaking it to similar elementary spatial cells (say, Bravais cells of crystals), with cyclic boundary conditions and 
a limited number of electrons in each cell.  
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(“first-principle”) calculations in condensed matter physics and quantum chemistry.32 In departures from 
this baseline, there are two opposite trends. For larger accuracy (and typically smaller systems), several 
“post-Hartree-Fock methods”, notably including the configuration interaction  method,33 that are more 
complex but may provide higher accuracy, have been developed. 

 There is also a strong opposite trend of extending ab-initio methods to larger systems, while 
sacrificing the result accuracy and reliability. This trend is currently dominated by the Density 
Functional Theory,34 universally known by its acronym DFT. In this approach, the equation solved for 
each eigenfunction j(r) is a differential, Schrödinger-like Kohn-Sham equation  
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and n(r) is the total electron density in a particular point, calculated as 

            .)()()( *
j

jjn rrr       (8.123) 

The effective exchange-correlation potential uXC(r) (that differs from the genuine exchange 
potential, participating in Eq. (121), by the inclusion of the term with j = j’) is calculated in various 
approximations, most valid only asymptotically in the limit when the electron number is high. The 
simplest of them is the Local Density Approximation (LDA) in which the effective exchange potential at 
each point is a function only of the electron density (123) at the same point, taken from the theory of a 
uniform gas of free electrons.35 Another simplification, that dramatically cuts the computing resources 
necessary for systems of relatively heavy atoms, is the exclusion of the filled internal electron shells (see 
Sec. 3.7) from the explicit calculations, because the shell states are virtually unperturbed by the valence 
electron effects involved in typical atomic phenomena and chemical reactions. In this approach, the 
Coulomb field of the shells, described by fixed, pre-calculated and tabulated pseudo-potentials, added to 
that of the nuclei.  Unfortunately, because of lack of time, for details I have to refer the reader to 
specialized literature.36  

32 See, e.g., A. Szabo and N. Ostlund, Modern Quantum Chemistry, McGraw-Hill, 1989. 
33 That method, in particular, allows the calculation of proper linear superpositions of the Dirac states (such as the 
excited singlet state for N = 2, discussed above) which are missing in the generic Hartree-Fock approach.  
34 It was developed by W. Kohn and coauthors in the mid-1960s, and eventually (in 1998) awarded with a Nobel 
prize in chemistry. 
35 For a uniform, degenerate Fermi-gas of electrons (with the Fermi energy F >> kBT), the exchange potential 
may be calculated analytically, giving uex = (3/4)e2kF/40, where kF is the Fermi-surface wave number that 
defines both the Fermi energy F = (kF)2/2m and the electron density (per unit volume) n = 2(4/3)kF

3/(2)3  
kF

3/32. 
36 See, e.g., G. te Velde et al., J. Comp. Chem. 22, 931 (2001), and/or M. D. Segall et al., J. Phys. – Cond. Matt. 
14, 2717 (2002), and references therein. 
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Let me, however, emphasize that despite the wide use of the DFT,37 and its undisputable 
successes in describing some experimental data, it has problems. For me personally, its largest 
conceptual deficiency is the incorporation of the absolutely unphysical Coulomb interaction of an 
electron with itself (by dropping condition j’  j). As a result, existing DFT packages require substantial 
artificial tinkering to use them for description of such processes as single-electron transfer.38 A little bit 
light-heartedly (but still correctly), one may say that an advanced DFT software package, run on a huge 
supercomputer, cannot be used to calculate the correct energy spectrum of a hydrogen atom – a century 
after this had been done by Niels Bohr on a slip of paper!  

 

8.5. Quantum computation and cryptography 

 Now I have to review the emerging fields of quantum computation and encryption.39 These fields 
are currently the subject of a very intensive research effort, which has brought (besides much hype :-) a 
few results of genuine importance for quantum mechanics. My coverage, by necessity short, will 
emphasize these fundamental results, referring the reader interested in details to special literature.40 
Because of the active stage of the fields, I will also provide quite a few references to recent publications, 
making the style of this section closer to a brief research review than to a part of a textbook. 

Presently, the work on quantum computation and encryption is focused on systems of spatially-
separated (and hence distinguishable) two-level systems - in this context, commonly called qubits.41 
Due to this distinguishability, the issues that were the focus of the past few sections (including the 
benefits of the second quantization) are irrelevant here. On the other hand, systems of distinguishable 
qubits have some interesting properties that had not been yet discussed in this course.  

First of all, a system of N >> 1 qubits may contain much more information than the N classical 
bits – which is the maximum information capacity of N classical bistable systems.  Indeed, according to 
the discussions in Chapter 4, an arbitrary pure state of a single qubit may be represented by its ket vector 
(4.37) – see also Eq. (5.1): 

   22111
uu

N
 


,     (8.124) 

where {u} is any orthonormal two-state basis. In the quantum information theory, it is natural and 
common to employ, as uj, the eigenstates aj of the observable A that is eventually measured in the 
particular physical implementation of the qubit - say, a certain spatial component of spin-½ particle, etc. 
It is also common to write the kets of these base states as 0 and 1, so that Eq. (124) takes the form42 

37 This popularity is enhanced by the availability of several advanced DFT software packages, some of them (such 
as SIESTA, http://icmab.cat/leem/siesta/) in public domain.  
38 See, e.g., N. Simonian et al., J. Appl. Phys. 113, 044504 (2013). 
39 Since these fields are much related, they are often referred to together, under the (somewhat misleading) title of 
“quantum information”.  
40 Despite many recent book titles in the field, one of its first surveys, by M. Nielsen and I. Chuang, Quantum 
Computation and Quantum Information, Cambridge U. Press, 2000, is perhaps still the best one. 
41 In some texts, the term qubit (or  “Qbit”, or “Q-bit”) is used instead for the information contents of a two-level 
system – very much like the classical bit of information (in this context, frequently called “Cbit” or “C-bit”) 
describes the information contents of a classical bistable system – see, e.g., SM Sec. 2.2. 
42 The slightly odd aspect of this notation is that at the Bloch sphere representation (Fig. 5.1), the North Pole state 
(that is traditionally denoted as  in other fields of quantum mechanics) is taken for 0, while the South Pole state 
 for 1, so that Eqs. (5.4) take the form  a0 = cos(/2), a1 = sin(/2)exp{i}. 
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where in the rest of this chapter, letter j will be used to denote an integer equal to either 0 or 1. Hence 
any pure state   of a qubit is completely defined by two complex c-numbers aj, i.e. by 4 real numbers. 
Moreover, due to the normalization condition a12 + a22 = 1, we need just 3 independent real numbers – 
say, the Bloch sphere coordinates  and   (see Fig. 5.1), plus the common phase , which becomes 
important when we consider coherent states of several qubits – see Eq. (5.3). 

Now, if we have a system of 2 qubits, its arbitrary pure state (4.37) may be represented as a sum 
of 22 = 4 terms,43 
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with 4 complex coefficients, i.e. 42 = 8 real numbers, subject to just one normalization condition44 
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An evident generalization of Eqs. (125)-(126) to an arbitrary pure state of an N-qubit system is 
given by a sum of 2N terms: 
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including all possible combinations of 0s and 1s inside the ket, so that the state is fully described by 2N 
complex numbers, i.e. 22N = 2N+1 real numbers, with only one constraint, similar to Eq. (127),  imposed 
by the normalization condition. Let me emphasize that this exponential growth of the information 
contents would not be possible without the qubit state entanglement. Indeed, in the particular case when 
qubit states are unentangled (separable),  

                   NN
 ...21 ,     (8.129) 

where each n is described by an equality similar to Eq. (125) with its individual expansion 
coefficients, the system state description requires only 3N real numbers - e.g., N sets {, , }.  

However, it is wrong (as it is sometimes done in popular reviews) to project this exponential 
growth of information contents directly on the capabilities of quantum computation, because this 
process has to include the output information readout, i.e. qubit state measurements. Due to the 
fundamental intrinsic uncertainty of quantum systems, the measurement of a single qubit even in a pure  
state (125) generally gives uncertain results, with probabilities W0 = a02 and W1 = a12. In order to 
comply with the general notion of digital computation, a quantum computer has to provide certain (or 

43 Here and in most instances below I use the same shorthand notation as was used in the beginning of this chapter 
– cf. Eq. (8.1). In this short form, qubit’s number is coded by the order of its state index inside the single ket-
vector, while in the long form, such as in Eq. (129), it is coded by the order of the ket-vector. 
44 It follows from the requirement that the sum of two probabilities Wj =  jP̂  (where jjPj ˆ  is the 

corresponding projection operator, see Sec. 4.5) to find one of qubits in one of its two possible states j, equals 1. It 
is remarkable that the application of this condition to any of the qubits results in the same Eq. (127). 
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virtually certain) results, and hence probabilities Wj have to be very close to either 0 or 1, so that before 
the measurement, each qubit has to be in a basis state - either 0 or 1. This means that the computational 
system of N qubits, just before the final readout, has to be one of the basis states 

                        NNN
jjjjjj ...... 2121  ,    (8.130) 

which is a very small subset even of the set (129) of all unentangled states, and whose maximum 
information contents in just N classical bits. 

Now the reader may start thinking that this constraint strips quantum computations of any 
advantages over their classical counterparts, but this view is also superficial. In order to show that, let us 
consider the scheme of the most frequently explored type of quantum computation, shown in Fig. 2.45  

 

 

 

 

 

 

 

 

 

 

Here each horizontal line (sometimes called a “wire”46) corresponds to a single qubit, tracing its 
time evolution in the same direction as at the usual time function plots: from left to right. This means 
that the left column in of ket-vectors describes the initial state of qubits,47 while the right column out 
describes their final (pre-detector) state. The box labeled U represents the qubit evolution in time due to 

45 Numerous modifications of this baseline scheme have been suggested, for example with the number of output 
qubits different from that of input qubits, etc. Some other options are discussed in the end of this section. 
46 The notion of “wires” stems from the similarity between these diagrams and the drawings used to describe 
classical computation circuits (see, e.g., Fig. 3a below); in the latter case the lines may be indeed understood as 
physical wires connecting physical devices: logic gates and/or memory cells. In this context note that classical 
computer components also have nonvanishing time delays, so that even in this case the left-to-right device 
ordering is useful to indicate the timing of (and frequently the causal relation between) the signals. 
47 As we know from Chapter 7, the preparation of pure state (125) is (conceptually :-) straightforward. Placing a 
qubit into a weak contact with an environment of temperature T << /kB, where  is the difference between 
energies of eigenstates 0 and 1, we may achieve its relaxation into the lowest-energy state. (Otherwise, the 
relaxation may be to one of states with equal, or nearly-equal energies, combined with its measurement - see Fig. 
7.8 and its discussion.) Then, if the qubit must be set into the opposite state, it may be driven there by the 
application of a pulse of a proper external classical “force”. For example, if actual spin-½ particles are used as 
qubits, a constant magnetic field may be applied in the [x, y] plane for a half-period of the torque-induced spin 
precession – see Fig. 5.1c. However, for most qubit implementations, the basis state reversal using a half-period 
of rf-induced Rabi oscillations (Sec. 6.5) is more convenient. 

Fig. 8.2. The baseline scheme of quantum computation. 
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their specially arranged interactions between each other and/or external drive “forces”. Besides these 
forces, during this evolution the system is supposed to be isolated from the dephasing and energy-
dissipating environment, so that it may be described by a unitary operator defined in the 2N-dimensional 
Hilbert space of N qubits: 

           
inout

ˆ  U .     (8.131) 

With the condition that the input and output states have the simple form (130), this equality reads 

                    inin2in1outout2out1 ... ˆ... NN jjjUjjj  .   (8.132) 

The art of quantum computer design is selecting such unitary operators Û  that would: 

- satisfy Eq. (132), 
- be physically implementable,  
- enable substantial performance advantages of the quantum computation over its classical 

counterpart of similar functionality, at least for some digital functions (algorithms).   

 I will have time to demonstrate the possibility of such advantages on just one, perhaps the 
simplest example – the so-called Deutsch problem.48 Let us consider the family of single-bit classical 
Boolean functions jout = f(jin). Since both j are Boolean variables, i.e. may take only values 0 and 1, there 
are evidently only 4 such functions: 

 

        

(8.133) 

 

 

Of them, functions f1 and f4, whose values are independent of their arguments, are called constants, 
while functions f2 (called “YES” or “IDENTITY”) and f3 (“NOT” or “INVERSION”) are called 
balanced. The Deutsch problem is to determine the class of a single-bit function, implemented as a 
“black box”, as being either constant or balanced, using just one experiment.  

Classically, this is clearly impossible, and the simplest way to perform the function classification 
involves two similar black boxes f – see Fig. 3a.  

  

 

 

 

 

 

48 Named after D. Deutsch, whose 1985 paper (motivated by an inspirational but not very specific publication by 
R. Feynman in 1982) launched the whole field of quantum computation. 

f f(0) f(1) class F f(1)-f(0) 
f1 0 0 constant 0 0 
f2 0 1 balanced 1 1 
f3 1 0 balanced 1 -1 
f4 1 1 constant 0 0 

(a)               (b) 
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Fig. 8.3. The simplest (a) classical and (b) quantum ways to classify a single-bit Boolean function f.
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This solution uses the so-called exclusive-OR (for short, XOR) gate whose output is described by 
the following function F of its two Boolean arguments j1 and j2: 

      








.  if1,
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In the circuit shown in Fig. 3a, the gate produces output  

)1()0( ffF  ,     (8.135) 

equal to 1 if f(0)  f(1), i.e. if function f is balanced, and 0 in the opposite case - see the 4th column in 
Eq. (133). 49 

On the other hand, let us assume that all four functions f may be implemented quantum-
mechanically, for example as a unitary transform acting on two qubits (Fig. 4a), and acting as follows 
each of basis components j1j2  j1j2 of the general input state (126): 

               )(ˆ
12121 jfjjjjf  ,     (8.136) 

where f  is any of the classical Boolean functions defined by Eq. (133).   

 

 

 

 

 

 

 

In the particular case when f  is the YES function: f(j) = f2(j) = j, gate f  is reduced to the so-
called CNOT gate - a key ingredient of other quantum computation schemes, performing transform 

           12121
ˆ jjjjjC  .                                  (8.137a) 

Let us spell out this rule for all four possible input qubit combinations: 

  1011ˆ,1110ˆ,0101ˆ,0000ˆ  CCCC .            (8.137b) 

In plain English, this means that acting on basis states j1j2, the CNOT gate leaves the state of first, 
source qubit (shown by the upper lines in Fig. 4) intact, but flips the state of the second, target qubit if 
the first one is in the basis state 1. In even simpler words, the state j1 of the source qubit controls the 
NOT function acting on the target qubit – hence the gate’s name CNOT (the semi-acronym of 
“Controlled NOT”). 

49 Alternatively, we may perform two sequential experiments on the same black box f, first recording and then 
recalling their results. 

(a)                              (b) 

Fig. 8.4. Two-qubit quantum gates: (a) 
two-qubit function f and (b) its particular 
case C (CNOT), and their actions on the 
basis states.
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For the quantum function (136), the Deutsch problem may be solved within the general scheme 
shown in Fig. 2, with the particular structure of the unitary-transform box U spelled out in Fig. 3b, 
which involves just one implementation of the function.  Here the singe-qubit quantum gate H  
symbolizes the so-called Hadamard (or “Walsh-Hadamard“) transform50 whose linear operator is 
defined by the following actions on qubit’s basis states: 

    10
2

1
1ˆ,10

2

1
0ˆ  HH ,   (8.138) 

- see also the 4 left state labels in Fig. 3b.51 On the Bloch sphere (Fig. 5.1), and in the usual spin-½ 
notation, Eqs. (138) correspond to the transfer of the representing point from the North Pole’s state , 
i.e. one of the eigenstates of matrix z, to one of equatorial states, , i.e. one of the eigenstates of 
matrix x, and from the South Pole state  to the another equatorial state, , see Eq. (4.122). However, 
a /2-rotation in the [x, z] plane would be a poor interpretation of this function. Indeed, since its operator 
has to be linear (to be physically realistic), it needs to perform action (138) on the basis states even 
when they are parts of  an arbitrary linear superposition – as they are, e.g., for the two right Hadamard 
gates in Fig. 3b. For example, as immediately follows from Eq. (137) and operator’s linearity,  
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Absolutely similarly, we may get52 

        11ˆˆ HH .               (8.139b) 

Due to this reason, a better interpretation of the Hadamard transform is a -rotation about the axis that 
bisects the angle between axes x and z.  

 Now let us carry out an analysis of the “circuit” shown in Fig. 3b, minding all the time the 
operator linearity, and the fact that the transformation rules (136)-(138) are only applicable to basis kets 
of the initial (“input”) state vector. In particular, taking into account that according to Fig. 3b, the input 
states of gate f  in this particular circuit are described by Eqs. (138), its output state’s ket is 
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Now we may apply Eq. (136) to each of the basis kets to get: 
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 (8.141) 

50 In order to exclude any chance of confusion between the Hadamard transform’s operator Ĥ  and the 

Hamiltonian operator Ĥ , I have typeset them using different fonts. 
51 Note that according to Eq. (138), the operator Ĥ does not belong to the limited class Û described by Eq. (132). 
52 Since states 0 and 1 form a full basis of the single qubit, Eqs. (139) may be summarized as an operator 

equality: Îˆ 2 H . 
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Note that the expression in the first parentheses, characterizing the state of the target qubit, is equal to 
(0 - 1)  (-1)0 (0 - 1) if f(0) = 0 (and hence 0f(0) = 0 and 1f(0) = 1), and to (1 - 0)  (-1)1(0 - 
1) in the opposite case f(0) = 1, so that both cases may be described in one shot by rewriting the 
parentheses as (-1)f(0)(0 - 1). The second parentheses is absolutely similarly controlled by the value of 
f(1), so that the state of the system at the output of gate f  is unentangled again: 

                     ,10
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1ˆ0ˆˆ )1()0(  Ffff HH  (8.142) 

where the last transition has used the fact that the Boolean function F, defined by Eq. (135), equals to 
[f(1) – f(0)] – compare the last two columns in Eq. (133). Since the common sign (i.e. the common 
phase shift by ) is inconsequential, it may be prescribed to any of the component ket-vectors – for 
example to that of the target qubit, as shown by the third pair of state labels in Fig. 3b.  

 This intermediate result is already rather remarkable. Indeed, it shows that, despite the 
impression one could get from Fig. 4, gates f and even C, being “controlled” by the source qubit, may 
change that qubit’s state as well! This fact (partly reflected by the vertical direction of the control lines 
in Figs. 3, 4, symbolizing the same stage of system’s evolution in time) shows how careful one should 
be interpreting quantum-computational “circuits”. 

At the second stage of the circuit shown in Fig. 3b, the qubit components of state (142) are fed 
into one more pair of Hadamard gates, whose outputs therefore are 
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Now using Eqs. (138) again, we see that the output state ket-vectors of the source and target qubits are, 
respectively,  
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.    (8.144) 

Since, according to Eq. (135), the Boolean function F may take only values 0 or 1, the final state of the 
source qubit is always one of its basis states j, namely the one with j = F. Its measurement (see Fig. 2) 
immediately tells us whether function f , participating in Eq. (136), is constant or balanced.53 

Thus, the quantum circuit shown in Fig. 3b indeed solves the Deutsch problem in one shot. 
Reviewing our analysis, we may see that this is possible because the unitary transform performed by 
gate f is applied to quantum superpositions (138) rather than to the basis states. Due to this trick, the 
quantum state components depending on f(0) and f(1) are processed simultaneously, in parallel. This 
quantum parallelism may be extended to circuits with many (N >> 1)  qubits and, for some tasks, 
provide a dramatic performance increase – for example, reducing the necessary circuit component 
number from O(exp{N}) to O(Np), where p is a finite (and not very big) number.  

53 This means that the last Hadamard transform of the target qubit (i.e. the Hadamard gate shown in the lower 
right corner of Fig. 3b) is not necessary for the Deutsch problem solution - though it should be included if we 
want the whole circuit to satisfy the general condition (132).  
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However, this efficiency comes at a high price. Indeed, let us discuss the physical 
implementation of quantum gates, starting from the Hadamard gate, which performs a single-qubit 
transform - see Eq. (138). With the linearity requirement, its action on the arbitrary state (125) should be 

           ,1
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meaning that the state expansion coefficients in the end (t = T) and beginning (t = 0) of the qubit 
evolution in time have to be related as 
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This task may be again performed using the Rabi oscillations, which were discussed in Sec. 6.5, 
i.e. by applying to the qubit (a two-level system), for a limited time period T, a weak sinusoidal external 
signal of frequency  equal to the intrinsic quantum oscillation frequency nn’ defined by Eq. (6.85). A 
perturbative analysis of the Rabi oscillations was carried out in Sec. 6.5, even for nonvanishing (though 
small) detuning  =  - nn, but only for the particular initial conditions when at t = 0 the system was in 
one on the basis states (there labeled as n’), i.e. another state (there labeled n) was empty. For our 
current purposes we need to find coefficients a0,1(t) of expansion (125) for arbitrary initial conditions 
a0,1(0), subject only to the time-independent normalization condition  a02 + a12 = 1. For the case of 
exact tuning,  = 0, the solution of Eqs. (6.94) is elementary, and gives, instead of Eq. (6.102),54 the 
following solutions: 
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   (8.147) 

where  is the Rabi oscillation frequency (6.101), in the exact-tuning case proportional to amplitude A 
of the external rf drive A = Aexp{i}, while  is the phase of the driving signal – see Eqs.  (6.86)-
(6.87). Comparing these expressions with Eqs. (146), we see that for t = T = /4 and  = /2 they 
“almost” coincide, besides the opposite sign of a1(T).  

Conceptually the simplest way to correct this deficiency is to follow the rf “/4-pulse”, just 
discussed, by a short dc “-pulse” of duration T’ = /, which temporary creates an small additional 
energy difference  between basis states 0 and 1. According to the basic Eq. (1.61), such difference 
creates an additional phase difference T’/ between the states, equal to  for the “-pulse”.  

Another way (that may be also useful for two-qubit operations) is to use another, auxiliary 
energy level E2 whose distances from the basic levels E1 and E0 are significantly different from the 
difference (E1 – E0) – see Fig. 5a. In this case, the weak external rf field tuned to any of 3 potential 
quantum transition frequencies nn’  (En- En’)/  initiates such transitions between the corresponding 
states only, with a negligible perturbation of the state not involved in this transition. Such transitions 
may be again described by Eqs. (147), with the appropriate index changes. For the Hadamard transform 
implementation, it is sufficient to apply (after the already discussed /4-pulse of frequency 10, and with 

54 To comply with our current notation, coefficients an’ and an of Sec. 6.5 should be replaced with a0 and a1. Also 
note that their definition (6.82) implies that the trivial time evolution (6.81) of unperturbed qubits has been 
already excluded from these expansion coefficients. 



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 8           Page 34 of 48 

the initially empty level E2), an additional -pulse of frequency 20, with any phase . Indeed, according 
to  the first of Eqs. (147), with the due replacement a1(0)  a2(0) = 0, such pulse flips the sign of 
coefficient a0(t), while coefficient a1(t), not involved in this additional transition, remains unchanged. 

 

 

   

 

 

 

 

 

 Now let me describe the conceptually simplest (though, for some qubit types, not practically 
most convenient) scheme for the implementation of the CNOT gate, whose action is described by a 
linear unitary operator satisfying Eq. (137). For that, evidently, qubits have to let interact for some time 
T. As was repeatedly discussed in two past chapters, in most cases such interaction of two subsystems is 
bilinear – see, e.g., Eq. (6.148). For qubits, i.e. two-level systems, each of the component operators may 
be represented by a 22 matrix in the basis of states 0 and 1. According to Eq. (4.105), such matrix may 
be expressed as a linear combination (c0I + c), where c0 and three Cartesian components of vector c 
are c-numbers. Let us take such bilinear interaction Hamiltonian in the simplest form 

        
   



 


otherwise,        ,0

,0for  ,ˆˆˆ
21

int

Tt
tH zz 

    (8.148) 

where the upper index is the qubit number, and   is a c-number constant.55 According to Eq. (4.175), 
by the end of the interaction period, this Hamiltonian produces the following unitary transform: 
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Since in the basis of unperturbed two-bit states j1j2 the product operator    21 ˆˆ zz  is diagonal, so is the 
unitary operator (149), with the following action on the basis states: 

        ,expˆ
21

)2()1(
21int jjijjU zz      (8.150) 

55 The assumption of simultaneous time independence of the basis state vectors and the interaction operator 
(within the time interval 0 < t < T) is possible only if the basis state energy difference  of both qubits is exactly 
the same. For this case, the simple physical explanation of the time evolution (149) follows from Fig. 8.5, which 
shows the spectrum of the total energy E = E1 + E2 of the two-bit system. In the absence of interaction, the 
energies of two basis states, 01 and 10, are equal, enabling even a weak qubit interaction to cause their 
substantial evolution in time - see Sec. 6.7. If the qubit energies are different (Fig. 5c), the interaction 
may still be reduced, in the rotating-wave approximation, to Eq. (149), by compensating the energy 
difference (1 - 2) with an external rf signal of frequency  =   (1 - 2)/ - see Sec. 6.5. 

Fig. 8.5. Energy-level schemes used for unitary transformations of (a) single qubits and (b, c) two-qubit systems. 

0

1

2

0E

20 21

10
1E

2E

00

10,01

11



(a)       (b)        (c) 


00

01

11

21

10
21 





Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 8           Page 35 of 48 

where    -T/, and z are the eigenvalues of the Pauli matrix z for the basis states of the 
corresponding qubit: z  = +1 for j = 0, and z = -1 for j = 1. Let me, for clarity, spell out Eq. (150) 
for the particular case   = -/4 (corresponding to the qubit coupling time T = /4): 

        1111ˆ,1010ˆ,0101ˆ,0000ˆ 4/4/4/4/
intintintint

 iiii eUeUeUeU   .  (8.151) 

In order to compensate the undesirable parts of this joint phase shift of the basis states, let us 
apply (either before or after it) similar individual “rotations” of each qubit by angle ’ = +/4, using the 
following product of two independent operators, plus (just for the result clarity) a common, and hence 
inconsequential, phase shift ” = -/4:56 
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Since this operator is also diagonal in the j1j2 basis, it is equally easy to calculate the change of the 

basis states by the total unitary operator intcom
ˆˆˆ UUU t  : 

   1111ˆ,1010ˆ,0101ˆ,0000ˆ  tttt UUUU .  (8.153) 

 This result already shows the main “miracle action” of two-qubit gates, such as shown in Fig. 4: 
the source qubit is left intact (only if it is in a basis state!), while the state of the target qubit is altered. 
True, this is still different from the CNOT operator’s action (137), but may be readily reduced to it by its 
sandwiching of transform Ut between two  Hadamard transforms applied to the target qubit: 

     22 ˆˆˆ
2

1ˆ HH tUC  .     (8.154) 

 We have spend quite a bit of time on the discussion of the CNOT gate, 57 and now I can reward 
the reader for his/her effort with a bit of good news: it has been proved that an arbitrary unitary 
transform that satisfies Eq. (132), i.e. may be used within the general scheme outlined in Fig. 2, may be 
decomposed into a set of CNOT gates mixed with simpler single-qubit gates - for example, the 
Hadamard gate plus the /2 rotation discussed above.58 Unfortunately, I have no time for a detailed  
discussion of more complex circuits.59 Perhaps the most famous of them is the scheme for integer 

56 It Eq. (4.175) shows, each of component unitary transforms }ˆ'exp{ˆ
ziI   may be created by applying to each 

qubit, for a time period T’ = ’/’, a constant external field described by Hamiltonian z'H  ˆˆ  . We already 

know that for a charged, spin-½ particle, such Hamiltonian may be created by applying z-oriented external 
constant magnetic field – see Eq. (4.163). For most other physical implementations of qubits, the organization of 
such Hamiltonian is also straightforward – see, e.g., Fig. 7.4 and its discussion. 
57 As was discussed above, this gate is identical to quantum gate f  for f = f3, i.e. f(j) = j.  The implementation of f 
for 3 other functions f  requires straightforward modifications whose analysis is left for reader’s exercise. 
58 This fundamental importance of the CNOT gate was perhaps a major reason why D. Wineland, the leader of the 
NIST group that had demonstrated the first experimental implementation in 1995 (following the theoretical 
suggestion by J. Cirac and P. Zoller), was awarded  the 2012 Nobel Prize (shared with S. Haroche, the leader of 
another leading group working towards quantum computation). 
59 For that, the reader may be referred to either the monograph by Nielsen and Chuang, cited above, or to a shorter 
(but more formal) textbook by N. Mermin, Quantum Computer Science, Cambridge U. Press, 2007. 
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number factoring, suggested in 1994 by P. Shor.60 Due to its potential practical importance for breaking 
broadly used communication encryption schemes such as the RSA code,61 this opportunity has incited a 
huge wave of enthusiasm, and triggered experimental efforts to implement quantum gates and circuits 
using a broad variety of two-level quantum systems. Presently, the following options are most eagerly 
pursued:62  

(i) Trapped ions. The first experimental demonstrations of quantum state manipulation 
(including the already mentioned first CNOT gate) have been carried out using deeply cooled atoms in 
optical traps, similar to those used in frequency and time standards. Their electron spins are natural 
qubits, whose states may be manipulated using the Rabi transfers excited by suitably tuned lasers. The 
spin interactions with environment may be very weak, resulting in large dephasing times (T2, see Sec. 
7.3), up to a few seconds. Since the distances between atoms in the traps are relatively large (of the 
order of a micron), their direct spin-spin interaction is even weaker, but atoms may be made effectively 
interacting either via their mechanical oscillations about the potential minima of the trapping field, or 
via photons in electromagnetic resonators (“cavities”).63 Perhaps the main challenge of using this 
approach for quantum computation is poor “scalability”, i.e. the enormous challenge of creating large, 
ordered systems of individually addressable qubits. 

(ii) Nuclear spins are also typically very weakly connected to environment, with T2 exceeding 10 
seconds in some cases. Their eigenenergies E0 and E1 may be split by external dc magnetic fields 
(typically, of the order of 10 T), while the interstate Rabi transfers may be readily achieved by 
application of external rf fields with frequencies  = (E1 – E0)/ of a few hundred MHz.64 The 
challenges of this option include the weakness of spin-spin interactions (typically mediated through 
molecular electrons), resulting in a very slow spin evolution, whose time scale / may become 
comparable with T2, and small level separations E1 – E0, corresponding to a few K,65 i.e. much smaller 
than the room temperature, creating a problem with qubit state preparation.66 

Despite these challenges, the nuclear spin option was used for the first implementation of the 
Shor algorithm for factoring of a small number (15 = 53) as early as in 2001.67 However, the extension 
of this success to larger systems, beyond the set of spins inside one molecule, is problematic. 

(iii) Josephson-junction devices. Much better scalability may be achieved with solid state 
devices, especially in superconductor integrated circuits including weak contacts - Josephson junctions. 
As was already discussed in Sec. 2.8, if the coupling of a Josephson junction to its dissipative 
environment is sufficiently weak (in particular if its effective parallel resistance is much higher than the 

60 His original paper was published only in proceedings of a meeting, but a clear description of the algorithm may 
be found in several accessible sources including Wikipedia (http://en.wikipedia.org/wiki/Shor’s_algorithm). 
61 Named after R. Rivest, A. Shamir, and L. Adleman, the authors of the first open publication of the code in 
1977, but actually invented earlier (in 1973) by C. Cocks.  
62 For more details, and a discussion of other possible implementations (such as quantum dots and dopants in 
crystals) see, e.g., T. Ladd et al., Nature 464, 45 (2010), and references therein.  
63 A brief discussion of such interactions (so-called Cavity QED) will be given in Sec. 9.4 below. 
64 In this field, the condition  = 10, discussed above, is called the nuclear magnetic resonance, or 
NMR – the term well known due to the broad application of this effect in chemistry and medicine. 
65 See Eq. (4.5) and its discussion. 
66 This challenge may be partly mitigated using ingenious spin manipulation techniques such as refocusing – see, 
e.g., either Sec. 7.7 in Nielsen and Chuang, or J. Keeler’s monograph cited in the end of Sec. 6.5. 
67 B. Lanyon et al., Phys. Rev. Lett. 99, 250505 (2001). 
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quantum resistance unit RQ ~ 104 ), the Josephson phase variable   behaves as a coordinate of a 1D 
quantum particle with effective mass (2.252), moving in a 2-periodic potential - see Eq. (2.250). This 
fact creates several opportunities for qubit implementation using quantum behavior of this macroscopic 
degree of freedom. 

In an insulated junction,68 the phase motion in the periodic potential U() = -EJcos creates the 
energy band structure E(q) that was discussed in detain in Sec. 2.7.  In particular, in the weak potential 
limit (which, for the Josephson junction case, is valid at EJ  << e2/2C – see the discussion in Sec. 2.8), 
the lowest bandgaps are very narrow, and function E(q) in their vicinity is well described by the usual 
level anticrossing – see Figs. 2.28 and 2.29 and their discussion. The translation of this fact to the 
Josephson junction language (see, in particular, Eq. (2.256) and its discussion) shows that the values of 
the effective electric charge Q of the junction, on two anticrossing energy branches, differ by charge 2e 
of one Cooper pair. Since, according to Eq. (2.222) and its discussion, the system dynamics in this case 
is reduced to the interaction of these two states with different Q, in application to quantum computation 
this system is called the charge qubit. Unfortunately, the states of such qubit are rather sensitive to 
random charged impurities in junction’s vicinity, causing strong fluctuations, and hindering its control, 
so this option is not actively pursued nowadays. 

Other options are based on the modification of potential U() at Josephson junction 
incorporation into superconducting loops, i.e. in SQUIDs.69 In the simplest case of a single loop of 
inductance L closed by one junction with critical current IC, the total potential energy of the system in an 
external magnetic field is70 
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where ext is proportional to the external magnetic flux ext through the loop. According to this relation, 
at EJ >> e2/2C (corresponding to the tight-binding limit of the energy band theory), one convenient way 
to implement a two-level system is to take the dimensionless inductance parameter L above but very 
close to 1 (0 < L – 1 << 1), the “symmetrizing” magnetic field (ext  ), and EJ  (e2/C)/(L – 1)3. In 
this case, the potential profile has the shape of a nearly symmetrical double well, with ground states in 
each well coupled by tunneling through a relatively low tunnel barrier, creating a pair of eigenstates 
with relatively low eigenenergy splitting  = E1 – E0 << EJ (Fig. 6a).  

 

 

 

  

 

 

68 For the purposes of EJ control reasons, it is more convenient to use two-junction configurations called Bloch 
transistors. Unfortunately, I do not have time to go into these details. 
69 See, e.g., EM Sec. 6.4 and references therein. 
70 This expression directly follows from combining EM Eqs. (6.57), (6.59), and (6.70). 

Fig. 8.6. Typical potential 
profiles and energy levels of 
SQUID-based qubits: (a) “flux 
qubit” and (b) “phase qubit”. 
Red dashed lines show 
eigenenergies of the used 
states 0 and 1.  
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Such flux qubits have a relatively large magnitude 10 = 01 of the matrix elements of the 
operator of magnetic flux  = (/2e)  piercing the SQUID loop. This certainly makes the arrangement 
of necessary coupling between flux qubits (see, e.g., Eq. (149) and its discussion) very easy, despite the 
macroscopic (~10 m) sizes of SQUIDs and hence of the distances between them, decreasing the time T 
~ / necessary for the most critical two-bit (e.g., CNOT) operations, to a just few nanoseconds. 
However, the large flux matrix elements also increase the undesirable coupling of such qubits to 
dephasing environment, and hence decrease dephasing time T2 – typically, to just a few tens or hundreds 
nanoseconds, uncomfortably close to T.  

This coupling may be decreased, leading to a substantial increase of T2 (up to a few 
microseconds) by moving the bias phase ext away from the symmetrizing value , i.e. using the 
asymmetric potential profile sketched in Fig. 6b. The working states 0 and 1 of such phase qubit, 
localized in a higher potential well (shown left in Fig. 6b), are actually metastable, but with a very long 
lifetime because of the relatively high barrier separating the wells. An additional benefit of this 
arrangement is that a fast lowering of the tunnel barrier causes the system in state 1 to tunnel into the 
lower well, with the sequential energy relaxation (see the arrows in Fig. 6b); this process be used for 
qubit state readout. A major problem of phase qubits is that the part of potential U(), in which qubit 
states are localized, is almost quadratic, so that the energy levels are nearly equidistant – cf. Eqs. 
(2.114), (6.15), and (6.22).71 As a result, the external rf drive of frequency  = (E1 – E0)/, used to 
arrange the state transforms described by Eq. (146), may induce simultaneous undesirable transitions to 
(and between) higher energy levels. This effect may be mitigated by the rf drive amplitude reduction 
(see Problem 6.6), but at a price of the proportional increase of transfer time T, that may again become 
comparable to T2. Despite this problem, phase qubits have been used for a successful experimental 
demonstration of the core single-operand and two-operand gates, and recently, for the reproduction of 
number 15 factoring “48% of the time”.72  

(iv) Optical systems pose a special challenge for quantum computation: due to the virtual 
linearity of most electromagnetic media at reasonable light power, the implementation of interaction 
Hamiltonians, such as (149), is problematic. However, in 2001 a very smart way around this hurdle was 
invented.73 In this KLM scheme, nonlinear elements are not needed, and quantum gates may be 
composed just of linear devices (such as optical waveguides, mirrors and beam splitters), plus single-
photon sources and detectors. Unfortunately, a quantitative discussion of this scheme would require 
using the basics of quantum electrodynamics that will be discussed only in the next chapter. The work in 
this direction has already led to an experimental demonstration of factoring number 21 = 37 (which in 
some aspects is easier than that of 15).74  

Let me, however, note that due to the statistical nature of Shore’s  algorithm, and the so-far 
imperfect  fidelity of qubit manipulations, all number factoring experiments carried out so far may be 
more fairly described merely as demonstrations of their result consistency with the (evident) 
mathematical facts. So, despite a very substantial research effort, the progress is rather slow, with the 

71 This is even more true for the so-called “transmons” (or “Xmons”) – the phase qubits versions in which a 
Josephson junction is just a part of an external resonator, providing it with small nonlineartity (anharmonism)  – 
see, e.g., R. Barrens et al., Nature 508, 500 (2014) and references therein. 
72 E. Lucero et al.,  Nature Physics 8, 719 (2012). 
73 E. Knill et al., Nature 409, 46 (2001).  
74 E. Martin-López et al., Nature Photonics 6, 773 (2012).  
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main culprit being the unintentional coupling of qubits to environment, leading most importantly to their 
state dephasing, and eventually to errors. (Another major problem of this research field is the lack of 
algorithms (besides Shor’s number factoring) that would give quantum computation a substantial 
advantage over classical counterparts, and hence a potential customer base broader that the 
communication encryption community, that could provide the necessary significant support.) 

Of course, some error  probability exists in classical digital logic gates and memory cells as well. 
However, in this case, there is no conceptual problem with the device state measurement, so that the 
error may be detected and corrected in many ways; perhaps the simplest one is the so-called majority 
voting.  For that, the input bit is reproduced in several (say, three) copies and sent to three similar 
devices whose outputs are measured and compared. If the output bits differ, at least one of the devices 
has made at error. The error may be not only detected, but also corrected by taking the two coinciding 
output bits for the correct one. If the probability of a single device error is W << 1, the probability of 
error of any device pair is close to W2, and that of two pairs (and hence of the whole majority voting 
scheme) is close to W3. Since for the currently dominating CMOS integrated circuits, W is very small, 
such error correction circuit creates a dramatic fidelity improvement – at the cost of higher circuit 
complexity (which may be traded for larger time delay) and consumed power. 

For quantum computation, the general idea of using several devices (say, qubits) for coding the 
same information remains the same; however, there are two major complications, both due to the analog 
nature of qubit states. First, as we know from Chapter 7, the dephasing effect of environment may be 
described as a slow random drift of coefficients aj in expansion (128), leading to the deviation of the  
output state fin from the basis form (132), and hence to a nonvanishing probability of wrong qubit state 
readout (Fig. 2). Hence the quantum error correction has to protect the result not only against possible 
random state flips 0  1 as in the classical digital computer, but also against these “creeping” analog 
errors. 

Second, the qubit state is impossible to copy exactly (clone) without disturbing it, as follows 
from the following simple calculation.75 Cloning state   of one qubit to another qubit, initially  in an 
independent state (say the basis state 0), means the following transformation of the two-qubit ket: 0 
 . If we want such transform to be performed by a real quantum system whose evolution is 
described by a unitary operator û , and to be correct for an arbitrary state , it has to work not only for 
both basis states of the qubit: 

  ,1110ˆ,0000ˆ  uu              (8.156) 

and also for their arbitrary linear combination (125). Since operator û  has to be linear, we may use Eq. 
(156) to calculate 

                   110010ˆ00ˆ010ˆ0ˆ 101010 aauauaaauu  .  (8.157) 

On the other hand, the desired result of cloning is 

     110110001010 2
110

2
01010 aaaaaaaa  ,  (8.158)  

i.e. evidently different, so that, for an arbitrary ,   

75 Amazingly, this no-cloning theorem was discovered as late as in 1982 (independently by W. Wooters and W. 
Zurek, and by D. Dieks) - in the context of work toward quantum cryptography. 
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              0û ,      (8.159) 

showing that the qubit state cloning is indeed impossible.76 

 This problem may be circumvented in the way shown in Fig. 7a. Here the CNOT gate, whose 
action is described by Eq. (137), entangles an arbitrary input state (125) of the source qubit with a basis 
initial state of an ancillary qubit - frequently called ancilla. Using Eq. (137), we may readily calculate 
the output two-qubit state’s vector: 

         110010ˆ00ˆ010ˆ
1010102

aaCaCaaaC
N




 .  (8.160) 

We see that this circuit does perform operation (157), i.e. re-prescribes the initial source qubit’s 
expansion coefficients a0 and a1 equally to two qubits, i.e. duplicates the input information, though in 
contrast with the “genuine” cloning, it changes the state of the source qubit. Such “quasi-cloning” is the 
key to virtually all quantum error correction techniques. 

 

 

 

 

 

 

 

 

Consider, for example, the three-qubit circuit shown in Fig. 7b. At its input, the double 
application of the quasi-cloning produces an intermediate state A with the ket-vector 

    111000 10 aaA  ,     (8.161) 

which is an evident generalization of Eq. (160).77 Subjecting the source qubit to the Hadamard transform 
(138), we get three-qubit state B represented by vector 

                  1110
2

1
0010

2

1
10  aaB .   (8.162) 

 Now let us assume that at this stage, the source qubit comes into a contact with a dephasing 
environment (in Fig. 7, symbolized by single-qubit “gate” ) . As we know from Sec. 7.3, its effect 

76 This does not mean that several qubits cannot be put into the same, arbitrary  quantum state - theoretically, with 
arbitrary precision. Indeed, they may be first set into their lowest-energy stationary states as was discussed above, 
and then driven into an arbitrary state (125) by exerting on them similar classical external “forces”. So, the no-
cloning theorem pertains to only an unknown state  of a qubit.  
77 Such state is also the 3-qubit example of the so-called Greeenberger-Horne-Zeilinger (GHZ) states, which are 
frequently called the “most entangled” states of a system of N > 2 qubits. 

Fig. 8.7. (a) Quasi-cloning, and (b) detection and correction of dephasing errors in a single qubit. 
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(besides some inconsequential shift of common phase) may be described by a random mutual phase shift 
of the basis states:78 

     1100 ,
 ii ee  .      (8.163) 

As a result, for the intermediate state C (see Fig. 7b) we may write  

              1110
2

1
0010

2

1
10

 iiii eeaeeaC   .  (8.164) 

 At this stage, in this simple theoretical model, the coupling with environment is completely 
quenched (ahh, if this could be possible in reality! we would have quantum computers by now :-), and 
the source qubit is fed into one more Hadamard gate. Using Eqs. (138) again, for state D after this gate 
we get 

    111cos0sin001sin0cos 10   iaiaD .  (8.165) 

Now the qubits are passed through the second, similar pair of CNOT gates – see Fig. 7b. Using Eq. 
(137), for the ket-vector of the resulting state E we readily get expression 

        100cos011sin111sin000cos 1100  aiaiaaE  ,           (8.166a) 

which evidently may be grouped as 

        11sin1000cos10 0110  iaaaaE  .            (8.166b) 

This is already a rather remarkable result. It shows that if we measure the ancilla qubits at stage 
E, and both results corresponded to states 0, we may be 100% sure that the source qubit (which is not 
affected by the measurement!) is in its initial state even after the interaction with environment. The only 
result of an increase of this interaction (as quantified by the magnitude of phase ) is the growth of the 
probability, 

         2sinW ,      (8.167) 

of getting the opposite result, which signals a dephasing-induced error in the source qubit. This implicit 
measurement, without disturbing the source qubit, is called quantum error detection. 

Even more impressive result may be achieved by adding to the circuit one more component, the 
so-called Toffoli (or “CCNOT”) gate, denoted by the rightmost symbol in Fig. 7b. This 3-qubit gate is 
conceptually similar to the CNOT gate discussed above, besides that it flips the basis state of its target 
qubit only if both basis states of its two source qubits are 1. (In the circuit shown in Fig. 7b, the former 
role is played by our source qubit, while the latter role, by two ancilla qubits.) According to its 

78 For example, in the Hilbert space of the qubit, the model Hamiltonian (7.70), which was explored in Sec. 7.3, is 
diagonal in the z-basis of states 0 and 1, so that the unitary transform it provides during interval T is also diagonal, 

giving the phase shifts described by Eq. (163), with   
T

dtf
0

1 


. Let me emphasize again that Eq. (162) is 

valid only if the interaction with environment is a pure dephasing, i.e. does not include the energy relaxation of 
the qubit or its thermal activation to the higher eigenstate – see Chapter 7. 
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definition, the Toffoli gate has no effect on the first parentheses in Eq. (166b), but flips the source 
qubit’s state in the second parentheses. The result may be factorized as follows, 

         11sin00cos10 10  iaaF  ,   (8.168) 

showing that now the source qubit is again fully unentangled from the ancilla qubits. Moreover, 
calculating the norm squared of the second operand, we get  

          1sincos11sin00cos11sin00cos 22   ii ,  (8.169) 

so that the final state of the source qubit always, exactly coincides with its initial state. This is the 
famous miracle of quantum state correction, taking place “automatically” - without any qubit 
measurements, and for any random phase shift . 

The circuit shown in Fig. 7b may be improved by adding the Hadamard gate pairs, similar to that 
used for the source qubit, to the ancilla qubits as well. If dephasing is small in the sense that the W given 
by Eq. (167) is much less than 1, this modified circuit may provide substantial error probability 
reduction (to ~W2) even if the ancilla qubits are also subjected to a similar dephasing and the source 
qubits, at the same stage - i.e. between two Hadamard gates. The perfect automatic correction of any 
error (not only inner dephasing of a qubit and its relaxation/excitation, but also the mutual dephasing 
between qubits) of any used qubit needs even more parallelism. The first circuit of that kind, based on 9 
parallel qubits, which is a natural generalization of the circuit discussed above, had been invented in 
1995 by the same P. Shor. Later, 5-qubit circuits enabling similar error correction were suggested. (The 
further parallelism reduction has been proved impossible.)  

However, all these results assume that the error correction circuits as such are perfect, i.e. 
completely isolated from the environment. In the real world this cannot be done. Now the key question 
is what maximum level Wmax of error probability in each gate (including those in the used error 
correction scheme) can be automatically corrected, thus opening a way toward large quantum computers 
producing some useful results – first of all, the factoring of large numbers - with at least 103 bits to be of 
interest for practice. To the best of my knowledge, this critical level has not yet been strictly calculated, 
partly because the error correction greatly inflates the number of the total gates in the system – by a 
factor crudely proportional to the number N of used qubits. Various authors give broadly different 
estimates: from Wmax ~10-6 to Wmax ~ 10-2. Whatever the critical level is, it has not been reached yet. 

This situation has motivated the search for the quantum computation schemes different from that 
shown in Fig. 2; the most prominent alternative is called adiabatic quantum computation.79 In its most 
actively pursued option (for which “quantum system modeling” would be a more appropriate name), the 
interaction between a system of qubits is organized so that the system’s Hamiltonian is similar to that of 
some quantum system of interest. Then the qubit system, first prepared in a certain initial state with 
relatively high energy, e.g., in an unentangled state described by Eq. (130), is let to evolve on its own. 
Due to the unavoidable dissipation due to interaction with environment, the system eventually relaxes to 
a final unentangled state of its qubits, which is then measured. From numerous runs of such experiment, 
outcome statistics may be revealed for various temperatures of the environment. Thus, at this approach 
(which is very close to the numerical modeling technique called quantum annealing), the interaction 

79 Note that qualifier “quantum” is important here, to distinguish this research direction from the option of 
classical adiabatic (or “reversible”) computation – see, e.g., SM Sec. 3.3 and references therein. 

Quantum 
error 
correction 
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with environment is allowed to play a certain role in the system evolution, though every effort is made 
to reduce it, to allow qubit “quantumness” to make a substantial difference at least at the beginning of 
the relaxation process.  

Generally speaking, adiabatic quantum computation may be used for performing any quantum 
algorithm, including number factoring.80 Unfortunately, due to technical difficulties of the organization 
and precise control of long-range interaction in multi-qubit systems,81 the list of modeled systems is 
presently limited to a few simple 1D or 2D arrays described by the so-called extended quantum Ising 
(“spin-glass”) model82 

                  
j

j
zj

jj

j
z

j
z σhσσJH ˆˆˆˆ

}',{

' ,    (8.170) 

where the curly bracket denotes the summation over pairs of close (though not necessarily closest) 
neighbors. Though Hamiltonian (170) is the traditional playground of phase transitions theory (see, e.g., 
SM Chapter 4), to the best of my knowledge there are not many practically valuable tasks that could be 
achieved by studying the statistics of its solutions. Moreover, even for this limited task, the speed of the 
best experimental adiabatic quantum “computer” with N = 108 qubits is still lower than that of a 
classical, off-the-shelf semiconductor processor (with a dollar cost lower by some 6 orders of 
magnitude), and no dramatic change of this comparison is predicted for realistic larger values of N.83 

 There may be better prospects for another application of entangled qubit systems, namely for 
telecommunication cryptography.84 The goal here is to replace the currently dominating classical 
encryption, based on the public-key RSA code mentioned above, that may be broken by factoring of 
very large numbers, by a quantum encryption that would be fundamentally unbreakable. The basis of 
this opportunity are the measurement postulate and the no-cloning theorem: if a message is carried out 
by a qubit such as a single photon, it is impossible for an eavesdropper (in cryptography, traditionally 
called Eve) to either measure or copy its faithfully, without also disturbing its state. However, as we 
have seen from the discussion of Fig. 7a, state quasi-cloning using entangled qubits is possible, so that 
the issue is far from being simple, especially if we want to use a publicly distributed quantum key, in 
some sense similar to the classical public key used at the RSA encryption. 

 Unfortunately, I do not have time/space to discuss various options for quantum encryption, but 
cannot help demonstrating how counter-intuitive they may be, on the famous example of the so-called 
quantum teleportation (Fig. 8).85 Suppose that party A (in cryptography, traditionally called Alice) 
wants to send party B (Bob) the full information about the quantum state  of a qubit, unknown to either 
party. Instead of sending her qubit directly to Bob, Alice asks him to send her one qubit () of the pair 
of other qubits, prepared in a certain entangled state, for example in the singlet state (11): 

80 See, e.g., the experiments on factoring of number 143 = 1311, using nuclear spin relaxation, by N. Xu et al., 
Phys. Rev. Lett. 108, 130501 (2012), though by the moment of this writing, their results remained controversial. 
81 Due to the same reason, the implementation is so far limited to most scalable, Josephson-junction (flux) qubits 
– see, e.g., M. Johnson et al., Nature 473, 194 (2011). 
82 For its classical version, see, e.g., SM Eq. (4.23) and its discussion. 
83 See S. Boxio et al., Nature Physics 10, 218 (2014) and T. Ronnow et al., arXiv:1401.2910 [quant-ph]. 
84 This field was pioneered in the 1970s by S. Wisener. 
85 This procedure had been first suggested in 1993 by the same C. Bennett, and then repeatedly demonstrated 
experimentally – see, e.g., the recent paper by L. Steffen et al., Nature 500, 319 (2013), and literature therein. 
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    1001
2

1
' .     (8.171) 

Using Eq. (125), the initial state of the whole 3-qubit system may be represented by the ket-vector 

                          111
2

010
2
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2

001
2

10 1100
10

aaaa
β'aa'   ,           (8.172a)    

which may be rewritten as a linear superposition, 
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           (8.172b) 

of the following 4 states of qubit pair : 

       1001
2

1
,1100

2

1
 

es
 .                       (8.173) 

 

 

 

 

 

 

 

 

After having received qubit  from Bob, Alice measures which of these 4 states does pair   
have. This may be achieved, for example, by measurement of one observable represented by operator 

     zz ˆˆ  and another one corresponding to       xx ˆˆ - cf. Eq. (148).86 The measured eigenvalue of the 

former operator enables distinguishing the couples of states (173) with different values of the lower 
index, while the latter measurement distinguishes the states with different upper indices.  

Then Alice reports the result (that may be coded by just 2 classical bits) to Bob over a classical 
channel. Since the measurement places pair  definitely in the corresponding state, the remaining 
Bob’s bit ’ is now definitely in the unentangled single-qubit state that is represented by the 
corresponding parentheses in Eq. (172b). Note that each of these parentheses contains both coefficients 
a0,1, i.e. the whole information about the initial state of qubit  had initially. If Bob likes, he may now 
use appropriate single-qubit operations, similar to those discussed above, to move qubit  into the state 
exactly similar to the initial state of qubit . (This fact does not violate the no-cloning theorem (159), 
because the measurement has already changed the state of .) This is of course a “teleportation” only in 

86 All four states (172) are eigenstates of both these operators, so that the measurements do not affect each other 
and may be done in any order. 

 '

 '

 '



 'bits 2

  '

Fig. 8.8. Sequential stages of a quantum 
teleportation procedure: (a) the initial state with 
entangled qubits  and ’, (b) back transfer of 
qubit , (c) measurement of pair , (d) forward 
transfer of 2 classical bits with the measurement 
result, and (e) the final state, with the state of 
qubit ’  mirroring the initial state of qubit . 

(a) 

(b) 

(c) 

(d) 

(e) 
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a very special sense of this rather  ambiguous term, but a good example of the importance of qubit 
entanglement’s preservation at their spatial transfer. For us, this is also a good primer for the 
forthcoming discussion of the EPR paradox and Bell’s inequalities in Sec. 10.1. 

Returning for a minute to practical quantum cryptography, since its two most common quantum 
key distribution protocols87 require just a few simple quantum gates, whose experimental 
implementation is not a large obstacle, the main focus of the current effort is on decreasing single-
photon dephasing in long optical fiber waveguides,88 and hence increasing the maximum distance of 
quantum channels with sufficiently high qubit transfer fidelity. The recent progress was impressive, with 
demonstrated two lines (using either protocol) longer than 100 km,89 and active plans for 560 km and 
700 km landlines and several satellite-based systems. Let me hope that if not the author, then the reader 
of these notes will see this technology accepted for practical secure telecommunications. 

 

8.6. Exercise problems 

8.1. N electrons are placed in a 3D, spherically-symmetric quadratic potential U(r) = m0
2r2/2. 

Neglecting the direct interaction of the electrons, find the ground-state energy of the system. 
 

8.2. N >> 1 indistinguishable, non-interacting quantum particles are placed in a hard-wall, 
rectangular box with sides ax, ay, and az. Calculate the ground-state energy of the system, and the 
average forces it exerts on each face of the box.  Can we characterize the forces by certain pressure? 

 Hint: Consider separately the cases of bosons and fermions. 
 
8.3. Prove that the singlet state, and each triplet state of a system of two indistinguishable spin-½ 

particles, are eigenstates of the operator of the scalar product S1S2 of the spin vectors, and calculate the 
corresponding eigenvalues. Compare the results with the scalar product of two classical vectors of 
magnitude /2 each, being either parallel or antiparallel. 

 
 8.4. The interaction of two, indistinguishable spin- ½ particles (that are otherwise free) has the 
form 

    21int
ˆˆˆ SSrr  fUH , 

where r  r1 – r2 is the distance between the particles. Reduce the problem to two independent wave 
mechanical problems. 
 
 8.5. Two similar spin-½ particles, with the gyromagnetic ratio , localized at two points 
separated by distance a, interact via the field of their magnetic dipole moments. Calculate the 
eigenstates and eigenvalues of the system. 
 

87 BB84 suggested in 1984 by C. Bennett and G. Brassard, and EPRBE suggested in 1991 by A. Ekert. For 
details, see, e.g., either Sec. 12.6 in Nielsen and Chuang, or the review by N. Gizin et al., Rev. Mod. Phys. 74, 145 
(2002). 
88 For their discussion see, e.g., EM Sec. 7.8. 
89 See P. Hiskett et al., New J. Phys. 8, 193 (2006), and R. Ursin et al., Nature Physics 3, 481 (2007). 
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8.6. In the simple case of just two similar spin-interacting particles, distinguishable by their 
spatial location, the famous Heisenberg model of ferromagnetism90 is reduced to the following 
Hamiltonian: 

 2121
ˆˆˆˆˆ SSSS  BJH , 

where J is the spin interaction constant,   is the gyromagnetic ratio of each particle, and B is the 
external magnetic field. Find the stationary states and eigenenergies of this system for spin-½ particles. 
  
 8.7. Two distinguishable particles, both with spin ½, but different gyromagnetic ratios 1 and 2, 
are placed into external magnetic field B. In addition, their spins interact as 

21int
ˆˆˆ SS  JH . 

Find the eigenstates and eigenenergies of the system.91 
 
 8.8. A system of 3 similar but distinguishable spin-½ particles is described by the following 
Hamiltonian: 

 133221
ˆˆˆˆˆˆˆ SSSSSS  JH , 

where J is the spin interaction constant. Find the stationary states and eigenenergies of this system.  
 

8.9. For a system of three distinguishable spins-½, find the joint eigenstates (and the 
corresponding eigenvalues) of operators Sz and S2, where  

321
ˆˆˆˆ SSSS   

is the vector operator of the total spin of the system. Do the corresponding quantum numbers s and ms 
obey Eqs. (5.197)? 
 

8.10. Prove that Eq. (8.32) of the lecture notes indeed yields Eg
(1) = (5/4)EH.  

8.11. For a diluted gas on helium atom in their ground state, with n atoms per unit volume, on 
density n, calculate its: 

 (i) electric susceptibility e, and 
 (ii) magnetic susceptibility m, 

and compare the results. 
 
 8.12. Represent the operators of the total kinetic energy and the total orbital angular momentum 
of a system of two particles, with masses m1 and m2, as combinations of terms describing their center-of-
mass motion and relative motion. 
  
 8.13. Two particles, with masses m1 and m2, interact as described by 3D potential 

90 For more discussion of this and other models of ferromagnetism and antiferromagnetism see SM Chapter 4. 
91 For similar particles (in particular, with 1 = 2) the problem is reduced to the previous one. 
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   2
2121 2

, rrrr 


U , 

but otherwise are free to move. Calculate the energy spectrum and the degeneracy of each energy level 
of the system for the cases when the particles are: 

 (i) distinguishable, and 
 (ii) indistinguishable spin-½ fermions (such as electrons). 

 8.14. Two particles with similar masses m and charges q are free to move along a round, plane 
ring of radius R. In the limit of their strong Coulomb interaction, find the lowest eigenenergies of the 
system, and sketch the system of its energy levels. 
 

8.15. Two similar 1D, spin-½ particles are attracting each other at contact: 

    0,with ,, 2121  WW xxxxU   

but are otherwise free to move. Find the energy and the wavefunction of the ground state of the system. 

 Hint: Mind the possibility of various spin states of the particles. 

8.16. Two indistinguishable, 1D, spin-½ particles in a triplet spin state are attracting each other 
at limited distance: 

  0with  
otherwise,           ,0

,2/for  ,
, 0

210
21 



 

 U
axxU

xxU , 

but are otherwise free to move. How large should be a for the system to have at least one localized 
eigenstate? Relate the result to the solution of the previous problem. 
 
 8.17.* Two indistinguishable spin-½  particles are confined  to move around a circle of radius R, 
and interact only at a very short distance l = R = R(1 - 2) between them, so that the interaction 
potential U may be well approximated with a delta-function of . Calculate their lowest ground states 
and their energy for the following two cases: 

 (i) “orbital” (spin-independent) interaction:  WÛ , 

 (ii) spin-spin interaction:  21
ˆˆˆ SS  WU , 

both with constant W  > 0. Analyze the trends of your results in the limits W  0 and W  . 
 
8.18. Low-energy spectrum of many diatomic molecules may be well described modeling the 

molecule as a system of two spinless particles connected with a light and elastic, but very stiff spring. 
Calculate the spectrum in this approximation. 

 
 

 8.19. Two particles of mass M, separated by two much lighter particles, 
of mass m << M, are placed on a ring of radius R – see Fig. on the right. The 
particles strongly repulse at contact, but otherwise each of them is fee to move 
along the ring. Calculate the lower part of the energy spectrum of the system. 

 

M

M

m

m
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8.20.* Use the perturbation theory to calculate the contribution to the hyperfine splitting of the 

ground energy of the hydrogen atom, due to the interaction between spins of the nuclei (proton) and of 
the electron. 

Hint: The proton’s magnetic moment operator is described by Eq. (4.116), with a positive 
gyromagnetic factor p = gpe/2mp  2.675108 s-1T-1, whose magnitude is much smaller than that of the 
electron (e  1.7611011 s-1T-1), due to a  different g-factor, gp  5.586,92 and of course a much higher 
mass, mp  1.67310-27 kg. 
 

8.21. Discuss the factors 1/2 that participate in Eqs. (19) and (21), in terms of the Clebsh-
Gordan coefficients discussed in Sec. 5.7. 
 

8.22. Compose the simplest model Hamiltonians of the following systems, in terms of the second 
quantization formalism: 

 (i) a system of two weakly coupled quantum wells, taking into account pair on-site interactions 
(additional energy J per each pair of particles in the same quantum well), and 
 (ii) same for the motion in a periodic 1D potential, in the tight-binding limit. 
 

8.23. For each of the Hamiltonians composed in the previous problem, derive the Heisenberg 
equations of motion for particle creation operators, for (i) bosons, and (ii) fermions. 
 
 8.24. Express the ket-vectors all possible Dirac states for the system of 3 indistinguishable 

 (i) bosons, and  
 (ii) fermions, 

via those of their single-particle states.  
 
8.25. Explain why the Hartree-Fock approximation (118), applied to the 4He atom, gives 

“correct”93 expression (31) for the ground singlet state, and correct Eqs. (44)-(45) (with the minus sign 
in the former relation) for the excited triplet state, but cannot describe result (44), with the plus sign, for 
the excited singlet state. 

 
8.26. Find a time-independent Hamiltonian that may cause the qubit evolution described by Eq. 

(147). Discuss the result and its relation to the time-dependent Hamiltonian (6.86).  

92 The anomalously large value of its g-factor may be qualitatively understood as a result of the three-quark 
structure of this particle. (The exact quantitative calculation of gp still remains a challenge for quantum 
chromodynamics.) 
93 Correct in the sense of the 1st order of the perturbation theory. 
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Chapter 9. Introduction to Relativistic Quantum Mechanics 

This chapter gives a brief introduction to relativistic quantum mechanics. It starts with a discussion of 
the basic elements of the quantum theory of electromagnetic field (quantum electrodynamics, QED), 
including the quantization scheme, photon statistics, radiative atomic transitions, the spontaneous and 
stimulated radiation, and the so-called cavity QED. Then I will briefly review the relativistic quantum 
theory of particles with nonvanishing rest mass, notably Dirac’ theory of spin-½ particles, and mark the 
point of entry into the most complete relativistic quantum theory – the quantum field theory, QFT – 
which is beyond the scope of these notes.1 

 

9.1. Electromagnetic field quantization 

 Classical mechanics tells us2 that the relativistic relation between momentum p and energy E of 
a free particle with rest mass m may be simplified in two limits, non-relativistic and ultra-relativistic: 

            








.for                   ,

,for ,2/
)(

22
2/1222

mcppc

mcpmpmc
mcpcE    (9.1) 

In both limits, the transfer from classical to quantum mechanics is easier than in the arbitrary case. Since 
all the previous part of this course was committed to the first, non-relativistic limit, I will now jump to a 
brief discussion of the ultra-relativistic limit p >> mc, for a particular but very important system - the 
electromagnetic field. Since the excitations of this field, called photons, are currently believed to have 
zero rest mass m,3 the ultra-relativistic limit is valid for any photon energy E, and the quantization 
scheme is rather straightforward. 

 As usual, the quantization has to be based on the classical theory of the system, in this case the 
Maxwell equations. As the simplest case, let us consider electromagnetic field in a free-space volume 
limited by ideal walls that reflect incident waves perfectly.4 Inside the volume, the Maxwell equations  
may be reduced to a simple wave equation5 for electric field 

              ,0
1

2

2

2
2 





tc

E
E      (9.2) 

and an absolutely similar equation for magnetic field B. We may look for the general solution of Eq. (2)  
in the variable-separating form 

1 Note that some material of this chapter is frequently taught as a part of the QFT. I will focus on a few most 
important results that may be obtained without starting heavy QFT engines. 
2 See, e.g., EM Chapter 9. 
3 By now this fact has been verified experimentally with an accuracy of at least ~10-22 me – see S. Eidelman et al., 
Phys. Lett. B 592, 1 (2004). 
4 In the case of finite energy absorption in the walls, or in the wave propagation media (say, described by complex  
constants  and ), the system would not be energy-conserving (Hamiltonian), i.e. would interact with the 
dissipative environment. Specific cases of such interaction will be considered in Sections 2 and 3 below. 
5 See, e.g., EM Eq. (7.3), for the particular case   = 0,   = 0, v

2  1/ = 1/00  c2.  
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Physically, each term of this sum is a standing wave whose spatial distribution and polarization 
(“mode”) is described by vector function ej(r), and the temporal dynamics, by function pj(t). Plugging an 
arbitrary term of this sum into Eq. (2), and separating variables exactly as we did, e.g., for the 
Schrödinger equation in Sec. 1.4, we get 
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    (9.4) 

so that the spatial distribution of the mode satisfies the 3D Helmholtz equation: 

                .022  jjj k ee      (9.5) 

The set of solutions of this equation, with appropriate boundary conditions, determines the set of 
functions ej and simultaneously the spectrum of wave number moduli kj. The latter values determine 
mode eigenfrequencies, following from Eq. (4): 

              ckpp jjjjj   with  ,02 .    (9.6) 

 There is a big philosophical difference between the approaches to equations (5) and (6), despite 
their single origin (4). The first (Helmholtz) equation may be rather difficult to solve in realistic 
geometries,6 but it remains intact in quantum theory, with the scalar components of vector functions 
ej(r) still treated (at each point r) as c-numbers. In contrast, Eq. (6) is readily solvable (giving sinusoidal 
oscillations with frequency j), but this is exactly where we can make a transfer to quantum mechanics, 
because we already know how to quantize a mechanical 1D harmonic oscillator that obeys, in classics, 
the same equation. 

 As usual, we need to start with the appropriate Hamiltonian corresponding to the classical 
Hamiltonian function H of the proper set of generalized coordinates and momenta. The electromagnetic 
field’s Hamiltonian function (that in this case coincides with field’s energy) is7 
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rdH .     (9.7) 

Let us represent the magnetic field in a form similar to Eq. (3),  

       
j

jjj tqt )()(),( rbr B .     (9.8) 

Since, according to the Maxwell equations, in our case the magnetic field satisfies the equation similar 
to Eq. (2), the time-dependent amplitude qj of each of its modes obey the equation similar to Eq. (6), i.e. 
also changes in time sinusoidally, with the same frequency j. Plugging Eqs. (3) and (8) into Eq. (7), we 
may recast it as 

6 See, e.g., various problems discussed in EM Chapter 7, especially in Sec. 7.9. 
7 See, e.g., EM Sec. 9.8, in particular, Eq. (9.225). I am using use SI units, with 00  c-2; in the Gaussian units, 
coefficients 0 and 0 disappear, but there is an additional common factor 1/4 in the equation for energy. If we 
modify the normalization conditions accordingly, all the subsequent results look similar in any system of units. 
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distribution 
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Since the distribution of constant factors between two multiplication operands in each term of Eq. (3) is 
arbitrary, we may fix it by requiring the first integral in Eq. (9) to equal 1. It is straightforward to check 
that according to the Maxwell equations, which give a specific relation between vectors E and B,8 this 
normalization makes the second integral in Eq. (9) equal 1 as well, and Eq. (9) becomes 
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  .    (9.10) 

 Now we can carry out the standard quantization procedure, namely declare Hj, pj, and qj the 
quantum-mechanical operators related exactly as in Eq. (10), 
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we see that this Hamiltonian coincides with that of a 1D harmonic oscillator with the mass mj formally 
equal to 1,9 and the eigenfrequency equal to j. Now, in order to plug Eq. (11) into Eq. (4.199) for the 
time evolution of Heisenberg-picture operators jj qp ˆ and ˆ , we need to know the commutation relation 

between these operators. For that, returning to the classical case, let us calculate the Poisson bracket 
(4.204) for “functions” A = qj’ and B = pj”:  
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Since in the classical Hamiltonian mechanics, all generalized coordinates qj and momenta pj have to be 
considered independent arguments of H, only one term (with j = j’ = j”) in only one sum (12) (with j’ = 
j”), gives a nonvanishing value (-1), so that 

  j'j"j"j' ,pq  .     (9.12b) 

 Hence, according to the general quantization rule (4.205), the commutation relation of the operators 
corresponding to qj’ and pj” is 

        j'j"j"j' ip,q ˆˆ ,     (9.13) 

i.e. is exactly the same as for the usual Cartesian components of the radius-vector and momentum of a 
mechanical particle.      

As the reader already knows, Eqs. (11) and (13) open for us several alternative ways to proceed:  

8 See, e.g., EM Eq. (7.6).  
9 With different normalizations of functions ej(r) and bj(r), we could readily arrange any value of mj, and the 
choice corresponding to mj = 1 is the best one just for the notation simplicity. Note also that I am using notation qj 

instead of xj for the generalized coordinate of the field oscillator, in order to emphasize the difference between the 
former variable, defined by Eq. (8), and one of the Cartesian coordinates, i.e. one of arguments of c-number 
functions e and b. 
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 (i) Use the Schrödinger-picture wave mechanics based on wavefunctions j(qj, t). As we know 
from Sec. 2.10, this way is inconvenient for most tasks, because eigenfunctions of the harmonic 
oscillator are rather clumsy.  

 (ii) A substantially better way is to write the equations of time evolution of the Heisenberg-
picture operators )(ˆ tq j  and )(ˆ tp j . 

 (iii) An even more convenient approach is to use equations similar to Eqs. (5.99) to decompose 

operators )(ˆ tq j  and )(ˆ tp j  into the creation-annihilation operators †ˆ ja  and jâ , and work with these 

operators using either the Schrödinger or the Heisenberg picture, depending on the problem.  

 I will mostly use the last route. Replacing m with mj 1, and 0 with j, the last forms of Eqs. 
(5.98) become 

        








































j

j
j

j
j

j

j
j

j
j

p
iqa

p
iqa





 ˆ

ˆ
2

ˆ,
ˆ

ˆ
2

ˆ
2/12/1

†


,   (9.14) 

and due to Eq. (13), the creation-annihilation operators obey the commutation similar to Eq.(5.101), 

jj'j'j Iaa ̂ˆ,ˆ † 



 ,     (9.15) 

so that, according to Eqs. (3) and (8), the quantum-mechanical operators corresponding to the electric 
and magnetic fields are 
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and Eq. (11) for jth mode’s Hamiltonian becomes 

               jjjjjjjjj aanInIaaH ˆˆˆwith  ,ˆ
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    ,  (9.17) 

absolutely similar to Eq. (5.505) for a mechanical oscillator.  

 Now comes a very important conceptual step. From Sec. 5.4 we know that eigenstates (Fock 
states nj) of Hamiltonian (17) have energies 

            ,...2,1 ,0,
2

1







  jjjj nnE      (9.18) 

and, according to Eq. (5.115), operators †ˆ ja  and jâ  act on the eigenkets of these states as 

         11ˆ,1ˆ 2/12/1 †  jjjjjjjj nnnannna ,   (9.19) 
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regardless of the quantum states of other modes (frequently called field oscillators). These rules 
coincide with definitions (8.56) and (8.60) of bosonic creation-annihilation operators, and hence their 
action may be considered  as the creation/annihilation of certain bosons. Such a “particle” (actually, an  
excitation of an electromagnetic field oscillator) is exactly what is, strictly speaking, called a photon. 
Note immediately that according to Eq. (16), such an excitation does not change the spatial distribution 
of the jth mode of the field. So, such a “global” photon is an excitation created simultaneously at all 
points of the field confinement region.  

 If this picture is too contrary to the intuitive image of a particle, please recall that we had a 
similar situation in Chapter 2 with eigenstates of the non-relativistic Schrödinger equation: the 
represented a standing de Broglie wave existing simultaneously in all points of the particle confinement 
region. The (partial :-) reconciliation with the classical picture of a moving particle might be obtained by 
using the linear superposition principle to assemble a quasi-localized wave packet of sinusoidal waves, 
with close wave numbers. Very similarly, we may form a quasi-localized wave packet using a linear 
superposition of the “global” photons with close values of kj (and hence j). An additional simplification 
here is that since the dispersion relation for electromagnetic waves is linear:  

            ,0  i.e.,const
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    (9.20) 

so that, according to Eq. (2.39a), the electromagnetic wave packets (localized photons) do not spread out 
during their propagation.  

 The next important conceptual issue is that of the ground-state energy. Equation (18) implies that 
the total ground-state (i.e., the lowest) energy of the field is 

         
j

j

j
jgg EE

2
)(


.     (9.21) 

This sum diverges at high frequencies for any realistic any realistic model of the field-confining volume 
– either infinite or not. Any attempt to dismiss this paradox by declaring the zero-point energy 
unobservable and hence non-existing fails due to several experimental facts. 

 First of all, the ground-state “fluctuations” (sometimes called “quantum noise”) can be directly 
observed – see  Sec. 7.5 and in particular the literature cited therein. Second, there is the Casimir 
effect.10 The simplest manifestation of the effect involves two parallel plates separated by a vacuum gap 
of thickness d << A1/2, where A is the plate area (Fig. 1). Rather counter-intuitively, the plates attract 
each other with a force proportional to area A, and rapidly increasing at the decrease of gap d. 

 

 

 

 

10 It was predicted in 1948 by H. Casimir and D. Polder, and confirmed semi-quantitatively in experiments by M. 
Sparnaay, Nature 180, 334 (1957) and others. A decisive error bar reduction (to about ~5%), providing a 
quantitative confirmation of the Casimir formula (23), was achieved by S. Lamoreaux, Phys. Rev. Lett. 78, 5 
(1997) and U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 004549 (1998).  

d
Fig. 9.1. Generic geometry of the Casimir effect 
manifestation. 
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 The effect’s explanation is that the energy of each the electromagnetic field mode, including the 
ground-state energy, is intimately related with the average pressure, 

       
V

E
P j

j 


 ,     (9.22) 

exerted by the field on the walls constraining it to volume V. While its pressure on the external surfaces 
on the plates is due to sum (21) over all free-space modes, with arbitrary values of kz (the z-component 
of the wave vector kj), between the plates the spectrum of kz is limited to multiples of π/d, so that the 
pressure on the internal surfaces is lower. The net pressure may be found as the sum of contributions 
(22) from all “missing” low-frequency modes in the gap. The calculations are rather simple if the plates 
are made of an ideal conductor (which provides boundary conditions En = 0 and B = 0 on the plate 
surfaces), and the result is11  
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240d

c
PP

j
j


  .     (9.23) 

 Note that for this summation, the high-frequency divergence of Eq. (21) at high frequencies is 
not important, because it participates in the forces exerted on all surfaces of each plate, and hence 
cancels out from the net pressure. In this way, the Casimir effect not only gives a confirmation of Eq. 
(21), but also teaches us an important lesson how to deal with the divergence of this sum at ωj → : just 
get accustomed to the idea that the divergence exists and ignore the fact while you can. However, for 
more complex tasks of quantum electrodynamics (and quantum theory of any other field) this approach 
becomes impossible, and then more complex, renormalization techniques become necessary. For their 
study, I have to refer the reader to a quantum field theory course – see the literature cited in the end of 
this chapter. 

 

9.2. Photon statistics 

 As a matter of principle, the Casimir effect may be used to measure not only the free-space 
electromagnetic field, but also that arriving from local sources - lasers, etc. However, usually this is 
done by simpler detectors in which the absorption of a photon by a single atom leads to its ionization. 
This ionization, i.e. emission of a free electron, triggers a chain reaction (i.e., an electric discharge in a 
Geiger-type counter) that may readily be registered by appropriate electronic circuitry. In order to 
discuss the statistics of such photon counts, it is sufficient to consider the field interaction with just one, 

11 For realistic metals, the reduction of d below ~1 μm causes significant deviations from this simple model, and 
hence from Eq. (23). The reason is that at the important frequencies ω ~ c/d, the depth of field penetration into the 
metal (see, e.g., EM Secs. 2.1 and 6.2) becomes comparable with d, and a theory of the Casimir effect has to 
involve a certain model of field penetration. (It is curious that in-depth analyses of this problem, pioneered in 
1956 by E. Lifshitz, have revealed a deep relation between the Casimir effect and the long-range London 
dispersion forces which were the subject of Problems 3.7, 5.10 and 6.8 – for a review see, e.g., either I. 
Dzhyaloshinskii et al., Sov. Phys. Uspekhi 4, 153 (1961), or K. Milton, The Casimir Effect, World Scientific, 
2001.) Recent experiments in the 100 nm – 2 m range of distances d, with accuracy better than 1%, allowed even 
to distinguish the difference between alternative approximate models of field penetration – see D. Garcia-Sanchez 
et al., Phys. Rev. Lett. 109, 027202 (2012).  

Casimir 
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“trigger” atom. The atom’s size a is typically much smaller that the radiation wave length j = 2/kj, so 
that their interaction is adequately described in the electric dipole approximation, 

       d̂ˆˆ
int  EH ,      (9.24) 

where d̂  is the dipole moment’s operator.12 In Sec. 6.5 we have already developed an approach suitable 
for the analysis of this problem, based on the Golden Rule  – see Fig. 6.14 and Eq. (6.152).13 In our 
current case, we may associate system b with the “trigger atom” (whose ionized states form a continuum 

spectrum), and hence operator d̂  in Eq. (24) with operand B̂  in Eq. (6.148), while the electromagnetic 

field is represented by system a, and its electric field operator Ê  is associated with operand Â  in that 
relation.  Let us assume, for simplicity, that our field consists of only one mode ej(r).14  Then we can 
keep only one term in Eq. (16a), and drop index j, so that Eq. (6.152), for the transition from certain 
initial state ini to a final state fin may be rewritten as 
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    (9.25) 

where e(r) is the local magnitude of vector e(r), and ne  e(r)/e(r) is its local direction.15 As a reminder, 
in the Heisenberg picture of quantum mechanics, the initial and final states are time-independent, while 
the creation-annihilation operators are functions of time. In this Golden Rule formula, as in any 
perturbation result, this time dependence has to be calculated ignoring the perturbation - in this case the 
field-atom interaction. For the field’s creation-annihilation operators, this dependence coincides with 
that of the usual 1D oscillator – see Eq. (5.171), in which 0 should be now replaced with : 

    .)0(ˆ)(ˆ,)0(ˆ)(ˆ †† titi eataeata        (9.26) 

 Hence Eq. (9.25)  becomes 

     fine initfininieeaeafin titi   2
2

)(ˆ)()0(ˆ)0(ˆ† ndr 




  .  (9.27a) 

Now let us multiply the first bra-ket by exp{it}, and the second one by exp{-it}: 

12 As a reminder: this relation, with the single-particle expression d = qr,  has already been used several times – 
see, e.g., Eqs. (6.32) and (6.149). In contrast to the former of those cases, now we have to account for the 
quantum nature of the electromagnetic field E, so in Eq. (24) it is represented by the (vector) operator (16a). 
13 Please note that (as was promised) we have gradually slipped to the analysis of open, irreversible systems, with 
the detector(s) playing the role of a continuous-spectrum environment for the quantized electromagnetic field.  
14 In a multimode field, the modes are typically incoherent, so that the total transition rate may be calculated as 
the sum of the partial rates of each mode – as we will do for a certain case below. 
15 By the way, this expression shows that for the single-particle transitions from the ground state to nth Fock state, 
the absorption rate is indeed proportional to the oscillator strength fn  (2m/2)(En – E0) nx02 of the transition, 
where x is particle’s coordinate in the direction of the external field. As was discussed in Chapter 5, the strengths 
obey the Thomas-Reiche-Kuhn sum rule nfn = 1.  



Essential Graduate Physics       QM: Quantum Mechanics 

 

Chapter 9           Page 8 of 36 

    fine inietfininieaeafin titi  
22

)(ˆ)()0(ˆ)0(ˆ 2†  




 ndr .  (9.27b) 

The physical sense of this, mathematically trivial, operation is that at resonant photon absorption, only 
the annihilation operator gives a significant time-averaged contribution to the first bra-ket matrix 
element. (Similarly, according to Eq. (4.199), the Heisenberg operator of the dipole moment, 
corresponding to the increase of atom’s energy, has only the Fourier components  that differ from  
only by ~ << , so that its time dependence compensates the additional factor in the second bra-ket of 
Eq. (27b), so that this bra-ket is also frequency-independent and has a substantial time average.) Hence, 
we can neglect the fast-evolving term in the first bra-ket whose average over time interval ~1/ is very 
close to zero.16  

Now let us assume that we use the same detector, characterized by the same second bra-ket and 
the same state density fin, for measurement of various electromagnetic fields - or just the same field at 
different points r. Then we are only interested in the behavior of the first, field-related factor, and may 
write 

             inieafinfineainiinieafininieafininieafin )(ˆ)(ˆ)(ˆ)(ˆ)(ˆ *†*2
rrrrr  , (9.28) 

where the creation-annihilation operators are assumed to be taken in the initial moment (i.e., in the 
Schrödinger picture), and the initial and final states are those of the field alone. As we know, any 1D 
harmonic oscillator (and hence the electromagnetic field oscillator) has many equidistant levels, so even 
if it initially was in a certain state, it may undergo be several coherent transitions to different final Fock 
states. If we want to calculate the total rate, we may sum the transition rates into all final states. Then, 
since these states form a full and orthonormal set, we may use the closure condition (4.44) to get 

          
2

ini
)()()(ˆ†ˆ)(ˆ)(ˆΓ **† rrrrr eneeiniaainiinieafinfineaini

fin

 . (9.29) 

 Let us apply this formula to several possible quantum states of the field mode.  

 (i) First, as a sanity check, the ground initial state (n = 0) gives no photon counts at all. The 
interpretation is easy: the ground state cannot emit a photon that would trigger an atom in the counter. 
Again, this does not mean that the ground-state motion is not observable (if you still think so, please 
review the Casimir effect discussion in the last section), just that it cannot ionize an atom in the detector 
– because it does not have any spare energy for doing that. 

 (ii) All other coherent states (Fock, Glauber, squeezed, etc.) of the field oscillator give the same 
counting rate, provided that their n is the same. This result may be less evident if we apply Eq. (29) to 
an interference of two light beams from the same source (say, in the double-slit or the Bragg-scattering 
configurations). In this case we may present the spatial distribution of the field as a sum 

           )()()( 21 rrr eee  .     (9.30) 

Here each term describes one possible wave path, so that the field product in Eq. (29) may be a rapidly 
changing function of the detector position. For this configuration, our result (29) means that the 

16 This is essentially the same rotating wave approximation (RWA) which was already used in Sec. 6.3 – see the 
transition from Eq. (6.90) to the first of Eqs. (6.94). 
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interference pattern (and its contrast) are independent of the particular state of the electromagnetic 
field’s mode.  

 (iii) Surprisingly, the last statement is also valid for a classical mixture of the different 
eigenstates of the same field mode, for example for its thermal-equilibrium state. Indeed, in this case we 
need to average Eq. (29) over the corresponding classical ensemble, but it would only result in a 
different meaning of averaging n in that equation; the field part describing the interference pattern is not 
affected. 

 The last result may look a bit counter-intuitive, because common sense tells us that the 
stochasticity associated with thermal equilibrium has to suppress the interference pattern contrast. These 
expectations are (partly :-) justified, because a typical thermal source of radiation produces many field 
modes j, rather than one mode we have analyzed. These modes may have different wave numbers kj and 
hence different field distribution functions ej(r), resulting in shifted interference patterns. Their 
summation would indeed smear the interference, suppressing its contrast. 

So the use of a single photon detector is not a suitable way to distinguish different quantum 
states of an electromagnetic field modes. This task, however, may be achieved using the photon 
counting correlation technique shown in Fig. 2.17  

 

 

 

 

 

 

 

 

 

In this experiment, the counter rate correlation may be characterized by the so-called second-
order correlation function18 of the counting rates, 
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17 It was pioneered as early as in the mid-1950s (i.e. before the advent of lasers!), by R. Hanbury Brown and R. 
Twiss. Their first experiment was also remarkable for the rather unusual light source they used –  star Sirius! (It 
was a part of an attempt to improve astrophysics interferometry techniques.) 
18 The reader may be interested what is the first-order correlation function. It is usually defined as  
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In the single-mode case, and the rotating-wave approximation, the function is proportional to the c-number 
product e(r1)e

*(r2), with all creation-annihilation operators cancelled, i.e. is suitable for characterizing 
interference patterns (30), but not the quantum state of the electromagnetic field. 

Fig. 9.2. Photon count 
correlation measurement.
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where the averaging may be carried out either over many similar experiments, or over time t, due to the 
ergodicity of the experiment (with a stationary light source). Using the normalized correlation function 
(31) is very convenient, because characteristics of the detectors and beam splitter drop our from this 
fraction. 

  Very unexpectedly for the mid-1950s, Hanbury Brown and Twiss discovered that the correlation 
function depends on time delay  in the way shown schematically by the solid line in Fig. 3. It is evident 
from Eq. (31) that if the counting events are completely independent, g(2)() should be equal 1 – which is 
always the case in the limit   . Hence, the observed behavior at   0 corresponds to the positive 
correlation of detector counts at small time delays, i.e. to a higher probability of the nearly-simultaneous 
arrival of photons to both counters. This effect is called the photon bunching. 

 

 

 

 

 

 

 

 

 Let us use our simple single-mode model to analyze this experiment. Now the elementary 
quantum process, characterized by the numerator of Eq. (31), is the correlated triggering of two 
counters, at two spatial-temporal points {r1, t} and (r2, t - }, by the same field mode, so that we need to 
make the following replacement, in the first of Eqs. (25): 

                        ),(ˆ),(ˆconst),(ˆ
21  ttt rrr EEE .    (9.32) 

Repeating all the manipulations done in the single-counter case, we get  

        ).()()()()(ˆ)(ˆ)(ˆ)(ˆΓΓ 212121
**†† rrrr eeeeinitatatatainitt     (9.33) 

Plugging this expression, as well as Eq. (29) for single-counter rates, into Eq. (31), we see that the field 
distribution factors (as well as the detector-specific bra-kets and the density of states fin) cancel, giving 
a very simple final expression 

          2
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 ,    (9.34) 

where the averaging should be carried out, as before, over the initial state of the field. Still, the 
calculation of this expression for arbitrary  may be quite complex, because the relaxation of the 
correlation function to the asymptotic value g(2)() in many cases is due to the interaction of the light 
source with environment, and hence requires the open-system techniques which were discussed in 
Chapter 7. However, the zero-delay value g(2)(0) may be calculated in a straightforward way, because 
the time arguments of all operators are equal, so that we may write 

0

1

2

)2(g

Fig. 9.3. Photon bunching (solid line) and 
antibunching for various n (dashed lines). The 
lines approach level g(2) = 1 at     (on the 
time scale depending on the light source). 
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Let us evaluate this ratio for the simplest states of the field. (Remember, we are working in the 
Schrödinger picture now.) 

 (i) nth Fock state. In this case, it is convenient to act by the annihilation operators upon the ket-
vectors, and by the creation operators, upon the bra-vectors, using Eq. (19): 
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  (9.36) 

We see that the correlation function at small delays is suppressed rather than enhanced – see the dashed 
line in Fig. 3. This photon antibunching effect has a very simple explanation: a single photon emitted by 
the wave source may be absorbed by just one of the detectors. For the initial state n = 1, this is the only 
option, and it is very natural that Eq. (36) predicts no simultaneous counts at  = 0. Despite this 
theoretical simplicity, reliable observations of the antibunching have not been carried out until 1977,19 
due to the experimental difficulty of creating Fock states of electromagnetic field oscillators – see Sec. 4 
below. 

 (ii) The Glauber state . A similar procedure, but now using Eq. (5.155) and its Hermitian 

conjugate, *†ˆ  a , yields 
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for any parameter . We see that the result is very different result from the Fock states, unless in the 
latter case n  . (We know that the Fock and Glauber properties should also coincide for the ground 
state, but at that state the correlation function’s value is uncertain, because there are no photon counts at 
all.) 

 (iii) Classical mixture. From Chapter 7, we know that such ensembles cannot be described by 
single state vectors, and require the density matrix w for their description. In particular, we can use the 
key Eq. (7.5) to write 
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g  .     (9.38) 

The calculation is easy for an ensemble in thermodynamic equilibrium, because here the density 
matrix is diagonal in the basis of Fock states n - see Eqs. (7.23)-(7.25): 

19 H. J. Kimble et al., Phys. Rev. Lett. 39, 691 (1977). For a detailed review of phonon antibunching, see, e.g., H. 
Paul, Rev. Mod. Phys. 54, 1061 (1982). 
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So, for the operators in the numerator and denominator of Eq. (38) we also need just the diagonal terms 
of the operator products that have already been calculated – see Eq. (36). As a result, we get 
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   (9.40) 

One of these sums is just the geometric progression, 
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and the remaining two sums may be readily calculated by its differentiation over parameter : 
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      (9.42) 

and for the correlation function we get an extremely simple result independent of parameter  and hence 
of temperature: 
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This is the exactly the photon bunching effect first observed by Hanbury Brown and Twiss (Fig. 
3). We see that in contrast to antibunching, this is an essentially classical (statistical) effect. Indeed, Eq. 
(43) allows a purely classical proof. In the classical theory, the counting rate is proportional to the wave 
intensity I, so that Eq. (31) is reduced to 
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For a sinusoidal field, the intensity is constant, and g(2)(0) = 1. (This is also evident from Eq. (37), 
because the classical state may be considered as the Glauber state with   .) On the other hand, if 
intensity fluctuates (either in time, or from one experiment to another), the averages should be 
calculated as 

        ,1)(with  ,)(
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where w(I) is the probability density. For the classical (Boltzmann) statistics, the probability is an 
exponential function of the electromagnetic field energy, and hence its intensity: 

                 TkCeIw I
B/1 where,)(    ,    (9.46) 

so that Eqs. (48) yield: 
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Plugging these results into Eq. (44), we get ,2)0()2( g  in a complete agreement with Eq. (43).20  

  

9.3. Spontaneous and stimulated emission 

 In our simple model for photon counting, considered in the last section, trigger atoms of the 
photon counter absorbed light. Now let us have a look at the opposite process of spontaneous emission 
of photons by an atom in an excited state, still using the same electric-dipole approximation for the 
atom-to-field interaction. We may still use the Golden Rule for the model depicted in Fig. 6.14, but now 

the roles have changed: we have to associate operator Â  with the electric dipole moment of the atom, 

while operator B̂  with the electric field, and the continuous spectrum of system b represents the 
plurality of the electromagnetic field modes into which the spontaneous radiation may happen. Since 
now the transition increases the energy of the electromagnetic field, after the multiplication of the field 
bra-ket by exp{it}, we may keep only the photon creation operator whose time evolution compensates 
this fast “rotation”. As a result, the Golden Rule takes the following form: 

                  fins inifinafin 
22

)(ˆ0ˆ† red  ,    (9.48) 

where all operators and states are time-independent, and fin is now the density of final states of the 
electromagnetic field – which in this problem plays the role of atom’s environment. Here  the 
electromagnetic field has been assumed to be initially in the ground state – the assumption that will be 
altered later in this section.  

Relation (48), together with Eq. (19), shows that in order for field’s matrix element be different 
from zero, the final state of the field has to be the first excited Fock state, n = 1. (By the way, this is 
exactly the most practicable way of generating an excited Fock state of a field oscillator field – whose 
existence was taken for granted in our discussion in Sec. 2.)  With that, Eq. (48) yields 

    finds iniedfininifin 
2

fin

2
)(ˆ)(ˆΓ rred  ,   (9.49) 

20 For some field states, including the squeezed ground states  discussed in the end of Sec. 5.5, values g(2)(0) may 
be even higher than 2 – the so-called super-bunching. Analysis of one particular case of super-bunching is offered 
to the reader – see the exercise problem  list. 
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where the density fin of excited electromagnetic field states should be calculated at energy , and ed is 
the component of the vector e(r) along the electric dipole direction.21 For plane waves, the calculation of 
this density was our first step in this course – see Eq. (1.1).22 From it, we get 

            ,
8

32

2

3

2

fin c
V

dE

d

c
V

dE

dN


      (9.50) 

where the bounding volume V should be large enough to ensure spectrum’s virtual continuity. Because 
of that, in the normalization condition used to simplify Eq. (9), we may consider e2(r) constant. Let us 
present the square of this vector as a sum of squares of its three perpendicular components (one of those, 
ed, aligned with the dipole direction), due to space isotropy we may write 

           .3 22
2

2
1

22
dd eeeee        (9.51) 

As a result, the normalization condition yields 

      .
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1

0
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ed 

       (9.52) 

and Eq. (49) gives the famous (and very important) formula23 
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.  (9.53) 

 Leaving a comparison of this formula with the classical theory of radiation,24 and the exact 
evaluation of  s for a particular transition in the hydrogen atom, for reader’s exercises, let me just 
estimate its order of magnitude. Assuming that d ~ erB  e2/me(e

2/40) and  ~ EH  me(e
2/40)

2/2, 
and taking into account the definition (6.62) of the fine structure constant   1/137, we get  

     .103~
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~
Γ 73
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0
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 c

e


    (9.54) 

This estimate says that the emission lines at atomic transitions are typically very sharp. With the 
present-day availability of high-speed electronics, it also makes sense to evaluate the time scale  = 1/ 
of the typical quantum transition: for a typical optical frequency  ~ 31015 s-1, it is close to 1 ns. This is 

21 Here I have smuggled back the sum over all electromagnetic field modes j – see Eq. (16). Since in the 
quasistationary approximation, kja << 1, which is necessary for the interaction presentation by Eq. (24), matrix 
elements (49) are independent on kj, the summation is reduced to the calculation of the total fin  for all modes. 
22 Note the essential dependence of Eq. (50), and hence of Eq. (53) on the field geometry; all following formulas 
of this section are valid for free 3D space only. If the same atom is place into a high-Q resonant cavity (see, e.g., 
EM 7.9), the rate of its photon emission is strongly suppressed at frequencies between the cavity resonances 
(where fin  0) – see, e.g., the review of first experiments by S. Haroche and D. Klepner, Phys. Today 42, 24 
(Jan. 1989). On the other hand, the emission is strongly (by a factor ~ (3/V)Q, where V is cavity’s volume) 
enhanced at resonance frequencies – the so-called Purcell effect, discovered by E. Purcell already in the 1940s. 
For a brief discussion of these and other quantum effects in cavities, see the next section. 
23 An equivalent expression was first obtained in 1930 by V. Weisskopf and E. Wigner, so that the whole 
calculation is sometimes referred to as the Weisskopf-Wigner theory.   
24 See, e.g., EM Sec. 8.2, in particular Eq. (8.28). 
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exactly the time constant that determines the photon counting statistics of the emitted radiation – see 
Fig. 3. Colloquially, this is the temporal scale of the photon spontaneously emitted by an atom.25 

 Note, however, that the above estimate of  is only valid for a transition with a non-vanishing 
dipole matrix element. If it equals zero - say, due to the initial and final state symmetry - the dipole 
transitions are “forbidden”. (Another commonly used term is the transition selection rules.26) The  
“forbidden” transition may still take place due to a different, smaller interaction (say, via a magnetic 
dipole field of the atom, or its quadrupole electric field27), but would take much longer. In some cases 
the increase of   is rather dramatic - sometimes to hours! Such long-lasting radiation is called  
luminescence – or  fluorescence if the initial atom’s excitation was due to an external radiation of higher 
frequency, followed first by non-radiative transitions down the energy level ladder. 

Now let us consider a more general case when the electromagnetic field is initially in an arbitrary 
Fock state n, and from it may either get energy from the atomic system (photon emission) or, vice versa, 
give it back to the atom (photon absorption). For the photon emission rate, an evident generalization of 
Eq. (48) gives 

             ,

0ˆ1
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nafin
finn
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     (9.55) 

where both bra-kets may be taken in the Schrödinger picture, and s is the spontaneous emission rate 
(53) of the same atomic system. This relation, with the account of Eq. (19), shows that at photon 
emission, the final field state fin has to be the Fock state with n’ = n + 1, and that 

                  se n  )1( .     (9.56) 

Thus the initial field increases the photon emission rate; this effect is called the stimulated emission of 
radiation. Note that the spontaneous emission may be considered as a particular case of stimulated 
emission for n = 0, and interpreted as the emission stimulated by zero-point fluctuations of the 
electromagnetic field.   

 On the other hand, in accordance with the arguments of Sec. 2, for the description of radiation 
absorption the photon creation operator has to be replaced with the annihilation one, to get 
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2

0ˆ1

ˆ

†a

nafin

s

a 



.     (9.57) 

25 The scale c of the spatial extension of the corresponding wave packet is surprisingly macroscopic – in the 
range of a few millimeters. Such “human” size of the emitted photons makes the optical table the key component 
of many optical experiments. 
26 As was already mentioned in Sec. 5.6, for a single particle moving in a spherically-symmetric potential (e.g., a  
hydrogen-like atom), the selection rules are simple: the only allowed electric-dipole transitions are those with l  
lfin- lini = 1 and m  mfin- mini = 0. The simplest example of the transition that does not satisfy this rule is that 
between states with n = 2 and n = 1, both with l = 0; because of that, the lifetime of the lowest excited s-state in 
hydrogen is as long as ~0.15 s.   
27 See, e.g., EM Sec. 8.9. 
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According to this equation, the final state of the field at absorption is the Fock state with n’ = n – 1, and 
Eq. (57) yields28 

          sa n .      (9.58) 

Results (56) and (58) are usually be formulated in terms of between the Einstein coefficients A 
and B defined in the way shown in Fig. 4, where the two energy levels are those of the atom, a is the 
rate of energy absorption from the electromagnetic field, and e is that of the energy emission into the 
field. In this notation, Eqs. (56) and (58) say 

           ,122121 BBA       (9.59) 

because each of these coefficients equals the spontaneous emission rate s. 

 

 

 

 

 

  

It is curious that from this point, there is just one step to an alternative derivation of the Bose-
Einstein statistics for photons. Indeed, in the thermodynamic equilibrium, the average probability flows 
between levels 1 and 2 should be equal: 

      ,12 ae WW       (9.60) 

where W1 and W2 are the probabilities for the atomic system to be on the corresponding levels, so that 
Eqs. (56) and (58) yield 

    ,1 12 nWnW ss      i.e.     
11
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W
.   (9.61) 

But, on the other hand, for the atomic subsystem, only weakly coupled to its electromagnetic 
environment, we ought to have the Gibbs distribution of probabilities: 
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   (9.62) 

Requiring Eqs. (61) and (62) to give the same result for the probability ratio, we get the Bose-Einstein 
distribution for the electromagnetic field in equilibrium: 

           
1}/exp{

1
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Tk
n


,     (9.63) 

the same as obtained in Sec. 7.1 by other means – see Eqs. (7.26). 

28 Relations (56) and (58) were conjectured, from very general arguments, by A. Einstein as early as in 1916. 

Fig. 9.4. The Einstein coefficients on 
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 Another, very important implication of Eqs. (56) and (58) is the possibility to achieve the 
stimulated emission coherence by level occupancy (or “population”) inversion. Indeed, if W2 > W1, then 
the net power flow from the atomic system into the electromagnetic field, 

                        nWnW s 12 1power   ,    (9.64) 

may be positive. The necessary inversion may be produced using several ways, notably by a intensive 
quantum transitions to level 2 from an even higher level (which, in turn, is populated, e.g., by absorption 
of an external radiation, called pumping, at a higher frequency.)  

A less obvious feature of the stimulated emission is spelled out by Eq. (55): again, it shows that 
the final state of the field after the absorption of energy  from the atom is a pure (coherent) Fock state 
(n + 1). Colloquially, one may say that the new, (n + 1)st photon emitted from the atom is automatically 
in phase with the n photons that had been in the field mode initially.29 The idea of stimulated emission 
of coherent radiation using population inversion30 was implemented in the early 1950s in the microwave 
range (masers) and in 1960 in the optical range (lasers). Nowadays, lasers are ubiquitous and constitute 
one of cornerstones of our technological civilization. 

 A quantitative discussion of laser operation is beyond the framework of this course, and I have to 
refer the reader to special literature,31 and would only like to mention only two key points: 

 (i) In a typical laser, each generated electromagnetic field mode is in the Glauber (rather than the 
Fock) state, so that Eqs. (56) and (58) are applicable only for n is averaged over the Fock-state 
decomposition of the Glauber state – see Eq. (5.165).  

 (ii) Since in a typical laser n >> 1, its operation may be well described using quasi-classical 
theories that use Eq. (64) to describe the electromagnetic energy balance (with the addition of a term 
describing the energy loss due to field absorption in external components of the laser, including the 
useful load), plus the equation describing the balance of occupancies W1,2 due to all inter-level 
transitions – similar to Eq. (60), but including also the contribution(s) from the particular population 
inversion mechanism used in the laser. At this approach, the role of quantum mechanics is essentially 
reduced to the calculation of parameter s.  

The role becomes more prominent if one needs to describe fluctuations of the laser field. Here 
two approaches are possible, following the two options discussed in Chapter 7. If the fluctuations are 
relatively small, one can linearize the Heisenberg equations of motion of the field oscillator operators 
near their stationary-lasing “values”, with the Langevin “forces” (also time-dependent operators)  to 
describe the fluctuation sources, and use these Heisenberg-Langevin equations to the radiation 
fluctuations, just as was described in Sec. 7.5. On the other hand, near the lasing threshold the field 
fluctuations are relatively strong, smearing the phase transition between the no-lasing and lasing states. 
Here the linearization is not an option, but one can use the density-matrix approach described in Sec. 
7.6, for the fluctuation analysis.32  

29 It is straightforward to show that this fact is also true if the field is initially in the Glauber state – which is more 
typical for lasers. 
30 This idea has been traced back at least to an obscure 1939 publication by V. Fabrikant. 
31 I can recommend, for example, P. W. Milloni and J. H. Eberly, Laser Physics, 2nd ed., Wiley, 2010, and a less 
technical text by A. Yariv, Quantum Electronics, 3rd ed., Wiley, 1989. 
32 This path has been developed (also in the mid-1960s), by several researchers, notably including M. Sully and 
W. Lamb – see, e.g., M. Sargent III, M. Scully, and W. Lamb, Jr., Laser Physics, Westview, 1977. Note that 
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9.4. Cavity QED 

Now I have to mention, at least in passing, the cavity quantum electrodynamics (usually called 
cavity QED for short) – an art and science of creating and using entanglement between quantum states 
of a single atomic system (either an atom, or an ion, or a molecule, etc.) and the electromagnetic field in 
a macroscopic volume called the resonant cavity (or just “resonator”, or just “cavity”). This field is very 
popular nowadays, especially in the context of the quantum computation and communication research 
discussed in Sec. 8.5.33 

Let me start its discussion by noting that the narrative of two last sections was based on an 
implicit assumption that the energy spectrum of the electromagnetic field interacting with an atomic 
system is essentially continuous. This assumption has justified the use of Golden Rule, implying that the 
emitted radiation is spread among many field modes, effectively loosing their coherence with the initial 
quantum state of the atom. However, this assumption becomes invalid if the electromagnetic field is 
contained inside a relatively small volume, with a linear size comparable with the radiation wavelength. 
Classical electrodynamics shows34 that if the walls of such a cavity mostly reflect, rather than absorb, 
radiation, so that in the crude approximation the power dissipation may be disregarded, then particular 
solutions ej(r) of the Helmholtz equation (5) correspond to discrete, well separated mode wavenumbers 
kj and hence well separated eigenfrequencies j. Due to the energy conservation, an atomic transition 
corresponding to energy E =  Eini - Efin  may be effective only if the corresponding quantum 
oscillation frequency   E/ is close to one of j and hence relatively far from other 
eigenfrequencies.35 As a result, the quantum states of a single atomic system and the resonant 
electromagnetic mode may become entangled. 
 A very popular approximation for the qualitative description of this effect is the so-called Rabi 
model,36 in which the atom is treated as a two-level system37 interacting with a single electromagnetic 
field mode of the resonant cavity. As the reader knows well from Chapters 4-6, any two-level (“spin-½”) 
system may be described by Hamiltonian σc ˆ , and we may always select the state basis in that the 
Hamiltonian is diagonal: 

            zz σcH ˆ
2

Ω
σ̂ˆ

atom


 ,     (9.65) 

where   2c is the energy difference between the eigenenergies in the absence of interaction with the 
field. Next, according to Eq. (17), ignoring the constant ground-state energy /2 (that may be added to 

while the laser radiation fluctuations may look like a peripheral issue, pioneering research in that field 
has led to the development of the general theory of open quantum systems (which was discussed in 
Chapter 7), that has much broader applications.  
33 This popularity was demonstrated, for example, by the 2012 Nobel Prize in Physics award to cavity QED 
experimentalists S. Haroche and D. Wineland. 
34 See, e.g., EM Sec. 7.9.
35 On the contrary, if  is far from any j, the interaction is much suppressed; in particular, the spontaneous 
emission rate may be much lower than that given by Eq. (53) – so that this result is not as fundamental as it may 
look. 
36 After the pioneering work by I. Rabi in 1936-37. 
37 As was shown in Sec. 6.5, this model is justified, e.g., if transitions between all other energy level pairs have 
considerably different frequencies. 
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the final energy in the very end – if necessary), the contribution of a single mode of eigenfrequency  to 
the Hamiltonian is 

                aaH ˆˆˆ †
cavity  .     (9.66) 

Finally, according to Eq. (16a), in quantum electrodynamics the electric field of the mode may be 
presented as 
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so that in the electric-dipole approximation (24), the cavity-atom interaction may be presented as a 
product of the field by one of Cartesian components (say, y) of the “spin” operator:38 
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E , (9.68) 

where  is a coupling constant (with the dimension of frequency). The sum of these terms is called the 
Rabi Hamiltonian, 
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Ωˆˆˆˆ
intcavityatom aaiaaσHHHH yz  


.  (9.69) 

 Despite its apparent simplicity, using this Hamiltonian for calculations is not that simple. For 
example, an exact quasi-analytical expression for its eigenenergies (as zeros of a Taylor series in 
parameter , with coefficients determined by a recurrence relation) was found only recently.39 Only in 
the case when the electromagnetic field is very intensive and hence may be treated as the classical one, 
the results following from Eq. (69) are reduced to the Rabi oscillations discussed in Sec. 6.3. 

 In the opposite case when the field oscillator is in an essentially quantum state,  aa ˆˆ†  ~ 1, Eq. 
(69) may be simplified in a different way, assuming that frequencies  and  are very close, and the 
atom-to-cavity interaction is relatively weak, so that magnitudes of the coupling constant   and the 
detuning parameter (similar to parameter  used in Sec. 6.5), 

            Ω ,      (9.70) 

are both much smaller than   . To discuss this limit, it is convenient to use the spin ladder operators 
defined absolutely similarly for those of the orbital angular momentum – see Eqs. (5.182):  

         yx i ˆˆˆ  ,  so that  
iy 2

ˆˆ
ˆ  


 .    (9.71) 

From Eq. (4.105), it is easy to find matrices of these operators (in the standard z-basis), 
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σ,

00

20
σ ,    (9.72) 

38 The exact choice of this component is not important, while the formulas simplify if it is proportional to either 
pure x or pure y. 
39 D. Braak, Phys. Rev. Lett. 107, 100401 (2011). 
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and their commutation rules – that are naturally similar to Eqs. (5.183): 

            ˆ2ˆ,ˆ,ˆ4ˆ,ˆ zz .    (9.73) 

In this notation, the Rabi Hamiltonian looks like 
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,   (9.74) 

and it is straightforward to use Eq. (4.199) and (73) to derive the Heisenberg-picture equations of 
motion for the involved operators. (Doing this, we have to remember that operators of the “spin” 
subsystem, on one hand, and of the field mode, on the other hand, are defined in different Hilbert spaces 
and hence commute – at least at coinciding time moments.) The result (so far, exact!) is 
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  (9.75)  

Now note that at negligible coupling,   0, equations (75) have very simple solutions, 

           constˆˆ,ˆ,ˆ ,Ω†  
 tetetaeta z

tititi  ,  (9.76) 

and small terms proportional to  in the right-hand parts of Eqs. (75) cannot affect these time evolution 
laws dramatically even if  is not exactly zero (but small). Of those terms, ones with frequencies close 
to the “basic” frequency of each variable would act in resonance and hence may have a substantial  
impact on system dynamics, while non-resonant terms may be ignored. In this rotating-wave 
approximation (RWA), used several times before in this course, Eqs. (75) are reduced to a much simpler 
system of equations: 

           
.ˆˆˆˆˆ,ˆˆ2ˆΩˆ,ˆˆ2ˆΩˆ

,ˆ
2

ˆˆ,ˆ
2

ˆˆ

††

††






 











aaiaiiaii

i
aia

i
aia

zzz




  (9.77) 

Alternatively, these equations of motion may be obtained from the Rabi Hamiltonian after it has 

been cleared of the terms proportional to †ˆˆ a and âˆ  , that oscillate fast and hence self-average to 
virtually zero: 

             Ω,,at  ,ˆˆˆˆ
2

ˆˆσ̂
2

Ωˆ ††  




   aaaaH z





.  (9.78) 

 This is the famous Janes-Cummings Hamiltonian,40 which is central to the cavity QED and its 
applications.41 In order to find its eigenstates and eigenenergies, let us note that at negligible interaction 

40 It was first proposed and analyzed in 1963 by two electronic engineers, E. Janes and F. Cummings, and it took 
the physics community a while to recognize and acknowledge the fundamental importance of that work. 
41 In most applications, Hamiltonian (78) is augmented by additional term(s) describing, for example, incoming 
radiation and/or coupling to environment, say due to the electromagnetic energy loss in the cavity walls – see Eq. 
(7.68). 
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(  0), the spectrum of the total energy E of the system, that in this limit is the sum of two 
independent contributions from the atomic (“spin”) and resonant-cavity subsystems, 

              ,
22
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 nEnE     (9.79) 

consists42 of close level pairs (Fig. 5) centered to values 
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(At the exact resonance  = , i.e. at  = 0, each pair merges into one double-degenerate level En.)  

 

 

 

 

 

 

 

 

Since at   0 the two subsystems do not interact, the eigenstates corresponding to the sublevels 
of n-th pair may be represented by products of their independent ket-vectors: 

nn  -  and1 . (9.81) 

As we know from Chapter 6, weak interaction leads to strong hybridization of quantum states with close 
energies (in this case, two states (81) with each pair with the same n) and their negligible mixing with 
other states. Hence, at 0 <  <<   , a good approximation of an eigenstate with E  En is given by a 
linear superposition of states (81): 

             ncnc   1 ,    (9.82) 

with certain c-number coefficients c. This relation describes the entanglement of atomic eigenstates  
and  with Fock states n and n - 1 of the field mode.  

 Let me leave the (straightforward) calculation of coefficients c and eigenenergies of the two 
entangled state pairs for reader’s exercise. This calculation shows, in particular, that at the exact 
resonance ( = ), c+ = c- = 1/2 for both states of each pair. This fact may be interpreted as a 
(coherent!) equal sharing of an energy quantum  =  by the atom and the cavity.  

 A by-product of the calculation of c, is the fact that the dynamics of state  described by Eq. 
(82) is similar to that of the generic two-level system that was repeatedly discussed in this course - first 

42 Besides the non-degenerate ground state level Eg = -/2. 
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time in Sec. 2.6 and then in Chapters 4-6. In particular, if the composite system had been initially 
prepared to be in one component state, for example 0 (i.e. the atom excited, while the cavity in its 
ground state) and allowed to evolve on its own, after some time interval it may be found in the 
counterpart state 1, including the first excited Fock state n = 1 of the field mode. This is one more  
(resonant) version of the same method for generation of Fock states of electromagnetic field which was 
discussed in Sec. 3.43 

 Unfortunately, my time devoted to cavity QED is over, and for further reading I have to refer the 
reader to special literature.44  

 

9.5. The Klein-Gordon and relativistic Schrödinger equations 

 Now let us discuss the basics of relativistic quantum mechanics of particles with a nonvanishing 
rest mass m - i.e., in terms of Eq. (1), the intermediate range of energies:  E ~ mc2, i.e. for p ~ mc. 
Historically, the first attempt45 to extend the non-relativistic wave mechanics into the relativistic energy 
range was based on performing the same transitions from classical observables to their quantum-
mechanical operators as in the non-relativistic limit: 

              
t

iHEi



  ˆ,ˆ pp .    (9.83) 

Substitution of these operators, acting on the Schrödinger-picture wavefunction (r,t), into the classical 
relation between the energy E and momentum p (for of a free particle) leads to the following equations: 
   
      Table 9.1. Deriving the Klein-Gordon equation for a free relativistic particle. 46 

 

 

 

 

 

 

43 Another important corollary of the level structure shown in Fig. 5 is the Purcell effect already mentioned in 
Sec. 3. As we already know from Chapter 7, if the system is coupled to environment, the coupling suppresses its 
quantum coherence, in our case the coherence between components of each pair (82). As a result, if the atom is 
initially in state  with higher energy (79), it may perform incoherent (dissipative) transition to the lower-energy 
state , giving energy  to the cavity (n - 1  n), which rapidly drains it into the environment. Since the total 
energies of these initial and final states are close (Fig. 5),  the rate of such transitions may be much higher than in 
free space. The quantitative analysis of such enhancement is left for reader’s exercise. 
44 I can recommend, for example, either C. Gerry and P. Knight, Introductory Quantum Optics, Cambridge U. 
Press, 2005’ or G. Agarwal, Quantum Optics, Cambridge U. Press, 2012.  
45 This approach was suggested almost simultaneously in 1926-1927 by (at least) V. Fock, E. Schrödinger, O. 
Klein and W. Gordon, J. Kudar, T. de Donder and F.-H. van der Dungen, and L. de Broglie. 
46 Note that in the sense of Eq. (1), in the non-relativistic column of this table, the energy is referred to the rest 
energy mc2, while in the relativistic column, to zero. 
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 The resulting equation for the non-relativistic limit is just the usual Schrödinger equation (1.28) 
for a free particle. Its relativistic generalization, usually rewritten as 

      


mc

tc












  with  ,0ΨΨ-

1 22
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2
,    (9.84) 

is called the Klein-Gordon (or sometimes “Klein-Gordon-Fock”) equation. The most fundamental 
solutions of this equation are the same plane, monochromatic waves 

          tit  rkr exp),(Ψ .     (9.85) 

as in the non-relativistic case. Indeed, such waves are eigenstates of operators (83), with eigenvalues 

                 E,kp ,     (9.86) 

so that their substitution into Eq. (84) immediately returns us to Eq. (1) with replacements (86): 

                            2/1222 mcckE    .    (9.87) 

 Though one may say that this dispersion relation is just a simple combination of the classical 
relation (1) and  the same basic quantum-mechanical relations (86) as in non-relativistic limit, it attracts 
our attention to the fact that energy   as a function of momentum k has two rather than one branches, 
with E-(p) = -E+(p) – see Fig. 6a.  

 

 

 

 

 

 

 

 

 Historically, this fact has played a very important role for spurring the fundamental idea of 
particle-antiparticle pairs. In this idea (very similar to the concept of electrons and holes in 
semiconductors, which was discussed in Sec. 2.8), what we call the vacuum actually corresponds to all 
states of the lower branch, with energies E-(p) < 0, being filled, while the  states on the upper branch, 
with energies E+(p) > 0, being empty. Then an externally supplied energy  

          02Δ 2   mcEEEEE     (9.88) 

may bring the system from the lower branch to the upper one (Fig. 6b). The resulting excited state is 
interpreted as a combination of a particle (formally, of the infinite spatial extension) with energy E+ and 
momentum p, and a “hole” (antiparticle) of positive energy (–E-) and momentum –p. This idea47 has led 

47 Due to the same P. A. M. Dirac! 

Fig. 9.6. (a) Free-particle 
dispersion relation resulting from 
the Klein-Gordon and Dirac 
equations, and (b) creation of a 
particle-antiparticle pair from the 
vacuum. 
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to a search for, and discovery of the positron: electron’s antiparticle with charge q = +e, in 1932, and 
later of the antiproton and other antiparticles. 

 Free particles of a finite spatial extension may be described, in this approach, just in the non-
relativistic Schrödinger equation, by wave packets: linear superpositions of de-Broglie waves (85) with 
close wave vectors k, and  given by Eq. (87), with the positive sign for the “usual” particles, and 
negative sign for antiparticles – see Fig. 6a above. Note that in order to form, from a particle’s wave 
packet, a similar wave packet for the antiparticle, with the same phase and group velocities (2.33) in 
each direction, we need to change the sign not only before , but also before k, i.e. to replace all 
component wavefunctions (85), and hence the full wavefunction, with their complex conjugates. 

 Of more formal properties of the equation, it is easy to prove that its solutions satisfy the same 
continuity equation (1.52) with the probability current density j still given by Eq. (1.47), but a different 
expression for the probability density w - which becomes very similar to that for j: 
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j .   (9.89) 

(In the non-relativistic limit v/c  0, Eq. (84) allows a reduction of the first relation to Eq. (1.22): w  
*.) 

 The Klein-Gordon equation may be readily generalized to describe a single particle moving in 
external fields; for example, the electromagnetic field effects on a particle with charge q may be 
described by the same replacement as in the non-relativistic limit (see Sec. 3.1):48 

             ),(ˆˆ,,ˆˆ tqHHtq rrAPp  ,    (9.90) 

where iP̂ is the canonical momentum operator (3.25), and the vector- and scalar potentials, A and 
, should be treated appropriately – either as c-number functions if the electromagnetic field 
quantization is unimportant, or as operators (see Secs. 1-4 above) if it is.  

 However, the practical value of the relativistic Schrödinger equation is rather limited, because of 
two main reasons. First of all, it does not give the correct description of particles with spin. For example, 
for the hydrogen-like atom, i.e. the motion of an electron with electric charge –e in the Coulomb central 
field (3.182) of an immobile nucleus with charge +Ze, the equation may be readily solved exactly49 and 
yields the following spectrum of (doubly-degenerate) energy levels: 
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where n = 1, 2,… and l = 0, 1,…, n - 1 are the same quantum numbers as in the non-relativistic theory 
(see Sec. 3.6), and    e2/40c  1/137 is the fine structure constant – see Eq. (6.62). The three 
leading terms of the Taylor expansion of this result in small parameter Z are as follows: 
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48 After such generalization, Eq. (84) is usually called the relativistic Schrödinger equation.
49 The task left for the reader. 
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The first of these terms is just the rest energy of the particle. The second term, 
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  (9.93) 

reproduces the non-relativistic Bohr’s formula (3.191). Finally, the third term, 
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,   (9.94) 

is just the kinetic-relativistic contribution (6.52) to the fine structure of the Bohr levels (93). However, 
as we already know from Sec. 6.3, for a spin-½ particle such as the electron, the spin-orbit interaction 
(6.56) gives an additional contribution of the same order to the fine structure, so that the net result, 
confirmed by experiment, is given by Eq. (6.60), i.e. different from Eq. (94). This is very natural, 
because the relativistic Schrödinger equation does not have the very notion of spin. 

 Second, even for massive spinless particles (such as Z0 bosons), for which this equation is 
believed to be valid, the most important problems are related to particle interactions at high energies of 
the order of  ~ 2mc2 (88) and beyond. Due to possibility of creation and annihilation of particle-
antiparticle pairs at such energies, the number of particles participating in such interactions is typically 
considerable (and variable), and its adequate description of the system is given not by the relativistic 
Schrödinger equation (which is formulated in single-particle terms), but by the quantum field theory - to 
which I will devote just a few sentences in the very end of this chapter. 

  

9.6. Dirac’s theory 

 The real breakthrough toward the quantum relativistic theory of electrons (and any spin-½ 
fermions) was achieved in 1928 by P. A. M. Dirac. For that time, the structure of his theory was highly 
nontrivial. Namely, while  formally preserving, in the coordinate representation, the same Schrödinger-
picture equation of quantum dynamics as in the non-relativistic quantum mechanics,50 

       



H
t

i ˆ ,      (9.95) 

it postulates that wavefunction  is not a scalar complex function of time and coordinates, but a four-
component column-vector (sometimes called the bispinor) of such functions, its Hermitian-conjugate 
bispinor † being a 4-component row-vector of their complex conjugates: 
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 ,  (9.96) 

50 After the “naturally-relativistic” form of the Klein-Gordon equation (84), this apparent return to the non-
relativistic Schrödinger equation may look very counter-intuitive. However, it becomes a bit less surprising taking 
into account the fact (whose proof is left for the reader) that Eq. (84) may be also recast into form (95) for a two-
component column-vector (spinor) , with a Hamiltonian which may be represented by a 22 matrix - and hence 
expressed via the Pauli matrices (4. 
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and that the Hamiltonian participating in Eq. (95) is a 44 matrix in the Hilbert space of bispinors . 
For a free particle, the postulated Hamiltonian looks amazingly simple: 51  

                    2ˆˆˆˆ mccH  pα .     (9.97) 

where p̂  = -i is the same 3D vector of momentum component operators as in the non-relativistic 

case, while operators α̂  and ̂  may be presented in the following shorthand 22 form: 
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 Operator α̂ , composed of the Pauli vector operators σ̂ , is also a vector in the usual 3D space, so 
that each of its 3 Cartesian components is a 44 matrix. The particular form of the 22 matrices 

corresponding to operators σ̂  and Î  in Eq. (98a) depends on the basis selected for representation of the 
spin states of the particle; for example, in the standard z-basis, in which the Cartesian components x̂ , 

ŷ , and ẑ of σ̂  are represented by the Pauli matrices (4.105), the full matrix form of Eq. (98a) is 
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. (9.98b) 

(According to the second of Eq. (98a),  has this form in any spin basis.) It is straightforward to use Eqs. 
(98) to verify that matrices x, y, z and  satisfy the following relations: 

            ,1βααα 2222  zyx      (9.99) 

     0βαβαβαβαβαβααααααααααααα  zzyyxxzxxzyzzyxyyx , (9.100) 

i.e. anticommute.  

 Acting essentially as in Sec. 4.1, but using commutation relations (99)-(100), it is 
straightforward to show that any solution to the Dirac equation obeys the probability conservation law, 
i.e. the continuity equation (1.52), with the probability density, 

51 Moreover, if the time derivative participating in Eq. (95) and the three coordinate derivatives participating (via 
the momentum operator) in Eq. (97), are merged into one 4-vector operator /xk  {, /(ct)}, the Dirac 
equation (95) may be rewritten in an even simpler, manifestly Lorentz-invariant 4-vector form (with the implicit 
summation over the repeated index k = 1, ..., 4 – see, e,g., EM Sec. 9.4):  

  ,β̂ γ̂,
0ˆ

ˆ-0
ˆ,ˆ,ˆˆ  where,0Ψˆ 4321 
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where μ  mc/ - just as in Eq. (84). Note also that, very counter-intuitively, the Dirac Hamiltonian (97) is linear 
in momentum, while the non-relativistic Hamiltonian of a particle, as well as the relativistic Schrödinger equation, 
are quadratic in p. In my humble opinion, the Dirac theory (including the concept of antiparticles) may compete 
for the title of the most revolutionary theoretical idea in physics, despite such heavy contenders as the Newton 
laws, the Maxwell equations, the Einstein’s relativity, the Bohr atom, and the Gibbs’ statistical distributions. 
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          †w ,      (9.101) 

and the probability current, 

        ΨˆΨ†αj c ,      (9.102) 

looking almost as in the non-relativistic theory – cf. Eqs. (1.22) and (1.47). Note, however, the 
Hermitian conjugation used in these formulas instead of the complex conjugation, in order to form 
scalars w, jx, jy, and jz from 4-component vectors (96).  

 This qualified similarity is extended to the fundamental, plane-wave solutions of the Dirac 
equations is free space. Indeed, plugging such solution, in the form 
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into Eqs. (95) and (97), we get a system of 4 coupled, linear algebraic equations for 4 complex c-number 
amplitudes u1,2,3,4. The condition of their consistency yields the same dispersion relation (87), i.e. the 
same two-branch diagram shown in Fig. 6, as follows from the Klein-Gordon equation. The difference is 
that plugging each value of , given by Eq. (87), back into the system of equations for amplitudes u, we 
get two solutions for vector u for each of the energy branches. In the standard spin z-basis they may be 
presented as: 
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where c are normalization coefficients.   

 The simplest interpretation of these solutions is that Eq. (103) with vectors u+, given by Eq. 
(104a), represents a spin-½ particle (say, an electron), while that with vectors u- given by Eq. (104b) 
represents an antiparticle (a positron), and two solutions for each particle correspond to two opposite 
directions of spin, z = 1, Sz = /2. This interpretation is indeed solid in the non-relativistic limit, 
when two last components of vector (104a) and two first components of vector (104b) are negligibly 
small: 
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 In order to show this, let us use the Dirac equation to calculate the Heisenberg-picture law of 
time evolution of operators of the Cartesian components of the orbital angular momentum L  rp, for 
example of  Lx = ypz – zpy, taking into account that operators (98a) commute with those of r and p, and 
also the Heisenberg commutation relations (2.14): 
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 pα ,   (9.106) 

with similar relations for two other Cartesian components of the operator. Since the right-hand part of 
these equations is different from zero, the orbital momentum is generally not conserved - even for a free 
particle! Let us, however, consider the following vector operator, 
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whose Cartesian components, in the z-basis, are represented by 44 matrices 
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and calculate the Heisenberg-picture law of time evolution of these components, for example 
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 .   (9.108) 

A direct calculation of the commutators of matrices (98) and (107) yields 

                  ,ˆˆ,ˆ,ˆˆ,ˆ,0ˆ,ˆ
yzxzyxxx iSiSS       (9.109) 

so that we finally get 
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 ,     (9.110) 

with similar expressions for other two components of the operator. Comparing this result with Eq. (106), 
we see that any Cartesian component of operator (5.198), 

          SLJ ˆˆˆ  ,      (9.111)  
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is an integral of motion,52 so that this operator may be interpreted as the one presenting the total angular 
momentum. Hence, operator (104) may be interpreted as the spin operator of a spin-½ particle (e.g., 
electron). As it follows from the last of Eq. (107b), columns (105) represent the eigenkets of the z-
component of that operator, with eigenstates Sz = /2, depending on the arrow index. So, the Dirac 
theory provides a justification for spin-½ – or, somewhat more humbly, replaces the spin hypothesis by 
an assumption of a simpler (and hence more plausible), Lorentz-invariant Hamiltonian (97). 

 Note, however, that this fact is not true for the exact solutions (103)-(104), so that generally the 
eigenstates of the Dirac Hamiltonian are certain linear (coherent) superpositions of component 
wavefunctions describing the particle and its antiparticle - each with both directions of spin. This fact 
leads to several interesting effects, including the so-called Klien paradox at reflection of a particle from 
a tunnel barrier.53 It is curious that some of these effects may be reproduced in such non-relativistic 
systems as electron moving in a 2D honeycomb lattice (e.g., in graphene), since they also feature a 
(locally) linear dispersion relation – see Eq. (3.122).54 

 

9.7. Low-energy limit 

 The generalization of the Dirac’s theory to the case of a particle with electric charge q, moving 
in a classically-described electromagnetic field may be obtained using the same Eqs. (90). As a result, 
Eq. (95) becomes  

         0Ψˆˆˆ 2  Hqmcqic Aα  ,   (9.112) 

where the Hamiltonian operator Ĥ is understood in the sense of Eq. (95), i.e. as the partial time 
derivative with multiplier i. Let us prepare this equation for a low-energy approximation by acting on 
its left-hand part by a similar square bracket (also an operator!), but with the opposite sign before the 
last parentheses. Using relations (99) and (100), and the fact that space- and time-independent operators 

α̂  and β̂  commute with the spin-independent functions  t,rA  and  t,r , as well as with the 

Hamiltonian operator i/t, the result is 

                       0Ψˆˆ,ˆˆ
22222  HqHqqicmcqic AαAα   . (9.113) 

A direct calculation of the first square bracket, using Eqs. (98) and (107), yields 

                  ASAAα   ˆ2ˆ 22 qqiqi  .   (9.114) 

But according to the last of Eqs. (3.21), the last vector product in the right-hand part is just the magnetic 
field 

         A B .      (9.115) 

Similarly, we may use the first of Eqs. (3.21), for the electric field,  

      
t




AE ,     (9.116) 

52 It is straightforward to show that this result remains valid for a particle in the field of central potential U(r). 
53 See, e.g., A. Calogeracos and N. Dombey, Contemp. Phys. 40, 313 (1999). 
54 For a review see, e.g., T. Robinson, Am. J. Phys. 80, 141 (2012). 
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to simplify the commutator participating in Eq. (9.113): 

              E



 αα
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αAαAα ˆˆ,ˆ,ˆˆˆ,ˆ qii
t

qiqiHqHqqi    . (9.117) 

As a result, Eq. (110) becomes 

              0Ψˆˆ2ˆ 222222  EB αSA cqiqcmcHqqic   .  (9.118) 

 So far, this is an exact result, equivalent to Eq. (112), but more convenient for an analysis of the 
low-energy limit in that not only the offset energy E - mc2 (which is the energy used in non-relativistic 
quantum mechanics), but also the electrostatic energy of the particle, q, are much smaller than the 
rest energy mc2. In this limit, the second and third terms of Eq. (118) almost cancel, and introducing the 
offset Hamiltonian 

      ImcHH ˆˆ~̂ 2 .     (9.119) 

we may approximate their difference, up to the first nonvanishing term, as 
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As a result, after division of all terms by 2mc2, Eq. (118) may be approximated as 
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 Let us discuss this important result. The first two terms in the square brackets give the 
Hamiltonian (3.26) that was extensively used in Chapter 3 for the discussion of non-relativistic motion 
of charged particles. Note again that the contribution of the vector-potential A into that Hamiltonian is 
essentially relativistic, in the following sense: when used for the description of magnetic interaction of 
two charged particles, due to their orbital motion with speed v << c, the magnetic interaction is a factor 
of (v/c)2 smaller than the electrostatic interaction of the particles.55 The reason why we did discuss the 
effects of A in Chapter 3 was that is was used there to describe external magnetic fields, keeping our 
analysis valid even for the cases when that field is strong by being produced by relativistic effects – such 
as aligned spins in a permanent magnet. 

 The next, third term in the square brackets is also familiar to the reader: it was introduced 
informally in Sec. 4.1, and then formally in Sec. 4.4 to describe the effect of magnetic field on particle’s 
spin – see Eqs. (4.3), (4.5), and (4.163). When justifying this form of interaction, I referred mostly to 
results of Stern-Gerlach-type experiments, but it is extremely pleasing that this result56 follows from 
such a fundamental relativistic treatment as Dirac's theory. As we already know from the discussion of 

55 This difference may be traced even by classical means – see, e.g., EM Sec. 5.1. 
56 With the g-factor still equal to exactly 2 - see Eq. (4.116) and its discussion. In order to describe the small 
deviation of ge from 2, the electromagnetic field should be quantized (just as this was done in Secs. 1-4), and its 
potentials A and , participating in Eq. (112) should be treated as operators – rather than as c-number functions as 
was assumed above. The calculation of this deviation is one of the basic problems of quantum field theory. Other 
small but important effects of electromagnetic interactions, described by the theory, include the so-called Lamb 
shift of atomic levels – see the end of this chapter for references. 
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the Zeeman effect in Sec. 6.4, the effects of magnetic field on the orbital motion of an electron 
(described by orbital angular momentum L) and its spin S are of the same order, i.e. present an 
essentially relativistic effect. 

 Finally, the last term in the square brackets of Eq. (121) is also not quite new for us: in particular 
it describes the spin-orbit interaction. Indeed, in the case of classical, spherical-symmetric electric field 
E with potential  (r) = U(r)/q, the term may be reduced to Eq. (6.56b):  

    E
rcm

q

dr

dU

rcm
H

1ˆˆ
2

1ˆˆ
2

1ˆ
2222so LSLS  .   (9.122) 

The proof of this correspondence requires a bit of additional work,57 because in Eq. (121), the term 
responsible for the spin-orbit interaction acts on 4-component wavefunctions, while Hamiltonian (122) 
is supposed to act on non-relativistic wavefunctions with account of spin, whose coordinate 
representation is given by 2-component columns – spinors:58  

          
















 .      (9.123) 

 The simplest way to prove the identity of the two formulas is not to use Eq. (121) directly, but to 
return to the Dirac equation (112), for the particular case of motion in a stationary electric field with no  
magnetic field, when Dirac’s Hamiltonian is reduced to 

        rpα UmccH  2ˆˆˆˆ  .     (9.124) 

Since this Hamiltonian is time-independent, we may look for its 4-component eigenfunctions in the form 
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,    (9.125) 

where each of  is a 2-component column of the type (123), representing two spin states of the particle 
(index +)  and antiparticle (index -). Plugging Eq. (125) into Eq. (124), and using Eq. (98a), we get the 
following system of two linear equations: 
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    (9.126) 

57 The only facts immediately evident from Eq. (121) are that the term we are discussing is proportional to the 
electric field, as required by Eq. (122), and that it is of the proper order of magnitude. Indeed, Eqs. (101)-(102) 
imply that in the Dirac theory, α̂c plays the role of the velocity operator, so that the expectation values of the term 
are of the order of qvE/2mc2. Since the expectation values of the operators participating in Hamiltonian (122) 

scale as S ~ /2 and L ~ mvr, the spin-orbit interaction energy has the same order of magnitude. 
58 As a reminder, in this course the notion of spinor was introduced earlier for two-particle states - see Eq. (8.14). 
For a single particle, that definition is reduced to (r)s, whose representation in a particular spin-½ basis is a 
column similar to Eq. (123). Also note that spinors (123) may be expanded into a series over the spin-orbitals 
(8.117) discussed in Sec. 8.3, with index j used for numbering both the two directions of spin (i.e. two 
components of spinor's column) and orbital eigenfunctions. 
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Expressing - from the latter equation, and plugging the result into the former one, we get the following 
single equation for particle’s spinor: 
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 So far,  this is an exact equation for eigenstates and eigenvalues of Hamiltonian (124). It may be 
substantially simplified in the low-energy limit when both the potential energy59 and the non-relativistic 
eigenenergy   

         2~
mcEE       (9.128) 

are much less than mc2. Indeed, in this case the expression in denominator of the last term in the 
brackets of Eq. (127) is close to 2mc2. Since 2 = 1, with that replacement, Eq. (127) is reduced to the 
non-relativistic Schrödinger equation, similar for both spin components of +, and hence giving spin-
degenerate energy levels. In order to recover small relativistic and spin-orbit effects, we need a slightly 
more accurate approximation: 
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in which Eq. (127) is reduced to 
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As follows from Eqs. (5.46)-(5.47), the operators of momentum and of a function of coordinates 
commute as 

              UiU rp,ˆ ,     (9.131) 

so that the last term in square brackets of Eq. (130) may be rewritten as 

               
 

 
 

   
  pσσ

r
pσ

r
pσ ˆˆˆ

2
ˆ

2

~
ˆˆ

2

~
ˆˆ

2
2

22






 U

mc

i
p

mc

UE

mc

UE



.   (9.132) 

 Since in the low-energy limit both terms in the right-hand part of this relation are much smaller 
than the three leading terms of Eq. (130), in the first of them we may replace the numerator with its non-
relativistic value mp 2/ˆ 2 . With this replacement, the term coincides with the first relativistic correction 
to the kinetic energy operator – see Eqs. (6.47) and (6.49a). The second term, proportional to the electric 
field E = - = -U/q, may be transformed further on, using a readily verifiable relation 

           pσppσσ ˆˆˆˆˆˆ  UiUU  .    (9.133) 

Of the two terms in the right-hand part, only the second one depends on spin,60 giving the following 
spin-orbital interaction contribution to the Hamiltonian, 

59 Strictly speaking, this requirement is imposed on the expectation values of U(r) in the eigenstates to be found. 
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For a central electric field with (r) = (r), the potential gradient has only one, radial component:  = 

(d/dr)r/r = - Er/r, and with the angular momentum definition prL ˆˆ  , Eq. (134) is reduced to Eq. 
(122). 

 As was shown in Sec. 6.3, the perturbative treatment of Eq. (122), together with the kinetic-
relativistic correction (6.49), in the hydrogen-like atom problem, leads to the fine structure of each Bohr 
level En, given by Eq. (6.60): 
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This result gets a confirmation from the surprising fact that for the hydrogen-like atom problem, the 
Dirac equation may be solved exactly – without any assumptions. I do not have time/space to reproduce 
the solution,61 and will list just the final result for the energy spectrum: 
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Here n = 1, 2, … is the same main quantum number as in Bohr’s theory, while j is the quantum number 
specifying eigenvalues (5.203) of the total angular momentum’s square J2 in the units of 2, taking half-
integer values: j = l  ½ = 1/2, 3/2, 5/2, … - see Eq. (5.215). Such set of quantum numbers is rather 
natural, because due to the spin-orbit interaction, the orbital and spin angular momenta are not 
conserved, while their vector sum, J = L + S, is - in the absence of external magnetic field. Each energy 
level (136) is doubly-degenerate, with two eigenstates representing two directions of spin – i.e. two 
values of l = j  ½ at fixed j. 

 Since according to Eq. (1.9), the square of the fine-structure constant   e2/40c  may be 
presented as the ratio EH/mc2, the low-energy limit (E – mc2 ~ EH << mc2) may be pursued by expanding 
Eq. (136) into the Taylor series in (Z)2 << 1. The result, 
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has the same structure, and allows the same interpretation as Eq. (92), but with the last term coinciding 
with Eq. (6.52) - and with experimental results. Historically, this correct description of the fine structure 
of atomic levels provided a decisive proof of Dirac’s theory. 

 However, even such an impressive theory does not have too many direct applications. The main 
reason for that was already discussed in brief in the end of Sec. 5: due to the possibility of creation and 

60 The first term gives a small, spin-independent shift of the energy spectrum, which is very difficult to verify 
experimentally. 
61 Good descriptions of the solution are available in many textbooks (the older the better :-), for example see Sec. 
53 in L. Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill (1968). 
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annihilation of particle-antiparticle pairs at energies higher than 2mc2, the number of particles 
participating in high-energy interactions is not fixed. An adequate general description of such situation 
is given by the quantum field theory, in which the particle wavefunction is treated as a field to be 

quantized, using so-called field operators  t,ˆ r – very much as the electromagnetic field was treated in 
Secs. 1-4 above. (The Dirac equation follows from the quantum field theory in the single-particle 
approximation.)  

 As was mentioned above on several occasions, the quantum field theory is beyond the scope of 
this course, and I have to stop here, referring the interested reader to one of several excellent available 
textbooks on this discipline.62 (I would strongly encourage the student going in this direction to start 
with playing with the field operators on this or her own, taking clues from Eqs. (16), but replacing the 

creation / annihilations operators jj aa ˆ  and  ˆ†  of the harmonic oscillator with those of the general second 

quantization formalism outlined in Sec. 8.3.)  

 

9.8. Exercise problems 

9.1.* Prove the Casimir formula (23) for the attraction force F = -PA between two perfectly 
conducting parallel plates of area A, separated by a narrow vacuum gap d << A1/2. 

Hint: You may like to use the Euler-Maclaurin formula.63 
 

9.2.  Radiation of some single-mode quantum sources may have such a high degree of coherence 
that it is possible to observe interference from two independent sources with virtually the same 
frequency, incident on one detector. 

 (i) Generalize Eq. (29) to this case. 
 (ii) Use the generalized expression to show that incident waves in different Fock states do not 
create an interference pattern. 
 

9.3. Calculate the zero-delay value g(2)(0) of the second-order correlation function of a single-
mode electromagnetic field in the so-called Schrödinger-cat state: a coherent superposition of two 
Glauber states, with equal amplitudes, equal but sign-opposite parameters , and a certain phase shift 
between them. 

 
 9.4. Calculate the zero-delay value g(2)(0) of the second-order correlation function of single-
mode electromagnetic field in the squeezed ground state s  defined by Eq. (5.172). 

 
9.5. Calculate the rate of spontaneous photon emission (into the unrestricted free space) by a 

hydrogen atom, initially in the 2p state (n = 2, l = 1) with m = 0. Would the result be different for m =  

62 For a gradual introduction see, e.g., either L. Brown, Quantum Field Theory, Cambridge U. Press (1994) or R. 
Klauber, Student Friendly Quantum Field Theory, Sandtrove (2013);  on the other hand, M. Srednicki, Quantum 
Field Theory, Cambridge U. Press (2007) and A. Zee, Quantum Field Theory in a Nutshell, 2nd ed., Princeton 
(2010), among many others, offer a steeper learning curve. 
63 See, e.g., MA Eq. (2.12). 
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1? for the 2s state (n = 2, l = 0, m = 0)? Discuss the relation between these quantum-mechanical results 
and those given by the classical theory of radiation, using the simplest classical model of the atom. 

 
9.6. An electron has been placed at the lowest excited level of a spherically-symmetric, quadratic 

potential well U(r) = me2r2/2. Calculate the rate of its relaxation to the ground state, with emission of a 
photon (to the free space). Compare the rate with that for a similar transition of the hydrogen atom, for 
the case when the radiation frequencies of these two systems are equal.  
 
 9.7. Derive an analog of Eq. (53) for the spontaneous photon emission into the free space, due to 
a change of its magnetic dipole moment m of a small-size system. 

9.8. A spin-½  particle, with the gyromagnetic ratio , is in its orbital ground state in a dc 
magnetic field B0. Calculate the rate of its spontaneous transition from the higher to the lower energy 
level, with the emission of a photon into the free space. Evaluate the rate for in an electron in a field of 
10 T, and discuss the implications of this result for experiments with electron spins. 
 

9.9. Calculate the rate of spontaneous transitions between the two sublevels of the ground state 
of a hydrogen atom, formed as a result of its hyperfine splitting. Discuss the implications of the result 
for the width of the 21-cm spectral line. 
 
  9.10. Find the eigenstates and eigenvalues of the Janes-Cummings Hamiltonian (78), and 
discuss their behavior near the resonance point  = . 

 
 9.11. Analyze the Purcell effect, mentioned in Secs. 3 and 4, qualitatively; in particular, calculate 
the so-called Purcell factor FP, defined as the ratio of the spontaneous emission rates s of an atom in a 
resonant cavity (tuned exactly to the quantum transition frequency) and that in the free space.  
 
 9.12. Prove that the Klein-Gordon equation  (9.84) may be rewritten in the form similar to the 
non-relativistic Schrödinger equation, 


H

t
i ˆ




 , 

for a two-component wavefunction ,64 with the Hamiltonian represented (in the usual z-basis) by the 
following 22-matrix: 

  zyz mc
m

i σ
2

σσH 22
2




. 

Use your solution to discuss the physical meaning of the wavefunction’s components. 
 

9.13. Calculate and discuss the energy spectrum of a relativistic, spinless, charged particle placed 
into an external uniform, time-independent magnetic field B. Use the result to formulate the condition of 
validity of the non-relativistic theory. 

64 Here  is a function of both r and t, and the lower-case letter is used only to distinguish this two-component 
spinor from the scalar function (r, t) obeying the Klein-Gordon equation.  
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 Hint: Reduce the relativistic Schrödinger equation, describing the problem, to the non-relativistic 
one describing the same problem, with some effective parameter(s). 
 
 9.14. Prove Eq. (91) for the energy spectrum of a hydrogen-line atom, calculated from the 
relativistic Schrödinger equation. 

 Hint: Use the fact that, as a mathematical analysis of Eq. (3.184) shows, its eigenvalues are given 
by Eq. (3.191), n = -1/2n2, with n = l + 1 + nr, where nr = 0, 1, 2,…, even if l is not integer.65   
 
 9.15. Derive the general expression for the differential cross-section of the elastic scattering of a 
spinless relativistic particle by a static potential U(r), in the Born approximation, and formulate the 
conditions of its validity. Use these results to calculate the differential cross-section of scattering of a 
particle with electric charge -e by the Coulomb electrostatic potential (r) = Ze/40r. 
 

 9.16. Calculate the commutator of operator 2L̂ and the Dirac Hamiltonian of a free particle. 
Compare the result with that for the non-relativistic Hamiltonian of a free particle, and interpret the 
difference.  
 
 9.17.* In the Heisenberg picture of quantum dynamics, derive an equation describing time 
evolution of free electron’s velocity in the Dirac theory. Solve the equation for the simplest state, with 
constant energy and momentum, and discuss the solution. 
 

9.18.* Calculate the eigenstates and eigenenergies of a spin-½ particle with charge q, placed into 
a uniform, time-independent external magnetic field B. Compare the calculated energy spectrum with 
those following from the non-relativistic theory and the relativistic Schrödinger equation. 
 

9.19.* Following the recommendation in the end of Chapter 9 of the lecture notes, introduce the 
quantum field operators ̂ , which would be related to the usual wavefunctions  just as the EM field 
operators (9.16) are related to the classical electromagnetic fields, and explore the basic properties of 
these operators. (For this preliminary study, consider just the fixed-time situation.)   
 
 
 
 
 

 

 

 

65 Actually, the key relation (3.192), n  l + 1, mathematically stems from the fact that the “genuine” quantum 
number of the radial problem, nr, can only take non-negative integer values. 
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Chapter 10. Making Sense of Quantum Mechanics 

This (very cryptic) chapter addresses the issues of quantum mechanics interpretation that are still a 
subject of debate – fortunately not affecting practical applications of the quantum theory.   

 

10.1. Hidden variables and local reality 

 Only now, with a quantitative understanding of the principles of quantum mechanics, we are 
ready to proceed to the discussion of its interpretation1 – the issue which is very closely related to 
problems of measurements, already discussed in Sec. 7.7. As was already mentioned in that section, the 
founding fathers of quantum mechanics have not left much guidance on these topics, because in the first 
years after the advent of this exciting new theory they gave understandable preference to using it for 
deriving new particular results, and then were much distracted by the development of nuclear physics 
and its applications. This is why, after a very important but inconclusive discussion between A. Einstein 
and N. Bohr in the mid-30s, the debates of quantum measurements and the related conceptual issues of 
quantum mechanics have resumed only in the 1950s. They have led to a key contribution by J. Bell in 
the early 1960s, and an important experimental work on verifying Bell’s inequalities (see below), but 
besides that work, the recent progress is marginal, and opinions of even prominent physicists on certain 
issues are still very much different.  

 Perhaps the central controversial issue is question (iii) posed in Sec. 7.7: what (if any :-) is the 
“real” state of a quantum-mechanical system before a nearly-perfect measurement giving a certain 
outcome? In order to be specific, let us focus again on the simplest example of Stern-Gerlach 
measurements of spin-½ particles - because of their physical transparency and technical simplicity.2 As 
the reader knows very well by now, even in a pure quantum spin state (for example, ), i.e. the least 
uncertain state of the system,  the results of the Stern-Gerlach measurements of other spin component 
are still uncertain. Indeed, as we know from Sec. 4.4, the ket-vector of this state may be presented as 

             
2

1
,     (10.1) 

so that the probabilities of measuring any of values Sx = +/2 and Sx = -/2 equal 50%. So, has the spin 
had a certain value of Sx a split second before the Stern-Gerlach measurement that gave a certain 
outcome, for example Sx = +/2? For a classical system, with perfect detectors, the answer is definitely 
yes. In this case, the pre-measurement probability of 50% just reflects the degree of our ignorance about 
the real state of the system, and the detector merely reveals it.  

 However, the situation in quantum mechanics is different, and such interpretation is impossible, 
as was clearly shown in the famous EPR paper published in 1935 by A. Einstein, B. Podolsky, and N.

1 I believe that another popular name for this group of issues, “foundations of quantum mechanics”, is hardly  
appropriate. The only reliable foundation of physics (or any other genuine scientific discipline) is a set of 
experimental facts. 
2 As was discussed in Sec. 7.7, Stern-Gerlach-type experiments may be readily made almost “perfect”, i.e. 
virtually unaffected by instrument imperfections, provided that we do not care about the state of the particle after 
a single-shot measurement.   
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 Rosen. Its original discussed thought experiments with a pair of 1D particles prepared in a quantum 
state in that both the sum of their momenta and difference of their coordinates are exactly fixed: p1 + p2 
= 0, x1 – x2 = a.3 However, usually the discussion is recast into an equivalent Stern-Gerlach experiment 
shown in Fig. 1a.4 A source emits rare pairs of spin-½ particles, propagating in opposite directions, with 
exactly zero net spin, but otherwise in random spin states. After the spatial separation of the particles 
has become sufficiently large (see below), the spin state of each of them is measured with a Stern-
Gerlach detector, one of them (Fig. 1, detector SG1) somewhat closer to the particle source, so it makes 
the measurement first, at time t1 < t2. 

  

 

 

 

 

 

 

  

 First, let the detectors be oriented say along the same direction, say axis z. Evidently, the 
probability of each detector to give any of values Sz = /2 is 50%. However, if the first detector had 
given result Sz = -/2, even before the second detector’s measurement, we know that it will give result Sz 
= +/2 with 100% probability. So far, the result allows for a classical interpretation, just for the single-
particle measurements discussed in Secs. 2.5 and 7.7. Thus we may fancy that the second particle really 
has a definite spin before the measurement, and the first measurement has just removes our ignorance 
about that reality. In other words, the change of probability is due to the statistical ensemble 
redefinition: the 50% probability belongs to the ensemble of all experiments, while the 100% 
probability, to the sub-ensemble of experiments with the Sz = -/2 outcome of the first experiment. 

 However, let the source generate the particle pairs in the entangled, singlet state (8.19), 

           
2

1
12s ,     (10.2) 

that certainly satisfies the above assumptions: the probability of each Sz value of any particle is 50%, the 
sum of both Sz is exactly zero, and if the first detector’s result is Sz = -/2, then the state of the remaining 
particle is , with zero uncertainty. Now let us use Eq. (1), and its counterpart for vector ,5 to present 
the same initial state (2) in the form 

3 This is possible, because the corresponding operators commute:       0ˆ,ˆˆ,ˆˆˆ,ˆˆ 22112121  xpxpxxpp . 
4 Another convenient experimental technique of entangled state generation, frequently used in this field, is the 
four-wave mixing (FWM) of optical photons. Its brief discussion may be found, for example, in CM Sec. 5.5. 
5 As a reminder, it differs from Eq. (1) only by the sign in the parentheses - see, e.g., Eqs. (4.123). 

(a)    (b) 

Fig. 10. 1. (a) General scheme 
of two-particle Stern-Gerlach 
experiments, and (b) the 
orientation of the detectors, 
assumed at the devivation of 
Bell’s inequality (14).
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Opening the parentheses (without swapping the ket-vector order!), we get an expression similar to Eq. 
(2), but now for the x-basis: 

       
2

1
12s .    (10.4) 

Hence if we use the first detector (closest to the particle source) to measure Sx rather than Sz, then after it 
had given as certain result (say, Sx = -/2), we know for sure, before the second particle spin’s 
measurement, that its Sx component equals +/2. 

 So, depending on the experiment performed on the first particle, the second particle turns out to 
be in one of two states - either with a definite component Sz or with a definite  component Sx, in each 
case without any uncertainty. Evidently, this situation cannot be interpreted in classical terms if the 
particles do not interact during the measurements. A. Einstein in was deeply unhappy with such 
situation, because it did not satisfy the general requirement to any theory, which nowadays is called the 
local reality. His definition of this requirement was as follows:  

“The real factual situation of system 2 is independent of what is done with system 1 that is 
spatially separated from the former”.  

(Here the term “separated” in this sentence is a bit uncertain, but from the context it is clear that Einstein 
meant the detector separation by a superluminal interval, i.e. by distance 

,2121 ttc  rr      (10.5) 

where the measurement time difference, participating in the right-hand part, includes the measurement 
duration.) In Einstein’s view, since quantum mechanics does not satisfy the local reality condition, it 
cannot be considered a complete theory of Nature. 

  This situation naturally raises the question whether something (usually called hidden variables) 
may be added to the quantum-mechanical description in order to satisfy the local reality requirement. 
The first definite statement in this regards was J. von Neumann’s “proof”6 (first famous, then infamous 
:-) that such variables cannot be introduced; for a while his work satisfied quantum mechanics 
practitioners.7 A major new contribution to the problem was made only in the 1960s by J. Bell.8 First of 
all, he has found an elementary (in his words, “foolish”) error in von Neumann’s logic, which voids his 
“proof”. Second, he demonstrated that Einstein’s local reality condition is incompatible with 
conclusions of quantum mechanics – that had been, by that time, confirmed by too many experiments to 
be seriously questioned. Since no hidden variable introduction can change this situation, in this sense 
such introduction is impossible. 

6 In his pioneering book J. von Neumann, Mathematische Grundlagen der Quantenmechanik [Mathematical 
Foundations of Quantum Mechanics], Springer, 1932. (The first English translation was published only in 1955.) 
7 Evidently, it would not satisfy A. Einstein, but reportedly he did not know about von Neumann’s result before 
signing the EPR paper. 
8 See, e. g., J. S. Bell, Rev. Mod. Phys. 38, 447 (1966), or J. S. Bell, Foundations of Physics 12, 158 (1982). 
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 Let me describe a particular version of Bell’s proof (suggested by E. Wigner), using the same 
EPR pair experiment (Fig. 1a), in that each SG detector may be oriented in any of 3 directions: a, b, or c  
- see Fig. 1b. As we know from Chapter 4, if a fully-polarized beam of spin-½  particles is passed 
through a Stern-Gerlach apparatus forming angle  with the polarization axis, the probabilities of two 
counterpart outcomes of the experiment are  

           .
2

sin)(,
2

cos)( 22    WW     (10.6) 

Let us use this formula to calculate all joint probabilities of measurement outcomes, starting 
from the detectors 1 and 2 oriented, respectively, in directions a and c. Since the angle between negative 
direction of axis a and positive direction of axis c is  a+,c-=  -  (see the dashed arrow in Fig. 1b), we 
get 
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Absolutely similarly,  
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Now note that for any angle   smaller than /2 (as in the case shown in Fig. 1b), 
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(For example, for   0 the left-hand part of this relation tends to 2/2, while the right-hand part, to 
2/4.) Hence the quantum-mechanical result gives, in particular, 

           2/for ),,(),(),(    bcWcaWbaW .   (10.11) 

 On the other hand, we may compose another inequality for the same probabilities without 
calculating them from any particular theory, but using the local reality assumption. Let us list all 
possible outcomes of detector measurements, taking into account the zero net spin: 

 
Detector 1 

results 
Detector 2 

results 
Probability 

a+, b+, c+ a-, b-, c- W1 
a+, b+, c- a-, b-, c+ W2 
a+, b-, c+ a-, b+, c- W3 
a+, b-, c- a-, b+, c+ W4 
a-, b+, c+ a+, b-, c- W5 
a-, b+, c- a+, b-, c+ W6 
a-, b-, c+ a+, b+, c- W7 
a-, b-, c- a+, b+, c+ W8 

),(  caW
),(  baW

),(  bcW

Quantum- 
mechanical 
result for  
probabilities 
 

Quantum- 
mechanical 
result 
for joint  
probabilities 
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From the local reality point of view, these measurement options are independent, so we may 
write: 

      .),(,),(,),( 437342 WWbaWWWbcWWWcaW     (10.12) 

On the other hand, since no probability may be negative (by its very definition), we may always write 

                 734243 WWWWWW  .    (10.13) 

Plugging into this inequality the values of these two parentheses, given by Eq. (12), we get 

            ).,(),(),(   bcWcaWbaW     (10.14) 

This is (one of several possible forms of) the Bell’s inequality that has to be satisfied by any local-reality 
theory; it directly contradicts the quantum-mechanical result (11). 

 Though experimental tests of the Bell’s inequalities had been started in the late 1960s, the 
interpretation of first results was vulnerable to two criticisms: 

 (i) The detectors were not fast enough and not far enough to have relation (5) satisfied. This is 
why, as the matter of principle, there was a chance that information on one measurement had been 
transferred (by some, mostly implausible) means to particles before the second measurement - the so-
called locality loophole. 

 (ii) Particle detection efficiencies were too low to have sufficiently small error bars for both parts 
of the inequality – the detection loophole. 

 Gradually, these loopholes have been closed.9 As expected, substantial violations of Bell 
inequalities equivalent to Eq. (14) have been proved, essentially rejecting any possibility to reconcile 
quantum mechanics with Einstein’s local reality requirement. 

  

10.2. Interpretations of quantum mechanics 

 The fact that quantum mechanics is incompatible with local reality, makes it reconciliation with 
our (classically-bred) “common sense” rather challenging. Here is a brief list of the major interpretations 
of quantum mechanics, that try to provide at least a partial reconciliation of this kind: 

 (i) The so-called Copenhagen interpretation, to which most physicists subscribe. This 
“interpretation” does not really interpret anything; it just states the internal randomness of measurement 
results in quantum mechanics, essentially saying: “Do not worry; this is just how it is; live with it”. For 
me personally, this interpretation, at least in its most frequently repeated forms, has only one, rather 
pedagogical weakness: though it implies statistical ensembles (otherwise, how would you define the 
probability?), but does not put a sufficient emphasis on their role, in particular the possible ensemble 

9 Important milestones on that way were experiments by A. Aspect et al., Phys. Rev. Lett. 49, 91 (1982) and M.  
Rowe et al., Nature 409, 791 (2001). A detailed review of the experimental situation was given, for example, by 
M. Genovese, Phys. Repts. 413, 319 (2005); see also more recent experiments by D. Matsukevich et al., Phys. 
Rev. Lett. 100, 150404 (2008) and D. Salart et al., Nature 454, 861 (2008). Presently, a low-noise demonstration 
of the Bell inequality violation has become a standard test in each experiment with entangled qubits used for 
quantum encryption research – see Sec. 8.5. 

Bell’s 
inequality for  

local-reality 
theories 
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redefinition as the only key point of human involvement in the measurement process.10 Perhaps the most 
impressive objection to the Copenhagen interpretation was given by A. Einstein during his 1935 
discussion with N. Bohr: “God does not play dice.” OK, when Einstein speaks, we all should listen, but 
perhaps when God speaks (through the experimental results), we have to pay even more attention. 

 (ii) Non-local reality. After the dismissal of von Neumann’s “proof” by J. Bell, to the best of my 
knowledge, there has been no proof that hidden parameters could not be introduced, provided that they 
do not imply the local reality. Of constructive approaches, perhaps the most notable contribution was 
made by D. Bohm11 who developed the L. de Broglie’s interpretation of the wavefunction as a “pilot 
wave”, making it quantitative. In the wave mechanics version of this concept, the wavefunction, 
governed by the Schrödinger equation, just guides a real, point-like classical particle whose coordinates 
serve as hidden variables. However, this concept does not satisfy the notion of local reality. Namely, the 
measurement of particle’s coordinate at a certain point r1 has to instantly change the wavefunction 
everywhere, including points r2 in the superluminal interval range (4). So, Bohm’s hidden variables 
would hardly make A. Einstein happy. After having recognized this problem, D. Bohm abandoned his 
theory – in J. Bell’s view, perhaps too early. In my personal taste, however, the assumption of such (in 
Einstein’s words) “spooky action at a distance” is too large a sacrifice to save the classical determinism. 

 (iii) The many-world interpretation introduced in 1957 by H. Everitt and popularized in the 
1960s and 1970s by B. de Witt. In this interpretation, all possible measurement outcomes do happen, 
splitting the Universe into the corresponding number of “parallel” Universes, so that from one of them, 
other Universes and hence other outcomes cannot be observed. Let me leave to the reader an estimate of 
the rate at which the parallel Universes being constantly generated (say, per second), taking into account 
that such generation should take place not only at explicit lab experiments, but at any irreversible 
process such as fission of any atom nucleus or absorption of a photon, everywhere in each Universe – 
whether its result is recorded or not. Even the main proponent of this interpretation, B. de Witt, has 
confessed: “The idea is not easy to reconcile with common sense”. I agree. 

 (iv) The quantum logic. In desperation, some physicists turned philosophers have decided to 
dismiss the very logic we are using – in science and elsewhere, so that a statement like “the Bell 
inequalities are violated” would not make any definite sense. OK, if we dismiss the formal logic, I do 
not know how we can use any scientific theory and make any predictions - until the quantum logic 
experts tell us what to replace the classical logic with. To the best of my knowledge, so far they have not 
done that, at least for the measurement process. I personally trust J. Bell’s opinion: “It is my impression 
that the whole vast subject of Quantum Logic has arisen […] from the misuse of a word.” 

 The weakness of all interpretations of quantum mechanics is that, as far as I know, neither of 
them has yet provided any suggestion how this particular interpretation might be tested experimentally 
to exclude other ones. On the positive side, there is a consensus that quantum mechanics makes correct, 
if sometimes probabilistic, predictions of all reliable experimental results we are aware of. Maybe, this 
is not that bad for a scientific theory.12 

10 A detailed discussion of statistical ensemble’s role may be found, e.g., in L. Balentine, Quantum Mechanics, 
World Scientific, 1998.  
11 D. Bohm, Phys. Rev. 85, 165; 180 (1952). 
12 If the reader is not satisfied with this “positivistic” approach, and wants to improve the situation, my earnest 
advice would be to start not from square one, but from reading what other (including some very clever!) people 
thought about it. A good starting point is the review collection by J. Wheeler and W. Zurek (eds.), Quantum 
Theory and Measurement, Princeton U. Press, 1983. 
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Chapter 1. Review of Thermodynamics 

This chapter starts from a brief discussion of the subject of  statistical physics and thermodynamics, and 
the relation between these two disciplines. Then I proceed to a review of the basic notions and relations 
of thermodynamics. Most of this material is supposed to be known to the reader from his or her 
undergraduate studies,1 so the discussion is rather brief. 

 

1.1. Introduction: Statistical physics and thermodynamics 

 Statistical physics (alternatively called  “statistical mechanics”) and thermodynamics are two 
different approaches to the same goal: a description of internal dynamics of large physical systems, 
notably those consisting of many, N >> 1, identical particles – or other components. The traditional 
example of such a system is a human-scale portion of a gas, with the number N of molecules of the order 
of the Avogadro number  NA ~ 1023. 2 The “internal dynamics” is an (admittedly loose) term meaning all 
the physics unrelated to the motion of the system as a whole. The most important example of the internal 
dynamics is the thermal motion of atoms and molecules.  

The motivation for the statistical approach to such systems is straightforward: even if the laws 
governing the dynamics of each particle and their interactions were exactly known, and we had infinite 
computing resources at our disposal, calculating the exact evolution of the system in time would be 
impossible, at least because it is completely impracticable to measure the exact initial state each 
component, e.g., the initial position and velocity of each particle. The situation is further  exacerbated by 
the phenomena of chaos and turbulence,3 and the quantum-mechanical uncertainty,4 which do not allow 
the exact calculation of final positions and velocities of the component particles even if their initial state 
is known with the best possible precision. As a result, in most situations only statistical predictions 
about behavior of such systems may be made, with the probability theory becoming a major part of the 
mathematical tool arsenal. 

 However, the statistical approach is not as bad as it may look. Indeed, it is almost self-evident 
that any measurable macroscopic variable characterizing a stationary system of N >> 1 particles as a 
whole (think, e.g., about pressure P of a gas contained in a fixed volume V) is almost constant in time. 
Indeed, we will see below that, besides certain exotic exceptions, the relative fluctuations – either in 
time, or among macroscopically similar systems - of such a variable are of the order of 1/N, i.e. for N ~ 
NA are extremely small. As a result, the average values of macroscopic variables may characterize the 
state of the system rather well. Their calculation is the main task of statistical physics. (Though the 
analysis of fluctuations is also an important task, but due to the fluctuation smallness, the analysis in 
most cases may be based on  perturbative approaches – see Chapter 5.) 

1 For remedial reading, I can recommend, for example (in the alphabetical order): C. Kittel and H. Kroemer, 
Thermal Physics, 2nd ed., W. H. Freeman (1980); F. Reif, Fundamentals of Statistical and Thermal Physics, 
Waveland (2008); D. V. Schroeder, Introduction to Thermal Physics, Addison Wesley (1999).  
2 See, e.g., Sec. 4 below. (Note that in these notes, the chapter number is dropped in references to figures, 
formulas, and sections within the same chapter.) 
3 See, e.g., CM Chapters 8 and 9. (Acronyms CM, EM, and QM refer to other of my lecture note series.) 
4 See, e.g., QM Chapter 1. 
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 Let us have a look at typical macroscopic variables the statistical physics and thermodynamics 
should operate with. Since I have already mentioned pressure P and volume V, let me start with this 
famous pair. First of all, note that volume is an extensive variable, i.e. a variable whose value for a 
system consisting of several non-interacting (or weakly interacting) parts is the sum of those of its parts. 
On the other hand, pressure is an example of intensive variables whose value is the same for different 
parts of a system - if they are in equilibrium. In order to understand why P and V form a natural pair of 
variables, let us consider the classical playground of thermodynamics, a portion of a gas contained in a 
cylinder, closed with a movable piston of area A (Fig. 1). Neglecting friction between the walls and the 
piston, and assuming that it is being moved slowly enough (so that the pressure P, at any instant, is 
virtually the same for all parts of the volume), the elementary work of the external force F  = PA, 
compressing the gas, at a small piston displacement dx = -dV/A, is 

                 PdVAdxAdxd  /FFW .    (1.1) 

It is clear that the last expression is more general than the model shown in Fig. 1, and does not depend 
on the particular shape of the system surface. 

 

 

 

 

 

 From the point of analytical mechanics,5  V and (-P) is just one of many possible canonical pairs 
of generalized coordinates qj and generalized forces Fj, whose products dWj = Fjdqj  give independent 
contributions to the total work of the environment on the system under analysis. For example, the reader 
familiar with the basics of electrostatics knows that if the spatial distribution E(r) of an external electric 
field does not depend on the electric polarization P(r) of the dielectric medium placed into the field, its 
elementary work on the medium is 

                    


 rddrddd
j

jj
3

3

1

3 rrrr PEPEW .   (1.2a) 

The most important cases when this condition is fulfilled (and hence Eq. (2a) is valid) are, first, long 
cylindrical samples in a parallel external field (see, e.g., EM Fig. 3.13) and, second, the polarization of a 
sample (of any shape) due to that of discrete dipoles pk, whose electric interaction is negligible. In the 
latter case, Eq. (2a) may be also rewritten as the sum over the single dipoles, located at points rk: 

.        kkk
k

k dddd pE   rWWW with  , .    (1.2b) 

 Very similarly, and at the similar conditions upon the external magnetic field H(r), its 
elementary work on a magnetic medium may be also represented in either of two forms: 

                


 rddrddd
j

jj
3

3

1
0

3
0 rrrr MH MHW ,  (1.3a) 

5 See, e.g., CM Chapters 2 and 10. 

Fig. 1.1. Compressing a gas. 
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      kkk
k

k dddd mH   r0with  , WWW .   (1.3b) 

where M  and m are the vectors of, respectively, the magnetization and the moment of a single 
magnetic dipole. These expressions show that the roles of generalized coordinates may be played by 
Cartesian components of the vectors P (or p) and M (or m), with the components of the electric and 
magnetic fields serving as the corresponding generalized forces. This list may be extended to other 
interactions (such as gravitation, surface tension in fluids, etc.).   

Again, the specific relations between the variables of each pair listed above are typically affected 
by the statistics of the components (particles) of a body, but their definition is not based on statistics. 
The situation is very different for a very specific pair of variables, temperature T and entropy S, 
although these “sister variables” participate in many formulas of thermodynamics exactly like one more 
canonical pair {Fj, qj}. However, the very existence of these two variables is due to statistics. 
Temperature T is an intensive variable that characterizes the degree of thermal “agitation” of system 
components. On the contrary, entropy S is an extensive variable that in most cases evades immediate 
perception by human senses; it is a qualitative measure of disorder of the system, i.e. the degree of our 
ignorance about its exact microscopic state. 6 

The reason for the appearance of the {T, S} pair of variables in formulas is that the statistical 
approach to large systems of particles brings some qualitatively new results, most notably the notion of 
irreversible time evolution of collective (macroscopic) variables describing  the system. On one hand, 
such irreversibility looks absolutely natural in such phenomena as the diffusion of an ink drop in a glass 
of water. In the beginning, the ink molecules are located in a certain small part of system’s volume, i.e. 
to some extent ordered, while at the late stages of diffusion, the position of each molecule is essentially 
random. However, as a second thought, the irreversibility is rather surprising,7 taking into account that it 
takes place even if the laws governing the motion of system’s components are time-reversible – such as 
the Newton laws or the basic laws of quantum mechanics. Indeed, if, at a late stage of the diffusion 
process, we exactly reversed the velocities of all molecules simultaneously, the ink molecules would 
again gather (for a moment) into the original spot.8 The problem is that getting the information 
necessary for the exact velocity reversal is not practicable. This example shows a deep connection 
between the statistical mechanics and the information theory.  

A qualitative discussion of the reversibility-irreversibility dilemma requires a strict definition of 
the basic notion of statistical mechanics (and indeed the probability theory), the statistical ensemble, and 
I would like to postpone it until the beginning of Chapter 2. In particular, in that chapter we will see that 
the basic law of irreversible behavior is the increase of entropy S in any closed system. Thus, statistical 
mechanics, without defying the “microscopic” laws governing evolution of system’s components, 

6 The notion of entropy was introduced into thermodynamics in the 1850s by R. Clausius, on the background of 
an earlier pioneering work by S. Carnot (see Sec. 7 below), as a variable related to “useful thermal energy” rather 
than a measure of disorder. In the absence of any clue of entropy’s microscopic origins (which had to wait for 
decades until the works by L. Boltzmann and J. Maxwell), this was an amazing intellectual achievement. 
7 Indeed, as recently as in the late XIX century, the very possibility of irreversible macroscopic behavior of 
microscopically reversible systems was questioned by some serious scientists, notably by J. Loschmidt in 1876. 
8 While quantum-mechanical effects, with their intrinsic uncertainty, are quantitatively important in this example, 
our qualitative discussion does not depend on them. A good example is the chaotic, but classical motion of a 
billiard ball on a 2D Sinai table – see CM Fig. 9.8. 
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introduces on top of them some new “macroscopic” laws, intrinsically related to the evolution of 
information, i.e. the degree of our knowledge of the microscopic state of the system.  

To conclude this brief discussion of variables, let me mention that as in all fields of physics, a 
very special role in statistical mechanics is played by energy E. In order to emphasize the commitment 
to disregard the motion of the system as a whole, in thermodynamics it is frequently called the internal 
energy, though for brevity, I will mostly skip the adjective. Its simplest example is the kinetic energy of 
the thermal motion of molecules in a dilute gas, but in general E also includes not only the individual 
energies of all system’s components, but also their interactions with each other. Besides a few 
pathological cases of very-long-range interactions (such as the Coulomb interactions in plasma with 
uncompensated charge density), the interactions may be treated as local; in this case the internal energy 
is proportional to N, i.e. is an extensive variable. As will be shown below, other extensive variables with 
the dimension of energy are often very useful, including the (Helmholtz) free energy F, the Gibbs 
energy G, enthalpy H, and grand potential . (The collective name for such variables is thermodynamic 
potentials.) 

  Now, we are ready for a brief discussion of the relation between statistical physics and 
thermodynamics. While the task of statistical physics is to calculate the macroscopic variables discussed 
above,9 using this or that particular microscopic model of the system, the main role of thermodynamics 
is to derive some general relations between the average values of the macroscopic variables (called 
thermodynamic variables) that do not depend on specific models. Surprisingly, it is possible to 
accomplish such a feat using a few either evident or very plausible general assumptions (sometimes 
called the laws of thermodynamics), which find their proof in statistical physics.10 Such general relations 
allow us to reduce rather substantially the amount of calculations we have to do in statistical physics; in 
many cases it is sufficient to calculate from statistics just one or two variables, and then use 
thermodynamic relations to calculate all other properties of interest. Thus the thermodynamics, 
sometimes snubbed at as a phenomenology, deserves every respect not only as a discipline which is, in a 
certain sense, more general than statistical physics as such, but also as a very useful science. This is why 
the balance of this chapter is devoted to a brief review of thermodynamics. 

 

1.2. The 2nd law of thermodynamics, entropy, and temperature 

 Thermodynamics accepts a phenomenological approach to entropy S, postulating that there is 
such a unique extensive measure of disorder, and that in a closed system,11 it may only grow in time, 
reaching its constant (maximum) value at equilibrium:12  

            0dS .      (1.4) 

This postulate is called the 2nd law of thermodynamics – arguably its only substantial new law. 

9 Several other quantities, for example the heat capacity C, may be obtained as partial derivatives of the basic 
variables discussed above. Also, at certain conditions, the number of particles N in the system is not fixed and 
may be also considered as an (extensive) variable. 
10 Admittedly, some of these proofs are based on other (but deeper) postulates, for example the central statistical 
hypothesis – see Sec. 2.2. 
11 Defined as a system completely isolated from the environment, i.e. the system with its internal energy fixed. 
12 Implicitly, this statement also postulates the existence, in a closed system, of thermodynamic equilibrium, an 
asymptotically reached state in which all thermodynamic variables, including entropy, remain constant. 

2nd law of 
thermo- 
dynamics 
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 Surprisingly, this law, together with the additivity of S in composite systems of non-interacting 
parts (as an extensive variable), is sufficient for a formal definition of temperature, and a derivation of 
its basic properties that comply with our everyday notion of this variable. Indeed, let us consider a 
particular case: a closed system consisting of two fixed-volume subsystems (Fig. 2) whose internal 
relaxation is very fast in comparison with the rate of the thermal flow (i.e. the energy and entropy 
exchange) between the parts. In this case, on the latter time scale, each part is always in some quasi-
equilibrium state, which may be described by a unique relation E(S) between its energy and entropy.13 

  

 

 

 

 

Neglecting the interaction energy between the parts (which is always possible at N >> 1, in the 
absence of long-range interactions), we may use the extensive character of variables E and S to write 

                ,, 212211 SSSSESEE      (1.5) 

for the full energy and entropy of the system. Now let us calculate the following derivative: 
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 Since the total energy E of the system is fixed and hence independent of its re-distribution 
between the sub-systems, dE/dE1 =0, and we get 

               .
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1

1 dE
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dE

dS

dE

dS
      (1.7) 

According to the 2nd law of thermodynamics, when the two parts reach the thermodynamic equilibrium, 
the total entropy S reaches its maximum, so that dS/dE1 = 0, and Eq. (7) yields 

        .
2

2

1

1

dE

dS

dE

dS
       (1.8) 

 Thus we see that if a thermodynamic system may be partitioned into weakly interacting 
macroscopic parts, their derivatives dS/dE should be equal in the equilibrium. The reciprocal of such 
derivative is called temperature. Taking into account that our analysis pertains to the situation (Fig. 2) 
when both volumes V1,2 are fixed, we may write this definition as 

        T
S

E

V











,      (1.9) 

13 Here we strongly depend on a very important (and possibly the least intuitive) aspect of the 2nd law, namely that 
the entropy is the unique measure of disorder, i.e. its only measure which may affect the system’s energy, or any 
other thermodynamic variable.  

Fig. 1.2. Composite thermodynamic system. 
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subscript V meaning that volume is kept constant at differentiation. (Such notation is common and very 
useful in thermodynamics, with its broad range of variables.)  

Note that according to Eq. (9), if temperature is measured in energy units (as I will do in this 
course for the brevity of notation), S is dimensionless.14 The transfer to the SI or Gaussian units, i.e. to 
temperature TK measured in kelvins (not “Kelvins”, not “degrees Kelvin”, please!), is given by relation 
T = kBTK, where the Boltzmann constant kB  1.38×10-23 J/K = 1.38×10-16 erg/K.15 In these units, the 
entropy becomes dimensional: SK = kBS.  

 The definition of temperature, given by Eq. (9), is of course in a sharp contract with the popular 
notion of T as a measure of the average energy per particle. However, as we will repeatedly see below, 
is most cases these two notions may be reconciled. In particular, let us list some properties of T, which 
are in accordance with our everyday notion of temperature: 

 (i) according to Eq. (9), temperature is an intensive variable (since both E and S are extensive), 
i.e., in a system of similar particles, independent of the particle number N;  
 (ii) temperatures of all parts of a system are equal at equilibrium – see Eq. (8); 
 (iii) in a closed system whose parts are not in equilibrium, thermal energy (heat) always flows 
from a warmer part (with higher T) to the colder part. 

 In order to prove the last property, let us come back to the closed, composite system shown in 
Fig. 2, and consider another derivative: 

       .2
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If the internal state of each part is very close to equilibrium (as was assumed from the very beginning) at 
each moment of time, we can use Eq. (9) to replace derivatives dS1,2/dE1,2 for 1/T1,2 and get 

           .
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1 dt

dE

Tdt

dE

Tdt

dS
      (1.11) 

Since in a closed system E = E1 + E2 = const, these time derivatives are related as dE2/dt = -dE1/dt, and 
Eq. (11) yields 

             .
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21 dt
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      (1.12) 

But in accordance with the 2nd law of thermodynamics, the derivative cannot be negative: dS/dt ≥ 0. 
Hence, 

               .0
11 1

21











dt

dE

TT
     (1.13) 

14 Here I have to mention a traditional unit of energy, still used in some fields related to thermodynamics: the 
calorie; in the most common definition (the so-called thermochemical calorie) it equals exactly 4.148 J. 
15 For more exact value of this and other constants, see appendix CA: Selected Physical Constants. Note that both 
T and TK define the absolute (also called “thermodynamic”) scale of temperature, in contrast to such artificial 
temperature scales as degrees Celsius (“centigrades”), defined as TC  TK + 273.15, or degrees Fahrenheit: TF  
(9/5)TC + 32.  
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For example, if T1 > T2 (i.e. 1/T1 < 1/T2), then dE1/dt  0, i.e. the warmer part gives energy to its colder 
counterpart.  

Note also that at such a heat exchange, at fixed volumes V1,2, and T1  T2, increases the total 
system entropy, without performing any “useful” mechanical work.  

 

1.3. The 1st and 3rd laws of thermodynamics, and heat capacity 

 Now let us consider a thermally insulated system whose volume V may be changed by a 
deterministic force – see, for example, Fig. 1. Such system is different from the fully closed one, 
because its energy E may be changed by the external force’s work – see Eq. (1): 

              PdVddE  W .     (1.14) 

 Let the volume change be so slow (dV/dt → 0) that the system is virtually at equilibrium at any 
instant without much error. Such a slow process is called reversible, and in this particular case of a 
thermally insulated system, it is also called adiabatic. If pressure P (or any a generalized external force 
F j) is deterministic, i.e. is a predetermined function of time independent on the state of the system under 
analysis, it may be considered as coming from a fully ordered system, i.e. the one having zero entropy, 
with the total system completely closed. Since according to the second of Eqs. (5), the entropy of the 
total closed system should stay constant, S of the system under analysis should stay constant on its own. 
Thus we arrive at a very important conclusion: an adiabatic process, the entropy of a system cannot 
change.16 This means that we can use Eq. (14) to write  

       
SV

E
P 










 .      (1.15)  

 Let us now consider an even more general thermodynamic system that may also exchange 
thermal energy (“heat”) with the environment (Fig. 3).  

 

 

 

 

 

 For such a system, our previous conclusion about the entropy constancy is not valid, so that S, in 
equilibrium, may be a function of not only energy E, but also of volume V. Let us resolve this relation 
for energy: E = E(S, V), and write the general mathematical expression for the full differential of E as a 
function of these two independent arguments: 
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     (1.16) 

16 A general (not necessarily adiabatic) process conserving entropy is sometimes called isentropic. 

Fig. 1.3. General thermodynamic process 
involving both the mechanical work and heat 
exchange with the environment. 
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 This formula, based on the stationary relation E = E(S, V), is evidently valid not only in 
equilibrium, but also for very slow, reversible17 processes. Now, using Eqs. (9) and (15), we may rewrite 
Eq. (16) as 

               PdVTdSdE  .     (1.17) 

The second term in the right-hand part of this equation is just the work of the external force, so that due 
to the conservation of energy,18 the first term has to be equal to the heat dQ transferred from the 
environment to the system (see Fig. 3): 

                ,WddQdE       (1.18) 

         TdSdQ  .      (1.19) 

 The last relation, divided by T and then integrated along an arbitrary (but reversible!) process, 

               const,  T

dQ
S      (1.20) 

is sometimes used as an alternative definition of entropy S - provided that temperature is defined not by 
Eq. (9), but in some independent way. It is useful to recognize that entropy (like energy) may be defined 
to an arbitrary constant, which does not affect any other thermodynamic observables. The common 
convention is to take 

                 S  0 at T  0.      (1.21) 

This condition is sometimes called the 3rd law of thermodynamics, but it is important to realize that this 
is just a convention rather than a real law.19 Indeed, the convention corresponds well to the notion of the 
full order at T = 0 in some systems (e.g., perfect crystals), but creates ambiguity for other systems, e.g., 
amorphous solids (like the usual glasses) that may remain, for “astronomic” times, highly disordered 
even at T  0. 

 Now let us discuss the notion of heat capacity that, by definition, is the ratio dQ/dT, where dQ is 
the amount of heat that should be given to a system to raise its temperature by a small amount dT. 20 
(This notion is very important, because it may be most readily measured experimentally.) The heat 
capacity depends, naturally, on whether the heat dQ goes only into an increase of the internal energy dE 

17 Let me emphasize that an adiabatic process is reversible, but not vice versa. 
18 Such conservation, expressed by Eqs. (18)-(19), is sometimes called the 1st law of thermodynamics. While it (in 
contrast with the 2nd law) does not present any new law of nature on the top of mechanics, and in particular was 
already used de-facto to write the first of Eqs. (5) and Eq. (14), such grand name was quite justified in the mid-
19th century when the mechanical nature of the internal energy (thermal motion) was not at all clear. In this 
context, the names of two great scientists, J. von Mayer (who was first to conjecture the conservation of the sum 
of the thermal and macroscopic mechanical energies in 1841), and J. Joule (who proved the conservation 
experimentally two years later), have to be reverently mentioned. 
19Actually, the 3rd law (also called the Nernst theorem) as postulated by W. Nernst in 1912 was different - and 
really meaningful: “It is impossible for any procedure to lead to the isotherm T = 0 in a finite number of steps.” I 
will discuss this postulate in the end of Sec. 6.  
20 By this definition, the full heat capacity of a system is an extensive variable. The capacity per either unit mass 
or per particle (i.e., an intensive variable), is called the specific heat capacity or just the specific heat. Note, 
however, that in some texts, the last term is used for the heat capacity of the system as the whole as well, so that 
some caution is in order. 
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of the system (as it does if volume V is constant), or also into the mechanical work (-dW) that may be 
performed at expansion - as it happens, for example, if pressure P, rather than volume V, is fixed (the so-
called isobaric process – see Fig. 4).21 

 

 

 

 

 

 

 

Hence we should discuss two different quantities, the heat capacity at fixed volume, 

       
V

V T
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           (1.22) 

and heat capacity at fixed pressure 
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P T

Q
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 ,      (1.23) 

and expect that for all “normal” (mechanically stable) systems, CP  CV. The difference between CP and 
CV is rather minor for most liquids and solids, but may be very substantial for gases – see Sec. 4. 

 

1.4. Thermodynamic potentials 

 A technical disadvantage of Eqs. (22) and (23) is that Q is not a differential of a function of 
state of the system,22 and hence (in contrast with temperature and pressure) does not allow an immediate 
calculation of heat capacity, even if the relation between E, S, and V is known. For CV the situation is 
immediately correctable, because at fixed volume, dW  = -PdV = 0 and hence, according to Eq. (18), dQ 
= dE. Hence we may write 

       
V

V T

E
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 .      (1.24) 

21 A similar duality is possible for other pairs {qj, Fj} of generalized coordinates and forces as well. For example, 
if a long sample of a dielectric placed is into a parallel, uniform external electric field, value of field E is fixed, i.e. 
does not depend on sample’s polarization. However, if a thin sheet of such material is perpendicular to the field, 
then value of field D is fixed – see, e.g., EM Sec. 3.4. 
22 The same is true for work W, and in some textbooks this fact is emphasized by using a special sign for 
differentials of these variables. I do not do this in my notes, because both dW and dQ are still very much usual 
differentials: for example, dW is the difference between the mechanical work which has been done over our 
system by the end of the infinitesimal interval we are considering, and that done by the beginning of that interval.   

Fig. 1.4. The simplest implementation of  
an isobaric process. 
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so that in order to calculate CV from a certain statistical-physics model, we only need to calculate E as a 
function of temperature and volume.  

If we want to write similarly a convenient expression for CP, the best way is to introduce a new 
notion of so-called thermodynamic potentials - whose introduction and effective use is perhaps one of 
the most impressive formalisms of thermodynamics. For that, let us combine Eqs. (1) and (18) to write 
the “1st law of thermodynamics” in its most common form 

      .PdVdEdQ       (1.25) 

At an isobaric process (Fig. 4), i.e. at P = const, this expression is equivalent to 

             .)()( PP PVEdPVddEdQ      (1.26) 

Thus, if we introduce a new function with the dimensionality of energy:23 

       ,PVEH        (1.27) 

called enthalpy (or, more rarely, the “heat function” or “heat contents”),24 we may rewrite Eq. (23) as 

       
P

P T
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  .     (1.28) 

Comparing Eq. (28) with (24) we see that for the heat capacity, enthalpy H plays the same role at fixed 
pressure as the internal energy E plays at fixed volume. 

 Now let us explore properties of the enthalpy for an arbitrary reversible process, i.e. lifting the 
restriction P = const, but still keeping definition (27). Differentiating it, we get 

           ,VdPPdVdEdH       (1.29) 

so that plugging in Eq. (17) for dE, we see that two terms PdV cancel, yielding a very simple expression 

               .VdPTdSdH       (1.30) 

This equation shows that if H has been found (say, experimentally measured or calculated for a certain  
microscopic model) as a function of entropy S and pressure P, we can find temperature T and volume V 
by simple partial differentiation: 

       .,
SP P

H
V
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      (1.31) 

The comparison of the first of these relations with Eq. (9) shows that not only for the heat capacity, but 
for temperature as well, enthalpy plays the same role at fixed pressure as played by the intrinsic energy 
at fixed volume. Moreover, the comparison of the second of Eqs. (31) with Eq. (15) shows that the 
transfer between E to H corresponds to a simple swap of (-P) and V in the expressions for the 
differentials of these variables.   

23 From the point of view of mathematics, Eq. (27) is a particular case of the so-called Legendre transformations. 
Note also that the term PV has a purely mechanical meaning, and that the transfer from H to E  just reflects the 
transfer from the “usual” potential energy of the system to its Gibbs potential energy – see, e.g., CM Sec. 1.4. 
24 This function (as well as the Gibbs free energy G, see below), had been introduced in 1875 by J. Gibbs, though 
the term “enthalpy” was coined (much later) by H. Onnes.  
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 This success immediately raises the question whether we could develop it further on, by defining 
other useful thermodynamic potentials – variables with the dimensionality of energy that would have 
similar properties, first of all a potential which would enable a similar swap of T and S in its full 
differential. We already know that the adiabatic processes is the reversible process with fixed entropy, 
so that now we should analyze a reversible process with fixed temperature. Such isothermal process 
may be implemented, for example, by placing the system under consideration into a thermal contact 
with a much larger system (called either the heat bath, or “heat reservoir”, or “thermostat”) that remains 
in thermodynamic equilibrium at all times – see Fig. 5.  

 

 

  

 

 

 
 Due to its large size, the heat bath temperature T does not depend on what is being done with our 
system, and if the change is being done slowly enough (i.e. reversibly), that temperature is also the 
temperature of our system – see Eq. (8) and its discussion. Let us calculate the elementary work dW  for 
such a reversible isothermal process. According to the general Eq. (18), dW  = dE – dQ. Plugging in dQ 
from Eq. (19), for T = const we get 

            ,)( dFTSEdTdSdEd T W     (1.32) 

where the following combination, 

        TSEF  ,      (1.33) 

is called the free energy (or the “Helmholtz free energy”, or just the “Helmholtz energy”25). Just as we 
have done for the enthalpy, let us establish properties of this new thermodynamic potential for an 
arbitrary (not necessarily isothermal) small reversible variation of variables, while keeping definition 
(33). Differentiating this relation and using Eq. (17), we get 

             .PdVSdTdF       (1.34) 

Thus, if we know function F(T, V), we can calculate S and P by simple differentiation: 

     .,
TV V

F
P
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     (1.35)

 It is easy to see that we can make the derivative system full and symmetric if we introduce one 
more thermodynamic potential. Indeed, we have shown that each of three already introduced 
thermodynamic potentials (E, H, and F) has especially simple full differential if it is considered a 

25 Named after H. von Helmholtz (1821-1894). The last term was recommended by the most recent (1988) 
IUPAC’s decision, but I will use the first term, which prevails is physics literature. The origin of the adjective 
“free” stems from Eq. (32): F is may be interpreted as the internal energy’s part that is “free” to be transferred to 
mechanical work - at a reversible, isothermal process only!  

Fig. 1.5. The simplest 
implementation of an 
isothermal process. 
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function of two canonical arguments: one of  “thermal variables” (either S or T) and one of “mechanical 
variables” (either P or V):26 

          ).,(and),,(),,( VTFFPSHHVSEE     (1.36) 

In this list of pair of 4 arguments, only one pair is missing: (T, P). The thermodynamic function of this 
pair, which gives two other variables (S and V) by simple differentiation, is called the Gibbs energy (or 
sometimes the “Gibbs free energy”): G = G(T, P). The way to define it in a symmetric way is evident 
from the so-called circular diagram shown in Fig. 6.  

  

 

 

 

 

 

 

 

In this diagram, each thermodynamic potential is placed between its two canonical arguments – 
see Eq. (36). The left two arrows in Fig. 6a show the way the potentials H and F  have been obtained 
from energy E – see Eqs. (27) and (33). This diagram hints that G has to be defined as shown by the 
right two arrows on that panel, i.e. as 

         .PVFTSHPVTSEG      (1.37) 

In order to verify this idea, let us calculate the full differential of this new potential, using, e.g., the last 
form of Eq. (37) together with Eq. (32): 

        ,)()()( VdPSdTVdPPdVPdVSdTPVddFdG    (1.38) 

so that if we know the function G(T, P), we can indeed readily calculate entropy and volume: 
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      (1.39) 

 The circular diagram completed in this way is a good mnemonic tool for describing Eqs. (9), 
(15), (31), (35), and (39), which express thermodynamic variables as partial derivatives of the 
thermodynamic potentials. Indeed, the variable in any corner of the diagram may be found as a 
derivative of any of two potentials that are not its immediate neighbors, over the variable in the opposite 
corner. For example, the red line in Fig. 6b corresponds to the second of Eqs. (39), while the blue line, 
to the second of Eqs. (31). At this, the derivatives giving variables of the upper row (S and P) have to be 

26 Note the similarity of this situation with that is analytical (classical) mechanics (see, e.g., CM Chapters 2 and 
10): the Lagrangian function may be used to get simple equations of motion if it is expressed as a function of 
generalized coordinates and velocities, while is order to use the Hamiltonian function in a similar way, it has to be 
expressed as a function of the generalized coordinates and momenta. 

Fig. 1.6. (a) Circular diagram and 
(b) its use for variable calculation. 
The thermodynamic potentials are 
shown in boldface, each flanked by 
its two canonical arguments.  
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taken with negative signs, while those giving the variables of the bottom row (V and T), with positive 
signs.27 

 Now I have to justify the collective name “thermodynamic potentials” used for E, H, F, and G. 
For that, let us consider an irreversible process, for example, a direct thermal contact of two bodies with 
different initial temperatures. As we have seen in Sec. 2, at such a process, the entropy may grow even 
without the external heat flow: dS  0 at dQ = 0 – see Eq. (12). For a more general process with  dQ  0, 
this means that entropy may grow faster than predicted by Eq. (19), which has been derived for a 
reversible process, so that 

          
T

dQ
dS  ,      (1.40) 

with the equality approached in the reversible limit. Plugging Eq. (40) into Eq. (18) (which, being just 
the energy conservation law, remains valid for irreversible processes as well), we get 

               .PdVTdSdE       (1.41) 

 Now we can use this relation to have a look at the behavior of other thermodynamic potentials in 
irreversible situations, still keeping their definitions given by Eqs. (27), (33), and (37). Let us start from 
the (very common) case when both temperature T and volume V are kept constant. If the process was 
reversible, according to Eq. (34), the full time derivative of free energy F would equal zero. Equation 
(41) says that at the irreversible process it is not necessarily so: if dT = dV =0, then 
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   (1.42) 

Hence, in the general (irreversible) situation, function F can only decrease, but not increase in time. This 
means that F eventually approaches its minimum value F(T, S), which is given by the equations of 
reversible thermodynamics.  

 Thus in the case T = const, V = const, the free energy F, i.e. the difference E – TS, plays the role 
of the potential energy in the classical mechanics of dissipative processes: its minimum corresponds to 
the (in the case of F, thermodynamic) equilibrium of the system. This is one of the key results of 
thermodynamics, and I invite the reader to give it some thought. One of its possible handwaving 
interpretations is that the heat bath with fixed T > 0, i.e. with a substantial thermal agitation of its 
components, “wants” to impose thermal disorder in the system immersed in it by “rewarding” it (by 
lowering its F) for any increase of disorder.  

 Repeating the calculation for the case T = const, P = const, it is easy to see that in this case the 
same role is played by the Gibbs energy: 
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 (1.43) 

27 There is also a wealth of other relations between thermodynamic variables that may be presented as second 
derivatives of the thermodynamic potentials, including four Maxwell relations such as (S/V)T = (P/T)V, etc. 
(They may be readily recovered from the well-known property of a function of two independent arguments, say, 
f(x, y): (f/x)/y = (f/y)/x.) In this chapter, I will list only the thermodynamic relations that will be used 
later in the course; a more complete list may found, e.g., in Sec. 16 of the textbook by L. Landau and E. Lifshitz, 
Statistical Physics, Part 1, 3rd ed., Pergamon, 1980 (and later its re-printings). 



Essential Graduate Physics       SM: Statistical Mechanics 

    

Chapter 1           Page 14 of 24 

so that the thermal equilibrium now corresponds to the minimum of G rather than F. One can argue very 
convincingly that the difference, G – F = PV between these two potentials (also equal to H – E) has very 
little to do with thermodynamics at all, because this difference exists (although not much advertised) in 
classical mechanics as well.28 Indeed, the difference may be generalized as G - F = – Fjqj, where qj is 
any generalized coordinate and Fj is the corresponding generalized force - see Eq. (1) and its discussion. 
In this case the minimum of F corresponds to the equilibrium of an autonomous system (with Fj = 0), 
while the equilibrium position of the same system under the action of external force Fj is given by the 
minimum of G. Thus the external force “wants” the system to subdue to its effect, “rewarding” it by 
lowering its G. (The analogy with the “disorder pressure” by a heat bath, discussed in the last paragraph, 
is evident.) 

  For two remaining thermodynamic potentials, E and H, the calculations similar to Eqs. (42) and 
(43) make less sense, because that would require taking S = const (with V = const for E, and P = const 
for H), but it is hard to prevent the entropy from growing if initially it had been lower than its 
equilibrium value, at least on the long-term basis.29 Thus the circular diagram is not so symmetric after 
all: G and/or F are somewhat more useful for most practical calculations than E and H. 

 One more important conceptual question is why the main task of statistical physics should be the 
calculation of thermodynamic potentials, rather than just a relation between P, V, and T. (Such relation 
is called the equation of state of the system.) Let us explore this issue on the example of an ideal 
classical gas in thermodynamic equilibrium, for which the equation of state should be well known to the 
reader from undergraduate physics (in Chapter 3, we will be derived from statistics): 

         NTPV  ,      (1.44) 

where N is the number of particles in volume V.30 Let us try to use it for the calculation of all 
thermodynamic potentials, and all other thermodynamic variables discussed above. We may start, for 
example, from the calculation of the free energy F. Indeed, solving Eq. (44) for pressure, P = NT/V, and 
integrating the second of Eqs. (35), we get 

        ),(ln
)/(

)/(
TNf
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NT

NV

NVd
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V

dV
NTPdVF T     (1.45) 

where I have divided V by N in both instances just to present F as a manifestly extensive variable, in this 
uniform system proportional to N. The integration “constant”  f(T) is some function of temperature that 
cannot be recovered from the equation of state. This function also affects all other thermodynamic 
potentials, and entropy. Indeed, using the first of Eqs. (35) together with Eq. (45), we get  

28 See, e.g., CM Sec. 1.5. 
29 There are a few practical systems, notably including the so-called magnetic refrigerators (to be discussed in 
Chapter 4), when the natural growth of S is so slow that the condition S = const may be closely approached. 
30 This equation was first derived from experimental data by E. Clapeyron (in 1834) in the form PV = nRTK, 
where n is the number of moles in the gas sample, and R  8.31 J/moleK is the so-called gas constant. This form 
is equivalent to Eq. (44), taking into account that R = kBNA, where NA  6.021023 mole-1 is the so-called 
Avogadro number, i.e. the number of molecules per mole. (By definition of the mole, NA is just the reciprocal 
mass, in grams, of a baryon - more exactly, by convention, of a 1/12th part of the carbon-12 atom.) 
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and now can combine Eqs. (33) and (46) to calculate the (internal) energy, 
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then use Eqs. (27), (44) and (47) to calculate enthalpy, 
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and, finally, plug Eqs. (44), and (45) into Eq. (37) to calculate the Gibbs energy 

            .ln 





  Tf

N

V
TNPVFG     (1.49) 

 In particular, Eq. (47) describes a very important property of the ideal classical gas: its energy 
depends only on temperature, but not on volume or pressure. One might question whether function f(T) 
may be physically insignificant, just like the arbitrary constant that may be always added to the potential 
energy in non-relativistic mechanics. In order to address this concern, let us calculate, from Eqs. (24) 
and (28), both heat capacities, that are readily measurable quantities: 
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 We see that function f(T), or at least its second derivative, is measurable.31 (In Chapter 3, we will 
calculate this function for two simple “microscopic” models of the ideal classical gas.) The meaning of 
this function is evident from the physical picture of the ideal gas: pressure P exerted on the walls of the 
containing volume is produced only by the translational motion of  the gas molecules, while their 
internal energy E (and hence other thermodynamic potentials) may be also contributed by the internal 
motion of the molecules – their rotations, vibrations, etc. Thus, the equation of state does not give the 
full thermodynamic description of a system, while the thermodynamic potentials do.  

 

1.5. Systems with variable number of particles 

 Now we have to consider one more important case when the number N of particles in a system is 
not rigidly fixed, but may change as a result of a thermodynamic process. Typical examples of such a 
system is a gas sample separated from the environment by a penetrable partition (Fig. 7), and a gas in a 
contact with the liquid of the same molecules.  

31 Note, however, that the difference CP – CV = N (if temperature is measured in kelvins, CP - CV = nR) is 
independent of f(T). (It is possible to show that the difference CP – CV  is fully determined by the equation of state 
for any medium.) 
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 Let us analyze this situation for the simplest case when all the particles are similar (though the 
analysis may be readily extended to systems with particle of several sorts). In this case we can consider 
N as an independent thermodynamic variable whose variation may change energy E of the system, so 
that (for a slow, reversible process) Eq. (17) should be now generalized as 

,dNPdVTdSdE       (1.52) 

where  is a new function of state, called the chemical potential.32 Keeping the definitions of other 
thermodynamic potentials, given by Eqs. (27), (33), and (37) intact, we see that expressions for their 
differentials should be generalized as 

         ,dNVdPTdSdH       (1.53a) 

         ,dNPdVSdTdF       (1.53b) 

         ,dNVdPSdTdG       (1.53c) 

so that the chemical potential may be calculated as either of the following derivatives:33 
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 Despite their similarity, one of Eqs. (53)-(54) is more consequential than the others. Indeed, the 
Gibbs energy G is the only thermodynamic potential that is a function of two intensive parameters, T 
and P. However, as all thermodynamic potentials, G has to be extensive, so that in a system of similar 
particles it has to be proportional to N: 

       ).,( PTNfG       (1.55) 

Plugging this expression into the last of Eqs. (54), we see that  equals f(T,P). In other words, 

           ,
N

G
       (1.56) 

so that the chemical potential is just the Gibbs energy per particle.  

32 This name, of a historic origin, is a bit misleading: as evident from Eq. (52),  has a clear physical sense of the 
average energy cost of adding one more particle to the system of N >> 1 particles. 
33 Note that strictly speaking, Eqs. (9), (15), (31), (35) and (39) should be now generalized by adding one more 
lower index, N,  to the corresponding derivatives.  
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 In order to demonstrate how vital the notion of chemical potential may be, let us consider the 
situation (parallel to that shown in Fig. 2) when a system consists of two parts, with equal pressure and 
temperature, that can exchange particles at a relatively slow rate (much slower than the speed of internal 
relaxation inside each of the parts). Then we can write two equations similar to Eq. (5): 

     ,, 2121 GGGNNN       (1.57) 

where N = const, and Eq. (56) may be used to describe each component of G: 

              .2211 NNG        (1.58) 

Plugging N2 expressed from the first of Eqs. (57), N2 = N – N1, into Eq. (58), we see that  

                 ,21
1
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dG
     (1.59) 

so that the minimum of G is achieved at 1 = 2. Hence, in the conditions of fixed temperature and 
pressure, i.e. when G is the appropriate thermodynamic potential, the chemical potentials of the system 
parts should be equal - the so-called chemical equilibrium. 

 Later we will also run into cases when volume V of a system, its temperature T, and the chemical 
potential  are all fixed. (The last condition may be readily implemented by allowing the system of 
interest to exchange particles with a reservoir so large that its  stays constant.) A thermodynamic 
potential appropriate for this case may be obtained from the free energy F by subtraction of the product 
N, resulting is the so-called grand thermodynamic potential (or the “Landau potential”) 

       PVGFN
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G
FNF  Ω .    (1.60) 

Indeed, for a reversible process, the full differential of this potential is 

         NdPdVSdTNddNdNPdVSdTNddFd  )()()( ,  (1.61) 

so that if  has been calculated as a function of T, V and , other thermodynamic variables may be 
found as 
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   (1.62) 

 For an irreversible process, acting exactly as we have done with other potentials, it is 
straightforward to prove that in the conditions of fixed T, V, and , d/dt  0, so that system’s 
equilibrium indeed corresponds to the minimum of the grand potential . 

  

1.6. Thermal machines 

 In order to complete this brief review of thermodynamics, I cannot pass the topic of thermal 
machines – not because it will be used much in this course, but mostly because of its practical and 
historic significance. (Indeed, the whole field of thermodynamics was spurred by the famous 1824 work 
by S. Carnot, which in particular gave an alternative, indirect form of the 2nd law of thermodynamics – 
see below.) 
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Figure 8a shows the generic scheme of a thermal machine that may perform mechanical work on 
the environment (in the notation of Eq. (1), equal to -W) during each cycle of the expansion/compression 
of the “working gas”, by transferring different amounts of heat from a high-temperature heat bath (QH) 
and to the low-temperature bath (QL). One relation between three amounts QH, QL, and W  is 
immediately given by the energy conservation (i.e. by “the 1st law of thermodynamics”): 

      W LH QQ .     (1.63) 

From Eq. (1), the mechanical work during the cycle may be calculated as 

       PdVW ,      (1.64) 

i.e. equals the area circumvented by the representing point on the [P, V] plane – see Fig. 8b.34 Hence, the 
work depends on the exact form of the cycle, which in turn depends not only on TH and TL, but also on 
working gas’ properties. 

 

 

 

 

 

 

 

 

 

   

 

 An exception from this rule is the famous Carnot cycle, consisting of two isothermal and two 
adiabatic processes (all reversible!). In its heat engine’s form, the cycle starts from an isothermic 
expansion of the gas in contact with the hot bath (i.e. at T = TH), followed by its additional adiabatic 
expansion until T drops to TL. Then an isothermal compression of the gas is performed in its contact 
with the cold bath (at T = TL), followed by its additional adabatic compression to raise its temberature to 
TH again, after which the cycle is repeated again and again. (Note that during this cycle the working gas 
is never in contact with both heat baths simultaneously, thus avoiding the irreversible heat transfer 
between them.)  The cycle’s shape on the [V, P] plane depends on exact properties of the working gas 
and may be rather complicated. However, since the entropy is constant at any adabatic process, the 
Carnot cycle shape on the [S, T] plane is always rectangular – see Fig. 9.35 

34 Note that positive sign of the circular integral corresponds to the clockwise rotation of the point, so that work (-
W) done by the working gas is positive at the clockwise rotation (pertinent to heat engines) and negative in the 
opposite case (implemented in refrigerators and heat pumps).  
35 A cycle with an [S, T] shape very close to the Carnot (rectangular) one may be implemented at the already 
mentioned magnetic (or “adiabatic-demagnetization”) refrigeration, using the alignment of either atomic or 

Fig. 1.8. (a) The simplest implementation of a thermal machine, and (b) the graphic presentation of the  
mechanical work it performs. On panel (b), solid arrow indicates the heat engine cycle direction, while 
the dashed arrow, the refrigerator cycle direction. 
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 Since during each isotherm, the working gas is brought into thermal contact only with the 
corresponding heat bath, Eq. (19), dQ = TdS may be immediately integrated to yield 

         ).(),( 1212 SSTQSSTQ LLHH      (1.65) 

Hence the ratio of these two heat flows is completely determined by their temperature ratio: 

          
L

H

L

H

T

T

Q

Q
 ,      (1.66) 

regardless of the working gas properties. Equations (63) and (66) are sufficient to find the ratio of work 
–W to any of QH and QL. For example, the main figure-of-merit of a thermal machine used as a heat 

engine (QH > 0, QL > 0, -W  = W > 0), is its efficiency 

             11 
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 .    (1.67) 

For the Carnot cycle, Eq. (66) immediately yields the famous relation, 

                
H

L

T

T
 1Carnot ,     (1.68) 

which shows that at given TL (that is typically the ambient temperature ~300 K), the efficiency may be 
increased, ultimately to 1, by raising temperature of the heat source. 

 On the other hand, if the cycle is reversed (see the dashed arrows in Figs. 8 and 9), the same 
thermal machine may serve as a refrigerator, providing the heat removal from the low-temperature bath 
(QL < 0) for the cost of consuming external work: W  > 0. This reversal does not affect the basic relation 
(63) that may be used to calculate the relevant figure-of-merit, called the cooling coefficient of 
performance (COPcooling) 

         
LH

LL

QQ

QQ




WcoolingCOP .     (1.69) 

Notice that this coefficient may readily be above unity; in particular, for the Carnot cycle we may use 
Eq. (66) (which is also unaffected by the cycle reversal) to get  

nuclear spins by external magnetic field. In such refrigerators (to be further discussed in the next chapter), the role 
of the {-P, V} pair of variables is played by the {H, B} pair – see Eq. (3). 
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Fig. 1.9. Representation of the 
Carnot cycle (a) on the [S, T] 
plane  and (b) the [V, P] plane 
(schematically). The meaning of 
arrows is the same as in Fig. 8. 
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Carnotcooling )COP( ,     (1.70) 

so that the COPcooling is larger than 1 at TH < 2TL, and even may be very large when the temperature 
difference (TH – TL), sustained by the refrigerator, tends to zero. For example, in a typical air-
conditioning system,  TH – TL ~ TL/30, so that the Carnot value of COPcooling is as high as ~30, while in 
the state-of-the-art commercial HVAC systems it is the range for 3 to 4. This is why the term “cooling 
efficiency”, used in some textbooks instead of (COP)cooling, may be misleading. 

 Since in the reversed cycle QH = - W  + QL < 0, the system also provides heat flow into the hotter 
heat bath, and thus may be used as a heat pump. However, the figure-of-merit appropriate for this 
application is different: 

      
LH

HH

QQ

QQ




WheatingCOP ,    (1.71) 

so that for the Carnot cycle 

       
LH

H

TT

T


Carnotheating )COP( .     (1.72) 

 Note that this COP is always larger than 1, meaning that the Carnot heat pump is always more 
efficient than the direct conversion of work into heat (where QH = -W, and COPheating = 1), though 
practical electricity-driven heat pumps are substantially more complex (and hence more expensive) than, 
say, simple electric heaters. Such heat pumps, with typical COPheating values around 4 in summer and 2 
in winter, are frequently used for heating large buildings. 

 I have dwelled so long on the Carnot cycle, because it has a remarkable property: the highest 
possible efficiency of all heat-engine cycles. Indeed, in the Carnot cycle the transfer of heat between any 
heat bath and the working gas is performed reversibly, when their temperatures are equal. If this is not 
so, heat might flow from a hotter to colder system without performing any work. Hence the result (68) 
also yields the maximum efficiency of any heat engine. In particular, it shows that max = 0 at TH = TL, 
i.e., no heat engine can perform any mechanical work in the absence of temperature gradients.36 In some 
alternative axiomatic systems of thermodynamics, this fact, i.e. the impossibility of the direct conversion 
of heat to work, is postulated, and serves the role of the 2nd law. 

 Note also that according to Eq. (70), COPcooling of the Carnot cycle tends to zero at TL  0, 
making it impossible to reach the absolute zero of temperature, and hence illustrating the meaningful 
(Nernst’s) formulation of the 3rd law of thermodynamics. Indeed, let us prescribe a certain (but very 
large) heat capacity C(T) to the low-temperature bath, and use the definition of this variable to write the 
following evident expression for the (very small) change of its temperature as a result of a relatively 
large number dn of similar refrigeration cycles: 

               dnQdTTC LLL )( .     (1.73) 

36 Such a hypothetical (and impossible!) heat engine, which would violate the 2nd law of thermodynamics, is 
called the “perpetual motion machine of the 2nd kind” - in contrast to the “perpetual motion machine of the 1st 
kind” with would violate the 1st law, i.e., the energy conservation. 
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Together with Eq. (66), this relation yields 

          dnT
T

Q
dTTC L

H

H
LL )( ,     (1.74) 

so that if we perform many (n) cycles (with constant QH and TH), the initial and final values of TL obey 
the following equation 

           n
T

Q

T

dTTC

H

H

T

T


fin

ini

)(
.     (1.75) 

For example, if C(T) is a constant, Eq. (75) yields an exponential law, 
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Q
TT

H

Hexpinifin ,     (1.76) 

with the absolute zero not reached as any finite n. Relation (75) proves the Nernst theorem if C(T) does 
not vanish at T  0,but for such metastable systems as glasses the situation is more complicated.37 
Fortunately, this issue does not affect other aspects of statistical physics – at least those to be discussed 
in this course. 

 

1.7. Exercise problems 

1.1. Two bodies, with negligible thermal expansion coefficients and constant heat capacities C1 
and C2, are placed into a weak thermal contact, at different initial temperatures T1 and T2. Calculate the 
full change of entropy of the system before it reaches the full thermal equilibrium. 
 
 1.2. A gas has the following properties: 

(i) CV  = aT b, and  
(ii) the work W T needed for its isothermal compression from V2 to V1 equals cTln(V2/V1), 

where a, b, and c are constants. Find the equation of state of the gas, and calculate the temperature 
dependences of its entropy S, and thermodynamic potentials E, H, F, G and . 
 
 1.3. A vessel with an ideal classical gas of indistinguishable molecules is separated by a partition 
so that the number N of molecules in both parts is the same but their volumes are different. The gas is in 
thermal equilibrium, and its pressure in one part is P1, and in another, P2. Calculate the change of 
entropy caused by a fast removal of the partition. Analyze the result. 
 

1.4. An ideal  classical gas of N particles, is initially confined to volume V, and let alone to reach 
the thermal equilibrium with a heat bath of temperature T. Then the gas is allowed to expand to volume 
V’ > V in one the following ways: 

37 For a detailed discussion of this issue see, e.g.,  J. Wilks, The Third Law of Thermodynamics, Oxford U. Press, 
1961. 
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(i) The expansion slow, so that due to the thermal contact with the heat bath, the gas temperature 
remains equal to T all the time. 

(ii) The partition separating volumes V and (V’ –V) is removed very fast, allowing the gas to 
expand rapidly.  

For each process, calculate the changes of pressure, temperature, energy, and entropy of the gas 
during its expansion. 
 
 1.5. For an ideal classical gas with temperature-independent specific heat, derive the relation 
between P and V at the adiabatic expansion/compression. 
 
 1.6. Calculate the speed and wave impedance of acoustic waves in an ideal classical gas with 
temperature-independent CP and CV, in the limits when that the wave propagation may be treated as: 

 (i) an isothermal process, 
 (ii) an adiabatic process.  

Which of these limits corresponds to higher wave frequencies? 
 
 1.7. As will be discussed in Sec. 3.5, the so-called “hardball” models of classical particle 
interaction yield the following equation of state of a gas of such particles: 

 nTP  , 

where n = N/V is the particle density, and function (n) is generally different from that (ideal(n) = n) of 
the ideal gas. For  such a gas, with temperature-independent cV, calculate: 

 (i) the energy of the gas, and  
 (ii) its pressure as a function of n at adiabatic compression. 
 

1.8. For an arbitrary thermodynamic system with a fixed number of particles, prove the 
following Maxwell relations (already mentioned in Sec. 1.4): 

        .  :iv,  :iii,  :ii,  :i
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 1.9. A process, performed with a fixed portion of an ideal gas, may be 
represented with a straight line on the [P, V] plane – see Fig. on the right. Find 
the point at which the heat flow into/out of the gas changes its direction. 
 
 
  
 1.10. Two bodies have equal and constant heat capacities C, but different temperatures, T1 and 
T2. Calculate the maximum mechanical work obtainable from this system, using a heat engine. 
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 1.11. Express the efficiency of a heat engine that uses the 
“Joule cycle” consisting of two adiabatic and two isobaric processes 
(see Fig. on the right), via the minimum and maximum values of 
pressure, and compare the result with that for the Carnot cycle. 
Assume an ideal classical working gas with constant CP and CV . 
 
 
 1.12. Calculate the efficiency of a heat engine using the “Otto 
cycle”,38 which consists of two adiabatic and two isochoric (constant-
volume) processes – see Fig. on the right. Explore how does the 
efficiency depend on the ratio r  Vmax/Vmin, and compare it with  
Carnot cycle’s efficiency. Assume an ideal working gas with 
temperature-independent specific heat. 
 
 
 1.13. A heat engine’s cycle consists of two isothermal (T = 
const) and two isochoric (V = const) reversible processes - see Fig. on 
the right.  
 (i) Assuming that the working gas is an ideal classical gas of N 
particles, calculate the mechanical work performed by the engine 
during one cycle. 
 (ii) Are the specified conditions sufficient to calculate engine’s 
efficiency? 
   

  

 

 

 

 

 

 

 

 

 

 

 

38 This name stems from the fact that the cycle is an approximate model of operation of the four-stroke internal-
combustion engine, which was improved and made practicable (though not invented!) by N. Otto in 1876. 
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Chapter 2. Principles of Physical Statistics 

This chapter is the key part of this course. It is started with a brief discussion of such basic notions of 
statistical physics as statistical ensembles, probability, and ergodicity. Then the so-called 
microcanonical distribution postulate is formulated in parallel with the statistical definition of entropy. 
The next step is the derivation of the Gibbs distribution, which is frequently considered the summit of 
the statistical physics, and one more, grand canonical distribution, which is more convenient for some 
tasks - in particular for the derivation of the Boltzmann, Fermi-Dirac, and Bose-Einstein statistics for 
systems of  independent  particles. 

 

2.1. Statistical ensembles and probability 

 As has been already discussed in Sec. 1.1, statistical physics deals with systems in conditions 
when either the unknown initial conditions, or the system complexity, or the laws of motion (as in the 
case of quantum mechanics) do not allow a definite prediction of measurement results. The main 
formalism for the analysis of such systems is the probability theory, so let me start with a very brief 
review of its basic concepts using informal “physical” language - less rigorous but (hopefully) more 
transparent than a standard mathematical treatment.1 

 Consider N >> 1 independent similar experiments carried out with apparently similar systems 
(i.e. systems with identical macroscopic parameters such as volume, pressure, etc.), but still giving, by 
any of the reasons outlined above, different results of measurements. Such a collection of experiments, 
together with the fixed method of result processing, is a good example of a statistical ensemble. Let us 
start from the case when the experiments may have M different discrete outcomes, and the number of 
experiments giving the corresponding different results is N1, N2,…, NM, so that 

        



M

m
m NN

1

.       (2.1) 

The probability of each outcome, for the given statistical ensemble, is then defined as 

              .lim
N

N
W m

Nm       (2.2) 

Though this definition is so close to our everyday experience that it is almost self-evident, a few remarks 
may still be relevant.  

First, probabilities Wm depend on the exact statistical ensemble they are defined for, notably 
including the method of result processing. As an example, consider the standard coin tossing. For the 
ensemble of all tossed coins, the probabilities of both the heads and tails outcomes equal ½. However, 
nothing prevents us from defining another statistical ensemble as a set of coin-tossing experiments with 
the heads-up outcome. Evidently, the probability of finding coins with tails up in this new ensemble is 
not ½ but 0. Still, this set of experiments is not only legitimate but also a rather meaningful statistical

1 For the reader interested in reviewing a more rigorous approach, I can recommend, for example, Chapter 18 of 
the handbook by G. Korn and T. Korn – see MA Sec. 16(ii). 

Probability 
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 ensemble; for example, the exact position and orientation of the tossed coins on the floor, within this 
restricted ensemble, may be rather random. 

 Second, a statistical ensemble does not necessarily require N different physical systems, e.g., N 
different coins. It is intuitively clear that tossing the same coin N times constitutes an ensemble with 
similar statistical properties. More generally, a set of N experiments with the same system provides a 
statistical ensemble equivalent to the set of experiments with N different systems, provided that the 
experiments are kept independent, i.e. that outcomes of past experiments do not affect those of the 
experiments to follow. Moreover, for most physical systems of interest any special preparation is 
unnecessary, and N different experiments, separated by sufficiently long time intervals, form a “good” 
statistical ensemble  – the property called ergodicity.2 

 Third, the reference to infinite N in Eq. (2) does not strip the notion of probability from its 
practical relevance. Indeed, it is easy to prove (see Chapter 5) that, at very general conditions, at finite 
but sufficiently large N, numbers Nm are approaching their average (or expectation) values3 

       NWN mm  ,     (2.3) 

with the relative deviation scale decreasing as 1/Nm1/2.  

 Now let me list those properties of probabilities that we will immediately need. First, dividing 
Eq. (1) by N and following the limit N  , we get the well-known normalization condition  

          1
1




M

m
mW ;      (2.4) 

just remember that it is true only if each experiment definitely yields one of outcomes N1, N2,…, NM. 
Next, if we have an additive function of results,  

      



M

m
mm fN

N
f

1

,
1

     (2.5) 

where fm are some definite (deterministic) coefficients, we may define the statistical average (also called 
the expectation value) of the function as 

                 



M

m
mmN fN

N
f

1

,
1

lim      (2.6) 

2 The most popular counter-example of a non-ergodic system is an energy-conserving system of particles placed 
in a potential which is a quadratic form of particle coordinates. Theory of oscillations tells us (see, e.g., CM Sec. 
5.2) that this system is equivalent to a set of non-interacting harmonic oscillators. Each of these oscillators 
conserves its own initial energy Ej forever, so that the statistics of N measurements of one such system may differ 
from that of N different systems with random distribution of Ej, even if the total energy of the system, E = jEj, is 
the same. Such non-ergodicity, however, is a rather feeble phenomenon, and is readily destroyed by any of 
“mixing” mechanisms, such as weak interaction with environment (leading, in particular, to oscillation damping), 
nonlinear interaction of the components (see, e.g., CM Ch. 4), and chaos (CM Ch. 9), all of them strongly 
enhanced by increasing the number of particles in the system, i.e. the number of its degrees of freedom. This is 
why most real-life systems are ergodic; for those interested in non-ergodic exotics, I can recommend the 
monograph by V. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, Addison-Wesley, 1989. 
3 Here, and everywhere in these notes, angle brackets … mean averaging over a statistical ensemble, which is 
generally different from averaging over time – as it will be the case in quite a few examples considered below. 
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so that using Eq. (3) we get 

                



M

m
mm fWf

1

.      (2.7) 

Notice that Eq. (3) may be considered as the particular form of this general result, for all fm = 1.  

 Next, the spectrum of possible experimental outcomes is frequently continuous. (Think, for 
example, about the positions of the marks left by bullets fired into a target from a far.) The above 
formulas may be readily generalized to this case; let us start from the simplest situation when all 
different outcomes may be described by one continuous variable q, which replaces the discrete index m 
in Eqs. (1)-(7). The basic relation for this case is the self-evident fact that the probability dW of having 
an outcome within a very small interval dq near point q is proportional to the magnitude of that interval: 

      .)( dqqwdW       (2.8) 

Function w(q), which does not depend on dq, is called the probability density. Now all the above 
formulas may be recast by replacing probabilities Wm by products (8), and the summation over m, by 
integration over q. In particular, instead of Eq. (4) the normalization condition now becomes 

          ,1)( dqqw       (2.9) 

where the integration should be extended over the whole range of possible values of q. Similarly, instead 
by Eq. (5), it is natural to consider a function f(q). Then instead of Eq. (7), the expectation value of the 
function may be calculated as 

             .)()( dqqfqwf      (2.10) 

It is straightforward to generalize these formulas to the case of more variables. For example, results of  
measurements of a particle with 3 degrees of freedom may be described by the probability density w 
defined in the 6D space of its generalized radius-vector q and momentum p. As a result, the expectation 
value of a function of these variables may be expressed as a 6D integral 

                .),(),( 33 pqddfwf pqpq     (2.11) 

  Some systems considered in this course consist of components whose quantum properties 
cannot be ignored, so let us discuss how f should be calculated in this case. If by fm we mean 
measurement results, Eq. (7) (and its generalizations) of course remains valid, but since these numbers 
themselves may be affected by the intrinsic quantum-mechanical uncertainty, it may make sense to have 
a bit deeper look into this situation. Quantum mechanics tells us4 that the most general expression for 
the expectation value of an observable f  in a certain ensemble of macroscopically similar systems is 

     )Wf(Tr
',

 
mm

m'mmm' fWf .    (2.12) 

Here fmm’ are the matrix elements of the quantum-mechanical operator f̂  corresponding to the 
observable f, in a full basis of orthonormal states  m, 

                m'fmfmm
ˆ

'  ,     (2.13) 

4 See, e.g., QM Sec. 7.1. 
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while coefficients Wmm’ are elements of the so-called density matrix W, which represents, in the same 

basis, a density operator Ŵ describing properties of this ensemble. Equation (12) is evidently more 
general than Eq. (7), and is reduced to it only if the density matrix is diagonal: 

       '' mmmmm WW  ,     (2.14) 

(where mm’ is the Kronecker symbol), when the diagonal elements Wm play the role of probabilities of 
the corresponding states.  

 Thus the largest difference between the quantum and classical description is the presence, in Eq. 
(12), of the off-diagonal elements of the density matrix. They have largest values in the pure (also called 
“coherent”) ensemble, in which the state of the system may be described with state vectors, e.g., the ket-
vector 

      
m

m m ,     (2.15) 

where m are some complex coefficients. In this simple case, the density matrix elements are merely 

        '' mmmmW  ,     (2.16) 

so that the off-diagonal elements are of the same order as the diagonal elements. For example, in the 
very important particular case of a two-level system, the pure-state density matrix is 
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2111W



 ,       (2.17) 

so that the product of its off-diagonal components is as large as that of the diagonal components. In the 
most important basis of stationary states, i.e. eigenstates of system’s time-independent Hamiltonian, 
coefficients m oscillate in time as5  

       ,expexp)0()(
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   (2.18) 

where Em are the corresponding eigenenergies, and m are constant phase shifts. This means that while 
the diagonal terms of the density matrix (16) remain constant, its off-diagonal components are 
oscillating functions of time: 

      .)(expexp mm'
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mm'mm'mm' it
EE

iW  






 

 


   (2.19) 

Due to the extreme smallness of the Planck constant (on the human scale of things), a miniscule random 
perturbations of eigenenergies are equivalent to substantial random changes of the phase multiplier, so 
that the time average of any off-diagonal matrix element tends to zero. Moreover, even if our statistical 
ensemble consists of systems with exactly the same Em, but different values m (which are typically hard 
to control at the initial preparation of the system), the average values of all Wmm’ (with m  m’) vanish 
again.  

5 Here I use the Schrödinger picture of quantum mechanics in which the matrix elements fnn’ do not evolve in 
time. 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 2           Page 5 of 44 

 This is why, besides some very special cases, typical statistical ensembles of quantum particles 
are far from being pure, and in most cases (certainly including the thermodynamic equilibrium), a good 
approximation for their description is given by the opposite limit of the so-called classical mixture in 
which all off-diagonal matrix elements of the density matrix equal zero, and its diagonal elements Wmm 
are merely the probabilities Wm of the corresponding eigenstates. In this case, for observables 
compatible with energy,  Eq. (12) is reduced to Eq. (7), with fm being the eigenvalues of variable f. 

  

2.2. Microcanonical ensemble and distribution 

 Let us start with the discussion of physical statistics with the simplest, microcanonical statistical 
ensemble6 that is defined a set of macroscopically similar closed (isolated) systems with virtually the 
same total energy E.  Since in quantum mechanics the energy of a closed system is quantized, it is 
convenient to include into the ensemble all systems with energies Em within a narrow interval ΔE << E, 
that is nevertheless much larger than the average distance E between the energy levels, so that the 
number M of different quantum states within interval ΔE is large, M >> 1. Such choice of E is only 
possible if E << E; however, the reader should not worry too much about this condition, because the 
most important applications of the microcanonical ensemble are for very large systems (or very high 
energies) when the energy spectrum is very dense.7 

 

 

 

 

 

 This ensemble serves as the basis for the formulation of a postulate which is most frequently 
called the microcanonical distribution (or sometimes the “main statistical hypothesis”): in the 
thermodynamic equilibrium, all possible states of the microcanonical ensemble have equal probability, 

               const.
1


M
Wm      (2.20) 

Though in some constructs of statistical mechanics this equality is derived from other axioms, which 
look more plausible to their authors, I believe that Eq. (20) may be taken as the starting point of the 
statistical physics, supported “just” by the compliance of all its corollaries with experimental 
observations.8  

Note that postulate (20) sheds a light on the nature of the macroscopic irreversibility of 
microscopically reversible (closed) systems: if such a system was initially in a certain state, its time 

6 The terms “microcanonical”, as well as “canonical” (see Sec. 4 below) are apparently due to J. Gibbs, and I 
could not find out his motivation for these names. (“Canonical” in the sense of “standard” or “common” is quite 
appropriate, but why “micro”?) 
7 Formally, the  main result of this section, Eq. (20), is valid for any M (including M = 1), it is just less 
informative for small M - and trivial for M = 1. 
8 Though I have to move on, let me note that the microcanonical distribution (20) is a very nontrivial  postulate, 
and my advice to the reader to give some thought to this foundation of the whole building of statistical mechanics. 

E

E
Fig. 2.1. Very schematic image of the microcanonical 
ensemble. (Actually, the ensemble deals with quantum 
states rather than energy levels. An energy level may be 
degenerate, i.e. correspond to several states.) 

Micro- 
canonical 

distribution 
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evolution with just miniscule interactions with environment (which is necessary for reaching  the 
thermodynamic equilibrium) would eventually lead to the uniform distribution of its probability among 
all states with the essentially same energy. Each of these states is not “better” than the initial one; rather, 
in a macroscopic system, there are just so many of these states that the chance to find the system in the 
initial state is practically nil - again, think about the ink drop diffusion into a glass of water. 

 Now let us find a suitable definition of entropy S of a microcanonical ensemble member - for 
now, in the thermodynamic equilibrium only. Since S is a measure of disorder, it should be related to the 
amount of information lost when the system goes from the full order to the full disorder, i.e. into the 
microcanonical distribution (20), or, in other words, the amount of information9 necessary to find the 
exact state of your system in a microcanonical ensemble. 

 In the information theory, the amount of information necessary to make a definite choice 
between two  options with equal probabilities (Fig. 2a)  is defined as 

                .12log)2( 2 I      (2.21) 

This unit of information is called a bit. Now, if we need to make a choice between 4 equally probable 
opportunities, it can be made in two similar steps (Fig. 2b), each requiring one bit of information, so that 
the total amount of information necessary for the choice is 

       .4log2)2(2)4( 2 II      (2.22) 

An obvious extension of this process to the choice between M = 2m states gives 

     .log)2()( 2 MmmIMI       (2.23) 

 

 

 

 

 

 

 

 This measure, if extended naturally to any integer M, is quite suitable for the definition of 
entropy at equilibrium, with the only difference that, following tradition, the binary logarithm is 
replaced with the natural one:10 

9 I will rely on reader’s common sense and intuitive understanding what information is, because in the formal 
information theory this notion is also essentially postulated - – see, e.g., the wonderfully clear text by J. Pierce, An 
Introduction to Information Theory, Dover, 1980. 
10 This is of course just the change of a constant factor: S(M) = lnM = ln2  log2M = ln2  I(M)  0.693 I(M). A 
review of Chapter 1 shows that nothing in thermodynamics prevents us from choosing such coefficient arbitrarily, 
with the corresponding change of the temperature scale – see Eq. (1.9). In particular, in the SI units, Eq. (24b) 
becomes S = -kBlnWm, so that one bit of information corresponds to the entropy change ΔS = kB ln2 ≈ 0.693 kB  
0.96510-23 J/K. By the way, formula “S = k logW” is engraved on the tombstone of L. Boltzmann (1844-1906) 
who was the first one to recognize this intimate connection between the entropy and probability.  

(a)           (b) 

1 bit 1 bit 

1 bit 

Fig. 2.2. “Logarithmic trees” of binary decisions 
for making a choice between (a) 2 and (b) 4 
opportunities with equal probabilities. 
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          .ln MS         (2.24a) 

Using Eq. (20), we may recast this definition in the most frequently used form  

             m
m

W
W

S ln
1

ln  .     (2.24b) 

(Again, please note that Eq. (24) is valid in the thermodynamic equilibrium only!) 

 Equation (24) satisfies the major condition for the entropy definition in thermodynamics, i.e. to 
be a unique characteristics of disorder. Indeed, according to Eq. (20), number M (and hence any function 
of M) are the only possible measures characterizing the microcanonical distribution. We also need this 
function of M to satisfy another requirement to the entropy, of being an extensive thermodynamic 
variable, and Eq. (24) does satisfy this requirement as well. Indeed, mathematics says that for two 
independent systems the joint probability is just a product of their partial probabilities, and hence, 
according to Eq. (24b), their entropies just add up. 

 Now let us see whether Eqs. (20) and (24) are compatible with the 2nd law of thermodynamics. 
For that, we need to generalize Eq. (24) for S to an arbitrary state of the system (generally, out of 
thermodynamic equilibrium), with arbitrary state probabilities Wm. For that, let us first recognize that M 
in Eq. (24) is just the number of possible ways to commit a particular system to a certain state m (m = 1, 
2,…M), in a statistical ensemble where each state is equally probable. Now let us consider a more 
general ensemble, still consisting of a large number N >> 1 of similar systems, but with a certain number 
Nm = WmN >> 1 of systems in each of M states, with Wm not necessarily equal. In this case the evident 
generalization of Eq. (24) is that the entropy SN  of the whole ensemble is 

           ,..),(ln 21 NNMSN  ,     (2.25) 

where M (N1,N2,…) is the number of ways to commit a particular system to a certain state m, while 
keeping all numbers Nm fixed. Such number M (N1,N2,…) is clearly equal to the number of ways to 
distribute N distinct balls between M different boxes, with the fixed number Nm of balls in each box, but 
in no particular order within it. Comparing this description with the definition of the so-called 
multinomial coefficients,11 we get 
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m
m
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N NN
NNN

N
C,,NNM
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12121

21 with ,
!!...!

!
)(

,...,,
.  (2.26) 

In order to simplify the resulting expression for SN, we can use the famous Stirling formula in its 
crudest, de Moivre’s form12 whose accuracy is suitable for most purposes of statistical physics: 

                   ).1(ln)!ln(  NNN N       (2.27) 

When applied to our current problem, this gives the following average entropy per system,13 

11 See, e.g., MA Eq. (2.3). Despite the intimidating name, Eq. (26) may be very simply derived. Indeed, N! is just 
the number of all possible permutations of N balls, i.e. the ways to place them in certain positions – say, inside M 
boxes. Now in order to take into account that the particular order of the balls in each box is not important, that 
number should be divided by all  numbers Nn! of possible permutations of balls within each box – that’s it. 
12 See, e.g., MA Eq. (2.10). 
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and since this result is only valid in the limit Nm   anyway, we may use Eq. (2) to present it as 
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mm W

WWWS
11

.
1

lnln     (2.29) 

This extremely important formula14 may be interpreted as the average of the entropy values given by Eq. 
(24), weighed with specific probabilities Wm in accordance with the general formula (7).15 

 Now let us find what distribution of probabilities Wm provides the largest value of entropy (29). 
The answer is almost evident from a single glance at Eq. (29). For example, if coefficients Wm are 
constant (and hence equal to 1/M’) for a subgroup of M’  M states and equal zero for all others, all M’ 
nonvanishing terms in the sum (29) are equal to each other, so that  

         ,lnln
1

M'M'
M'

M'S       (2.30) 

so that the closer M’ to its maximum number M the larger S. Hence, the maximum of S is reached at the 
uniform distribution given by Eq. (24).  

 In order to prove this important fact more strictly, let us find the maximum of function given by 
Eq. (29). If its arguments W1, W2, …WM were completely independent, this could be done by finding the 
point (in the M-dimensional space of coefficients Wm) where all partial derivatives S/Wm are equal to 
zero. However, since the probabilities are constrained by condition (4), the differentiation has to be 
carried out more carefully, taking into account this interdependence: 
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At the maximum of function S, all such expressions should be equal to zero simultaneously. This 
condition may be presented as S/Wm = , where the so-called Lagrange multiplier  is independent of 
m. Indeed, at such point Eq. (31) becomes 
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13 Strictly speaking, I should use notation S here. However, following the style accepted in thermodynamics, I 
will drop the averaging sign until we will really need them to avoid confusion. Again, this shorthand is not too 
bad because the relative fluctuations of entropy (as those of any macroscopic variable) are very small at N >> 1. 
14 With the replacement of lnWm for log2Wm (i.e. division by ln2), Eq. (29) is the famous Shannon (or 
“Boltzmann-Shannon”) formula for average information I per symbol in a long communication string using M 
different symbols, with probability Wm each. 
15 In some textbooks, this simple argument is even accepted as the derivation of Eq. (29); however, it is evidently 
less strict than the one outlined above.  
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 For the particular expression (29), condition S/Wm =  yields 

                   .1lnln 
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Equation (33) may hold for all m (and hence the entropy reach its maximum value) only if Wm is 
independent on m.  Thus entropy (29) indeed reaches its maximum value (24) at equilibrium. 

 To summarize, we see that definition (24) of entropy in statistical physics does fit all the 
requirements imposed on this variable by thermodynamics.16  In particular, we have been able to prove 
the 2nd law of thermodynamics, starting from that definition and a more fundamental postulate (20). 
Now let me discuss one possible point of discomfort with that definition: it depends on the accepted 
energy interval of the microcanonical ensemble, for whose width ΔE no exact guidance is offered. 
However, if the interval ΔE contains many states, M >> 1, then with a very small relative error 
(vanishing in the limit M → ∞), M may be presented as 

                  ,)( EEgM       (2.34) 

where g(E) is the density of states of the system: 

                 ,
)(

)(
dE

Ed
Eg


      (2.35) 

Σ(E) being the total number of states with energies below E. (Note that the average interval E between 
energy levels, mentioned in the beginning of this section, is just E = E/M = 1/g.) Plugging Eq. (34) 
into Eq. (24), we get 

      ,ln)(lnln EEgMS       (2.36) 

so that the only effect of a particular choice of ΔE is an offset of entropy by a constant, and in Chapter 1 
we have seen that such a shift does not affect any measurable quantity. Of course, Eq. (34), and hence 
Eq. (36) are only precise in the limit when density of states g(E) is so large that the range available for 
the appropriate choice of E , 

             ,)(1 EEEg       (2.37) 

is sufficiently broad: g(E)E = E/E >> 1. 

 In order to get some feeling of the functions g(E) and S(E) and the feasibility of condition (37), 
and also to see whether the microcanonical distribution may be directly used for calculations of 
thermodynamic variables in particular systems, let us apply it to a microcanonical ensemble of many 
sets of N >> 1 independent, similar harmonic oscillators with eigenfrequency ω. (Please note that the 
requirement of a virtually fixed energy is applied, in this case, the total energy EN of the set, rather to a 
single oscillator - whose energy E may be virtually arbitrary, though certainly less than EN ~ NE.) Basic 
quantum mechanics17 teaches us that the eigenenergies of such an oscillator form a discrete, equidistant 
spectrum: 

16 This is not to say that these definitions are fully equivalent. Despite all the wealth of quantitative relations 
given by thermodynamics, it still leaves a substantial uncertainty in the definition of entropy (and hence 
temperature), while Eq. (24) narrows this uncertainty to an unsubstantial constant.   
17 See, e.g., QM Secs. 2.10 and 5.4. 
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          ,...2,1,0  where,
2
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  mmEm      (2.38) 

If ω is kept constant, the zero-point energy ω/2 does not contribute to any thermodynamic properties of 
the system and may be ignored,18 so that for the sake of simplicity we may take that point as the energy 
origin, and replace Eq. (38) with Em = mω. Let us carry out an approximate analysis of the system for 
the case when its average energy per oscillator, 

                      ,
N

E
E N       (2.39) 

is much larger than the energy quantum ω. For one oscillator, the number of states with energy 1 
below certain value = E1 >> ω is evidently Σ(E1) ≈ E1/ω (Fig. 3a). For two oscillators, all possible 
values of the total energy (ε1 + ε2) below some level E2 correspond to the points of a 2D square grid 
within the right triangle shown in Fig. 3b, giving Σ(E2) ≈ (1/2)(E2/ω)2. For three oscillators, the 
possible values of the total energy (ε1 + ε2 + ε3) correspond to those points of the 3D cubic mesh, that fit 
inside the right pyramid shown in Fig. 3c, giving Σ(E3) ≈ (1/2)(1/3)(E3/ω)3 = (1/3!)(E3/ω)3, etc. 

 

 

  

 

 

 

 

 

 

 An evident generalization of these formulas to arbitrary N gives the number of states 
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where coefficient 1/N! has the geometrical meaning of the (hyper)volume of the N-dimensional right 
pyramid with unit sides. Differentiating Eq. (40), we get 
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so that 

18 Let me hope that the reader knows that the zero-point energy is experimentally measurable – for example using 
the famous Casimir effect - see, e.g., QM Sec. 9.1. In Sec. 5.6 below we will discuss another method of 
experimental observation of that energy.  
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Fig. 2.3. Calculating functions Σ(EN) for the systems of (a) one, (b) two and (c) three quantum oscillators.
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    .const)ln(ln)1()!1(lnconst)(ln)(  NENNEgES NNNN  (2.42) 

For N >> 1 we can ignore the difference between N and (N – 1) in both instances, and use the Stirling 
formula (27) to simplify this result as 
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(The second approximation is only valid at very high E/ ratios, when the logarithm in Eq. (43) is 
substantially larger than 1, i.e. is rather crude.19) Returning for a second to the density of states, we see 
that  in the limit N → , it is exponentially large: 
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     (2.44) 

so that both conditions (37) may be satisfied within a very broad range of ΔE. 

 Now we can use Eq. (43) to find all thermodynamic properties of the system, though only in the 
limit E >> .  Indeed, according to thermodynamics (see Sec. 1.2), if the system volume and number of 
particles are fixed, the derivative dS/dE is nothing more than the reciprocal temperature – see Eqs. (1.9) 
or (1.15). In our current case, we imply that the harmonic oscillators are distinct, for example by their 
spatial positions. Hence, even if we can speak of some volume of the system, it is certainly fixed.20 
Differentiating Eq. (43) over energy E, we get 

           .
11

EE

N

dE

dS

T NN

N       (2.45) 

Reading this result backwards, we see that the average energy E of a harmonic oscillator equals T (i.e. 
kBTK is SI units). As we will show in Sec. 5 below, this is the correct asymptotic form of the exact result, 
valid in our current limit E >> .  

 Result (45) may be readily generalized. Indeed, in quantum mechanics a harmonic oscillator with 
eigenfrequency   may by described by Hamiltonian 

              
2

ˆ

2

ˆˆ
22 q

m

p
H


 ,      (2.46) 

where q is some generalized coordinate, and p the corresponding generalized momentum, m is 
oscillator’s mass,21 and  is the spring constant, so that   = (/m)1/2. Since in thermodynamic 
equilibrium the density matrix is always diagonal (see Sec. 1 above) in basis of stationary states m, 
quantum-mechanical averages of the kinetic and potential energies may be found from Eq. (7): 

19 Let me offer a very vivid example how slowly does the logarithm function grow at large values of its argument: 
ln of the number of atoms in the visible Universe is less than 200. 
20 By the same reason, the notion of pressure P in such a system is not clearly defined, and neither are any 
thermodynamic potentials but E and F. 
21 Let me hope that using the same letter for the mass and the state number would not lead to reader’s confusion. I 
believe that the difference between these uses is very clear from the context. 
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where Wm is the probability to occupy m-th energy level, and bra- and ket-vectors describe the stationary 
state corresponding to that level.22 However, both classical and quantum mechanics teach us that for any 
m, the bra-kets under the sums in Eqs. (47), which present the average kinetic and mechanical energies 
of the oscillator on its mth  energy level, are equal to each other, and hence each of them is equal to Em/2. 
Hence, even though we do not know the probability distribution Wm yet (it will be calculated in Sec. 5 
below), we may conclude that in the “classical limit” T >> , 
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.     (2.48) 

 Now let us consider a system with an arbitrary number of degrees of freedom, described by a 
more general Hamiltonian:23 
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with (generally, different) eigenfrequencies j = (j/mj)
1/2. Since the “modes” (effective harmonic 

oscillators), contributing into this Hamiltonian, are independent, result (48) is valid for each of the 
modes. This is the famous equipartition theorem: at thermal equilibrium with T >> j, the average 
energy of each so-called half-degree of freedom (which are defined as variables pj or qj, giving a 
quadratic term to the system’s Hamiltonian), is equal to T/2.24 In particular, for each Cartesian 
coordinate qj of a free-moving, non-interacting particle this theorem is valid for any temperature, 
because such coordinates may be considered as 1D harmonic oscillators with vanishing potential energy, 
i.e. j = 0, so that condition T >> j is fulfilled at any temperature. 

 At this point, a first-time student of thermodynamics should be very much relieved to see that the 
counter-intuitive thermodynamic definition (1.9) of temperature does indeed correspond to what we all 
have known about this notion from our kindergarten physics courses. 

 I believe that our case study of quantum oscillator systems has been a fair illustration of both the 
strengths and weaknesses of the microcanonical ensemble approach.25 On one hand, we could calculate 
virtually everything we wanted in the classical limit T >> , but calculations for arbitrary T ~ , 
though possible, are difficult, because for that, all vertical steps of function Σ(E N) have to be carefully 

22 Note again that though we have committed the energy EN of N oscillators to be fixed (in order to apply Eq. 
(36), valid only for a microcanonical ensemble at thermodynamic equilibrium), single oscillator’s energy E in our 
analysis may be arbitrary - within limits  << E < EN ~ NT. 
23 As a reminder, the Hamiltonian of any system whose classical Lagrangian function is an arbitrary quadratic 
form its generalized coordinates and the corresponding generalized velocities, may be brought to form (49) by an 
appropriate choice of “normal coordinates” qj which are certain linear combinations of the original coordinates – 
see, e.g., CM Sec. 5.2.  
24 This also means that in the classical limit, the heat capacity of a system is equal to one half the number of its 
half-degrees of freedom (in SI units, multiplied by kB). 
25 The reader is strongly urged to solve Exercise 2, whose task is to do a similar calculation for another key (“two-
level”) physical system, and to compare the results. 
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counted. In Sec. 4, we will see that other statistical ensembles are much more convenient for such 
calculations. 

 Let me conclude this discussion of entropy with a short notice on deterministic classical systems 
with a few degrees of freedom (and even simpler mathematical objects called “maps”) that may exhibit 
essentially disordered behavior, called the deterministic chaos.26 Such chaotic system may be 
approximately characterized by an entropy defined similarly to Eq. (29), where Wm  are probabilities to 
find it in different small regions of phase space, at well separated time intervals. On the other hand, one 
can use an equation slightly more general than Eq. (29) to define the so-called Kolmogorov (or 
“Kolmogorov-Sinai”) entropy K that characterizes the speed of loss of information about the initial state 
of the system, and hence what is called the “chaos’ depth”. In the definition of K, the sum over m is 
replaced with the summation over all possible permutations {m} = m0, m1, …, mN-1 of small space 
regions, and Wm is replaced with W{m}, the probability of finding the system in the corresponding 
regions m at time moment tm, with tm = m , in the limit   0, with N = const. For chaos in the 
simplest objects, 1D maps, K is equal to the Lyapunov exponent   > 0.27 For systems of higher 
dimensionality, which are characterized by several Lyapunov exponents , the Kolmogorov entropy is 
equal to the phase-space average of the sum of all positive .  These facts provide a much more 
practicable way of (typically, numerical) calculation of the Kolmogorov entropy than the direct use of 
its definition.28 

 

2.3. Maxwell’s Demon, information, and computation 

 Before proceeding to other statistical distributions, I would like to address one more popular 
concern about Eq. (24), the direct relation between the entropy and information. Some physicists are still 
uneasy with entropy being nothing else than the (deficit of) information,29 though to the best of my 
knowledge, nobody has yet been able to suggest any experimentally verifiable difference between these 
two notions. Let me give one example of their direct relation, that is essentially a development of the 
thought experiment suggested by Maxwell as early as in 1867. 

 Consider a volume containing just one molecule (considered as a point particle), and separated to 
two equal halves by a movable partition with a door that may be opened and closed at will, at no energy 
cost (Fig. 4a). If the door is open and the system is in thermodynamic equilibrium, we do not know on 
which side of the door partition the molecule is. Here the disorder (and hence entropy) are largest, and 
there is no way to get, from a large ensemble of such systems, any useful mechanical energy. 

 Now, let us consider that we (as instructed by, in Lord Kelvin’s formulation, an omniscient 
Maxwell’s Demon) know which side of the partition the molecule is currently located. Then we may 

26 See, e.g., CM Chapter 9 and literature therein. 
27 For the definition of , see, e.g., CM Eq. (9.9). 
28 For more discussion, see, e.g., either Sec. 6.2 of the monograph H. G. Schuster and W. Just, Deterministic 
Chaos, 4th  ed., Wiley-VHS, 2005, or the monograph by Arnold and Avez, cited in Sec. 1. 
29 While some of these concerns should be treated with due respect (because the ideas of entropy and disorder are 
indeed highly nontrivial), I have repeatedly run into rather shallow arguments which stemmed from arrogant 
contempt to the information theory as an “engineering discipline”, and unwillingness to accept the notion of 
information on the equal footing with those of space, time, and energy. Fortunately, most leading physicists are 
much more flexible, and there are even opposite extremes such as J. A. Wheeler’s “it from bit” (i.e. matter from 
information) philosophy – to which I cannot fully subscribe either. 
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close the door, so that molecule’s impacts on the partition create, on the average, a pressure force F 
directed toward the empty part of the volume (in Fig. 4b, the right one). Now we can get from the 
molecule some mechanical work, say by allowing force F to move the partition to the right, and picking 
up the resulting mechanical energy by some deterministic external mechanism. After the partition has 
been moved to the right end of the volume, we can open the door again (Fig. 4c), equalizing the 
molecule’s average pressure on both sides of the partition, and then slowly move the partition back to 
the middle of the volume, without doing any substantial work. With the kind help by Maxwell’s Demon, 
we can repeat the cycle again and again, and hence make the system to do unlimited mechanical work, 
fed “only” by information and thermal motion, and thus implementing the perpetual motion machine of 
the 2nd kind – see Sec. 1.6. The fact that such heat engines do not exist means that the Maxwell’s Demon 
does not either: getting any new information, at nonvanishing temperature (i.e. at thermal agitation of 
particles) has a finite energy cost. 

 

 

      

 

 

 

 

 In order to evaluate this cost, let us calculate the maximum work per cycle made by the 
Maxwell’s heat engine (Fig. 4), assuming that it is constantly in thermal equilibrium with a heat bath of 
temperature T. Formula (21) tells us that the information supplied by the demon (what exactly half of 
the volume contains the molecule) is exactly one bit, I (2) = 1. According to Eq. (24), this means that by 
getting this information we are changing the entropy by  

         2ln IS .     (2.50) 

Now, it would be a mistake to plug this (negative) entropy change into Eq. (1.19). First, that relation is 
only valid for slow, reversible processes. Moreover (and more importantly), this equation, as well as its 
irreversible version (1.41), is only valid for a fixed statistical ensemble. The change SI does not belong 
to this category, and may be formally described by the change of the statistical ensemble – from the one 
consisting of all similar systems (experiments) with an unknown location of the molecule, to the new 
ensemble consisting of the systems with the molecule in its certain (in Fig. 4, left) half.30  

 Now let us consider the slow expansion of the “gas” after the door had been closed. At this stage, 
we do not need the demon’s help any longer (i.e. the statistical ensemble is fixed), and we can use 
relation (1.19). At the assumed isothermal conditions (T = const), this relation may be integrated over 
the whole expansion process, getting Q = TS. At the final position, the system’s entropy should be the 
same as initially, i.e. before the door had been opened, because we again do not know where in the 
volume the molecule is. This means that the entropy was replenished, during the reversible expansion, 

30 This procedure of redefining the statistical ensemble is the central point of the connection between the 
information theory and physics, and is crucial in particular for any (meaningful :-) discussion of measurements in 
quantum mechanics - see, e.g., QM Secs. 2.5 and 7.7. 

(a)             (b)        (c) 

Fig. 2.4. The Maxwell’s Demon paradox: the volume with a single molecule (a) before and (b) after 
closing the door, and (c) after opening the door in the end of the expansion stage. 
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from the heat bath, by S = - SI = +ln2, so that Q = TS = Tln2. Since by the end of the whole cycle 
the internal energy E of the system is the same as before, all this heat should have gone into the 
mechanical energy obtained during the expansion. Thus the obtained work per cycle (i.e. for each 
obtained information bit) is Tln2 (kBTKln2 in SI units), about 410-21 Joule at room temperature. This is 
exactly the minimum energy cost of getting one bit of new information about a system at temperature T. 

 The smallness of that amount on the everyday human scale has left the Maxwell’s Demon 
paradox an academic exercise for almost a century. However, its discussion resumed in the 1960s in the 
context of energy consumption at numerical calculations, motivated by the exponential (Moore’s-law) 
progress of the digital integrated circuits, which leads in particular, to a fast reduction of energy E 
“spent” (turned into heat) per one binary logic operation. In the current generations of semiconductor 
digital integrated circuits, E is of the order of ~ 10-16 J,31 i.e. still exceeds the room-temperature value 
of Tln2 = kBTKln2  310-21 J by more than 4 orders of magnitude. Still, some engineers believe that 
thermodynamics imposes an important lower limit on E and hence presents an insurmountable obstacle 
to the future progress of computation,32 so that the issue deserves a discussion. 

 Let me believe that the reader of these notes understands that, in contrast to naïve popular 
thinking, computers do not create any new information; all they can do it to reshape (process) it, loosing 
most of input information on the go. Indeed, any digital computation algorithm may be decomposed into 
simple, binary logical operations, each of them performed by a certain logic circuit called the logic gate. 
Some of these gates (e.g., logical NOT performed by inverters, as well as memory READ and WRITE 
operations) do not change the amount of information in the computer. On the other hand, such 
information-irreversible logic gates as two-input NAND (or NOR, or XOR, etc.) actually erase one bit 
at each operation, because they turn two input bits into one output bit (Fig. 5a).  

  

 

 

 

 

 

 

 

In 1961, R. Landauer arrived at the conclusion that each  logic operation should turn into heat at 
least energy  

31 In the dominating CMOS technology, E is close to twice the energy CV2/2 of recharging the total capacitance 
C of the transistor gate electrodes and the wires interconnecting the gates, by the voltage V representing the binary 
unity. As the technology progresses, C decreases in approximate proportion with the minimum feature size, 
resulting in the almost proportional decrease of E. (The used voltage V  has almost saturated at ~1 V – the value 
that stems from the bandgap of ~1 eV of the used semiconductor – silicon.) 
32 Unfortunately, this delusion has resulted in a substantial and unjustified shift of electron device research 
resources toward using “non-charge degrees of freedom” (such as spin) – as if they do not obey the general laws 
of statistical physics! 

A 

B 

F 

(a)          (b) 

A 

B 

B 

A 

F Fig. 2.5. Simple examples 
of  (a) irreversible and (b) 
potentially reversible logic 
circuits. Each rectangle 
presents a circuit storing 
one bit of information. 
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        2ln2ln KBmin TkTE  .     (2.51) 

This result may be illustrated with the Maxwell’s Demon machine shown in Fig. 4, operating as heat 
pump. At the first stage, with the door closed, it uses external mechanical work E = Tln2 to reduce the 
volume in which of the molecule is confined from V to V/2, pumping heat -Q = E into the heat bath. 
To model a logically-irreversible logic gate, let us now open the door in the partition, and thus loose 1 
bit of information about molecule’s position. Then we will never get work Tln2 back, because moving 
the partition back to the right, with door open, takes place at zero average pressure. Hence, Eq. (51) 
gives a fundamental limit for energy loss (per bit) at the logically irreversible computation. 

 However, in 1973 C. Bennett came up with convincing arguments that it is possible to avoid 
such energy loss by using only operations that are reversible not only physically, but also logically.33 
For that, one has to avoid any loss of information, i.e. any erasure of intermediate results, for example in 
the way shown in Fig. 5b. (For that, gate F should be physically reversible, with no substantial static 
power consumption.) In the end of all calculations, after the result has been copied into a memory, the 
intermediate results may be “rolled back” through reversible gate to be eventually merged into a copy of 
input data, again without erasing a single bit. The minimal energy dissipation at such reversible 
calculation tends to zero as the operation speed is decreased, so that the average energy loss per bit may 
be less than the perceived “fundamental thermodynamic limit” (51).34 The price to pay for this ultralow 
dissipation is an enormous (exponential) complexity of hardware necessary for storage of all 
intermediate results. However, using irreversible gates sparely, it may be possible to reduce the 
complexity dramatically, so that in future the mostly reversible computation may be able to reduce 
energy consumption in practical digital electronics.35 

 Before we leave Maxwell’s Demon behind, let me use it to discuss, for one more time, the 
relation between the reversibility of the classical and quantum mechanics of Hamiltonian systems and 
the irreversibility possible in thermodynamics and statistical physics. In our (or rather Lord Kelvin’s :-) 
gedanken experiment shown in Fig. 4, the laws of mechanics governing the motion of the molecule are 
reversible all times. Still, at partition’s motion to the right, driven by molecule’s impacts, the entropy 
grows, because the molecule picks up heat  Q > 0, and hence entropy S = Q/T > 0, from the heat 
bath. The physical mechanism of this irreversible entropy (read: disorder) growth is the interaction of 
the molecule with uncontrollable components of the heat bath, and the resulting loss of information 
about the motion of the molecule. Philosophically, the emergence of irreversibility in large systems is a 
strong argument against the reductionism – a naïve belief that knowing the exact laws of Nature at one 
level of its complexity, we can readily understand all the phenomena on the higher levels of its 
organization. In reality, the macroscopic irreversibility of large systems is a wonderful example of a new 
law (in this case, the 2nd law of thermodynamics) that becomes relevant on the substantially new level of 
complexity - without defying the lower-level laws. Without such new laws, very little of the higher level 
organization of Nature may be understood. 

33 C. Bennett, IBM J. Res. Devel. 17, 525 (1973); see also a later review C. Bennett, Int. J. Theor. Phys. 21, 905 
(1982). To the best of my knowledge, the sub-Tln2 energy loss per logic step is still to be demonstrated 
experimentally, but at least one  research team is closing at this goal. 
34 Reversible computation may also overcome the perceived “fundamental quantum limit”, Et > , where t is 
the time scale of the binary logic operation – see K. Likharev, Int. J. Theor. Phys. 21, 311 (1982). 
35 The situation is rather different for quantum computation which may be considered as a specific type of 
reversible but analog computation – see, e.g., QM Sec. 8.5 and references therein. 

Energy 
dissipation at 
irreversible 
computation 
 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 2           Page 17 of 44 

2.4. Canonical ensemble and the Gibbs distribution  

 As we have seen in Sec. 2, the microcanonical distribution may be directly used for solving some 
simple problems,36 but a further development of this approach (also due to J. Gibbs) turns out to be 
much more convenient for calculations. Let us consider that a statistical ensemble of similar systems we 
are studying, each in thermal equilibrium with a much larger heat bath of temperature T (Fig. 6a). Such 
an ensemble is called canonical. 

 

 

 

 

 

 

 

 

 

 Next, it is intuitively evident that if the heat bath is sufficiently large, any thermodynamic 
variables characterizing the system under study should not depend on heat bath’s environment. In 
particular, we may assume that the heat bath is thermally insulated; then the total energy E of the 
composite system (consisting of the system of our interest, plus the heat bath) does not change in time. 
For example, if our system of interest is in its certain (say, mth ) quantum state,  then the sum 

                HBEEE m       (2.52) 

is time-independent. Now let us partition the canonical ensemble of such systems into much smaller 
sub-ensembles, each being a microcanonical ensemble of composite systems whose time-independent 
total energy E is the same - as discussed in Sec. 2, within a certain very small energy interval E << 
E. According to the microcanonical distribution,  probabilities to find the composite system, within this 
new ensemble, in any state are equal. Still, heat bath energies EHB = E - Em (Fig. 6b) of members of this 
microcanonical sub-ensemble may be different due to the difference in Em.  

 The probability W(Em) to find the system of our interest (within the selected sub-ensemble) in a 
state with energy Em is proportional to the number M of such systems in the sub-ensemble. Due to the 
very large size of the heat bath in comparison with that of the system under study, the heat bath’ density 
of states gHB is very high, and E may be selected so that 

                     HB
HB

1
EEEE

g m'm   ,    (2.53)  

where m and m’ are any states of the system of our interest. As Fig. 6b shows, in this case we may write 
M = gHB(EHB)E. As a result, within the microcanonical ensemble with the total energy E, 

36 See also exercise problems listed in the end of this chapter. 
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Fig. 2.6. (a) System in a heat bath 
(a canonical ensemble member) 
and (b) energy spectrum of the 
composite system (including the 
heat bath). 
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             EEEgEEgMW mm )()( HBHBHB .   (2.54) 

 Let us simplify this expression further, using the Taylor expansion with respect to relatively 
small Em << E. However, here we should be careful. As we have seen in Sec. 2, the density of states of 
a large system is an extremely rapidly growing function of energy, so that if we applied the Taylor 
expansion directly to Eq. (54), the Taylor series would converge for very small Em only. A much 
broader applicability range may be obtained by taking logarithm of both parts of Eq. (54) first: 

       )(constln)(ln const ln HBHB mmm EESEEEgW   ,  (2.55)  

where the second equality results from application of Eq. (36) to the heat bath, and lnE has been 
incorporated into the constant. Now, we can Taylor-expand the (much more smooth) function of energy 
in the right-hand part, and limit ourselves to the two leading terms of the series: 

           .constln 00
HB

HB
HB m

mm
m E

dE

dS
SW EE       (2.56) 

But according to Eq. (1.9), the derivative participating in this expression is nothing else than the 
reciprocal heat bath temperature that (due to the large bath size) does not depend on whether Em is equal 
to zero or not. Since our system of interest is in the thermal equilibrium with the bath, this is also the 
temperature T of the system – see Eq. (1.8). Hence Eq. (56) is merely 

             
T

E
W m

m  constln .     (2.57) 

This equation describes a substantial decrease of Wm as Em is increased by several T, and hence our 
linear approximation (56) is virtually exact as soon as EHB is much larger than T – the condition that is 
rather easy to satisfy, because as we have seen in Sec. 2, the average energy of each particle is of the 
order of T. 

 Now we should be careful again, because so far we have only derived Eq. (57) for a sub-
ensemble with fixed E. However, since the right-hand part of Eq. (57) includes only Em and T that are 
independent of E, this relation is valid for all sub-ensembles of the canonical ensemble, and hence for 
the later ensemble as the whole.37 Hence for the total probability to find our system of interest in state 
with energy Em, in the canonical ensemble with temperature T, we can write 

        .exp
1

expconst
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ZT

E
W mm

m    (2.58) 

.  This is the famous Gibbs distribution (sometimes called the “canonical distribution”),38 which is 
frequently arguably the summit of statistical physics,39 because it may be used for a straightforward (or 
at least conceptually straightforward :-) calculation of all statistical and thermodynamic variables.  

37 Another way to arrive at the same conclusion is to note that the entropy of the canonical ensemble with fixed 
Em has to be a sum of entropies of its microcanonical sub-ensembles (with different E),  which participate in Eq. 
(55). As a result, the logarithm of the probability Wm for our system of interest to have energy Em in the whole 
(canonical) ensemble is just a sum of Eqs. (57) for sub-ensembles with different E. 
38 The temperature dependence of the type exp{-E/T}, especially when showing up in rates of certain events, e.g.,  
chemical reactions, is also frequently called the Arrhenius law - after chemist S. Arrhenius who has noticed this 
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Before I  illustrate this, let me first calculate the coefficient Z participating in Eq. (58) for the 
general case. Requiring, in accordance with Eq. (4), the sum of all Wm to be equal 1, we get 

             








m

m

T

E
Z exp ,     (2.59) 

where the summation is formally extended to all quantum states of the system, though in practical 
calculations, the sum may be truncated to include only the states that are noticeably occupied. This 
apparently humble normalization coefficient Z turns out to be so important for the relation between the 
Gibbs distribution (i.e. statistics) and thermodynamics that it has a special name - or actually, two 
names: either the statistical sum or the partition function. To demonstrate how important Z is, let us use 
the general Eq. (29) for entropy to calculate its value for the particular case of the canonical ensemble, 
i.e. the Gibbs distribution of probabilities Wn: 
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According to the general rule (7), the thermodynamic (i.e. ensemble-average) value E of the internal 
energy of the system is  

           ,exp
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Z
EWE     (2.61a) 

so that the second term in the right-hand part of Eq. (60) is just E/T, while the first term equals just lnZ, 
due to the normalization condition (59). (As a parenthetic remark, using the notion of reciprocal 
temperature   1/T, Eq. (61a), with account of Eq. (59), may be also rewritten as  

      .
)(ln





Z

E      (2.61b) 

This formula is very convenient for calculations if our prime interest is the average energy E rather than 
F or Wn.) With these substitutions, Eq. (60) yields a very simple relation between the statistical sum and  
entropy: 

       Z
T

E
S ln .      (2.62) 

Using Eq. (1.33), we see that Eq. (62) gives a straightforward way to calculate the free energy F of the 
system from nothing else than its statistical sum: 

           .
1

ln
Z

TTSEF       (2.63) 

law in experimental data. In all cases I am aware of, the Gibbs distribution is the underlying reason of the 
Arrhenius law. 
39 This opinion is shared by several authoritative colleagues, including R. Feynman who climbs on this summit 
already by page 4 (!) of his brilliant book Statistical Mechanics, 2nd ed., Westview, 1998. (Despite its title, this 
monograph a collection of lectures on a few diverse, mostly advanced topics of statistical physics, rather than its 
systematic course, so that unfortunately I cannot recommend it as a textbook.) 
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 Now, using the general thermodynamic relations (see especially the circular diagram shown in 
Fig. 1.7b, and its discussion) we can calculate all thermodynamic potentials of the system, and all other 
variables of interest. Let me only note that in order to calculate pressure P - e.g., from the second of Eqs. 
(1.35) - we would need to know the explicit dependence of F, and hence of the statistical sum Z on the 
system volume V. This would require the calculation, by appropriate methods of either classical or 
quantum mechanics, of the volume dependence of eigenenergies Em. I will give numerous examples of 
such calculations later in the course.40 

 As the final note of this section, Eqs. (59) and (63) may be combined to give a very elegant 
expression, 
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F
expexp ,    (2.64) 

which offers a convenient interpretation of free energy as a (rather specific) average of eigenenergies of 
the system. One more convenient formula may be obtained by using Eq. (64) to rewrite the Gibbs 
distribution (58) in the form 
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EF
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m      (2.65) 

In particular, this expression shows that that since all probabilities Wm are below 1, F is always 
lower than the lowest energy level.  Also, note that probabilities Wm do not depend on the energy 
reference  choice, i. e. on an arbitrary constant added to all Em (and hence to E and F). 

  

2.5. Harmonic oscillator statistics 

 The last property may be immediately used in our first example of the Gibbs distribution 
application to a particular, but very important system - the harmonic oscillator, for the more general case 
then was done in Sec. 2, namely for a “quantum oscillator” with an arbitrary relation between T and 
.41 Let us consider a canonical ensemble of similar oscillators, each in a contact with a heat bath of 
temperature T. Selecting the zero-point energy /2 for the origin of E, oscillator eigenenergies (38) 
become Em = m (m = 0, 1,…), so that the Gibbs distribution for probabilities of these states is 
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,    (2.66) 

40 In many multiparticle systems, the effect of an external field may be presented as a sum of its effects on each 
particle - frequently described by interaction energy with structure -F jqj

(k) , where qj
(k) is a generalized coordinate 

of k-th particle. Generally, this energy has to be included directly into energies of particle states Em, used in Z, and 
hence in the free energy F (63). In this case, the thermodynamic equilibrium corresponds to the minimum of F – 
see Eq. (1.42). On the other hand, for “linear” systems (whose energy is a quadratic-homogeneous form of its 
generalized coordinates and velocities), equivalent results may be obtained by accounting for the interaction at the 
thermodynamic level, i.e. by subtracting term F j qj  = F jN  qj

(k) from the free energy F calculated in the 
absence of the field, and then finding the equilibrium as a minimum of the resulting Gibbs energy G – see Eq. 
(1.43). In this case, any of the approaches is fine, provided only that the same interaction is not counted twice. 
41 A simpler task of making a similar calculation for another key quantum-mechanical object, the two-level 
system, is left for reader’s exercise.  
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with the statistical sum 
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This is just the well-known infinite geometric progression (the “geometric series”),42 with the sum 
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so that for the probability Wm to find the oscillator at each energy level is 

                .1 // TmT eeWm
        (2.69) 

 As Fig. 7a shows, the probability Wm to find the oscillator in each particular state (but the ground 
one, with m = 0) vanishes in both low- and high-temperature limits, and reaches its maximum value Wm 
~ 0.3/m at T ~ m, so that the contribution mWn of each level into the average oscillator energy E is 
always smaller than .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This average energy may be calculated in any of two ways: either using Eq. (7): 
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or (simpler) using Eq. (61b), as 

42 See, e.g., MA Eq. (2.8b). 
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Fig. 2.7. Statistical and thermodynamic parameters of a harmonic oscillator, as functions of temperature. 
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Both methods give (of course) the same famous result,43 
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which is valid for arbitrary temperature and plays the key role in many fundamental problems of 
physics. The red line in Fig. 7b shows this E as a function of normalized temperature. At low 
temperatures, T << , the oscillator is predominantly in its lowest (ground) state, and its energy (on top 
of the constant zero-point energy /2!) is exponentially small: E   exp{-/T} << T, . On the 
other hand, in the high-temperature limit the energy tends to T. This is exactly the result (a particular 
case of the equipartition theorem) that was obtained in Sec. 2 from the microcanonical distribution. 
Please note how much simpler is the calculation starting from the Gibbs distribution, even for an 
arbitrary ratio T/. 

 To complete the discussion of thermodynamic properties of the harmonic oscillator, we can 
calculate its free energy using Eq. (63): 

         TeT
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TF /1ln
1

ln  .    (2.73)  

Now entropy may be found from thermodynamics: either from the first of Eqs. (1.35), S = -(∂F/∂T)V, or 
(even more easily) from Eq. (1.33): S = (E – F)/T. Both relations give, of course, the same result: 
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Finally, since in the general case the dependence of the oscillator properties (essentially, ) on volume 
V in this problem is not specified, such variables as P, , G, W, and  are not defined, and we may 
calculate only the average heat capacity C per one oscillator: 
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 The calculated thermodynamic variables are shown in Fig. 7b. In the low-temperature limit (T 
<< ), they all tend to zero. On the other hand, in the high temperature limit (T >> ), F  -T 
ln(T/) - , S  ln(T/)  +, and C  1 (in SI units, C  kB). Note that the last limit is the 
direct corollary of the equipartition theorem: each of two “half-degrees of freedom” of the oscillator 
gives, in the classical limit, a contribution C  = ½  into its heat capacity. 

 Now let us use Eq. (69) to discuss the statistics of the quantum oscillator described by 
Hamiltonian (46), in the coordinate representation. Again using density matrix’ diagonality at 
thermodynamic equilibrium, we may use a relation similar to Eqs. (47)  to calculate the probability 
density to find the oscillator at coordinate q: 

43 It was first obtained in 1924 by S. Bose, and is frequently called the Bose distribution – a particular case of the 
Bose-Einstein distribution - to be discussed in Sec. 8 below. 
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where m(q) is the eigenfunction of m-th stationary state of the oscillator. Since each m(q) is 
proportional to the Hermite polynomial44 that requires at least m elementary functions for its 
representation, working out the sum in Eq. (76) is a bit tricky,45 but the final result is rather simple: w(q) 
is just a normalized Gaussian distribution (the “bell curve”), 
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with q = 0, and 
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Since coth tends to 1 at  → , and diverges as 1/ at  → 0, Eq. (78) shows that the width of 
coordinate distribution is constant (and equal to that, /2m, of the ground-state wavefunction 0) at T 
<< , and grows as T/m2 at T/ → .  

 As a sanity check, we may use Eq. (78) to write the following expression,  
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for the average potential energy of the oscillator. In order to comprehend this result, let us notice that 
Eq. (72) for the average full energy E was obtained by counting it from the ground state energy /2 of 
the oscillator.46 If we add this energy to the result, we get 
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We see that for arbitrary temperature, U = E/2, as we already concluded from Eq. (47). This means 
that the average kinetic energy, equal to E - U, is also the same: 
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In the classical limit T >> , both energies equal T/2, reproducing the equipartition theorem result (48). 

 

2.6. Two important applications 

 The results of the previous section, especially Eq. (72), have enumerable applications in physics, 
but I will have time for a brief discussion of only two of them.  

44 See, e.g., QM Sec. 2.10. 
45 The calculation may be found, e.g., in QM Sec. 7.2.   
46 As a quantum mechanics reminder, the ground state energy of the oscillator is not only measurable, but is also 
responsible for several important phenomena, e.g., the Casimir effect – see, e.g., QM Sec. 9.1. 
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 (i) Blackbody radiation. Let us consider a free-space volume V limited by non-absorbing (i.e. 
ideally reflecting) walls. Electrodynamics tells us47 that electromagnetic field in such a cavity may be 
presented as a sum of “modes” with time evolution similar to that of the usual harmonic oscillator, and 
quantum mechanics says48 that the energy of such electromagnetic oscillator is quantized in accordance 
with Eq. (38), so that at thermal equilibrium the average energy is described by Eq. (72). If volume V is 
large enough,49 the number of these modes within a small range dk of the wavevector magnitude k is50 

                dkk
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 ,    (2.82) 

where for electromagnetic waves, the degeneracy factor g = 2, due to their two different (e.g., linear) 
polarizations for the same wave vector k. With the isotropic dispersion relation for waves in vacuum, k 
= /c, the elementary volume d3k corresponding to a small interval d is a spherical shell of small 
thickness dk = d/c, and Eq. (82) yields 
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Using Eq. (72), we see that the spectral density of electromagnetic wave energy, per unit volume, is 
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 This is the famous Planck’s blackbody radiation law.51 To understand why its name mentions 
radiation, let us consider a small planar part, of area dA, of a surface that completely absorbs 
electromagnetic waves incident from any direction.  (Such “perfect black body” approximation may be 
closely approached in special experimental structures, especially in limited frequency intervals.) Figure 
8 shows that if the arriving wave was planar, with the incidence angle , then power dP() absorbed  

by the surface within a small frequency interval d (i.e. energy arriving at the surface within unit time 
interval), would be equal to the radiation energy within the same frequency interval and inside a 
cylinder of height c, base area dAcos, and hence volume dV = c dAcos : 

      cos)()()( dAcdudVdud P .    (2.85) 

 Since the thermally-induced field is isotropic, i.e. propagates equally in all directions, this results 
should be averaged over all solid angles within the polar angle interval 0    /2: 
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47 See, e.g., EM Sec. 7.9. 
48 See, e.g., QM Sec. 9.1. 
49 In our current context, the volume should be much larger than (c/T)3, where c  3108 m/s is the speed of 
light. For room temperature (T  kB300K  410-21 J), that lower bound is of the order of 10-16 m3. 
50 See, e.g., EM Sec. 7.9, or QM Sec. 1.6. 
51 Let me hope the reader knows that the law was first suggested in 1900 by M. Planck as an empirical fit for the 
experimental data on blackbody radiation, and this was the historic point at which the Planck constant  (or rather 
h  2) was introduced - see, e.g., QM Sec. 1.1. 
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Hence the Planck’s expression (84), multiplied by c/4, gives the power absorbed by such 
“blackbody” surface. But at thermal equilibrium, this absorption has to be exactly balanced by the 
surface’s own radiation, due to its finite temperature T. 

 

 

 

 

 

  

 

  I am confident that the reader is familiar with the main features of the Planck law (84), including 
its general shape (Fig. 9), with the low-frequency asymptote u()  2 (due to its historic significance 
bearing the special name of the Rayleigh-Jeans law), the exponential drop at high frequencies (the Wien 
law), and the resulting maximum of function u(), reached at frequency max, 

T82.2max  ,     (2.87) 

i.e. at wavelength max = 2/kmax = 2c/max  2.22 c/T. Still, I cannot help mentioning two particular 
values corresponding to visible light (max ~ 500 nm) for Sun’s surface temperature TK  6,000 K, and to 
mid-infrared range (max ~10 m) for the Earth’s surface temperature TK  300 K. The balance of these 
two radiations, absorbed and emitted by the Earth, determines its surface temperature, and hence has the 
key importance for all life on our planet. As one more example, the cosmic microwave background 
(CMB) radiation, closely following the Planck law with TK = 2.726 K (and hence having maximum 
density at max  1.9 mm), and in particular its weak anisotropy, is a major source of data for all modern 
cosmology.52  

  

 

  

 

   

 

  

 

 

 

52 For a recent popular book of this topic, see, e.g., S. Singh, Big Bang: The Origins of the Universe, 
HarperCollins, 2005. 
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Now let us calculate the total energy E of this radiation in some volume V. It may be found from 
Eq. (72) by integration its over all frequencies:53   
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(The last transition in Eq. (88) uses a table integral equal to (4)(4) = (3!)(4/90) = 4/15.54) Using Eq. 
(86) to recast Eq. (88) into the total power radiated by a blackbody surface, we get the well-known 
Stefan (or “Stefan-Boltzmann”) law 
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where   is the Stefan-Boltzmann constant 
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 By this time, the thoughtful reader should have an important concern ready: Eq. (84) and hence 
Eq. (88) are based on Eq. (72) for the average energy of each oscillator, counted from its ground energy 
/2. However, the radiation power should not depend on the energy origin; why have not we included 
the ground energy of each oscillator into integration (88), as we have done in Eq. (80)? The answer is 
that usual radiation detectors only measure the difference between power Pin of the incident radiation 
(say, that of a blackbody surface with temperature T) and their own back-radiation Pout with power 
corresponding to some effective temperature Td of the detector (Fig. 10). But however low Td is, the 
temperature-independent ground state energy contribution /2 to the back radiation is always there. 
Hence, the /2 drops out from the difference, and cannot be detected - at least in this simple way. This 
is the reason why we had the right to ignore this contribution in Eq. (88) – very fortunately, because it 
would lead to the integral’s divergence at its upper limit. However, let me repeat again that the ground-
state energy of the electromagnetic field oscillators is physically real – and important. 

 

 

 

 

 

  

  

53 Note that the heat capacity CV  (E/T)V, following from Eq. (88), is proportional to T3 at any temperature, and 
hence does not obey the trend CV   const at T  . This is the result of the unlimited growth, with temperature, 
of the number of thermally-exited field oscillators with  < T. 
54 See, e.g., MA Eqs. (6.8b), (6.6b), and (2.7b). 

Fig. 2.10. Generic scheme of 
the electromagnetic radiation 
power measurement. 
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 One more interesting result may be deduced from the free energy F of the electromagnetic 
radiation, which may be also calculated by integration of Eq. (73) over all the modes, with the 
appropriate weight: 
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Presenting 2d as d(3)/3, this integral may be readily worked out by parts, and reduced to a table 
integral similar to that in Eq. (88), yielding a surprisingly simple result: 
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Now we can use the second of general thermodynamic equations (1.35) to calculate pressure: 
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This result might be, of course, derived by the integration of the expression for the forces exerted by 
each mode of the electromagnetic on confining the walls confining it to volume V,55 but notice how 
much simpler the thermodynamic calculation is. Rewritten in the form,   

                 
3

E
PV  ,      (2.92b) 

this result may be considered as the equation of state of the electromagnetic field, i.e. from the quantum-
mechanical point of view, the photon gas. As we will prove in the next chapter, the equation of state 
(1.44) of the ideal classical gas may be presented in a similar form, but with a coefficient generally 
different from Eq. (92). In particular, according to the equipartition theorem, for an ideal gas of non-
relativistic atoms whose internal degrees of freedom are in their ground state, whose whole energy is 
that of three translational “half-degrees of freedom”, E = 3N(T/2), the factor before E is twice larger 
than in Eq. (92). On the other hand, a relativistic treatment of the classical gas shows that Eq. (92) is 
valid for any gas in the ultra-relativistic limit, T >> mc2, where m is the rest mass of the gas particle. 
Evidently, photons (i.e. particles with m = 0) satisfy this condition.56 

 Finally, let me note that Eq. (92) allows the following interesting interpretation. The last of Eqs. 
(1.60), being applied to Eq. (92), shows that in this particular case the grand potential  equals (-E/3). 
But according to the definition of , the first of Eqs. (1.60), this means that the chemical potential of the 
electromagnetic field excitations vanishes: 

       0



N

F .     (2.93) 

In Sec. 8 below, we will see that the same result follows from Eq. (72) and the Bose-Einstein 
distribution, and discuss its physical sense. 

55 See, e.g., EM Sec. 9.8. 
56 Please note that according to Eqs. (1.44), (88), and (92), the difference between the equations of state of the 
photon gas and an ideal gas of non-relativistic particles, expressed in the more usual form - as P = P(V, T), is 
much more dramatic: P  T4V0 instead of P  T1V-1. 
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(ii) Specific heat of solids. The heat capacity of solids is readily measurable, and in the early 
1900s its experimentally observed temperature dependence served as an important test for emerging  
quantum theories. However, theoretical calculation of CV is not simple,57 even for isolators whose 
specific heat is due to thermally-induced vibrations of their crystal lattice alone.58 Indeed, a solid may be 
treated as an elastic continuum only at low relatively frequencies. Such continuum supports three 
different modes of mechanical waves with the same frequency , that obey similar, linear dispersion 
laws,  = vk, but velocity v = vl for one of these modes (the longitudinal sound) is higher than that (vt) of 
two other modes (the transverse sound).59 At such frequencies the wave mode density may be described 
by an evident modification of Eq. (83): 
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For what follows, it is convenient to rewrite this relation in a form similar to Eq. (83): 
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However, wave theory shows60 that as frequency  of a sound wave in a periodic structure is 
increased so that its half-wavelength /k approaches the crystal period d, the dispersion law (k) 
becomes nonlinear before the frequency reaches a maximum at  k = /d. To make the things even more 
complex, 3D crystals are generally anisotropic, so that the dispersion law is different in different 
directions of wave propagation. As a result, the exact statistics of thermally excited sound waves, and 
hence the heat capacity of crystals, is rather complex and specific for each particular crystal type. 

In 1912, P. Debye suggested an approximate theory of the temperature dependence of the 
specific heat, which is in a surprisingly good agreement with experiment for many insulators, including 
polycrystalline and amorphous materials. In his model, the linear (acoustic) dispersion law  = vk, with 
the effective sound velocity v, defined by the latter of Eqs. (94b), is assumed to be exact all the way up 
to some cutoff frequency D, the same for all three wave modes. This cutoff frequency may be defined 
by the requirement that the total number of acoustic modes, calculated within this model from Eq. (94b), 
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is equal to the universal number N = 3nV of degrees of freedom (and hence of independent oscillation 
modes) in a system of nV elastically coupled particles, where n is the atomic density of the crystal, i.e. 
the number of atoms per unit volume. Within this model, Eq. (72) immediately yields the following 
expression for the average energy and specific heat (in thermal equilibrium at temperature T ): 

57 Due to low temperature expansion of solids, the difference between their CV and CP is small. 
58 In good conductors (e.g., metals), specific heat is contributed (and at low temperatures, dominated) by free 
electrons – see Sec. 3.3 below.  
59 See, e.g., CM Sec. 7.7. 
60 See, e.g., CM Sec. 5.3, in particular Fig. 5.5 and its discussion. 
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where TD  D is called the Debye temperature,61 and 

    










  ,at  ,5/

,0at             ,1

1

3
)( 34

0

3

3 xx

x

e

d

x
xD

x




    (2.98) 

the Debye function. Red lines in Fig. 11 show the temperature dependence of the specific heat cV (per 
atom) within the Debye model. At high temperatures, it approaches a constant value of 3, corresponding 
to energy E = 3nVT, in accordance with the equipartition theorem for each of 3 degrees of freedom of 
each atom. (This model-insensitive value of cV is known as the Dulong-Petit law.) In the opposite limit 
of low temperatures, the specific heat is much smaller: 
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reflecting the reduction of the number of excited waves with  < T as the temperature is decreased. 

  

 

 

 

 

 

 

 

 

 

 

 As a historic curiosity, P. Debye’s work followed one by A. Einstein, who had suggested (in 
1907) a simpler model of crystal vibrations. In this model, all 3nV independent oscillatory modes of nV 
atoms of the crystal have approximately the same frequency, say E, and Eq. (72) immediately yields 

61 In SI units, Debye temperatures TD are of the order of a few hundred K for most simple solids (e.g., close to 430 
K for aluminum and 340 K for copper), with somewhat lower values for crystals with heavy atoms (~105 K for 
lead), and reach the highest value ~2200 K for diamond with its relatively light atoms and very stiff lattice. 
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Fig. 2.11. Temperature dependence of the specific heat in the Debye (red lines) and Einstein (blue lines) models. 
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so that the specific heat is functionally similar to Eq. (75): 
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This dependence cV(T) is shown with blue lines in Fig. 11 (assuming, for the sake of simplicity, 
E = TD). At high temperatures, this result does satisfy the universal Dulong-Petit law (cV = 3), but at 
low temperatures the Einstein’s model predicts a much faster (exponential) drop of the specific heart as 
the temperature is reduced. (The difference between the Debye and Einstein models is not too 
spectacular on the linear scale, but in the log-log plot, shown on the right panel of Fig. 11, it is rather 
dramatic.62) The Debye model is in a much better agreement with experimental data for simple, 
monoatomic crystals, thus confirming the conceptual correctness of his wave-based approach.  

 Note, however, that when a genius such as A. Einstein makes an error, there is probably some 
deep and important reason behind it. Indeed, crystals with the basic cell consisting of atoms of two or 
more types (such as NaCl, etc.), feature two or more separate branches of the dispersion law (k) – see, 
e.g., Fig. 12.63  

 

 

 

 

 

 

 

 

 

 While the lower “acoustic” branch is virtually similar to those for monoatomic crystals, and may 
be approximated by the Debye model,  = vk, reasonably well, the upper (“optical”64) branch does 
approach  = 0 at any k. Moreover, for large values of the atom mass ratio r, the optical branches are 
almost flat, with virtually k-independent frequencies 0  that correspond to simple oscillations of each 
light atom between its heavy counterparts. For thermal excitations of such oscillations, and their 

62 This is why there is a general “rule of thumb” in science: if you plot your data on a linear rather than log scale, 
you better have a good excuse ready. (A valid excuse example: the variable you are plotting changes sign within 
the important range.) 
63 This is the exact solution of a particular 1D model of such a crystal – see CM Chapter 5. 
64 This term stems from the fact that at k  0, the mechanical waves corresponding to these branches have phase 
velocities vph  (k)/k  that are much higher than that of the acoustic waves, and may approach the speed of light. 
As a result, these waves can strongly interact with electromagnetic (practically, optical) waves of the same 
frequency, while the acoustic waves cannot. 
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Fig. 2.12. Dispersion relation for longitudinal waves in 
a simple 1D model of a solid, with similar interparticle 
distances d, but alternating particle masses, plotted for 
a particular mass ratio r = 5. 
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contribution to the specific heat, the Einstein model (with E = 0) gives a very good approximation, so 
that the specific heat may be well described by a sum of the Debye and Einstein laws (97) and (101), 
with appropriate weights. 

 

2.7. Grand canonical ensemble and distribution 

 As we have seen, the Gibbs distribution is a very convenient way to calculate statistical and 
thermodynamic properties of systems with a fixed number N of particles. However, for systems in which 
N may vary, another distribution is preferable for some applications. Several examples of such situations 
(as well as the basic thermodynamics of such systems) have already been discussed in Sec. 1.5. Perhaps 
even more importantly, statistical distributions for systems with variable N are also applicable to the 
ensembles of independent particles on a certain single-particle energy level – see  the next section.
 With this motivation, let us consider what is called the grand canonical ensemble (Fig. 13). It is 
similar to the canonical ensemble discussed in the previous section (Fig. 6) in all aspects, besides that 
now the system under study and the heat bath (in this case typically called the environment) may 
exchange not only heat but also particles. In all system members of the ensemble, the environments are 
in both the thermal and chemical equilibrium, and their temperatures T and chemical potentials  are 
equal. 

  

 

 

 

 

 

 

 

 

 Now let us assume that the system of interest is also in the chemical and thermal equilibrium 
with its environment. Then using exactly the same arguments as in Sec. 4 (including the specification of 
a microcanonical sub-ensemble with fixed E and N), we may generalize Eq. (55), taking into account 
that entropy Senv of the environment is now a function of not only its energy Eenv = E - Em,N, 65 but also 
the number of particles NE = N - N,  with E and N fixed: 
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In order to simplify this relation, we may rewrite Eq. (1.52) in the equivalent form 

65 The additional index in the new notation Em,N  for the energy of the system of interest reflects the fact that its 
eigenvalue spectrum is generally dependent on the number N of particles in it. 

Fig. 2.13. Member of a grand canonical 
ensemble. 
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Hence, if entropy S of a system is expressed as a function of E, V, and N, then 
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Applying the first one and the last one of these relations to Eq. (102), and using the equality, of the 
temperatures T and chemical potentials  of the system under study and its environment, at their 
equilibrium, discussed in Sec. 1.5, we get  

         const
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.   (2.105) 

Again, exactly as at the derivation of the Gibbs distribution in Sec. 4, we may argue that since Em,N, T 
and  do not depend on the choice of environment’s size, i.e. on E and N, the probability Wm,N for a 
system to have N particles and be in m-th quantum state in the whole grand canonical ensemble should 
also obey a relation similar to Eq. (105). As a result, we get the so-called  grand canonical distribution: 
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Just as in the case of the Gibbs distribution, constant ZG (most often called the grand statistical sum, but 
sometimes the “grand partition function”) should be determined from the probability normalization 
condition, now with the summation of probabilities Wm,N  over all possible values of both m and N: 
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 Now, using the general Eq. (29) to calculate entropy for distribution (106) (exactly like we did it 
for the canonical ensemble), we get the following expression,  
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which is evidently a generalization of Eq. (62).66 We see that now the grand thermodynamic potential   
(rather than the free energy F) may be expressed directly via the normalization coefficient ZG: 
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Finally, solving the last equality for ZG, and plugging the result back into Eq. (106), we can rewrite the 
grand canonical distribution in the form 

66 The average number of particles N is of course exactly what was called N in thermodynamics (see Ch. 1), but 
I need to keep this explicit notation here to make a clear distinction between this average value of the variable, 
and its particular values participating in Eqs. (102)-(110). 
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similar to Eq. (65) for the Gibbs distribution. Indeed, in the particular case when the number N of 
particles is fixed, N = N, so that  + N =  + N  F, Eq. (110) is reduced right to Eq. (65). 

 

2.8. Systems of independent particles 

Now we will use the general statistical distributions discussed above to a simple but very 
important case when each system we are considering consists of many similar particles whose explicit 
(physical) interaction is negligible. As a result, each particular energy value Em,N of such a system may 
be presented as a sum of energies εk of its particles, where index k numbers single-particle energy levels 
(rather than of the whole system, as index m does). 

 Let us start with the classical limit. In classical mechanics, the quantization effects are  
negligible, i.e. there is a virtually infinite number of states k within each finite energy interval. However, 
it is convenient to keep, for the time being, the discrete-state language, with understanding that the 
average number Nk  of particles in each of these states, frequently called the state occupancy, is very 
small. In this case, we may apply the Gibbs distribution to the canonical ensemble of single particles, 
and hence use it with the substitution Em,N → εk, so that Eq. (58) becomes 
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where constant c should be found from the normalization condition: 
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 This is the famous Boltzmann distribution.67  Despite its superficial similarity to the Gibbs 
distribution (58), let me emphasize the conceptual difference between these two results. The Gibbs 
distribution describes the probability to find the whole system on energy level Em, and it is always valid - 
more exactly, for a canonical ensemble of systems in thermodynamic equilibrium. On the other hand, 
the Boltzmann distribution describes occupancy of an energy level of a single particle, and for systems 
of identical particles is valid only in the classical limit Nk  << 1, even if the particles do not interact 
directly. 

 The last fact may be surprising, because it may seem that as soon as particles of the system are 
independent, nothing prevents us from using the Gibbs distribution to derive Eq. (111), regardless of the 
value of Nk . This is indeed true if the particles are distinguishable, i.e. may be distinguished from each 
other - say by their fixed spatial positions, or by the states of certain internal degrees of freedom (say, 
spin), or any other “pencil mark”. However, it is an experimental fact that elementary particles of each 
particular type (say, electrons) are identical to each other, i.e. cannot be “pencil-marked”. For such 
particles we have to be more careful: even if they do not interact explicitly, there is still some implicit 

67 The distribution was first suggested in 1877 by the founding father of statistical physic, L. Boltzmann. For the 
particular case when  is the kinetic energy of a free classical particle (and hence has a continuous spectrum), it is 
reduced to the Maxwell distribution – see Sec. 3.1 below.  

Boltzmann 
distribution 
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dependence in their behavior, which is especially evident for the so-called fermions (fundamental 
particles with semi-integer spin) they obey the Pauli exclusion principle that forbids two identical 
particles to be in the same quantum state, even if they do not interact explicitly.68  

Note that here the term “the same quantum state” carries a heavy meaning load here. For 
example, if two particles  are confined to stay in different spatial positions (say, reliably locked in 
different boxes), they are distinguishable even if they are internally identical. Thus the Pauli principle, 
as well as other identity effects such as Bose-Einstein condensation, to be discussed in the next chapter, 
are important only when identical particles may move in the same spatial region. In order to describe 
this case, instead of “identical”, it is much better to use a more precise (though ugly) term 
indistinguishable particles.69 

 In order to take these effects into account, let us examine the effects of nonvanishing occupancy 
Nk  ~ 1 on statistical properties of a system of many non-interacting but indistinguishable particles (at 
the first stage of calculation, either fermions or bosons) in equilibrium, and apply the grand canonical 
distribution (109) to a very interesting particular grand canonical ensemble: a subset of particles in the 
same quantum state k (Fig. 14).  

 
 
 
 
 
 
 
 
 
 

 In this ensemble, the role of the environment is played by the particles in all other states k’  k, 
because due to infinitesimal interactions, the particles may change their states. In equilibrium, the 
chemical potential  and temperature T of the system  should not depend on the state number k, but the 
grand thermodynamic potential k of the chosen particle subset may. Replacing N with Nk - the 
particular (not average!) number of particles in kth state, and the particular energy value Em,N  with kNk, 
we may reduce Eq. (109) to 
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68 See, e.g., QM Sec. 8.1. 
69 This invites a natural question: what particles are “elementary enough” for the identity? For example, protons 
and neutrons have an internal structure, in some sense consisting of quarks and gluons; they be considered 
elementary? Next, if protons and neutrons are elementary, are atoms? molecules? What about really large 
molecules (such as proteins)? viruses? The general answer to these questions, given by quantum mechanics (or 
rather experiment :-), is that any particles/systems, no matter how large and complex they are, are identical if they 
have exactly the same internal structure, and also are exactly in the same internal quantum state – for example, in 
the ground state of all their internal degrees of freedom. 

 particle #:   1         2            …            j            …       
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single-particle energy levels: 

Fig. 2.14. Grand canonical 
ensemble of particles in the 
same quantum state (with 
eigenenergy k). 
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where the summation should be carried out over all possible values of Nk. For the final calculation of 
this sum, the elementary particle type becomes essential.  

 In particular, for fermions, obeying the Pauli principle, numbers Nk in Eq. (113)may take only 
two values, either 0 (state k is unoccupied) or 1 (the state is occupied), and the summation gives 
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Now the average occupancy may be calculated from the last of Eqs. (1.62) – in this case, with N 
replaced with Nk: 
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This is the famous Fermi-Dirac distribution, derived in 1926 independently by E. Fermi and P. Dirac. 

 On the other hand, bosons do not obey the Pauli principle, and for them numbers Nk can take any 
non-negative integer values. In this case, Eq. (113) turns into the following equality: 
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This sum is just the usual geometric progression again, which converges if  < 1, giving 
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In this case the average occupancy, again calculated using Eq. (1.62) with N replaced with Nk, obeys 
the Bose-Einstein distribution, 
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which was derived in 1924 by S. Bose (for the particular case  = 0) and generalized in 1925 by A. 
Einstein for an arbitrary chemical potential. In particular, comparing Eq. (118) with Eq. (72), we see that 
harmonic oscillator excitations,70 each with energy , may be considered as bosons, with zero 
chemical potential. We have already obtained this result ( = 0) in a different way – see Eq. (93). Its 
physical interpretation is that the oscillator excitations may be created inside the system, so that there is 
no energy cost  of moving them into the system from its environment.  

 The simple form of Eqs. (115) and (118), and their similarity (besides “only” the difference of  
the signs before unity in their denominators), is one of most beautiful results of physics. This similarity 
should not disguise the facts that the energy dependences of  Nk, given by these two formulas, are 
rather different – see Fig. 15. In the Fermi-Dirac statistics, the average level occupancy is finite (and 

70 As the reader certainly knows, for the electromagnetic field oscillators, such excitations are called photons; for 
mechanical oscillation modes, phonons. It is important, however, not to confuse these mode excitations with the 
oscillators as such, and be very careful in prescribing to them certain spatial locations – see, e.g., QM Sec. 9.1. 
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below 1) at any energy, while in the Bose-Einstein it may be above 1, and even diverges at k  .. 
However, for any of these distributions, as temperature is increased, it eventually becomes much larger 
than the difference (k - ) for all k. In this limit, Nk << 1, both distributions coincide with each other, 
as well as with the Boltzmann distribution (111) with c = exp{/T}. The last distribution, therefore, 
serves as the high-temperature limit for quantum particles of both sorts. 

 A natural question now is how to find the chemical potential  participating in Eqs. (115) and 
(118). In the grand canonical ensemble as such (Fig. 13), with number of particles variable, the value of 
  is imposed by system’s environment. However, both the Fermi-Dirac and Bose-Einstein distributions 
are also applicable to equilibrium systems with a fixed but large number N of particles. In these 
conditions, the role of the environment for some subset of N’ << N particles is played by the remaining 
N – N’ particles. In this case,   may be found by calculation of N from the corresponding distribution, 
and then requiring it to be equal to the genuine number of particles in the system. In the next section, we 
will perform such calculations for several particular systems. 

 

  

 

 

 

 

 

 

 

 For those and other applications, it will be convenient for us to have ready expressions for 
entropy S of a general (i.e. not necessarily equilibrium) state of systems of independent Fermi or Bose 
particles, expressed not as a function of Wm of the whole system – as Eq. (29) does, but as a function of 
the average occupancy numbers Nk. For that, let us consider a composite system, each consisting of M 
>> 1 similar but distinct component systems, numbered by index m = 1, 2, … M, with independent (i.e. 
not explicitly interacting) particles. We will assume that though in each of M component systems, the 
number Nk

(m) of particles in its k-th quantum state may be different (Fig. 16), but their total number Nk
() 

in the composite system is fixed: 

 



 k

M

m

m
k NN

1

)( .    (2.119) 

 

 

 

 

 
Fig. 2.16. Composite system with a certain distribution of  
Nk

() particles in k-th state between M component systems. 
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Fig. 2.15. Fermi-Dirac (blue line) 
and   Bose-Einstein (red line) 
distributions, and the Boltzmann 
distribution with c = exp{/T} 
(black line). 
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 As a result, the total energy of the composite system is fixed as well,  

  const
1

)(  


 kk

M

m
k

m
k NN  ,     (2.120) 

so that an ensemble of many such composite systems (with the same k), in equilibrium, is 
microcanonical. According to Eq. (24a), the average entropy Sk per component system may be 
calculated as 

        
M

M
S k

k
k NM

ln
lim ,  ,     (2.121) 

where Mk is the number of possible different ways such composite system (with fixed Nk
()) may be 

implemented.   

 Let us start the calculation of Mk with Fermi particles - for which the Pauli principle is valid. 
Here the level occupancies Nk

(m) may be only equal 0 or 1, so that the distribution problem is solvable 
only if Nk

()  M, and evidently equivalent to the choice of Nk
() balls (in arbitrary order) from the total 

number of M distinct balls. Comparing this formulation with the binomial coefficient definition,71 we 
immediately have 

                   .
!)!(

!
 


kkk

M
k NNM

M
CM

N
    (2.122) 

From here, using the Stirling formula (again, in its simplest form (27)), we get 

        ,1ln1ln kkkkk NNNNS      (2.123)  

where  

        
 

M

N
N k

k
k NM



 ,lim      (2.124) 

is exactly the average occupancy of the k-th single-particle level in each system that was discussed 
earlier in this section. Since for a Fermi system, Nk is always somewhere between 0 and 1, so that 
entropy (123) is always positive. 

 In the Bose case, where the Pauli limitation is not valid, the number N k
 (m) of particles on the k-th 

level in each of the systems is an arbitrary (positive) integer. Let us consider Nk
() particles and (M - 1) 

partitions (shown by vertical lines in Fig. 16) between M systems as (M – 1 + Nk
()) similar 

mathematical objects ordered along one axis. Then Mk may be calculated as the number of possible 
ways to distribute the (M - 1) indistinguishable partitions among these (M – 1 + Nk

()) distinct objects, 
i.e. as the following binomial coefficient:72 

          
 

  .
!)!1(

)!1(
1

1







 


k

kk
k NM

NM
CM M

NM
    (2.125) 

71 See, e.g., MA Eq. (2.2). 
72 See also MA Eq. (2.4). 
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Applying the Stirling formula (27) again, we get the following result, 

        ,1ln1ln kkkkk NNNNS      (2.126) 

which again differs from the Fermi case (123) “only” by the signs in the second term, and is valid for 
any positive Nk.  

 Expressions (123) and (126) are valid for an arbitrary (possibly non-equilibrium) case; they may 
be also used for an alternative derivation of the Fermi-Dirac (115) and Bose-Einstein (118) distributions 
valid in equilibrium. For that, we may use the method of Lagrange multipliers, requiring (just like it was 
done in Sec. 2) the total entropy of a system of N independent, similar particles, 

        
k

kSS ,      (2.127) 

as a function of state occupancies Nk, to attain its maximum, with the conditions of fixed total number 
of particles N and the total energy E: 

                 const,const   ENNN
k

kk
k

k  .   (2.128) 

The completion of this calculation is left for reader’s exercise. 

 In the classical limit, when the average occupancies Nk of all states are small, both the Fermi 
and Bose expressions for Sk  tend to the same limit 

           .1for  ,ln  kkkk NNNS     (2.129)  

This expression, frequently referred to as the Boltzmann (or “classical”) entropy, might be also obtained, 
for arbitrary Nk, directly from Eq. (29) by considering an ensemble of systems, each consisting of just 
one classical particle, so that Em  k and Wm  Nk. Let me emphasize again that for indistinguishable 
particles, such identification is generally (i.e. at Nk ~ 1) illegitimate even if they do not interact 
explicitly. As we will see in the next chapter, the indistinguishability affects statistical properties of even 
classical particles. 

 

2.9. Exercise problems 

2.1. A famous example of the macroscopic irreversibility was suggested in 1907 by P. Ehrenfest. 
Two dogs share 2N >> 1 fleas. Each flea may jump to another dog, and the rate (i.e. the probability of 
jumping per unit time)  of such an event does not depend on time, and on the location of other fleas. 
Find the time evolution of the average number of fleas on a dog, and of the flea-related part of dogs’ 
entropy (at arbitrary initial conditions), and prove that the entropy can only grow.73 
 
 2.2. Use the microcanonical distribution to calculate thermodynamic properties (including 
entropy, all relevant thermodynamic potentials, and heat capacity), of an ensemble of similar two-level 

73 This is essentially a simpler (and funnier :-) version of the particle scattering model used by L. Boltzmann to 
prove his famed H-theorem (1872). Besides all the historic significance of that theorem, the model used by 
Boltzmann (see Sec. 6.2 below) is almost as cartoonish. 

Boson 
entropy 
 

Boltzmann 
entropy 
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systems, in thermodynamic equilibrium at temperature T that is comparable with the energy gap . For 
each variable, sketch its temperature dependence, and find its asymptotic values (or trends) in the low-
temperature and high-temperature limits.  

 Hint: The two-level system is generally defined as any system with just two relevant states 
whose energies, say E0 and E1, are separated by a finite gap    E1 - E0. Its most popular (but not the 
only!) example is a spin-½ particle, e.g., an electron, in an external magnetic field.  
 
 2.3. Solve the previous problem using the Gibbs distribution. Also, calculate the probabilities of 
the energy level occupation, and give physical interpretations of your results, in both temperature limits. 

 
2.4. Calculate the low-field magnetic susceptibility m of a dilute set of non-interacting, 

spontaneous magnetic dipoles m, in thermal equilibrium at temperature T, within two models: 

(i) the dipole moment m is a classical vector of fixed magnitude m0, but arbitrary orientation, and 
(ii) the dipole moment m belongs to a quantum spin-½ particle, and is described by vector 

operator Sm ˆˆ  , where  is the gyromagnetic ratio, and Ŝ  is the vector operator of particle’s spin.74 

Hint: The low-field magnetic susceptibility of an isotropic medium is defined75 as 

H


 z
m

M
 , 

where M is the (average)  magnetization of a unit volume, and axis z is aligned with the direction of the 
external magnetic field H. 
 
 2.5. Calculate the low-field magnetic susceptibility of a set of non-interacting, distinguishable 
particles with an arbitrary spin s, neglecting their orbital motion. Compare the result with the solution of 
the previous problem. 

 Hint: Quantum mechanics76 tells us that the Cartesian component mz  of the magnetic moment of 
such a particle, in the direction of the applied field, may take (2s + 1) values  

ssssssm mmz ,1,...,1,  where,   , 

where  is the gyromagnetic ratio of the particle, and  is the Planck’s constant. 
 
 2.6.* Derive a general expression for the average interaction potential between two similar 
magnetic dipoles with fixed magnitude m but arbitrary orientation, at thermal equilibrium. Spell out the 
result in the low-temperature and high-temperature limits. 
 
 2.7.* Analyze the possibility of using a system of non-interacting spin-½ particles in magnetic 
field for refrigeration. 

 Hint: See a footnote in Sec. 1.6. 

74 See, e.g., QM Sec. 4.4. Note that both models assume that the particle’s orbital motion (if any) does not 
contribute to its magnetic moment. 
75 See, e.g., EM Sec. 5.5, in particular Eq. (5.111). 
76 See, e.g., QM Sec. 5.7, in particular Eq. (5.197). 
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 2.8. Use the microcanonical distribution to calculate the average entropy, energy, and pressure of 
a single classical particle of mass m, with no internal degrees of freedom, free to move in volume V, at 
temperature T. 

 Hint: Try to make a more accurate calculation than has been done in Sec. 2.2 for the system of N 
harmonic oscillators. For that you will need to know the volume Vd of an d-dimensional hypersphere of 
the unit radius. To avoid being too cruel, I am giving it to you: 

             ,1
2

/2/ 





 

d
V d

d   

where () is the gamma-function.77 
 
 2.9. Solve the previous problem starting from the Gibbs distribution.  
  
 2.10. Calculate the average energy, entropy, free energy, and the equation of state of a classical 
2D particle (without internal degrees of freedom), free to move within area A, at temperature T, starting 
from: 

 (i) the microcanonical distribution, and 
 (ii) the Gibbs distribution. 

Hint: Make the appropriate modification of the notion of pressure. 
 
 2.11. A quantum particle of mass m is confined to free motion along a 1D segment of length a. 
Using any approach you like, find the average force the particle exerts on walls of such a “1D quantum 
well” in thermal equilibrium, and analyze its temperature dependence, focusing on the low-temperature 
and high-temperature limits. 

 Hint: You may consider series   





1

2

n

ne  as a known function of .78  

  
 2.12. Rotational properties of diatomic molecules (such as N2, CO, etc.) may be reasonably well 
described using a “dumbbell” model: two point particles, of masses m1 and m2, with a fixed distance d 
between them. Ignoring the translational motion of the molecule as the whole, use this model to 
calculate its heat capacity, and spell out the result in the limits of low and high temperatures. (Quantify 
the conditions.) 
 
 2.13. Calculate the heat capacity of a diatomic molecule, using the simple model described  in 
the previous problem, but now assuming that the rotation is confined to one plane.79 
 

77 For its definition and main properties, see, e.g., MA Eqs. (6.6)-(6.9). 
78 It may be reduced to the so-called elliptic theta-function 3(z, ) for a particular case z = 0 - see, e.g., Sec. 16.27 
in the Abramowitz-Stegun handbook cited in MA Sec. 16(ii). However, you do not need that (or any other :-) 
handbook to solve this problem. 
79 This is a reasonable model of the constraints imposed on small atomic groups (e.g., ligands) by their 
environment inside some large molecules. 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 2           Page 41 of 44 

 2.14. Low-temperature specific heat of some solids has a considerable contribution from thermal 
excitation of spin waves, whose dispersion law scales as   k2 at   0.80 Find the temperature 
dependence of this contribution to CV at low temperatures and discuss conditions of its experimental 
observation. 
 
 2.15. A rudimentary “zipper” model of DNA replication is a chain of 
N links that may be either open or closed - see Fig. on the right. Opening a 
link increases system’s energy by  > 0, and a link may change its state 
(either open or close) only if all links to the left of it are already open. 
Calculate the average number of open links at thermal equilibrium, and analyze its temperature 
dependence in detail, especially for the case N >> 1. 
 
 2.16. An ensemble of classical 1D particles of mass m, residing in the potential wells 

  0with  ,   
xxU , 

is in thermal equilibrium at temperature T.  Calculate the average values of its potential energy U and 
the full energy E using two approaches: 

 (i) directly from the Gibbs distribution, and 
 (ii) using the virial theorem of classical mechanics.81 
 
 2.17. For a thermally-equilibrium ensemble of slightly anharmonic classical 1D oscillators, with 
mass m and potential energy  

  32

2
xxqU 

 , 

with small coefficient , calculate x in the first approximation in low temperature T. 
 
 2.18.* A small conductor (in this context, usually called the single-electron 
box) is placed between two conducting electrodes, with voltage V applied between 
them. The gap between one of the electrodes and the island is so narrow that 
electrons may tunnel quantum-mechanically through this gap (“weak tunnel 
junction”) – see Fig. on the right. Calculate the average charge of the island as a 
function of V. 

 Hint: The quantum-mechanical tunneling of electrons through weak 
junctions82 between macroscopic conductors, and its subsequent energy relaxation 
inside the conductor, may be considered as a single inelastic (energy-dissipating) event, so that the only 
energy relevant for the thermal equilibrium of the system is its electrostatic potential energy. 
  

80 Note that by the same dispersion law is typical for elastic bending waves in thin rods – see, e.g., CM Sec. 7.8. 
81 See, e.g., CM Problem 1.12. 
82 In this context, weak junction means a tunnel junction with transparency so low that the tunneling electron’s 
wavefunction looses its quantum-mechanical coherence before the electron has time to tunnel back. In a typical 
junction of a macroscopic area this condition is fulfilled if the effective tunnel resistance of the junction is much 
higher than the quantum unit of resistance (see, e.g., QM Sec. 3.2) , RQ  /2e2  6.5 k. 

1 2 ... n N...

box""

C'
C

V



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 2           Page 42 of 44 

 2.19. An LC circuit (see Fig. on the right) is at thermodynamic 
equilibrium with the environment. Find the r.m.s. fluctuation V   V  21/2 of 

the voltage across it, for an arbitrary ratio T/, where  = (LC)-1/2 is the 
resonance frequency of this “tank circuit”. 

 
 2.20. Derive Eq. (92) from simplistic arguments, representing the blackbody radiation as an ideal 
gas of photons, treated as ultra-relativistic particles. What do similar arguments give for an ideal gas of 
classical, non-relativistic particles?  
 
 2.21. Calculate the enthalpy, the entropy, and the Gibbs energy of the blackbody electromagnetic 
radiation with temperature T, and then use these results to find the law of temperature and pressure drop 
at an adiabatic expansion of the radiation. 
 
 2.22. As was mentioned in Sec. 2.6(i) of the lecture notes, the relation between the visible 
temperatures T of Sun’s surface and Earth’s surface To follows from the balance of the thermal 
radiation they emit. Prove that this relation indeed follows, with a good precision, from a simple model 
in which the surfaces radiate as perfect black bodies with a constant, average temperature. 

 Hint: You may pick up the experimental values you need from any (reliable :-) source.  
 
 2.23. If a surface is not perfectly radiation-absorbing (“black”), the electromagnetic power of its 
thermal radiation differs from the Stefan law (2.89a) by a frequency-dependent factor  < 1, called 
emissivity:  

4T
A


P

. 

Prove that such surface reflects (1 – ) part of incident radiation.    
 
 2.24. If two black surfaces, facing each other, have different 
temperatures (see Fig. on the right), then according to the Stefan radiation 
law (2.89), there is a net flow of thermal radiation, from a warmer surface 
to the colder one: 

 4
2

4
1

net TT
A

 
P

. 

For many applications (including low temperature experiments) this flow is detrimental. One way to 
reduce it is to reduce the emissivity e() of both surfaces – say by covering them with shiny metallic 
films. An alternative way toward the same goal is to place, between the surfaces, a thin layer (usually 
called the thermal shield), with a low emissivity of both surfaces, and disconnected from any heat bath – 
see dashed line in Fig. above. Assuming that the emissivity is the same in both cases, find out which 
way is more efficient. 

 Hint: The definition of emissivity may be found, for example, in the previous problem. 
 
 2.25. Two parallel, well conducting plates of area A are separated by a free-space gap of a 
constant thickness t << A1/2. Calculate the energy of the spontaneous electromagnetic field inside the gap 

L V C 

1T 12 TT 
netP
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at thermal equilibrium with temperature T. Specify the validity limits of your result. Does the radiation 
push the plates apart? 

 
 2.26. Use the Debye theory to estimate the specific heat of aluminum at room temperature (say, 
300 K), and express the result in the following popular units: 

 (i) eV/K per atom, 
 (ii) J/K per mole, and 
 (iii) J/K per gram. 
Compare the last number with the experimental value (from a reliable book or online source). 

 
2.27. Use the general Eq. (123) to re-derive the Fermi-Dirac distribution (115) for a system in 

equilibrium. 
 
 2.28. Each of two similar particles, not interacting directly, may take two quantum states, with 
single-particle energies  equal to 0 and . Write down the statistical sum Z of the system, and use it to 
calculate its average total energy E of the system, for the cases when the particles are: 

 (i) distinguishable; 
 (ii) indistinguishable fermions; 
 (iii) indistinguishable bosons. 
Analyze and interpret the temperature dependence of E for each case, assuming that  > 0. 
 
 2.29. Calculate the chemical potential of a system of N >> 1 independent fermions, kept at fixed 
temperature T, provided that each particle has two non-degenerate energy levels, separated by gap .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 2           Page 44 of 44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page is 
intentionally left  

blank 



Essential Graduate Physics       SM: Statistical Mechanics 

    
© K. Likharev

 

Chapter 3. Ideal and Not-So-Ideal Gases 

In this chapter, the general approaches discussed in the previous chapters are applied to calculate  
statistical and thermodynamic properties of gases, i.e. collections of identical particles (say, atoms or 
molecules) that are free to move inside a certain volume,  either not interacting or weakly interacting 
with each other. 

 

3.1. Ideal classical gas 

 Interactions of typical atoms and molecules are well localized, i.e. rapidly decreasing with 
distance r between them, becoming negligible at certain distance r0. In a gas of N particles inside 
volume V, the average distance r between the particles is of the order of (V/N)1/3. As a result, if the gas 
density n  N/V ~ r-3 is much lower than r0

-3, i.e. if nr0
3 << 1, the chance for its particles to approach 

each other and interact is rather small. The model in which such interactions are completely ignored is 
called the ideal gas.  

 Let us start with a classical ideal gas, which may be defined as the gas in whose behavior the 
quantum effects are negligible. As we saw in Sec. 2.8, the condition of that is to have the average 
occupancy of each quantum state low: 

         1kN .      (3.1) 

It may seem that we have already found properties of such a system, in particular the equilibrium 
occupancy of its states – see Eq. (2.111):  

         








T
N k

k


expconst .     (3.2) 

In some sense it is true, but we still need, first, to see what exactly does Eq. (2) means for the gas, i.e. a 
system with an essentially continuous energy spectrum, and, second, to show that, rather surprisingly, 
particles’ indistinguishability affects some properties of even classical gases. 

 The first of these tasks is evidently the easiest for a gas out of external fields, and with no 
internal degrees of freedom.1 In this case k  is just the kinetic energy of the particle obeys the isotropic 
and parabolic dispersion law 

        
m

ppp

m

p zyx
k 22

2222 
 .     (3.3) 

Now we have to use two facts from other fields of physics. First, in quantum mechanics, momentum  p 
is associated with wavevector k of the de Broglie wave, p = k.2 Second, eigenvalues of k for any 
waves (including de Broglie waves) in free space are uniformly distributed in the momentum space, 
with a constant density of states, given by Eq. (2.82) 

1 In more realistic cases when particles do have internal degrees of freedom, but they are in certain (say,  ground) 
quantum states, Eq. (3) is valid as well, with k  referred to the internal ground-state energy. 
2 See, e.g., QM Sec. 1.2. 
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 ,    (3.4) 

where g is the degeneracy of particle’s internal states (say, for electrons, the spin degeneracy g = 2). 

 Even regardless of the exact proportionality coefficient between dNstates and d3p, the very fact of 
this proportionality means that the probability dW to find the particle in a small region d3p = dp1dp2dp3 
of the momentum space is proportional to the right-hand part of Eq. (2), with k given by Eq. (3): 
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 .  (3.5) 

This is the famous Maxwell distribution.3 The normalization constant C may be readily found 
from the last form of Eq. (5), by requiring that the integral of dW over all the momentum space to equal 
1, and using the equality of all 1D integrals over the each Cartesian component pj of the momentum (j = 
1, 2, 3), which may be reduced to the well-known dimensionless Gaussian integral:4 
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As a sanity check, let us use the Maxwell distribution to calculate the average energy 
corresponding to each half-degree of freedom: 
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The last integral5 equals /2, so that, finally, 

222

22
Tmv

m

p jj      (3.8) 

This result is (fortunately :-) in agreement with the equipartition theorem (2.48). It also means that the 
r.m.s. velocity of the particles is 
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3 This formula was suggested by J. C. Maxwell as early as in 1860, i.e. well before the Boltzmann and Gibbs 
distributions. Note also that the term “Maxwell distribution” is often associated with the distribution of particle’s 
momentum (or velocity) magnitude, 
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which immediately follows from Eq. (5) combined with the expression d3p = 4p2dp due to the spherical 
symmetry of the distribution in the momentum/velocity space. 
4 See, e.g., MA Eq. (6.9b). 
5 See, e.g., MA Eq. (6.9c). 
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 For a typical gas (say, N2), with m  28 mp  4.710-26 kg at room temperature (T = kBTK  
kB300 K  4.110-21 J), this velocity is about 500 m/s – comparable with the sound velocity in the same 
gas (and the muzzle velocity of typical handgun bullets). Still, it is measurable using simple table-top 
equipment (say, a set of two concentric, rapidly rotating cylinders with a thin slit collimating an atomic 
beam emitted at the axis) that was available already in the end of the 19th century. Experiments using 
such equipment gave convincing confirmations of Maxwell’s theory. 

 This is all very simple (isn’t it?), but actually the thermodynamic properties of a classical gas, 
especially its entropy, are more intricate. To show that, let us apply the Gibbs distribution to gas 
portions consisting of N particles each, rather than just one of them. If the particles are exactly similar, 
the eigenenergy spectrum {k} of each of them is also exactly the same, and each value Em of the total 
energy is just the sum of particular energies k(l) of the particles, where k(l), with l = 1, 2, … N, is the 
number of the energy level of lth particle. Moreover, since the gas is classical, Nk << 1, the probability 
of having two or more particles in any state may be ignored. As a result, we can use Eq. (2.59) to write 
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where the summation has to be carried over all possible states of each particle. Since the summation 
over each set {k(l)} concerns only one of the operands of the product of exponents under the sum, it is 
tempting to complete the calculation as follows: 
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 (3.11) 

where the final summation is over all states of one particle. This formula is indeed valid for 
distinguishable particles.6 However, if particles are indistinguishable (again, meaning that they are 
identical and free to move within the same spatial region), Eq. (11) has to be modified by what is called 
the correct Boltzmann counting: 
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     (3.12) 

that considers all quantum states, differing only by particle permutations in the gas portion, as one.  

 Now let us take into account that the fundamental relation (4) implies the following rule for the 
replacement of a sum over quantum states with an integral in the classical limit - whose exact conditions 
are still to be specified:7 
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.  (3.13) 

In application to Eq. (12), this rule yields 

6 Since each particle belongs to the same portion of gas, i.e. cannot be distinguished from others by its spatial 
position, this requires some internal “pencil mark”, for example a specific structure or a specific quantum state of 
its internal degrees of freedom. 
7 As a reminder, we have already used this rule (twice) in Sec. 2.6, with particular values of g. 
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The integral in square brackets is the same one as in Eq. (6), i.e. equal to (2mT)1/2, so that finally 
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Now, assuming that N >> 1,8 and applying the Stirling formula, we can calculate gas’ free energy, 
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 The first of these relations is exactly Eq. (1.45) which was derived, in Sec. 1.4, from the equation 
of state PV = NT, using thermodynamic identities. At that stage this equation of state was just 
postulated, but now we can finally derive it by calculating pressure from the second of Eqs. (1.35), and 
Eq. (16a): 
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So, the equation of state of the ideal classical gas, with density n  N/V, is indeed given by Eq. (1.44):  

                  nT
V

NT
P  .     (3.18) 

Hence we may use Eqs. (1.46)-(1.51), derived from this equation of state, to calculate all other 
thermodynamic variables of the gas. As one more sanity check, let us start with energy. Using Eq. (1.47) 
with f(T) given by Eq. (16b), we immediately get 
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  ,     (3.19) 

in full agreement with Eq. (8) and hence with the equipartition theorem. Much less trivial is the result 
for entropy, which may be obtained by combining Eqs. (1.46) and (15): 
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8 For the opposite limit when N = g = 1,  Eq. (15) yields the results obtained, by two alternative methods, in 
Problems 2.5 and 2.6. For N = 1, the “correct Boltzmann counting” factor N! equals 1, so that the particle 
distinguishability effects vanish - naturally.  
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This formula,9 in particular, provides the means to resolve the following gas mixing paradox 
(sometimes called the “Gibbs paradox”). Consider two volumes, V1 and V2, separated by a partition, 
each filled with the same gas, with the same density n, at the same temperature T. Now let us remove the 
partition and let the gases mix; would the total entropy change? According to Eq. (20), it would not, 
because the ration V/N = n, and hence the expression in square brackets is the same in the initial and the 
final state, so that the entropy is additive (extensive). This makes full sense if the gas particles in the 
both parts of the volume are identical, i.e. the partition’s removal does not change our information about 
the system. However, let us assume that all particles are distinguishable; then the entropy should clearly 
increase, because the mixing would certainly decrease our information about the system, i.e. increase its 
disorder. A quantitative description of this effect may be obtained using Eq. (11). Repeating for Zdist all 
the calculations made above for Z, we readily get a different formula for entropy: 
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Notice that in contrast to the S given by Eq. (20), entropy Sdist is not proportional to N (at fixed 
temperature T and density N/V). While for distinguishable particles this fact does not present any 
conceptual problem, for indistinguishable particles it would mean that entropy were not an extensive 
variable, i.e. would contradict the basic assumptions of thermodynamics. This fact emphasizes again the 
necessity of the correct Boltzmann counting in the latter case.  

Comparing Eqs. (20) and (21), we can calculate the change of entropy due to mixing of 
distinguishable particles: 
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Note that for a particular case, V1 = V2 = V/2, Eq. (22) reduces to the simple result Sdist = (N1 + N2) ln2, 
which may be readily understood from the point of view of information theory. Indeed, allowing each 
particle of N = N1 + N2 to spread to twice larger volume, we loose one bit of information per particle, i.e. 
I = (N1 + N2) bits for the whole system. 

Let me leave it for the reader to show that result (22) is also valid if particles in each sub-volume 
are indistinguishable from each other, but different from those in another sub-volume, i.e. for mixing of 
two different gases.10 However, it is certainly not applicable to the system where all particles are 
identical, stressing again that the correct Boltzmann counting (12) does indeed affect entropy, even 
though it is not essential for either the Maxwell distribution (5), or the equation of state (18), or average 
energy (19).  

 In this context, one may wonder whether the change (22) (called the mixing entropy) is 
experimentally observable. The answer is yes. For example, after free mixing of two different gases one 
can use a thin movable membrane that is semipermeable, i.e. penetrable by particles of one type only, to 

9 The result presented by Eq. (20), with function f given by Eq. (16b), was obtained independently by O. Sackur 
and H. Tetrode in 1911, i.e. well before the final formulation of quantum mechanics in the late 1920s. 
10 By the way, if an ideal classical gas consists of particles of several different sorts, its full pressure is a sum of 
independent partial pressures exerted by each component – the so-called Dalton law. While this fact was an 
important experimental discovery in the early 1800s, from the point of view of statistical physics this is just a 
straightforward corollary of Eq. (18), because in an ideal gas, the component particles do not interact. 
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separate them again, thus reducing the entropy back to the initial value, and measure either the necessary 
mechanical work W = TSdist or the corresponding heat discharge into the heat bath. Practically, 
measurements of this type are easier in weak solutions, 11 systems with a small concentration c << 1 of 
particles of one sort (solute) within much more abundant particles of another sort (solvent). The mixing 
entropy also affects thermodynamics of chemical reactions in gases and liquids.12 It is curious that 
besides purely thermal measurements, mixing entropy in some conducting solutions (electrolytes) is also 
measurable by a purely electrical method, called cyclic voltammetry, in which a low-frequency ac 
voltage, applied between solid-state electrodes embedded in the solution, is used to periodically separate 
different ions, and then mix them again.13 

 Now let us briefly discuss two generalizations of our results for ideal classical gases. First, let us 
consider the ideal classical gas in an external field of potential forces. It may be described by replacing 
Eq. (3) with 

               )(
2
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k U
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p
r ,     (3.23) 

where rk is the position of the particular particle, and U(r) is the potential energy per particle. In this 
cases, Eq. (4) is applicable only to small volumes, V → dV = d3r whose linear size is much smaller than 
the spatial scale of variations of macroscopic parameters of the gas- say, pressure. Hence, instead of Eq. 
(5), we may only write the probability dW of finding the particle in a small volume d3rd3p of the 6-
dimensional phase space: 
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Hence, the Maxwell distribution of particle velocities is still valid at each point r, and a more interesting 
issue here is the spatial distribution of the total density, 

              pdwNn 3),()( prr ,     (3.25) 

of all gas particles, regardless of their momentum. For this variable, Eq. (24) yields14 
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r ,     (3.26) 

11 It is interesting that statistical mechanics of weak solutions is very similar to that of ideal gases, with Eq. (18) 
recast into the following formula (derived in 1885 by J. van’t Hoff), PV = cNT, for the partial pressure of the 
solute. One of its corollaries is that the net force (called the osmotic pressure) exerted on a semipermeable 
membrane is proportional to the difference of solute concentrations it is supporting. 
12 Unfortunately, I do not have time for even a brief introduction into this important field, and have to refer the 
interested reader to specialized textbooks – for example, P. A. Rock, Chemical Thermodynamics, University 
Science Books, 1983; or P. Atkins, Physical Chemistry, 5th ed., Freeman, 1994; or G. M. Barrow, Physical 
Chemistry, 6th ed., McGraw-Hill, 1996.
13 See, e.g., either Chapter 6 in A. Bard and L. Falkner, Electrochemical Methods, 2nd ed., Wiley, 2000 (which is a 
good introduction to electrochemistry as the whole); or Sec. II.8.3.1 in F. Scholz (ed.), Electroanalytical Methods, 
2nd ed., Springer, 2010. 
14 In some textbooks, Eq. (26) is also called the Boltzmann distribution, though it certainly should be 
distinguished from the more general Eq. (2.111). 
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where the potential energy reference is at the origin. As we will see in Chapter 6, in a non-uniform gas 
the equation of state (18) is valid locally if particles’ mean free path l is much smaller than the spatial 
scale of changes of  function n(r).15 In this case, the local gas pressure may be still calculated from Eq. 
(18): 
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 An important example of application of Eq. (27) is an approximate description of the Earth 
atmosphere. At all heights h << RE ~ 6106 m above the Earth’s surface (say, the sea level), we may 
describe the Earth gravity effect by potential U = mgh, and Eq. (27) yields the so-called barometric 
formula 
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For the same N2 (the main component of the atmosphere) at TK = 300 K, h0  ≈ 7 km. This gives the right 
order of magnitude of the Earth atmosphere’s thickness, though the exact law of pressure change differs 
somewhat from Eq. (28) because of a certain drop of the absolute temperature T with height, by about 
20% at h ~ h0.16 

 The second generalization I would like to mention is to particles with internal degrees of 
freedom. Ignoring, for simplicity, the potential energy U(r),  we may describe them by replacing Eq. (3) 
for 
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,     (3.29) 

where k’ describes the internal energy of the k-th particle. If the particles are similar, we may repeat all 
above calculations, and see that all the results (including the Maxwell distribution) are still valid, with 
the only exception of Eq. (16) that now becomes  
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,   (3.30) 

As we already know from Eq. (1.51), this change may affect both heat capacities of the gas, CV and CP, 
but not their difference (equal to N).  

 

3.2. Calculating  

 Now let us return to Eq. (3), i.e. neglect the external field effects, as well as thermal activation of 
the internal degrees of freedom, and discuss properties of ideal gases of indistinguishable quantum 

15 The mean free path may be defined by the geometric relation nl = 1, where  is the full cross-section of the 
particle-particle scattering - see, e.g., CM 3.7. 
16 The reason of the drop is that the atmosphere, including molecules such as H2O, CO2, etc., absorbs Sun’s 
radiation at wavelengths ~500 nm much smaller than those of the back-radiation of the Earth surface, with the 
spectrum centered at wavelength ~10 m  - see Eq. (2.87) and its discussion. 
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particles in more detail, paying special attention to the chemical potential  - which, as you may recall, 
was a little bit mysterious aspect of the Fermi and Bose distributions.    

 Let us start from the classical gas, and recall the conclusion of thermodynamics that   is the 
Gibbs potential per unit particle – see Eq. (1.56). Hence we can calculate  = G/N from Eqs. (1.49) and 
(16b). The result, 
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which may be rewritten as  
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is very important, because it gives us some information about  not only for a classical gas, but for 
quantum (Fermi and Bose) gases as well. Indeed, we already know that for indistinguishable particles 
the Boltzmann distribution (2.111) is valid only if  Nk  << 1. Comparing this condition with quantum 
statistics (2.115) and (2.118), we see that the condition of gas’ classicity may be expressed as 

              1exp 
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for all k. Since the lowest value of k  given by Eq. (3) is zero, Eq. (33) for a gas may be satisfied only if 
exp{/T} << 1. This means that the chemical potential of the classical has to be not just negative, but 
also “strongly negative” in the sense  

  .T        (3.34) 

According to Eq. (32), this condition may be presented as  

          0TT  ,      (3.35) 

with T0 defined as 
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Condition (35) is very transparent physically: disregarding factor g2/3 (which is typically not 
much larger than 1), it means that the average thermal energy of a particle (which is of the order of T) 
has to be much larger than the energy of quantization of particle’s motion at length rA - the average 
distance between the particles. An alternative form of this condition is17 
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17 In quantum mechanics, parameter rc so defined is frequently called the correlation length – see, e.g., QM Sec. 
7.2 and in particular Eq. (7.37). 
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For a typical gas (say, N2, with m  14 mp  2.310-26 kg) at the standard room temperature (T = 
kB300K  4.110-21 J), rc  10-11 m, i.e. is significantly smaller than the physical size a ~ 310-10 m of 
the molecule. This estimate shows that at room temperature, as soon as any practical gas is rare enough 
to be ideal (rA >> a), it is classical, i.e. the only way to observe the quantum effects in the translation 
motion of molecules is a very deep refrigeration. According to Eq. (36), for the same nitrogen molecule, 
taking rA ~ 103a ~ 10-7 m (to ensure that direct interaction effects are negligible), T0 should be well 
below 1 K.  

 In order to analyze quantitatively what happens with gases when T is reduced to such low values, 
we need to calculate  for an arbitrary ideal gas of indistinguishable particles. Let us use the lucky fact 
that the Fermi-Dirac and the Bose-Einstein statistics may be represented with one formula:  

                1

1
/ 

  Te
N  ,     (3.38) 

where (and everywhere in the balance of this section) the top sign stands for fermions and the lower one 
is for bosons, to discuss the fermionic and bosonic gases on the same breath.  

If we deal with a member of the grand canonical ensemble (Fig. 2.13), in which  is externally 
fixed, we may apply Eq. (39) to calculate the average number N of particles in volume V. If the volume 
is so large that N >> 1, we may use the general state counting rule (13): 
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In most practical cases, however, the number N of gas particles is fixed by particle confinement (i.e. the 
gas portion under study is a member of the canonical ensemble – see Fig. 2.6), and hence  rather than 
N should be calculated. Here comes the main trick: if N is very large, the relative fluctuation of the 
particle number is negligibly small (~ 1/N << 1), and the relation between the average values of N and 
 should not depend which of these variables is exactly fixed. Hence, Eq. (39), with  having the sense 
of the average chemical potential, should be valid even if N is exactly fixed, so that small fluctuations of 
N are replaced with (equally small) fluctuations of . Physically (as was already mentioned in Sec. 2.8), 
in this case the role of the -fixing environment for any gas sub-portion is played by the rest of the gas, 
and Eq. (39) expresses the condition of self-consistency of such mutual particle exchange.  

In this situation, Eq. (39) may be used for calculating the average  as a function of two 
independent parameters: N (i.e. of the gas density n = N/V) and temperature T. For carrying out this 
calculation, it is convenient to convert the right-hand part of Eq. (39) to an integral over particle’s 
energy (p) = p2/2m, so that p = (2m)1/2,  and dp = (m/2)1/2d: 
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This key result may be presented in two more convenient forms. First, Eq. (40), derived for our current 
(3D, isotropic and parabolic-dispersion) approximation (3), is just particular case of a general relation 
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where  

       



d

dN
g states      (3.42) 

is the temperature-independent density of all quantum states of a particle – regardless of whether they 
are occupied or not. Indeed, according to the general Eq. (4), for our simple model (3), 

            
   

  2/1

32

2/33

3
3

3
states

3
223

4

3

4

2
)( 









gVm

d

pdgV
p

gV

d

d

d

dN
gg 








 , (3.43) 

so that we return to Eq. (39). On the other hand, for some calculations, it is convenient to introduce a 
dimensionless energy variable   /T to express Eq. (40) via a dimensionless integral: 
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 As a sanity check, in the classical limit (34), the exponent in the denominator of the fraction 
under the integral is much larger than 1, and Eq. (44) reduces to 
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By the definition of gamma-function (),18 this dimensionless integral is just (3/2) = /2, and we get 

      
2/3

0
2/3

32

2
2

)(

2
exp 
















T

T

mTgV
N

T



 

,   (3.46) 

which is exactly the same result as given by Eq. (34), which has been obtained in a rather different way 
– from the Boltzmann distribution and thermodynamic identities.  

 Unfortunately, in the general case of arbitrary  the integral in Eq. (44) cannot be worked out 
analytically.19 The best we can do is to use temperature T0, defined by Eq. (37), to rewrite Eq. (44) as    
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We may use this relation to calculate ratio T/T0, and then ratio /T0  (/T)(T/T0), as functions of /T 
numerically, and then plot the results versus each other, thinking of the former ratio as the argument.  

 Figure 1 shows the resulting plot. It shows that at large temperatures, T >> T0, the chemical 
potential is negative and approaches the classical behavior given by Eq. (46) for both fermions and 
bosons – just as we could expect. For fermions, the reduction of temperature leads to  changing its sign 
from negative to positive, and then approaching a constant positive value called the Fermi energy, F  
7.595 T0 at T  0. On the contrary, the chemical potential of a gas of bosons stays negative, and turns 

18 See, e.g., MA Eq. (6.7a). 
19 For reader’s reference only: for the upper sign, the integral in Eq. (40) is a particular form (for s = ½) of a 
special function called the complete Fermi-Dirac integral Fs, while for the lower sign, it is a particular case (for s 
= 3/2) of another special function called the polylogarithm Lis. (In what follows, I will not use these notations.) 
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into zero at certain critical temperature Tc  3.313 T0. Both these limits, which are very important for 
applications, may (and will be :-) explored analytically, but separately for each statistics. 

 

 

 

 

 

 

 

 

 

  

 Before doing that (in the next two sections), let me show that, rather surprisingly, for any (but 
non-relativistic!) quantum gas, the product PV expressed in terms of energy, 
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is the same as follows from Eqs. (18) and (19) for the classical gas, and hence does not depend on 
particle’s statistics. In order to prove this, it is sufficient to use Eqs. (2.114) and (2.117) for the grand 
thermodynamic potential of each quantum state, which may be conveniently represented by a single 
formula, 
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and sum them over all states k, using the general summation formula (13). The result for the total grand 
potential of a 3D gas with the dispersion law (3) is 
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Working out this integral by parts, exactly as we did it with the one in Eq. (2.90), we get 

        .)(
3

2

123

2

0 0

3

2/3

32

2/3

/)( 
 




  
  dNg

e

dgVm
T

   (3.51) 

But the last integral is just the total energy E of the gas: 
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so that for any temperature and any particle type,  = -(2/3)E. But since, from thermodynamics,  = -
PV, we have Eq. (48) proved. This universal relation will be repeatedly used below. 
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Fig. 3.1. Chemical potential of an ideal gas of 
N >> 1 indistinguishable quantum particles, 
as a function of temperature (at fixed gas 
density n  N/V, which fixes parameter T0  
n3/2), for  two different quantum statistics. 
The dashed line shows the classical 
approximation (46) valid at T >> T0. 
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3.3. Degenerate Fermi gas 

 The analysis of low-temperature properties of a Fermi gas is very simple in the limit T = 0. 
Indeed, in this limit, the Fermi-Dirac distribution (2.115) is just a step function: 
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- see by the bold line in Fig. 2a. Since  = p2/2m is isotropic in the momentum space, this means that at T 
= 0,  in that space the particles fully occupy all possible quantum states within a sphere (frequently 
called either the Fermi sphere or the Fermi sea) with some radius pF (Fig. 2b), while all states above the 
sea surface are empty. Such degenerate Fermi gas is a striking manifestation of the Pauli principle: 
though at thermodynamic equilibrium at T = 0 all particles try to lower their energies as much as 
possible, only g of them may occupy each quantum state within the Fermi sphere. As a result, the 
sphere’s volume is proportional to the particle number N, or rather to their density n = N/V. 

 

 

 

 

 

 

 

 Indeed, radius pF may be readily related to the number of particles N using Eq. (40) whose 
integral in this case is just the Fermi sphere volume: 
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Now we can use Eq. (3) to express via N the chemical potential   (which is this limit, T  0, bears the 
special name of the Fermi energy F)20: 
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where T0 is the quantum temperature scale defined by Eq. (36). This formula quantifies the low-
temperature trend of function (T), clearly visible in Fig. 1, and in particular explains the ratio F/T 
mentioned in Sec. 2. Note also a useful and simple relation, 
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which may be obtained immediately from Eqs. (43) and (54). 

20 Note that in the electronic engineering literature,  is usually called the Fermi level, at any temperature. 

Fig. 3.2. Representation of the 
Fermi sea: (a) on the energy 
axis and (b) in the momentum 
space. 
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 The total energy of the gas may be (equally easily) calculated from Eq. (52): 
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showing that the average energy,   E/N, of a particle inside the Fermi sea is equal to 3/5 = 60% of 
that (F) of the most energetic occupied states, on the Fermi surface. Since, according to the formulas of 
Chapter 1, at zero temperature H = G = N, and F = E,  the only thermodynamic variable still to be 
calculated is pressure P. For that, we could use any of thermodynamic relations P = (H – E)/V or P = -
(F/V)T, but it is even easier to use our recent result (48). Together with Eq. (56), it yields 
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From here, it is easy to calculate the bulk modulus (reciprocal compressibility),21 
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which is simpler to measure experimentally. 

 Perhaps the most important example22 of the degenerate Fermi gas are the conduction electrons 
in metals – the electrons that belong to outer shells of the isolated atoms but become common in solid 
metals and can move through the crystal lattice almost freely. Though electrons (which are fermions 
with spin s = ½ and hence the spin degeneracy g = 2s + 1 = 2) are negatively charged, the Coulomb 
interaction of conduction electrons with each other is substantially compensated by the positively 
charged ions of the atomic lattice, so that they follow the simple formulas derived above reasonably 
well. This is especially true for alkali metals (forming Group 1 of the periodic table of elements), whose 
experimentally measured Fermi surfaces are spherical within 1% even within 0.1% for Na. Table 1 lists, 
in particular, the experimental values of the bulk modulus for such metals, together with the values 
given by Eq. (58) using F calculated from Eq. (55) with the experimental density of conduction 
electrons. Evidently, the agreement is pretty good, taking into account that the simple theory described 
above completely ignores such factors as the Coulomb and exchange interactions of the electrons. This 
agreement implies that, surprisingly, the rigidity of solids (or at least metals) is predominantly due to the 
kinetic energy of conduction electrons, complemented with the Pauli principle, rather than any 
electrostatic interactions - though, to be fair, these interactions are the crucial factor defining the 
equilibrium value of n. Numerical calculations using more accurate approximations (e.g., the density 
functional theory23) that agree with experiment with a few percent accuracy, confirm this conclusion. 24 

21 See, e.g., CM Eq. (7.39). 
22 Recently, degenerate gases (with F ~ 5T) have been formed of weakly interacting Fermi atoms as well – see, 
e.g., K. Aikawa et al., Phys. Rev. Lett. 112, 010404 (2014) and references therein. 
23 See, e.g., QM Sec. 8.4. 
24 Note also a huge difference between the very high bulk modulus of metals (K ~ 1011 Pa) and its very low values 
in usual gases (for them, at ambient conditions, K ~105 Pa). About 4 orders of magnitude of this difference in due 
to that in particles, density N/V, but the balance is due to the electron gas’ degeneracy. Indeed, in an ideal classical 
gas, K = P = NT/V, so that factor (2/3)F in Eq. (58), of the order of a few eV in metals, should be compared with 
factor T ~ 25 meV in the atomic gases at room temperature.  
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Table 3.1. Experimental and theoretical parameters of electron’s Fermi sea in some alkali metals25 

Metal F (eV) 
Eq. (55) 

K (GPa) 
Eq. (58) 

K (GPa) 
experiment 

 (mcal/moleK2) 
Eq. (69) 

 (mcal/moleK2) 
experiment 

Na 3.24 923 642 0.26 0.35 

K 2.12 319 281 0.40 0.47 

Rb 1.85 230 192 0.46 0.58 

Cs 1.59 154 143 0.53 0.77 

 

 Now looking at the values of F listed in the table, note that room temperatures (TK ~ 300 K) 
correspond to T ~ 25 meV. As a result, virtually all experiments with metals, at least in their solid or 
liquid form, are performed in the limit T << F. According to Eq. (39), at such temperatures the 
occupancy step described by the Fermi-Dirac distribution has a finite but relatively small width ~ T – 
see the dashed line in Fig. 2a. Calculations in this case are much facilitated by the so-called Sommerfeld 
expansion formula26 for integrals like (40) and (52): 
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where () is an arbitrary function that is sufficiently smooth at   =  and integrable at  = 0. In order to 
prove this formula, let us introduce another function 
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and work out the integral I(T) by parts:  
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As evident from Eq. (39) and/or Fig. 2a, at T << , function (-N()/) approaches zero for all 
energies, besides a narrow peak, of unit area, at   . Hence, if we expand function f() in the Taylor 
series near this point, just a few leading terms of the expansion should give us a good approximation: 
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25 Data from N. Ashcroft and N. Mermin, Solid State Physics, W. B. Sounders, 1976. 
26 Named after A. Sommerfeld, who was the first (in 1927) to apply the then-emerging quantum mechanics to 
degenerate Fermi gases, in particular to electron in metals, and may be credited for most of the results discussed in 
this section. 
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In the last form of this relation, the first integral over   equals N( = 0) – N( =  = 1, the second 
one vanishes (because the function under it is asymmetric about point  = ), and only the last one needs 
to be dealt with explicitly, by working it out by parts and then using a table integral:27 
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 (3.63) 

Being plugged into Eq. (62), this result proves the Sommerfeld formula (59).  

 The last preparatory step we need is to take into account a possible small difference (as we will 
see below, also proportional to T2) between the temperature-dependent chemical potential (T) and the 
Fermi energy defined as F  (0), in the largest (first) term in the right-hand part of Eq. (62), to write 
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 Now, applying this formula to Eq. (41) and the last form of Eq. (52), we get the following results 
(which are valid for any dispersion law (p) and even any dimensionality of the gas): 
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However, the number of particles does not change with temperature, N(T) = N(0), so that Eq. (65) gives 
an equation for finding the temperature-induced change of : 
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Note that the change is quadratic in T and negative, in agreement with the numerical results shown with 
the red line in Fig. 1. Plugging this expression (which is only valid when the magnitude of the change is 
much smaller than F) into Eq. (66), we finally get the finite-temperature correction to energy: 
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 ,     (3.68) 

where within the accuracy of our approximation,  may be replaced with F. (Due to the universal 
relation (48), Eq. (68) also gives the temperature correction to pressure.) Now we may use Eq. (68) to 
calculate the heat capacity of the degenerate Fermi gas: 
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According to Eq. (55b), in the particular case of a 3D gas with the isotropic and parabolic 
dispersion law (3), Eq. (69) reduces to 

27 See, e.g., MA Eqs. (6.8c) and (2.12b), with n = 1. 
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 This important result deserves a discussion. First, note that within the range of validity of the 
Sommerfeld approximation (T << F), the specific heat of the degenerate gas is much smaller than that 
of the classical gas, even without internal degrees of freedom, CV = (3/2)N – see Eq. (19). The reason for 
such a small heat capacity is that particles deep inside the Fermi sea cannot pick up thermal excitations 
with available energies  of the order of T << F, because all states around them are already occupied. 
The only particles (or rather quantum states) that may be excited with such small energies are those at 
the very Fermi surface, more exactly within a surface layer of thickness  ~ T << F, and Eq. (69) 
presents a very vivid expression of this fact. 

 The second important feature of Eqs. (69)-(70) is the linear dependence of the heat capacity on 
temperature, which decreases with a reduction of T much slower than that of crystal vibrations – see Eq. 
(2.99) and it discussion. This means that in metals the specific heat at temperatures T << TD is 
dominated by the conduction electrons. Indeed, experiments confirm not only the linear dependence 
(70) of the specific heat,28 but also the values of the proportionality coefficient     CV/T for cases when 
F can be calculated independently, for example for alkali metals – see the right two columns of Table 1. 
More typically, Eq. (69) is used for the experimental measurement of the density of states on the Fermi 
surface, g(F)  – the factor which participates in many theoretical results, in particular in transport 
properties of degenerate Fermi gases (see Chapter 6 below). 

   

3.4. Bose-Einstein condensation 

 Now let us explore what happens at cooling of an ideal gas of bosons. Figure 3a shows on a 
more appropriate, log-log scale, the same plot as Fig. 1b, i.e. the numerical solution of Eq. (47) with the 
appropriate (negative) sign in the denominator. One can see that that the chemical potential  indeed 
tends to zero at some finite “critical temperature” Tc. This temperature may be found by taking  = 0 in 
Eq. (47), which is then reduced to a table integral:29 
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the result explaining the Tc/T0 ratio mentioned in Sec. 2. 

 Hence we must have a good look at the temperature interval 0 < T < Tc, which may look rather 
mysterious. Indeed, within this range, chemical potential  cannot be either negative or zero, because 
then Eq. (41) would give a value of N fewer than the number of particles we actually have. On the other 
hand,  cannot be positive either, because integral (41) would diverge at    due to the divergence of 
N() – see, e.g., Fig. 2.15. The only possible resolution of the paradox, suggested by A. Einstein, is as 
follows: at T < Tc, the chemical potential of each particle still equals exactly zero, but a certain number 

28 Solids, with their low thermal expansion coefficients, present a virtually fixed-volume confinement for the 
electron gas, so that the specific heat measured at ambient conditions may be legitimately compared with 
calculated cV.  
29 See, e.g., MA Eqs. (6.8b), (2.7b), and (6.6c) with s = 3/2. 
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(N0 of N) of them are in the ground state (with   p2/2m = 0), forming the so-called Bose-Einstein 
condensate, very frequently referred to as BEC.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the condensate particles do not contribute to Eq. (41) (because of the factor 1/2 = 0), their  
number N0 may be calculated by using Eq. (44), with  = 0, to find the number (N – N0) of particles still 
remaining in the gas, i.e. having energy   > 0: 
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This result is even simpler than it may look. Indeed, let us write it for case T = Tc, when N0 = 0:30 
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Since the dimensionless integrals in both equations are similar, we may just divide them, getting an 
extremely simple and elegant result:  
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 Please note that this result is only valid for the particles whose motion, within volume V, is free – 
in other words, for the particles trapped in a rigid-wall box of volume V. In typical experiments with the 
Bose-Einstein condensation of diluted gases of neutral (and hence weakly interacting) atoms, particles 

30 This is, of course, just another form of Eq. (71). 
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Fig. 3.3. The Bose-Einstein condensation: 
(a) chemical potential of the gas and (b) its 
pressure, as functions of temperature. The 
dashed line corresponds to the classical gas. 
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are trapped at the bottom of a “soft” potential well, which may be well approximated by a 3D quadratic 
parabola: U(r) = m2r2/2. It is straightforward to show (and hence left for reader’s exercise) that in this 
case the temperature dependence of N0 is somewhat different: 

     ,at ,1 *
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     (3.74b) 

where Tc
* is a critical temperature that depends on , i.e. the confining potential’s “steepness”, rather 

than on the gas’ volume (which in this case is not fixed). Figure 4 shows one of the first sets of 
experimental data for the Bose-Einstein condensation of dilute gases of neutral atoms. Taking into 
account the finite number of particles in the experiment, the agreement with the simple theory is 
surprisingly good.  

  

 

 

 

 

 

 

 

 

 

 

 Now returning to the rigid-wall box model, let us explore what happens at the critical 
temperature and below it with other gas parameters. Equation (52) with the appropriate (lower) sign 
shows that approaching this point from higher temperatures, gas energy and hence its pressure do not 
vanish (Fig. 3b). Indeed, at T = Tc (where  = 0), that equation yields31 
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so that using the universal relation (48), we get a pressure value, 
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which is somewhat lower than, but comparable to P(0) for the fermions – cf. Eq. (57). Now we can use 
the same Eq. (52), also with   = 0, to calculate the energy of the gas at T < Tc, 

31 For the involved dimensionless integral see, e.g., MA Eqs. (6.8b), (2.7b) and (6.7e) with s = 5/2. 

Fig. 3.4. Total number N of trapped 87Rb 
atoms (inset) and their ground-state fraction 
N0/N, as functions of the ratio T/Tc, as 
measured by J. Ensher et al., Phys. Rev. Lett. 
77, 4984 (1996). In this experiment, Tc

* was 
as low as 0.2810-6 K. The solid line shows 
the simple theoretical dependence N(T), given 
by Eq. (74b), while other lines correspond to 
more complex theories taking into account the 
finite number N of trapped atoms. © 1996 
APS. 
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Comparing this relation with the first form of Eq. (75), which features the same integral, we 
immediately get one more simple temperature dependence: 
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From the universal relation (48), we immediately see that pressure follows the same dependence: 
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This temperature dependence of pressure is shown with the blue line in Fig. 3b. The plot shows that for 
all temperatures (both below and above Tc) the pressure of bosonic gas is below that of the classical gas 
of the same density. Note also that since, according to Eqs. (57) and (76), P(Tc)  P0  V-5/3, while, 
according to Eqs. (37) and (71), Tc  T0  V-2/3, pressure (79) does not depend on volume at all! The 
physics of this result (that is valid at T < Tc only) is that as we decrease the volume at fixed total number 
of particles, more and more of them go to the condensate, decreasing the number (N – N0) of particles in 
the gas phase, but not changing its pressure. Such  behavior is very typical for phase transitions – see, in 
particular, the next chapter. 

  The last thermodynamic variable of major interest is the heat capacity, because it may be readily 
measured in many systems. For temperatures T  Tc, it may be easily calculated from Eq. (78): 
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so that below Tc, the capacity increases, at the critical temperature reaching the value, 
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which is approximately 28% above that (3N/2) of the classical gas - in both cases ignoring the possible 
contributions from the internal degrees of freedom. The analysis for T  Tc is a little bit more 
cumbersome, because differentiating E over temperature - say, using Eq. (52) - one should also take into 
account the temperature dependence of   that follows from Eq. (40) – see also Fig. 1b. However, the 
most important feature of the result may be predicted without the calculation (which is being left for 
reader’s exercise). Since at T >> Tc the heat capacity has to approach the classical value, it must 
decrease at T > Tc, thus forming a sharp maximum (a “cusp”) at the critical point T = Tc – see Fig. 5. 

 Such a cusp is good indication of the Bose-Einstein condensation in virtually any experimental 
system, especially because inter-particle interactions (unaccounted for in our simple discussion) 
typically make this feature even more substantial, turning it into a weak (logarithmic) singularity. 
Historically, such a singularity (called the -point because of the characteristic shape of the CV(T) 
dependence) was the first noticed, though not immediately understood sign of the Bose-Einstein 
condensation, observed in 1931 by W. Keesom and K. Clusius in liquid 4He at T = Tc  2.17 K . Other 
milestones of the Bose-Einstein condensation studies include: 

BEC: 
energy 

below Tc 

BEC: 
pressure 
below Tc 
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 - the experimental discovery of superconductivity in metals, by H. Kamerlingh-Onnes in 1911; 

 - the development of the Bose-Einstein statistics implying the condensation, in 1924-1925; 

 - the discovery of superfluidity in liquid 4He by P. Kapitza  and (independently) by J. Allen and 
D. Misener in 1937, and its explanation as a result of the Bose-Einstein condensation by F. and H. 
Londons and L. Titza, with further elaborations by L. Landau (all in 1938); 

 - the explanation of superconductivity as the result of formation of Cooper pairs of electrons, 
with an integer total spin, with the simultaneous Bose-Einstein condensation of such effective bosons, 
by J. Bardeen, L. Cooper, and J. Schrieffer in 1957; 

 -the discovery of superfluidity of two different phases of 3He, due to the similar Bose-Einstein 
condensation of pairs of its fermion atoms, by D. Lee, D. Osheroff, and R. Richardson in 1972; 

 - the first observation of the Bose-Einstein condensation in dilute gases (87Ru by E. Cornell, C. 
Wieman et al. and 23Na by W. Ketterle et al.) in 1995. 

  

 

 

 

 

 

 

 

 

 

 The importance of the last achievement (and of the continuing intensive work in this direction32) 
stems from the fact that in contrast to other Bose-Einstein condensates, in dilute gases (with the typical 
density n as low as ~ 1014 cm-3) the particles interact very weakly, and hence many experimental results 
are very close to the simple theory described above and its straightforward elaborations - see, e.g., Fig. 
4. On the other hand, the importance of prior implementations of the Bose-Einstein condensates, which 
involve more complex and challenging physics, should not be underestimated - as it sometimes is. 

 The most important feature of any Bose-Einstein condensate is that all N0 condensed particles  
are in the same quantum state, and hence are described by exactly the same wavefunction. This 
wavefunction is substantially less “feeble” than that of a single particle - in the following sense. In the 
second quantization language,33 the well-known Heisenberg’s uncertainty relation may be rewritten for 
the creation/annihilation operators; in particular, for bosons, 

               1ˆ,ˆ † aa .     (3.82) 

32 Its detailed discussion may be found, e.g., in: C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute 
Gases, 2nd ed., Cambridge U. Press, 2008. 
33 See, e.g., QM Sec. 8.3. 

Fig. 3.5. Temperature dependences of the heat 
capacity of an ideal Bose-Einstein gas, 
calculated from Eqs. (52) and (40) for T  Tc, 
and from Eq. (80) for T  Tc. 0 2 4 6 8 10
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Since â  and †â are quantum-mechanical operators of the complex amplitude a = Aexp{i} and its 
complex conjugate a* = Aexp{-i}, where A and  are real amplitude and phase of the wavefunction. 
Equation (82) yields the following approximate uncertainty relation (strict in the limit  << 1) between 
the number of particles N = AA* and phase  

           2/1N .     (3.83) 

 This means that a condensate of N >> 1 bosons may be in a state with both phase and amplitude 
of the wavefunction behaving virtually as c-numbers, with negligible relative uncertainties: N << N,  
 << 1. Moreover, such states are much less susceptible to perturbations by experimental instruments. 
For example, the supercurrent IS carried along a superconducting wires by a coherent Bose-Einstein 
condensate of Cooper pairs may be as high as hundreds of amperes. As a result, the “strange” behaviors 
predicted by the quantum mechanics are not averaged out as in the usual particle ensembles (see, e.g., 
the discussion of the density matrix in Sec. 2.1), but may be directly revealed in macroscopic, 
measurable behaviors of the condensate.  

 For example, density jS of the supercurrent may be described by the same formula as the usual 
probability current density of a single particle,34 multiplied by the Cooper pair density n and the electric 
charge q = -2e of a single pair: 
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m
qnS  ,     (3.84) 

where A is the vector-potential of the (electro)magnetic field. If a superconducting wire is not extremely 
thin, current flow does not penetrate its interior,35 so that jS may be taken for zero. As a result, the 
integral of Eq. (84), taken along a contour inside a closed wire loop yields 
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where m is an integer. But, according to electrodynamics, the integral participating in this equation is 
nothing more than flux  of the magnetic field B piercing the wire loop area A. Thus we immediately 
arrive at the famous magnetic flux quantization effect  
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which was theoretically predicted in 1950 and experimentally observed in 1961. Most fantastically, this 
effect holds true even in very large loops, sustained by the Bose-Einstein condensate of Cooper pairs, 
“coherent over miles of dirty lead wire”, citing J. Bardeen’s famous expression. 

 Other prominent examples of such macroscopic quantum effects in Bose-Einstein condensates 
include not only the superfluidity and superconductivity as such, but also the Josephson effect, 

34 See, e.g., QM Eq. (3.28). 
35 This is the Meissner-Ochsenfeld (or just “Meissner”) effect which may be also readily explained using Eq. (84), 
combined with the Maxwell equations – see, e.g., EM Sec. 6.3. 
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quantized Abrikosov vortices, etc. Some of these effects are briefly discussed in other parts of this 
series.36 

 

3.5. Gases of weakly interacting particles 

 Now let us discuss the weak particle interaction effects on macroscopic properties of their gas. 
(Unfortunately, I will have time to do that only for a brief discussion of these effects in classical gases of 
indistinguishable particles.37)  

In most cases of interest, particle interaction may be described by certain potential energy U, so 
that the total energy is 
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where rk is the position of kth  particle’s center. Let us see how far would the statistical physics allow us 
to proceed for an arbitrary potential U. For N >> 1, at the calculation of the Gibbs statistical sum (2.59), 
we may perform the usual transfer from the summation over all quantum states of the system to 
integration over the 6N-dimensional space, with the correct Boltzmann counting: 
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But according to Eq. (14), the first operand in the last product is the statistical sum of an ideal gas (with 
the same g, N, V, and T), so that we may use Eq. (2.63) to write 
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where Fideal is the free energy of the ideal gas (i.e. the same gas but with U = 0), given by Eq. (16). 

 I believe that Eq. (89) is a very convincing demonstration of the enormous power of the 
statistical physics. Instead of trying to solve an impossibly complex problem of classical dynamics of N 
>> 1 (think of N ~ 1023) interacting particles, and calculating appropriate ensemble averages later on, the 
Gibbs approach reduces finding the free energy (and then, from thermodynamic relations, all other 
thermodynamic variables) to the calculation of just one integral in its right-hand part of Eq. (89). Still, 
this integral is 3N-dimensional and may be worked out analytically only if particle interaction is weak  
in some sense. Indeed, the last form of Eq. (89) makes its especially evident that if U  0 everywhere, 
the term in parentheses under the integral vanishes, and so does the integral itself, and hence the 
addition to Fideal.  

36 See  QM Sec. 2.3, and EM Secs. 6.3 and 6.4. Recently, some of these effects were observed in the Bose-
Einstein condensates of diluted gases as well. 
37 A concise discussion of weak interactions in quantum gases may be found, for example, in Chapter 10 of K. 
Huang, Statistical Mechanics, 2nd ed., Wiley, 2003. 
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 Now let us see what would this integral yield for the simplest, short-range interactions, in which 
potential U is substantial only when the mutual distance rjj’  rj – rj’ between particle centers is smaller 
than certain value 2r0, where r0 may be interpreted as the particle size scale. If the gas in sufficiently 
dilute, so that the particle radius r0 is much smaller than the average distance rA between the particles, 
the integral in Eq. (89) is of the order of (2r0)

3N, i.e. much smaller than rA
3N ~ VN. Then we may expand 

the logarithm in Eq. (89) into the Taylor series with respect to the small second term in the square 
brackets, and keep just the first term of the series: 
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Even more importantly, if the gas density is so low that the chances for 3 or more particles to 
come close to each other and interact (collide) are very small, pair collisions are the most important. In 
this case, we may recast the integral in Eq. (90) as a sum of  N(N - 1)/2  N2/2 similar terms describing 
such pair interactions, each of the type 
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It is convenient to think about rkk’ as the radius-vector of particle k in the reference frame with the origin 
placed at particle k’ – see Fig. 6a.  

 

 

 

 

 

 

 

 

 Then it is clear that in Eq. (91), we may first calculate the integral over rk’ while keeping the 
distance vector rkk’, and hence U(rkk’), constant, getting one more factor V. Moreover, since all particle 
pairs are similar, in the remaining integral over rkk’ we may drop the radius-vector index, so that Eq. (90) 
becomes 
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where B(T), called the second virial coefficient,38 has an especially simple form for spherically-
symmetric interactions: 

38 Term “virial”, from Latin viris (meaning “force”), was introduced to molecular physics by R. Clausius. The 
motivation for adjective “second” for B(T) is evident from the last form of Eq. (94), with the “first virial 
coefficient”, standing before the N/V ratio and sometimes denoted A(T), equal to 1 – see also Eq. (100) below. 

Fig. 3.6. The definition of 
interparticle distance vectors 
at their (a) pair and (b) triple 
interactions. 
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From Eq. (92), and the second of the thermodynamic relations (1.35), we already can already tell 
something important about the equation of state: 
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We see that at a fixed gas density n = N/V, the pair interaction creates additional pressure, proportional 
to (N/V)2 = n2 and a function of temperature, B(T)T. 

 Let us calculate B(T) for a couple of simple models of particle interactions. Solid line in Fig. 7 
shows (schematically) a typical form of the interaction potential between electrically neutral molecules 
with zero spontaneous electric dipole momentum.  

 

 

 

 

 

 

 

 

 At large distances the interaction of particles that do not their own permanent electrical dipole 
moment p, is dominated by the attraction (the so-called London dispersion force) between correlated 
components of the spontaneously induced dipole moments, giving U(r)  r-6 at r  .39 At closer 
distances the potential is always repulsive (U > 0) and growing very fast at r  0, but its quantitative 
form is specific for each particular molecule.40 The crudest description of such repulsion is given by the 
so-called hardball model: 

39 Indeed, the independent fluctuation-induced components p(t) and p’(t) of dipole moments of two particles have 
random mutual orientation, so that the time average of their interaction energy, proportional to r-3, vanishes. 
However, the electric field E of each dipole p, proportional as r-3, induces a correlated component of p’, also 

proportional to r-3, giving a potential energy of their interaction, proportional to p’E  r-6, with a non-vanishing 
time average. A detailed theory of this effect, closely related to the Casimir effect in quantum mechanics (see, 
e.g., QM Sec. 9.1) may be found, e.g., in Secs. 80-82 of E. Lifshitz and L. Pitaevskii, Statistical Mechanics, pt. 2, 
Pergamon, 1980. 
40 Note that the particular form of the first term in the approximation U(r) = a/r12 – b/r6 (called the Lennard-Jones 
potential or the  “12-6 potential”), suggested in 1924, lacks physical justification and was soon replaced, in 
professional physics, by better approximations, including the so-called exp-6 model (better fitting most 
experimental data) and the Morse potential (more convenient for quantum-mechanical calculations – see QM 
Chapter 2). However, the Lennard-Jones potential still travels from one undergraduate textbook to another, as a 
trick for simpler calculation of the equilibrium distance between the particles by differentiation. 

Fig. 3.7. Pair interaction of particles. 
Solid line: a typical interaction potential; 
dashed line: its hardball model (95); 
dash-dotted line: the improved model 
(97) – schematically. The inset illustrates 
the idea of the hardball model. 
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- see the dashed line and inset in Fig. 7. According to Eq. (93), in this model the second virial coefficient 
is temperature-independent: 
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(and is 4 times larger than the hardball volume V0 = (4/3)r0
3), so that the equation of state (94) still 

gives a linear dependence of pressure on temperature.  

A correction to this result may be obtained by the following approximate account of the long-
range attraction (see the dash-dotted line in Fig. 7):41 
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which is sometimes called the hard core model. Then Eq. (93) yields: 
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In this model, the equation of state (94) acquires a temperature-independent term: 
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 Still, the correction to the ideal-gas pressure is proportional to (N/V)2, and has to be relatively 
small for Eq. (99) to be valid, so that the right-hand part of Eq. (99) may be considered as the sum of 
two leading terms in the general expansion of P into the Taylor series in low density n = N/V of the gas:  
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where C(T) is called the third virial coefficient. It is natural to ask how can we calculate C(T) and the 
higher virial coefficients. 

 Generally, this may be done just by a careful analysis of Eq. (90),42 but I would like to use this 
occasion to demonstrate a different, very interesting approach, called the cluster expansion method,43 

41 The strong inequality between U and T in this model is necessary not only to make calculations simpler. A 
deeper reason is that if (-Umin) becomes comparable with, or larger than T,  particles may become trapped in the 
potential well formed by this potential, forming a different phase – a liquid or a solid. In such phases, the 
probability to find more than two particles interacting simultaneously is high, so that approximation (92), on 
which all our further results are based, becomes invalid. 
42 L. Boltzmann has used that way to calculate the 3rd and 4th virial coefficients for the hardball model - as much 
as can be done analytically. 

Pressure’s 
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which allows to streamline such calculations. Let us apply to our system, with energy (87), the grand 
canonical distribution. (Just as in Sec. 2, we may argue that if the average number N of particles in a 
member of a grand canonical ensemble, with fixed  and T,  is much larger than 1, the relative 
fluctuations of that number are small, so that all its thermodynamic properties should be similar to those 
when N is exactly fixed - as it is assumed when applying the Gibbs distribution valid for the canonical 
ensemble.) For our case, the grand canonical distribution, Eq. (2.109), may be recast as 
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(Notice that here, as always in the grand canonical distribution, N means a particular rather than average 
number of particles.)  Now, let us try to forget for a second that in real systems of interest the number of 
particles is extremely large, and start to calculate, one by one, the first terms ZN.   

 In the term with N = 0, both contributions to Em,N  vanish, and so does N/T, so that 10 Z . In 

the next term, with N = 1,  the interaction term vanishes, so that Em,1 is reduced to kinetic energy of one 
particle, giving 
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Making the usual transition from summation to integration, we may write 
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This is the same simple (Gaussian) integral as in Eq. (6), giving 
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 Now let us explore the next term, with N = 2, which describes, in particular, pair interactions U = 
U(r), with r = r’ – r”. Due to the particle indistinguishability, this term needs the “correct Boltzmann 
counting” factor 1/2! – cf. Eqs. (12) and (88): 
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Since U is coordinate-dependent, here the transfer from summation to integration should be done more 
carefully than in the first term – cf. Eqs. (24) and (88): 
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Comparing this expression with the definition of parameter Z in Eq. (103), we get 

43 This method was developed in 1937-38 by J. Mayer and collaborators for a classical gas, and generalized to 
quantum systems in 1938 by B. Kahn and G. Uhlenbeck.  
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Acting absolutely similarly, for the third term of the grand canonical sum we may get 
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where r’ and r” are the vectors characterizing the mutual positions of 3 particles – see Fig. 6b.  

These result may be extended by induction to an arbitrary N. Plugging the expression for ZN  into 
Eq. (101) and recalling that  = - PV, we get the equation of state of the gas in the form 
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 As a sanity check, at U = 0, all integrals IN are obviously equal to 1, the expression under the 
logarithm in just the Taylor expansion of eZ, giving P = TZ/V, and  = -PV = -TZ. In this case, 
according to the last of Eqs. (1.62), the average number of particles of particles in the system is N = -
(/)T,V = Z, because since Z  exp{/T}, Z/ = Z/T. Thus, we have happily recovered the 
equation of state of the ideal gas.44 

 Returning to the general case of nonvanishing interactions, let us assume that the logarithm in 
Eq. (109) may be also presented as a Taylor series in Z: 
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(The lower limit of the sum reflects the fact that according to Eq. (109), at Z = 0, P = (T/V) ln1 = 0.) 
According to Eq, (1.60), this expansion corresponds to the grand potential 
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Again using the last of Eqs. (1.62), we get 
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 This equation, for given N, may be used to find Z and hence for the calculation of the equation 
of state from Eq. (110). The only remaining conceptual action item is to express coefficients Jl via the 
integrals I  participating in expansion (109). This may be done using the well-known Taylor expansion 
of the logarithm function, 45 

44 Actually, the fact that in that case Z = N, could have been noted earlier by comparing Eq. (104) with Eq. (39). 
45 Looking at Eq. (109), one may think that since   = Z + Z2I2/2 +… is of the order of at least Z ~ N >> 1, the 
expansion (113), which converges only if  < 1, is illegitimate. However, the expansion is justified by its result 
(114), in which the n-th term is of the order of Nn(V0/V)n-1/n!, so that the series does converge if the gas density 
is sufficiently low: N/V << 1/V0, i.e. rA >> r0. This is the very beauty of the cluster expansion, whose few first 
terms present a good approximation even for a gas with N >> 1 particles. 
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Using it together with Eq. (109), we get a Taylor series in Z, starting as 
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Comparing this expression with Eq. (110), we see that 
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where "'''' rrr  - see Fig. 6b. The expression of J2, describing the pair interactions of particles, is 
(within a numerical factor) equal to the second virial coefficient B(T) – see Eq. (93). As a reminder, the 
subtraction of 1 from integral I2 in the second of Eqs. (115) makes the contribution of each elementary 
3D volume d3r into integral J2 nonvanishing only if at this r two particles interact (U  0). Very 
similarly, in the last of Eqs. (115), the subtraction of three pair-interaction terms from (I3 -1) makes the 
contribution from elementary 6D volume d3r’d3r” into integral J3 finite only if at that mutual location of 
particles all three of them interact simultaneously. 

 In order to illustrate the cluster expansion method at work, let us eliminate factor Z from the 
system of equations (110) and (112), keeping (for the sake of simplicity) the terms up to O(Z3) only, as 
has been done in Eq. (114): 
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Dividing these two expressions, we get a result, 
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which is accurate with to terms O(Z2). In this approximation, we may use Eq. (117), solved for Z with 
the same accuracy: 
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Plugging this expression into Eq. (118), we get expansion (100) with 
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 The first of these relations, combined with the first two of Eqs. (115), yields, for the 2nd virial 
coefficient, the same Eq. (93) that was obtained from the Gibbs distribution, while the second one 
allows us to calculate the 3rd virial coefficient C(T). (Let me leave the calculation of J3 and C(T), for the 
hardball model, for the reader’s exercise.)  Evidently, a more accurate expansion of Eqs. (110), (112), 
and (114) may be used to calculate an arbitrary virial coefficient, though starting from the 5th 
coefficient, such calculations may be completed only numerically even in the simplest hardball model. 

 

3.6. Exercise problems 

 3.1. Use the Maxwell distribution for an alternative (statistical) calculation of the mechanical 
work performed (per cycle) by the Maxwell-Demon heat engine discussed in Sec. 2.3. 

 Hint: You may assume the simplest geometry of the engine – see Fig. 2.4. 
 
 3.2.* Use the Maxwell distribution to find the damping 
coefficient P  - P/u, where P is pressure excerted by an ideal 
classical gas on a piston moving with very low velocity u, in the simplest 
geometry shown in Fig. on the right, assuming that collisions of gas 
particles with the piston are elastic. 
 
 3.3.* An ideal gas of N >> 1 classical particles of mass m is confined in a container of volume V. 
At some moment, a very small hole, of area A << V2/3, l2 (where l is the mean free path of the particles) 
is open in its wall, allowing the particles to escape into the surrounding vacuum. Find the r.m.s. velocity 
of the escaped particles, assuming that the gas stays in a virtual thermal equilibrium at temperature T.  
 
 3.4.* For the system analyzed in the previous problem, calculate the law of reduction of the 
number of particles in time after opening the hole.  
 
 3.5. Derive the equation of state of the ideal classical gas from the grand canonical distribution. 
 
 3.6.* A round cylinder of radius R and length L, containing an ideal classical gas of N >> 1 
particles of mass m, is rotated about its symmetry axis with angular velocity . Assuming that the gas 
rotates with the cylinder, and is in the thermodynamic equilibrium at temperature T,  

 (i) calculate the gas pressure distribution along its radius, and analyze it temperature dependence, 
 (ii) neglecting the internal degrees of freedom of the particles, calculate the total energy of the 

gas and its heat capacity in the high- and low-temperature limits, and 
 (iii) formulate the conditions of validity of your result in terms of strong inequalities between the 

following length scales: the quantum correlation length rc  /(mT)1/2, the effective particle size r0, the 
average distance rA  (R2L/N)1/3 between the particles, and cylinder’s radius R. 

 Hint: One of considerations in (iii) should be the role of particle’s mean free path. 
 
 3.7. Prove that Eq. (22), derived for the change of entropy at mixing of two ideal classical gases 
of completely distinguishable particles (that had equal densities N/V and temperatures T before mixing) 
is also valid if particles in each of the initial volumes are identical to each other, but different from those 
in the counterpart sub-volume. Assume that masses of all the particles are equal. 

A 

u 
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 3.8. N classical, non-interacting, indistinguishable particles of mass m are confined in a 
parabolic, spherically-symmetric 3D potential well U(r) = r2/2. Use two different approaches to 
calculate all major thermodynamic characteristics of the system, in thermal equilibrium at temperature 
T, including its heat capacity. What of the results should be changed if the particles are distinguishable, 
and how? 

 Hint: Suggest a reasonable replacement of the notions of volume and pressure for this system. 
 
 3.9. Calculate the basic thermodynamic characteristics, including all relevant thermodynamic 
potentials, specific heat, and the surface tension for an ideal, non-relativistic  2D electron gas with given 
areal density n = N/A: 

  (i) at T = 0, and  
  (ii) at low but nonvanishing temperatures (to the first substantial order in T/F << 1), 

neglecting the Coulomb interaction effects. 
 
 3.10. How does the Fermi statistics of an ideal gas affect the barometric formula (28)? 
 
 3.11.* Calculate the free carrier density in a semiconductor with bandgap  >> T, assuming  
isotropic, parabolic dispersion laws of excitations in its conduction and valence bands. 

 Hint: In semiconductor physics, the names of conduction and valence 
bands are used for two adjacent allowed energy bands46 that at T = 0, all states of 
the valence band are fully occupied by electrons, while the conduction band is 
completely empty – see Fig. on the right. Within the simple model mentioned in 
the assignment (which gives a good approximation for semiconductors of the A3B5 
group, e.g., GaAs) the energy of an electron-like excitation, with its energy  in the 
conduction band, follows the isotropic, parabolic law (3.3), but with the origin at 
the band edge C, and an effective mass mC usually smaller than the free electron 
mass me. Similarly, the parabolic dispersion law of a single “no-electron” 
excitation (called the hole) in the valence band is offset to the edge of that band, 
V, and corresponds to a negative effective mass (-mV) - see Fig. on the right: 
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The excitations of both types follow the Fermi-Dirac statistics, and (within this simple model) do not 
interact directly. 
  
 3.12.* Using the same energy band model as in the previous problem, calculate the chemical 
potential and the equilibrium density of electrons and holes in an n-doped semiconductor, with nD 
dopants per unit volume. 

46 A discussion of the energy band theory may be found, e.g., in QM Sec. 2.7 and 3.4. Though the reader is highly 
encouraged to review the discussions of this (very important) topic, such a review is not required for solving this  
particular problem. 
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 Hint: n-doping means placing, into a semiconductor crystal, a relatively 
small density nD of different atoms, called dopants or donors, which may be 
easily single-ionized - in the case of donors, giving an additional electron to 
the semiconductor crystal, with the donor atom becoming a positive ion. As a 
result, the n-doping may be represented as a set of additional electrons with the 
ground state energy on an additional discrete level D slightly below the 
conduction band edge C – see Fig. on the right. 
 
 3.13.* Generalize the solution of the previous problem to the case when 
the n-doping with dopant density nD is complemented with the simultaneous p-
doping by acceptor atoms, whose energy of accepting an additional electron 
(and hence the  negative ionization) is much less than the bandgap.  

 Hint: Similarly to the n-doping, the effect of p-doping may be 
described as an addition of a discrete electron energy level A, slightly above 
the valence band edge V – see Fig. on the right. 
 
 3.14. Calculate the paramagnetic response (the Pauli paramagnetism) of a degenerate ideal gas 
of spin-½ particles to a weak external magnetic field, due to partial spin alignment with the field. 
 
 3.15.* Explore the Thomas-Fermi model47 of a heavy atom, with nuclear charge Q = Ze >> e, in 
which the electrons are treated as a degenerate Fermi gas, interacting with each other only via their 
contribution to the common electrostatic potential (r). In particular, derive the ordinary differential 
equation obeyed by the radial distribution of the potential, and use it to estimate the effective radius of 
the atom.  
 
 3.16.* Use the Thomas-Fermi model, explored in the previous problem, to calculate the total 
binding energy of a heavy atom. Compare the result with that for the simpler model, in which the 
electron-electron interaction is completely ignored. 
 
 3.17. Derive the general expressions for the calculation of energy E and chemical potential  of a 
Fermi gas of N non-interacting, indistinguishable, ultra-relativistic particles confined in volume V.48 
Calculate E, and also gas pressure P explicitly in the degenerate gas limit T  0. In particular, is Eq. 
(3.48) of the lecture notes, PV = (2/3)E, valid in this case? 
 
 3.18. Calculate the pressure of an ideal gas of ultra-relativistic, indistinguishable quantum 
particles, for an arbitrary temperature, as a function of the total energy E of the gas, and its volume V. 
Compare the result with the corresponding relations for the electromagnetic blackbody radiation and an 
ideal gas of non-relativistic particles. 
 
 3.19.* Calculate the speed of sound in an ideal gas of ultra-relativistic fermions of density n at 
negligible temperature. 

47 It was suggested in 1927, independently, by L. Thomas and E. Fermi. 
48 This is, for example, an approximate model for electrons in white dwarf stars, whose Coulomb interaction is 
mostly compensated by the charge of nuclei of fully ionized helium atoms. 
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 3.20. Calculate the effective latent heat  ≡ -N(Q/N0)N,V, of the Bose-Einstein condensate 
evaporation, as a function of temperature T. Here Q is the heat absorbed by the (condensate + gas) 
system as a whole, while N0 is the number of particles in the condensate alone. 
 

3.21.* For an ideal Bose gas, calculate the law of the chemical potential disappearance at T  Tc, 
and use the result to prove that the gas’ specific heat CV is a continuous function of temperature at the 
critical point T = Tc. 
  
 3.22. In Chapter 1 of the lecture notes, several thermodynamic equations involving entropy have 
been discussed, including the first of Eqs. (1.39): 

           ./ PTGS        

If we combine this expression with the fundamental relation (1.56), G = N, it looks like that for the 
Bose-Einstein condensate, whose chemical potential  vanishes at temperatures below the critical value 
Tc, the entropy should vanish as well. On the other hand, dividing both parts of Eq. (1.19) by dT, and 
assuming that at this temperature change the volume is kept constant, we get 

          ./ VV TSTC       

If CV is known as a function of temperature, the last equation may be integrated to calculate S: 
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For the Bose-Einstein condensate, we have calculated the specific heat to be proportional to T 3/2, so that 
the integration gives nonvanishing entropy S  T 3/2. Explain this paradox. 

 
3.23. The standard approach to the Bose-Einstein condensation, outlined in Sec. 4, may seem to 

ignore the energy quantization of particles confined in volume V. Use the particular case of a cubic 
confining volume V = aaa with rigid walls to analyze whether the main conclusions of the standard 
theory, in particular Eq. (71) for the critical temperature, are affected by such quantization. 
  
 3.24.* An ideal 3D Bose gas of N >> 1 non-interacting particles is confined at the bottom of a 
soft, spherically-symmetric potential well, whose potential may be approximated as U(r) = m2r2/2. 
Develop the theory of the Bose-Einstein condensation in this system; in particular, prove Eq. (3.74b) of 
the lecture notes, and calculate the critical temperature Tc

*. Looking at the solution, what is the most 
straightforward way to detect the condensation? 
 
 3.25. Calculate the chemical potential of an ideal 2D gas of spin-0 Bose particles as a function of 
its areal density n (the number of particles per unit area), and find out whether such a gas can condense 
at low temperatures. 
 
 3.26.* Use Eqs. (115) and (120) to calculate the third virial coefficient C(T) for the hardball 
model of particle interactions. 
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Chapter 4. Phase Transitions 

This chapter is a brief discussion of coexistence between different states (“phases”) of collections of the 
same particles, and the laws of transitions between these phases. Due to the complexity of these 
phenomena, which involve interaction of the particles, quantitative results have been obtained only for a 
few very simple models, typically giving only a  very approximate description of real systems. 

 

4.1. First-order phase transitions 

 From everyday experience, say with ice, water, and water vapor, we know that one chemical 
substance (i.e. a set of many similar particles) may exist in several stable states - phases. A typical 
substance may have: 

 (i) a dense solid phase, in which interatomic forces keep all atoms in fixed relative positions, 
with just small thermal fluctuations about them; 

 (ii) a liquid phase, of comparable density, in which the relative distances between atoms or 
molecules are almost constant, but the particles are free to move about each other, and 

 (iii) the gas phase, typically of a much lower density, in which the molecules are virtually free to 
move all around the containing volume.1  

 Experience also tells us that at certain conditions, two phases may be in thermal and chemical 
equilibrium – say, ice floating on water, with temperature at the freezing point. Actually, in Sec. 3.4 we 
already discussed a qualitative theory of one such equilibrium, the Bose-Einstein condensate 
coexistence with the uncondensed “vapor” of similar particles. However, this is a rather rare case when 
the phase coexistence is due to the quantum nature of particles (bosons) that may not interact directly. 
Much more frequently, the formation of different phases, and transitions between them, is an essentially 
classical effect due to particle interactions.  

 Phase transitions are sometimes classified by their order.2 I will start my discussion with the 
first-order phase transitions that feature non-vanishing latent heat  - the amount of heat that is 
necessary to give to one phase in order to turn it into another phase, even if temperature and pressure are 
kept constant.3 Let us discuss the most simple and popular phenomenological model of the first-order 
phase transition, suggested in 1873 by J. van der Waals.  

 In the last chapter, we have derived Eq. (3.99) for the classical gas of weakly interacting 
particles, which takes into account (albeit approximately) both interaction components necessary for a

1 The plasma phase, in which atoms are partly or completely ionized, in frequently mentioned in the same breath 
as the three phase listed above, but one has to remember that in contrast to them, a typical electroneutral plasma 
consists of particles of two different sorts – ions and electrons. 
2 Such classification schemes, started by P. Ehrenfest, have been repeatedly modified, and only the “first-order 
phase transition” is still a generally accepted term.  
3 For example, for water the latent heat of vaporization at ambient pressure is as high as ~2.2106 J/kg, i.e. ~ 0.4 
eV  per molecule, making this liquid indispensable for many practical purposes - including fire fighting. (The 
latent heat of water’s ice melting is an order of magnitude lower.) 
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 realistic discussion of gas condensation – the long-range attraction of the particles and their short-range 
repulsion. Let us rewrite that result as follows: 

        





 

V

Nb

V

NT

V

N
aP 1

2

2

.     (4.1)  

As we saw in Sec. 3.5, the physical meaning of constant b is the effective volume of space taken 
by a particle pair collision. Equation (1) is quantitatively valid only if the second term in the parentheses 
is small, Nb << V, i.e. if the total volume excluded from particles’ free motion because of their collisions 
is much smaller than the whole volume V of the system. In order to describe the condensed phase (which 
I will call “liquid”),4 we need to generalize this relation to the case Nb ~ V. Since the effective volume 
left for particles’ motion is V – Nb, it is very natural to make the following replacement: V  V – Nb, in 
the  ideal gas’ equation of state. If we still keep the term aN2/V2, which describes the long-range 
attraction of particles, we get the van der Waals equation 

             
NbV
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.     (4.2) 

The advantage of this simple model is that in the rare gas limit, Nb << V, it reduces back to Eq. (1). (To 
check this, it is sufficient to Taylor-expand the right-hand part of Eq. (2) in small parameter Nb/V << 1, 
and retain only two leading terms corresponding to two first virial coefficients.) Let us explore 
properties of this model. 

 It is frequently convenient to discuss any equation of state in terms of its isotherms, i.e. P(V) 
curves plotted at constant T. As Eq. (2) shows, in the van der Waals model such a plot depends on 4 
parameters (a, b, N, and T.) However, for its analysis it is convenient to introduce dimensionless 
variables: pressure p  P/Pc, volume  v  V/Vc, and temperature t  T/Tc, normalized to their so-called 
critical values,  

          
b
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 .     (4.3) 

In these notations, Eq. (2) acquires the following form, 

             13
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so that the normalized isotherms p(v) depend on only one parameter, the normalized temperature t – see 
Fig. 1.  The most important property of these plots is that the isotherms have qualitatively different 
shapes in two temperature regions.5 At t > 1, i.e. T > Tc,  pressure increases monotonically at gas 
compression (just like in an ideal gas, to which this system tends at T >> Tc), i.e. (P/V)T < 0 at all 
points of the isotherm. However, below the critical temperature Tc, all isotherms feature segments with 
(P/V)T >0. It is easy to understand that, as least in a constant pressure experiment (see, for example, 

4 Due to the phenomenological character of the van der Waals model, one cannot say whether the condensed 
phase it predicts corresponds to a liquid or a solid. However, in most real substances at ambient conditions, gas 
coexists with liquid, hence the name I will use. 
5 The special choice of numerical coefficients in Eq. (3) is motivated by making the border between two regions 
to take place exactly at t = 1, i.e. at temperature Tc, with the critical point coordinates equal to Pc and Vc.  

Van der 
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Fig. 1.5),6 these segments describe a mechanically unstable equilibrium. Indeed, if due to a random 
fluctuation, the volume deviated upward from the equilibrium value, the pressure would also increase, 
forcing the environment (say, the heavy piston in Fig. 1.5) to allow a further expansion of the system, 
leading to even higher pressure, etc. A similar deviation of volume downward would lead to a similar 
avalanche-like decrease of the volume. Such avalanche instability would develop further and further 
until the system has reached one of the stable branches with a negative slope (P/V)T. In the range 
where the single-phase equilibrium state is unstable, the system as a whole may be stable only if it 
consists of the two phases (one with a smaller, and another with a higher density n = N/V) that are 
described by the two stable branches. 

 

 

 

 

 

 

 

 

 

 

 

 

 In order to understand the basic properties of this two-phase system, let us recall the general 
conditions of equilibrium of two thermodynamic systems, which have been discussed in Chapter 1: 

      21 TT   (thermal equilibrium),    (4.5) 

             21    (“chemical” equilibrium),    (4.6) 

the latter condition meaning that the average energy of a single (“probe”) particle in both systems is the 
same. To those, we should add the evident condition of mechanical equilibrium, 

                 21 PP   (mechanical equilibrium),    (4.7) 

that immediately follows from the balance of normal forces exerted on an inter-phase boundary. 

 If we discuss isotherms, Eq. (5) is fulfilled automatically, while Eq. (7) means that the effective 
isotherm P(V) describing a two-phase system should be a horizontal line (Fig. 2):7 

         )(0 TPP  .      (4.8) 

6 Actually, this assumption is not crucial for our analysis of mechanical stability, because if a fluctuation takes 
place in a small part of the total volume V, its other parts play the role of pressure-fixing environment. 
7 Frequently, especially for water gas diluted in air (vapor), P0(T) is called the saturated vapor pressure. 
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Fig. 4.1. The van der Waals equation 
plotted on the [p, v] plane for several values 
of reduced temperature t  T /Tc. Shading 
shows the single-phase instability range in 
which (P/V)T > 0. (The reader is invited 
to contemplate the physical sense and 
possibility of experimental observation of 
the negative values of pressure, predicted 
by the model.) 
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 Along this line, internal properties of each phase do not change; only the particle distribution is: 
it evolves gradually from all particles being in the liquid phase at point 1 to all particles being in the gas 
phase at point 2.8 In particular, according to Eq. (6), the chemical potentials  of the phases should be 
equal at each point of the horizontal line (8). This fact enables us to find the line’s position: it has to 
connect points 1 and 2 in which the chemical potentials of the phases are equal to each other. 

 Let us recast this condition as 

           
2

1

2

1

0  i.e.,0 dGd ,     (4.9) 

where the integral may be taken along the single-phase isotherm. (For this mathematical calculation, the 
mechanical instability of some states on this curve is not important.)  Along that curve, N = const and T 
= const, so that according to Eq. (1.53c), dG = -SdT + VdP +dN, for a slow (reversible) change, dG = 
VdP. Hence Eq. (9) yields 

           
2

1

0VdP .      (4.10) 

From Fig. 2, it is easy to see that geometrically this equality means that the shaded areas Ad and Au 
should be equal, and hence Eq. (10) may be rewritten in the form of the so-called Maxwell’s rule 

               
2

1

0 0)( dVTPP .     (4.11) 

This relation is more convenient for calculations than Eq. (10) if the equation of state may be 
explicitly solved for P – as it is the case for the van der Waals equation (2). Such calculation (left for 

8 An important question is: why does the phase-equilibrium line P = P0(T) stretch all the way from point 1 to 
point 2 (Fig. 2)? Indeed, branches 1-1’ and 2-2’ of the single-phase isotherm have negative derivative (P/V)T and 
hence are mechanically stable to small perturbations. The answer is that these branches are actually metastable, 
i.e. have larger Gibbs energy per particle (i.e. ) than the counterpart phase and are hence unstable to larger 
perturbations - such as foreign microparticles (say, dust), confining wall protrusions, etc. In very controlled 
conditions, these single-phase “superheated” or “supercooled” states can survive virtually all the way to zero-
derivative points 1’ and 2’, leading to sudden jumps of the system into the counterpart phase. (For fixed-pressure 
conditions, such jumps are shown by dashed lines in Fig. 2.) However, at more realistic conditions, perturbations 
result in the two-phase coexistence extending all the way between (or very close to) points 1 and 2. 
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reader’s exercise) shows that for that model, the temperature dependence of the saturated gas pressure at 
low T is exponential,  
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   (4.12) 

corresponding very well to the physical picture of the rate of particle activation from the potential well 
of depth U0.9 

 The signature parameter of the first-order phase transition, the latent heat of evaporation  

          
2

1

dQ ,      (4.13) 

may be found by a similar integration along the single-phase isotherm. Indeed, using Eq. (1.19), dQ = 
TdS,  we get 

          )( 12
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1

SSTTdS   .     (4.14) 

Instead of calculating entropy from the equation of state (as was done for the ideal gas in Sec. 1.4), it is 
easier to express the right-hand side of Eq. (14) directly via that equation. For that, let us take the full 
derivative of Eq. (6) over temperature, considering each value of G = N  as a function of P and T, and 
taking into account that according to Eq. (7), P1 = P2 = P0(T): 
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According to the first of Eqs. (1.39), the partial derivative (G/T)P is just minus entropy, while 
according to the second of those equations,  (G/P)T is the volume. Thus Eq. (15)  becomes 
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22
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11  .    (4.16) 

Solving this equation for (S2 – S1), and plugging the result into Eq. (14), we get the Clapeyron-Clausius 
formula 

             
dT

dP
VVT 0

12 )(  .     (4.17) 

For the van der Waals model, this formula may be readily used for the analytical calculation of  may in 
two limits: T << Tc and (Tc – T)  << Tc  – the exercise left for the reader. In the latter limit,   (Tc – 
T)1/2, naturally vanishing at the critical temperature. 

 Finally, some important properties of the van der Waals’ model may be revealed more easily by 
looking at the set of its isochores P = P(T) for V = const, rather than at the isotherms. Indeed, as Eq. (2) 
shows, all single-phase isochores are straight lines. However, if we interrupt these lines at the points 
when the single phase becomes metastable, and complement them with the (very nonlinear!) 
dependence P0(T), we get the pattern (called the phase diagram) shown schematically in Fig. 3a. 

9 It is fascinating how well is this Arrhenius exponent hidden in the polynomial van der Waals equation (2)! 
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 At this plot, one more meaning of the critical point {Pc, Tc} becomes very clear. At fixed 
pressure P < Pc, the liquid and gaseous phases are clearly separated by the transition line P0(T), so if we 
achieve the transition just by changing temperature, and hence volume (shown with the red line in Fig. 
3), we will pass through the phase coexistence stage. However, if we perform the same final transition 
by changing both the pressure and temperature, going around above the critical point (the blue line in 
Fig. 3), no definite point of transition may be observed: the substance stays in a single phase, and it is a 
subjective judgment of the observer in which region that phase should be called the liquid, and which 
region the gas. For water, the critical point corresponds to 647 K (374C) and Pc  22.1 MPa (i.e. ~200 
bars), so that a lecture demonstration of its critical behavior would require substantial safety 
precautions. This is why such demonstrations are typically carried out with other fluids such as the 
diethyl ether,10 with much lower Tc (194 C) and Pc (3.6 MPa). Though the ether is colorless and clear in 
both gas and liquid phases, their separation (due to gravity) is visible (due to a difference in an optical 
refraction coefficient) at P < Pc, but not above Pc.11 

 Thus, in the van der Waals model, two phases may coexist, though only at certain conditions (P 
< Pc). Now the natural question is whether the coexistence of more than two phases of the same 
substance is possible. For example, can the water ice, liquid water, and water vapor (steam) be in 
thermodynamic equilibrium? The answer is essentially given by Eq. (6). From thermodynamics, we 
know that for a uniform system (with G = N), pressure and temperature completely define the chemical 
potential. Hence, dealing with two phases, we have to satisfy just one chemical equilibrium condition 
(6) for two common parameters P and T. Evidently, this leaves us with one extra degree of freedom, so 
that the two-phase equilibrium is possible within a certain range of P at fixed T (or vice versa) – see Fig. 

10 (CH3-CH2)-O-(CH2-CH3) , historically the first popular general anesthetic. 
11 It is interesting that very close to the critical point the substance suddenly becomes opaque - in the case of 
ether, whitish. The qualitative explanation of this effect, called the critical opalescence, is simple: at this point the 
difference of Gibbs energies per particle (i.e. chemical potentials) of the two phases becomes so small that the 
unavoidable thermal fluctuations lead to spontaneous appearance and disappearance of relatively large (a-few-
m-scale) single-phase regions in all the volume. Since the optical refraction coefficients of the phases are 
slightly different, large concentration of the region boundaries leads to strong light scattering. 

Fig. 4.3. (a) The van der Waals model’s isochores, the saturated gas pressure diagram and 
the critical point, and (b) the phase diagram of a typical 3-phase system (schematically). 
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3a. Now, if we want three phases to be in equilibrium, we need to satisfy two equations for these 
variables: 

               ),(),(),( 321 TPTPTP   .    (4.18) 

Typically, functions (P, T) are monotonic, so that Eqs. (18) have just one solution, the so-called triple 
point {Pt, Tt}. Of course, the triple point {Pt, Tt} of equilibrium between three phases should not to be 
confused with the critical points {Pc, Tc} of transitions between two phase pairs. Fig. 3b shows, very 
schematically, their relation for a typical three-phase system solid-liquid-gas. For example, water, ice, 
and water vapor are at equilibrium at a triple point corresponding to 0.612 KPa and (by definition, 
exactly) 273.16 K.12 The particular importance of this particular temperature point is that by an 
international agreement it has been accepted for the Celsius scale definition, as 0.01C, so that the 
absolute temperature zero corresponds to exactly -273.15C. More generally, triple points of pure 
substances (such as H2, N2, O2, Ar, Hg, and H2O) are broadly used for thermometer calibration, defining 
the so-called international temperature scales including the currently accepted scale ITS-90. 

 This result may be readily generalized to multi-component systems consisting of particles of 
several (say, L) sorts.13 If such a system is in a single phase, i.e. macroscopically uniform, its chemical 
potential may be defined by the natural generalization of Eq. (1.53c): 

        



L

l

ll dNVdPSdTdG
1

 .    (4.19) 

Typically, a single phase is not a pure substance, but has certain concentrations of other components, so 
that (l) may depend not only on P and T, but also on concentrations c(l)  N(l)/N of particles of each sort. 
If the total number N of particles is fixed, the number of independent concentrations is (L – 1). For the 
chemical equilibrium of R phases, all R values of r

(l) (r = 1, 2, …, R) have to be equal for particles of 
each sort: 1

(l) = 2
(l) = … = R

(l), with each r
(l) depending on (L – 1) concentrations cr

(l), and also on P 
and T. This requirement gives L(R - 1) equations for (L -1)R concentrations cr

(l), plus two common 
arguments P and T, i.e. for [(L -1)R + 2] independent variables. This means that the number of phases 
has to satisfy the limitation 

         2  i.e.,2)1()1(  LRRLRL ,    (4.20) 

where the equality sign may be reached in just one point in the whole parameter space. This is the Gibbs 
phase rule. As a sanity check, for a single-component system, L = 1, the rule yields R  3 – exactly the 
result we have already discussed. 

 

4.2. Continuous phase transitions 

 As Fig. 2 shows, if we fix pressure P in a system with a first-order phase transition, and start 
changing its temperature, crossing the transition point, defined by equation P0(T) = P, requires the 
insertion (or extraction) a non-vanishing latent heat . Relations (14) and (17) show that the latent heat 

12 Please note that Pt  for water  is several orders of magnitude lower than Pc of the water-vapor transition, so that 
Fig. 3b is indeed very much not to scale! 
13 Perhaps the most practically important example is the air/water system. For its detailed discussion, based on Eq. 
(19), the reader may be referred, e.g., to Sec. 3.9 in F. Schwabl, Statistical Mechanics, Springer (2000). Other 
important applications include metallic alloys – solid solutions of metal elements. 
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rule 
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is directly related to the a non-vanishing difference between entropies and volumes of the two phases (at 
the same pressure). As we know from Chapter 1, both S and V may be presented as first derivatives of 
appropriate thermodynamic potentials. This is why such transitions, involving a jump of potentials’ first 
derivatives, are called first-order phase transitions. 

 On the other hand, there are phase transitions that have zero latent heat ( = 0) and no first 
derivative jumps at the transition temperature Tc, so that the temperature point is clearly marked, for 
example, by a jump of a second derivative of a thermodynamic potential - for example, the derivative 
C/T which, according to Eq. (1.24), equals to 2E/T2. In the initial classification by P. Ehrenfest, this 
was an example of a second-order phase transition. However, most features of such phase transitions are 
also pertinent to some systems in which the second derivatives of potentials are continuous as well. Due 
to this reason, I will use a more recent terminology (suggested by M. Fisher), in which all phase 
transitions with  = 0 are called continuous.  

 Most continuous phase transitions result from particle interactions. Here are some examples: 

 (i) At temperatures above ~ 120C, the crystal lattice of barium titanate (BaTiO3) is cubic, with a 
Ba ion in the center of each Ti-cornered cube (or vice versa) – see Fig. 4a. However, as temperature is 
being lowered below that critical value, the sublattice of Ba ions starts moving along one of 6 sides of 
the TiO3 sublattice, leading to a small deformation of both lattices - which become tetragonal. This is a 
typical example of a structural transition, in this particular case combined with a ferroelectric 
transition, because (due to the positive electric charge of Ba ions) below the critical temperature the 
BaTiO3 crystal acquires a spontaneous electric polarization. 

 

 

 

 

 

  

 

 (ii) A different kind of phase transition happens, for example, in CuxZn1-x alloys (brasses). Their 
crystal lattice is always cubic, but above certain critical temperature Tc (which depends on x) any of its 
nodes is occupied by either a copper or a zinc atom, at random. At T < Tc, a trend towards atom 
alternation arises, and at low temperatures, the atoms are fully ordered, as shown in Fig. 4b for the 
stoichiometric case x = 0.5. This is a good example of an order-disorder transition. 

 (iii) At ferromagnetic transitions (happening, e.g., in Fe at 1,388 K) and antiferromagnetic 
transitions (e.g., in MnO at 116 K), lowering of temperature below the critical value14 does not change 
atom positions substantially, but results in a partial ordering of atomic spins, eventually leading to their 
full ordering (Fig. 5). 

14 For ferromagnets, this point is usually referred to at the Curie temperature, and for antiferromagnets, as the 
Néel temperature. 

Ba Ti O
Cu

Zn

Fig. 4.4. Cubic lattices of 
(a) BaTiO3 and (b) CuZn. 
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 (iv) Finally, the Bose-Einstein condensation of atoms in liquid helium and electrons in 
superconducting metals and metal oxides may be also considered as continuous phase transitions. At the 
first glance, this contradicts to the nonvanishing latent heat given by the BEC theory outlined in Sec. 
3.4. However, that theory shows that   0 at T  0 and hence P(T)  0 – see Eq. (3.79). Hence, at 
zero pressure the Bose Einstein condensation of an ideal gas could may be considered a continuous 
phase transition. For a gas, this is just not a very interesting limit, because of the vanishing gas density. 
On the contrary, the Bose-Einstein condensation of strongly interacting particles in liquids or solids is 
not affected by pressure – at least on the ambient pressure scale, and taking P = 0 is quite a legitimate 
assumption.15 

  

 

 

 

 

 

 

  

 

 Besides these standard examples, some other threshold phenomena, such as formation of a 
coherent optical field in a laser, and even the self-excitation of oscillators with negative damping (see, 
e.g., CM Sec. 4.4), may be treated, at certain conditions, as continuous phase transitions.16  

 The general feature of all these transitions is the gradual formation, at T < Tc, of certain ordering, 
which may be characterized by some order parameter   0. The simplest example of such order 
parameter is the magnetization at the ferromagnetic transitions, and this is why the continuous phase 
transitions are usually discussed on certain models of ferromagnetism. (I will follow this tradition, while 
mentioning in passing other important cases that require a substantial modification of theory.) Most of 
such models are defined on an infinite 3D cubic lattice (see, e.g., Fig. 5), with evident generalizations to 
lower dimensions. For example, the Heisenberg model of a ferromagnet is defined by the following 
Hamiltonian: 

           
 

BB
',

' with ˆˆˆˆ   hσhσσ ,JH
j

j
jj

jj ,   (4.21) 

15 As follows from the discussion of Eqs. (1.1)-(1.3), for ferroelectric transitions between phases with different 
electric polarization, the role of pressure is played by the external electric field E, while for the ferromagnetic 
transitions between phases with different magnetization, by the external magnetic field H. As we will see very 
soon, such fields give such a phase transition a nonvanishing latent heat, making it the first order transition. 
16 Unfortunately, I will have no time for these interesting (and practically important) generalizations, and have to 
refer the interested reader to the famous monograph by R. Stratonovich, Topics in the Theory of Random Noise, in 
2 vols., Gordon and Breach, 1963 and 1967, and/or the influential review by H. Haken, Ferstkörperprobleme 10, 
351 (1970).  

Fig. 4.5. Classical images of 
completely ordered phases: 
(a)  a ferromagnet, and (b)  
an antiferromagnet. 

(a)    (b) 
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where jσ̂  is the Pauli matrix operator17 acting on j-th spin, nB is the direction of magnetic field B, and 

constant B is the Bohr magneton 

     J/T10927.0
2

23
B


em

e ,    (4.22) 

with (-e) and me being electron’s charge and mass. The figure brackets {j, j’} in Eq. (21) denote the 
summation over the pairs of adjacent sites, so that the magnitude of constant J  may be interpreted as the 
maximum coupling energy per “bond” between two adjacent particles. At J > 0, the coupling tries to 
keep spins aligned (thus minimizing the coupling energy), i.e. to implement the ferromagnetic 
ordering.18 The second term in Eq. (21) describes the effect of external magnetic field B, which tries to 
turn all spins, with their magnetic moments, along its direction. 

 However, even the Heisenberg model, while being approximate, is still too complex for analysis. 
This is why most theoretical results have been obtained for its classical twin, the Ising model:19 
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j
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jjm shssJE
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' .     (4.23) 

Here Em are eigenvalues of energy in the magnetic field, constant h mimics an external magnetic 
field, and sj  are classical scalar variables that may take only two values, sj = 1. (Despite its classical 
character, variable sj modeling the real spin of an electron, is usually called “spin” for brevity, and I will 
follow this tradition.) Index m numbers all possible combinations of variables sj – there are 2N of them in 
a system of N Ising “spins”. Somewhat shockingly, even for this toy model, no analytical 3D solutions 
have been found, and the solution of its 2D version by L. Onsager in 1944 (see Sec. 5 below) is still 
considered one of the top intellectual achievements of the statistical physics. Still, Eq. (23) is very useful 
for the introduction of basic notions of continuous phase transitions, and methods of their analysis, and I 
will focus my brief discussion on this model.20 

 Evidently, if T = 0 and h = 0, the lowest value of internal energy, 

       JNdE min ,     (4.24) 

where d is the lattice dimensionality, is achieved in the “ferromagnetic” phase in which all spins sj are 
equal to either + 1 or -1 simultaneously, so that the lattice average sj = 1. On the other hand, at J = 0 
and h = 0, the spins are independent, and in the absence of external field their signs are completely 
random, with the 50% probability to have either of values 1, so that sj = 0. Hence in the case of 
arbitrary parameters we may use the average 

17 See, e.g., QM Sec. 4.4. 
18 At J < 0, the first term of Eq. (21) gives a reasonable model of an antiferromagnet, but in this case the external 
magnetic field effects are more subtle, so I will not have time to discuss it. 
19 Named after E. Ising who explored the 1D version of the model in detail in 1925, though a similar model was 
discussed earlier (in 1920) by W. Lenz. 
20 For a more detailed discussion of phase transition theory (including other popular models of the ferromagnetic 
phase transition, e.g., the Potts model), see, e.g., either H. Stanley, Introduction to Phase Transitions and Critical 
Phenomena, Oxford U. Press, 1971; or A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase 
Transitions, Pergamon, 1979; or B. McCoy, Advanced Statistical Mechanics, Oxford U. Press, 2010. For a much 
more concise text, I can recommend J. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon, 1992. 
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           js       (4.25) 

as a good measure of spin ordering, i.e. as the order parameter. Since in a real ferromagnet, each spin 
carries a magnetic moment, the order parameter  corresponds to the substance magnetization, at h > 
0, directed along the applied magnetic field.21 

 Due to the difficulty of calculating the order parameter for arbitrary temperatures, most 
theoretical discussions of continuous phase transitions are focused on its temperature dependence just 
below Tc. Both experiment and theory show that (in the absence of external field) this dependence is 
close to a certain power, 

            0for  ,    ,     (4.26) 

of the small deviation from the critical temperature, which is conveniently normalized as 

        
c

c

T

TT 
 .      (4.27) 

Remarkably, most other key variables follow a similar temperature behavior, with the same critical 
exponent for both signs of . In particular, the heat capacity at fixed magnetic field behaves as22  

         
1

hC .      (4.28) 

Similarly, the (normalized) low-field susceptibility23 

               
 1

0 


 hh
.     (4.29) 

 Two more important critical exponents,   and , describe temperature behavior of the 
correlation function sjsj’ whose dependence on distance rjj’ between two spins may be well fitted by the 
following law, 

               ,exp
1 '

'
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d      (4.30) 

with the correlation radius 

          
1

cr .      (4.31) 

 Finally, three more critical exponents, usually denoted , , and , describe the external field 
dependences of, respectively,  c,  and rc at   = 0. For example,   is defined as 

21 See, e.g., EM Secs. 5.4-5.5. 
22 The form of all temperature functions is selected so that all critical exponents are non-negative. 
23 This variable models the real physical magnetic susceptibility m of magnetic materials – see, e.g., EM Eq. 
(5.111). 
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1

h  .      (4.32)  

(Other field exponents are used less frequently, and for their discussion I have to refer the interested 
reader to the special literature listed above.)  

 The second column of Table 1 shows experimental values of the critical exponents for various 
3D physical systems featuring continuous phase transitions. One can see that their values vary from 
system to system, leaving no hope for a universal theory that would describe them all. However, certain 
combination of the exponents are much more reproducible – see the bottom lines of the table. 

 

Table 4.1. Major critical exponents of continuous phase transitions 

   

  (a) Experimental data are from the monograph by A. Patashinskii and V. Pokrovskii, cited above. 
   (b) Discontinuity at  = 0 – see below. 
   (c) Instead of following Eq. (28), in this case Ch diverges as ln. 
   (d)  With the order parameter   defined as  jnB.  
   (e) I could not find any data on this. 

 

 Historically the first (and perhaps the most fundamental) of these universal relations was derived 
in 1963 by J. Essam and M. Fisher: 

      22   .     (4.33) 

It may be proved, for example, by finding the temperature dependence such magnetic field value, h, 
which changes the order parameter by the amount similar to that already existing at h = 0, due to a finite 
temperature deviation    > 0. First, we may compare Eqs. (26) and (29), to get 

          
  h .      (4.34) 

Exponents and 
combinations 

Experimental 
range (3D)(a) 

Mean-field 
theory 

2D Ising 
 model 

3D Ising 
 model 

3D Heisenberg 
Model(d) 

 0 – 0.14 0(b) (c) 0.12 -0.14 

 0.32 – 0.39  1/2 1/8  0.31 0.3 

 1.3 – 1.4 1 7/4 1.25 1.4 

 4-5 3 15 5 - 

 0.6 – 0.7 1/2 1 0.64 0.7 

 0.05 0 1/4 0.05 0.04 

( + 2 + )/2 1.00  0.005 1 1 1 1 

 - / 0.93  0.08 1 1 1 ? 

(2 - )/ 1.02  0.05 1 1 1 1 

(2 - )/d (e) 4/d 1 1 1 
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By the physical sense of h we may expect that such field has to affect system’s free energy24 F(T, h)  by 
the amount comparable to the effect of a bare temperature change . Ensemble-averaging the last term of 
Eq. (23) and using the definition (25) of the order parameter , we see that the change of F (per particle) 
due to the field equals -h  and, according to Eq. (26), scales as h   (2 + ). 

 In order to estimate the thermal effect on F, let us first derive one more useful general 
thermodynamic formula.25 Dividing Eq. (1.19) by dT, we may present heat capacity of a system as  

      
X

X T

S
TC 










 ,     (4.35) 

where X is the variable maintained constant at the temperature variation. For example, in the standard 
“P-V” thermodynamics, we may use the first of Eqs. (1.35) to recast Eq. (35) for X = V as 

              ,
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while for X = P it may be combined with Eq. (1.39) to get 
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.    (4.37) 

As was just discussed, in the Ising model the role of pressure P is played by the external 
magnetic field h, and of G by F, so that the last form of Eq. (37) means that the thermal part of F may be 
found by double integration of (-Ch/T) over temperature. In the context of our current discussion, this 
means that near Tc, the free energy scales as the double integral of Ch   - over . In the limit  << 1, 
factor T may be treated as a constant; as a result, the change of F due to   > 0 alone scales as (2 - ). 
Requiring this change to be proportional to the same power of   as the field-induced part of energy, we 
get the Essam-Fisher relation (33).  

 Using similar reasoning, it is straightforward to derive a few other universal relations of critical 
exponents, including the Widom relation,  

24 There is some duality of terminology (and notation) in literature on this topic. Indeed, in the Ising model (as in 
the Heisenberg model), the magnetic field effects are usually accounted at the microscopic level, by the inclusion 
of the corresponding term into each particular value of energy Em. Then, as was discussed in Sec. 1.4, system’s 
equilibrium (at fixed external field h, and also T and N) corresponds to the minimum of the Helmholtz free energy 
F. From this point of view, these problems do not feature either pressure or volume, hence we may take PV = 
const, so that both thermodynamic potentials effectively coincide: G  F + PV = F + const. On the other hand, it 
is fair to say that the role of the magnetic field in these problems is very similar to that of pressure (or rather of –
P) in the “usual” thermodynamics. Due to this analogy, and taking into account that the equilibrium of a system at 
fixed P corresponds to the minimum of the Gibbs free energy G, in some publications this name is used for the 
minimized potential. Still, on the microscopic level, there is a difference in the descriptions of field and pressure - 
see the footnote in the end of Sec. 2.4. Due to this reason, I will follow the traditional, first point of view in most 
of my narrative, but will use the replacements F  G and h  -P to use thermodynamic formulas (1.39) and (37) 
when convenient. 
25 Admittedly, it belongs to Chapter 1, but I was reluctant to derive it there to avoid a narrative interruption. 
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          1

 ,      (4.38) 

very similar relations for other high-field exponents  and  (which I do not have time to discuss), and 
the Fisher relation 

            2 .     (4.39) 

A slightly more complex reasoning, involving the so-called scaling hypothesis, yields the 
dimensionality-dependent Josephson relation 

           2d .      (4.40) 

 Table 1 shows that at least three of these relations are in a very reasonable agreement with 
experiment, so that we will use them as a testbed for various theoretical approaches to continuous phase 
transitions. 

 

4.3. Landau’s mean-field theory 

 The most general approach to analysis of the continuous phase transitions, formally not based on 
any particular model (though in fact implying the Ising model (23) or one of it siblings), is the mean-
field theory developed in 1937 by L. Landau, on the basis of prior ideas by P.-E. Weiss - to be discussed 
in the next section. The main approximation of this phenomenological approach is to present the free 
energy change F at the phase transition as an explicit function of the order parameter  (25). Generally 
this function may be complicated and model-specific, but near Tc,   has to tend to zero, so that the 
change of the relevant thermodynamic potential, the free energy, 

            )()( cTFTFF  ,     (4.41) 

may be expanded into the Taylor series in , and only a few, most important first terms of that 
expansion retained. In order to keep the symmetry between two possible signs of the order parameter in 
the absence of external field, at h = 0  this expansion should not include odd powers of : 

            ...)(
2

1
)( 42

0 


  TBTA
V

F
h .    (4.42) 

As we will see imminently, these two terms are sufficient to describe finite (non-vanishing but limited) 
stationary values of the order parameter; this is why Landau’s theory ignores the higher terms of the 
Taylor expansion - which are much smaller at   0.  

 Now let us discuss temperature dependences of coefficients A and B. The equilibrium of the 
system should correspond to minimum of F. Equation (42) shows that, first of all, coefficient B(T) has to 
be positive for any sign of  , to ensure the equilibrium at a finite value of 2. Thus, it is reasonable to 
ignore the temperature dependence of B near the critical temperature altogether and use approximation 

      .0)(  bTB       (4.43)  

On the other hand, as Fig. 6 shows, coefficient A(T) has to change sign at T = Tc , being positive at T > 
Tc and negative at T < Tc, to ensure the transition from  = 0 at T > Tc to a certain non-vanishing value at 
T  < Tc.  Since A should be a smooth function of temperature, we may approximate it by the leading term 
in its Taylor expansion in  : 
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        0with ,)(  aaTA  ,     (4.44) 

so that Eq. (42) becomes 

         42
0 2

1  ba
V

F
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 .     (4.45) 

 

 

 

 

 

 

 

 

 The main strength of Landau’s theory is the possibility of its straightforward extension to the 
effects of the external field and of spatial variations of the order parameter. First, averaging of the field 
term of Eq. (23) over all sites of the system, with the account of Eq. (25), gives an energy addition of -
h per particle, i.e. - nh per unit volume, where n is the particle density. Second, since (according to 
Eq. (23) with  > 0, see Table 1) the correlation radius diverges at    0, spatial variations of the order 
parameter should be slow,   0. Hence, the effects of the gradient on F may be approximated by 
the first nonvanishing term of its expansion into the Taylor series in ()2. As a result, Eq. (45) may be 
generalized as 

              2423

2

1
Δwith  ,ΔΔ  cnhbafrfdF   ,   (4.46) 

where c is a factor independent of . In order to avoid the unphysical effect of spontaneous formation of 
spatial variations of the order parameter, that factor has to be positive at all temperatures, and hence may 
be taken for constant in a small vicinity of Tc – the only region where Eq. (46) may be expected to 
provide quantitatively correct results. 

 Relation (46) is the full version of the free energy in Landau’s theory.26 Now let us find out what 
critical exponents are predicted by this phenomenological approach. First of all, we may find 
equilibrium values of the order parameter from the condition of F having a minimum, F/ = 0. At h = 
0, it is easier to use the equivalent equation F/(2) = 0, where F is given by Eq. (45) – see Fig. 6b. 
This immediately yields  

        
 








.0for               ,0

,0for ,/ 2/1


 ba

     (4.47) 

26 Historically, the last term belongs to the later (1950) extension of the theory by V. Ginzburg and L. Landau – 
see below. 

Fig. 4.6. Free energy (42) as a 
function of (a)  and (b) 2 in 
Landau’s mean-field theory, 
for two different signs of 
coefficient A (). 
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Comparing this result with Eq. (26), we see that in the Landau theory,  = ½. Next, plugging result (47) 
back into Eq. (45), for the equilibrium (minimal) value of the free energy, we get 

     








.0for               ,0

,0for ,2/22


 ba

f     (4.48) 

From here and Eq. (36), the specific heat, 

       








,0for               ,0

,0for    ,/2


ch bTa

V
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    (4.49) 

has, at the critical point, a discontinuity rather than a singularity, i.e. the critical exponent   = 0.  

 In the presence of a uniform field, the equilibrium order parameter should be found from the 
condition f/ = 0 applied to Eq. (46) with  = 0, giving 

       022 3 



nhba
f 


.    (4.50) 

In the limit of small order parameter,   0,  term with 3 is negligible, and Eq. (50) gives 

        



a

nh

2
 ,      (4.51) 

so that according to Eq. (29),  = 1. On the other hand, at  = 0 (or at relatively high fields at other 
temperatures), the cubic term in Eq. (50) is much larger than the linear one, and this equation yields  

        
3/1

2








b

nh ,      (4.52) 

so that comparison with Eq. (32) yields   = 3.  

 Finally, according to Eq. (30), the last term in Eq. (46) scales as c2/rc
2. (If rc  , the effects of 

the pre-exponential factor in that equation are negligible.) As a result, the gradient term contribution is 
comparable27 with the two leading terms in f (which, according to Eq. (47), are of the same order), if  

      

2/1













a

c
rc ,      (4.53) 

so that according to definition (31) of the critical exponent , it is equal to ½.  

 The third column in Table 1 summarizes the critical exponents and their combinations in 
Landau’s theory. It shows that these values are somewhat out of the experimental ranges, and while 
some of their universal relations are correct, some are not; for example, the Josephson relation would be 
only correct at d = 4 (not the most realistic spatial dimensionality :-)  The main reason for this 

27 According to Eq. (30), the correlation radius may be interpreted as the length distance at which the order 
parameter  relaxes to its equilibrium value, if it is deflected from it at some point. Since the law of such spatial 
change may be obtained by a variational differentiation of F, for the actual relaxation law, all major terms of (46) 
have to be comparable. 
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disappointing result is that describing the spin interaction with the field, the Landau mean-field theory 
neglects spin randomness, i.e. fluctuations. Though a quantitative theory of thermodynamic fluctuations 
will not be discussed until the next chapter, we can readily perform their crude estimate. Looking at Eq. 
(46), we see that its first term is a quadratic function of the effective “half-degree of freedom”, . Hence 
in accordance with the equipartition theorem (2.28) we may expect that the average square of its thermal 
fluctuations, within a d-dimensional volume with linear size ~rc, should be of the order of T/2 (close to 
the critical temperature, Tc/2 is a good approximation):  

                 
2

~~ 2 cd
c

T
ra  .     (4.54) 

In order to be negligible, the variance has to be negligible in comparison with the average 2 ~ a/b. 
Plugging in the  - dependences of the operands of this relation, and values of the critical exponents in 
the Landau theory, for  > 0 we get the so-called Levanyuk-Ginzburg criterion of its validity: 
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.     (4.55) 

We see that for any realistic dimensionality, d < 4, at   0 the order parameter fluctuations grow faster 
than the its average value, and hence the theory becomes invalid.  

 Thus the Landau mean-field theory is not a perfect approach to finding critical indices at 
continuous phase transitions in Ising-type systems with their next-neighbor interactions between the 
particles. Despite of that fact, this theory is very much valued because of the following reason. Any 
long-range interactions between particles increase the correlation radius rc, and hence suppress the order 
parameter fluctuations. For an example, at laser self-excitation, the emerging coherent optical field 
couples all photon-emitting particles in the electromagnetic “cavity” (resonator). As another example, in 
superconductors the role of the correlation radius is played by the Cooper-pair size 0, which is typically 
of the order of 10-6 m, i.e. much larger than the average distance between the pairs (~10-8 m). As a 
result, the mean-field theory remains valid at all temperatures besides an extremely small temperature 
interval near Tc - for bulk superconductors,  of the order of 10-6 K.  

 Another strength of Landau’s classical mean-field theory is that it may be readily generalized for 
description of Bose-Einstein condensates, i.e. quantum fluids. Of those generalizations, the most famous 
is the Ginzburg-Landau theory of superconductivity developed in 1950, i.e. even before the 
“microscopic” explanation of this phenomenon by Bardeen, Cooper and Schrieffer in the 1956-57. In 
the Ginzburg-Landau theory, the real order parameter  is replaced with the modulus of a complex 
function , physically the wavefunction of the coherent Bose-Einstein condensate of Cooper pairs. 
Since each pair carry electric charge q = -2e,28 and has zero spin, it interacts with magnetic field in a 
way different from that described by the Heisenberg or Ising models. Namely, as was already discussed 
in Sec. 3.4, the del operator  in Eq. (46) has to be complemented by term –i(q/)A, where A is the 
vector-potential of the total magnetic field B = A, including not only the external magnetic field H, 

28 In the phenomenological Ginzburg-Landau theory, charge q remains unspecified, though the wording in their 
original paper clearly shows that the authors correctly anticipated that this charge might turn out to be different 
from the single electron charge. 
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but also the field induced by the supercurrent itself. With the account for the well-known formula for the 
magnetic field energy in the external field,29 Eq. (46) is now replaced with 

   BH 
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where m is a phenomenological coefficient rather than the actual particle mass. The variational 
minimization of the resulting F over variables   and B (which is suggested for reader’s exercise30) 
yields two differential equations: 
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 The first of these Ginzburg-Landau equations should be no big surprise for the reader, because 
according to the Maxwell equations, in magnetostatics the left-hand part of Eq. (57) has to be equal to 
the electric current density, while the right-hand part is the usual quantum-mechanical probability 
current density multiplied by q, i.e. the electric current (or rather supercurrent) density js of the Cooper 
pair condensate. (Indeed, after plugging   = n1/2exp{i} into that expression, we come back to Eq. 
(3.84) which, as we already know, explains such macroscopic quantum phenomena as magnetic flux 
quantization and Meissner-Ochsenfeld effect.)  

 However, Eq. (58) is new - for this course. Since last term in its right-hand part is the standard 
wave-mechanics expression for the kinetic energy of a particle in the presence of magnetic field,31 if this 
term dominates that part of the equation, Eq. (58) is reduced to the stationary Schrödinger equation, 

 HE ˆ , for the ground state of confinement-free Cooper pairs, with energy E = a. However, in 

contrast to the usual (single-particle) Schrödinger equation, in which  is determined by the 
normalization condition, the Cooper pair condensate density n = 2 is determined by the 
thermodynamic balance of the condensate with the ensemble of “normal” (unpaired) electrons that play 
the role of the uncondensed part of Bose gas, discussed in Sec. 3.4. In Eq. (58), such balance is enforced 
by the first term b2 of the right-hand part. 32 As we have already seen, in the absence of magnetic 
field and spatial gradients, such term yields   (Tc – T)1/2 – see Eq. (47).  

29 See, e.g., EM Eq. (5.129). 
30 As a useful elementary sanity check, the minimization of f in the absence of a superconductor, i.e. without the 
first 3 terms in the right-hand part of Eq. (56), immediately gives the correct result B = 0H.  
31 See, e.g., QM Sec. 3.1. 
32 From the mathematics standpoint, such term, nonlinear in , makes Eq. (58) a member of the family of 
“nonlinear Schrödinger equations”. Another important member of this family is the Gross-Pitaevskii equation,  

 )(
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which gives a very reasonable (albeit phenomenological and hence approximate) description of Bose-Einstein 
condensates of neutral atoms at T  Tc. The differences between the Ginzburg-Landau and Gross-Pitaevskii 
equations reflect, first, the zero charge q of the neutral atoms and, second, the fact that the atoms forming the 
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 It is easy to see that as either the external magnetic field or the current density in a 
superconductor are increased, so is the last term in Eq. (58). This increase has to be matched by a 
corresponding decrease of 2, i.e. of the condensate density n, until it is completely suppressed. This 
explains the well documented effect of superconductivity suppression by magnetic field and 
supercurrent. Moreover, together with the flux quantization discussed in Sec. 3.4, it explains the 
existence of the so-called Abrikosov vortices – thin tubes of magnetic field, each carrying one quantum 
0 of magnetic flux – see Eq. (3.86). At the core part of the vortex, 2 is suppressed (down to zero at 
its central line) by the persistent supercurrent, which circulates around the core and screens the rest of 
superconductor from the magnetic field carried by the vortex. The penetration of such vortices into the 
so-called type-II superconductors33 enables them to sustain vanishing electric resistance up to very high 
magnetic fields of the order of 20 T, and to be used in very compact magnets – including those used for 
beam bending in particle accelerators. 

 Moreover, generalizing Eq. (58) to the time-dependent case, just as it is done with the usual 
Schrödinger equation (E  i/t), one can describe other fascinating quantum macroscopic phenomena 
such as the Josephson effects, including the generation of oscillations with frequency J = (q/)V  by 
tunnel junctions between two superconductors, biased by dc voltage V. Unfortunately, time/space 
restrictions do not allow me to discuss these effects in any detail here, and I have to refer the reader to 
special literature.34 Let me only note that at T  Tc, and not extremely pure superconductors (in which 
the so-called non-local transport phenomena may be important), the Ginzburg-Landau equations are 
exact, and may be derived (and their parameters Tc, a, b, q, and m determined) from the “microscopic” 
theory of superconductivity based on the initial work by Bardeen, Cooper and Schrieffer.35 Most 
importantly, such derivation proves that q = -2e – the electric charge of a singe Cooper pair. 

 

4.4. Ising model: The Weiss’ molecular-field theory 

The Landau mean-field theory is phenomenological in the sense that even within the range of its 
validity, it tells us nothing about the value of the critical temperature Tc and other parameters (in Eq. 
(46), a, b, and c), so that they have to be found from a particular “microscopic” model of the system 
under analysis. In this course, we would have time to discuss only the Ising model (23) for various 
dimensionalities d.  

The most simplistic way to map the model on a mean-field theory is to assume that all spins are 
exactly equal, sj = , with an additional condition 2  1, forgetting for a minute that in the genuine 
Ising model, sj may equal only +1 or -1. Plugging this relation into Eq. (23), we get36 

condensates may be readily placed in external potentials U(r)  const (e.g., those trapping the atoms), while in 
superconductors such potential profiles are much harder to create due to the screening of electric field by metals – 
see, e.g., EM Sec. 2.1. 
33 Such penetration had been discovered experimentally by L. Shubnikov in the mid-1930s, but its quantitative 
explanation had to wait until A. Abrikosov’s work (based on the Ginzburg-Landau equations) published in 1957. 
34 See, e.g., M. Tinkham, Introduction to Superconductivity, 2nd ed., McGraw-Hill, 1996. A short discussion of 
the Josephson effects may be found in QM Sec. 2.3 and EM Sec. 6.4. 
35 See, e.g., Sec. 45 in E. Lifshitz and L. Pitaevskii, Statistical Physics, Part 2, Pergamon, 1980. 
36 Since in this naïve approach we neglect the thermal fluctuations of spin, i.e. their disorder, this assumption 
implies S = 0, so that F  E – TS = E, and we may use either notation for system’s energy. 
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              NhNJdF  2 .     (4.59) 

 This energy is plotted in Fig. 7a as a function of , for several values of h. The plots show that at 
h = 0, the system may be in either of two stable states, with  = 1, corresponding to two different 
directions of spins (magnetization), with equal energy.37 (Formally, the state with  = 0 is also 
stationary, because at this point F/ = 0, but it is unstable, because for the ferromagnetic interaction, J 
> 0, the second derivative 2F/2 is negative.) 

  

 

 

 

 

 

 

 

 

 

 As the external field is increased, it tilts the potential profile, and finally at a critical field,  

         Jdhc 2 ,      (4.60) 

the state with  = -1 becomes unstable, leading to system’s jump into the only remaining state with 
opposite magnetization,  = +1. Application of the similar external field of the opposite polarity leads to 
the similar switching back to  = -1, so that the full field dependence of  follows the hysteretic pattern 
shown in Fig. 7b. Such a pattern is the most visible experimental feature of actual ferromagnetic 
materials, with the coercive magnetic field Hc (modeled with hc) of the order of 103 A/m, and the 

saturated  magnetization (modeled with  = 1) corresponding to much higher fields B - of the order of 
a few tesla. The most important property of these materials, also called permanent magnets, is their 
stability, i.e. the ability to retain the history-determined direction of magnetization in the absence of 
external field, for a very long time. In particular, this property is the basis of all magnetic systems for 
data recording, including the ubiquitous hard disk drives with their incredible information density - 
currently approaching 1 Terabit per square inch.38   

 So, this simplest mean-field theory gives a crude description of the ferromagnetic ordering, but 
grossly overestimates the stability of these states with respect to thermal fluctuations. Indeed, in this 

37 The fact that stable states always correspond to  = 1, partly justifies the treatment of  as a continuous 
variable in this crude approximation. 
38 For me, it was always surprising how little physics students knew about this fascinating field of modern 
engineering, which involves so much interesting physics and fantastic electromechanical technology. For getting 
acquainted with it, I may recommend, for example, the monograph by C. Mee and E. Daniel, Magnetic Recording 
Technology, 2nd ed., McGraw-Hill, 1996.  

(a)    (b)  

Fig. 4.7. Field dependence 
of (a) the free energy profile 
and (b) order parameter (i.e. 
magnetization) in the 
crudest mean-field approach 
to the Ising model. 
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theory, there is no thermally-induced randomness at all, until T becomes comparable with the height of 
the energy barrier separating two stable states,  

          NJdFFF  )1()0(  ,    (4.61) 

which is proportional to the number of particles. At N  , this value diverges, and in this sense the 
critical temperature is infinite, while numerical experiments and more refined theories of the Ising 
model show that actually the ferromagnetic phase is suppressed at Tc ~ Jd – see below.39 

 The mean-field approach may be dramatically improved by even an approximate account for 
thermally-induced randomness. In this approach, suggested in 1908 by P.-E. Weiss under the name of 
molecular-field theory,40  random deviations of individual spin values from the lattice average, 

           jjj sss  ,~ ,     (4.62) 

are allowed, but considered small, js~ . This assumption allows us, after plugging expression 

jj ss ~  into the first term of the right-hand part of Eq. (23),  

           
 

   
j

jj
jj

jm shssJE '
',

~~  ,    (4.63) 

ignore the term proportional to '
~~

jj ss . Making replacement (62) in the terms proportional to js~ , we get  

                 
j

jmm shNJd'EE ef
2 ,    (4.64) 

where hef is defined as the sum 

       Jdhh 2ef  .     (4.65) 

The physical interpretation of hef is the effective external field, which (besides the real external 
field h) takes into account the effect that would be exerted on spin sj by its 2d next neighbors, if  they all 
had unperturbed (but possibly fractional) spins sj’ = . Such an addition to external field, 

           Jdhhh 2efmol  ,     (4.66) 

is called the molecular field - giving its name to the theory.  

 From the point of view of statistical physics, at fixed parameters of the system (including the 
order parameter ), the first term in the right-hand part of Eq. (64) is merely a constant energy offset, 
and hef is just another constant, so that  

    







  .1for ,

,1for ,
, const 

ef

ef
ef
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j
jj

j
jm sh

sh
shEE'E    (4.67) 

39 Actually, the thermal stability of many real ferromagnets, with longer-range interaction between spins, is higher 
than that predicted by the Ising model. 
40 In some texts, this approximation is called the mean-field theory. This terminology may lead to confusion, 
because the molecular-field theory is on a completely different level of phenomenology than, say, Landau’s 
mean-field theory. For example, the molecular-field approach may used for the calculation of parameters a, b, and 
Tc participating Eq. (46) - the starting point of Landau’s theory. 
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Such separability of energies means that in the Weiss approximation the spin fluctuations are 
independent, and their statistics may be examined individually, using energy spectrum Ej.  But this is 
exactly the two-level system which was the subject of three exercise problems in Chapter 2. Actually, its 
statistics is so simple that it is easier to redo this fundamental problem starting from scratch, rather than 
to use the results of those exercises (which would require changing notation). Indeed, according to the 
Gibbs distribution (2.58)-(2.59), the equilibrium probabilities of states sj = 1 may be found as 

   
T

h
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h
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h
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Th efefefef cosh2expexp
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 .  (4.68) 

From here, we may readily calculate F = -TlnZ and other thermodynamic variables, but let us 
immediately use Eq. (68) to calculate the statistical average of sj, i.e. the order parameter: 
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 .  (4.69) 

 Now comes the main trick of the Weiss’ approach: plugging this result back into Eq. (65), we 
may write the condition of self-consistency of the molecular field theory: 

           
T

h
Jdhh ef

ef tanh2 .     (4.70) 

This is a transcendental equation that evades an explicit analytical solution, but its properties may be 
readily understood by plotting its both parts as functions of their argument, so that the stationary state(s) 
of the system corresponds to the intersection point(s) of these plots.  

First of all, let us explore the field-free case (h = 0), when hef = hmol  2dJ,  so that Eq. (70) is 
reduced to 

         





 

T

Jd2
tanh ,      (4.71) 

giving one of the patterns sketched in Fig. 8, depending on the dimensionless parameter 2Jd/T.  

 

 

 

 

 

 

 

If this parameter is small, the right-hand part of Eq. (71) grows slowly with  (red line in Fig. 8), 
and there is only one intersection point with the left-hand part plot, at  = 0. This means that the spin 
system features no spontaneous magnetization – the so-called paramagnetic phase. However, if 
parameter 2Jd/T exceeds 1, i.e. T is decreased below the following critical value, 

Fig. 4.8. Ferromagnetic phase transition in 
Weiss’ molecular-field theory: two sides of 
Eq. (71) plotted as functions of  for 3 
temperatures: above Tc (red), below Tc 
(blue) and equal to Tc (green). 
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          JdTc 2 ,      (4.72) 

the right-hand part grows, at small ,  faster than the left-hand part, so that their plots intersect it in 3 
points:  = 0 and  = 0. It is almost evident that the former stationary point is unstable while two 
latter points are stable.41  Thus, below Tc the system is in the ferromagnetic phase, with one of two 
possible directions of spontaneous magnetization, so that the critical (Curie) temperature, given by Eq. 
(72), marks the transition between the paramagnetic and ferromagnetic phases. (Since the stable 
minimum value of energy G is a continuous function of temperature at T  = Tc, this is the continuous 
phase transition.) 

 Now let us repeat the same graphics to examine how each of these phases responds to external 
magnetic field h  0. According to Eq. (70), the effect of h is just a shift of the straight line plot of its 
left-hand part – see Fig. 9.  

 

 

 

 

 

 

 

 In the paramagnetic case (Fig. 9a) the resulting dependence hef(h) is evidently continuous, but 
the coupling effect (J  > 0) makes it more steep than it would be without spin interaction. This effect 
may be characterized by the low-field susceptibility defined by Eq. (29). To calculate it, let us notice 
that for small h, and hence hef, function tanh in Eq. (70) is approximately equal to argument, so that Eq. 
(70)  becomes 

                efef

2
h

T

Jd
hh  .     (4.73) 

Solving this equation for hef, and then using Eq. (72), we get 
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c /1/21ef 



 .     (4.74) 

Recalling Eq. (66), we can rewrite this result for the order parameter, 

           ,ef
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h
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hh





      (4.75) 

meaning that the low-field susceptibility 

41 This fact may be readily verified by using Eqs. (64) and (68) to calculate F. Now condition F/h=0 = 0  
returns us to Eq. (71), and calculating the second derivative, for T < Tc we get 2F/2  > 0 at  = 0 (indicating 
two stable minima of F), and 2F/2 < 0  at  = 0 (the unstable maximum of F). 

Fig. 4.9 External field effect on: 
(a) a paramagnet (T > Tc), and 
(b) a ferromagnet (T < Tc). 
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            c
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  for ,
1
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 .    (4.76) 

This is the famous Curie-Weiss law, which shows that the susceptibility diverges at the approach to the 
Curie temperature Tc. 

 In the ferromagnetic case, the graphic solution (Fig. 9b) of Eq. (70) gives a qualitatively different 
result. A field increase leads, depending on the spontaneous magnetization, either the further saturation 
of hmol (with the order parameter  gradually approaching 1), or, if the initial  was negative, a jump to 
positive  at some critical (coercive) field hc. In contrast with the crude mean-field approximation (59), 
at T > 0 the coercive field is smaller than that given by Eq. (60), and the magnetization saturation is 
gradual, in a good (semi-qualitative) accordance with experiment.  

 To summarize, the Weiss’ molecular-field theory gives a more realistic description of the 
ferromagnetic and paramagnetic phases in the Ising model, and a very simple prediction (72) of the 
temperature of the phase transition between them, for an arbitrary dimensionality d of the cubic lattice. 
It also allows finding all other parameters of the mean-field theory for that model – an easy exercise left 
for the reader. 

 

4.5. Ising model: Exact and numerical results 

 In order to evaluate the main prediction (72) of the Weiss theory, let us now discuss the exact 
(analytical) and quasi-exact (numerical) results obtained for the Ising model, going from the lowest 
dimensionality d = 0 to its higher values.  

 Zero dimensionality means that a spin has no nearest neighbors at all, so that the first term of Eq. 
(23) vanishes. Hence Eq. (64), with  hef = h, is exact, and so is its solution (69). Now we can repeat the 
calculations that have led us to Eq. (76), with J = 0, i.e. Tc = 0, and reduce this result to the so-called 
Curie law: 

            
T

1
 .      (4.77) 

It shows that Tc = 0, i.e. the system is paramagnetic at any temperature. One may say that for this case 
the Weiss molecular-field theory is exact - or in some sense trivial, because it provides an exact, fully 
quantum-mechanical treatment of spin-½ particles at negligible interaction. Experimentally, the Curie 
law is approximately valid for many so-called paramagnetic materials, i.e. 3D systems with a weak 
interaction between particle spins. 

 The case d = 1 is more complex, but has an exact analytical solution. Probably the simplest way 
to obtain it is to use the so-called transfer matrix approach.42 For this, first of all, we may argue that 
properties of a 1D system of N >> 1 spins (say, put at equal distances on a straight line) should not 
change noticeably if we bend that line gently into a closed loop (Fig. 10), i.e. assume that spins s1 and sN  
form one more pair of next neighbors, giving one more contribution, -Js1sN, to energy (23): 

         NNm hshshssJssJssJsE  ...... 2113221 .  (4.78) 

42 It was developed in 1941 by H. Kramers and G. Wannier. Note that the approach is very close to the one used 
in 1D quantum mechanics – see, e.g., QM Sec. 2.5.  
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Let us regroup terms of this sum in the following way: 
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so that the group in each parentheses depends only on the state of two adjacent spins. The corresponding 
statistical sum, 
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has 2N terms, each corresponding to a certain combination of signs of N spins. Each operand of the 
product under the sum may take 4 values for 4 different combinations of its two arguments: 

     

  
  
 






























.for ,/exp

,1for ,/exp

,1for ,/exp

22
exp

1

1

1
11

jj

jj

jj
jjjj

ssTJ

ssThJ

ssThJ

T

s
h

T

ss
J

T

s
h   (4.81) 

  

 

 

 

 

 

 

 

 

 These values do not depend on index j,43 and may be presented as elements of the so-called 
transfer matrix 
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and the whole statistical sum may be recast as a product: 
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According to the basic rule of matrix multiplication, this sum is just 

43 This is of course a result of the “translational” (or rather rotational) symmetry of the system, i.e. its invariance 
to the index replacement j  j +1 in all terms of the energy Em (besides index N which should be replaced with 1). 

Fig. 4.10. 1D Ising system on a 
circular loop. 
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         NZ MTr .      (4.84) 

Matrix algebra tells us that this trace may be presented just as 

       NNZ          (4.85) 

where  are the eigenvalues of the transfer matrix M, i.e. the roots of its characteristic equation, 
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A straightforward calculation yields 
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Now the last simplification comes from condition N >> 1 - which we needed anyway, to make 
the loop model equivalent to an in infinite 1D system. In this limit, even a small difference of exponents, 
+ > -, makes the second term in Eq. (85) negligible, so that we finally get 
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 From here, we can find the free energy per particle 
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and hence can calculate all variables of interest from thermodynamic relations. In particular, the 
equilibrium value of the order parameter may be found from the last of Eqs. (1.39), with the 
replacements discussed above: G  F, P   -h, and hence V = (G/P)T  -(F/h)T = N. For low 
fields (h << T), this formula yields 
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This result describes linear magnetization with the following low-field susceptibility, 
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 ,     (4.91) 

and means that the 1D Ising model does not exhibit a phase transition, i.e., Tc = 0. However, its 
susceptibility grows, at T  0, much faster than the Curie law (77). This gives us a hint that at low 
temperatures the system is “virtually ferromagnetic”, with has the ferromagnetic order with some rare 
violations. (In physics, such violations are called low-temperature excitations.) This perception may be 
confirmed by the following approximate calculation.  

 It is almost evident that the lowest-energy excitation of a 1D ferromagnet at h = 0 is the reversal 
of signs of all spins in one of its parts (Fig. 11). Indeed, since such excitation (called the Bloch wall) 
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involves the change of sign of just one product sjsj’, according to Eq. (23), its energy EW (defined as the 
difference between values of Em with and without the excitation) equals 2J, regardless of the wall 
position. Since in a ferromagnet, parameter J is positive, EW > 0. If the system tried to minimize its 
potential energy, having any wall in the system would be energy-disadvantageous. However, 
thermodynamics tells us that at finite T, system’s equilibrium corresponds to the minimum of free 
energy rather than just energy.44 Hence, we have to calculate Bloch wall’s contribution FW to the free 
energy. Since in a linear chain of N >> 1 spins, the wall can take (N – 1)  N positions with the same 
energy EW, we may claim that the entropy SW associated with an excitation of this type is lnN, and its 
according to definition (1.33) of the free energy,  

     NTJTSEF WWW ln2  .    (4.92) 

 

 

 

 

 This result tells us that in the limit N  , and at T  0, walls are always free-energy-beneficial, 
thus explaining the absence of the perfect ferromagnetic order in the 1D Ising system. Note, however, 
that since the logarithm grows extremely slowly at large values of its argument, one may argue that a 
large but finite 1D system would still feature a quasi-critical temperature 

      
N

J
Tc ln

2
""  ,      (4.93) 

below which it would feature a virtually complete ferromagnetic order. (The exponentially large 
susceptibility (91) is a manifestation of this fact.) 

 Now let us apply a similar approach to estimate Tc of a 2D Ising model. Here the Bloch wall is a 
line of certain length L – see Fig. 12. (For this example, counting from the left to the right, L = 2 + 1 + 4 
+ 2 + 3 = 12 lattice periods.)  

 

 

 

 

 

 

  

 Evidently, the additional energy associated with such wall is EW = 2JL, while wall’s entropy may 
be estimated approximately using the following reasoning. Let the wall be formed by the path of a 
“Manhattan pedestrian” traveling through the lattice between its nodes. At each junction, the pedestrian 

44 If the reader is still uncomfortable with this core result of thermodynamics, he or she is strongly encouraged to 
revisit Eq. (1.42) and its discussion. 

Fig. 4.12. A Bloch wall in a 2D Ising system. +
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Fig. 4.11. A Bloch wall in a 1D Ising 
system.  
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may select 3 choices of 4 directions (except the one that leads backward), so that there are 
approximately 3(L-1) options for a walk starting from a certain point, i.e. approximately M ~ 2(N – 
1)1/23L  2N1/23L different walks starting from two sides of a square-shaped lattice (of linear size N1/2). 
Again calculating SW as lnM, we get 

      )2ln()3ln2(32ln2 2/12/1 NTTJLNTJLTSEF L
WWW  .  (4.94) 

Since L scales as N1/2 or higher, at N    the last term is negligible, and we see that sign of FW /L 
depends on whether the temperature is higher or lower than the following critical value 

      JJTc 82.1
3ln

2
 .     (4.95) 

At T < Tc, the Free energy minimum corresponds to L  0, i.e. Bloch walls are free-energy-beneficial, 
and the system is in the ferromagnetic phase.  

 So, for d = 2 the estimates predict a finite critical temperature of the same order as the Weiss’ 
theory (Tc = 4J). The major approximation in the calculation leading to Eq. (95) is disregarding possible 
self-crossing of the “Manhattan walk”. An accurate counting of such self-crossings is rather difficult. It 
had been carried out in 1944 by L. Onsager; since then his calculations have been redone in several 
easier ways, but even they are rather cumbersome, and I will not have time to discuss then in detail.45 
The final result, however, is surprisingly simple:  

       J T
T

J
c

c

269.2  giving,12tanh  ,    (4.96) 

i.e. showing that the simple estimate (95) is only ~20% off the mark.  

The Onsager solution, as well as all alternative solutions of the problem that were found later, 
are so “artificial” (2D-specific) that they do not give a clear clue to their generalization to other (higher) 
dimensions. As a result, the 3D Ising problem is still unsolved analytically. Nevertheless, we do know 
Tc for that case with an extremely high precision – at least to the 6th decimal place. This has been 
achieved by numerical methods; they deserve a thorough discussion, are applicable to other problems as 
well. Conceptually, this task is rather simple: just compute, to the desired precision, the statistical sum 
of system (23): 
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As soon as this has been done for a sufficient number of values of dimensionless parameters J/T and h/T, 
everything else is easy; in particular, we can compute the dimensionless function 

  ZTF ln/  ,     (4.98)  

and then find the ratio J/Tc as the smallest value of parameter J/T, at that F/T (as a function of ratio h/T) 
has a minimum at zero field. However, for any system of a reasonable size N, the “exact” computation 
of the statistical sum (97) is impossible, because it contains to many terms for any supercomputer to 

45 For that, the reader is referred to either Sec. 151 in the textbook by Landau and Lifshitz or Chapter 15 in the 
text by Huang, both cited above. 
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handle. For example, let us take a relatively small 3D lattice with N = 101010 = 103 spins, which still 
feature substantial boundary effects even using the periodic boundary conditions (similar to the Born-
Karman conditions in the wave theory), so that its phase transition is smeared about Tc by ~ 1%. Still, 
even for that crude model, Z would include 21,000 = (210)100  (103)100 = 10300 terms. Let us suppose we 
are using a prospective exaflops-scale computer performing 1018 floating-point operations per second, 
i.e. ~1026 such operations per year. With those resources, the computation of just one statistical sum 
would require  ~10(300-26) = 10274 years. To call such number “astronomic” would be a strong 
understatement. (As a reminder, the age of our Universe is believed to be close to 1.31010 years – a 
very humble number in comparison.) 

 This situation may be improved dramatically by noticing that any statistical sum, 
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E
Z exp ,     (4.99) 

is dominated by terms with lower values of Em. In order to find those lowest-energy states, we may use 
the following powerful approach (belonging to a broad class of Monte-Carlo techniques), which 
essentially mimics one (randomly selected) path of system’s evolution in time. One could argue that for 
that we would need to know the exact laws of evolution of statistical systems,46 that may differ from one 
system to another, even if their energy spectra Em are the same. This is true, but since the equilibrium 
value of Z should be independent of these details, it may be evaluated using any kinetic model, provided 
that it satisfies certain general rules. In order to reveal these rules, let us start from a system with just 
two states, Em and Em’ = Em +  - see Fig. 13.  

 

 

 

 

In the absence of quantum coherence between the states (see Sec. 2.1), equations for time 
evolution of the corresponding probabilities Wm and Wm’ should depend only on the probabilities (plus 
certain constant coefficients). Moreover, since equations of quantum mechanics are linear, the equations 
of probability evolution should be also linear. Hence, it is natural to expect them to have the following 
form, 

        ΓΓ,ΓΓ m'm
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,   (4.100) 

where constant coefficients  and  have the physical sense of rates of the corresponding transitions – 
see Fig. 13. According to the master equations (100) the rates have simple meaning: for example, dt 
is the probability of the system’s transition into state m’ during an infinitesimal time interval dt, 
provided that in the beginning of that interval it was in state m with full certainty: Wm = 1, Wm’ = 0.47  

46 Discussion of such laws in the task of physical kinetics, which will be briefly reviewed in Chapter 6. 
47 The calculation of these rates for several particular cases is described in QM Secs. 6.6, 6.7, and 7.6. 
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Since for the system with just two energy levels, the time derivatives of the probabilities are 
equal and opposite, Eqs. (100) describe an (irreversible) redistribution of the probabilities while keeping 
their sum W = Wm + Wm’ constant. At t  , d/dt  0, and the probabilities settle to their stationary 
values related as 
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.      (4.101)  

Now let us require that these stationary values obey the Gibbs distribution (2.58); then 
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Comparing these two expressions, we see that the rates have to satisfy the following detailed balance 
relation  

                






 









T
exp .     (4.103) 

By the way, this relation may serve as an important sanity check: the rates calculated using any 
reasonable model of a quantum system have to satisfy it.48  

Now comes the final argument: since the rates of transition between two particular states should 
not depend on other states and their occupation, Eq. (103) has to be valid for each pair of states of any 
multi-state system. The detailed balance yields only one equation for two rates  and ; if our only 
goal is the calculation of Z, the choice of the other equation is not too important. Perhaps the simplest 
choice is  

                  







otherwise,    ,/exp

,0 if                   ,1

T
     (4.104) 

where  is the energy change resulting from the transition. This model, which evidently satisfies the 
detailed balance relation (103), is the most popular for its simplicity, despite the uphysical cusp this 
function has at  = 0. The simplicity of Eq. (104) enables the following Metropolis algorithm (Fig. 14). 
The calculation starts from setting a certain initial state of the system. At relatively high temperatures, 
the state may be generated randomly; for example, for the Ising system, the initial state of each spin sj 
may be selected independently, with the 50% probability. At low temperatures, starting the calculations 
from the lowest-energy state (in particular, for the Ising model, from the ferromagnetic state sj = sgn(h) 
= const) may give the fastest convergence of the sum (97). 

Now one spin is flipped at random, and the corresponding change of energy () is calculated,49 
and plugged into Eq. (104) to calculate (). Next, a pseudo-random number generator is used to 
generate a random number , with the probability density uniformly distributed on segment [0, 1]. (Such 

48 See, e.g., QM Eq. (7.196) for a quantum system bilinearly coupled to an environment in thermal equilibrium. 
By the way, that formula (as well as results for all realistic physical systems) does not feature the unphysical cusp 
of function () at  = 0, assumed by the popular model (104). 
49 Note that the flip changes signs of only (2d + 1) terms in sum (23), i.e. does not require re-calculation of all (2d 
+1)N  terms of the sum, so that the computation of   takes just a few add-multiply operations even at N >> 1. 
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functions, typically called RND, are available in virtually any numerical library.) If the resulting   is 
less than (), the transition is accepted, while if  > (), it is rejected. In the view of Eq. (104), this 
means that any transition down the energy spectrum ( < 0) are always accepted, while those up the 
energy profile ( > 0) are accepted with the probability proportional to exp{-/T}. The latter feature is 
necessary to avoid system trapping in local minima of its multidimensional energy profile 
Em(s1,s2,…,sN). Now the statistical sum may be calculated approximately as a partial sum over the states 
passed by the system. (It is better to discard the contributions from a few first steps to avoid an error due 
to the initial state choice.) 

 

 

 

 

 

 

 

 

 

 

 

 

This algorithm is extremely efficient. Even with modest computers available in the 1980s, it has 
allowed to simulate a 3D Ising system of (128)3 spins to get the following result: J/Tc  0.221650  
0.000005. For all practical purposes, this result is exact (so that perhaps the largest benefit of the 
possible analytical solution for the infinite 3D Ising system would be a virtually certain Nobel Prize for 
the author :-). Table 2 summarizes values of Tc for the Ising model. Very visible is the fast improvement 
of prediction accuracy of the molecular-field theory - which is asymptotically correct at d  . 

 

Table 2. Critical temperature Tc (in the units of J) of the Ising model  
of a ferromagnet (J > 0) for several values of dimensionality d 
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set up an initial state 

- flip a random spin 
- calculate  

- calculate  () 

generate random  
(0    1) 

compare 
  

accept  
spin flip  

reject  
spin flip  

Fig. 4.14. Crude scheme of the 
Monte Carlo algorithm for the 
Ising model simulation. 

d Molecular-field theory - Eq. (72) Exact value Exact value’s source 
0 0 0  Gibbs distribution 
1 2 0 Transfer matrix theory  
2 4 2.269… Onsager’s solution 
3 6 4.513… Numerical simulation 
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Finally, I need to mention the renormalization-group (“RG”) approach,50 despite its low 
efficiency for the Ising problem. The basic idea of this approach stems from the scaling law (30)-(31): at 
T = Tc the correlation radius rc diverges. Hence, the critical temperature may be found from the 
requirement for the system to be spatially self-similar. Namely, let us form larger and larger groups 
(“blocks”) of adjacent spins, and require that all properties of the resulting system of the blocks 
approach those of the initial system, as T approaches Tc. 

 Let us see how does this idea work for the simplest nontrivial (1D) case, which is described by 
statistical sum (80). Assuming N to be even (which does not matter at N  ), and adding an 
inconsequential constant C to each exponent (for the purpose that will be clear later on), we may rewrite 
this expression as 
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Let us group each two adjacent exponents to recast this expression as a product over only even numbers 
j, 
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and carry out the summation over two possible states of the internal spins sj explicitly: 
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 Now let us require this statistical sum (and hence all statistical properties of the system of 2-spin 
blocks) to be identical to that of the Ising system of N/2 spins, numbered by odd j: 
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with some different parameters h’, J’, and C’, for all 4 possible values of sj-1 = 1 and sj+1 = 1. Since 
the right-hand part of Eq. (107) depends only on the sum (sj-1 + sj+1), this requirement yields only 3 
(rather than 4) independent equations for finding  h’, J’, and C’. Of them, equations for h’ and J’ depend 
only on h and J (but not on C),51 and may be presented in an especially simple form, 

50 Developed first in the quantum field theory in the 1950s, it was adapted to statistics by L. Kadanoff in 1966, 
with a spectacular solution of the so-called Kubo problem by K. Wilson in 1972, later awarded by a Nobel Prize. 
51 This might be expected, because physically C is just a certain constant addition to system’s energy. However, 
the introduction of that constant is mathematically necessary, because Eqs. (107) and (108) may be reconciled 
only if C’  C.  



Essential Graduate Physics       SM: Statistical Mechanics 

 

 

Chapter 4           Page 33 of 36 

           ,
1

)(
,

)1)((

)1( 2

xy

yxy
y'

xyyx

yx
x'








     (4.109) 

using notation 
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 Now the grouping procedure may be repeated, with the same result (109)-(110). Hence these 
equations may be considered as recurrence relations describing repeated doubling of the spin block size. 
Figure 15 shows (schematically) the trajectories of this dynamic system on the phase plane [x, y]. (A 
trajectory is defined by the following property: for each of its points {x, y}, the point {x’, y’} defined by 
the “mapping” Eq. (109) is also on the same trajectory.) For ferromagnetic coupling (J > 0) and h > 0, 
we may limit the analysis to the unit square 0  x, y  1. If this flow diagram had a stable fixed point 
with x’ = x = x  0 (i.e. T/J < ) and y’ = y = 1 (i.e. h = 0), then the first of Eqs. (110) would 
immediately give us the critical temperature of the phase transition in the field-free system: 
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Tc .     (4.111) 

 However, Fig. 15 shows that the only fixed point of the 1D system is x = y = 0, which (at finite coupling 
J) should be interpreted as Tc = 0. This is of course in agreement with the exact result of the transfer-
matrix analysis, but does not give any additional information. 

 

 

 

 

 

 

 

 

 Unfortunately, for higher dimensionalities the renormalization-group approach rapidly becomes 
rather cumbersome, and requires certain approximations, whose accuracy cannot be easily controlled. 
For 2D Ising system, such approximations lead to the prediction Tc/J   2.55, i.e. to a substantial 
difference from the exact (Onsager’s) result.  

 

4.6. Exercise problems 

 4.1. Compare the third virial coefficient C(T) for the hardball model of particle interactions, that 
follows from the van der Waals equation, with the exact result (whose calculation was the subject of 
Problem 3.18). 
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Fig. 4.15. The RG flow 
diagram of the 1D Ising 
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 4.2. Calculate the entropy and the internal energy of the van der Waals gas, and discuss the 
results. 
 
 4.3. Use two different approaches to calculate (E/V)T for the van der Waals gas, and the change 
of temperature of such a gas, with temperature-independent CV, at its fast expansion into free space. 
 
 4.4.* Derive as many analytical results as you can for temperature dependence of the phase-
equilibrium pressure P0(T) and the latent heat (T) within the van der Waals model. In particular, 
explore the low-temperature limit (T << Tc), and the close vicinity of the critical point Tc. 
 
 4.5.*  Calculate the critical values Pc, Vc, and Tc for the so-called Redlich-Kwong model of the 
real gas, with the following phenomenological equation of state:52 

  NbV

NT

TNbVV

a
P





 2/1 . 

 Hint: Be prepared to solve a cubic equation with particular (numerical) coefficients. 
 
 4.6. Use the Clapeyron-Clausius formula (4.17) to calculate the latent heat  of the Bose-
Einstein condensate, and compare the result with that obtained in Problem 3.18. 
 
 4.7. In the simplest model of the liquid-gas equilibrium,53 temperature and pressure do not affect 
molecule's condensation energy . Calculate the concentration and pressure of the gas over liquid's 
surface, assuming that its molecules are classical, non-interacting particles. 
 
 4.8. Assuming the hardball model, with volume V0 per molecule, for the liquid phase, but still 
treating the gaseous phase an ideal gas, describe how do the results of the previous problem change if 
the liquid phase is in the form of  spherical drops of radius R >> V0

1/3. Briefly discuss the implications of 
the result for water cloud formation. 
 
 4.9. A classical ideal gas of N >> 1 particles is placed into a container of volume V and wall 
surface area A. The particles may condense on container walls, loosing potential energy  per particle, 
and forming an ideal 2D gas. Calculate the equilibrium number of condensed particles and gas pressure, 
and discuss their temperature dependences. 
 
 4.10. The inner surfaces of the walls of a closed container of volume V, filled with N >> 1 
indistinguishable particles, have NS >> 1 similar traps (small potential wells). Each trap can hold only 
one particle, at energy - < 0. Assuming that the gas is ideal and classical, derive the equation for the 
chemical potential  of the system in equilibrium, and use it to calculate the potential and the gas 
pressure in the limits of small and large values of the ratio N/NS.  
 

52 This equation of state, suggested in 1948, describes most real gases better than not only the original van der 
Waals model, but also its later 2-parameter alternatives, such as the Berthelot, modified-Berthelot, and Dieterici 
models, though approximations with more fitting parameters (such as the Soave-Redlich-Kwong model) work 
even better. 
53 For real liquids, the model is reasonable only within certain parameter ranges. 
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 4.11. Superconductivity may be suppressed by a sufficiently strong magnetic field. In the 
simplest case of a bulk, long cylindrical sample of the type-I superconductor, placed into an external 
magnetic field Bext parallel to its surface, this suppression takes a form of a simultaneous transition of 
the whole sample from the superconducting to the “normal” (non-superconducting) state at certain 
critical magnitude Bc(T). The critical field gradually decreases with temperature from the maximum 

value Bc(0) at T  0 to zero at the critical temperature Tc. Assuming that the function Bc(T) is known, 

calculate the latent heat of transition as a function of temperature, and find its values at T  0 and T = 
Tc. 
 Hint: In this context, “bulk” means a sample much larger than the intrinsic length scales of the 
superconductor (such as the London penetration depth L and the coherence length ).54 For such bulk 
samples, magnetic properties of the superconducting state may be well described just as a perfect 
diamagnetism, with zero magnetic permeability .  
 
 4.12. In some textbooks, the discussion of thermodynamics of superconductivity is started with 
displaying, as self-evident, the following formula: 

     
V

TB
TFTF c

sn
0

2

2
 , 

where Fs and Fn are the free energy values in the superconducting and non-superconducting (“normal”) 
phases, and Bc(T) is the critical value of field. Is this formula correct, and if not, what modification is 
necessary to make it valid? Assume that all conditions of the simultaneous field-induced phase transition 
in the whole sample, spelled out in the previous problem, are satisfied. 
 
 4.13. In Sec. 4, we have discussed Weiss’ molecular-field approach to the Ising model, in which 
the lattice average sj  plays the role of the order parameter . Use the results of that analysis to find 
coefficients a and b in the corresponding Landau expansion (46) of the free energy. List the values of 
critical exponents  and  , defined by Eqs. (26) and (28), within this approach. 
 
 4.14. Calculate the average order parameter and the low-field susceptibility  of a ring of three 
Ising-type “spins” (sj = 1), with similar ferromagnetic coupling J between all sites, in thermal 
equilibrium. From the result, can you predict the low-temperature behavior of  in an N-spin ring? 
 
 4.15. Use Eq. (88) to calculate the average energy, free energy, entropy and heat capacity (all per 
lattice site), as functions of temperature T and field h, for the 1D Ising model. Sketch the temperature 
dependence of the heat capacity for various values of ratio h/J, and give a physical interpretation of the 
result.  
 
 4.16. Use the molecular-field theory to calculate the critical temperature and low-field 
susceptibility of a d-dimensional cubic lattice of spins described by the so-called classical Heisenberg 
model:55   

54A brief discussion of these parameters, as well as of the difference between the type-I and type-II 
superconductivity, may be found in EM Secs.  6.3-6.4. 
55 This model is formally similar to the genuine (quantum) Heisenberg model – see Eq. (21). 
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Here, in contrast to the (otherwise, very similar) Ising model (23), the spin of each site is modeled by a 
classical 3D vector sj = {sxj, syj, szj} of unit length: sj

2 = 1. 
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Chapter 5. Fluctuations 

This chapter discusses fluctuations of statistical variables, mostly at thermodynamic equilibrium. In 
particular, I will describe the intimate connection between fluctuations and  dissipation (damping) in a 
dynamic system weakly coupled to a multi-particle environment, which culminates in the Einstein 
relation between the diffusion coefficient and mobility, the Nyquist formula, and their quantum-
mechanical generalization - the fluctuation-dissipation theorem. An alternative approach to the same 
problem, based on the Smoluchowski and Fokker-Planck equations, is also discussed in brief.   

 

5.1. Characterization of fluctuations 

 In the beginning of Chapter 2, we have discussed the notion of averaging,  f, of a variable f 
over a statistical ensemble – see Eqs. (2.7) and (2.10). Now, the variable’s fluctuation may be defined 
simply as its deviation from the average: 

                   fff 
~

;      (5.1) 

this deviation is, evidently, also a random variable. The most important property of any fluctuation is 
that its average (over the same statistical ensemble) equals zero:  

    .0
~

 fffffff    (5.2) 

As a result, such average cannot characterize fluctuations’ intensity, whose simplest characteristic is the 
variance (also called “dispersion”): 

             22~
fff  .      (5.3) 

The following simple property of the variance is frequently convenient for its calculation: 
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so that, finally: 
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As the simplest example of its application, consider a variable which can take only two values, 1, with 
equal probabilities Wj = ½. For such a variable,  
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 The square root of variance,  

       
2/1

2~
ff        (5.6)

Fluctuation 

Variance: 
definition 

Variance 
via  

averages 

R.m.s. 
fluctuation 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 5           Page 2 of 42 

is called the root-mean-square (r.m.s.) fluctuation. An advantage of this measure is that it has the same 
dimensionality as the variable itself, so that ratio f/f is dimensionless, and may be used to characterize 
the relative intensity of fluctuations. In particular, as has been mentioned in Chapter 1, all results of 
thermodynamics are valid only if the fluctuations of thermodynamic variables (internal energy E, 
entropy S, etc.) are relatively small.1  Let us make the simplest estimate of the relative intensity of 
fluctuations by considering a system of N independent, similar particles, and an extensive variable 
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F .      (5.7) 

where fj depends on the state of just one (jth) particle. The statistical average of F is evidently 
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while the variance is 
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Now we may use the fact that for two independent variables 
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actually, this equation may be considered as the mathematical definition of the independence. Hence, in 
the sum (9), only the terms with j’ = j survive, and 
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Comparing Eqs. (8) and (11), we see that the relative intensity of fluctuations of variable F, 
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tends to zero as the system size grows (N  ). It is this fact that justifies the thermodynamic approach 
to typical physical systems, with the number N of particles of the order of the Avogadro number NA ≈ 
1024. Nevertheless, in many situations even small fluctuations of thermodynamic variables are 
important, and in this chapter we will calculate their basic properties, starting from the variance. 

 It will be pleasant for the reader to notice that for some simple (but important) cases, such 
calculation has already been done in our course. For example, for any generalized coordinate qj and 
generalized momentum pj that give quadratic contributions to system’s Hamiltonian (2.46), we have 
derived the equipartition theorem (2.48), valid in the classical limit. Since the average values of these 

1 Let me remind the reader that up to this point, the averaging signs … were dropped in most formulas, for the 
sake of notation simplicity. In this chapter I have to restore these signs to avoid confusion. The only exception 
will be temperature whose average, following (bad :-) tradition, will be still call T everywhere besides the last part 
of Sec. 3 where temperature fluctuations are discussed explicitly. 

Relative 
fluctuation 
estimate 
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variables, in the thermodynamic equilibrium, equal zero, Eq. (6) immediately yields their r.m.s. 
fluctuations: 
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The generalization of these classical relations to the quantum-mechanical case (T ~ ) for a 1D 
harmonic oscillator is provided by Eqs. (2.78) and (2.81): 
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 However, the intensity of fluctuations in other systems requires special calculations. Moreover, 
only a few cases allow for general, model-independent results. Let us review some of them. 

 

5.2. Energy and the number of particles 

 First of all, note that fluctuations of macroscopic variables depend on particular conditions.2  For 
example, in a mechanically- and thermally-insulated system, e.g., a member of a microcanonical 
ensemble, there are no fluctuations of internal energy: E = 0.  

However, if a system is in a thermal contact with environment, for example is a member of a 
canonical ensemble (Fig. 2.6), the Gibbs distribution (2.58)-(2.59) is valid. We already know that 
application of this distribution to energy itself, 
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yields Eq. (2.61b), which may be rewritten in the form 
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more convenient for our current purposes. Now let us carry out a similar calculation for variable E2: 
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It is straightforward to check, by double differentiation, that this expression may be rewritten as 
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Now it is straightforward to use Eq. (4) to calculate the energy fluctuation variance: 
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2 Unfortunately, even in some popular textbooks, a few formulas pertaining to fluctuations are either incorrect, or 
given without specifying the conditions of their applicability, so that reader’s caution is advised.  
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Since Eq. (15) is valid only if system’s volume V is fixed, it is customary to rewrite this extremely 
simple and important result as follows: 
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 This is a remarkably simple, fundamental result. As a sanity check, for a system of N similar, 
independent particles, E and hence CV and are proportional to N, so that E  N1/2 and E/E  N-1/2, 
in agreement with Eq. (12). Let me emphasize that the classically-looking Eq. (20) is based on the 
general Gibbs distribution, and hence is valid for any system – either classical or quantum. 

 We will discuss the corollaries of this result in the next section, and now let me carry out a very 
similar calculation for a system whose number N of particles in a system is not fixed, because they may 
go to, and come from the environment at will. If the chemical potential  of the environment and its 
temperature T are fixed, we are dealing with the grand canonical ensemble (Fig. 2.13), and may use the 
grand canonical distribution (2.106)-(2.107): 
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Acting exactly as we did above for energy, we get 
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so that the particle number variance is 
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in the full analogy with Eq. (19). 

 For example, for the ideal classical gas we had Eq. (3.32). As was already emphasized in Sec. 
3.2, though that result has been obtained from the canonical ensemble in that the number of particles N 
is fixed, at N >> 1 the fluctuations of N in the grand canonical ensemble should be relatively small, so 
that the same relation should be valid for average N in that ensemble. Solving that relation for N, we 
get  
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where “const” means a factor that is constant at the differentiation of N over , required by Eq. (24). 
Performing the differentiation and then using Eq. (25) again, 
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we get from Eq. (24) a surprisingly simple result: 

               
2/12   i.e.,

~
NNNN       (5.27) 

 This relation is so simple and important that I will now show how it may be derived in a different 
way, in order to prove that this result is valid for systems with an arbitrary (say, small) N, and also get 
more detailed information about the statistics of fluctuations of that number. Let us consider an ideal 
classical gas of N0 particles in a volume V0, and calculate the probability WN to have exactly N  N0 of 
these particles in a part V  V0 of this volume – see Fig. 1. 

 

 

 

 

 

 

 For one particle such probability is of course W = V/V0  1, while the probability of one particle 
being in the remaining part of the volume is W’ = 1 – W = 1 - V/V0. If all particles were distinguishable, 
the probability of having N  N0 specific particles in volume V, and (N - N0) specific particles in volume 
(V - V0), would be WNW’(N0-N). However, if we do not distinguish the particles, we should multiply the 
probability by the number of possible particle combinations keeping numbers N and N0 constant, i.e. by 
the binomial coefficient N0!/N!(N0 - N)!.3 As the result, the required probability is 
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where in the second instance I have used the evident expression N = WN0 = (V/V0)N0 for the average 
number of particles in volume V. Relation (28) is the so-called binomial probability distribution, valid 
for any N and N0.  

 If we are interested in keeping N arbitrary, but do not care how large the additional volume (V0 

– V) is, we can simplify the binomial distribution by assuming that the external part, and hence N0, are 
very large: 

         NN 0 ,      (5.29) 

where N means all values of interest, including N. In this limit we can neglect N in comparison with N0 
in the second exponent of Eq. (28), and also approximate the fraction N0!/(N0 - N)!, i.e. the product of N 
terms, (N0 – N + 1) (N0 – N + 2)…(N0 – 1)N0 , as just N0

N. As a result, we get 
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  (5.30) 

3 See, e.g., MA Eq. (2.2). 

Fig. 5.1. Deriving the binomial 
and Poissonian distributions. 
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In the limit (29), W  0, and factor inside the square brackets tends to 1/e, the reciprocal of the natural 
logarithm base.4 Thus, we finally get an expression independent of N0: 
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 This is the much celebrated Poisson distribution, which describes a very broad family of random 
phenomena. Figure 2 shows this distribution for several values of N - which, in contrast to N, are not 
necessarily integer.  

 
 

 

 

 

 

 

 

 

 

 

 At very small N, function WN(N) distribution is close to an exponential one, WN ≈ WN  NN, 
while in the opposite limit, N >> 1, it rapidly approaches the Gaussian (alternatively called “normal”) 
distribution 
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(Note that the Gaussian distribution is also valid if both N and N0 are large, regardless of relation (29) 
between them - see Fig. 3.) 

 

 

 

 

 

 

 

4 Indeed, this is the most popular definition of this major mathematical constant – see, e.g., MA Eq. (1.2a) with n 
replaced with -1/W. 
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 The key property of the Poisson (and hence of the Gaussian) distribution is that it has the same 
variance as given by Eq. (27): 

         .
~ 22 NNNN       (5.33) 

(This is not true for the general binomial distribution.) For our current purposes, this means that for the 
ideal classical gas, Eq. (27) is valid for any number of particles. 

 

5.3. Volume and temperature 

 What are the r.m.s. fluctuations of other thermodynamic variables – like V, T, etc.? Again, the 
answer depends on conditions. For example, if the volume V occupied by a gas is externally fixed (say, 
by rigid walls), it evidently does not fluctuate at all: V = 0. On the other hand, the volume may 
fluctuate in the situation when average pressure is fixed – see, e.g., Fig. 1.5. A formal calculation of 
these fluctuations, using the approach applied in the last section, is hampered by the fact that it is 
physically impracticable to fix its conjugate variable, P, i.e. suppress its fluctuations. For example, the 
force F(t) exerted by an ideal classical gas on vessel’s wall (whose measure the pressure is) is the result 

of individual, independent hits of the wall by particles (Fig. 4), with time scale c ~ rB/(T/m)1/2 ~ 10-16 s, 
so that its frequency spectrum extends to very high frequencies, virtually impossible to control.  

 

 

 

 

 

  

However, we can use the following trick, very typical for the theory of fluctuations. It is almost 
evident that r.m.s. fluctuations of volume are independent of the shape of the container. Let us consider 
the particular situation similar to that shown in Fig. 1.5, with the container of a cylindrical shape, with 
the base area A.5 Then the coordinate of the piston is just q = V/A, while the average force exerted by the 
gas on the cylinder is  F = PA – see Fig. 5. Now if the piston is sufficiently massive, its free oscillation 

frequency  near the equilibrium position is small enough to satisfy the following three conditions. 

 First, besides balancing the average force F, and thus sustaining average pressure  P = F/A 
of the gas, the interaction between the heavy piston and light molecules of the gas is weak because of a 
relatively short duration of the wall hits (Fig. 4).  Because of that, the full energy of the system may be 
presented as a sum of those of the gas and the piston, with a quadratic contribution to piston’s potential 
energy from small deviations of equilibrium:  

                
A

V
qqqqU P

~
~,~

2
2 


,    (5.34) 

5 As a reminder, in geometry the term “cylinder” does not necessarily means the “circular cylinder”; the shape of 
base A may be arbitrary; it just should not change with height. 
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Fig. 5.4. Force exerted by gas 
particles on  container’s wall, as a 
function of time (schematically). 
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where  is the effective spring constant arising from gas’ compressibility. 

 

 

 

 

 

 

 

 

 Second, at   0, that spring constant may be calculated just as for constant variations of 
volume, with the gas remaining in quasi-equilibrium at all times: 
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 .     (5.35) 

This partial derivative6 should be taken at whatever the given thermal conditions are, e.g., with S = const 
for adiabatic conditions (i.e., thermally insulated gas), or with T = const for isothermic conditions (gas 
in a good thermal contact with a heat bath), etc. With that constant denoted as X, Eqs. (34)-(35) give 
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 .   (5.36) 

Finally, making  sufficiently small (namely,  << T) by a sufficiently large piston mass, we can 
apply, to the piston’s fluctuations, the classical equipartition theorem:  UP = T/2, giving 

           
X

X P

V
TV 














2~

.     (5.37a) 

 Since this result is valid for any A and , it should not depend on system’s geometry and piston 
mass, provided that it is large in comparison with the effective mass of a single system component (say, 
a gas molecule) – the condition that is naturally fulfilled in most experiments.7 For the particular case of 
fluctuations at constant temperature (X = T), we may use the second of Eqs. (1.39) to rewrite Eq. (37a) 
as  

6 As already was discussed in Sec. 4.1 in the context of the van der Waals equation, for mechanical stability of a 
gas (or liquid), derivative P/V has to be negative, so that  is positive. 
7 One may meet statements that a similar formula, 

      

X
V

P
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,  WRONG! 

is valid for pressure fluctuations. However, such statement does not take into account a different physical nature 
of pressure (Fig. 4), with its very broad frequency spectrum. This issue will be discussed later in this chapter. 

Fig. 5.5. Deriving Eq. (37). 
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In the specific case of an ideal classical gas of N particles, with the equation of state V = NT/P, it is 
easier to use directly Eq. (37a), with X = T, to get 
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,   (5.38) 

in agreement with the trend given by Eq. (12). 

 Now let us proceed to fluctuations of temperature, for simplicity focusing on the case V = const. 
Let us again assume that the system we are considering is weakly coupled to a heat bath of temperature 
T0, in the sense that the time   of temperature equilibration between the two is much larger than the 
internal temperature relaxation (thermalization) time. Then we may assume that T changes in the whole 
system virtually simultaneously, and consider it a function of time alone:  

      )(
~

tTTT  .     (5.39) 

Moreover, due to the (relatively) large , we may use the stationary relation between small fluctuations 
of temperature and the internal energy of the system: 
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.    (5.40) 

With those assumptions, Eq. (20) immediately yields the famous expression for the so-called 
thermodynamic fluctuations of temperature: 

               
2/1
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 .     (5.41) 

 The most straightforward application of this result is to analysis of so-called bolometers - 
broadband detectors of electromagnetic radiation in microwave and infrared frequency bands. In such a 
detector (Fig. 6), the incoming radiation it focused on a small sensor (e.g., either a small piece of a Ge 
crystal, or a superconductor thin film at temperature T  Tc, etc.) that is well isolated thermally from the 
environment.  

 

 

 

 

 

 

 As a result, the absorption  of even small radiation power P  leads to a noticeable change T of 

sensor’s average temperature T and hence of its electric resistance R, which is probed up by low-noise 

Fig. 5.6. Conceptual scheme of a bolometer. 
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external electronics.8 If power does not change in time too fast, T is a certain function of P, turning 

into 0 at P = 0. Hence, if  T  is much lower than the environment temperature T0, we may keep only the 
main, linear term in it Taylor expansion in P: 

             
G
P

 0TTT ,     (5.42) 

where coefficient G  P/T is called the thermal conductance of the unavoidable thermal coupling 
between the sensor and the heat bath – see Fig. 6. The power may be detected if the electric signal from 
the sensor, which results from change T, is not drowned in spontaneous fluctuations. In practical 
systems, these fluctuations are is contributed by several sources including  electronic amplifiers, sensor, 
etc. However, in modern systems these “technical” contributions to noise are successfully suppressed, 
and the dominating noise source are the fundamental fluctuations of sensor temperature, described by 
Eq. (41). In this case the so-called noise-equivalent power (“NEP”), defined as the level of P that 

produces signal equal to r.m.s. value of noise, may be calculated by equating Eqs. (41) (with T  T0) 
and (42): 

        
2/1

0NEP
VC

T G
 .     (5.43) 

This expression shows that in order to decrease NEP, i.e. improve the device sensitivity, both the 
environment temperature T0 and thermal conductance G should be reduced. In modern receivers of 
radiation, their typical values (in SI units) are of the order of 0.1 K and 10-10 W/K, respectively.  

 On the other hand, Eq. (43) implies that in order to increase bolometer sensitivity, i.e. reduce 
NEP, the CV of the sensor, and hence its mass, should be increased. This conclusion is valid only to a 
certain extent, because due to technical reasons (parameter drift and the so-called 1/f noise of the sensor 
and external electronics), incoming power has to be modulated with as high frequency  as possible (in 
most cases, the cyclic frequency   = /2 of the modulation is between 10 to 1,000 Hz), so that the 
electrical signal may be picked up from the sensor at that frequency. As a result, CV may be increased 
only until the thermal constant of the sensor, 

            
G

VC
  ,      (5.44) 

becomes close to 1/, because at  >> 1 the useful signal drops faster than noise. As a result, the 
lowest (i.e. the best) value of NEP, 

                1~,
)NEP( 2/1

02/1
min 


GT ,     (5.45) 

is reached at     1. (The exact values of the optimal product , and the numerical constant   ~ 1 in 
Eq. (45), depend on the exact law of power modulation in time, and the output signal processing 
procedure.) With the parameters cited above, this estimate yields (NEP)min/1/2 ~ 310-17 W/Hz1/2 – a 
very low power indeed.  

8 Besides low internal electric noise, the sensor should have a sufficiently large temperature responsivity dR/dT, 
making the noise contribution by the pickup electronics insignificant – see below. 
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 However, surprisingly enough, the power modulation allows bolometric (and other broadband) 
receivers to register radiation with power much lower than this NEP! Indeed, picking up the sensor 
signal at the modulation frequency , we can use the following electronics stages to filter out all the 
noise besides its components within a very narrow band, of width  << , around  the modulation 
frequency (Fig. 7). This is the idea of a microwave radiometer,9 currently used in all sensitive 
broadband receivers. 

 

  

 

 

 

 

  

 

  

 In order to analyze this opportunity, we need to develop theoretical tools for a quantitative 
description of the spectral distribution of fluctuations. Another motivation for that description is the 
need in analysis of variables dominated by fast (high-frequency) components, such as pressure – please 
have one more look at Fig. 4. Finally, during the analysis, we will run into the fundamental relation 
between fluctuations and dissipation, which is one of the main results of statistical physics as a whole. 

 

5.4. Fluctuations as functions of time 

 There are two mathematically-equivalent approaches to time-dependent functions of time, called 
time-domain and frequency-domain pictures, with their relative convenience depending on the particular 
problem to be solved.   

 In the time domain, we cannot characterize a random fluctuation )(
~

tf  of a classical variable by 
its statistical average, because it equals zero – see Eq. (2). Of course, variance (3) does not vanish, but if 
fluctuations are stationary, it does not depend on time either. Because of that, let us consider the 
following average:10 

        )(
~

)(
~

t'ftf .      (5.46) 

Generally, this is a function of two arguments. Moreover, in the systems that are stationary (whose 
macroscopic parameters and hence the variable expectation values do not change with time), averages 
like (46) may depend only on the difference, 

           tt'τ  ,      (5.47) 

9 It was pioneered in the 1950s by R. Dicke, so that the device is frequently called the Dicke radiometer. 
10 Clearly, this is a temporal analog of the spatial correlation function discussed in Sec. 4.2 – see Eq. (4.30). 

input 
power modulation 

frequency 

frequency 0 

noise density 

pick-up 
to output 

Fig. 5.7. Basic idea of the Dicke radiometer. 
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between the two observation times. In this case, average (46) is called the correlation  function of 
variable f: 

          )(
~

)(
~

)(   tftfK f .     (5.48) 

This name11 catches the idea of this notion very well: Kf() tells us about the average mutual relation 
between the fluctuations at two times separated by interval . Let us list the basic properties of this 
function. 

 First of all, Kf () has to be an even function of the time delay . Indeed, we may write 

   )(
~

)(
~

)(
~

)(
~

)(
~
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~

)(   t'ft'ftftftftfK f ,  (5.49) 

with t’  t - . For stationary processes, this average cannot depend on the common shift t’ of the two 
observation times, so that averages (48) and (49) have to be equal: 

              )()(  ff KK  .     (5.50) 

Second, at   0 the correlation function tends to the variance: 

                  2~
)(

~
)(

~
)0( ftftfK f  .    (5.51) 

In the opposite limit, when  is much larger than some characteristic correlation time c of the system,12 
the correlation function tends to zero, because fluctuations separated by such large time interval are 
virtually independent (uncorrelated). As a result, the correlation function typically looks like one of the 
plots sketched in Fig. 8. Note that on a time scale much longer than c, any physically-realistic 
correlation function may be well approximated with a delta-function of .13 

 

 

 

 

 

 

 In the reciprocal, frequency domain, process )(
~

tf  is presented as a Fourier integral, 

            




 
 deftf ti)(

~
,     (5.52) 

with the reciprocal transform being 

11 Another term, the autocorrelation function, is sometimes used for average (48) to distinguish it from the mutual 
correlation function, f(t)g(t + ), of two stationary processes. 
12 Correlation time c  is the direct temporal analog of the correlation radius rc which was discussed in Sec. 4.2. 
13 For example, for a process which is a sum of independent very short pulses, e.g., the gas pressure force exerted 
on the container wall (Fig. 4), such approximation is legitimate on time scales longer than the single pulse 
duration, e.g., the time of particle’s impact on the wall. 

Fig. 5.8. Correlation function of 
fluctuations: two typical examples.
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If the initial function )(
~

tf  is random (as it is in the case of fluctuations), with zero average, its Fourier 

transform f  is a random function (now of frequency) as well, also with a vanishing statistical average: 
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.   (5.54) 

The simplest nonvanishing average may be formed similarly to Eq. (46), but with due respect to the 
complex-variable character of the Fourier images: 
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  .   (5.55) 

 It turns out that for a stationary process, averages (46) and (55) are directly related. Indeed, since 
the integration over t’ in Eq. (55) is in infinite limits, we may replace it with integration over    t’ – t  
(at fixed t), also in infinite limits.  Replacing t’  by t +   in expressions under the integral, we see that 
the average is just the correlation function Kf(), while the time exponent is equal to exp{i(’ - 
)t}exp{i’}. As a result, changing the order of integration, we get 
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. (5.56) 

But the last integral is just 2( - ’),14 so that we finally get 

      ),()( 'Sff f
*
ω'        (5.57) 

where the real function of frequency, 
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i ,   (5.58) 

is called the spectral density of fluctuations at frequency . According to Eq. (58), the spectral density is 
a Fourier image of the correlation function, and hence the reciprocal Fourier transform is:15,16 

            




 

0

cos)(2)()(   dSdeSK fff
i .   (5.59) 

In particular, for the variance, Eq. (59) yields 

14 See, e.g., MA Eq. (14.4a). 
15 The second form of Eq. (59) uses the fact that, according to Eq. (58), Sf() is an even function of frequency - 
just as Kf() is an even function of time. 
16 Although Eqs. (58) and (59) look not much more than straightforward corollaries of the Fourier transform, they 
bear a special name of the Wiener-Khinchin theorem – after mathematicians N. Wiener and A. Khinchin who have 
proved that these relations are valid even for functions f(t) which are not square-integrable, so that from the point 
of view of rigorous mathematics, their Fourier transforms are not well defined. 
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 This relation shows that term “spectral density” describes the physical sense of function Sf() 
very well.  Indeed, if a random signal f(t) had been passed through a frequency filter with a small 
bandwidth   <<   of positive cyclic frequencies, the integral in Eq. (60) had to be limited to interval 
 = 2, i.e. that the variance of the output signal would become17 

           





)(4)(2
~ 2

ff SSf .    (5.61) 

 To complete this introductory section, let me note an important particular case. If the spectral 
density of some process, is nearly constant within the frequency range of interest, Sf() = const = Sf(0),18 
Eq. (59) shows that its correlation function may be well approximated by a delta-function: 

       )()0(2)0()(  
fff SdeSK i  





 .    (5.62) 

From this relation stems another popular name of the white noise, the delta-correlated process. We have 
already seen that this is a very reasonable approximation, for example, for the gas pressure force 
fluctuations (Fig. 4). Of course, for spectral density of a realistic, limited physical variable the 
approximation of constant spectral density cannot be true for all frequencies (otherwise, for example, 
integral (60) would diverge, giving an unphysical, infinite value of variance), and is valid only at 
frequencies much lower than 1/c . 

 

5.5. Fluctuations and dissipation 

 Now we are mathematically equipped to address one of the most important topics of statistical 
physics, the relation between fluctuations and dissipation This relation is especially simple for the 
following hierarchical situation: a relatively “heavy”, slowly moving system interacting with an 
environment consisting of rapidly moving, “light” components. A popular theoretical term for such a 
system is the Brownian particle, named after botanist R. Brown who first noticed in 1827 the random 
motion of pollen grains, caused by their random hits by fluid molecules, under a microscope. However, 
the family of such systems is much broader than that of mechanical particles.19  

 One more important assumption of this theory is that the system’s motion does not violate the 
thermal equilibrium of the environment - well fulfilled in many cases. (Think, for example, about a 
usual mechanical pendulum whose motion does not overheat the air around it.) In this case, the 
statistical averaging over the thermally-equilibrium environment may be performed for any (slow) 

17 A popular alternative definition of the spectral density is Sf()  4Sf(), making average (61) equal to Sf(). 
18 Such process is frequently called white noise, because it consists of all frequency components with equal 
amplitudes, reminding the white light, which consists of many monochromatic components. 
19 Just for one example, such description may be valid  for the complex amplitude of an electromagnetic field 
mode weakly interacting with matter. To emphasize this generality, I will use letter q rather than x for “particle’s” 
coordinate. 
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motion of the system of interest, considering the motion fixed.20 I will denote such a “primary” 
averaging by angular brackets …. At a later stage we may carry out another, “secondary” averaging, 
over an ensemble of many similar systems of interest, coupled to similar environments. If we do, it will 
be  denoted by double angle brackets …. 

 Let me start from a simple classical system, a 1D harmonic oscillator whose equation of 
evolution may be presented as  

             )(
~

)()()( detenvdet ttttqqm FFFFF  ,   (5.63) 

where q is the (generalized) coordinate of the oscillator, Fdet(t) is the deterministic (generalized) external 
force, while both components of the random force F(t) present the impact of the environment on 
oscillator’s motion. Again, from the point of view of the fast-moving environmental components, the 
oscillator’s motion is slow. The average of the force exerted by environment on such a slowly moving 
object may have a part depending on not only q, but on the velocity q as well. For most systems, the 
Taylor expansion of the force in small velocity would have a finite leading, linear term, so that we may 
take  

         qF ,      (5.64) 

so that Eq. (63) may be rewritten as 

      )(
~

)(det ttqqqm FF    .    (5.65) 

 This way of describing the effects of environment on an otherwise Hamiltonian system is called 
the Langevin equation.21 Due to the linearity of the differential equation (65), its general solution may 
be presented as a sum of two parts: the deterministic motion of the linear oscillator due to the external 
force Fdet(t), and random fluctuations due to the random force exerted by the environment. The former 
effects are well known from classical dynamics,22 so let us focus on the latter part by taking Fdet(t) = 0. 
The remaining term in the right-hand part describes the fluctuating part of the environmental force; in 
contrast to the average component (64), its intensity (read: its spectral density at relevant frequencies  
~ 0   (/m)1/2) does not vanish at q(t) = 0, and hence may be evaluated ignoring system’s motion.  

 Plugging into Eq. (65) the presentation of both variables in the form similar to Eq. (52), for their 
Fourier images we get the following relation:  

                 F qqiqm 2 .    (5.66) 

which immediately gives us q: 

20 For a usual (ergodic) environment, the primary averaging may be interpreted as that over relatively short time 
intervals,  c  << t << , where c is the correlation time of the environment, while  is the characteristic time 
scale of motion of our “heavy” system of interest.
21 After P. Langevin whose 1908 work was the first systematic development of A. Einstein’s ideas on Brownian 
motion (see below) using this formalism. A detailed discussion of this approach, with numerical examples of its 
application, may be found, e.g., in the monograph by W. Coffey, Yu. Kalmykov, and J. Waldron, The Langevin 
Equation, World Scientific, 1996. 
22 See, e.g., CM Sec. 4.1. In this and the next sections I assume that variable f(t) is classical, with the discussion of 
the quantum case postponed until Sec. 6. 

Langevin 
equation  

for classical 
oscillator 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 5           Page 16 of 42 

                  



 im

q



)( 2

F
.     (5.67) 

Now multiplying Eq. (67) by its complex conjugate, averaging both parts of the resulting equation, and 
using for each of them Eq. (57),23 we get the following relation between spectral densities of the 
oscillations and force: 
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 .    (5.68)  

As the reader should know well from classical dynamics, at small damping (  << m0) the first 
factor in the right-hand part of Eq. (68) describes the resonance, i.e. has a sharp peak near oscillator’s 
eigenfrequency 0, and may be presented in that vicinity as 
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In contrast, spectral density SF () of fluctuations of a typical environment is changing slowly near that 

frequency, so that for the purpose of integration over frequencies near 0 we may replace SF () with SF 

(0). As a result, the variance of the environment-imposed random oscillations may be calculated as 
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The last expression includes a well-known table integral,24 equal to / = 2m/, so that finally  
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 But on the other hand, the weak interaction with environment should keep the oscillator in 
thermodynamic equilibrium at the same temperature T. Since our analysis has been based on the 
classical Langevin equation (65), we may only use it in the classical limit 0 << T, in which we may 
use the equipartition theorem (2.48). In our current notation, it yields 
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.     (5.72) 

Comparing Eqs. (71) and (72), we see that the spectral density of the random force exerted by 
environment is fundamentally related to the damping it provides: 

       TS

 )( 0F .     (5.73a) 

Now we may argue (rather convincingly :-) that since this relation does not depend on oscillator’s 
parameters m and , and hence its eigenfrequency 0 = (/m)1/2, it should be valid at any (but 

23 At this stage we restrict our analysis to random, stationary processes q(t), so that Eq. (57) is valid for this 
variable as well, if the averaging is understood in the … sense. 
24 See, e.g. MA Eq. (6.5a). 
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sufficiently low, c << 1) frequency.  Using Eq. (58) with  0, it may be rewritten as a formula for 
the effective low-frequency drag (friction) coefficient:  

             d
T

dK
T 
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FFF .    (5.73b) 

 Relation (73) reveals an intimate, fundamental connection between fluctuations and dissipation 
provided by a thermally-equilibrium environment. Verbally, “there is no dissipation without 
fluctuations” - and vice versa.25 Historically, this fact was first recognized in 1905 by A. Einstein,26 in 
the following form. Let us apply our result (73) to the particular case of a free 1D Brownian particle, by 
taking   = 0.  In this case both equations (71) and (72) give infinities. In order to understand the reason 
for that divergence, let us go back to the Langevin equation (65) with not only  = 0, but also, just  for 
the sake of simplicity, m  0 as well. (The latter approximation, frequently called the overdamping 
limit, is quite appropriate for the motion of a small particle in a viscous fluid, when m << t even for 
smallest time intervals t between the successive observations of particle’s positions.) In this 
approximation, Eq. (65) is reduced to a simple equation, 
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)(det ttq FF  ,     (5.74) 

with a ready solution for particle displacement during a finite time interval t: 
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 Evidently, in the statistical average of the displacement, the fluctuation effects vanish, but this 
does not mean that the particle does not deviate from the deterministic trajectory q(t) – just that is has 
equal probabilities to be shifted  either of two possible directions from that trajectory. To see that, let us 
calculate the variance of the displacement: 
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As we already know, at times  >> c (this correlation time, for typical molecular impacts, is of the order 
of a picosecond), correlation function may be well approximated by the delta-function – see Eq. (62). In 
this approximation, with SF(0) expressed by Eq. (73), and Eq. (76) yields 
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with  

25 This means that the phenomenological description of dissipation by bare friction in classical mechanics (see, 
e.g., CM Sec. 4.1) is only valid approximately, when the energy scale of the process is much larger than T. 
26 It was published in one of the three papers of Einstein’s celebrated 1905 “triad”. As a reminder, another paper 
started the (special) relativity, and one more was the quantum description of photoelectric effect, essentially the 
prediction of light quanta – photons, which essentially started quantum mechanics. (Not too bad for one year!) 
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T

D  .      (5.78) 

The final form of Eq. (77) describes the well-known law of diffusion (“random walk”) of a 1D 
system, with the r.m.s. deviation from the point of origin growing as (2Dt)1/2. Coefficient D is this 
relation is called the coefficient of diffusion, and Eq. (78) describes the extremely simple Einstein 
relation between that coefficient and particle’s damping. Often this relation is rewritten in SI units of 
temperature as D =  mkBTK, where m  1/ is the mobility of the particle. The physical sense of m 
becomes clear from rewriting the expression for the deterministic viscous motion q(t)  (particle’s 
“drift”) in the form: 
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 ,    (5.79) 

so that mobility is just velocity given to the particle by unit force. 27 

 Another famous example of application of Eq. (73) is to the thermal (or “Johnson”, or “Johnson-
Nyquist”, or just “Nyquist”) noise in resistive electron devices. Let us consider a two-terminal “probe” 
circuit, playing the role of the harmonic oscillator in our analysis above, connected to a resistor R (Fig. 
9), playing the role of noisy environment. (The noise is generated by the thermal motion of numerous 
electrons, randomly moving inside the resistor.)  For this system, one convenient choice of conjugate 
variables (the generalized coordinate and generalized force) is, respectively, the electric charge Q  
I(t)dt that has passed through the “probe” circuit by time t, and voltage V across its terminals, with the 
polarity shown in Fig. 9. (Indeed, the product VdQ is the elementary work dW  done by the environment 
on the probe circuit.) 

 

 

 

 

 

 Making the corresponding replacements, q  Q and F  V  in Eq. (64), we see that it becomes 

      IQ   V .     (5.80) 

Comparing this relation with Ohm’s law, R(-I) = V,28 we see that in this case, coefficient  has the 
physical sense of the usual Ohmic resistance R,29 so that Eq. (73) becomes 

27 In solid-state physics and electronics, mobility is more frequently defined as vdrift/E = evdrift/Fdet (where E  is 

the applied electric field), and is traditionally measured in cm2/Vs. In these units, the electron mobility in silicon 
wafers used for integrated circuit fabrication (i.e. the solid most important for engineering practice) at room 
temperature is close to 103. 
28 The minus sign is due to the fact that in our notation, current through the resistor equals (-I) – see Fig. 9. 
29 Due to this fact, Eq. (64) is often called the Ohmic model of the environment response, even if the physical 
nature of variables q and F is completely different from the electric charge and voltage. 

TR,
I V

Fig. 5.9. Resistor R of temperature T as a noisy 
environment of a two-terminal probe circuit. 
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       T
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 )(V .     (5.81a) 

Using Eq. (61), and transferring to the SI units of temperature (T  kBTK) , we can bring this famous 
Nyquist formula30 to its most popular form 

           





RTk KB
2 4

~V .     (5.81b) 

Note that according to Eq. (65), this result is only valid at a negligible speed of change of the 
generalized coordinate q (in this case, negligible current I), i.e. Eq. (81) expresses the voltage 
fluctuations as would be measured by an ideal voltmeter, with an input resistance much higher that R. 

 On the other hand, applying a different choice of generalized coordinate and force, q  , F  I 

(where    V(t)dt is the generalized magnetic flux, so that dW  = Id), we get   1/R, and Eq. (73) 
yields the thermal fluctuations of the current through the resistor (as measured by an ideal ammeter, i.e. 
at V   0): 

     






 R

Tk
IT

R
SI

KB2 4~
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)( .    (5.81c) 

 Note that Eqs. (81) as valid for noise in thermal equilibrium only. In electric circuits, which may 
be readily driven out of equilibrium by applied voltage V , other types of noise are frequently 
important, notably the shot noise, which arises in short conductors, e.g., tunnel junctions, at applied 
voltages  V  >> T /q, due to the discreteness of charge carriers.31 A straightforward analysis using a 
simple model, described in the assignment of Exercise Problem 9, shows that this noise may be 
characterized by current fluctuations with low-frequency spectral density 

         








IqI
Iq

SI 2
~

  i.e.,
2

)( 2 ,    (5.82) 

where q is the electric charge of a single current carrier. This is the Schottky formula, valid for any 
relation between I and V. Comparison of Eqs. (81c) and (82) for a device that obeys the Ohm law shows 
that the shot noise has the same intensity as the thermal noise with effective temperature 

                 T
q

T 
2ef

V
.     (5.83) 

This relation may be interpreted as a result of charge carrier overheating by the applied electric field, 
and explains why the Schottky formula (82) is only valid in conductors much shorter than the energy 

30 Named after H. Nyquist who derived this formula in 1928 (independently of the prior work by A. Einstein, M. 
Smoluchowski, and P. Langevin) to describe the noise which had been just discovered experimentally by his Bell 
Labs’ colleague J. B. Johnson. The derivation of Eq. (73) and hence Eq. (81) in these notes is essentially a twist of 
the derivation used by Nyquist. 
31 Another practically important type of fluctuations in electronic devices is the low-frequency 1/f noise which 
was already mentioned in Sec. 3 above. I will briefly discuss it in Sec. 8.  
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relaxation length le of the charge carriers.32 Another mechanism of the shot noise suppression, that 
becomes noticeable if system’s transparency is high, is the Fermi-Dirac statistics of electrons.33 

 Returning to the bolometric Dicke radiometer (see  Figs. 6-7 and their discussion), we may now 
use the Langevin equation formalism to finalize its analysis. For this system, the Langevin equation is 
just the usual equation of heat balance: 

     )(
~

)()( det0 ttTT
dt

dT
CV PPG  ,    (5.84) 

where Pdet = P describes the (deterministic) power of absorbed radiation, and P~ presents the effective 
source of temperature fluctuations. Now we can use Eq. (84) to carry out a calculation of the spectral 
density ST() of temperature fluctuations absolutely similar to how this was done with Eq. (65), 
assuming that the frequency spectrum of the fluctuation source is much broader than the intrinsic 
bandwidth 1/  = G/CV of the bolometer, so that its spectral density at frequencies  ~ 1 may be well 
approximated by its low-frequency value SP(0): 
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Then, requiring the variance of temperature fluctuations, 
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to coincide with our earlier “thermodynamic fluctuation” result (41), we get 

                2
0)0( TS


G

P  .      (5.87) 

The r.m.s. value of the “power noise”P~  within bandwidth   << 1/  (Fig. 7) becomes equal to the 
deterministic signal power Pdet (or more exactly, the main harmonic of its modulation law) at 

                0
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GPP P .   (5.88) 

 This result shows that our earlier prediction (45) may be improved by a substantial factor of the 
order of (/)1/2, where the reduction of the output bandwidth is limited only by the signal 
accumulation time t ~ 1/, while the increase of    is limited by the speed of (typically, mechanical) 
devices performing the power modulation. In practical systems this factor may improve the sensitivity 
by a couple orders of magnitude, enabling observation of extremely weak radiation. Maybe the most 
spectacular example are the recent measurements of the CMB radiation (discussed in Sec. 2.6), which 
corresponds to blackbody temperature TK  2.725 K, with accuracy TK ~ 10-6 K, using microwave 

32 See, e.g., Y. Naveh et al., Phys. Rev. B 58, 15371 (1998).  In practically used metals, le is of the order of 30 nm 
even at liquid helium temperatures (and even shorter at ambient conditions), so that the usual “macroscopic” 
resistors do not exhibit the shot noise. 
33 For a review of this effect see, e.g., Ya. Blanter and M. Büttiker, Phys. Repts. 336, 1 (2000). 
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receivers with physical temperature of all their components much higher than T. The observed weak 
(~10-5 K) anisotropy of the CMB radiation is a major experimental basis of all modern cosmology.  

Let me also note that Eq. (73) may be readily generalized to the case when environment’s 
response is different from the Ohmic model (64). This generalization is virtually evident from Eq. (66). 
Indeed, the second term in its left-hand part is just the Fourier component of the average response of the 
environment:  

  qiF .     (5.89) 

Let the environment’s response be still linear, but have an arbitrary dispersion,  

,)(   qF      (5.90) 

where the function (), called the generalized susceptibility of the environment, may be complex, i.e. 
have both the imaginary and real parts: 

     )()()(  "i'  .     (5.91) 

Then Eq. (73) remains valid34 with the replacement   ”()/ : 
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 )(F .     (5.92) 

 This fundamental relation35 is used not only to calculate the fluctuation intensity from the known 
generalized responsibility (i.e. the deterministic response of a complex system to a small perturbation), 
but sometimes in the opposite direction – to calculate the linear response from the known fluctuations. 
(The latter use is especially attractive at numerical simulations, such as molecular dynamics approaches, 
because it allows to avoid filtering a weak response from the noisy background.)  

 Now let us discuss what generalization of Eq. (92) is necessary to make that fundamental result 
suitable for arbitrary temperatures, T ~ . The calculations we had performed started from the 
apparently classical equation of motion, Eq. (63). However, quantum mechanics shows36 that a similar 
equation is valid for the corresponding Heisenberg-picture operators, so that repeating all arguments 
leading to the Langevin equation (65), we may write its quantum-mechanical version  

          FF ~̂ˆˆˆˆ det  qqqm   .     (5.93) 

34 Reviewing the calculations leading to Eq. (73), we may see that if the possible real part ’() of the 
susceptibility just adds up to (k - m2) in the denominator of Eq. (67), resulting in a change of oscillator’s 
eigenfrequency. This renormalization is insignificant if the oscillator-to-environment coupling is weak, i.e. 
susceptibility () small, as had been assumed at the derivation of Eq. (69) and hence Eq. (73). 
35 It is sometimes called the Green-Kubo (or just “Kubo”) formula. This is hardly fair, because, as the reader 
could see, Eq. (92) is just an elementary generalization of the Nyquist formula (81). Moreover, the corresponding 
works of M. Green and R. Kubo were published, respectively, in 1954 and 1957, i.e. after the 1950 paper by H. 
Callen and T. Welton, where a more general result (see below) had been derived. More adequately, the Green / 
Kubo names are associated with a related relation between the response function and the operator commutator – 
see, e.g., QM Eq. (7.109). 
36 See, e.g., QM Sec. 4.6.
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This is the so-called the Heisenberg-Langevin (or “quantum Langevin”) equation – in this particular 
case, for a harmonic oscillator. 

 The further operations, however, require certain caution, because the right-hand part of the 
equation is now an operator, and has some nontrivial properties. For example, the “values” of the 
Heisenberg operator, representing the same variable f(t) at different times, do not necessarily commute: 

      tt't'ftf 
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.     (5.94) 

As a result, the function defined by Eq. (46) may not be an even function of time delay    t’ – t even 
for a stationary process, making it inadequate for representation of the real correlation function - which 
has to obey Eq. (51). This technical difficulty may be circumvented by the introduction of the following 
symmetrized correlation function 
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(where {…,…} denotes the anticommutator of the two operators), and, similarly, the symmetrical 
spectral density Sf(), defined by relation 
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with Kf() and Sf() still related by the Fourier transform (59).37   

 Now we may repeat all the analysis that was carried out for the classical case, and get Eq. (71) 
again, but this expression has to be compared not with the equipartition theorem (72), but with its 
quantum-mechanical generalization (2.78), which, in our current notation, reads 
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 .     (5.97) 

As a result, we get the following quantum-mechanical generalization of Eq. (92): 
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This is the much-celebrated fluctuation-dissipation theorem, frequently referred to just as FDT.38  

 As natural as it seems, this generalization poses a very interesting conceptual dilemma. Let, for 
the sake of clarity, temperature be relatively low, T << ; then Eq. (98) gives a temperature-
independent result 
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F ,     (5.99) 

37 Please note that here (and to the end of this section) brackets … mean quantum-statistical averaging (2.12). 
As was discussed in Sec. 2.1, for a classical-mixture state of the environment, this does not create any difference 
in either mathematical treatment of the averages or their physical interpretation.  
38 It was first derived in 1951 by H. Callen and T. Welton (in a somewhat different way). One more derivation of 
the FDT, which gives the Kubo formula as a by-product, may be found in QM Sec. 7.4.  
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which is frequently called the quantum noise. According to the quantum Langevin equation (93), 
nothing but these fluctuations of the force exerted by the environment, with spectral density proportional 
to the imaginary part of susceptibility (i.e. damping), are the source of the ground-state “fluctuations” of 
the coordinate and momentum of a quantum harmonic oscillator, with r.m.s. values  
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 , (5.100) 

and average energy 0/2. On the other hand, the basic quantum mechanics tells us that exactly these 
formulas describe the ground state of a dissipation-free oscillator, not coupled to any environment, and 
are a direct corollary of the Heisenberg uncertainty relation 

         
2


 pq  .      (5.101) 

(The Gaussian wave packets, pertinent to a harmonic oscillator’ ground state, turn the sign in Eq. (101) 
into pure equality.)  So, what is the genuine source of Eqs. (100)? 

 The resolution of this paradox is that either interpretation of Eqs. (100) is legitimate, with their 
relative convenience depending on the particular application. (One can say that since the right-hand part 
of the quantum Langevin equation (93) is a quantum-mechanical operator, rather than a classical force, 
it “carries the uncertainty relation within itself”.) However, this opportunistic resolution leaves the 
following question open: is the quantum noise (99) of the environment observable directly, without any 
probe oscillator subjected to it? An experimental resolution of this dilemma is not quite simple, because 
usual scientific instruments have their own zero-point fluctuations, which may be readily confused with 
those of the system under study. Fortunately, this difficulty may be overcome, for example, using unique 
frequency-mixing (“down-conversion”) properties of Josephson junctions.39 Special low-temperature 
experiments using such down-conversion40 have confirmed that noise (99) is real and measurable. This 
has been one of the most convincing direct demonstrations of the reality of the zero-point energy /2.41 

 Finally, let me mention briefly an alternative derivation42 of the fluctuation-theorem from the 
general quantum mechanics of open systems. This derivation is substantially longer, but gives an 
interesting  sub-product, 

                  )()(
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~̂  GFF itt 



  ,     (5.102) 

where G() is the temporal Green’s function of the environment (as “seen” by the system subjected to 
the generalized force F), defined by equation 
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39 K. Likharev and V. Semenov, JETP Lett. 15, 442 (1972). 
40 R. Koch et al., Phys. Rev. B 26, 74 (1982). 
41 Another one is the Casimir effect - see, e.g., QM Sec. 9.1. 
42 See, e.g., QM Sec. 7.4. 
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Plugging the Fourier transforms of all three functions participating in Eq. (103) into that relation, it is 
straightforward to check43 that the Green’s function is just the Fourier image of the complex 
susceptibility (), defined by Eq. (90): 

           )()(
0

  


deiG ;     (5.104) 

here 0 is used as a lower limit instead of (-) just to emphasize that due to the causality principle, the 
Green’s function has to be equal zero for   < 0.  

 In order to reveal the real beauty of Eq. (102), we may use the Wiener-Khinchin theorem (59) to 
rewrite the fluctuation-dissipation theorem (98) in a form similar to Eq. (102): 
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where the correlation function KF() is most simply described by its Fourier transform, equal to SF(): 
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 The comparison of Eqs. (102) and (104), on one hand, and Eqs (105)-(106), on the other hand, 
shows that both the commutation and anticommutation properties of the Heisenberg-Langevin force 
operator at different moments of time are determined by the same generalized susceptibility (), but 
the average anticommutator also depends on temperature, while the average commutator does not. 44 

 

5.6. The Kramers problem and the Smoluchowski equation 

 Returning to the classical case, it is evident that the Langevin equation (65) provides the means 
not only for the analysis of stationary fluctuations, but also for the description of an arbitrary time 
evolution of (classical) dynamic systems coupled to their environment - which, again, provides both 
dissipation and fluctuations. However, this approach suffers from two major handicaps. 

 First, this equation does enable us to find the statistical average of variable q, and the variance of 
its fluctuations (i.e., in the common mathematical terminology, the first and second moments of the 
probability distribution) as functions of time, but not the distribution w(q, t) as such. This may not look 
like a big problem, because in most cases (in particular, in linear systems such as the harmonic 
oscillator) the distribution is Gaussian – see, e.g., Eq. (2.77). 

 The second, more painful, drawback of the Langevin approach is that it is instrumental only for 
the already mentioned “linear” systems - i.e., the systems whose dynamics is described by linear 
differential equations, such as Eq. (65). However, as we know from classical dynamics, many important 
problems (for example, the Kepler problem of planetary motion45) are reduced to 1D motion in 
substantially anharmonic potentials Uef(q), leading to nonlinear equations of motion. If the energy of 
interaction between the system and its random environment is bilinear – i.e. is a product of variables 

43 See, e.g., CM Sec. 4.1, part (ii). 
44 Only explicitly so, because the complex susceptibility of the environment may depend on temperature as well. 
45 See, e.g., CM Sec. 3.4-3.6. 
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belonging to these sub-systems (as it is very frequently the case), we may repeat all arguments of the 
last section to derive the following generalized version of the Langevin equation 

                         )(
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t
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   ,    (5.107) 

valid for an arbitrary, possibly time-dependent potential U(q, t).46 Unfortunately, the solution of this 
equation may be very hard. Indeed, the Fourier analysis carried out in the last section was essentially 
based on the linear superposition principle that is invalid for nonlinear equations.  

If the fluctuation intensity is low, q << q, where q(t) is the deterministic solution of Eq. 
(107) in the absence of fluctuations, this equation may be linearized47 with respect to small fluctuations 

qqq ~  to get a linear equation, 
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  F .   (5.108) 

This equation differs from Eq. (65) only by the time dependence of the effective spring constant (t), 
and may be solved by the Fourier expansion of both fluctuations and function (t). Such calculations are 
somewhat more cumbersome than have been performed above, but may be doable (especially if the 
unperturbed motion q(t) is periodic), and sometimes give useful analytical results.48 

 However, some important problems cannot be solved by the linearization. Perhaps, the most 
apparent example is the so-called Kramers  problem49 of finding the lifetime of a metastable state of a 
1D classical system in a potential well separated from the continuum motion region with a potential 
barrier (Fig. 10).  

 

 

 

  

 

 

 In the absence of fluctuations, the system, placed close to well’s bottom (q = q1), would stay 
there forever. Fluctuations result not only in a finite spread of the probability density w(q, t) around that 
point, but also in the gradual decrease of the total probability 

             

bottom
swell'

),()( dqtqwtW      (5.109) 

46 The generalization of Eq. (107) to higher spatial dimensionality is also straightforward, with the scalar variable 
q replaced by vector q, and the scalar derivative dU/dq replaced with vector U. 
47 See, e.g., CM Secs. 3.2, 4.2, and beyond. 
48 See, e.g., Chapters 5 and 6 in W. Coffey et al., The Langevin Equation, World Scientific, 1996. 
49 After H. Kramers who, besides solving this important problem in 1940,  has made significant contributions to 
many other areas of physics, including the famous Kramers-Kronig dispersion relations - see, e.g., EM Sec. 7.4.  
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to find the system in the well, because of the growing probability of escape from the well, over the 
potential barrier, due to thermal activation. If the barrier height,  

             )()( 120 qUqUU  ,     (5.110) 

is much larger than temperature T,50 the Boltzmann distribution w  exp{-U(q)/T} should be 
approximately valid in most of the well, so that the probability for the system to overcome the barrier 
should scale as exp{-U0/T}. From these handwaving arguments, one may reasonably expect that if 
probability W(t) that the system is still in the well by time t should obey the usual “decay law” 

         

W

W  ,      (5.111) 

then lifetime  has to obey the general Arrhenius law,  = A exp{U0/T}. However, that relation needs to 
be proved, and the pre-exponential coefficient A (frequently called the attempt time) needs to be 
calculated. This cannot be done by the linearization of Eq. (107), because the linearization is equivalent 
to a quadratic approximation of the potential U(q), which evidently cannot describe the potential well 
and the potential barrier simultaneously – see Fig. 10. 

This and other essentially nonlinear problems may be addressed using an alternative approach to 
fluctuation analysis, dealing directly with the time evolution of the probability density w(q,t). Due to the 
shortage of time, I will review this approach a bit superficially, using mostly handwaving arguments, 
and refer the interested reader to special literature51 for strict mathematical proofs. Let us start from the 
effect of diffusion of a free 1D particle in the high damping limit, described by the Langevin equation 
(74), and assume that at all times the probability distribution stays Gaussian: 
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where q0 is the initial position of the particle, and q(t) is the time-dependent distribution width, which 
grows in time in accordance with Eq. (77): 

        2/12)( Dttq  .     (5.113) 

It is straightforward to check, by substitution, that this solution satisfies the following simple partial 
differential equation,52 
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with the delta-functional initial condition 

              )()0,( 0qqqw   .     (5.115) 

50 If U0 is comparable with T, system’s behavior also depends substantially on the initial probability distribution, 
i.e., do not follow the universal law (111). 
51 See, e.g., either R. Stratonovich, Topics in the Theory of Random Noise, vol. 1., Gordon and Breach, 1963, or 
Chapter 1 in the monograph by W. Coffey et al., cited above. 
52 By the way, the goal of the traditional coefficient 2 in Eq. (77) is exactly to have the fundamental Eq. (114) free 
of numerical coefficients. 
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The simple and important equation of diffusion (114) may be naturally generalized to the 3D motion:53 
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 Now let us compare this equation with the probability conservation law,54 
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where vector jw has the physical sense of the probability current density. (The validity of this relation is 
evident from its integral form, 
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that results from integration of Eq. (117a) over an arbitrary time-independent volume V limited by 
surface S, and applying the divergence theorem55 to the second term.) The continuity relation (117a)  
coincides with Eq. (116), with D given by Eq. (78), only if we take 
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j .     (5.118) 

The first form of this relation allows a simple interpretation: the probability flow is proportional to the 
spatial gradient of probability density (i.e., in application to many (N) similar and independent particles, 
just to the gradient of their concentration n = Nw), with the sign corresponding to the flow from the 
higher to lower concentration. This flow is the very essence of the effect of diffusion. 

 The fundamental Eq. (117) has to be satisfied also for a force-driven particle at negligible 
diffusion (D  0); in this case  

           vj ww  ,      (5.119) 

where v is the deterministic velocity of the particle. In the high-damping limit we are considering right 
now, v is just the drift velocity: 
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 F ,     (5.120) 

where Fdet is the deterministic force described by potential energy U(r). Now, as we have descriptions of 
jw due to both drift and diffusion separately, we may rationally assume that in the general case when 
both effects are present, the corresponding components of the probability current just add up, so that 
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j ,     (5.121) 

53 As will be discussed in Chapter 6, the equation of diffusion also describes several other physical phenomena – 
in particular, heat propagation in a uniform, isotropic solid, and in this context is called the heat conduction 
equation or (rather inappropriately) just the “heat equation”.  
54 Both forms of Eq. (117) are similar to the mass conservation law in classical dynamics (see, e.g., CM Sec. 8.2), 
and the electric charge conservation law in electrodynamics (see, e.g., EM Sec. 4.1). 
55 See, e.g., MA Eq. (12.2), 

Equation 
of 3D 

diffusion 
 



Essential Graduate Physics       SM: Statistical Mechanics 

 

Chapter 5           Page 28 of 42 

and Eq. (117a) takes the form 
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 .     (5.122) 

This is the Smoluchowski equation,56 which is closely related to the Boltzmann equation in multi-
particle kinetics - to be discussed in the next chapter.  

 As a sanity check, let us see what does the Smoluchowski equation give in the stationary limit, 
w/t  0 (which evidently may be achieved only if the deterministic potential U is time-independent.) 
Then Eq. (117a) yields jw = const, where the constant describes the motion of the system as the whole. If 
such motion is absent, jw = 0, then according to Eq. (121), 
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Since the left-hand part of the last form of the last relation is just (lnw), Eq. (123) may be immediately 
integrated, giving 
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Multiplied by the number N of similar, independent systems, with spatial density n(r) = Nw(r), this is 
just the Boltzmann distribution (3.26). 

 Now, as a less trivial example of the Smoluchowski equation’s applications, let us use it to solve 
the 1D Kramers problem (Fig. 10) in the corresponding high-damping limit, m << A. It is 
straightforward to check that the 1D version of Eq. (121), 
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is equivalent to 
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(where Iw is the probability current at a certain location q, rather than its density), so that we can write 
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As was discussed above, the notion of metastable state’s lifetime is well defined only for sufficiently 
low temperatures 

             0UT  .      (5.127) 

56 Named after M. Smoluchowski who developed this formalism in 1906, apparently independently from the 
slightly earlier Einstein’s work, and in much more detail. This equation has important applications in many fields 
of science, including such surprising topics as statistics of spikes in neural networks. 
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when the lifetime is relatively long,   >> A, where A  has to be of the order of the time of the system 
relaxation inside the well. Since the first term of the continuity equation (117b) is of the order of W/ , in 
this limit the term, and hence the gradient of  Iw, are negligibly small, so the probability current does not 
depend on q in the potential barrier region. Let us integrate both sides of Eq. (126) over that region, 
using that fact: 
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where the integration limits q’ and q” (Fig. 10) are selected so that so that 

      021 )()(),()( Uq"UqUqUq'UT  .    (5.129) 

(Evidently, such selection is only possible if condition (127) is satisfied.) In this limit the contribution to 
the right-hand part from point q” is negligible because the probability density behind the barrier is 
exponentially small. On the other hand, the probability at point q’ is close to its stationary, Boltzmann 
value (124), so that 
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and Eq. (128) yields 
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 We are almost done. The probability density w(q1) at the well’s bottom may be expressed in 
terms of the total probability  W of the particle being in the well by using the normalization condition 
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the integration here may be limited by the region where the difference U(q) – U(q1) is larger then T but 
still much smaller than U0 - cf. Eq. (129). According to the Taylor expansion, the shape of any smooth 
potential well near its bottom may be well approximated by a quadratic parabola: 
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With this approximation, Eq. (132) is reduced to the standard Gaussian integral:57 
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 To complete the calculation, we may use the similar approximation,  

57 If necessary, see MA Eq. (6.9b) again. 
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to work out the remaining integral in Eq. (131), because in the limit (129) this integral is dominated by 
the contribution from a region very close to the barrier top, where approximation (135) is asymptotically 
exact. As a result, we get 
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Plugging Eqs. (136), and w(q1) expressed from Eq. (134), into Eq. (131), we finally get 
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 This expression should be compared with the 1D version of Eq. (117b) for the segment [-, q’]. 
Since this interval covers the region near q1 where most of the probability density resides, and Iq(-) = 
0, the result is merely 
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dW
w .     (5.138) 

In our approximation, Iw(q’) does not depend on the exact position of point q’, and is given by Eq. (137), 
so that plugging it into Eq. (138), we recover the exponential decay law (111), with lifetime 
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Thus the metastable state lifetime is indeed described by the Arrhenius law, with the attempt 
time scaling as the geometric mean of system’s “relaxation times” near the potential well bottom (1) 
and the potential barrier top (2).58 Let me leave for reader’s exercise to prove that if the potential profile 
near well’s bottom and/or top is sharp, the pre-exponential factor in Eq. (139) should be modified, but 
the Arrhenius exponent is not affected. 

 

5.7. The Fokker-Planck equation 

 Expression (139) is just a particular, high-damping limit of a more general result obtained by 
Kramers. In order to recover all of it, we need to generalize the Smoluchowski equation to arbitrary 
values of damping . In this case, the probability density w is a function of not only the particle’s 
position q (and time t), but also its momentum p – see Eq. (2.11). Thus the continuity equation (117a) 
needs to be generalized to 6D phase space. Such generalization is natural: 

58 Actually, 2 describes the characteristic time of the exponential growth of small deviations from the unstable 
fixed point q2 at the barrier top, rather than their decay, as near point q1. 
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where jq (which was called jw in the last section) is the probability current density in the coordinate 
space, while jp is the current density in the momentum space, and p is the gradient operator in that 
space, 
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while q is the usual gradient operator in the coordinate space, that was denoted as  in the previous 
section - with index q added here just for additional clarity. At negligible fluctuations (T  0), jp in the 
momentum space may be evaluated using the natural analogy with jq – see Eq. (119). In our new 
notation, that relation takes the following form, 
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so it is naturally to take 
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 As a sanity check, it is straightforward to verify that the diffusion-free equation resulting from 
the combination of Eqs. (140), (142) and (143), 
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allows the following particular solution 

                 tttw ppqqpq  ),,( ,    (5.145) 

where the statistical-average coordinate and momentum satisfy the deterministic equations of motion, 
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p
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describing particle’s drift, with the appropriate deterministic initial conditions. 

 In order to understand how the diffusion may be accounted for, let us consider a statistical 
ensemble of free (qU = 0,   0) particles that are uniformly distributed in direct space (so that qw = 
0), but possibly localized in the momentum space. For this case, the right-hand part of Eq. (144) 
vanishes, i.e. the time evolution of the probability density w may be only due to diffusion. In the 
corresponding limit F  0, the Langevin equation (107) for each Cartesian coordinate is reduced to 
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This equation is similar to the high-damping 1D equation (74) (with Fdet = 0), with replacement q  

pj/, and hence the corresponding contribution to w/t may be described by the second term of Eq. 
(122) with that replacement: 
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Now the reasonable assumption that in the arbitrary case the drift and diffusion contributions to w/t 
just add up, immediately leads us to the full Fokker-Planck equation:59   
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 As a sanity check, let us use this equation to find the stationary probability distribution of 
momentum of free particles, at arbitrary damping , in the momentum space, assuming their uniform 
distribution in the direct space, q = 0. In the stationary case w/t = 0, so that Eq. (149) is reduced to 
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The damping coefficient  cancels, and the first integration over momentum yields 
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m p ,     (5.152) 

where j is a vector constant describing a possible motion of the system as the whole. In the absence of 
such motion, j = 0, the second integration over momentum gives  
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i.e. the Maxwell distribution (3.5). However, result (153) is more general than that obtained in Sec. 3.1, 
because it shows that the distribution stays the same even at nonvanishing damping.  

 It is also easy to show that if the damping is large (in the sense assumed in the last section), the 
solution of the Fokker-Planck equation tends to the following product 
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where the direct-space distribution w(q,t) obeys the Smoluchowski equation (122). However, in the 
general case, solutions of Eq. (149) may be rather complex,60 so I would mention (rather than derive) 
only one of them, that of the Kramers problem (Fig. 10). Acting virtually exactly as in Sec. 6, one can 
show at arbitrary damping (but still in the limit (127), T << U0, with the additional restriction   >> m/), 
the metastable state’s lifetime is again given by the Arrhenius formula (139), with the same exponent 
exp{U0/T}, but with the reciprocal time constants 1/1,2 replaced with 
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59 It was derived in 1913 in A. Fokker’s PhD thesis work; M. Planck was his thesis adviser.  
60 The reader should remember that these solutions embody, as the particular case T = 0, all classical dynamics of 
a particle. 
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where 1,2  (1,2/m)1/2, while 1,2 are the effective spring constants defined by Eqs. (133) and (135). 
Thus, in the most important particular limit of low damping, Eq. (139) is replaced with the famous 
formula 
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 This Kramers’ result for the classical thermal activation of the virtually-Hamiltonian system over 
the potential barrier may be compared with that for its quantum-mechanical tunneling through the 
barrier.61 Even the simplest, WKB  approximation for the latter time, 
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shows that generally those two lifetimes have different dependences on the barrier shape. For example, 
for a nearly-rectangular potential barrier, the exponent that determines the classical lifetime (156) 
depends (linearly) only on the barrier height U0, while that defining the quantum lifetime is proportional 
to the barrier width, while scaling as a square root of U0. However, in the important case of “soft” 
potential profiles, which are typical for the case of barely emerging (or nearly disappearing) quantum 
wells (Fig. 11) the classical and quantum results may be simply related. 

  

 

 

 

 

 

Indeed, such potential profile U(q) may be well approximated by 4 leading terms of its Taylor 
expansion, with the highest term proportional to (q- q0)

3, near some point q0 in the vicinity of the well. 
In this approximation, the second derivative d2U/dq2 vanishes at the point q0 = (q1 + q2)/2, exactly 
between the well’s bottom and the barrier’s top (in Fig. 11, q1 and q2). Selecting the origin at this point, 
we may reduce the approximation to just two terms:62 

3

3
)( q

b
aqqU  ,      (5.158) 

with ab > 0. Using a straightforward calculus, we can find all important parameters of this cubic-
parabola: the positions of its minimum and maximum: 
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12 baqq       (5.159) 

the barrier height over the well’s bottom: 

61 See, e.g., QM Secs. 2.3-2.4. 
62 As a reminder, an absolutely similar approximation is used in Exercise Problem 4.3 for the P(V) function, in 
order to analyze properties of the van der Waals model near the critical temperature. 

Fig. 5.11. Cubic-parabolic potential 
profile and its parameters. 
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and the effective spring constants: 
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 The last expression shows that for this potential profile, frequencies 1,2 participating in Eq. 
(161) are equal to each other, so that this result may be rewritten as 
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On the other hand, for the same profile, the WKB approximation (157) (which is accurate when the 
height of the metastable state energy over the well’s bottom, E – U(q1)  0/2, is much less than the 
barrier height U0) yields63  
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Comparison of the dominating, exponential factors in these two results shows that the thermal 
activation yields lower lifetime (i.e., dominates the metastable state decay) if temperature is above the 
crossover value 

          00 2.7
5

36   cT .     (5.164) 

This expression for the cubic-parabolic barrier may be compared with the similar crossover for a 
quadratic-parabolic barrier,64 for which Tc = 2 0  6.28 0. We see that the numerical factors for 
these two different soft potential profiles are very substantial, but rather close. 

 

5.8. Back to the correlation function 

 Unfortunately I will not have time to review solutions of other problems using the 
Smoluchowski and Fokker-Planck equations, but have to mention one conceptual issue. Since it is 
intuitively clear that these equations provide the complete statistical information about the system under 
analysis, one may wonder whether they may be used to find the temporal characteristics of the system, 
which were discussed in Secs. 4-5 using the Langevin formalism.  For any statistical average of a 
function taken at the same time instant, the answer is evidently yes – cf. Eq. (2.11): 

         pqddtwfttf 33),()()()( pq,pq,p,q ,    (5.165) 

63 The main, exponential factor in this result may be obtained simply by ignoring the difference between E and 
U(q1), but the correct calculation of the pre-exponent requires to take this difference, 0/2, into account – see K. 
Likharev, Physica B 108, 1079 (1981). 
64 See, e.g., QM Sec. 2.4. 
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but what if the function depends on variables taken at different times, for example the components of the 
correlation function Kf() defined by Eq. (49)? 

 To answer this question, let us start from the discrete variable case when Eq. (165) takes form 
(2.7), which, for our current purposes, may be rewritten as 

              
m

mm tWftf )( .     (5.166) 

In plain English, this is a sum of all possible values of the function, each multiplied by its probability as 
a function of time. But this means that average f(t)f(t’) may be calculated as the sum of all possible 
products fmfm’, multiplied by the joint probability for measurement outcome m at moment t, and outcome 
m’ at moment t’. The joint probability may be presented as a product of Wm(t) by the conditional 
probability W(m’, t’ m, t). Since the correlation function is well defined only for stationary systems, in 
the last expression we can take t = 0, i.e. find the conditional probability as the result, Wm’(), of solution 
of the equation describing system’s probability evolution, at time   = t’ - t (rather than t’), with the 
special initial condition 

      mm'm'W ,)0(  .      (5.167) 

On the other hand, since the average f(t)f(t +) of a stationary process should not depend on t, instead 
of Wm(t) we may take the stationary probability distribution Wm(), independent of the initial 
conditions, and may be found as the same special solution, but at time   . As a result, we may write 
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m WfWftftf  
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.    (5.168) 

 This expression looks simple, but note that this recipe requires to solve the time evolution 
equations for each  Wm’() for all possible initial conditions (167). To see how this recipe works in 
practice, let us revisit the simplest two-level system (see, e.g., Fig. 4.13 reproduced in Fig. 12 below in a 
notation more convenient for our current purposes), and calculate the correlation function of its energy 
fluctuations.  

 

 

 

 

 

The stationary probabilities for this system (i.e. the probabilities for   ) have been calculated 
in Chapter 2, and then again in Sec. 4.4. In our current notation (Fig. 12), 
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In order to calculate the conditional probabilities Wm’( ) with initial conditions (167) (according to Eq. 
(168), we need all 4 of them, for m, m’ = 0, 1), we may use master equations  (4.100), in our current 
notation reading 

00 E

1E

 
Fig. 5.12. Dynamics of a two-level system. 
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Since Eq. (170)  conserves the total probability, W0 + W1 = 1, only one probability (say, W1) is an 
independent variable, and for it, Eq. (170) gives a simple, linear differential equation,  
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.    (5.171) 

This equation may be readily integrated for an arbitrary initial condition: 

                        eWeWW 1)()0()( 111 ,    (5.172) 

where W1() is given by the second of Eqs. (169). (It is straightforward to check that the solution for 
W0() may be presented in the similar form, with the corresponding change of the state index.) Now 
everything is ready to calculate average E(t)E(t +) using Eq. (168), with fm,m’ = E0,1. Thanks to our 
(smart :-) choice of energy origin, of 4 terms in the double sum (168), all 3 terms that include at least 
one factor E0 = 0 vanish, and we have only one term left: 
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From here and the last of Eqs. (169),  the correlation function of energy fluctuations is65 
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Since transition rates  and  have to obey the detailed balance relation (4.103), / = exp{/T}, 
and hence 
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expression (174) may be presented also in a simpler form: 
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 We see that the correlation function of energy decays exponentially with time, with the net rate 
, while its variance, equal to KE(0), does not depend on the transition rates. Now using the Wiener-
Khinchin theorem (58) to calculate its spectral density, we get 

65 The transition from the first line of Eq. (174) to its second one uses the fact that the system is stationary, so that 
E(t + ) = E(t) = E = const. 
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 Such dependence on frequency66 is very typical for discrete-state systems described by master 
equations. It is interesting that the most widely accepted explanation of the 1/f noise (also called the 
“flicker” or “excess” noise), which was mentioned in Sec. 5, is that it is a result of thermally-activated 
jumps between metastable states of a statistical ensemble of such two-level systems, with an 
exponentially-broad statistical distribution of transition rates ,. Such a broad distribution follows 
from the Kramers formula (156), which is approximately valid for lifetimes of states of systems with 
double-well potential profiles (Fig. 13), for a statistical ensemble with a smooth statistical distribution of 
energy gaps . Such profiles are typical, in particular, for electrons in disordered (amorphous) solid-
state materials that, indeed, feature high 1/f  noise. 

 

 

 

 

 

 Returning to the Fokker-Planck equation, we may use the evident generalization of Eq. (168) to 
the continuous-variable case: 
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were both probability density distributions are solutions of the equation with the delta-functional initial 
condition 

      )()()0,,( p-pq-qpq ''''w  .    (5.179) 

For the Smoluchowski equation, valid in the high-damping limit, the expressions are similar, albeit with 
a lower dimensionality: 

       ,)(,)()()( 33 'w'fwfq'dqdtftf qqqq   ,   (5.180) 

              )()0,( q-qq ''w  .     (5.181) 

To see this formalism in action, let us use it to find the correlation function Kq()  of a linear 
relaxator, i.e. an overdamped 1D harmonic oscillator with m0 << . In this limit, the coordinate 
averaged over the heat baths obeys a linear equation, 

0 qq   ,     (5.182) 

which describes its exponential relaxation from a certain initial condition q0 to the equilibrium position 
q = 0, with the reciprocal time constant  = /: 

66 Regardless of the physical sense of such function of , and of whether its maximum is situated at either zero as 
in Eq. (177), or at a finite frequency 0 as in Eq. (68), it is often referred to as the Lorentzian (or “Breit-Wigner”) 
line. 
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Fig. 5.13. Typical double-
well potential profile. 
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 The deterministic equation (182) corresponds to the quadratic potential energy U(q) = q2/2, so 
that the 1D version of the Smoluchowski equation (122) takes the following form: 
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It is straightforward to check, by substitution, that this equation, rewritten for function w(q’,), with the 
delta-functional initial condition (181), w(q’,0) = (q’ – q), is satisfied by a Gaussian function, 
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with its center, q(), moving in accordance with Eq. (183), and the time-dependent variance        
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(As a sanity check, the last equality coincides with the equipartition theorem’s result.) Finally, the first 
probability under the integral in Eq. (180) may be found from Eq. (185) in the limit    (in which 
q()  0), by replacing q’ for q: 
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 Now, all components of recipe (180) are ready, and we can write it, for f (q) = q, as 
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The integral over q’ may be worked our first, by the replacing that integration variable with (q” + qe-) 
and hence dq’ with dq”: 
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The integral of the first term in parentheses (q” + qe-) equals zero (as that of an odd function in 
symmetric integration limits), while that with the second term is the standard Gaussian integral, giving 
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 The last integral67 is just 1/2/2, so that taking into account that for this stationary system 
centered at the coordinate origin, the ensemble average q = 0,68 we finally get a very simple result, 

67 See, e.g., MA Eq. (6.9c). 
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As a sanity check, for   = 0 it yields Kq(0)  q2 = T/, in accordance with Eq. (186). As  is increased 
the correlation function decreases monotonically – see the solid-line sketch in Fig. 8. 

So, the solution of this very simple problem has required straightforward but somewhat bulky 
calculations. On the other hand, the same result may be obtained literally in one line, using the Langevin 
formalism -  namely, as the Fourier transform (59) of the spectral density (68) in the corresponding limit 
m << , with SF() given by Eq. (73):69 
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 This example illustrates well that for linear systems (and small fluctuations in nonlinear systems) 
the Langevin approach is usually much simpler that the one based on the Fokker-Planck or 
Smoluchowski equations. However, again, the latter approach is indispensable for the analysis of 
fluctuations of arbitrary intensity in nonlinear systems. 

  To conclude this chapter, I have to emphasize again that the Fokker-Planck and Smoluchowski 
equations give a quantitative description of time evolution of nonlinear Brownian systems with finite 
dissipation in the classical limit. The description of quantum properties of such dissipative (“open”) and 
nonlinear quantum systems is more complex,70 and only a few simple problems of such theory have 
been solved so far,71 typically using a particular model of the environment, e.g., as a large set of 
harmonic oscillators with different statistical distributions of their parameters, leading to different 
frequency dependence of susceptibility (). 

 

5.10. Exercise problems 

 5.1. Considering the first 30 digits of number  = 3.1415… as a statistical ensemble of integers k 
(equal to 3, 1, 4, 1, 5,…), calculate  

 (i) average k, and  
 (ii) the r.m.s. fluctuation k.  

Compare the results with those for an ensemble of completely random integers 0, 1, .,9, and comment. 
 

 5.2. For a set of N  non-interacting Ising “spins” sj =  1, placed into magnetic field h, calculate 
the relative fluctuation of system’s magnetization. 

 Hint: The total magnetic moment of an Ising system is assumed to be proportional to the sum 

68 This fact is not in any contradiction with the nonvanishing result (183) which is only valid for a sub-ensemble 
with a certain (deterministic) initial condition q0. 
69 The involved table integral may be found, e.g., in MA Eq. (6.11). 
70 See, e.g., QM Sec. 7.6. 
71 See, e.g., the solutions of the 1D Kramers problem for quantum systems with low damping by A. Caldeira and 
A. Leggett, Phys. Rev. Lett. 46, 211 (1981), and with high damping by A. Larkin and Yu. Ovchinnikov, JETP 
Lett. 37, 382 (1983).  
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N

j
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S ,       

so that the requested relative fluctuation may be calculated just as S/S. 
 
5.3. For a field-free, two-site Ising system with energy values Em = -Js1s2, in the thermal 

equilibrium at temperature T, find the variance of energy fluctuations. Explore the low-temperature and 
high-temperature limits of the result. 
  
 5.4. For the 1D, three-site Ising ring with ferromagnetic coupling (and no external field), 
calculate the correlation coefficient sjsj' for both j = j' and j  j'. 
 
 5.5. Within the framework of Weiss’ molecular-field theory, calculate the variance of spin 
fluctuations in the d-dimensional Ising model. Use the result to derive the conditions of quantitative 
validity of the theory. 
 
 5.6. Calculate the variance of fluctuations of the energy of a quantum harmonic oscillator of 
frequency , in thermal equilibrium at temperature T, and express it via the average value of the energy. 
 
 5.7. Express the r.m.s. fluctuation of the occupancy Nk of a certain energy level k by: 

 (i) a classical particle, 
 (ii) a fermion, and 
 (iii) a boson, 

in the thermodynamic equilibrium, via the average occupancy Nk, and compare the results. 
 
 5.8.* Starting from the Maxwell distribution of velocities, calculate constant C in the 
(approximate) expression KP() = C(), for the correlation function of fluctuations of pressure P(t) of 
an ideal gas of N classical particles. Compare the result with that of Problem 3.2, and estimate the 
pressure fluctuation variance. 

 Hint: You may like to consider a cylindrically-shaped container of 
volume V = LA (see Fig. on the right) to calculate fluctuations of force 
acting on its plane lid of area A, and then recalculate them into fluctuations 
of pressure P. 
   
 5.9. Perhaps the simplest model of diffusion is the 1D discrete 
random walk: each time interval , a particle leaps, with equal probability, to any of two neighboring 
sites of a 1D lattice with the spatial period a. Prove that particle’s displacement during time interval t >> 
, obeys Eq. (77), and calculate  the corresponding diffusion coefficient D.  
 
 
 5.10.* Calculate the low-frequency spectral density of current I(t) due to random 
passage of charged particles between two conducting electrodes - see Fig. on the right. 
Assume that the particles are emitted by one of the electrodes at random times, and are fully 
absorbed by the counterpart electrode. 

TN ,
)(tF
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 5.11.* Within the rotating-wave approximation (RWA),72 calculate major statistical properties of 
fluctuations of the phase of classical self-oscillations, at: 

 (i) the free run of the oscillator, and 
 (ii) its phase locking by an external sinusoidal force,  

assuming that the fluctuations are caused by a weak, broadband noise with spectral density Sf(). 
 
 5.12. Calculate the correlation function of the coordinate of a 1D harmonic oscillator with small 
Ohmic damping at thermal equilibrium. 
 
 5.13. Consider a very long, uniform, two-wire transmission line (see Fig. 
on the right), that allows the propagation of TEM waves with negligible 
attenuation, in thermal equilibrium with the environment at temperature T. Find 
variance V 2 of electromagnetic fluctuations of voltage V   between the wires 

within a small frequency interval .  

 Hint: As an E&M reminder,73 TEM waves propagate with a frequency-independent velocity 
(equal to c if the wires are in vacuum), with voltage V  and current I (see Fig. above) related as 

V(x,t)/I(x,t) = Z, where Z is a frequency-independent constant (“wave impedance”). 
  
 5.14.  Now consider a similar line terminated, at one end, with an impedance-matching resistor R 
= Z. Find variance V 2  of the voltage across the resistor, and discuss the relation between the result 
and the Nyquist theorem (81). 

 Hint: Take into account that resistor with R = Z absorbs incident TEM waves without reflection. 
  

 
5.15. An overdamped classical 1D particle escapes from a 

potential well with a smooth bottom, but a sharp edge – see Fig. 
on the right. Find the appropriate modification of the Kramers 
formula (139). 
  
 
 5.16. A particle may occupy any of N similar sites. Particle’s interaction with environment 
induces its random, incoherent jumps from the occupied site to any other one with the same rate . Find 
the correlation function and the spectral density of fluctuations of the instant occupancy n(t) (equal to 
either 1 or 0) of any particular site.

72 See, e.g., CM Sec. 4.3. 
73 See, e.g., EM Sec. 7.6. 
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Chapter 6. Elements of Kinetics 

This chapter gives a brief introduction to the basic notions of physical kinetics. Its main focus is on the 
Boltzmann equation, especially within the relaxation-time approximation, which allows, in particular, 
an approximate but reasonable and simple description of transport phenomena (such as the electric 
current and thermoelectric effects) in gases, including electron gases in metals and semiconductors.  

 

6.1. The Liouville theorem 

 Physical kinetics is the branch of statistical physics that deals with systems out of 
thermodynamic equilibrium. Major tasks of kinetics include: 

 (i) for autonomous systems (those out of external fields): transient processes (relaxation) leading 
from an arbitrary initial state of a system to the thermodynamic equilibrium; 

  (ii) for systems in time-dependent external fields (say, in a sinusoidal “ac” field): the periodic 
oscillations of system’s parameters; and 

 (iii) for systems in time-independent (“dc”) external fields: dc transport effects. 

 In the last case, we are dealing with stationary (/t = 0 everywhere), but non-equilibrium 
situations, in which the effect of an external field, continuously driving the system out of the 
equilibrium, is balanced by the simultaneous relaxation – the trend toward the equilibrium. Perhaps the 
most important effect of this class is the dc current in conductors, which alone justifies the inclusion of 
the basic notions of kinetics into any set of core physics courses. 

 Actually, the reader who has reached this point of the notes, already has a good taste of physical 
kinetics, because the subject of the last part of Chapter 5 was the kinetics of a “Brownian particle”, i.e. 
of a “heavy” system interacting with environment consisting of many “lighter” components. Indeed, the 
equations discussed in that part - whether the Smoluchowski equation (5.122) or the Fokker-Planck 
equation (5.149) - are valid if the environment is in thermodynamic equilibrium, but the system of our 
interest is not necessarily so. As a result, we could use those equations to discuss such non-equilibrium 
phenomena as the Kramers problem for the metastable state lifetime. 

 This chapter is devoted to the more traditional subject of kinetics: a system of very many similar 
particles – generally, interacting with each other, but not too strongly, so that the energy of the system 
still may be partitioned into a sum of the components, with the component interactions considered as a 
weak perturbation. Actually, we have already started the job of describing such a system in Sec. 5.8, in 
the course of deriving the Fokker-Planck equation for a single classical particle. Indeed, in the absence 
of particle interactions (i.e. when it is unimportant whether the particle is light or heavy), the probability 
current densities in the coordinate and momentum spaces are given, respectively, by Eqs. (5.142) and 
(5.143), so that the continuity equation (5.140) takes the form 

                   0



pq  ww
t

w
pq  .    (6.1) 

If similar particles do not interact, this equation for single-particle probability density w(q, p, t) is valid 
for each of them, and the result of its solution may be used to calculate any average of the system as a 
whole.
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 Let us rewrite Eq. (1) in the Cartesian component form, 
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where index j lists all degrees of freedom of the particle, and assume that its motion in an external field 
may be described by a Hamiltonian function H (qj, pj, t). Plugging into Eq. (2) the Hamiltonian equations 
of motion:1 
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we get 
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At the parentheses’ differentiation, the mixed terms w2H/qjpj and w2H/pjqj cancel, and using Eq. 
(3) again, we get the so-called Liouville theorem2 
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 Since the left-hand part of this equation is just the full derivative of the probability density 
considered as a function of the generalized coordinates qj(t) of a particle, its generalized momenta 
components pj(t), and (possibly) time t, the Liouville theorem (5) may be presented in a surprisingly 
simple form: 

      0
),,(


dt

tdw pq
.     (6.6) 

Physically it means that the probability dW = wd3qd3p to find a Hamiltonian particle in a small volume 
of the coordinate-momentum space [q, p], with the center moving in accordance to the deterministic law 
(3), does not change with time – see Fig. 1. 

 

 

 

 

 

  

1 See, e.g., CM Sec. 10.1. 
2 Actually, this is just one of several theorems bearing the name of J. Liouville (1809-1882). 

Fig. 6.1. Cartoon representation of the 
Liouville theorem in the 6D space [q, p]. 
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 At the first glance, this may not look surprising, because according to the fundamental Einstein 
relation (5.78), one needs non-Hamiltonian forces (such as kinematic friction, i.e. drag) to have 
diffusion. On the other hand, it is striking that the Liouville theorem is valid even for (Hamiltonian) 
systems with deterministic chaos,3 in which the deterministic trajectories corresponding to slightly 
different initial conditions become increasingly mixed with time.  

For an ideal gas of 3D particles, we may select the usual Cartesian coordinates rj (with j = 1, 2, 
3) for the generalized coordinates qj, so that  pj become the Cartesian components mvj of the usual 
(linear) momentum, and the elementary volume is just d3rd3p – see Fig. 1. In this case Eqs. (3) are just 

           jjj
j

j pv
m

p
r F  , ,     (6.7) 

so that the Liouville theorem may be rewritten as 
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and conveniently presented in the vector form4 

       0



ww
t

w
p Fv ,     (6.9) 

where I have returned to using unindexed symbol   for the vector differentiation in the coordinate space. 

  

6.2. The Boltzmann equation 

 The situation becomes much more complex if particles interact. Generally, a system of N similar 
particles in 3D space has to be described by probability density w being a function of 6N + 1 arguments 
(3N Cartesian coordinates, plus 3N momentum components, plus time). Analytical or numerical  
solution of any equation describing time evolution of such a function for a typical ensemble of N ~ 1023 
particles is evidently a hopeless task. Hence, kinetics of realistic ensembles has to rely on making 
reasonable approximations that would simplify the situation. 

 One of the most useful approximation (sometimes called Stosszahlansatz, German for the 
“collision number assumption”) was suggested by L. Boltzmann for a gas of particles that move freely 
most of the time, but interact during short time intervals, when a particle comes close to either an 
immobile scattering center (say, an impurity in a conductor) or to another particle of the gas. Such a 
brief scattering event changes particle’s momentum, and may be approximately described by the 
addition of a special term (called the scattering integral) to the right-hand part of Eq. (9): 

           scatteringt

w
ww

t

w
p 







 Fv ,    (6.10) 

while still keeping w a function of only 7 arguments: 3 coordinate components of vector r and 3 
components of momentum p (all of just one particle), plus time t. This is the Boltzmann transport 
equation.  

3 See, e.g., CM Sec. 9.3. 
4 From this point on, I return to using the index-free symbol  

Boltzmann 
equation 
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The concrete form of the scattering integral depends on the scattering object. If scattering centers 
do not belong to the ensemble under consideration (again, for example, an impurity atom in a conductor 
– see Fig. 2), then the scattering integral may be obtained by an evident generalization of the master 
equation (4.100): 5 

        ),,(),,(3
gscatteerin twt'wp'd

t

w
'' prpr pppp  




 ,   (6.11) 

where the physical sense of pp’ is the rate (i.e. the probability per unit time) for the particle to be 
scattered from the state with momentum p into the state with momentum p’.  

 

 

 

 

 

 Most elastic interactions are reciprocal, i.e. obey the following relation (closely related to the 
reversibility of time in Hamiltonian systems): pp’ = p’p, so that Eq. (11) may be rewritten as6 

            ),,(),,(3
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 .   (6.12) 

With such scattering integral, Eq. (10) stays linear in w, but becomes an integro-differential equation, 
typically harder to solve than differential equations. 

 The equation becomes even more complex if the scattering is due to mutual interaction of the 
particle members of the system (Fig. 3).  

 

 

 

 

 

 

5 Note that the master equations ignores possible quantum coherence of different scattering events, described by 
off-diagonal elements of the density matrix, because w represents only the diagonal elements of the matrix. 
However, for ensembles close to thermal equilibrium, this is a reasonable approximation – see Sec. 2.1.
6 One may wonder whether this approximation may work for Fermi particles, for whom the Pauli principle forbids 
scattering into the already occupied state, so that for scattering p  p’, the factor w(r, p, t) in Eq. (12) has to be 
multiplied by the probability [1 – w(r, p’, t)] that the final state is available. Generally, this is a valid argument, 
but one should notice that if this modification has been done with both terms of Eq. (12), it yields 
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Opening both square brackets, we see that the probability density products cancel, bringing us back to Eq. (12). 
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scattering  
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Fig. 6.2. Particle scattering event. 
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'p Fig. 6.3. Particle-particle scattering event. 
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 In this case, the probability of the scattering event scales as a product of two single-particle 
probabilities, and the simplest form of the scattering integral is7 
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The integration dimensionality in Eq. (13) takes into account the fact that due to the conservation of the 
total momentum at scattering,  

      '' '' pppp  ,     (6.14) 

one of the momenta is not an independent argument, so that the integration in Eq. (13) may be restricted 
to a 6D p-space rather than the 9D one. For the reciprocal interaction, Eq. (13) may also be a bit 
simplified, but it still keeps Eq. (10) a nonlinear integro-differential transport equation, excluding such 
powerful solution methods as the Fourier expansion (which hinges on the linear superposition principle). 

 This is why most useful results based on the Boltzmann transport equation hinge on its further 
simplifications, most notably the relaxation-time approximation – RTA for short.8 This approximation is 
based on noticing that in the absence of spatial gradients ( = 0), and external forces (F = 0), Eq. (10) 
yields 
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,     (6.15) 

so that the thermally-equilibrium probability distribution w0(r,p,t) has to turn any scattering integral into 
zero. Hence at small deviations from the equilibrium, 

        0),,(),,(),,(~
0  twtwtw prprpr ,    (6.16) 

the scattering integral should be proportional to the deviation w~ , and its simplest reasonable model is 
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t

w ~
gscatteerin 




,     (6.17) 

where   is a phenomenological constant (which, according to Eq. (15), has to be positive for system’s 
stability) called the relaxation time. Its physical meaning will be more clear in the next section.  

 The relaxation-time approximation is quite reasonable if the angular distribution of the scattering 
rate is dominated by small angles between vectors p and p’ – as it is, for example, for the Rutherford 
scattering by a Coulomb center.9 Indeed, in this case the two functions w, participating in Eq. (12) are 
close to each other, so that the loss of the second momentum argument (p’) is not too essential. 
However, while using the Boltzmann-RTA equation, which results from combining Eqs. (10) and (17), 
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 Fv ,    (6.18) 

7 This was the approximation used by L. Boltzmann to prove the famous H-theorem, stating that entropy of the 
gas described by Eq. (13) may only grow (or stay constant) in time, dS/dt  0. Since the model is very 
approximate, that result does not seem too fundamental nowadays, despite all its historic significance. 
8 Sometimes this approximation is called the “BGK model”, after P. Bhatnager, E. Gross, and M. Krook who 
suggested it in 1954. (The same year, a similar model was considered by P. Welander.) 
9 See, e.g., CM Sec. 3.7. 
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the reader should always remember this is just an approximation, sometimes giving completely wrong 
results. For example, it prescribes the same time scale, , to the relaxation of the net momentum of the 
system, and to its energy relaxation, while in many real systems the latter process (that requires inelastic 
interactions) may be substantially longer. Naturally, in the following sections I will describe only those 
applications of the RTA approximation that give a reasonable description of reality. 

 

6.3. The Ohm law and the Drude formula 

 Despite its shortcomings, Eq. (18) is adequate for quite a few applications. Perhaps the most 
important of them is deriving the Ohm law for dc current is a gas of charged particles, whose only 
important deviation from ideality is the scattering in the form of Eq. (17), and hence described, in 
equilibrium, by the equilibrium probability w0 of an ideal gas (see Sec. 3.1): 
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where g is the degeneracy factor (say, g = 2 for electrons due to their spin), and N() is the average 
occupancy of a quantum state with momentum p, that obeys either the Fermi-Dirac or the Bose-Einstein 
distribution: 

                  p  
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1

1
/)( Te

N .    (6.20) 

(Up to a point, our calculations will be valid for both statistics, and hence, in the limit /T  -, for a 
classical gas as well.)  

 Now let a uniform, dc electric field E be applied to the gas, exerting force F = qE on each particle 

with electric charge q. Then the stationary solution to Eq. (18), with /t = 0, should also be stationary 
and spatially-uniform ( = 0), so that this equation is reduced to 

      

w

wq p

~
E .     (6.21)  

Let us assume the electric field to be relatively low as well, so that the perturbation w~  it produces is 
relatively small. (I will quantify this condition later on.) Then in the left-hand side of Eq. (21) we can 
neglect that perturbation, by replacing w with w0, because that side already has a small factor (E). As a 
result, this equation yields  

          






 0
0

~ w
qwqw pp  EE ,    (6.22) 

where the partial derivative sign marks the implied local constancy of parameters  and T, i.e. their 
independence of momentum p. But gradient p  is nothing else than particle’s velocity v - for a 
quantum particle, its group velocity.10 (This fact is easy to verify for the isotropic and parabolic 
dispersion law, pertinent to classical particles moving in free space, 

10 See, e.g., QM Sec. 2.1.  
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Indeed, in this case the Cartesian components of vector p  are  
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so that p  = v.) Hence, Eq. (22) may be rewritten as 

              






 0~ w
qw vE .     (6.25) 

Let us use this result to calculate the electric current density j. The contribution of each quantum 
state to the current density is qvw, so that the total density is 

                 pdwwqpwdq 3
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3 ~vvj .    (6.26) 

Since in the equilibrium state (with w = w0), the current has to be zero, integral of the first term in the 
parentheses has to vanish. For the integral of the second term, plugging in Eq. (25), and also using Eq. 
(19), we get 
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where d2p is the elementary area of the constant energy surface in the momentum space, while dpis the 
momentum differential’s component normal to that surface. This result11 is valid even for particles with 
an arbitrary dispersion law (p) (that may be rather complicated, for example, for particles moving in 
space-periodic potentials12), and may give, in particular, a fair description of conductivity’s anisotropy 
in crystals.  

 For classical particles whose dispersion law is isotropic and parabolic, as in Eq. (23), the 
constant energy surface is a sphere of radius p, so that d2p = p2d = p2 sindd, while dp = dp. In 
spherical coordinates with the polar axis direction along vector E, we get (Ev) = E vcos. Now 

separating vector v outside the parentheses into a component vcos directed along vector E, and two 

perpendicular components, vsincos and vsinsin, we see that the integrals of the last two 
components over angle   give zero. Hence, as we could expect, in the isotropic case the net current is 
directed along the electric field and obeys the linear Ohm law, 13 

            ,Ej       (6.28) 

with a field-independent electric conductivity 

11 First obtained by A. Sommerfeld in 1927. 
12 See, e.g., QM Secs. 2.7, 2.8, and 3.4. In this case, p should be understood as the quasi-momentum rather than 
genuine momentum. 
13 As Eq. (27) shows, if the dispersion law (p) is anisotropic, the direction of current density may be different 
from that of the electric field. In this case, conductivity should be described by a tensor jj’, rather than a scalar. 
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Since sind is just –d(cos), the integral over   equals (2/3). The integral over d is of course just 2, 
while that over p may be readily transformed to one over particle’s energy (p) = p2/2m: vdp = pdp/m = 
d, so that p2dpv2 = p2vd = (2m)(2/m)1/2d = (8m3)1/2 d. As a result, the conductivity equals 

              
 

   







 d

N
m

gq












 



0

2/13
3

2

8
3

4

2 
.    (6.30) 

Note that  is proportional to q2 and hence does not depend on the particle charge sign; this is why the 
Hall effect in external magnetic field, which lacks this ambivalence, is typically used to determine the 
charge of current carriers (electrons or holes) in semiconductors. 

 So far, the calculations have been valid for any gas (Bose, Fermi, or classical), an arbitrary 
temperature. Let us work out the remaining integral over energy for the most important case of a 
degenerate Fermi (say, electron) gas, with T << F.14 As was discussed in Sec. 3.3, in this limit, factor (-
N())/) is essentially Dirac’s delta-function ( - F), so that the conductivity does not depend on 
temperature:15 
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But the last fraction in this product is just the volume of the Fermi sphere in the momentum space, so 
that the product of the last two fractions is the total number of quantum states filled at T = 0 (per unit 
volume), i.e. the total density n  N/V of electrons in the gas. Hence, Sommerfeld’s result is reduced to 
the Drude formula,16 

        n
m

q 
2

 ,      (6.32) 

which should be well familiar to the reader from an undergraduate physics course, with  being a scale 
of time intervals between scattering events. 

 This calculation poses with an important conceptual question. The very structure of Eq. (30) 
implies that the only quantum states contributing to electric conductance are those where the derivative 
(-N()/) is significant. At T << F, these are the states at the very surface of the Fermi sphere. On 

14 Calculations for a classical gas (which are important, in particular, for most plasmas and non-degenerate 
semiconductors) are left for the reader – see the first assignment of Problem 5. 
15 At least explicitly, because in some particle collision models,   may be a function of temperature, which levels 
out only at some temperature much lower than F. 
16 Its was derived in 1900 by P. Drude. Note that Drude also used the same arguments to derive a very simple 
(and very reasonable) approximation for the complex electric conductivity in the ac field of frequency : () = 
(0)/(1 - i), with (0) given by Eq. (32); sometimes the name “Drude formula” is used for this expression 
rather than for Eq. (32) – see Problem 1.  

Drude 
formula 
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the other hand, the classical derivation of Eq. (32) involves all electrons.17  So, what exactly electrons 
are responsible for conductance: all of them, or only those on the Fermi surface? 

 For the resolution of this paradox, let us return to Eq. (22) and analyze the physical meaning of 
that result. For that, let us compare it with the following model distribution: 

           ),~,(0model tww ppr  ,      (6.33) 

where p~  is some constant, small vector, which describes a small shift of the unperturbed distribution w0 
in the momentum space as a whole. Performing the Taylor expansion of Eq. (33) in this small parameter, 
and keeping only two leading terms, we get 

       ),,(~~,~),,( 0modelmodel0model twwwtww p prppr  .   (6.34) 

Comparing the model perturbation with the first form of Eq. (22), we see that they coincide, provided 
that 

      FE  τqp~ .     (6.35) 

This means that Eq. (22) describes a small shift of the equilibrium distribution of electrons by qE  (in p-
space) along the direction of electric field,18 and gives the picture of the electron transport in a 
degenerate gas, shown in Fig. 4. 

  

 

 

 

 

 

 

 

 At E = 0, the system is in equilibrium, so that the quantum states inside the Fermi sphere (p < 
pF), are occupied, while those outside of it are empty (Fig. 4a). Electron scattering events happen only 
between states within a very thin layer (p2/2m – F ~ T) at the Fermi surface, because only in this layer 

17 As a reminder, here it is (see also EM Sec. 4.2):  Let  be the average time at which scattering causes a particle 
to loose all the deterministic component of its velocity, vdrift, provided by electric field E, on the top of electron’s 
random thermal motion (which does not contribute to the net current). Using the 2nd Newton law to describe 
particle’s acceleration by the field, dvdrift/dt = qE/m, we get vdrift =  qE/m. Multiplying this result by the particle 

charge q and density n = N/V, we get the Ohm law j = E, with  given by Eq. (32). 
18 By the way, since the scale of the fastest change of w0 in the momentum space is of the order of w0/p = 
(w0/)(d/dp) ~  (1/T)vF, the linear approximation (34) is valid if eE  << T/vF, i.e. if eEl << T, where l  vF is 
called the mean free path. This is the promised quantitative condition of the electric field smallness; since the left-
hand part of the last inequality is just the average energy given to the particle by the electric field between two 
scattering events, the condition may be interpreted as the smallness of electron gas’ “overheating” by the applied 
field. However, another condition is also necessary – see the last paragraph of this section. 

1p

2p

0
1p

2p

Fp~

EF q

Fig. 6.4. Filling of momentum states in a 
degenerate electron gas: (a) in the 
absence and (b) in the presence of 
external electric field E. Arrows show 
representative scattering events.

(a)     (b) 
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the states are partially occupied, so that both components of the product w(r,p,t)[1 – w(r,p’,t)], 
mentioned in Sec. 1, do not vanish. These scattering events, on the average, do not change the 
equilibrium probability distribution, because they are uniformly spread over the Fermi surface.  

 In the instant the electric field has been turned on, it starts to accelerate all electrons in its 
direction, i.e. the whole Fermi sphere starts moving in the momentum space, along the field’s direction 
in the real space. For elastic scattering events (with p’ = p), this creates an addition of occupied states 
at the leading front of the accelerating sphere, and an addition of free states on its trailing edge (Fig. 4b). 
As a result, now there are more scattering events bringing electrons from the leading edge to the trailing 
edge of the sphere than in the opposite direction. This creates the average backflow of states occupancy 
in the momentum space. These two trends eventually cancel each other, and the Fermi sphere  
approaches a stationary (though not equilibrium!) state, with the shift (35) relatively to its thermal-
equilibrium position. 

 Thus Fig. 4b presents a clear answer to the question which of the two different interpretations of 
the Drude formula is correct, and due to electrons’ indistinguishability, the answer is: either. On one 
hand, we can look at the electric current at a result of shift (35) of all electrons in the momentum space. 
On the other hand, each filled quantum state deep inside the sphere gives exactly the same contribution 
into the net current density as it did without the field. All these internal contributions to the net current 
cancel each other, so that the applied field changes the situation only at the Fermi surface. Thus it is 
equally legitimate to say that only the surface states are responsible for the nonvanishing net current.19  

 Let me also mention the second paradox related to the Drude formula, which is often 
misunderstood (not only by students :-). As was emphasized above,   is finite even at elastic scattering - 
that by itself does not change the total energy of the electron gas. The question is how can such 
scattering may be responsible for Ohmic resistivity   1/, and hence for the Joule heat production, 
with power density P/V = jE = j2? The answer is that the Drude and Sommerfeld formulas describe 
just the “bottleneck” of the Joule heat formation. In the scattering picture (Fig. 4b) the elastically 
scattered electron states are predominantly located above the (shifted) Fermi surface, and eventually 
need to relax onto it via some inelastic process that releases their additional energy in the form of heat 
(in solid state materials, described by phonons – see Sec. 2.6). The rate and other features of these 
inelastic phenomena do not participate in the Drude formula directly, but for keeping the theory valid (in 
particular, keeping the probability distribution w close to its equilibrium value w0), their intensity has to 
be sufficient to avoid gas overheating by the applied field. This gives an additional restriction on the 
simple theory described above. In some semiconductors, the charge carrier overheating effects, resulting 
in deviations from the Ohm law, i.e. from the linear relation (28) between j and E, may be readily 
observed already at rather modest applied electric fields. 

 

6.4. Electrochemical potential and the drift-diffusion equation  

 Now let us generalize our calculation to the case when transport takes place in the presence of a 
time-independent spatial gradient of the probability distribution, w  0, caused for example by that of 
the particle concentration n = N/V (and hence, according to Eq. (3.40), of the chemical potential ), 

19 So here, as it frequently happens in physics, formulas (or drawings, such as Fig. 4b) give a more clear and 
unambiguous description of the reality than words – the privilege lacked by many other scientific (and 
“scientific”) disciplines, frequently leading in unending, shallow verbal debates. 
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while still considering temperature T constant. For this generalization, we should just keep the second 
term in the left-hand part of Eq. (18). If the gradient of w is sufficiently small, we can repeat arguments 
of the last section and replace w with w0 in this term as well. With the applied electric field E presented 

as (-), where   is the electrostatic potential, Eq. (25) now becomes 

      





 



 0
0~ wq

w
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 v .     (6.36) 

Since in any of distributions (20), N() is a function of  and  only in combination ( - ), it obeys the 
following relation,  

           
   














 NN
.     (6.37) 

Using this relation, the gradient of w0  N() may be presented as20 

            constfor  ,0
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 ,    (6.38) 

so that Eq. (36) becomes 

        ,Φ~ 00  q
w
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     (6.39) 

where the following sum, 

         
q

  ,      (6.40) 

is called the electrochemical potential.21 Now repeating the calculation of the electric current, carried 
out in the last section, we get the following generalization of the Ohm law (28): 

                     E  Φj ,     (6.41) 

where the effective electric field E is the (minus) gradient of the electrochemical potential, rather of the 
electrostatic potential: 

        
q


  EΦE .     (6.42) 

 The physics of this extremely important result22 may be explained in two ways. First, let us have 
a look at the energy spectrum of a uniform, degenerate Fermi gas confined in a volume of finite size. In 
order to ensure such a confinement, we need a piecewise-constant potential U(r) - a “hard-wall, flat-

20 Since we consider w0 as a function of two independent arguments r and p, taking its gradient, i.e. 
differentiation of this function over r, does not involve its differentiation over the kinetic energy  - which is a 
function of p only. 
21 In electronic engineering literature, variable q   + q , called the local Fermi level, is more frequently used. 
22 Relation (42) does not include the phenomenological parameter  of the relaxation-time approximation, so that 
it is more general than the RTA. Indeed, Eq. (42) is based on the relation between the second and third terms in 
the left-hand part of the rather general Eq. (10). 

Electro- 
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Effective 
electric 
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bottom potential well” – see Fig. 5a. (In a solid conductor, such profile is readily provided by the crystal 
lattice of positively charged ions of the crystal lattice.) The well should be of a sufficient depth U0 > F 
 T = 0 in order to provide the confinement of the overwhelming majority of the particles, with energies 
below or slightly above the Fermi level F. This means that there should be a substantial energy gap, 

               TU   0 ,     (6.43) 

between the Fermi energy of a particle inside the well, and its potential energy outside the well. (The 
latter value is usually called the vacuum level.) The difference defined by Eq. (43) is called the 
workfunction;23 for most metals, its is between 4 and 5 eV, so that relation  >> T is well fulfilled for 
the room temperatures (T ~ 0.025 eV) - and actually for all temperatures up to material’s evaporation 
point. 

  

  

 

 

 

 

 

 

 Now let us consider two conductors, with different values of , separated by a small gap d – see 
Fig. 5b,c. Panel (b) shows the case when the electric field E = -   in the free-space gap between the 
conductors equals zero, i.e. their electrostatic potentials   are equal.24 If there is an opportunity for 
particles to cross the gap (e.g., by either the thermally-activated hopping over the potential barrier, 
discussed in Secs. 5.6-5.7, or quantum-mechanical tunneling through it), there will be an average flux of 
particles from the conductor with the higher Fermi level to that with the lower Fermi level,25 because the 
chemical equilibrium requires their equality – see Secs. 1.5 and 2.7. If the particles have an electric 
charge (as electrons do), the equilibrium will be automatically achieved by them recharging the effective 
capacitor formed by the conductors, until the electrostatic energy difference q reaches the value 
reproducing that of the workfunctions (Fig. 5c). According to Eq. (43), at the recharging, sum (  + ) 
of each conductor has to stay constant, so that for the equilibrium potential difference26 we may write 

                q .     (6.44) 

23 Sometimes also called the “electron affinity”, though the latter term is mostly used for atoms and molecules. 
24 In semiconductor physics and engineering, the situation shown in Fig. 5b is called the flat-band condition, 
because in semiconductors, any electric field at the surface leads to band bending – a gradual spatial change of the 
background potential U0 and hence of all energy band/gap edges. For a discussion of the band bending and its 
effects on semiconductor device operation, see, e.g., either Chapter 6 in J. Hook and H. Hall, Solid State Physics, 
2nd ed. Wiley, 1991, or Chapter 3 in S. Sze, Semiconductor Devices, 2nd ed., Wiley, 2001. 
25 As measured from a common reference value, for example from the vacuum level. 
26 In physics literature, it is usually called the contact potential difference, while in electrochemistry (for which it 
is one of the key notions), the term Volta potential is more common. 

(a)         (b)   (c)

Fig. 6.5. Potential profiles of (a) a single conductor and (b,c) a system 
of two closely located conductors, for two different biasing conditions: 
(b) zero electrostatic field (“flat-band”), and (c) zero voltage V  .  
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At this equilibrium, the electric field in the gap between the conductors is  

          
qqdd

 
 nn

ΔΔ
E ;    (6.45) 

in Fig. 5c the field is clearly visible as the tilt of the electric potential profile. Comparing Eq. (45) with 
definition (42) of the effective electric field E, we see that the transport equilibrium, i.e. the absence of 
current, is achieved exactly when E = 0, in accordance with Eq. (41). 

 Another interpretation of Eq. (41) may be achieved by modifying Eq. (38) for the particular case 
of a classical gas. Indeed, the gas’ local density n  N/V obeys Eq. (3.32), which may be presented as 
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.     (6.46) 

Taking the spatial gradient of the both parts of this relation (at constant T), we get 

                    


T

n

TT
n 







 exp

1
const ,    (6.47) 

so that  = (T/n)n, and Eq. (41), with  given by Eq. (32), may be recast as 
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j .   (6.48) 

Hence the current may be viewed as consisting of two independent parts: one due to the “usual” electric 
field E = -, and another due to the particle diffusion – see Eq. (5.118) and its discussion. This is 

exactly the physics of the “mysterious” term  in Eq. (42), though it may be presented in the simple 
form (48) only in the classical limit. 

 Besides being very useful for practice,27 Eq. (48) gives us a pleasant surprise. Namely, plugging 
it into the continuity equation for electric charge, 

0
)(





j

t

qn
,     (6.49) 

we get (after the division of all terms by q/m) the so-called drift-diffusion equation:28 
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with  ,2 .    (6.50) 

Comparing it with Eq. (5.122), we see that the drift-diffusion equation is identical to the Smoluchowski 
equation,29 if we identify ratio /m with mobility m = 1/: 

    


 1
m 

m
,     (6.51) 

27 In particular, in physics of semiconductor devices, where electrons in the conduction band, and holes in the 
valence band, may be frequently treated as nearly-ideal classical gases. 
28 Sometimes this term is associated with Eq. (52). 
29 And hence, at negligible U, identical to the diffusion equation (5.116). 

Drift- 
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and hence the following combination, T/m, with the diffusion constant D – see (5.78). As a result, Eq. 
(48) is frequently rewritten as an expression for the particle flow density jn  njw = j/q: 

          nDqnμmn  Ej .     (6.52) 

 This similarity may look surprising. Indeed, our (or rather Einstein’s :-) treatment of the 
Brownian motion in Chapter 5 was based on a strong hierarchy of the total system, consisting of a large 
“Brownian particle” in an environment of many smaller particles – “molecules”. On the other hand, in 
this chapter we are considering a gas of similar particles. Nevertheless, the equations describing the 
dynamics of their probability distribution, are the same – at least within the framework of the Boltzmann 
transport equation with the relaxation-time  approximation (17) of the scattering integral.  

 The origin of this similarity is that Eq. (12) is applicable to Brownian particles as well, with each 
“scattering” event being the particle’s hit by a random molecule. Since, due to the mass hierarchy, the 
particle momentum change at each such event is small, the scattering integral has to be local, i.e. depend 
only on w at the same momentum p as the left-hand part of the Boltzmann equation, so that the 
relaxation time approximation (17) is absolutely natural. But the same is true for collisions of similar 
particles, if they are dominated by small-angle scattering, as true, for example, for Coulomb scattering.30 

 Returning to the electric field duality (E  E), recovered in our analysis, it raises a natural 
question: which of these fields we are speaking about in the everyday and laboratory practice? Upon 
some contemplation, the reader should agree that most of our electric field measurements are done 
indirectly, by measuring corresponding voltages – with voltmeters. A vast majority of these instruments 
belong to the electrodynamic variety that is based on the measurement of a small current flowing 
through the voltmeter. As Eq. (41) shows, electrodynamic voltmeters measure the electrochemical 
potential difference . However, there exist a rare breed of electrostatic voltmeters (also called 
“electrometers”) that measure the electrostatic potential difference  between two conductors. One 
way to implement such an instrument is to use a usual, electrodynamic voltmeter, but with the reference 
point set at the flat-band condition (Fig. 5b) between the conductors. This condition may be detected by 
vanishing electric charge on the adjacent surfaces of the conductors, and hence by the absence of its 
modulation in time, caused by a specially arranged periodic variation of the distance between the 
surfaces. Another (less sensitive but also less invasive) way to detect the flat-band condition is to 
measure the voltage at which the force of electrostatic interaction between two conductors, which is 
proportional to E2  ()2, vanishes. 

 

6.5. Thermoelectric effects 

 Now let us extend our analysis even further, to the effects of a finite (though small) temperature 
gradient. Again, since for any of statistics (20), the average occupancy N() is a function of just one 
combination of all its arguments,    ( - )/T, its partial derivatives obey not only Eq. (37), but also the 
following relation:  
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30 See, e.g., CM Sec. 3.7. 
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As a result, Eq. (38) is generalized as 
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giving the following generalization of Eq. (39):
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 Φ~ 0 v .    (6.55) 

Now, repeating the current density calculation, we get a result which is traditionally presented as 

            T  S Φj ,     (6.56) 

where constant S, called the Seebeck coefficient31 (or the “thermoelectric power”, or just 
“thermopower”) is defined by the following relation: 

         
 

   






 d

N

T
m

gq















 

 )(
8

3

4

2 0

2/13
3


S .   (6.57) 

 Working out this integral for the most important case of a degenerate Fermi gas, with T << F, 
we have to be careful, because the center of the sharp peak of the last factor under the integral coincides 
with the zero point of the previous factor, ( - )/T. This uncertainty may be resolved using the 
Sommerfeld expansion formula (3.59). Indeed, for a smooth function f() defined by Eq. (3.60), so that 
f(0) = 0, we may use (3.61) to rewrite the formula as 
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In particular, for integral (57), we may take f()  (8m3)1/2( - )/T. (Evidently, for this function, 
condition f(0) = 0 is satisfied.) Then f() = 0, d2f/d2= = 3(8m)1/2/T  3(8mF)1/2/T, and Eq. (57) yields 
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S .    (6.59) 

Comparing the result with Eq. (31), for constant S  we get a simple expression independent of :32 
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S ,     (6.60) 

where cv  CV/N is the heat capacity of the gas per unit particle, given by Eq. (3.70).  

31 Named after T. Seebeck who experimentally discovered, in 1821 (independently of J. Peltier), the effect 
expressed by Eq. (62).  
32 Again, such independence infers that Eq. (60) should have a broader validity than in our simple model of an 
isotropic gas. This is indeed the case: at T << F, this result turns out to be valid for any form of the Fermi surface, 
and for any dispersion law (p). 
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 In order to understand the physical meaning of the Seebeck coefficient, it is sufficient to consider 
a conductor carrying no current. For this case, Eq. (56) yields  

        0Φ  TS .     (6.61) 

Thus, the temperature gradient creates the oppositely directed gradient of the effective electric 
potential , i.e. the effective field E defined by Eq. (42). This is the Seebeck effect. Figure 6 shows the 
standard way of its measurement, using a usual (electrodynamic) voltmeter that measures the difference 
of potentials , and a connection (in this context, called thermocouple) of two different materials, with 
different coefficients S.  Integrating Eq. (61) around the loop from point A to point B, and neglecting the 
temperature drop across the voltmeter, we get the following simple expression for the thermally-induced 
difference of the electrochemical potential, frequently also called the either the thermoelectric power or 
“thermo e.m.f.”: 
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(Note that according to Eq. (62), any attempt to measure such voltage across any two points of a uniform 
conductor would give results depending on the voltmeter lead materials, due to the unintentional 
gradient of temperature in them.) 

 

 

 

 

 

 

 

 

 Using thermocouples is a popular, inexpensive method of temperature measurement – especially 
in the few-hundred-C range (where gas- and fluid-based thermometers are not too practicable), if a 
1C-scale accuracy is sufficient. The “responsivity” (S1 – S2) of a typical popular thermocouple, 

chromel-constantan,33 is about 70 V/C. In order to understand why typical values of S are so small, let 
us discuss Seebeck effect’s physics. Superficially, it is very simple: particles, heated by an external 
source, diffuse from it toward the colder parts of the conductor, carrying electrical current with them if 
they are charged. However, this naïve argument neglects the fact that at j = 0, there should be no total 
flow of particles. For a more accurate interpretation, note that the Seebeck effect is described by the 
factor ( - )/T in integral (57), which changes sign at the Fermi surface, i.e. at the same energy where 
the term (-N()/), describing the state availability for transport (due to their intermediate occupancy 

33 Both these materials are alloys, i.e. solid solutions: chromel is 10% chromium in 90% nickel, while constantan 
is 45% nickel and 55% copper. 

Fig. 6. The Seebeck effect in a thermocouple. 
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0 < N() < 1), reaches its peak. The only reason why that integral does not vanish completely, and 
hence S  0, is the growth of first factor under the integral (which describes the number of available 

quantum states) with , so the hotter  particles (with  > ) are more numerous and carry more heat then 
the colder ones. 

 The Seebeck effect is of course not the only result of temperature gradient; the same diffusion of 
hotter particles also causes a flow of heat from the region of higher T to those with lower T, i.e. the 
effect of thermal conductivity, well known from our everyday practice. The heat (i.e. thermal energy) 
flow density may be calculated similarly to that of the electric current – see Eq. (26), with the natural 
replacement of the electric charge q of each particle with the thermal energy ( - ) of its state:34 

               pwdh
3vj  .     (6.63) 

Again, at equilibrium (w = w0) the heat flow vanishes, so that w may be replaced with its perturbation 
w~ , which already has been calculated – see Eq. (55). The substitution of that expression into Eq. (63), 
and its transformation exactly similar to the one perform above for the electric current j, yields35 

          Th    ΦΠj ,      (6.64) 

with coefficients  and  defined by equalities 
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Besides the missing factor T in the denominator, integral in Eq. (65) is the same as in Eq. (57), so that 
constant  (called the Peltier coefficient), is simply and fundamentally related to the Seebeck 
coefficient:36 

           TS .      (6.67) 

34 One more way to look at Eq. (63) is as at the difference between the total energy flow density, je = vwd3p, and 
the product of a constant () by the particle flow density, jn = vwd3p = j/q. 
35 The expression given by the second term of this relation, jh’ = -T, is much more general than our analysis: 
for small temperature gradients it is valid in virtually any medium – for example, in insulators, where the first 
term of Eq. (64) vanishes. (In the general case, the thermal conductivity  is of course different from that given by 
Eq. (66).) As a result, this relation has its own name – the Fourier law, because it has been first suggested by the 
same universal genius J.-B. J. Fourier - who has not only developed such a key mathematical tool as the Fourier 
series, but also discovered what is now called the greenhouse effect! 
36 The simplicity of this relation (first discovered experimentally in 1854 by W. Thompson, a.k.a. Lord Kelvin) is 
not occasional. This is one of fundamental Onsager reciprocal relations between kinetic coefficients (L. Onsager, 
1931), which are model-independent, i.e. valid within very general assumptions. Unfortunately, I have no time 
left for a discussion of this interesting topic, and have to refer the interested reader, for example, to Sec. 120 in L. 
Landau and E. Lifshitz, Statistical Physics, 3rd ed., Pergamon, 1980. Note, however, that the range of validity of 
the Onsager relations is still debated – see, e.g., K.-T. Chen and P. Lee, Phys. Rev. B 79, 18 (2009). 
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On the other hand, integral (66) may be readily calculated, for the most important case of a 
degenerate Fermi gas, using the Sommerfeld expansion (58) with f()  (8m3)1/2( - )2/T, for which 
f() = 0 and d2f/d2= = 2(8m3)1/2/T  2(8mF

3)1/2/T, so that 
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Comparing the result with the first form of Eq. (31), we get the so called Wiedemann-Franz law37  
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3 q
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 .      (6.69) 

 This relation between the electric conductivity  and thermal conductivity   is more general 
than our formal derivation might imply. Indeed, it is straightforward to show that the Wiedemann-Franz 
law is also valid for an arbitrary dispersion law anisotropy (i.e. arbitrary Fermi surface shape) and, 
moreover, well beyond the relaxation-time approximation. (For example, it is also valid for scattering 
integral (12) with an arbitrary angular dependence of rate , provided that scattering is elastic.) 
Experiments show that the law is well obeyed by most metals, but only at relatively low temperatures T 
<< TD, when the thermal conductance due to electrons is well above the one due to lattice vibrations, i.e. 
phonons – see Sec. 2.6. (Note also that Eq. (69) is not valid for classical gases – see Problem 2.) 

 Now let us discuss the less evident, first term of Eq. (64). It describes the so-called Peltier effect, 
which may be measured in the geometry similar to that shown in Fig. 6, but driven by an external  
voltage source – see Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 The voltage drives certain dc current I = jA (where A is conductor’s cross-section area), 
necessarily the same in the whole loop. However, according to Eq. (64), if materials 1 and 2 are 

37 It was named after G. Wiedemann and R. Franz who noticed the constancy of ratio / for various materials, at 
the same temperature, as early as in 1853. The direct proportionality of the ratio to the absolute temperature was 
noticed by L. Lorenz in 1872. Due to this contribution, the Wiedemann-Franz law is frequently presented as / = 
LT, where constant L, called the Lorenz number, in SI units is close to 2.4510-8 W/K2. Theoretically, Eq. (69) 
was derived in 1928 by A. Sommerfeld.  

Fig. 7. The Peltier effect. 
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different, power P = jHA of the heat flow is different in two parts of the loop. Indeed, if the whole 

system is kept at the same temperature (T = 0), integration of the equation over the cross-section yields 

        
 

2,1
2,1

2,12,12,1 )()(








j

j

I
hP

.    (6.70) 

This means that in order to sustain the constant temperature, the following power difference, 

                I21 P ,     (6.71) 

has to be extracted from one junction of the two materials, and inserted into another junction. If a 
constant temperature is not maintained, the former junction is heated, while the latter one is cooled (on 
the top of the bulk, Joule heating), thus implementing a thermoelectric heat pump / refrigerator. Such 
refrigerators, with no moving parts and gas/fluid materials, are very convenient for modest (by a few 
tens C) cooling of relatively small components of various systems - from sensitive radiation detectors 
in spacecraft, all the way to cold drinks in vending machines. It is straightforward to use above formulas 
to show that the efficiency of active materials used in such thermoelectric refrigerators may be 
characterized by the following dimensionless figure-of-merit,  

        TZT


 2S
 .     (6.72) 

For the best thermoelectric materials found so far, ZT is in the range from 2 to 3, providing the 
coefficient of performance, defined by Eq. (1.69), of the order of 0.5 - a few times lower than that of 
traditional, mechanical refrigerators. The search for composite materials (including those with 
nanoparticles) with higher values of ZT  is one of very active fields of applied solid state physics.38 

 Let me finish this chapter (and this course, and this series :-) by emphasizing again that due to 
time/space restrictions I was able to barely scratch the surface of physical kinetics.39  

 

6.6. Exercise problems 

 6.1. Use the relaxation-time approximation of the Boltzmann equation to prove the Drude 
formula for the complex conductivity at frequency , 




i


1

)0(
)( , 

where (0) is the dc conductivity given by Eq. (6.30) of the lecture notes, and give a physical 
interpretation of the formula. 
 

38 See, e.g., D. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano, CRC Press, 2005. 
39 A much more detailed coverage of this important part of physics may be found, for example, in the textbook by 
L. Pitaevskii and E. Lifshitz, Physical Kinetics, Butterworth-Heinemann, 1981. A detailed discussion of its 
applications to mechanical engineering may be found, e.g., in T. Bergman et al., Fundamentals of Heat and Mass 
Transfer, 7th ed., Wiley, 2011.  

Peltier  
effect 
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 6.2. Use the variable separation method to calculate the time evolution of the particle density 
distribution in space, provided that at t = 0, the particles are released from their uniform distribution in a 
wide box of thickness 2a: 



 


          otherwise.  ,0

,for  ,0 axan
n  

  
 6.3. For the 1D version of the diffusion equation (i.e. of the drift-diffusion equation (6.50) with 
T/m  D, and without the drift-inducing field, U = 0),  









x
x

n
D

t

n
for  ,

2

2

, 

find an appropriate spatial-temporal Green’s function, and use it to solve the previous problem. 
 
 6.4.* Calculate the electric conductance of a narrow, uniform conducting channel between two 
bulk conductors, in the low-voltage and low-temperature limit, neglecting the electron interaction and 
scattering inside the channel. 
 
 6.5. Calculate the electric conductivity , the thermal conductivity , as well as the 
thermoelectric coefficients S and , for a classical, ideal gas of electrically charged particles. Compare 
the results with those for the degenerate Fermi gas, derived in the lecture notes. 
 
 6.6. Derive a partial differential equation describing the time evolution of temperature 
distribution in a medium with negligible thermal expansion and with temperature-independent specific 
heat cV and thermal conductivity , given by the Fourier law 

Th j . 

  
 6.7. Use the equation derived in the previous problem to calculate the time evolution of 
temperature in the center of a uniform solid sphere of radius R, initially heated to temperature Ti, and at t 
= 0 placed into a heat bath that keeps its surface at temperature T0.  
 
 6.8. Suggest a reasonable definition of the entropy production rate (per unit volume), and 
calculate this rate for a stationary thermal conduction, assuming that it obeys the Fourier law, in a 
material with negligible thermal expansion. Give a physical interpretation of the result. Does the 
stationary temperature distribution in a sample correspond to the minimum of the total entropy 
production in it? 
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Appendix MA  

Selected Mathematical Formulas 
that are used in this lecture course series,  

but not always remembered by students (and some instructors :-) 
 

1. Constants 

 - Euclidean circle’s length-to-diameter ratio: 

         77.1...;653592141.3 2/1   .    (1.1) 

 - Natural logarithm base: 

                   ...828281718.2
1

1lim 





  

n

n
e n  ;    (1.2a) 

from that value, the logarithm base conversion factors are as follows ( > 0): 

          434.0
10ln

1

ln

log
,303.210ln

log

ln 10

10








.   (1.2b) 

 - The Euler (or “Euler-Mascheroni”) constant: 

              781.1;900.57715664ln
1

...
3

1

2

1
1lim 






  

 en
nn .  (1.3) 

 

2. Combinatorics, sums, and series 

(i) Combinatorics 

 - The number of different permutations, i.e. ordered sequences of k elements selected from a set 
of n distinct elements (n  k), is 

                
)!(

!
)1(...)1(

kn

n
knnnPk

n


 ;    (2.1a) 

in particular, the number of different permutations of all elements of the set (n = k) is

      !12...)1( kkkPk
k  .     (2.1b)
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 - The number of different combinations, i.e. unordered sequences of k elements from a set of n  
k distinct elements, is equal to the binomial coefficient 

     
)!(!

!

knk

n

P

P

k

n
C

k
k

k
n

k
n











  .   (2.2) 

In an alternative, very popular “ball/box language”, nCk is the number of different ways to put in a box, 
in an arbitrary order, k balls selected from n distinct balls.  

 - A generalization of the binomial coefficient notion is the multinomial coefficient,  

                  , with  ,
!!...!

!

121
21 ,..., 




l

j
j

l
l

n kn
kkk

n
C kkk    (2.3) 

which, in the standard mathematical language, is a number of different permutations in a multiset of l 
distinct element types from an n-element set which contains kj (j = 1, 2,…l) elements of each type. In the 
“ball/box language”, the coefficient (2.3) is the number of different ways to distribute n balls between l 
distinct boxes, each time keeping the number (kj) of balls in the j-th box fixed, but ignoring their order 
inside the box. The binomial coefficient nCk (2.2), is a particular case of the multinomial coefficient 
(2.3) for l = 2 - counting the explicit box for the first one, and the remaining space for the second box, so 
that if k1  k, then k2 = n – k. 

 - One more important combinatorial quantity is the number Mn
(k) of ways to place n 

indistinguishable balls into k distinct boxes. It may be readily calculated from Eq. (2.2) as the number of 
different ways to select (k – 1) partitions between the boxes in an imagined linear row of (k – 1 + n) 
“objects” (balls in the boxes and partitions between them): 

     
 
  !!1

!1
1

1)(

nk

nk
CM k

knk
n 


 

 .     (2.4) 

(ii) Sums and series 

 - Arithmetic progression: 

            
2

)(
...2

1

nrrn
krnrrr

n

k


 



;    (2.5a) 

in particular, at r = 1 it is reduced to the sum of n first natural numbers: 

     .
2

)1(
...21

1


 



nn
kn

n

k

    (2.5b) 

 - Sums of squares and cubes of n first natural numbers: 

     
6

)12)(1(
...21

1

2222 
 



nnn
kn

n

k

;    (2.6a) 

     
4

)1(
...21

22

1

3333 
 



nn
kn

n

k

.    (2.6b) 

 - The Riemann zeta function: 
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1

1
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3

1

2

1
1)(

k
sss k

s ;    (2.7a) 

the particular values frequently met in applications are 

             .037.15,
90

)4(,202.13,341.1
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2,612.2
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   (2.7b) 

- Finite geometric progression (for real   1): 

           






 






1

1
...1

1

0

12
nn

k

kn ;    (2.8a) 

in particular, if  2 < 1, the progression has a finite limit at n   (called the geometric series): 

     .
1

1
lim

0

1
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k

k
n

k

k
n     (2.8b) 

 - Binomial sum (or the “binomial theorem”): 

               k
n

k
k

nn aCa 



0

1 ,     (2.9) 

where nCk are the binomial coefficients defined by Eq. (2.2). 

 - The Stirling formula: 

        ...
360

1

12

1
)2ln(

2

1
)1(ln!lnlim

3
 nn

nnnnn  ;   (2.10) 

for most applications in physics, the first term1 is sufficient. 

 - The Taylor (or “Taylor-Maclaurin”) series: for any infinitely differentiable function f (): 
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 ; (2.11a) 

note that for many functions this series converges only within a limited, sometimes small range of 
deviations x~ . For a function of several arguments, f(1,2,…,N), the first terms of the Taylor series are 

            ...
~~
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,...,,...,,...)
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 (2.11b) 

 - The Euler-Maclaurin formula, valid for any infinitely differentiable function f(): 
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 (2.12a) 

1 Actually, this leading term was derived by A. de Moivre in 1733, before the J. Stirling’s work. 
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the coefficients participating in this formula are the so-called Bernoulli numbers:2 

 ,...
30

1
,0,

42

1
,0,

30

1
,0,

6

1
,

2

1
87654321  BBBBBBBB . (2.12b) 

  

3. Basic trigonometric functions 

 - Trigonometric functions of the sum and the difference of two arguments: 3 

               bababa sinsincoscoscos  ,    (3.1a) 

                bababa sincoscossinsin  .    (3.1b) 

 - Sums of two functions of arbitrary arguments: 

          
2

cos
2

cos2coscos
abba

ba


 ,    (3.2a) 

          
2

sin
2

sin2coscos
abba

ba


 ,    (3.2b) 

          
2

cos
2

sin2sinsin
abba

ba


 .    (3.2c) 

 - Trigonometric function products: 

        )cos()cos(coscos2 bababa  ,    (3.3a) 

        )sin()sin(cossin2 bababa  ,    (3.3b) 

        )cos()cos(sinsin2 bababa  ;    (3.3c)  

For the particular case of equal arguments, b = a, these three formulas yield the following expressions 
for the squares of trigonometric functions, and their product: 

               aaaaaaa 2cos1
2

1
sin,2sin

2

1
cossin,2cos1

2

1
cos 22  . (3.3d) 

 - Cubes of trigonometric functions: 

                .3sin
4

1
sin

4

3
sin,3cos

4

1
cos

4

3
cos 33 aaaaaa     (3.4) 

 - Trigonometric functions of a complex argument: 

  
.sinhsincoshcos)( cos

,sinhcoscoshsin)(sin

baibaiba

baibaiba




    (3.5) 

2 Note that definitions of Bk (or rather their signs and indices) vary even in the most popular handbooks.  
3 I am confident that the reader is quite capable of deriving relations (3.1) by representing exponent in the 
elementary relation ei(a  b) = eiaeib as a sum of its real and imaginary parts, Eqs. (3.3) directly from Eqs. (3.1), and 
Eqs. (3.2) from Eqs. (3.3) by variable replacement; however, I am still providing these formulas to save his or her 
time. (Quite a few formulas below are included because of the same reason.) 
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 - Sums of trigonometric functions of n equidistant arguments: 
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2
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.   (3.6) 

 

4. General differentiation 

 - Full differential of a product of two functions:  

          ).()()( dgfgdffgd       (4.1) 

 - Full differential of a function of several independent arguments, f(1, 2,…, n): 

      k

n

k k

d
f

df 


 



1

.     (4.2) 

 - Curvature of the Cartesian plot of a 1D function f(): 

       
   2/32

22
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ddf

dfd

R 
 .     (4.3) 

 

5. General integration 

 - Integration by parts - immediately follows from Eq. (4.1): 
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B .     (5.1) 

 - Numerical (approximate) integration of 1D functions: the simplest trapezoidal rule, 
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  (5.2) 

has relatively low accuracy (error of the order of (h3/12)d2f/d2 per step), so that the following Simpson 
formula, 

   ,
2

,)()(4...)2(2)(4)(
3

)(
N

ab
hbfhbfhafhafaf

h
df

b

a


   (5.3) 

whose error per step scales as (h5/180)d4f/d4, is used much more frequently.4  

 

4 Higher-order formulas (e.g., the Bode rule), and other guidance including ready-for-use codes for computer 
calculations may be found, for example, in the popular reference texts by W. H. Press et al., cited in Sec. 16 
below. Besides that, some advanced codes are used as subroutines in the software packages listed in the same 
section. In some cases, the Euler-Maclaurin formula (2.12) also may be useful for numerical integration. 
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6. A few 1D integrals5 

(i) Indefinite integrals 

 - Integrals with (1 + 2)1/2: 

                 
2/122/122/12 1ln

2

1
1

2
1  d ,   (6.1) 

               
 

  


2/12
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1ln
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d
,    (6.2a) 
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d
.     (6.2b) 

 - Miscellaneous indefinite integrals: 
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,    (6.3a) 

        
 

4

2

5

2

8

122cos2sin2cossin





 




 d ,   (6.3b) 
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(6.3c) 

                

 1

2
tan

1



d

.     (6.3d) 

(ii) Semi-definite integrals: 

 - Integrals with 1/(e 1): 

 ae
e

d

a






1ln
1


,     (6.4a) 

.
1

1
ln

10
aee

d

a











    (6.4b) 

(iii) Definite integrals 

 - Integrals with 1/(1 + 2):6 

        
210

2










d

,     (6.5a) 

5 A powerful (and free :-) interactive online tool for working out indefinite 1D integrals is available at 
http://integrals.wolfram.com/index.jsp.  
6 Eq. (6.5a) follows immediately from Eq. (6.3d), and Eq. (6.5b) from Eq. (6.2b) – a couple more examples of the 
(intentional) redundancy of this list. 
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more generally, 
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 - Integrals with (1 -  2n)1/2: 
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dn  ,    (6.6b) 

where (s) is the gamma-function, which is most often defined (for Re s > 0) by the following integral: 

              




0

)(1 sdes   .     (6.7a) 

The key property of this function is the recurrence relation, valid for any s  0, -1, -2,…, is 

                 )()1( sss  .     (6.7b) 

Since, according to Eq. (6.7a), (1) = 1, Eq. (6.7b) for non-negative integers takes the form 

           ,...2,1,0for  ,!)1(  nnn        (6.7c) 

(where 0!  1). Because of this, for integer s = n + 1  1, Eq. (6.7a) is reduced to 

           




0

!nden   .     (6.7d)  

Other frequently met values of the gamma-function are those for positive semi-integer arguments: 

        ...,
2

5

2

3

2

1

2

7
,

2

3

2

1

2

5
,

2

1

2

3
,

2

1 2/12/12/12/1  


























  . (6.7e) 

- Integrals with 1/(e 1): 
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where (s) is the Riemann zeta-function – see Eq. (2.6). Particular cases: for s = 2n, 
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.     (6.8d) 

where Bn are the Bernoulli numbers – see Eq. (2.12). For the particular case s = 1 (when Eq. (6.8a) 
yields uncertainty), 

          2ln
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d
.      (6.8e) 

 - Integrals with exp{- 2}: 
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for applications the most important particular values of s are 0 and 2: 
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though we will also run into the cases s = 4 and s = 6: 
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for odd integer values s = 2n + 1 (with n = 0, 1, 2,…), Eq. (6.9a) takes a simpler form: 
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       (6.9e) 

 - Integrals with cosine and sine functions: 
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 - Integrals with logarithms: 
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 - Integral representations of the Bessel functions of integer order: 

              







ikini
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7. 3D vector products 

(i) Definitions: 

 - Scalar (“dot-“) product:   

      



3

1j
jjbaba ,     (7.1) 

where aj and bj are vector components in any orthogonal coordinate system. In particular, the vector 
squared (the same as its norm squared) is: 

        
2

3

1

22 aaa  
j

jaa .     (7.2) 

 - Vector (“cross-”) product: 

  

321

321

321

122133113223321 )()()(

bbb

aaababababababa

nnn

nnnba  , (7.3) 

where {nj} is the set of mutually perpendicular unit vectors7 along the corresponding coordinate system 
axes.8 In particular, Eq. (7.3) yields 

           .0aa       (7.4) 

(ii) Corollaries (readily verified by Cartesian components): 

 - Double vector product (the so-called bac minus cab rule): 

             )()()( baccabcba  .     (7.5) 

 - Mixed scalar-vector product (called the operand rotation rule): 

                   bacacbcba  .    (7.6) 

 - Scalar product of vector products: 

                cbdadbcadcba  ;    (7.7a) 

in the particular case of two similar operands (say, a = c and b = d), the last formula is reduced to 

7 Other popular notations for this vector set are { je } and { jr̂ }. 
8 It is easy to use Eq. (7.3) to check that the direction of the product vector corresponds to the well-known “right-
hand rule” and to the even more convenient corkscrew rule: if we rotate a corkscrew's handle from the first 
operand toward the second one, its axis moves in the direction of the product. 
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          222 )()( baba  ab .     (7.7b) 

 

8. Differentiation in 3D Cartesian coordinates 

 - Definition of the del (or “nabla”) vector-operator : 9 

               
 




3

1j j
j r

n ,      (8.1) 

where rj is a set of linear and orthogonal (called Cartesian) coordinates along directions nj. In 
accordance with this definition, the operator  acting on a scalar function of coordinates, f(r),10 gives its 
gradient, i.e. a new vector: 
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f
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j j
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1

gradn 



 


 .     (8.2) 

 - The scalar product of del by a vector function of coordinates (a vector field), 

               



3

1

)()(
j

jj f rnrf ,      (8.3) 

compiled formally following Eq. (7.1), is a scalar function – the divergence of the initial function: 
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while the vector product of  and f, formed in a formal accordance with Eq. (7.3), is a new vector - the 
curl (in European tradition, called rotor and denoted rot) of  f: 
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  (8.5) 

 - One more frequently met “product” is (f)g, where f and g are two arbitrary vector functions 
of r. This product should be also understood in the sense implied by Eq. (7.1), i.e. as a vector whose j-th 
Cartesian component is 

              .
3

1

 




j' j'

j
j'j r

g
fgf       (8.5) 

 
9. The Laplace operator 2  

 - Expression in Cartesian coordinates - in the formal accordance with Eq. (7.2): 

9 One can run into the following notation:   /r, which is convenient is some cases, but may be misleading in 
quite a few others, so it will be not used in these notes. 
10 In this, and four next sections, all scalar and vector functions are assumed to be differentiable. 



Essential Graduate Physics                     MA: Math Appendix 

 
Selected Mathematical Formulas        Page 11 of 16 
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.     (9.1)  

 - According to its definition, the Laplace operator acting on a scalar function of coordinates 
gives a new scalar function: 
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j jr

f
fff grad .    (9.2) 

  - On the other hand, acting on a vector function (8.3), operator 2 returns another vector: 
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 Note that Eqs. (9.1)-(9.3) are only valid in Cartesian (i.e. orthogonal and linear) coordinates, but 
generally not in other (even orthogonal) coordinates – see, e.g., Eqs. (10.3), (10.6), (10.9), and (10.12) 
below. 

 

10. Operators  and 2 in the most important systems of orthogonal coordinates11 

(i) Cylindrical12 coordinates {, , z} (see Fig. below) may be defined by their relations with the 
Cartesian coordinates: 
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 - Gradient of a scalar function: 
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 - The Laplace operator of a scalar function: 
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 - Divergence of a vector function of coordinates (f = n f + n f + nz fz): 
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11 Some other orthogonal curvilinear coordinate systems are discussed in EM Sec. 2.3.
12 In the 2D geometry with fixed coordinate z, these coordinates are called polar. 
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 - Curl of a vector function: 
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 - The Laplace operator of a vector function: 
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(ii) Spherical coordinates {r, , } (see Fig. below) may be defined as: 
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 - Gradient of a scalar function: 
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 - The Laplace operator of a scalar function: 
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 - Divergence of a vector function f = nr fr + n f + n f : 
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 - Curl of a similar vector function: 
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 - The Laplace operator of a vector function: 
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11. Products involving   

(i) Useful zeros: 

 - For any scalar function )(rf , 

       0) (  ff gradcurl .    (11.1) 

 - For any vector function )(rf , 

         .0) (div  fcurlf      (11.2) 

 (ii) Laplace operator expressed via the curl of a curl: 

          fff  2 .     (11.3) 

(iii) Spatial differentiation of a product of a scalar function by a vector function: 

 - The scalar 3D generalization of Eq. (4.1) is 

          ggg   fff .     (11.4a) 

 - Its vector generalization is similar:  

                    ggg   fff .    (11.4b) 

(iv) 3D spatial differentiation of products of two vector functions: 

                      fggfgfgfgf   ,   (11.5) 

                 fggffggfgf   ,   (11.6) 

                gffggf   .    (11.7) 

 

12. Integro-differential relations 

 (i) For an arbitrary surface S limited by closed contour C: 

 - The Stokes theorem, valid for any differentiable vector field f(r): 

                  
CCS

n

S

drfdrdd rffrf 22  ,   (12.1) 

where d2r  nd2r is the elementary area vector (normal to the surface), and dr is the elementary contour 
length vector (tangential to the contour line). 

(ii) For an arbitrary volume V limited by closed surface S: 

 - Divergence (or “Gauss”) theorem, valid for any differentiable vector field f(r): 

                
S

n
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 - Green’s theorem, valid for two differentiable scalar functions f(r) and g(r): 
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 - An identity valid for any two scalar functions f and g, and a vector field j with j = 0 (all 
differentiable): 
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13. The Kronecker delta and Levi-Civita permutation symbols 

 - The Kronecker delta symbol (defined for integer indices): 
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 - The Levi-Civita permutation symbol (most frequently used for 3 integer indices, each taking 
one of values 1, 2, or 3): 
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 - Relation between the Levi-Civita and the Kronecker delta products: 
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summation of this relation, written for 3 different values of  j = k, over these values yields the so-called 
contracted epsilon identity: 
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14. Dirac’s delta-function, sign function, and theta-function 

 - Definition of 1D delta-function (for real a < b): 
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where f() is any function continuous near  = 0. In particular (if f() = 1 near  = 0), the definition 
yields 
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 - Relation to the theta-function  () and sign function sgn()  
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 - An important integral:13 
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 - 3D generalization of the delta-function of the radius-vector (the 2D generalization is similar): 
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it may be presented as a product of 1D delta-functions of Cartesian coordinates: 

          ).()()()( 321 rrr  r      (14.6) 

 

15. The Cauchy theorem and integral 

 Let a complex function f(z) be analytic within a part of the complex plane z, that is limited by a 
closed contour C and includes point z’. Then 
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 The first of these relations is usually called the Cauchy integral theorem (or the “Cauchy-
Goursat theorem”), and the second one - the Cauchy integral (or the “Cauchy integral formula”). 

 

16. References 

(i) Properties of some special functions are briefly discussed at the relevant points of the lecture notes; 
in the alphabetical order: 

 - Airy functions: QM Sec. 2.4; 
- Bessel functions: EM Sec. 2.5; 
- Fresnel integrals: EM Sec. 8.6; 

13 The coefficient in this equation may be readily recalled by considering its left-hand part as the Fourier-integral 
presentation of function f(s)  1, and applying Eq. (14.1) to the reciprocal Fourier transform 
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 - Hermite polynomials: QM Sec. 2.10; 
 - Laguerre polynomials (both simple and associated): QM Sec. 3.6; 
 - Legendre polynomials, associated Legendre functions: EM Sec. 2.5 and QM Sec. 3.6; 
 - Spherical harmonics: QM Sec. 3.6; 
 - Spherical Bessel functions: QM Secs. 3.6. 
 

 (ii) For more formulas, and their discussions, I can recommend the following handbooks (in the 
alphabetical order):14 

  - M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Formulas, Dover, 1965 (and 
numerous later printings);15 

  - I. Gradshteyn and I. Ryzhik, Tables of Integrals, Series, and Products,  5th ed., Acad. Press, 1980; 
  - G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed., Dover, 2000; 
  - A. Prudnikov et al., Integrals and Series, vols. 1 and 2, CRC Press, 1986. 

 A popular textbook, 

  - G. Arfken et al., Mathematical Methods for Physicists, 7th ed., Acad. Press, 2012, 

may be also used as a formula manual.  

 Many formulas are also available from the symbolic calculation parts of commercially available 
software packages listed in Sec. (iv) below. 

 

(iii) Probably the most popular collection of numerical calculation codes are the twin manuals 

  - W. Press et al., Numerical Recipes in Fortran 77, 2nd ed., Cambridge U. Press, 1992; 
  - W. Press et al., Numerical Recipes [in C++ - KKL], 3rd ed., Cambridge U. Press, 2007. 

 My lecture notes include very brief introductions into numerical methods of differential equation 
solution: 

 - ordinary differential equations: CM Sec. 3.9, and 
 - partial differential equations: CM Sec. 8.5 and EM Sec. 2.8, 

which include references to literature for further reading. 

(iv) The most popular software packages for numerical and symbolic calculations, all with plotting 
capabilities (in the alphabetical order): 

 - Maple (http://www.maplesoft.com/); 
 - MathCAD (http://www.ptc.com/products/mathcad/); 
 - Mathematica (http://www.wolfram.com/products/mathematica/index.html); 
 - MATLAB (http://www.mathworks.com/products/matlab/). 

 

14 On a personal note, perhaps 90% of all formula needs throughout my research career were satisfied by a tiny, 
wonderfully compiled old book: H. Dwight, Tables of Integrals and Other Mathematical Formulas, 4th ed., 
Macmillan, 1961, whose used copies, rather amazingly, are still available on the Web. 
15 An updated version of this collection is now available online at http://dlmf.nist.gov/ . 
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Selected Physical Constants1 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1 The listed numerical values of the constants are from the most recent (2014) International CODATA 
recommendation (see, e.g., http://physics.nist.gov/cuu/Constants/index.html), besides a newer result for kB  - see 
C. Gaiser et al., Metrologia 52, 217 (2015). Please note the planned (but not yet official) adjustment of the SI 
values - see, e.g. https://www.nist.gov/si-redefinition/meet-constants. In particular, the Planck constant will also 
get a definite value (within the interval specified in the given table), enabling a new, fundamental standard of the 
kilogram. 

Symbol Quantity SI value 
and unit 

Gaussian value 
and unit 

Relative r.m.s. 
uncertainty 

c speed of light  
in free space 

2.997 924 58108  
m/s 

2.997 924 581010  
cm/s 

0 
(defined value) 

G gravitation 
constant 

6.674 1×10−11  
m3/kgs2 

6.674 1×10−8  
cm3/gs2 

~510-5 

 
Planck  

constant 
1.054 5718 0×10−34 

Js 
1.054 571 80×10−27 

ergs 
~110-8 

e elementary 
electric charge 

1.602 176 210-19 

C 
4.803 203×10−10 

statcoulomb 
~610-9 

me 
electron’s rest 

mass 
0.910 938 35×10−30  

kg 
0.910 938 35×10−27  

g 
~110-8 

mp 
proton’s rest 

mass 
1.672 621 90×10−27  

kg 
1.672 621 90×10−24  

g 
~110-8 

0 
magnetic 
constant 

410-7 
N/A2 

- 0 
(defined value) 

0 
electric 
constant 

8.854 187 81710-12 
F/m 

- 0 
(defined value) 

kB Boltzmann 
constant 

1.380 64910-23 
J/K 

1.380 64910-16 
erg/K 

~110-6 



Essential Graduate Physics              CA: Constant Appendix 

 

Selected Physical Constants         Page 2 of 2 

 
 
Comments:  

 1. The fixed value of c was defined by an international convention in 1983, in order to extend the 
official definition of a second (as “the duration of 9,192,631,770 periods of the radiation corresponding 
to the transition between the two hyperfine levels of the ground state of the cesium-133 atom”) to that of 
a meter. The values are back-compatible with the legacy definitions of the meter (initially, as the 
1/40,000,000-th part of the Earth meridian length) and the second (for a long time, as the 1/(246060) 
= 1/86,400-th part of the Earth rotation period), within the experimental errors of those measures.

 2. 0 and 0 are not really the fundamental constants; in the SI system of units one of them (say, 
0) is selected arbitrarily,2 while the other one is defined via relation 00 = 1/c2. 

 3. The Boltzmann constant kB is also not quite fundamental, because its only role is to comply 
with the independent definition of the kelvin (K), as the temperature unit in which the triple point of 
water is exactly 273.16 K. If temperature is expressed in energy units kBT (as is done, for example, in 
the SM part of this lecture note series), this constant disappears altogether. 

 4. The dimensionless fine structure (“Sommerfeld’ s”) constant   is numerically the same in 
any system of units: 

14999035.137

1
10 ×5663527.297

unitsGaussian in   /

units SIin 4/ 3-

2
0

2











ce

ce




 , 

and is known with a much smaller r.m.s. uncertainty (~310-10) than that of the component constants. 

2 Note that the selected value of 0 may be changed (a bit) in a few years - see, e.g., D. Newell, Phys. Today 67, 
No. 7, pp. 35-41 (2014). 
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