28 research outputs found

    A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS

    Get PDF
    VOS is a new mapping technique that can serve as an alternative to the well-known technique of multidimensional scaling. We present an extensive comparison between the use of multidimensional scaling and the use of VOS for constructing bibliometric maps. In our theoretical analysis, we show the mathematical relation between the two techniques. In our experimental analysis, we use the techniques for constructing maps of authors, journals, and keywords. Two commonly used approaches to bibliometric mapping, both based on multidimensional scaling, turn out to produce maps that suffer from artifacts. Maps constructed using VOS turn out not to have this problem. We conclude that in general maps constructed using VOS provide a more satisfactory representation of a data set than maps constructed using well-known multidimensional scaling approaches

    Social Network Analysis and the Study of University Industry Relations

    Get PDF
    The aim of this work is to give an overview on the development of theoretical concepts and methodological approaches to investigate innovation networks, in particular the use of social network analysis in the study of university industry relations. The structure of networks can be analysed through the lens of Social Network Analysis. This methodological approach is described and its fundamental concepts are presented. The paper then reviews the applications of this approach on the study of university industry relations. These relations can be considered as an innovation network, in the sense that the interactions established by its participants have more or less defined innovation goals. Different structures in the relations may result in different innovation outcomes, and the use of SNA may be particularly useful to understand differential outcomes. It is thus important to take stock of the knowledge concerning the efforts that have been made to probe the complex phenomena of university industry relations and, in particular, how approaches based on social network analysis have been used to understand it. This work is based on a review of available literature on the topics. The paper aims at systematizing the information and knowledge related to the application of SNA on university industry networks, highlighting the main research pathways, the main conclusions and pointing possible future research questions.info:eu-repo/semantics/publishedVersio

    What have we learned by applying social network analysis to the study of university industry relations?

    Get PDF
    The aim of this work is to give an overview on the development of theoretical concepts and methodological approaches to investigate innovation networks, in particular the use of social network analysis in the study of university industry relations. The structure of networks can be analysed through the lens of Social Network Analysis. This methodological approach is described and its fundamental concepts are presented. The paper then reviews the applications of this approach on the study of university industry relations. These relations can be considered as an innovation network, in the sense that the interactions established by its participants have more or less defined innovation goals. Different structures in the relations may result in different innovation outcomes, and the use of SNA may be particularly useful to understand differential outcomes. It is thus important to take stock of the knowledge concerning the efforts that have been made to probe the complex phenomena of university industry relations and, in particular, how approaches based on social network analysis have been used to understand it. This work is based on a review of available literature on the topics. The paper aims at systematizing the information and knowledge related to the application of SNA on university industry networks, highlighting the main research pathways, the main conclusions and pointing possible future research questions.info:eu-repo/semantics/publishedVersio

    Hierarchical sequencing of online social graphs

    Full text link
    In online communications, patterns of conduct of individual actors and use of emotions in the process can lead to a complex social graph exhibiting multilayered structure and mesoscopic communities. Using simplicial complexes representation of graphs, we investigate in-depth topology of online social network which is based on MySpace dialogs. The network exhibits original community structure. In addition, we simulate emotion spreading in this network that enables to identify two emotion-propagating layers. The analysis resulting in three structure vectors quantifies the graph's architecture at different topology levels. Notably, structures emerging through shared links, triangles and tetrahedral faces, frequently occur and range from tree-like to maximal 5-cliques and their respective complexes. On the other hand, the structures which spread only negative or only positive emotion messages appear to have much simpler topology consisting of links and triangles. Furthermore, we introduce the node's structure vector which represents the number of simplices at each topology level in which the node resides. The total number of such simplices determines what we define as the node's topological dimension. The presented results suggest that the node's topological dimension provides a suitable measure of the social capital which measures the agent's ability to act as a broker in compact communities, the so called Simmelian brokerage. We also generalize the results to a wider class of computer-generated networks. Investigating components of the node's vector over network layers reveals that same nodes develop different socio-emotional relations and that the influential nodes build social capital by combining their connections in different layers.Comment: 17 pages, 19 figure

    The Social Life of Information Systems Research: A Response to Benbasat and Zmud\u27s Call for Returning to the IT Artifact

    Get PDF
    Benbasat and Zmud (2003) argue that there is an identity crisis within the Information Systems discipline and, as a solution to the crisis, propose a focus on ¡°the IT artifact and its immediate nomological net¡± (p. 186). Using Aldrich¡¯s (1999) articulation of organizational evolution, they note the need for greater cognitive legitimacy as a driving force for sustainability of the discipline. They recommend that researchers and journal editors set the boundaries of the field more firmly so that greater attention is given to the IT artifact rather than to structure, context, or other phenomena that lie distant from the artifact. An alternative analysis of the IS field can be made through the lens of community of practice. Here the indicators suggest more positive progress toward legitimacy of the IS field and a path toward improvement via boundary enhancement rather than constraint. Other recommendations for improving the sustainability of the discipline include greater attention to research questions of current interest, even if they are peripheral to the artifact, greater communication of theory and empirical research results, and continued attempts to build and sustain active membership

    Identifying institutional relationships in a geographically distributed public health system using interlinking and co-authorship methods

    Full text link
    The final publication is available at Springer via http://dx.doi.org/ 10.1007/s11192-016-1839-zLink analysis is highly effective in detecting relationships between different institutions, relationships that are stronger the greater their geographical proximity. We therefore decided to apply an interlinking analysis to a set of geographically dispersed research entities and to compare the results with the co-authorship patterns between these institutions in order to determine how, and if, these two techniques might reveal complementary insights. We set out to study the specific sector of public health in Spain, a country with a high degree of regional autonomy. We recorded all Spanish health entities (and their corresponding URLs) that belong to, and were hyperlinked from, the national government or any of the regional governments, gathering a total of 263 URLs. After considering their suitability for web metric analysis, interlinking scores between all valid URLs were obtained. In addition, the number of co-authored articles by each pair of institutions and the total scientific output per institution were retrieved from Scopus. Both interlinking and co-authorship methods detect the existence of strength subnets of geographically distributed nodes (especially the Catalan entities) as well as their high connectivity with the main national network nodes (subnet of nodes distributed according to dependence on national government, in this case Spain). However, the resulting interlinking pattern shows a low but significant correlation (r = 0.5) with scientific co-authorship patterns. The existence of institutions that are strongly interlinked but with limited scientific collaboration (and vice versa) reveals that links within this network are not accurately reflecting existing scientific collaborations, due to inconsistent web content development.Ontalba Ruipérez, JA.; Orduña Malea, E.; Alonso-Arroyo, A. (2016). Identifying institutional relationships in a geographically distributed public health system using interlinking and co-authorship methods. Scientometrics. 106(3):1167-1191. doi:10.1007/s11192-016-1839-zS116711911063Aguillo, I. F., Granadino, B., Ortega, J. L., & Prieto, J. A. (2006). Scientific research activity and communication measured with cybermetrics indicators. Journal of the American Society for Information Science and Technology, 57(10), 1296–1302.Almind, T. C., & Ingwersen, P. (1998). Informetric analyses on the world wide web: methodological approaches to ‘webometrics’. Journal of Documentation, 53(4), 404–426.Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.Bar-Ilan, J. (2005). What do we know about links and linking? A framework for studying links in academic environments. Information Processing and Management, 41(4), 973–986.Barnett, George A., & Park, Han W. (2014). Examining the international internet using multiple measures: New methods for measuring the communication base of globalized cyberspace. Quality and Quantity, 48(1), 563–575.Eurostat. (2011). Regions in the European Union. Nomenclature of territorial units for statistics. NUTS 2010/EU-27. http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-RA-11-011/EN/KS-RA-11-011-EN.PDF Accessed 16 August 2015.García-Lacalle, J., Pina, V., & Royo, S. (2011). The unpromising quality and evolution of Spanish public hospital web sites. Online Information Review, 35(1), 86–112.García-Santiago, L., & Moya-Anegón, F. (2009). Using co-outlinks to mine heterogeneous networks. Scientometrics, 79(3), 681–702.González-Bailón, S. (2009). Opening the black box of link formation: Social factors underlying the structure of the web. Social Networks, 31(2009), 271–280.Heimeriks, G., Hörlesberger, M., & Van den Besselaar, P. (2003). Mapping communication and collaboration in heterogeneous research networks. Scientometrics, 58(2), 391–413.Heimeriks, G., & Van den Besselaar, P. (2006). Analyzing hyperlinks networks: The meaning of hyperlink based indicators of knowledge production. Cybermetrics, 10(1), http://cybermetrics.cindoc.csic.es/articles/v10i1p1.pdf . Accessed 16 August 2015.Holmberg, K. (2010). Co-inlinking to a municipal Web space: A webometric and content analysis. Scientometrics, 83(3), 851–862.Holmberg, K., & Thelwall, M. (2009). Local government web sites in Finland: A geographic and webometric analysis. Scientometrics, 79(1), 157–169.Khan, G. F., & Park, H. W. (2011). Measuring the triple helix on the web: Longitudinal trends in the university-industry-government relationship in Korea. Journal of the American Society for Information Science and Technology, 62(12), 2443–2455.Lang, P. B., Gouveia, F. C., & Leta, J. (2014). Health research networks on the web: An analysis of the Brazilian presence. Cadernos de Saúde Pública, 30(2), 369–378.Leydesdorff, L., & Curran, M. (2000). Mapping university-industry-government relations on the Internet: The construction of indicators for a knowledge-based economy. Cybermetrics, 4(1). http://www.cybermetrics.info/articles/v4i1p2.pdf . Accessed 16 August 2015.Méndez-Vásquez, R. I., Suñen-Pinyol, E., Cervelló, R., & Camí, J. (2008). Mapa bibliométrico de España 1996–2004: Biomedicina y ciencias de la salud. Medicina clínica, 130(7), 246–253.Méndez-Vásquez, R. I., Suñén-Pinyol, E., & Rovira, L. (2012). Caracterización bibliométrica de la investigación biomédica española, WOS 1997–2011. http://bac.fundaciorecerca.cat/mb11 . Accessed 16 August 2015.Ministerio de Sanidad, Servicios Sociales e Igualdad. (2012). Sistema Nacional de Salud. España 2012. http://www.msssi.gob.es/organizacion/sns/docs/sns2012/SNS012__Espanol.pdf . Accessed 16 August 2015.Orduna-Malea, E., Ortega, J. L., & Aguillo, I. F. (2014). Influence of language and file type on the web visibility of top European universities. Aslib Proceedings, 66(1), 96–116.Orduna-Malea, E., & Aguillo, I. F. (2014). Cibermetría. Midiendo el espacio red. Barcelona: UOC Publishing.Orduna-Malea, E., & Aytac, S. (2015). Revealing the online network between university and industry: The case of Turkey. Scientometrics, 105(3), 1849–1866.Orduna-Malea, E., Delgado López-Cózar, E., Serrano-Cobos, J., & Romero, N. L. (2015a). Disclosing the network structure of private companies on the web: The case of Spanish IBEX 35 share index. Online Information Review, 39(3), 360–382.Orduna-Malea, E., & Ontalba-Ruipérez, J. A. (2013). Proposal for a multilevel university cybermetric analysis model. Scientometrics, 95(3), 863–884.Orduna-Malea, E., Torres-Salinas, D., & Delgado López-Cózar, E. (2015b). Hyperlinks embedded in twitter as a proxy for total external in-links to international university websites. Journal of the Association for Information Science and Technology, 66(7), 1447–1462.Ortega, J. L. (2007). Visualización de la Web universitaria Europea: análisis cuantitativo de enlaces a través de técnicas cibermétricas. Madrid: Universidad Carlos III de Madrid.Ortega, J. L., & Aguillo, I. F. (2009). Mapping world-class universities on the web. Information Processing and Management, 45(2), 272–279.Ortega, J. L., Orduna-Malea, E., & Aguillo, I. F. (2014). Are web mentions accurate substitutes for inlinks for Spanish universities? Online Information Review, 38(1), 59–77.Park, H. W. (2011). How do social scientists use link data from search engines to understand Internet-based political and electoral communication? Quality and Quantity, 46(2), 679–693.Park, H. W., & Thelwall, M. (2003). Hyperlink analyses of the World Wide Web: A review. Journal of Computer-Mediated Communication. doi: 10.1111/j.1083-6101.2003.tb00223.x .Romero-Frías, E., & Vaughan, L. (2010a). Patterns of web linking to heterogeneous groups of companies: The case of stock exchange indexes. Aslib Proceedings, 62(2), 144–164.Romero-Frías, E., & Vaughan, L. (2010b). European political trends viewed through patterns of Web linking. Journal of the American Society for Information Science and Technology, 61(10), 2109–2121.Seeber, M., Lepori, B., Lomi, A., Aguillo, I. F., & Barberio, V. (2012). Factors affecting web links between European higher education institutions. Journal of Informetrics, 6(3), 435–447.Stuart, D., & Thelwall, M. (2006). Investigating triple helix relationships using URL citations: A case study of the UK West Midlands automobile industry. Research Evaluation, 15(2), 97–106.Sud, P., & Thelwall, M. (2014). Linked title mentions: A new automated link search candidate. Scientometrics, 101(3), 1831–1849.Thelwall, M. (2001). Extracting macroscopic information from web links. Journal of the American Society for Information Science and Technology, 52(13), 1157–1168.Thelwall, M. (2002). Evidence for the existence of geographic trends in university web site interlinking. Journal of Documentation, 58(5), 563–574.Thelwall, M. (2004). Link analysis: An information science approach. San Diego: Elsevier.Thelwall, M. (2006). Interpreting social science link analysis research: A theoretical framework. Journal of the American Society for Information Science and Technology, 57(1), 60–68.Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. San Rafael, CA: Morgan & Claypool Publishers.Thelwall, M., & Sud, P. (2011). A comparison of methods for collecting web citation data for academic organisations. Journal of the American Society for Information Science and Technology, 62(8), 1488–1497.Thelwall, M., & Tang, R. (2003). Disciplinary and linguistic considerations for academic web linking: An exploratory hyperlink mediated study with Mainland China and Taiwan. Scientometrics, 58(1), 155–181.Thelwall, M., Tang, R., & Price, L. (2003). Linguistic patterns of Academic web use in Western Europe. Scientometrics, 56(3), 417–432.Vaughan, L. (2006). Visualizing linguistic and cultural differences using web co-link data. Journal of the American Society for Information Science and Technology, 57(9), 1178–1193.Vaughan, L., & Thelwall, M. (2003). Scholarly use of the web: What are the key inducers of links to journal web sites? Journal of the American Society for Information Science and Technology, 54(1), 29–38.Vaughan, L., & Thelwall, M. (2004). Search engine coverage bias: Evidence and possible causes. Information Processing and Management, 40(4), 693–707.Vaughan, L., & Wu, G. (2004). Links to commercial websites as a source of business information. Scientometrics, 60(3), 487–496.Vaughan, L., & You, J. (2006). Comparing business competition positions based on Web co-link data: The global market vs. the Chinese market. Scientometrics, 68(3), 611–628.Weber, M. S., & Monge, P. (2011). The flow of digital news in a network of sources, authorities, and hubs. Journal of Communication, 61(6), 1062–1081.Wilkinson, D., Harries, G., Thelwall, M., & Price, L. (2003). Motivations for academic Web site interlinking: Evidence for the Web as a novel source of information on informal scholarly communication. Journal of information science, 29(1), 49–56.Wilkinson, D., & Thelwall, M. (2013). Search markets and search results: The case of Bing. Library and Information Science Research, 35(4), 318–325

    Publish or perish? Avaliação de redes de pesquisa e colaboração com RNPE

    Get PDF
    Este trabalho apresenta marcadores desenvolvidos no bojo de uma metodologia intitulada Avaliação Participativa de Redes de Pesquisa e Colaboração [Research Networks Participatory Evaluation (RNPE)]. Sua formulação foi fundamentada na análise da produção científica de pesquisadores de diferentes contextos e empregou como principal fonte de dados a Plataforma Lattes, bem como tecnologias de análise de redes sociais. Os marcadores obtidos servem ao propósito de avaliar o processo de produção de conhecimento dos investigadores que trabalham em conexões colaborativas e mostram, ainda, a interação em uma rede de pesquisa, bem como seu alcance – local, regional, nacional, internacional.This paper presents the markers developed within the framework of a methodology entitled Research Networks Participatory Evaluation (RNPE). Its formulation was based on the analysis of the scientific production of researchers from different contexts and employed as its main data source the Lattes Platform, as well as social networks analysis technologies. The obtained markers serve the purpose of evaluating the knowledge production process by researchers working in collaborative connections and show, moreover, the interaction within a research network, as well as its reach – local, regional, national, international

    Flink: Semantic Web technology for the extraction and analysis of social networks

    Get PDF
    We present the Flink system for the extraction, aggregation and visualization of online social networks. Flink employs semantic technology for reasoning with personal information extracted from a number of electronic information sources including web pages, emails, publication archives and FOAF profiles. The acquired knowledge is used for the purposes of social network analysis and for generating a webbased presentation of the community. We demonstrate our novel method to social science based on electronic data using the example of the Semantic Web research community
    corecore