309 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

    Get PDF
    Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.PhDCommittee Chair: Kemp, Charles C.; Committee Member: Abowd, Gregory; Committee Member: Howard, Ayanna; Committee Member: Ingram, Mary Ann; Committee Member: Reynolds, Matt; Committee Member: Tentzeris, Emmanoui

    RFID Gazebo-Based Simulator With RSSI and Phase Signals for UHF Tags Localization and Tracking

    Get PDF
    Radio Frequency Identification (RFID) technology is becoming very popular in the new era of Industry 4.0, especially for warehouse management, retails, and logistics. RFID systems can be used for objects identification, localization, and tracking, facilitating everyday operators' efforts. However, the deployment of RFID tags and reader antennas in real-world application scenarios is crucial and takes time. Indeed, deciding where to place tags and/or readers' requires examining many conditions. If some weaknesses appear in the design, the arrangement must be reconsidered. The proposed work presents a novel open-source RFID simulator that allows modeling environments and testing the deployment of RFID tags and antennas apriori. In such a way, validating the performance of the localization or tracking algorithms in simulation, possible weaknesses that could arise may be fixed before facilities are applied on the field. Any number of tags and antennas can be placed in any position in the created scenario, and the simulator provides the phase and the RSSI signals for each tag. Every reader antenna is parametrized so that different antennas of different vendors can be reproduced. The simulator is implemented as a plugin of Gazebo, a widely used robotic framework integrated with the Robot Operating System (ROS), to reach a broad audience. In order to validate the simulator, a warehouse scenario is modeled, and a tag localization algorithm that uses the phase unwrapping technique and hyperbolae intersection method employing a reader antenna mounted on a mobile robot is used to estimate the position of the tags deployed in the scenario. The outcomes of the experiments showed realistic results

    Mapping, Path Following, and Perception with Long Range Passive UHF RFID for Mobile Robots

    Get PDF
    Service robots have shown an impressive potential in providing assistance and guidance in various environments, such as supermarkets, shopping malls, homes, airports, and libraries. Due to the low-cost and contactless way of communication, radio-frequency identification (RFID) technology provides a solution to overcome the difficulties (e.g. occlusions) that the traditional line of sight sensors (e.g. cameras and laser range finders) face. In this thesis, we address the applications of using passive ultra high frequency (UHF) RFID as a sensing technology for mobile robots in three fundamental tasks, namely mapping, path following, and tracking. An important task in the field of RFID is mapping, which aims at inferring the positions of RFID tags based on the measurements (i.e. the detections as well as the received signal strength) received by the RFID reader. The robot, which serves as an intelligent mobile carrier, is able to localize itself in a known environment based on the existing positioning techniques, such as laser-based Monte Carlo localization. The mapping process requires a probabilistic sensor model, which characterizes the likelihood of receiving a measurement, given the relative pose of the antenna and the tag. In this thesis, we address the problem of recovering from mapping failures of static RFID tags and localizing non-static RFID tags which do not move frequently using a particle filter. The usefulness of negative information (e.g. non-detections) is also examined in the context of mapping RFID tags. Moreover, we present a novel three dimensional (3D) sensor model to improve the mapping accuracy of RFID tags. In particular, using this new sensor model, we are able to localize the 3D position of an RFID tag by mounting two antennas at different heights on the robot. We additionally utilize negative information to improve the mapping accuracy, especially for the height estimation in our stereo antenna configuration. The model-based localization approach, which works as a dual to the mapping process, estimates the pose of the robot based on the sensor model as well as the given positions of RFID tags. The fingerprinting-based approach was shown to be superior to the model-based approach, since it is able to better capture the unpredictable radio frequency characteristics in the existing infrastructure. Here, we present a novel approach that combines RFID fingerprints and odometry information as an input of the motion control of a mobile robot for the purpose of path following in unknown environments. More precisely, we apply the teaching and playback scheme to perform this task. During the teaching stage, the robot is manually steered to move along a desired path. RFID measurements and the associated motion information are recorded in an online-fashion as reference data. In the second stage (i.e. playback stage), the robot follows this path autonomously by adjusting its pose according to the difference between the current RFIDmeasurements and the previously recorded reference measurements. Particularly, our approach needs no prior information about the distribution and positions of the tags, nor does it require a map of the environment. The proposed approach features a cost-effective alternative for mobile robot navigation if the robot is equipped with an RFID reader for inventory in RFID-tagged environments. The capability of a mobile robot to track dynamic objects is vital for efficiently interacting with its environment. Although a large number of researchers focus on the mapping of RFID tags, most of them only assume a static configuration of RFID tags and too little attention has been paid to dynamic ones. Therefore, we address the problem of tracking dynamic objects for mobile robots using RFID tags. In contrast to mapping of RFID tags, which aims at achieving a minimum mapping error, tracking does not only need a robust tracking performance, but also requires a fast reaction to the movement of the objects. To achieve this, we combine a two stage dynamic motion model with the dual particle filter, to capture the dynamic motion of the object and to quickly recover from failures in tracking. The state estimation from the particle filter is used in a combination with the VFH+ (Vector Field Histogram), which serves as a local path planner for obstacle avoidance, to guide the robot towards the target. This is then integrated into a framework, which allows the robot to search for both static and dynamic tags, follow it, and maintain the distance between them. [untranslated]Service-Roboter bergen ein großes Potential bei der Unterstützung, Beratung und Führung von Kunden oder Personal in verschiedenen Umgebungen wie zum Beispiel Supermärkten, Einkaufszentren, Wohnungen, Flughäfen und Bibliotheken. Durch die geringen Kosten und die kontaktlose Kommunikation ist die RFID Technologie in der Lage vorhandene Herausforderungen traditioneller sichtlinienbasierter Sensoren (z.B. Verdeckung beim Einsatz von Kameras oder Laser-Entfernungsmessern) zu lösen. In dieser Arbeit beschäftigen wir uns mit dem Einsatz von passivem Ultrahochfrequenz (UHF) RFID als Sensortechnologie für mobile Roboter hinsichtlich drei grundlegender Aufgabenstellungen Kartierung, Pfadverfolgung und Tracking. Kartierung nimmt eine wesentliche Rolle im Bereich der Robotik als auch beim Einsatz von RFID Sensoren ein. Hierbei ist das Ziel die Positionen von RFID-Tags anhand von Messungen (die Erfassung der Tags als solche und die Signalstärke) zu schätzen. Der Roboter, der als intelligenter mobiler Träger dient, ist in der Lage, sich selbst in einer bekannten Umgebung auf Grundlage der bestehenden Positionierungsverfahren, wie Laser-basierter Monte-Carlo Lokalisierung zurechtzufinden. Der Kartierungsprozess erfordert ein probabilistisches Sensormodell, das die Wahrscheinlichkeit beschreibt, ein Tag an einer gegebenen Position relativ zur RFID-Antenne (ggf. mit einer bestimmten Signalstärke) zu erkennen. Zentrale Aspekte dieser Arbeit sind die Regeneration bei fehlerhafter Kartierung statischer RFID-Tags und die Lokalisierung von nicht-statischen RFID-Tags. Auch wird die Verwendbarkeit negativer Informationen, wie z.B. das Nichterkennen von Transpondern, im Rahmen der RFID Kartierung untersucht. Darüber hinaus schlagen wir ein neues 3D-Sensormodell vor, welches die Genauigkeit der Kartierung von RFID-Tags verbessert. Durch die Montage von zwei Antennen auf verschiedenen Höhen des eingesetzten Roboters, erlaubt es dieses Modell im Besonderen, die 3D Positionen von Tags zu bestimmen. Dabei nutzen wir zusätzlich negative Informationen um die Genauigkeit der Kartierung zu erhöhen. Dank der Eindeutigkeit von RFID-Tags, ist es möglich die Lokalisierung eines mobilen Roboters ohne Mehrdeutigkeit zu bestimmen. Der modellbasierte Ansatz zur Lokalisierung schätzt die Pose des Roboters auf Basis des Sensormodells und den angegebenen Positionen der RFID-Tags. Es wurde gezeigt, dass der Fingerprinting-Ansatz dem modellbasierten Ansatz überlegen ist, da ersterer in der Lage ist, die unvorhersehbaren Funkfrequenzeigenschaften in der vorhandenen Infrastruktur zu erfassen. Hierfür präsentieren wir einen neuen Ansatz, der RFID Fingerprints und Odometrieinformationen für die Zwecke der Pfadverfolgung in unbekannten Umgebungen kombiniert. Dieser basiert auf dem Teaching-and-Playback-Schema. Während der Teaching-Phase wird der Roboter manuell gelenkt, um ihn entlang eines gewünschten Pfades zu bewegen. RFID-Messungen und die damit verbundenen Bewegungsinformationen werden als Referenzdaten aufgezeichnet. In der zweiten Phase, der Playback-Phase, folgt der Roboter diesem Pfad autonom. Der vorgeschlagene Ansatz bietet eine kostengünstige Alternative für die mobile Roboternavigation bei der Bestandsaufnahme in RFID-gekennzeichneten Umgebungen, wenn der Roboter mit einem RFID-Lesegerät ausgestattet ist. Die Fähigkeit eines mobilen Roboters dynamische Objekte zu verfolgen ist entscheidend für eine effiziente Interaktion mit der Umgebung. Obwohl sich viele Forscher mit der Kartierung von RFID-Tags befassen, nehmen die meisten eine statische Konfiguration der RFID-Tags an, nur wenige berücksichtigen dabei dynamische RFID-Tags. Wir wenden uns daher dem Problem der RFID basierten Verfolgung dynamischer Objekte mit mobilen Robotern zu. Im Gegensatz zur Kartierung von RFID-Tags, ist für die Verfolgung nicht nur eine stabile Erkennung notwendig, es ist zudem erforderlich schnell auf die Bewegung der Objekte reagieren zu können. Um dies zu erreichen, kombinieren wir ein zweistufiges dynamisches Bewegungsmodell mit einem dual-Partikelfilter. Die Zustandsschätzung des Partikelfilters wird in Kombination mit dem VFH+ (Vektorfeld Histogramm) verwendet, um den Roboter in Richtung des Ziels zu leiten. Hierdurch ist es dem Roboter möglich nach statischen und dynamischen Tags zu suchen, ihnen zu folgen und dabei einen gewissen Abstand zu halten

    Location estimation in smart homes setting with RFID systems

    Get PDF
    Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes. In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects. This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas

    A review of RFID based solutions for indoor localization and location-based classification of tags

    Get PDF
    Wireless communication systems are very used for indoor localization of items. In particular, two main application field can be identified. The former relates to detection or localization of static items. The latter relates to real-time tracking of moving objects, whose movements can be reconstructed over identified timespans. Among the adopted technologies, Radio-Frequency IDentification (RFID), especially if based on cheap passive RFID tags, stands out for its affordability and reasonable efficiency. This aspect makes RFID suitable for both the above-mentioned applications, especially when a large number of objects need to be tagged. The reason lies in a suitable trade-off between low cost for implementing the position sensing system, and its precision and accuracy. However, RFID-based solutions suffer for limited reading range and lower accuracy. Solutions have been proposed by academia and industry. However, a structured analysis of developed solutions, useful for further implementations, is missing. The purpose of this paper is to highlight and review the recently proposed solutions for indoor localization making use of RFID passive tags. The paper focuses on both precise and qualitative location of objects. The form relates to (i) the correct position of tags, namely mapping their right position in a 2D or 3D environment. The latter relates to the classification of tags, namely the identification of the area where the tag is regardless its specific position

    Implementación de tecnologías RFID e IoT inalámbricas en el Modelado de información de construcción (BIM)

    Get PDF
    ABSTRACT: The integration and installation of innovative Radio Frequency Identification (RFID) technologies in combination with wireless Internet of Things (IoT) technologies in Building Information Modelling (BIM), assigned building elements, can create connectivity between the physical- and the virtual world. Beyond the identification of physical objects, further information can be connected, which can be made available to different user groups during the entire life cycle of the building structure. This provides a high level of transparency, in that by scanning the tagged building elements, complete associated information can be accessed and presented to users via applications, in visual and audio form. One use of an RFID and BIM-supported electronic guidance system, namely for the visually impaired, has already been investigated in my bachelor thesis at the University of Applied Sciences (Technische Hochschule Mittelhessen, THM). This Master’s Thesis focuses on the implementation of passive RFID technology into BIM models in combining them with open-source software applications. BIM represents the digital twin of building models in the digital world and can be linked to physical structures (buildings, roads, sewer systems and such others) and building materials (e.g. textiles, mineral and plastic floor coverings, concrete components) by integrating RFID tags. Connecting the parametric BIM models with the physical building elements by using RFID and wireless IoT technologies in a multi-platform application enables the BIM building models to be actively used throughout the life cycle of a building, not only by the facility management, but also by the public for various use cases. During the literature review, suitable software and hardware components were selected, and a prototype multi-platform application for a navigation and positioning system was developed as proof of concept for the Industry Foundation Classes (IFC) file. (See Demo Version at https://opennavibim.herokuapp.com/ ). The challenge was to read the RFID tags in different installation scenarios. Depending on the installation situations (under, over or in the material), various requirements were specified for RFID tags and readers (RFID, handhold personal digital assistant “PDA”). In this field, further hardware developments are necessary.RESUMEN: Mediante la integración e instalación de la innovadora tecnología de identificación por radiofrecuencia (RFID, Radio Frequency Identification) en el modelado digital de información de construcción (BIM, Building Information Modelling), con la interconexión inalámbrica del internet de las cosas (IoT, Internet of Things), es posible crear una conectividad entre el mundo físico y el virtual. Más allá de la mera identificación de objetos existentes, esta conectividad permite incorporar información adicional, que puede ponerse en disposición de los diferentes grupos de usuarios que intervienen durante el ciclo completo de vida de la estructura de la edificación. Se consigue un alto de nivel de transparencia en ese traspaso de información, accesible por medio del escaneado de los elementos etiquetados en la edificación, al tener una completa información asociada que es presentada a los usuarios vía aplicaciones en formato visual o de audio. Una investigación en la aplicación de tecnología RFID basada en BIM para un sistema de navegación electrónica, destinada a personas con discapacidad visual, ha sido desarrollada en mi trabajo fin de grado en la Universidad de Ciencias Aplicadas de Mittelhessen (THM). El presente Trabajo Fin de Master se centra en la implementación de tecnología RFID pasiva en modelos BIM combinados con aplicaciones de software libre. El modelo BIM representa el gemelo digital de los elementos de construcción en el mundo virtual, permitiendo establecer una relación del modelo con estructuras físicas (edificios, carreteras o sistemas de alcantarillado, entre otros) y materiales de construcción (por ejemplo, textiles, cubiertas de suelo minerales o plásticas, componentes de hormigón, …) por medio de la integración de etiquetas RFID. La conexión de los modelos paramétricos BIM con los elementos físicos del edificio, mediante el uso de tecnologías RFID e IoT inalámbricas en una aplicación multiplataforma, permite que los modelos de construcción BIM se utilicen activamente a lo largo del ciclo de vida de un edificio, no solo por la gestión de las instalaciones, sino también por el público para diversos casos de uso. Durante la revisión bibliográfica, se seleccionaron los componentes de software y hardware adecuados, y se desarrolló un prototipo de aplicación multiplataforma para un sistema de navegación y posicionamiento como prueba de viabilidad del concepto del modelo Industry Foundation Classes (IFC). (Véase la versión de demostración en https://opennavibim.herokuapp.com/ ). La lectura de las etiquetas RFID en diferentes en diferentes situaciones de instalación presenta un desafío, dependiendo de la instalación (debajo, encima o en el material) los requisitos impuestos a las etiquetas y lectores RFID son diferentes. Por lo tanto, es necesario seguir desarrollando el hardware en este ámbito.Máster en Ingeniería de Caminos, Canales y Puertos (Plan 2020

    Next-Best-Sense: a multi-criteria robotic exploration strategy for RFID tags discovery

    Get PDF
    Automated exploration is one of the most relevant applications of autonomous robots. In this paper, we suggest a novel online coverage algorithm called Next-Best-Sense (NBS), an extension of the Next-Best-View class of exploration algorithms that optimizes the exploration task balancing multiple criteria. This novel algorithm is applied to the problem of localizing all Radio Frequency Identification (RFID) tags with a mobile robotic platform that is equipped with a RFID reader. We cast this problem as a coverage planning problem by defining a basic sensing operation -- a scan with the RFID reader -- as the field of “view” of the sensor. NBS evaluates candidate locations with a global utility function which combines utility values for travel distance, information gain, sensing time, battery status and RFID information gain, generalizing the use of Multi-Criteria Decision Making. We developed an RFID reader and tag model in the Gazebo simulator for validation. Experiments performed both in simulation and with a real robot suggest that our NBS approach can successfully localize all the RFID tags while minimizing navigation metrics such sensing operations, total traveling distance and battery consumption. The code developed is publicly available on the authors' repository

    Implementation of Static RFID Landmarks in SLAM for Planogram Compliance

    Get PDF
    Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for planogram compliance and inventory management to provide consistency between online retail platforms and brick and mortar stores. The platform of choice is the Turtlebot3 Burger platform, by ROBOTIS, modified to hold an RFID reader. With existing packages, researchers are provided with the ability to essentially perform SLAM on a base level using an inbuilt Lidar sensor. It is from these existing packages that researchers plan to build a system to localize RFID tags in generated maps to provide a quantifiable decrease in localization time and increase in certainty
    corecore