4,161 research outputs found

    Urban morphology analysis by remote sensing and gis technique, case study: Georgetown, Penang

    Get PDF
    This paper was analysed the potential of applications of satellite remote sensing to urban planning research in urban morphology. Urban morphology is the study of the form of human settlements and the process of their formation and transformation. It is an approach in designing urban form that considers both physical and spatial components of the urban structure. The study conducted in Georgetown, Penang purposely main to identify the evolution of urban morphology and the land use expansion. In addition, Penang is well known for its heritage character, especially in the city of Georgetown with more than 200 years of urban history. Four series of temporal satellite SPOT 5 J on year 2004, 2007, 2009 and 2014 have been used in detecting an expansion of land use development aided by ERDAS IMAGINE 2014. Three types of land uses have been classified namely build-up areas, un-built and water bodies show a good accuracy with achieved above 85%. The result shows the built-up area significantly increased due to the rapid development in urban areas. Simultaneously, this study provides an understanding and strengthening a relation between urban planning and remote sensing applications in creating sustainable and resilience of the city and future societies as well

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities

    Get PDF
    Progress in urban climate science is severely restricted by the lack of useful information that describes aspects of the form and function of cities at a detailed spatial resolution. To overcome this shortcoming we are initiating an international effort to develop the World Urban Database and Access Portal Tools (WUDAPT) to gather and disseminate this information in a consistent manner for urban areas worldwide. The first step in developing WUDAPT is a description of cities based on the Local Climate Zone (LCZ) scheme, which classifies natural and urban landscapes into categories based on climate-relevant surface properties. This methodology provides a culturally-neutral framework for collecting information about the internal physical structure of cities. Moreover, studies have shown that remote sensing data can be used for supervised LCZ mapping. Mapping of LCZs is complicated because similar LCZs in different regions have dissimilar spectral properties due to differences in vegetation, building materials and other variations in cultural and physical environmental factors. The WUDAPT protocol developed here provides an easy to understand workflow; uses freely available data and software; and can be applied by someone without specialist knowledge in spatial analysis or urban climate science. The paper also provides an example use of the WUDAPT project results

    Multi-level Feature Fusion-based CNN for Local Climate Zone Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset

    Get PDF
    As a unique classification scheme for urban forms and functions, the local climate zone (LCZ) system provides essential general information for any studies related to urban environments, especially on a large scale. Remote sensing data-based classification approaches are the key to large-scale mapping and monitoring of LCZs. The potential of deep learning-based approaches is not yet fully explored, even though advanced convolutional neural networks (CNNs) continue to push the frontiers for various computer vision tasks. One reason is that published studies are based on different datasets, usually at a regional scale, which makes it impossible to fairly and consistently compare the potential of different CNNs for real-world scenarios. This study is based on the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification. Using this dataset, we studied a range of CNNs of varying sizes. In addition, we proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this base network, we propose fusing multi-level features using the extended Sen2LCZ-Net-MF. With this proposed simple network architecture and the highly competitive benchmark dataset, we obtain results that are better than those obtained by the state-of-the-art CNNs, while requiring less computation with fewer layers and parameters. Large-scale LCZ classification examples of completely unseen areas are presented, demonstrating the potential of our proposed Sen2LCZ-Net-MF as well as the So2Sat LCZ42 dataset. We also intensively investigated the influence of network depth and width and the effectiveness of the design choices made for Sen2LCZ-Net-MF. Our work will provide important baselines for future CNN-based algorithm developments for both LCZ classification and other urban land cover land use classification

    GEOSPATIAL-BASED ENVIRONMENTAL MODELLING FOR COASTAL DUNE ZONE MANAGEMENT

    Get PDF
    Tomaintain biodiversity and ecological functionof coastal dune areas, itis important that practical and effective environmentalmanagemental strategies are developed. Advances in geospatial technologies offer a potentially very useful source of data for studies in this environment. This research project aimto developgeospatialdata-basedenvironmentalmodellingforcoastaldunecomplexestocontributetoeffectiveconservationstrategieswithparticularreferencetotheBuckroneydunecomplexinCo.Wicklow,Ireland.Theprojectconducteda general comparison ofdifferent geospatial data collection methodsfor topographic modelling of the Buckroney dune complex. These data collection methodsincludedsmall-scale survey data from aerial photogrammetry, optical satellite imagery, radar and LiDAR data, and ground-based, large-scale survey data from Total Station(TS), Real Time Kinematic (RTK) Global Positioning System(GPS), terrestrial laser scanners (TLS) and Unmanned Aircraft Systems (UAS).The results identifiedthe advantages and disadvantages of the respective technologies and demonstrated thatspatial data from high-end methods based on LiDAR, TLS and UAS technologiesenabled high-resolution and high-accuracy 3D datasetto be gathered quickly and relatively easily for the Buckroney dune complex. Analysis of the 3D topographic modelling based on LiDAR, TLS and UAS technologieshighlighted the efficacy of UAS technology, in particular,for 3D topographicmodellingof the study site.Theproject then exploredthe application of a UAS-mounted multispectral sensor for 3D vegetation mappingof the site. The Sequoia multispectral sensorused in this researchhas green, red, red-edge and near-infrared(NIR)wavebands, and a normal RGB sensor. The outcomesincludedan orthomosiac model, a 3D surface model and multispectral imageryof the study site. Nineclassification strategies were usedto examine the efficacyof UAS-IVmounted multispectral data for vegetation mapping. These strategies involved different band combinations based on the three multispectral bands from the RGB sensor, the four multispectral bands from the multispectral sensor and sixwidely used vegetation indices. There were 235 sample areas (1 m × 1 m) used for anaccuracy assessment of the classification of thevegetation mapping. The results showed vegetation type classification accuracies ranging from 52% to 75%. The resultdemonstrated that the addition of UAS-mounted multispectral data improvedthe classification accuracy of coastal vegetation mapping of the Buckroney dune complex

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: a semantic segmentation solution

    Get PDF
    Landsat imagery is an unparalleled freely available data source that allows reconstructing horizontal and vertical urban form. This paper addresses the challenge of using Landsat data, particularly its 30m spatial resolution, for monitoring three-dimensional urban densification. We compare temporal and spatial transferability of an adapted DeepLab model with a simple fully convolutional network (FCN) and a texture-based random forest (RF) model to map urban density in the two morphological dimensions: horizontal (compact, open, sparse) and vertical (high rise, low rise). We test whether a model trained on the 2014 data can be applied to 2006 and 1995 for Denmark, and examine whether we could use the model trained on the Danish data to accurately map other European cities. Our results show that an implementation of deep networks and the inclusion of multi-scale contextual information greatly improve the classification and the model's ability to generalize across space and time. DeepLab provides more accurate horizontal and vertical classifications than FCN when sufficient training data is available. By using DeepLab, the F1 score can be increased by 4 and 10 percentage points for detecting vertical urban growth compared to FCN and RF for Denmark. For mapping the other European cities with training data from Denmark, DeepLab also shows an advantage of 6 percentage points over RF for both the dimensions. The resulting maps across the years 1985 to 2018 reveal different patterns of urban growth between Copenhagen and Aarhus, the two largest cities in Denmark, illustrating that those cities have used various planning policies in addressing population growth and housing supply challenges. In summary, we propose a transferable deep learning approach for automated, long-term mapping of urban form from Landsat images.Comment: Accepted manuscript including appendix (supplementary file

    MAPPING LOCAL CLIMATE ZONES WITH MULTIPLE GEODATA AND THE OPEN DATA CUBE: INSIGHTS OF DOMAIN USER REQUIREMENTS AND OUTLOOKS OF THE LCZ-ODC PROJECT

    Get PDF
    Rapid urbanization and climate change are intensifying the urban heat island (UHI) phenomenon across cities worldwide. There is a pressing need to implement evidence-based mitigation and adaptation strategies as well as to develop tools for effectively measuring the impact of such actions on UHI patterns. In this context, the Local Climate Zone (LCZ) concept is a well-established classification system commonly used for the assessment of UHI. With this in mind, we present here the LCZ-ODC project aiming to develop a methodology for LCZ mapping in the Metropolitan City of Milan (northern Italy) by leveraging multiple geospatial data and cutting-edge software tools, including the Open Data Cube (ODC). A key aim of the project is to develop user-oriented solutions facilitating the exploitation of the generated LCZ maps for different application tasks. In this paper, we first present a brief overview of the methodologies and data sources used in the literature for LCZ mapping. Then, we introduce the LCZ-ODC project, with a focus on the end-user requirements which were gathered through a questionnaire distributed to a sample of potential stakeholders. The primary objective of the survey was to collect insights and consolidate requirements related to the key features of LCZ maps that will be produced within the project. The outcomes of the survey play a pivotal role in guiding the project’s development phase, ensuring that the project outputs will effectively address the identified end-user needs
    corecore