24,715 research outputs found

    It’s a long way to Monte-Carlo: probabilistic display in GPS navigation

    Get PDF
    We present a mobile, GPS-based multimodal navigation system, equipped with inertial control that allows users to explore and navigate through an augmented physical space, incorporating and displaying the uncertainty resulting from inaccurate sensing and unknown user intentions. The system propagates uncertainty appropriately via Monte Carlo sampling and predicts at a user-controllable time horizon. Control of the Monte Carlo exploration is entirely tilt-based. The system output is displayed both visually and in audio. Audio is rendered via granular synthesis to accurately display the probability of the user reaching targets in the space. We also demonstrate the use of uncertain prediction in a trajectory following task, where a section of music is modulated according to the changing predictions of user position with respect to the target trajectory. We show that appropriate display of the full distribution of potential future users positions with respect to sites-of-interest can improve the quality of interaction over a simplistic interpretation of the sensed data

    The sound motion controller: a distributed system for interactive music performance

    Get PDF
    We developed an interactive system for music performance, able to control sound parameters in a responsive way with respect to the user’s movements. This system is conceived as a mobile application, provided with beat tracking and an expressive parameter modulation, interacting with motion sensors and effector units, which are connected to a music output, such as synthesizers or sound effects. We describe the various types of usage of our system and our achievements, aimed to increase the expression of music performance and provide an aid to music interaction. The results obtained outline a first level of integration and foresee future cognitive and technological research related to it

    Testing Two Tools for Multimodal Navigation

    Get PDF
    The latest smartphones with GPS, electronic compasses, directional audio, touch screens, and so forth, hold a potential for location-based services that are easier to use and that let users focus on their activities and the environment around them. Rather than interpreting maps, users can search for information by pointing in a direction and database queries can be created from GPS location and compass data. Users can also get guidance to locations through point and sweep gestures, spatial sound, and simple graphics. This paper describes two studies testing two applications with multimodal user interfaces for navigation and information retrieval. The applications allow users to search for information and get navigation support using combinations of point and sweep gestures, nonspeech audio, graphics, and text. Tests show that users appreciated both applications for their ease of use and for allowing users to interact directly with the surrounding environment

    Emerging technologies for learning (volume 1)

    Get PDF
    Collection of 5 articles on emerging technologies and trend

    Mobility is the Message: Experiments with Mobile Media Sharing

    Get PDF
    This thesis explores new mobile media sharing applications by building, deploying, and studying their use. While we share media in many different ways both on the web and on mobile phones, there are few ways of sharing media with people physically near us. Studied were three designed and built systems: Push!Music, Columbus, and Portrait Catalog, as well as a fourth commercially available system – Foursquare. This thesis offers four contributions: First, it explores the design space of co-present media sharing of four test systems. Second, through user studies of these systems it reports on how these come to be used. Third, it explores new ways of conducting trials as the technical mobile landscape has changed. Last, we look at how the technical solutions demonstrate different lines of thinking from how similar solutions might look today. Through a Human-Computer Interaction methodology of design, build, and study, we look at systems through the eyes of embodied interaction and examine how the systems come to be in use. Using Goffman’s understanding of social order, we see how these mobile media sharing systems allow people to actively present themselves through these media. In turn, using McLuhan’s way of understanding media, we reflect on how these new systems enable a new type of medium distinct from the web centric media, and how this relates directly to mobility. While media sharing is something that takes place everywhere in western society, it is still tied to the way media is shared through computers. Although often mobile, they do not consider the mobile settings. The systems in this thesis treat mobility as an opportunity for design. It is still left to see how this mobile media sharing will come to present itself in people’s everyday life, and when it does, how we will come to understand it and how it will transform society as a medium distinct from those before. This thesis gives a glimpse at what this future will look like

    mSpace Mobile: Exploring Support for Mobile Tasks

    No full text
    In the following paper we compare two Web application interfaces, mSpace Mobile and Google Local in supporting location discovery tasks on mobile devices while stationary and while on the move. While mSpace Mobile performed well in both stationary and mobile conditions, performance in Google Local dropped significantly. We postulate that mSpace Mobile performed so well because it breaks the paradigm of the page for delivering Web content, thereby enabling new and more powerful interfaces to be used to support mobility

    Show me the way to Monte Carlo: density-based trajectory navigation

    Get PDF
    We demonstrate the use of uncertain prediction in a system for pedestrian navigation via audio with a combination of Global Positioning System data, a music player, inertial sensing, magnetic bearing data and Monte Carlo sampling for a density following task, where a listener’s music is modulated according to the changing predictions of user position with respect to a target density, in this case a trajectory or path. We show that this system enables eyes-free navigation around set trajectories or paths unfamiliar to the user and demonstrate that the system may be used effectively for varying trajectory width and context

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore