7,167 research outputs found

    Massively parallel implicit equal-weights particle filter for ocean drift trajectory forecasting

    Get PDF
    Forecasting of ocean drift trajectories are important for many applications, including search and rescue operations, oil spill cleanup and iceberg risk mitigation. In an operational setting, forecasts of drift trajectories are produced based on computationally demanding forecasts of three-dimensional ocean currents. Herein, we investigate a complementary approach for shorter time scales by using the recently proposed two-stage implicit equal-weights particle filter applied to a simplified ocean model. To achieve this, we present a new algorithmic design for a data-assimilation system in which all components ā€“ including the model, model errors, and particle filter ā€“ take advantage of massively parallel compute architectures, such as graphical processing units. Faster computations can enable in-situ and ad-hoc model runs for emergency management, and larger ensembles for better uncertainty quantification. Using a challenging test case with near-realistic chaotic instabilities, we run data-assimilation experiments based on synthetic observations from drifting and moored buoys, and analyze the trajectory forecasts for the drifters. Our results show that even sparse drifter observations are sufficient to significantly improve short-term drift forecasts up to twelve hours. With equidistant moored buoys observing only 0.1% of the state space, the ensemble gives an accurate description of the true state after data assimilation followed by a high-quality probabilistic forecast

    Estimating model evidence using data assimilation

    Get PDF
    We review the field of data assimilation (DA) from a Bayesian perspective and show that, in addition to its by now common application to state estimation, DA may be used for model selection. An important special case of the latter is the discrimination between a factual modelā€“which corresponds, to the best of the modeller's knowledge, to the situation in the actual world in which a sequence of events has occurredā€“and a counterfactual model, in which a particular forcing or process might be absent or just quantitatively different from the actual world. Three different ensembleā€DA methods are reviewed for this purpose: the ensemble Kalman filter (EnKF), the ensemble fourā€dimensional variational smoother (Enā€4Dā€Var), and the iterative ensemble Kalman smoother (IEnKS). An original contextual formulation of model evidence (CME) is introduced. It is shown how to apply these three methods to compute CME, using the approximated timeā€dependent probability distribution functions (pdfs) each of them provide in the process of state estimation. The theoretical formulae so derived are applied to two simplified nonlinear and chaotic models: (i) the Lorenz threeā€variable convection model (L63), and (ii) the Lorenz 40ā€variable midlatitude atmospheric dynamics model (L95). The numerical results of these three DAā€based methods and those of an integration based on importance sampling are compared. It is found that better CME estimates are obtained by using DA, and the IEnKS method appears to be best among the DA methods. Differences among the performance of the three DAā€based methods are discussed as a function of model properties. Finally, the methodology is implemented for parameter estimation and for event attribution

    Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Get PDF
    Author Posting. Ā© The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Journal of Operational Oceanography 10 (2017): 115-126, doi:10.1080/1755876X.2017.1322026.This paper outlines strategies that would advance coastal ocean modeling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the U.S. Integrated Ocean Observing System (IOOSĀ®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of U.S. based researchers with a cross-section of coastal oceanography and ocean modeling expertise and community representation drawn from Regional and U.S. Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modeling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3-8 year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, U.S. Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal-academic partnerships benefiting IOOS stakeholders and end users.2018-05-2

    Report of the Second Session of the CLIVAR Pacific Implementation Panel, 14-16 July 2003, Yokohama, Japan

    Get PDF
    • ā€¦
    corecore