2,296 research outputs found

    Dynamic Composite Data Physicalization Using Wheeled Micro-Robots

    Get PDF
    This paper introduces dynamic composite physicalizations, a new class of physical visualizations that use collections of self-propelled objects to represent data. Dynamic composite physicalizations can be used both to give physical form to well-known interactive visualization techniques, and to explore new visualizations and interaction paradigms. We first propose a design space characterizing composite physicalizations based on previous work in the fields of Information Visualization and Human Computer Interaction. We illustrate dynamic composite physicalizations in two scenarios demonstrating potential benefits for collaboration and decision making, as well as new opportunities for physical interaction. We then describe our implementation using wheeled micro-robots capable of locating themselves and sensing user input, before discussing limitations and opportunities for future work

    A computational voting model

    Get PDF
    Social choice models usually assume that choice is among exogenously given and non decomposable alternatives. Often, on the contrary, choice is among objects that are constructed by individuals or institutions as complex bundles made of many interdependent components. In this paper we present a model of object construction in majority voting and show that, in general, by appropriate changes of such bundles, different social outcomes may be obtained, depending upon initial conditions and agenda, intransitive cycles and median voter dominance may be made appear or disappear, and that, finally, decidability may be ensured by increasing manipulability or viceversa.Social choice; object construction power; agenda power; intransitive cycles; median voter theorem.

    Are you a Good Employee or Simply a Good Guy? Infl?uence Costs and Contract Design.

    Get PDF
    We develop a principal-agent model with a moral hazard problem in which the principal has access to a hard signal (the level of output) and a soft signal (the supervision signal) about the agent?s level of effort. We show that the agent?'s ability to manipulate the soft signal increases the cost of implementing the effcient equilibrium, leading to wage compression when the infl?uence cost is privately incurred by the agent. When manipulation activities negatively affect the agent?s productivity through the level of output, the design of infl?uence-free contracts that deter manipulation may lead to high-powered incentives. This result implies that high-productivity workers face incentive schemes that are more sensitive to hard evidence than those faced by their low-productivity counterparts. In that context, the principal will tolerate infl?uence for low-productivity workers but not for high-productivity workers. We also fi?nd that in the case of productivity-based costs, it may be optimal for the principal not to supervise the agent, even if supervision is costless.principal-agent model with supervision, contract design, in?uence activities, manipulation, productivity-based influence costs, power of incentives

    Refractoriness within the semantic system: investigations on the access and the content of semantic memory

    Get PDF
    The starting purpose of this project was to investigate some issues related to the mechanisms underlying the efficient access to concepts within the semantic memory systems. These issues were mainly related to the role of refractoriness in explaining the comprehension deficits underlying semantic access. The insights derived from this first approach were then used to formulate and test hypotheses about the organization of the contents of the semantic system itself. The first part of the thesis presents an investigation of the semantic abilities of an unselected case-series of patients affected by tumours to either the left or right temporal lobes in order to detect possible semantic access difficulties. Semantic access deficits are typically attributed to the semantic system becoming temporarily refractory to repeated activation. Previous investigations on the topic were mainly based on single case reports, mainly on stroke patients. The rare examples of group studies suggested moreover the possibility that the syndrome might not be functionally unitary. The tasks used in the study were two word-to-picture matching tasks aimed to control for the typical variables held to be able to distinguish semantic access from degradation syndromes (consistency of access, semantic relatedness, word frequency, presentation rate and serial position). In the group of tumour patients tested access deficits were consistently found in patients with high grade tumours in the left posterior superior temporal lobe. However, the patients were overall only weakly affected by the typical temporal factors (presentation rate and serial position) characterizing an access syndrome as refractory. The pattern of deficit, together with the localization data, suggested that the deficit described is qualitatively different from typical semantic access syndromes and possibly caused by the disconnection of posterior temporal lexical input areas from the semantic system. In the second study we tried to answer the question whether semantic access deficits are caused by the co-occurrence of two causes (refractoriness and a lexicalsemantic disconnection) or whether the presence of refractoriness in itself is sufficient to induce all the behavioural effects described in access syndromes. A second aim of the study was moreover to investigate the precise locus of refractory behaviour, since refractory effects have also been reported in naming tasks in which the possibility exists that the interference might be located at a post-semantic lexical stage of processing. To address these issues a series of three behavioural experiments on healthy subjects was conducted. The tasks used were speeded versions of the same word-to picture matching tasks used in the previous study. A speeded paradigm was adopted in order to induce a mild refractory state also in healthy participants. The results showed that it was possible to induce, in the group of subjects tested, a performance similar to that of refractory semantic access patients. Since no post-semantic stage of processing is assumed to be necessary to perform these tasks it was argued that refractoriness arises due to interference occurring between representations within the semantic system itself. In the second part of the project, the finding that refractoriness arises due to interference involving semantic representations themselves, was used to investigate issues related to the organization of the content within the semantic memory. In particular, a second series of behavioural experiments was performed to investigate whether the way an object is manipulated is indeed a feature that defines manipulable objects at a semantic level. The tasks used were speeded word-to-picture matching tasks similar to those previously described. A significantly greater interference was found in the recognition of objects sharing similar manipulation than in the recognition of objects sharing only visual similarity. Moreover the repeated presentation of objects with similar manipulation created a \u2018negative\u2019 serial position effect (with error increasing over presentations), while the repeated presentation of objects sharing only visual similarity created an opposite \u2018positive\u2019 serial position effect (learning). The role of manipulability in the semantic representation of manipulable objects was further investigated in the last study of this work. In a second unselected group of brain tumour patients the ability to name living things and artifacts was investigated. Artifacts were manipulable objects, varying in the degree of their manipulability. Results from both behavioural and Voxel-based Lesion Symptom Mapping (VLSM) analyses showed that the only patients showing a selective deficit in naming artifacts (particularly highly manipulable objects) were patients with lesions in the posterior middle and superior portions of the left temporal lobe, an area lying within the basin of those regions involved in processing object-directed actions and previously linked to the processing of manipulable objects in a wide range of studies. The results of these last two studies support \u2018property-based networks\u2019 accounts of semantic knowledge rather than \u2018undifferentiated network\u2019 accounts. Overall this series of studies represents an attempt to better understand the mechanisms that underlie the access to semantic representations and, indirectly, the structure of representations stored within semantic networks. The insights obtained about the mechanisms of access to stored semantic representations were used as a tool to investigate the structures of the same semantic representations. A combination of different approaches was used (from behavioural speeded interference paradigms on healthy subjects, to neuropsychological case series investigations, as well as Voxel-based Lesion Symptom Mapping technique), to \u2018cross-validate\u2019 the results obtained at any level of analysis

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues โ€œKinematics and Robot Design II, KaRD2019โ€ (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and โ€œKinematics and Robot Design III, KaRD2020โ€ (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on โ€œmechanisms and roboticsโ€.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    ์•ˆ์ „ํ•œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡ ์‹œ์Šคํ…œ: ์„ค๊ณ„, ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ฐ ๋ฐ˜์‘ํ˜• ๊ฒฝ๋กœ๊ณ„ํš

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๋ฐ•์ข…์šฐ.The next generation of robots are being asked to work in close proximity to humans. At the same time, the robot should have the ability to change its topology to flexibly cope with various tasks. To satisfy these two requirements, we propose a novel modular reconfi gurable robot and accompanying software architecture, together with real-time motion planning algorithms to allow for safe operation in unstructured dynamic environments with humans. Two of the key innovations behind our modular manipulator design are a genderless connector and multi-dof modules. By making the modules connectable regardless of the input/output directions, a genderless connector increases the number of possible connections. The developed genderless connector can transmit as much load as necessary to an industrial robot. In designing two-dof modules, an offset between two joints is imposed to improve the overall integration and the safety of the modules. To cope with the complexity in modeling due to the genderless connector and multi-dof modules, a programming architecture for modular robots is proposed. The key feature of the proposed architecture is that it efficiently represents connections of multi-dof modules only with connections between modules, while existing architectures should explicitly represent all connections between links and joints. The data structure of the proposed architecture contains properties of tree-structured multi-dof modules with intra-module relations. Using the data structure and connection relations between modules, kinematic/dynamic parameters of connected modules can be obtained through forward recursion. For safe operation of modular robots, real-time robust collision avoidance algorithms for kinematic singularities are proposed. The main idea behind the algorithms is generating control inputs that increase the directional manipulability of the robot to the object direction by reducing directional safety measures. While existing directional safety measures show undesirable behaviors in the vicinity of the kinematic singularities, the proposed geometric safety measure generates stable control inputs in the entire joint space. By adding the preparatory input from the geometric safety measure to the repulsive input, a hierarchical collision avoidance algorithm that is robust to kinematic singularity is implemented. To mathematically guarantee the safety of the robot, another collision avoidance algorithm using the invariance control framework with velocity-dependent safety constraints is proposed. When the object approached the robot from a singular direction, the safety constraints are not satis ed in the initial state of the robot and the safety cannot be guaranteed using the invariance control. By proposing a control algorithm that quickly decreases the preparatory constraints below thresholds, the robot re-enters the constraint set and avoids collisions using the invariance control framework. The modularity and safety of the developed reconfi gurable robot is validated using a set of simulations and hardware experiments. The kinematic/dynamic model of the assembled robot is obtained in real-time and used to accurately control the robot. Due to the safe design of modules with o sets and the high-level safety functions with collision avoidance algorithms, the developed recon figurable robot has a broader safe workspace and wider ranger of safe operation speed than those of cooperative robots.๋‹ค์Œ ์„ธ๋Œ€์˜ ๋กœ๋ด‡์€ ์‚ฌ๋žŒ๊ณผ ๊ฐ€๊นŒ์ด์—์„œ ํ˜‘์—…ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ€์ ธ์•ผํ•œ๋‹ค. ๊ทธ์™€ ๋™์‹œ์—, ๋กœ๋ด‡์€ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ณ€ํ•˜๋Š” ์ž‘์—…์— ๋Œ€ํ•ด ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž์‹ ์˜ ๊ตฌ์กฐ๋ฅผ ๋ฐ”๊พธ๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋‘ ๊ฐ€์ง€ ์š”๊ตฌ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒˆ๋กœ์šด ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡ ์‹œ์Šคํ…œ๊ณผ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์•„ํ‚คํ…์ณ๋ฅผ ์ œ์‹œํ•˜๊ณ , ์‚ฌ๋žŒ์ด ์กด์žฌํ•˜๋Š” ๋™์  ํ™˜๊ฒฝ์—์„œ ์•ˆ์ „ํ•œ ๋กœ๋ด‡์˜ ์šด์šฉ์„ ์œ„ํ•œ ์‹ค์‹œํ•œ ๊ฒฝ๋กœ ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์˜ ๋‘ ๊ฐ€์ง€ ํ•ต์‹ฌ์ ์ธ ํ˜์‹ ์„ฑ์€ ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ์™€ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ์ž…๋ ฅ/์ถœ๋ ฅ ๋ฐฉํ–ฅ์— ์ƒ๊ด€ ์—†์ด ๋ชจ๋“ˆ์ด ์—ฐ๊ฒฐ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•จ์œผ๋กœ์จ, ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ๋Š” ๊ฒฐํ•ฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ๋Š” ์‚ฐ์—…์šฉ ๋กœ๋ด‡์—์„œ ์š”๊ตฌ๋˜๋Š” ์ถฉ๋ถ„ํ•œ ๋ถ€ํ•˜๋ฅผ ๊ฒฌ๋”œ ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. 2 ์ž์œ ๋„ ๋ชจ๋“ˆ์˜ ์„ค๊ณ„์—์„œ ๋‘ ์ถ• ์‚ฌ์ด์— ์˜คํ”„์…‹์„ ๊ฐ€์ง€๋„๋ก ํ•จ์œผ๋กœ์จ ์ „์ฒด์ ์ธ ์™„์„ฑ๋„ ๋ฐ ์•ˆ์ „๋„๋ฅผ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ๋ฌด์„ฑ๋ณ„ ์ปค๋„ฅํ„ฐ์™€ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ๋กœ ์ธํ•œ ๋ชจ๋ธ๋ง์˜ ๋ณต์žก์„ฑ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด, ์ผ๋ฐ˜์ ์ธ ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์„ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ์•„ํ‚คํ…์ณ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์˜ ์—ฐ๊ฒฐ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐฉ๋ฒ•์ด ๋ชจ๋“  ๋งํฌ์™€ ์กฐ์ธํŠธ ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ ๊ด€๊ณ„๋ฅผ ๋ณ„๋„๋กœ ๋‚˜ํƒ€๋‚ด์•ผํ•˜๋Š” ๊ฒƒ๊ณผ ๋‹ค๋ฅด๊ฒŒ, ์ œ์•ˆ๋œ ์•„ํ‚คํ…์ณ๋Š” ๋ชจ๋“ˆ๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„๋งŒ์„ ๋‚˜ํƒ€๋ƒ„์œผ๋กœ์จ ํšจ์œจ์ ์ธ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ์ผ๋ฐ˜์ ์ธ ๋‹ค์ž์œ ๋„ ๋ชจ๋“ˆ์˜ ์„ฑ์งˆ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ๋ชจ๋“ˆ๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ๊ด€๊ณ„ ๋ฐ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ, ์ •ํ™•ํ•œ ๊ธฐ๊ตฌํ•™/๋™์—ญํ•™ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์–ป์–ด๋‚ด๋Š” ์ˆœ๋ฐฉํ–ฅ ์žฌ๊ท€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋ชจ๋“ˆ๋ผ ๋กœ๋ด‡์˜ ์•ˆ์ „ํ•œ ์šด์šฉ์„ ์œ„ํ•ด, ๊ธฐ๊ตฌํ•™์  ํŠน์ด์ ์— ๊ฐ•๊ฑดํ•œ ์‹ค์‹œ๊ฐ„ ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฐฉํ–ฅ์„ฑ ์•ˆ์ „๋„๋ฅผ ์ค„์ด๋Š” ๋ฐฉํ–ฅ์˜ ์ œ์–ด ์ž…๋ ฅ์„ ์ƒ์„ฑํ•˜์—ฌ ๋ฌผ์ฒด ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๋กœ๋ด‡ ๋ฐฉํ–ฅ์„ฑ ๋งค๋‹ˆํ“ฐ๋Ÿฌ๋นŒ๋ฆฌํ‹ฐ๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ต์‹ฌ์ด๋‹ค. ๊ธฐ์กด์˜ ๋ฐฉํ–ฅ์„ฑ ์•ˆ์ „๋„๊ฐ€ ๊ธฐ๊ตฌํ•™์  ํŠน์ด์  ๊ทผ์ฒ˜์—์„œ ์›ํ•˜์ง€ ์•Š๋Š” ์„ฑ์งˆ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ๊ณผ๋Š” ๋ฐ˜๋Œ€๋กœ, ์ œ์•ˆํ•œ ๊ธฐํ•˜ํ•™์  ์•ˆ์ „๋„๋Š” ์ „์ฒด ์กฐ์ธํŠธ ๊ณต๊ฐ„์—์„œ ์•ˆ์ •์ ์ธ ์ œ์–ด ์ž…๋ ฅ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ด ๊ธฐํ•˜ํ•™์  ์•ˆ์ „๋„๋ฅผ ์ด์šฉํ•˜์—ฌ, ๊ธฐ๊ตฌํ•™์  ํŠน์ด์ ์— ๊ฐ•๊ฑดํ•œ ๊ณ„์ธต์  ์ถฉ๋ŒํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ˆ˜ํ•™์ ์œผ๋กœ ๋กœ๋ด‡์˜ ์•ˆ์ „๋„๋ฅผ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด, ์ƒ๋Œ€์†๋„์— ์ข…์†์ ์ธ ์•ˆ์ „ ์ œ์•ฝ์กฐ๊ฑด์„ ๊ฐ€์ง€๋Š” ๋ถˆ๋ณ€ ์ œ์–ด ํ”„๋ ˆ์ž„์›Œํฌ์„ ์ด์šฉํ•˜์—ฌ ๋˜ ํ•˜๋‚˜์˜ ์ถฉ๋Œ ํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฌผ์ฒด๊ฐ€ ํŠน์ด์  ๋ฐฉํ–ฅ์œผ๋กœ๋ถ€ํ„ฐ ๋กœ๋ด‡์— ์ ‘๊ทผํ•  ๋•Œ, ๋กœ๋ด‡์˜ ์ดˆ๊ธฐ ์ƒํƒœ์—์„œ ์•ˆ์ „ ์ œ์•ฝ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๊ฒŒ ๋˜์–ด ๋ถˆ๋ณ€์ œ์–ด๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์—†๊ฒŒ ๋œ๋‹ค. ์ค€๋น„ ์ œ์•ฝ์กฐ๊ฑด์„ ๋น ๋ฅด๊ฒŒ ์ž„๊ณ„์  ์•„๋ž˜๋กœ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•จ์œผ๋กœ์จ, ๋กœ๋ด‡์€ ์ œ์•ฝ์กฐ๊ฑด ์ง‘ํ•ฉ์— ๋‹ค์‹œ ๋“ค์–ด๊ฐ€๊ณ  ๋ถˆ๋ณ€ ์ œ์–ด ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ถฉ๋Œ์„ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๊ฐœ๋ฐœ๋œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡์˜ ๋ชจ๋“ˆ๋ผ๋ฆฌํ‹ฐ์™€ ์•ˆ์ „๋„๋Š” ์ผ๋ จ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ํ•˜๋“œ์›จ์–ด ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์‹ค์‹œ๊ฐ„์œผ๋กœ ์กฐ๋ฆฝ๋œ ๋กœ๋ด‡์˜ ๊ธฐ๊ตฌํ•™/๋™์—ญํ•™ ๋ชจ๋ธ์„ ์–ป์–ด๋‚ด ์ •๋ฐ€ ์ œ์–ด์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์•ˆ์ „ํ•œ ๋ชจ๋“ˆ ๋””์ž์ธ๊ณผ ์ถฉ๋Œ ํšŒํ”ผ ๋“ฑ์˜ ๊ณ ์ฐจ์› ์•ˆ์ „ ๊ธฐ๋Šฅ์„ ํ†ตํ•˜์—ฌ, ๊ฐœ๋ฐœ๋œ ์žฌ๊ตฌ์„ฑ ๋กœ๋ด‡์€ ๊ธฐ์กด ํ˜‘๋™๋กœ๋ด‡๋ณด๋‹ค ๋„“์€ ์•ˆ์ „ํ•œ ์ž‘์—…๊ณต๊ฐ„๊ณผ ์ž‘์—…์†๋„๋ฅผ ๊ฐ€์ง„๋‹ค.1 Introduction 1 1.1 Modularity and Recon gurability 1 1.2 Safe Interaction 4 1.3 Contributions of This Thesis 9 1.3.1 A Recon gurable Modular Robot System with Bidirectional Modules 9 1.3.2 A Modular Robot Software Programming Architecture 10 1.3.3 Anticipatory Collision Avoidance Planning 11 1.4 Organization of This Thesis 14 2 Design and Prototyping of the ModMan 17 2.1 Genderless Connector 18 2.2 Modules for ModMan 21 2.2.1 Joint Modules 21 2.2.2 Link and Gripper Modules 25 2.3 Experiments 26 2.3.1 System Setup 26 2.3.2 Repeatability Comparison with Non-recon gurable Robot Manipulators 28 2.3.3 E ect of the O set in Two-dof Modules 30 2.4 Conclusion 32 3 A Programming Architecture for Modular Recon gurable Robots 33 3.1 Data Structure for Multi-dof Joint Modules 34 3.2 Automatic Kinematic Modeling 37 3.3 Automatic Dynamic Modeling 40 3.4 Flexibility in Manipulator 42 3.5 Experiments 45 3.5.1 System Setup 46 3.5.2 Recon gurability 46 3.5.3 Pick-and-Place with Vision Sensors 48 3.6 Conclusion 49 4 A Preparatory Safety Measure for Robust Collision Avoidance 51 4.1 Preliminaries on Manipulability and Safety 52 4.2 Analysis on Reected Mass 56 4.3 Manipulability Control on S+(1;m) 60 4.3.1 Geometry of the Group of Positive Semi-de nite Matrices 60 4.3.2 Rank-One Manipulability Control 63 4.4 Collision Avoidance with Preparatory Action 65 4.4.1 Repulsive and Preparatory Potential Functions 65 4.4.2 Hierarchical Control and Task Relaxation 67 4.5 Experiments 70 4.5.1 Manipulability Control 71 4.5.2 Collision Avoidance 75 4.6 Conclusion 82 5 Collision Avoidance with Velocity-Dependent Constraints 85 5.1 Input-Output Linearization 87 5.2 Invariance Control 89 5.3 Velocity-Dependent Constraints for Robot Safety 90 5.3.1 Velocity-Dependent Repulsive Constraints 90 5.3.2 Preparatory Constraints 92 5.3.3 Corrective Control for Dangerous Initial State 93 5.4 Experiment 95 5.5 Conclusion 98 6 Conclusion 101 6.1 Overview of This Thesis 101 6.2 Future Work 104 Appendix A Appendix 107 A.1 Preliminaries on Graph Theory 107 A.2 Lie-Theoretic Formulations of Robot Kinematics and Dynamics 108 A.3 Derivatives of Eigenvectors and Eigenvalues 110 A.4 Proof of Proposition Proposition 4.1 111 A.5 Proof of Triangle Inequality When p = 1 114 A.6 Detailed Conditions for a Danger Field 115 Bibliography 117 Abstract 127Docto

    Organizing Time Exchanges: Lessons from Matching Markets

    Get PDF
    This paper considers time exchanges via a common platform (e.g., markets for exchanging time units, positions at education institutions, and tuition waivers). There are several problems associated with such markets, e.g., imbalanced outcomes, coordination problems, and inefficiencies. We model time exchanges as matching markets and construct a non-manipulable mechanism that selects an individually rational and balanced allocation which maximizes exchanges among the participating agents (and those allocations are efficient). This mechanism works on a preference domain whereby agents classify the goods provided by other participating agents as either unacceptable or acceptable, and for goods classified as acceptable agents have specific upper quotas representing their maximum needs

    Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    Get PDF
    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator
    • โ€ฆ
    corecore