3,616 research outputs found

    Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers

    Full text link
    © 2014 IEEE. In this paper, a supply disruption management model is introduced in a three-tier supply chain with multiple suppliers and retailers, where the system may face sudden disruption in its raw material supply. At first, we formulated a mathematical model for ideal conditions and then reformulated it to revise the supply, production and delivery plan after the occurrence of a disruption, for a future period, to recover from the disruption. Here, the objective is to minimize the total cost during the recovery time window while being subject to supply, capacity, demand, and delivery constraints. We have also proposed an efficient heuristic to solve the model and the results have been compared, with another established solution approach, for a good number of randomly generated test problems. The comparison showed the consistent performance of our developed heuristic. This paper also presents some numerical examples to explain the usefulness of the proposed approach

    Developing lean and responsive supply chains : a robust model for alternative risk mitigation strategies in supply chain designs

    Get PDF
    This paper investigates how organization should design their supply chains (SCs) and use risk mitigation strategies to meet different performance objectives. To do this, we develop two mixed integer nonlinear (MINL) lean and responsive models for a four-tier SC to understand these four strategies: i) holding back-up emergency stocks at the DCs, ii) holding back-up emergency stock for transshipment to all DCs at a strategic DC (for risk pooling in the SC), iii) reserving excess capacity in the facilities, and iv) using other facilities in the SC’s network to back-up the primary facilities. A new method for designing the network is developed which works based on the definition of path to cover all possible disturbances. To solve the two proposed MINL models, a linear regression approximation is suggested to linearize the models; this technique works based on a piecewise linear transformation. The efficiency of the solution technique is tested for two prevalent distribution functions. We then explore how these models operate using empirical data from an automotive SC. This enables us to develop a more comprehensive risk mitigation framework than previous studies and show how it can be used to determine the optimal SC design and risk mitigation strategies given the uncertainties faced by practitioners and the performance objectives they wish to meet

    A quantitative model for disruption mitigation in a supply chain

    Full text link
    © 2016 Elsevier B.V. In this paper, a three-stage supply chain network, with multiple manufacturing plants, distribution centers and retailers, is considered. For this supply chain system we develop three different approaches, (i) an ideal plan for an infinite planning horizon and an updated plan if there are any changes in the data, (ii) a predictive mitigation planning approach for managing predictive demand changes, which can be predicted in advance by using an appropriate tool, and (iii) a reactive mitigation plan, on a real-time basis, for managing sudden production disruptions, which cannot be predicted in advance. In predictive mitigation planning, we develop a fuzzy inference system (FIS) tool to predict the changes in future demand over the base forecast and the supply chain plan is revised accordingly well in advance. In reactive mitigation planning, we formulate a quantitative model for revising production and distribution plans, over a finite future planning period, while minimizing the total supply chain cost. We also consider a series of sudden disruptions, where a new disruption may or may not affect the recovery plans of earlier disruptions and which consequently require plans to be revised after the occurrence of each disruption on a real-time basis. An efficient heuristic, capable of dealing with sudden production disruptions on a real-time basis, is developed. We compare the heuristic results with those obtained from the LINGO optimization software for a good number of randomly generated test problems. Also, some numerical examples are presented to explain both the usefulness and advantages of the proposed approaches

    Designing multi-period supply chain network considering risk and emission: a multi-objective approach

    Get PDF
    This research formulates a multi-objective problem (MOP) for supply chain network (SCN) design by incorporating the issues of social relationship, carbon emissions, and supply chain risks such as disruption and opportunism. The proposed MOP includes three conflicting objectives: maximization of total profit, minimization of supply disruption and opportunism risks, and minimization of carbon emission considering a number of supply chain constraints. Furthermore, this research analyses the effect of social relationship levels between different tiers of SCN on the profitability, risk, and emission over the time. In this regard, we focus on responding to the following questions. (1) How does the evolving social relationship affect the objectives of the supply chain (SC)? (2) How do the upstream firms’ relationships affect the relationships of downstream firms, and how these relationships influence the objectives of the SC? (3) How does the supply disruption risk interact with the opportunism risk through supply chain relationships, and how these risks affect the objectives of the SC? (4) How do these three conflicting objectives trade-off? A Pareto-based multi-objective evolutionary algorithm–non-dominated sorting genetic algorithm-II (NSGA-II) has been employed to solve the presented problem. In order to improve the quality of solutions, tuning parameters of the NSGA-II are modulated using Taguchi approach. An illustrative example is presented to manifest the capability of the model and the algorithm. The results obtained evince the robust performance of the proposed MOP

    Designing multi-period supply chain network considering risk and emission: a multi-objective approach

    Get PDF
    This research formulates a multi-objective problem (MOP) for supply chain network (SCN) design by incorporating the issues of social relationship, carbon emissions, and supply chain risks such as disruption and opportunism. The proposed MOP includes three conflicting objectives: maximization of total profit, minimization of supply disruption and opportunism risks, and minimization of carbon emission considering a number of supply chain constraints. Furthermore, this research analyses the effect of social relationship levels between different tiers of SCN on the profitability, risk, and emission over the time. In this regard, we focus on responding to the following questions. (1) How does the evolving social relationship affect the objectives of the supply chain (SC)? (2) How do the upstream firms’ relationships affect the relationships of downstream firms, and how these relationships influence the objectives of the SC? (3) How does the supply disruption risk interact with the opportunism risk through supply chain relationships, and how these risks affect the objectives of the SC? (4) How do these three conflicting objectives trade-off? A Pareto-based multi-objective evolutionary algorithm–non-dominated sorting genetic algorithm-II (NSGA-II) has been employed to solve the presented problem. In order to improve the quality of solutions, tuning parameters of the NSGA-II are modulated using Taguchi approach. An illustrative example is presented to manifest the capability of the model and the algorithm. The results obtained evince the robust performance of the proposed MOP

    A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain

    Full text link
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. This paper aims to develop a recovery planning approach in a three-tier manufacturing supply chain, which has a single supplier, manufacturer, and retailer under an imperfect production environment, in which we consider three types of sudden disturbances: demand fluctuation, and disruptions to production and raw material supply, which are not known in advance. Firstly, a mathematical model is developed for generating an ideal plan under imperfect production for a finite planning horizon while maximizing total profit, and then we re-formulate the model to generate the recovery plan after happening of each sudden disturbance. Considering the high commercial cost and computational intensity and complexity of this problem, we propose an efficient heuristic, to obtain a recovery plan, for each disturbance type, for a finite future period, after the occurrence of a disturbance. The heuristic solutions are compared with a standard solution technique for a considerable number of random test instances, which demonstrates the trustworthy performance of the developed heuristics. We also develop another heuristic for managing the combined effects of multiple sudden disturbances in a period. Finally, a simulation approach is proposed to investigate the effects of different types of disturbance events generated randomly. We present several numerical examples and random experiments to explicate the benefits of our developed approaches. Results reveal that in the event of sudden disturbances, the proposed mathematical and heuristic approaches are capable of generating recovery plans accurately and consistently

    Who shares wins? Understanding barriers to information sharing in managing supply chain risk.

    Get PDF
    Currently there is no universally accepted approach to supply chain risk management and assurance. To begin to shed more light on the practical operational challenges presented when considering supply chain risk mitigation through the sharing of information, this paper discusses the results of an empirical study conducted with manufacturing supply chain professionals. The study examines state-of-the-art challenges to managing risk in today's supply chains by reporting on data collected in 2021. To develop a rich picture of the challenges of information sharing in multi-tier supply chains, the authors adopted a qualitative research design. The authors conducted 14 interviews with supply chain professionals and ran two focus groups that were industry specific: one focused on the nuclear industry and the other on automotive. The study identifies contemporary practical challenges to information sharing in supply chains – specifically challenges related to data quality and the acceptance of sub-optimal normative supply chain practices, which have consequences for supplier assurance fatigue and supply chain transparency. The topical and contemporary study shows how an acceptance of the normative practices of a supply chain can have a cumulative effect on the likelihood of supply chain disruption due to shortcomings in approaches to information sharing. The notion of the acceptance of the status quo in this context has received limited research attention, and hence offers an extension to current discourse on supply chain risk and resilience

    A Representation of Tactical and Strategic Precursors of Supply Network Resilience Using Simulation Based Experiments

    Get PDF
    Modern supply chains are becoming increasingly complex and are exposed to higher levels of risk. Globalization, market uncertainty, mass customization, technological and innovation forces, among other factors, make supply networks more susceptible to disruptions (both those that are man-made and/or ones associated with natural events) that leave suppliers unavailable, shut-down facilities and entail lost capacity. Whereas several models for disruption management exist, there is a need for operational representations of concepts such as resilience that expand the practitioners’ understanding of the behavior of their supply chains. These representations must include not only specific characteristics of the firm’s supply network but also its tactical and strategic decisions (such as sourcing and product design). Furthermore, the representations should capture the impact those characteristics have on the performance of the network facing disruptions, thus providing operations managers with insights on what tactical and strategic decisions are most suitable for their specific supply networks (and product types) in the event of a disruption. This research uses Agent-Based Modeling and Simulation (ABMS) and an experimental set-up to develop a representation of the relationships between tactical and strategic decisions and their impact on the performance of multi-echelon networks under supply uncertainty. Two main questions are answered: 1) How do different tactical and strategic decisions give rise to resilience in a multi-echelon system?, and 2) What is the nature of the interactions between those factors, the network’s structure and its performance in the event of a disruption? Product design was found to have the most significant impact on the reliability (Perfect Order Fulfillment) for products with high degrees of componentization when dual sourcing is the chosen strategy. However, when it comes to network responsiveness (Order Fulfillment Cycle Time), this effect was attenuated. Generally, it was found that the expected individual impact these factors have on the network performance is affected by the interactions between them

    Strategies to Mitigate Supply Chain Disruptions in Grocery Businesses

    Get PDF
    Supply chains have become more complex in the global economy, which has made supply chain disruptions inevitable. Disruptions can cause loss of profitability and hinder business growth. The goal of this multiple case study was to explore strategies to mitigate the effects of disruption in grocery store supply chains. The conceptual framework for this study was the resource dependency theory, which stipulates that firms rely on other businesses in the external environment for critical resources to create a competitive edge. Four purposively selected participants from 4 grocery store businesses in Northwest Arkansas participated in semistructured interviews and provided organizational documentation for this study. The participants were supply chain managers who had knowledge about disruptions and had successfully mitigated disruptions in their grocery stores\u27 supply chains. Yin\u27s 5-step process was used to analyze data, which involved compiling the database, disassembling data, reassembling data, interpreting data, and making a conclusion. Four themes emerged from the data analysis: supply chain partners\u27 collaboration, multiple supply base and supplier qualification, inventory management, and information technology and communication. The uninterrupted flow of grocery merchandise to the community could result in a positive social change by helping to ensure that community members have timely access to food

    Supply chain uncertainty:a review and theoretical foundation for future research

    Get PDF
    Supply-chain uncertainty is an issue with which every practising manager wrestles, deriving from the increasing complexity of global supply networks. Taking a broad view of supply-chain uncertainty (incorporating supply-chain risk), this paper seeks to review the literature in this area and develop a theoretical foundation for future research. The literature review identifies a comprehensive list of 14 sources of uncertainty, including those that have received much research attention, such as the bullwhip effect, and those more recently described, such as parallel interaction. Approaches to managing these sources of uncertainty are classified into: 10 approaches that seek to reduce uncertainty at its source; and, 11 approaches that seek to cope with it, thereby minimising its impact on performance. Manufacturing strategy theory, including the concepts of alignment and contingency, is then used to develop a model of supply-chain uncertainty, which is populated using the literature review to show alignment between uncertainty sources and management strategies. Future research proposed includes more empirical research in order to further investigate: which uncertainties occur in particular industrial contexts; the impact of appropriate sources/management strategy alignment on performance; and the complex interplay between management strategies and multiple sources of uncertainty (positive or negative)
    • …
    corecore