344 research outputs found

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    A Neighborhood-Based Trust Protocol for Secure Collaborative Routing in Wireless Mobile D2D HetNets

    Get PDF
    Heterogeneous Device-to-Device mobile networks are characterised by frequent network disruption and unreliability of peers delivering messages to destinations. Trust-based protocols has been widely used to mitigate the security and performance problems in D2D networks. Despite several efforts made by previous researchers in the design of trust-based routing for efficient collaborative networks, there are fewer related studies that focus on the peers’ neighbourhood as a routing metrics’ element for a secure and efficient trust-based protocol. In this paper, we propose and validate a trust-based protocol that takes into account the similarity of peers’ neighbourhood coefficients to improve routing performance in mobile HetNets environments. The results of this study demonstrate that peers’ neighborhood connectivity in the network is a characteristic that can influence peers’ routing performance. Furthermore, our analysis shows that our proposed protocol only forwards the message to the companions with a higher probability of delivering the packets, thus improving the delivery ratio and minimizing latency and mitigating the problem of malicious peers ( using packet dropping strategy)
    • …
    corecore