1,314 research outputs found

    Synchronization of decentralized event-triggered uncertain switched neural networks with two additive time-varying delays

    Get PDF
    This paper addresses the problem of synchronization for decentralized event-triggered uncertain switched neural networks with two additive time-varying delays. A decentralized eventtriggered scheme is employed to determine the time instants of communication from the sensors to the central controller based on narrow possible information only. In addition, a class of switched neural networks is analyzed based on the Lyapunov–Krasovskii functional method and a combined linear matrix inequality (LMI) technique and average dwell time approach. Some sufficient conditions are derived to guarantee the exponential stability of neural networks under consideration in the presence of admissible parametric uncertainties. Numerical examples are provided to illustrate the effectiveness of the obtained results.&nbsp

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    On general systems with randomly occurring incomplete information

    Get PDF
    In the system and control community, the incomplete information is generally regarded as the results of (1) our limited knowledge in modelling real-world systems; and (2) the physical constraints on the devices for collecting, transmitting, storing and processing information. In terms of system modelling, the incomplete information typically includes the parameter uncertainties and norm-bounded non-linearities that occur with certain bounds. As for the physical constraints, two well-known examples are the actuator/sensor saturation caused by the limited power/altitude of the devices as well as the signal quantization caused by limited bandwidth for signal propagation

    Adaptive Control of Truss Structures for Gossamer Spacecraft

    Get PDF
    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances

    Distributed Model Reference Adaptive Control for Vehicle Platoons with Uncertain Dynamics

    Get PDF
    This paper proposes a distributed model reference adaptive controller (DMRAC) for vehicle platoons with constant spacing policy, subjected to uncertainty in control effectiveness and inertial time lag. It formulates the uncertain vehicle dynamics as a matched uncertainty, and is applicable for both directed and undirected topologies. The directed topology must contain at least one spanning tree with the leader as a root node, while the undirected topology must be static and connected with at least one follower receiving information from the leader. The proposed control structure consists of a reference model and a main control system. The reference model is a closed-loop system constructed from the nominal model of each follower vehicle and a reference control signal. The main control system consists of a nominal control signal based on cooperative state feedback and an adaptive term. The nominal control signal allows the followers cooperatively track the leader, while the adaptive term suppresses the effects of uncertainties. Stability analysis shows that global tracking errors with respect to the reference model and with respect to the leader are asymptotically stable. The states of all followers synchronize to both the reference and leader states. Moreover, with the existence of unknown external disturbances, the global tracking errors remain uniformly ultimately bounded. The performance of the controlled system is verified through the simulations and validates the efficacy of the proposed controller

    Adaptive Control of Truss Structures for Gossamer Spacecraft

    Get PDF
    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances
    corecore