5,358 research outputs found

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Lightweigth Adaptive fault-tolerant data storage system (AFTSYS)

    Get PDF
    Research group ARCOS of Universidad Carlos III de Madrid (Spain) have been working on flexible and adaptive data storage systems for several years. The storage systems developed are featured by software governance, making them portable across different hardware storage resources, and their dynamic adaptativy to the different circumstances of computer systems following the autonomic system paradigm. They also allow getting high performance storage by using data distribution or striping across multiple devices. One of the group’s technologies y the AFTSYS system. A fault-tolerant storage system for persistent distributed objects, user configurable and adaptive to system behaviour

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Survey of End-to-End Mobile Network Measurement Testbeds, Tools, and Services

    Full text link
    Mobile (cellular) networks enable innovation, but can also stifle it and lead to user frustration when network performance falls below expectations. As mobile networks become the predominant method of Internet access, developer, research, network operator, and regulatory communities have taken an increased interest in measuring end-to-end mobile network performance to, among other goals, minimize negative impact on application responsiveness. In this survey we examine current approaches to end-to-end mobile network performance measurement, diagnosis, and application prototyping. We compare available tools and their shortcomings with respect to the needs of researchers, developers, regulators, and the public. We intend for this survey to provide a comprehensive view of currently active efforts and some auspicious directions for future work in mobile network measurement and mobile application performance evaluation.Comment: Submitted to IEEE Communications Surveys and Tutorials. arXiv does not format the URL references correctly. For a correctly formatted version of this paper go to http://www.cs.montana.edu/mwittie/publications/Goel14Survey.pd

    Designing and Implimentation of Spatial IP Address Assignment Scheme for a Wireless Network

    Get PDF
    Wireless sensor networks are composed of large numbers up to thousands of tiny radio- equipped sensors. Every sensor has a small microprocessor with enough power to allow the sensors to autonomously form networks through which sensor information is gathered. Wireless sensor networks makes it possible to monitor places like nuclear disaster areas or volcano craters without requiring humans to be immediately present. Many wireless sensor network applications cannot be performed in isolation; the sensor network must somehow be connected to monitoring and controlling entities. This research paper investigates a novel approach for connecting sensor networks to existing networks: by using the TCP/IP protocol suite in the sensor network, the sensors can be directly connected to an outside network without the need for special proxy servers or protocol converters. Bringing TCP/IP to wireless sensor networks is a challenging task, however. First, because of their limited physical size and low cost, sensors are severely constrained in terms of memory and processing power. Traditionally, these constraints have been considered too limiting for a sensor to be able to use the TCP/IP protocols. In this research paper, I show that even tiny sensors can communicate using TCP/IP. Second, the harsh communication conditions make TCP/IP perform poorly in terms of both throughput and energy efficiency. With this research paper, I suggest a number of optimizations that are intended to increase the performance of TCP/IP for sensor networks. The results of the work presented in this research paper have a significant impact on the embedded TCP/IP networking community. The software evolves as part of the research paper has become widely known in the community. The software is mentioned in books on embedded systems and networking, is used in academic courses on embedded systems, is the focus of articles in professional magazines, is incorporated in embedded operating systems, and is used in a

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project
    • …
    corecore