
Active Networks: an Evolution of the Internet

Giuseppe Di Fatta, Giuseppe Lo Re

CERE-CNR, Viale delle Scienze, 90128

Palermo (Italy)

{difatta, lore}@cere.pa.cnr.it

Abstract

Le Active Networks si propongono quale evoluzione del classico modello di rete a commutrazione di

pacchetto. Al tradizionale modello “passivo” di rete basato su una definizione statica del

comportamento della infrastruttura di trasmissione dati si contrappone un modello “attivo” in cui i nodi

intermedi della rete (switch e router) possono eseguire codice utente contenuto nelle unità elementari

di dati trasmessi (pacchetti). Le Active Networks costituiscono un modello di rete “programmabile” nel

quale l’infrastruttura di rete viene riconosciuta quale strumento di trasmissione e di calcolo allo stesso

tempo e su cui si aprono nuovi scenari di indagine di estremo interesse. Questo articolo da una breve

introduzione alle Active Networks, discute i vantaggi che esse introducono e presenta lo stato di

avanzamento delle ricerche del settore.

Active Networks can be seen as an evolution of the classical model of packet-switched networks. The

traditional and ”passive” network model is based on a static definition of the network node behaviour.

Active Networks propose an “active” model where the intermediate nodes (switches and routers) can

load and execute user code contained in the data units (packets). Active Networks are a programmable

network model, where bandwidth and computation are both considered shared network resources. This

approach opens up new interesting research fields. This paper gives a short introduction of Active

Networks, discusses the advantages they introduce and presents the research advances in this field.

1 Introduction

Active Networks are packet-switched networks in which packets can contain code fragments that are
executed on the intermediary nodes [TENN96]. The defining characteristic of an active network is the
capability for users to load software components into network nodes, dynamically, without explicit
reference to any third party. In such a way, Active Networks provide a programmable interface in network
nodes to enable the construction of new services.

Traditional computer networks apply the store-and-forward paradigm. A network consists of a set of
nodes interconnected by transmission links. The basic unit of multiplexing of transmission facilities is the
packet. Each node performs only the processing necessary to forward packets toward their destination.
Nodes receive packets from users or from other nodes, perform a computation based on their internal
state and on the control information (header) carried in the packet, and, as a result of that computation,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/9469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

may forward one or more packets towards other nodes or to users. Networks allow their users to share
network bandwidth as a common resource.

Active Networks override this vision by introducing the store-compute-and-forward concept. Active
packets carry not only data but also suitable code portions that will be executed at intermediate nodes as
they walk through the network.

Several problems arise from this new approach, the most remarkable of which regards security, but
they are balanced by the new capabilities offered by this new technology. Active Networks focus not only
on bandwidth but also on other network resources, such as the computing and storage capabilities at end-
systems and at intermediate nodes as well. An active network allows its users to write applications that
make use of the CPU, main memory and disk space located at the intermediate nodes. It also provides the
means to inject user code into these nodes, thus enabling user customisation of network protocols and
services.

Active Networks may be regarded as the natural evolution of current ones. Usual packets might be
already considered as program carriers, but their functions are so limited that basically they only accept a
payload and specify an evaluation destination; moreover the evaluation consists only in the extraction of
data. The payload is in fact made of passive data that are just passed to upper services; instead, in an
active environment, it is replaced by a program (which may contain data as well). The network designer
thus needs to provide the user with a programmable network interface, a virtual machine suitable for the
users to inject their active packets into the network. An active environment can thus be divided into a fixed
part (the network API) and a variable, user-defined one. If the API defines a complete Turing machine,
then the programmer has virtually no limitations in determining the node behavior; on the other hand, the
fixed part could accept only some predefined parameters and little variations from a standard behavior are
allowed.

In the former case it may be impossible to understand the influence of single nodes on the whole
behavior of the net, while the latter one is more or less the common case in the current Internet, where the
possible choice for parameters is very limited. Clearly a better choice lies somewhere in the middle.

1.1 Evolution, revolution, or involution

A traditional network architecture is a set of layers and protocols, where each layer offers certain
statically pre-defined services to higher layers. In this context Active Networking could be considered a
revolution. The Active Network [SMITH] differs from traditional architectures primarily in what it does not
specify. Instead of defining how the nodes work together to provide the network service, the active
network describes functional slots that must be instantiated to provide a particular network service. These
slots create a new degree of freedom in network architectures, which, in turn, opens up the opportunity to
speed up network evolution and thus accommodate new network types, algorithms and applications. In
this way it will be possible to solve one of the most relevant problem of today networks, that is the difficulty
of deploying new protocols.

Currently, the standardization process of a new protocol requires times, which are measurable in
years. The introduction of a programmable network infrastructure will allow the users to bypass this long
and tedious process by identifying new needs that can occur in the network and by programming the
network to manage them.

On the other side, purists of Networking concepts have even considered Active Networks an
involution. The hierarchical structure of the layered architecture follows strong principles and allow to
cope with the design of complex systems. Active Networking seems to break some fundamental rules (e.g.
the end-to-end argument [BHATT1]) and to introduce anarchy in the rigorous organization of the layered
structure.

Active Networks research community like to consider it an evolution of traditional network
architectures “motivated by both technology push and user pull” [TENN97].

Active Networks concepts are not totally new. Specific solutions to many problems in networking have
been proposed and even adopted, which perform user-driven computation at nodes “within” the network
(e.g. firewalls, web caches and proxies, multicast routers, mobile proxies, and video gateways).

Furthermore, a lot of recent trends in Networking could be considered a subset of the Active Network
Architecture: for instance VLAN in PHY layer, Multiprotocol Router, RSVP, RTP, Application Layer Routing
are all functions that an active network can provide. Active Networks can be used as a common
infrastructure to solve both the current problems and the ones will come with no need for many ad-hoc
solutions.

The goal for active networking is to build a network infrastructure based on programmable
open nodes where it is possible to deploy programs dynamically into node engines. Active
Networks research is, namely, developing mechanisms to increase the flexibility and customizability of the
network and to accelerate the pace at which software is deployed.

1.2 Two different approaches

There are two possible approaches to build Active Networks: a discrete and an integrated approach.
The Discrete Approach is also called Programmable Node Approach because programs are

injected into the programmable active node separately from the actual data packets that traverses through
the network. The “user” would send the program to the network node (switch or router), where it would be
stored and later executed when the data arrives at the node, processing that data which are associated to
the program. The data have some information that would let the node decide how to handle it or what
program to execute.

Figure 1: different approaches in proposed architectures

In the Integrated Approach, also termed as the Encapsulation Approach, the program is integrated
into every packet of data, which is called “capsule”. Each capsule contains a program fragment that may
or may not have some embedded data. When such a capsule arrives at the active node, an Execution
Environment (EE) interprets the program and takes some action according to the interpretation of the
program (like sending the embedded data to the destination. In this approach, each active node has a
built-in mechanism to load the encapsulated code, an execution environment to execute the code and a
relatively permanent storage where capsules would retrieve or store information.

The following table gives a summary of the main characteristics of the two approaches.

Approach Node Programmability Level Programs Code injection vs data
transmission

Discrete Configurable, extensible node Switchlets, modules Out-of-band

Integrated Execution Environment Packet programming In-band

Table 1: Discrete and Integrated Approaches

2 Sciences from which Active Networks inherit
The concept of active networking explicitly emerged [TENN97] from discussions on the future

directions of networking systems within the broad DARPA research community in 1994 and 1995.
However, the idea of messages carrying procedures and data is a natural step beyond the traditional
circuit and packet switching systems, and was already applied in the past to rapidly adapt a network to
changing requirements. According to this point of view, Softnet [ZF83] should be considered the earliest
(1983) active network. Softnet is a packet radio network developed at the University of Linkoping
(Sweden), where each node consists of a dual-processor: the node processor for the system
management, and the link processor to control the radio transceiver and the interface to the node
processor. Each packet contains a FORTH program to be executed on network nodes. Softnet proposes a
distributed network of computational nodes and provides programmability in all layers of the network
infrastructure.

Although the difficulties in the Softnet project were related to inefficiency mainly because on the early
1980s software technologies had not yet reached a sufficient development, in the 1990s several areas of
research enabled the Active Network paradigm to emerge as a programmable Network architecture. On
the other side the telecommunication market has been demanding the introduction of new services and
even a common definition of a framework which enables the dynamic and fast introduction of new
services.

In this section we briefly discuss areas which can be considered relevant to the development of Active
Networks concept.

2.1 Programmability in Telephony

In Telephony infrastructures programmability of electronic switching systems provided service creation
and deployment.

During the mid-1980s, regional Bell operating companies (RBOCs) began to request features that met
the following objectives: rapid deployment of services in the network, vendor independence and standard
interfaces, and opportunities for non–RBOCs to offer services for increased network usage. Bell
Communications Research (Bellcore), today Telcordia Technologies, responded to this request and

developed the concept of Intelligent Network [IN]. An Intelligent Network (IN) is a service-independent
Telecommunications network. That is, intelligence is taken out of the switch and placed in computer nodes
that are distributed throughout the network. This provides the network operator with the means to develop
and control services more efficiently. New capabilities can be rapidly introduced into the network. Once
introduced, services are easily customized to meet individual customer's needs.

The service-independent Advanced Intelligent Network (AIN) followed IN and demonstrated that
programmability can accelerate service introduction in the context of telephone calls.

2.2 Configurable Network Protocols

The philosophy of configurable network protocols, such as Application Level Framing (ALF) [CLAR90],
x-kernel [HUTC91] [O'MA92], and Protocol Boosters [MALL96] [FMS+98], is a design guideline that
includes the semantics of the application in the design of its transport protocol. It argues that the roles of
application and network must be matched for efficient processing. The aim of these protocol architectures
is to provide a communication environment that satisfies the requirement of a large range of distributed
applications.

Application Level Framing is a communication system architecture where applications play an
important role in the data transmission process, as they best know the characteristic and the requirements
of the information being transmitted. The ALF principle states that “information should be packetized by
the application into Application Data Unit (ADU’s), each of which should be at the same time a unit of
transmission, a unit of control, and a unit of processing” [CKD98].

The x-kernel is an object-based framework for implementing network protocols. It defines an interface
that protocols use to invoke operations on one another and a collection of libraries for manipulating
messages, participant addresses, events, associative memory tables (maps), threads, and so on.

The x-kernel has been adopted as a research platform for investigating end-to-end issues related to
computer networks, i.e. it focuses on the design and the implementation of network software running on
the end systems connected to the network.

The Protocol Boosters work shows that programmability can be useful for dynamic adaptability. In that
work, they were able to adapt to conditions such as increased loss within the network by dynamically
adding error correction functionality around the lossy portion of the network.

2.3 Mobile Agents and Interpreted Programming Languages

There exist several languages for programming server-to-client code migration (e.g. Java [SUN95],
Safe-TCL [BOR94], Python [VROS], Omniware [COL95]) and several others are specifically designed for
programming mobile agents (Phantom [COU95], Obliq [CAR95], Telescript [TELE95]). A mobile agent
carries a transient execution environment along with code; this allows a computation to start at one node
in the network and migrate itself to other nodes.

Active packets [CHEN] have an obvious similarity to the better known mobile agents, and serve a
complementary purpose in some way. Although there is no universal definition of software agent,
generally agents are regarded as software programs designed to carry out a specific function or task on
behalf of a user. Both active packets and mobile agents view the network as a distributed programmable
environment, but they are different in orientation and operation. Active packets are concerned mostly with
the customization of packet handling service related to a user's connection. For this reason, they work
within the network on the network itself, by a process of code movement and remote execution.

In contrast, mobile agents may typically have more intelligence and self-directed autonomy to carry out
their function, which may be more oriented toward mobile computation, i.e. towards hosts rather than the
network infrastructure.

In this way, agents can be viewed as an enabling technology, as they provide many support mechanisms
characteristic for AN and enable the implementation of autonomy characteristic.

2.4 Extensible Operating Systems

Several research efforts have been focusing on safe, application-specific extensions to operating
systems to provide and manage a flexible and controlled access to local system services [CHD94]. Many
of these works, such as SPIN (1995), Exokernel (1995), ASHs (1996), Plexus (1996), Scout (1995), result
in techniques for safely extending a software subsystem.

SPIN [BER95] allows users to download code into the kernel. It adopts Modula-3 which is a strongly
typed language with automatic garbage collection. The type checking of the Modula-3 compiler is used to
ensure domains of protection at the level of binding names for access to objects. Programs signed by the
compiler may be dynamically loaded into the operating system.

Exokernel [ENG95] allows applications to design their own OS abstractions and to extend OS for
increased performance or functionality.

ASHs [WAL96] allow user-defined handlers to be run by the kernel in response to packet arrivals.
Plexus [FIB96] allows application-specic communication protocols to be incorporated into the kernel.
Scout [MONT95] [MOSB97] is an operating system implementation based upon x-kernel with a special

focus on network appliances. It is mainly end-system oriented with a router module which implements QoS
functionality and IPv6. It allocates and schedules resources on a “path” basis and applies a number of
optimizations intended to increase throughput and decrease latency. Many of the techniques may be
applicable to programs loaded into network nodes.

2.5 Distributed Object technology for networking

Distributed object systems [RSW98] have become a foundation technology and operational platform
for large, complex communications network. CORBA (Common Object Request Broker Architecture) and
DCOM (Distributed Component Object Model) represent the current technologies in this field. An object is
a piece of software representing any service or information providing entity, such as a document, a
network element, a media stream or device, or a communication session. An object class represents
potential objects sharing the defined characteristics of the class.

A distributed object system is a dispersed set of objects that can request services from one another,
through a communication mechanism, using interfaces defined in a consistent IDL (Interface Definition
Language).

Distributed objects technology offers important benefits to networking systems such as modularity,
reusability, scalability, and reliability, which allow to reduce the service deployment cycle.

Nevertheless, these systems present the inconvenient to be completely static, which means they do
not allow to dynamically inject new software behaviors into the network, but to simply use predefined static
procedures available on the nodes. These constraints are overridden by the Active Networks technology.

3 Potential use of Active Networks

3.1 New applications

There has been a long debate about the "killer application" in Active Networks. The evolution of
computer networks towards the active network paradigm strongly depends on the actual benefits that can
be obtained by applications. We feel that many of these benefits fall into the following categories.

Availability of Information Held by Intermediate Nodes
Mobile agents can be encapsulated and transported in the active code of application capsules. They

can retrieve and extract pieces of information held by intermediate nodes in a more effective way than
through remote queries from the application itself. For instance, an agent could make use of active code to
look-up the routing tables of an intermediate node and select some entries according to a given criterion. It
can either send such extracted information back to the application, or it can use the information to take
timely decisions autonomously from the application. More examples can be found in network management
issues, such as congestion control, error management, traffic monitoring. A meaningful example is the one
related to the customization of the routing function. A mobile agent could be devoted to the evaluation of
the path for the application's data flow, according to the user's QoS specification. Each application could
set up its own control policy or exploit a common service (the default per-hop forward function).

Data Processing Capability along the Path
Application-specific functions installed into an intermediate node could access and modify transient

data addressed to other nodes. Such modification could be due to the current state of the network or to
particular receiver needs. Data format translations, different compression levels, document
encryption/decryption are some of the examples. Multicast transmission is an instance where the benefits
appear more evident. Functions, dynamically deployed in intermediate nodes, can manage the joining of
new users, or they can dynamically modify the multicast tree to optimize bandwidth utilization, or, again,
adapt the data format to different user specifications.

Audio and video conferencing systems have been proposed in [Baldi], [Banchs], in which agents are
located in crucial nodes where the transformation of the streams is needed. Each agent is in charge of the
replication of the information for different users. It can also adapt the data flow to different bandwidth
requirements and to the network load.

Adoption of Distributed Strategies
Active networks applications can easily implement distributed strategies by spreading application

mobile agents in the network. Examples of this new potentiality are given by existing applications such as
web proxies [TENN97], stock quotes and on line auction applications [WETH1], distributed firewalls
[TENN97], and the distributed management of multicast trees [LI]. A particular application proposed in
[VV97] is an ad-hoc mobile firewall, whose aim is to inhibit the annoying denial of service attack known as
the SYN-Flooding attack. This attack consists of a big number of pending TCP connection requests to a
server thus to waste all its memory resources. To discover the source of the incoming requests and to
stop the attack, the defender injects into the network a defense mobile agent that is able to recognize the
intruder packets and to stop them in intermediate nodes closer and closer to the attacker's node.

3.2 New network services and resource optimisation

The code injection technique is the key of the flexibility of an active network, and makes the
development of new protocols, services, and other network applications straightforward. Tests on new
protocols can be quickly performed on the real network, and not just simply simulated. The updating of
network device software with complex dependencies can be remotely accomplished. The need of a
greater celerity for delivering the software to network devices arises from the knowledge that the difficulty
in introducing several Internet enhancement attempts (RSVP, MBone, IPv6) was also due to the
impossibility of accomplishing the necessary actions on the network devices. The diffserv working group is
proposing an architecture [Blake] to support different services other than best-effort forwarding. Per-Hop
Behaviors (PHB) are the bricks with which these new services can be built. Per-Hop Behaviors are
dynamically allocated in the network nodes and the active network methodology could be very suitable for
this aim.

New services that could be easily implemented in an active network are application-driven routing,
already discussed, and parallel routing, where several parallel paths substitute the single path of unicast
transmission.

4 The main players

4.1 Fora and Consortia

Two schools of thought have emerged as far: OPENSIG and DARPA related projects.
OPENSIG is an international research and industry community, which was formed in 1995 to advance

the concept of open signaling and network programmability. Shortly, OPENSIG means programmable
networks in a telecommunication-oriented approach.

The work of the OPENSIG group has focused on the definition, implementation and experimentation of
OPEN PROGRAMMABLE NETWORKS. Having an impact on products and services of the next
generation networks is a key goal of the OPENSIG working group. An important step in this quest was the
submission of a Project Authorization Request to IEEE by Columbia University, Ericsson, ISS and NEC
with the goal of standardizing "Programming Interfaces for Networks" (PIN). This request was approved on
December 8, 1997, as proposed IEEE standard for Application Programming Interfaces for Networks
(IEEE P1520).

DARPA AN projects (most of the AN projects) mainly focus on IP routers. Their approach, which
means the AN approach, is more dynamic than OPENSIG's semi-static network programming interfaces.

Here, the scenario spaces between two extremes:
- a single packet boots a complete software environment for all packets arriving at the node;
- a single packet (capsule) modifies the behavior of the node seen only by that packet.
In the DARPA projects approach the functionality of the active network node is divided between the

Execution Environments (EE) and the Node Operating System (NodeOS). EEs are responsible for
implementing the network API, while the NodeOS manages the access to local node resources by EEs.

Each EE is similar to a "shell" program in a general-purpose computing system, providing an interface
through which end-to-end network services are provided to users. The architecture allows for multiple EEs
to be present on a single active node. All user access to node resources (including the transmission
bandwidth) is provided through an EE.

The NodeOS provides the basic functions from which EEs build the abstractions that make up network
APIs. It manages the resources of the active node and mediates the demand for those resources,
including transmission, computing, and storage.

The Active Network Encapsulation Protocol (ANEP) provides the multiplexing capability to route active
packets to a particular EE in a node.

4.2 Proposed standards

Several companies and laboratories produced a IEEE standards development project, IEEE P1520.
This project envisions tomorrow's telecommunications networks as a giant computer - a fully
programmable machine - that delivers advanced voice, data and video services globally.

The proposed standard specifies, in industry-standard Interface Definition Language, a set of
programming interfaces for distributed access to switching functionalities by service control entities,
including but not restricted to signaling services entities.
The types of switching units considered in this standard include Asynchronous Transfer Mode (ATM)
switches, circuit switches running Signaling System N. 7 (SS7) and IP routers.

The Active Network Encapsulation Protocol (ANEP) [ANEP] [ANIP6] is an effort towards the
interoperability among different EEs. In ANEP terminology, a packet consists of an ANEP header and a
payload.

ANEP header includes a Type Identifier field; well-known Type IDs are assigned to specific EEs.
(Presently this assignment is handled by the Active Network Assigned Number Autority). If a particular EE
is present at a node, packets containing a valid ANEP header with the appropriate Type ID will be routed
to the appropriate EE.

In the DARPA program on AN various working groups were formed to discuss the design and
development of the components for successfully building active networks. Each working group is
developing an architecture document through discussions and contributions from the DARPA active
networks research community, and they are available for public release as "ARFCs". The DARPA Drafts
cover four topics: architectural framework [ARCH], node OS [NODEOS], composable services [CSAN98],
and security aspects [SEC98].

5 Active Networks roadmap
The charts in figure 2 show respectively the evolution of some Active Networks related projects,

developed since 1994, and the research environments from which they have been originated.
Despite the popularity of AN idea, it has not taken hold in general. In [MN00] authors claim that this is

because current active packet systems are not sufficient practical.
Current active network systems try to represent a tradeoff between the three fundamental aspects
represented by safety, efficiency, and flexibility. Increased safety may require restrictions on flexibility or
have efficiency overheads, while added flexibility may introduce safety holes or require extra computation
that decreases efficiency. If we setup a three-dimensional space using these three axes, we can plot
active packet systems in this space.
Referring to the measure of practicality as the “volume” in the design space as in Figure 2, it is common
opinion that it is possible to create a second-generation active packet system which is more practical than
IP. The main tactic will be to make gains in flexibility without sacrificing safety or too much efficiency.

In the last period a great emphasis has been put on the concept of Application Layer Active Networking
(ALAN). ALAN extends the concept of the dynamic software loading into the service layer. In order to
accommodate this extension, the design of an active node will have to cover a broader range of activity
than the conventional active node architecture as developed in the DARPA AN projects. In such a context
a distinction is made between two flavors of “activeness”, i.e. active routers and active servers. An active
router is a flexible version of a conventional network router, i.e. it supports active routing operations, but it
does not support application layer processes. The flexibility that can be permitted in an active router is
therefore tightly constrained.

PROJECTS

1994 1996 1998 2000 2004

DARPA

iquid
witchware,
bind,
IT Capsules

EEE P1520,
pensig, ANTS,
anes,
martPackets,
LAN in
witchware

ABone,
ASP,
Alpine,
Android,
Active
Applications.

2nd Generation
Active Networks,
Application Layer
Active Networking.

994 1996 1998 2000 2004

AN
Concepts

rogrammable
etwork
apsules
ecurity
esource
anagement

Reference Model,
Security, Standard
network API, Open
Signaling, Protocol
Dynamic Composition
Language.

Experimental
activities on
Internet,
Architecture for
application layer
active networking

Research Scope

Hardware Products
Development,
New Programming
Languages,
Active Servers and
Active Routers.

Figure 2 – active networks roadmap
An active server is the second type of device that can offer dynamic programmability. It runs a full protocol
stack and for this reason it is logically an end system, although it may be physically associated with router
and serve as network intermediary from the user perspective. In this way the control that can be delegated
to general users can be much greater than in an active router. This vision solves many of the problems
related to security issues in the traditional approach of active network and allows a greatest degree of
service programmability for the users.

Flexibility
Efficiency

Safety

Tradeoff point

Figure 3 – Active system design space
Looking ahead to next future we can imagine a scenario where it is possible to observe:
• the development of a standard reference model,
• a greater involvement of industries,
• the distinction between active routers and active servers,
• the development of faster platforms capable of processing the active packets,
• the extension of the paradigm to mobile and ubiquitous devices,
• the development of more suitable languages and software platforms.

References

[ANEP] D. Alexander et al, Active Network Encapsulation Protocol. Draft, July 1997. Available at
http://www.cis.upenn.edu/ switchware/ANEP/.

[ARCH] Architectural Framework for Active Networks Active Network Work. Group, Draft, July 27, 99
[BALDI] Baldi, M., Picco, G., Rizzo, F.: Designing a Videoconference System for Active

Networks.Proceedings of the 2nd International Workshop on Mobile Agents, Stuttgart,
September 1998

[BANCHS] Banchs, A., Effelsberg, W., Tschudin, C., Turau V.: Multicasting Multimedia Streams with
Active Networks. Technical Report TR-97-050, International Computer Science Institute,
Berkeley CA

[BER95] B. Bershad et al. "Extensibility, Safety and Performance in the SPIN Operating System", In
Proceedings of the 15th ACM Symposium on Operating System Principles (SOSP-15),
pages 267–28, Copper Mountain, CO, 1996.

[BHATT1] Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: Active Networking and End-to-End
Arguments. IEEE Network Special Issue on Active and Controllable Networks, vol. 12, n. 3,
May-June 1998

[BHATT2] Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: On Active Networking and Congestion.
Technical Report GIT-CC-96-02, College of Computing, Georgia Tech.

[BOR94] N. Borenstein. “E-Mail With a Mind of Its Own: The Safe-TCL Language for Enabled Mail”,
Proceedings of IFIP International Conference, Barcelona, Spain, 1994.

[CAR95] L. Cardelli, “A Language with Distributed Scope”, In Proceedings of ACM Principles of
Programming Languages, 1995.

[CHEN] Chen, T. M.,: Evolution to the Programmable Internet. IEEE Communications Magazine,
vol.38, n. 3, March 2000, 124 - 128

[CHD94] D. R. Cheriton and K. J. Duda, "A caching model of operating system functionality", In Proc.
of the First Symposium on Operating Systems Design and Implementation, 1994.

[CKD98] I. Chrisment, D. Kaplan, and C. Diot, “An ALF Communication Architecture: Design and
Automated Implementation”, IEEE JSAC, Vol.16, N.3 (pagg.332-344), April 1998.

[CLAR90] D. D. Clark and D. L. Tennenhouse, "Architectural Considerations for a New Generation of
Protocols", In SIGCOMM '90, 1990.

[COL95] Colusa Software, “Omniware: A Universal Substrate for Mobile Code”, White Paper, 1995.
[COU95] A. Courtney, ”Phantom: An Interpreted Language for Distributed Programming” In

Proceedings of USENIX Conference on Object-Oriented Technologies, 1995.
[DARPA] http://www.darpa.mil/ito/research/anets/
[ENG95] D. R. Engler et al. "Exokernel: An Operating System Architecture for Application-Level

Resource Management", In 15th Symp. on Operating Systems Principles, 1995.
[FIB96] M. E. Fiuczynski and B. N. Bershad, "An extensible protocol architecture for application-

specic networking", In Proceedings of the 1996 Winter USENIX Conference, 1996.
[IN] Telcordia Technologies, Inc.Intelligent Network (IN) Tutorial http://www.iec.org/tutorials/in/
[LI] Li-wei, H.L., Garland, S.J., Tennenhouse, D.L.: Active Reliable Multicast. IEEE

INFOCOM'98 San Francisco, USA 1998
[MOSB97] David Mosberger. "Scout: A Path-based Operating System", PhD Dissertation, Department

of Computer Science, University of Arizona (July 1997)
[MONT95] A. B. Montz, D. Mosberger, S. W. O'Malley, L. L. Peterson, T. A. Proebsting. "Scout: A

Communications-Oriented Operating System" Hot OS (May 1995).
[MN00] J.T. Moore, S. M. Nettles, “Towards Practical Programmable Packets”
[NODEOS] NodeOS Interface Specification AN Node OS Working Group Draft, January 24, 2000
[SMITH] Smith, J. M., Calvert, K.L., Murphy, S. L., Orman, H. K., Peterson, L.L.: Activating Networks:

A Progress Report. IEEE Computer, Vol. 32 N. 4, April 1999, 32 - 41
[SUN95] Sun Microsystems Inc. “The Java(tm) Language Environment: A White Paper”, 1995.
[TELE95] J. E. White, “Telescript Technology: Mobile Agents”White Paper, 1995.
[TENN97] Tennenhouse, D. L., Smith, J.M., Sincoskie, W.D., Wetherall D.J., Minde, G.J.: A Survey of

Active Network Research. IEEE Communications Magazine, Vol. 35, No. 1, January 1997, 8
[TENN96] Tennenhouse, D. L., Wetherall, D.J.: Towards an Active Network Architecture, Computer

Communication Review, Vol. 26, No. 2, April 1996
[VV97] Van C. Van, "A Defense Against Address Spoofing Using Active Networks", Master's thesis,

Department of Electrical Engineering and Computer Science, MIT, May 1997.
[VROS] G. Van Rossum“Python Tutorial”
[WAL96] D. A. Wallach et al. "ASHs: Application-specic handlers for high-performance messaging", In

SIGCOMM'96. ACM, 1996.
[WETH1] Wetherall, D.J., Legedza, U., Guttag, J.: Introducing New Internet Services: Why and How.

IEEE Network Magazine Special Issue on Active and Programmable Networks, vol. 12, n.3,
May-June 1998

[WETH2] Wetherall, D.J., Guttag, J., Tennenhouse, D.L.: ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols. IEEE OPENARCH'98, San Francisco, CA, April
1998

[ZF83] Jens Zander, Robert Forchheimer, "SOFTNET - An approach to high level packet
communication", Tech. Rep., Department of Electrical Engineering, Linkoping University,
1983.

