
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1997

Design and implemetation of internet mail servers with embedded Design and implemetation of internet mail servers with embedded

data compression data compression

Alka Nand

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Nand, Alka, "Design and implemetation of internet mail servers with embedded data compression" (1997).
Theses Digitization Project. 1482.
https://scholarworks.lib.csusb.edu/etd-project/1482

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1482?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DESIGN ANDIMPLEMENTATIONOFINTERNET MAILSERVERSWITH

EMBEDDEDDATACOMPRESSION

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

ofthe Requirementsforthe Degree

Master ofScience

in

Computer Science

by

Alka Nand

March 1997

DESIGN AND IMPLEMENTATION OF INTERNET MAIL SERVERS WITH

EMBEDDED DATA COMPRESSION

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

AlkaNand

March 1997

Approved by:

ihjii
Tong L/Yu, Chair, Cioniputer Science Date

George M. Georgiqu ■

KerstinVoigt

ABSTRACT

The Internetis used to transmit massive amounts ofinformation every

second.The vast volume ofnetwork traffic may cause congestion resulting in

delays.The motivation for this thesis rosefrom the need for Internet servers that

perform data compression within the server.On many networks,electronic mail

(e-mail)is the mostextensively used application.In this thesis,an Internet mail

server with data compression is presented. Differentcompression mechanisms,

such as Huffman coding,arithmetic coding,and dictionary techniques,are

evaluated.The LZ77compression scheme provides good speed and compression

ratios. The e-mailsystem was designed using Object Oriented methodology.The

POPS server retrieves mailfor individual users;SMTPclients and servers send

and receive mail across the Internet.TheLZ77compression scheme is

incorporated within the SMTP clients and servers.TheSMTP protocol was

extended to allow for the mail client and server to negotiate compression

transparently.Experimental results based on the implemented e-mailsystem show

thatthe system is able to transmit mail data across the Internet at enhanced

transmission speeds.Embedding the task ofdata compression within the mail

server achieves the goal ofincreasing effective bandwidth and reducing network

traffic.

Ill

ACKNOWLEDGMENTS

Isincerely thank California State University,San Bernardino,and the

Computer Science departmentfor supporting mein finishing my thesis.

I would like to express my special appreciation to Dr.Tong Yu,my

advisor,who guided mefrom the very beginning ofthis research,and who was

always available wheneverIneeded.I would also like to thank mycommittee

members Dr.Georgiou and Dr.Voigt,and mygraduate coordinator Dr.

Concepcion for their valuable suggestions and comments.

Ialso extend my gratitude to WaterNetfor sponsoring aPPPInternet

access accountfrom an early stage ofthe thesis.

My special gratitude to myfamily,particularly myson PuUdtwho showed

great understanding all along.

IV

TABLEOFCONTENTS

ABSTRACT ...iii

ACKNOWLEDGMENTS........... iv

LISTOFTABLES vii

LIST OFILLUSTRATIONS........... viii

CHAPTER 1. INTRODUCTION 1

1.1 Motivation.... 2

1.2 Organization ofChapters 4

CHAPTER 2. INTERNETSERVERS 6

2.1 Network Communications 6

2.1.1 The Network Layers and Protocols 7

2.1.2The Client-Server Model... 15

2.2E-Mail Servers 18

2.2.1 Simple MailTransfer Protocol(SMTP) 20

2.2.2POP3 24

CHAPTER 3. DATACOMPRESSION 29

3.1 Compression Techniques 30

3.1.1 Huffman Coding.. 31

3.1.2 Arithmetic Coding 32

3.1.3 Dictionary Techniques 33

CHAPTER 4. E-MAILSYSTEM WITHDATA COMPRESSION... 37

4.1 Preliminary Investigations......... 38

4.2 Mail Server Architecture 39

4.2.1 The Mailbox Database 40

4.2.2 Outgoing Queue 41

4.2.3SMTP Server 41

4.2.4SMTP Client 42

4.2.5P0P3Server.. 43

4.3 Data Compression Handling in The Mail Server 44

4.4SMTPProtocol Extension.. 45

4.5 Implementation Details.. 50

CHAPTER 5. PERFORMANCEEVALUATION 59

5.1 Comparing Transmission Speeds 59

5.2Tasks Accomplished 62

CHAPTER6. FUTUREENHANCEMENTSAND CONCLUSION 64

6.1 Enhancementsto Designed Server 64

6.1.1 Allowing Multiple Compression Schemes 64

6.1.2 Automatic Selection.. 65

6.2 Extending The Design to Other Servers 66

6.3 Conclusion 66

APPENDIX A:MAJORCLASSES w; 68

ACRONYMS ..;.... 76

REFERENCES 78

VI

LIST OFTABLES

Table 4-1:File Size and Compression Ratiosfor Different Kinds ofFiles 39

Table 5-1:Comparison ofTransmission Time 61

Vll

LISTOFILLUSTRATiONS

Figure 2.1: Network LayersinISO/OSI Network Model..... 8

Figure 2.2:The Layers ofthe TCP/IP Protocol Suite 11

Figure 2.3:Basic Elements ofa Network E-Mail System 18

Figure 2.4: Basic Elements ofan Internet E-Mail System 19

Figure 2.5: Sample Mail Transaction.............................. 21

Figure 2.6:POP Client/Server Configuration..... 25

Figure 2.7: SampleP0P3Transaction..... 27

Figure 4.1:Internet Mail Server................... 40

Figure 4.2: Outgoing MailUse Case Diagram 47

Figure 4.3:Incoming Mail Use Case Diagram...... 49

Figure 4.4:Sample Transaction with SMTPCompression Service Extension 50

Figure 4.5: Main Class Diagram.... 51

Figure 4.6: MailboxDB Class Diagram..... 52

Figure 4.7: Mailbox Database Design...... 53

Figure 4.8:TCP Class Diagram 54

Vlll

CHAPTER 1. INTRODUCTION

The Internetis becoming ah ever-increasing source ofinformation.Internet

servers provide specific services that are beneficial to all network users or atleast a

group ofnetwork users.Typically,a user requestinvolving access to an Internet

Server is transmitted by the client application across the network.The client process

requestsfor a connection to a server and once the connection is established,requests

the servicefrom the server.The Internet has gained widespread popularity and is

used to transmit massive amounts ofinformation every second.Asthe amountof

information that is needed,desired and available,increases,the needfor compressing

this information efficiently increases as well.Associety becomes more advanced and

complex,we need to be able to communicate ever more rapidly.The vast volume of

network traffic may cause congestion, resulting in delays and other problems.The

more bytes sent across the Internet,the more the traffic,the higher the costs and the

more the delays. Network traffic can often be reduced by compressing the data before

sending it. Data compression allows transmission of data atspeeds many times faster

than otherwise possible.

The goal ofdata compression is to develop techniques that can representthe

given information in the mostefficient way.Data compression is related intimately

with data representation. Latest data compression techniques exploit the different

kinds ofstructures that may be presentin differentkinds ofdata like textual data,

speech data,image data etc.

1.1 Motivation

The motivation for this thesis rose from the need for Internet servers that

perform data compression within the servers. Data compression allows speedy

transmission of data. Currently,existing servers do notincorporate data compression

techniques.It is left to the user or user level application programs to perform any

compression ofdata before transmitting it across large distances on the Internet. This

impUes thatlarge amounts of data that could potentially be compressed,is being

transmitted as such,incurring loss ofboth time and money.

On most networks,electronic mail(e-mail)is the mostextensively used

application. Asa matter offact,about one-halfof all Internet connections

established by Internet users are for transmission and receipt ofe-mail messages[1].

In view of the popularity of electronic mail,this thesis will concentrate on Internet

Mail Servers. Initially Internet mail was intended specifically for the exchange oftext

messages.Assuch the messageformatspecified for mail transfer limited the contents

ofelectronic mail messages to relatively short lines ofseven-bit ASCII.With

increase in use ofelectronic mailfor transport ofnon-text messages,such as

multimedia messages that mightinclude audio or images,thisformat and its

limitations proved increasingly restrictive for the user community. Users were forced

to convertany non-textual data that they might wish to send into seven-bit bytes

representable as printable ASCIIcharacters before invoking a local mail program to

send the mad.Some examples ofsuch encoding currently employed in the Internet

are pure hexadecimal,uuencode,the 3-in-4 base 64scheme,the Andrew Toolkit

Representation and many others[1].These problems have since been solved with the

help ofseveral mechanisms thatcombine to overcome mostofthese limitations.The

introduction ofMultipurpose Internet Mail Extensions(MIME)made it possible to

include,in a standardized way,arbitrary types ofdata objects[2].However there is

still no provision for mail data to be compressed before transmission.The main

thrustofthis thesis is,therefore,to design andimplement an Internet mad server that

automatically and efficiently compresses mail data in manner that is transparentto

the user.In order to incorporate the mailcompression algorithm within the mad

server it became necessary to develop an indigenous mad delivery system.This

Internete-mad system effectively speeds up transmission and helpsin reducing

network traffic. The compression capabilities ofthe mad server allow transmission

ofdata manytimesfaster than otherwise possible.

The system has been developed in the Windowsenvironment.Itis a 32-bit

application thatcan run on 32-bit Windows operating systemslike Windows95 or

Windows NT.It can also be executed on Windows3.1x 16-bitWindowsoperating

systems using Win32s.Win32sis a subsystem created by Microsoftfor the Windows

operating systems 3.1x and Windowsfor Workgroups(WFW)3.1x 16-bit Windows

operating systems.The Win32slibraries allow WinS.lx users to run Win32(32-bit)

applications(thatrun on Windows95 and WindowsNT)on their 16-bit operating

systems.Sockets have been used for communication on the TCP/IP networks.The

Windows SocketInterface is based on the socketparadigm and has been derived

from the Berkeley socketinterface that was designed for UNIX systems.

1.2 OrganizationOFChapters

Chapter2introduces Internet Servers in generaland Mailservers in

particular.Preliminaries ofnetwork communication are discussed with a brief

overview ofthe differentISO/OSIlayers and the associated protocols. Since network

server architectures are based on the Client-Server model,itseems appropriate to

review concepts ofthe Client-Server methodology.The socket paradigm forTCP

communications and the basics of the Windows SocketInterface are described.

Lastly,the design ofE-Mailsystems and the essential components are also explained

in this chapter.

Data compression is an integral part ofthis thesis and Chapter3introduces

the various different data compression mechanisms.Compression techniques may be

lossless in which no information is lost,or lossy in which higher compression is

achieved at the costofloss ofinformation.Forthe purpose ofcompression within the

mailserver lossless techniques have been studied.Emphasis has been given to some

ofthe more popular mechanisms like Huffman Coding,Arithmetic Coding and

Dictionary techniques.

Chapter4describes the whole process ofimplementing the InternetE-Mail

server with embedded compression.To begin with an investigation ofthe effects of

incorporating data compression before transmission was carried out.A brief

evaluation ofthe differentcompression techniques was done to determine the one

mostappropriate for use in the E-Mailserver.The architecture ofthe new E-Mail

system is described in great detail,elaborating on the mailbox database,the POPS

server and the SMTP clientand server modules.This chapter also elucidates how

data compression wasimplemented within the server.The SMTP protocol had to be

extended to supportcompression.The extension to the protocol provides a means

whereby anSMTPclient and server that supportcompression may recognize each

other.TheSMTP protocolextensions and its implications have been discussed at

length in this chapter.

In Chapter5several performance evaluation results are presented and the

speedups achieved are illustrated. Future enhancements like more sophisticated data

analysisfor more optimal selection compression algorithm,are considered in Chapter

6.Suggestionsfor extending the design to otherInternet servers and the final

conclusions,are also included in this final chapter ofthe thesis.

CHAPTER 2. INTERNETSERVERS

The Internetis a collection ofcommunication networks that are connected

together by gateways.Gateways are devices that connecttwosubnetworks and allow

communication between them even though they may or may not be similar.The

Internetis the largest and most widely known internetwork in the world.Itconnects

well over 20,00computer networksin around 130countries[1].Thekey

interrietworking concepts,necessaryfor a discussion ofthe E-Mailsystem designed

as partofthis thesis,are presented in this chapter.

2.1 NetworkCommunications

A computer network may be defined astwo or moreinterconnected

computers,capable ofcommunicating with each other.Thecommunication network

is the facility that provides a data transfer service among computers attached to the

network.Conceptually,a network may be divided into2fundamentalcomponents:

network applications and a network communication subsystem {l].The network

communication system is the delivery system used to transmit network applications

data across the network.

Fortwo entities in different systems to successfully communicate they must

"speak the same language".Entities refers to the user application programs,file

transfer software packages,electronic mail facilities or any other agents that are

capable ofsending or receiving data.Communication between the two entities must

conform to some mutually acceptable set ofconventions.The set ofconventions and

rules that govern the exchange ofdata is known asprotocol.

The Reference ModelofOpen SystemsInterconnection,also referred to as

the ISO/OSI model,uses layers to organize a network into weU-defined,functional

modules.All communication functions are partitioned into a vertical setoflayers[3].

Each layer is responsible for a related subsetofthe functions required to

communicate with another system.It provides a specific functionality to the next

higher layer,shielding itfrom lower-levelimplementation details and in turn relies

on the adjacentlowerlayer to perform more primitive functions.The task of

communication is thus decomposed into a number ofmanageable subtasks.

2.1.1 The Network Layers and Protocols

Figure 2.1 showsthe network layers in the ISO/OSI network model.The

ISO/OSI model and the different layers and protocols are briefly reviewed.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 2.1: Network Layersin ISO/OSI Network Model

The physicallayer actually transmits the unstructured bit stream through the

network's communication channels.This layer includes the hardware needed to

accomplish the transmission and deals with the mechanical,electrical,functional and

procedural characteristics to access the physical medium.

The data link layer primarily prevents data corruption within the physical

layer.It providesfor reliable transfer ofinformation by sendiftfblocks ofdataframes

with the necessary synchronization,error control andflow control.

The Network layer may be termed as the delivery system within the network

thatis responsible for establishing, maintaining and terminating connections.This

layer provides the upperlayers independencefrom the data transmission and

switching technologies used to connectsystems.

The Transportlayer provides reliable,transparent transfer ofdata between

communication end points. While the network layer delivers data packets across the

network,the transportlayer transports data within the hostcomputer making sure the

data reaches the correct application.

The Session layer is the users interface to the network and establishes,

manages,and terminates connections(sessions)between cooperating applications.

Assuch it provides the control structure forcommunication between applications and

handles details such as accountnames,password,and user authorization.

The Presentation layer providesindependence to the application processes

from differences in data representation(syntax).It handles,aU details related to the

network's interface to printers,video displays,and file formats.

The Application layer provides access to the OSIenvironmentfor users and

contains details about network-wide applications like E-Mail and distributed

databases.

Forcommunication between two systems,the same set oflayered functions

mustexist on both the systems.Communication is achieved when the corresponding

(peer)entities in the same layer in two different systems talk to each other via a

protocol.Each of the ISO/OSIlayers is associated with a corresponding protocol that

it uses to communicate.Within the ISO/OSI model,the layer name is used to identify

the layer's protocol.Forexample,the transportlayer protocols are referred as the

transport protocols.Conceptually when two hostcomputers talk to each other,the

corresponding layers within each host also carry on a conversation.Communication

between peer processes is virtual communication,with no direct interchange except

atthe physicallayer.In other words,above the physicallayer,each protocolsends

data down to the nextlowerlayer to enable the data to getacross to the target

machine. I

The OSIapproach is specially useful since it allowscommunication between

heterogeneous computers aslong as theyimplementthe same setofcommunication

functions that are organized into the same set oflayers,and peer layers share a

common protocol.

The TCP/IP protocol suite is based on the ISO/OSI model.Both deal with

communications between heterogeneouscomputers and both are based on the

concept ofprotocol.However an historical difference between the two is the

importance laid oninternetworking by TCP/IP.Internetworking refers to the

communication between two systems that are not attached to tKg same network.This

involves passage ofdata across atleasttwo networks.Furthermore,these networks

may be quite differentfrom each other. Another difference between the ISO/OSI

modeland the TCP/IP modelis thatthe latter places equalimportance on

connectionless and connection-oriented services whereas the formeris based solely

on connection-oriented service.A connection-oriented service mustestablish

connection with another system before any communication can occur,asopposed to

10

aconnectionless service in which data is transferred from one entity to another

without prior construction ofa connection.

The TCP/IP protocol architecture is organized into layers.TCP is an acronym

for TransportControl Protocol while IP standsfor Internet Protocol.The Internet

consists ofthousands ofnetworks that use the TCP/IP protocol suite.The TCP/IP

protocol suite is acollection ofcomplementary and cooperative protocols that work

together to communicate information across the Intemet.TCP/IPis generally

considered to be a 4-layer system as indicated in Figure 2.2 [18].

Application Layer SMTP,Telnet,FTP

Transport Layer
 TCP,UDP

Network Layer
 IP,ICMP,IGMP

Link Layer Device Driver

Figure 2.2:The Layers ofthe TCP/IP Protocol Suite

The link layer or network access layer corresponds to the data link layer of

the ISO/OSI modeland normally includes the device driver in the operating system

and the corresponding network interface in the computer.Together they handle all

hardware details ofphysically interfacing with the transmission media in a manner

transparentto all other layers above it. The network layer(also called the Intemet

layer)handles movementofdata allowing itto traverse multiple networks between

11

hosts.It is responsible for data routing.IP(InternetProtocol),ICMP(Internet

Control Message Protocol)andIGMP(Internet Group ManagementProtocol)are the

networklayer protocols that are usually implemented within hosts and gateways.The

transportlayer delivers data between two processes on different hosts.Two vastly

differenttransport protocols provide this functionality:TCP(iMnsmission Control

Protocol)and UDP(User Datagram Protocol).TCPis a reliable protocol that

guarantees delivery of data through the use ofchecksums,acknowledgment messages

etc.Conversely,UDPis an unreliable protocol that provides a much simpler service,

thus cutting costsin terms ofcomplexity and network bandwidth.Any desired

rehabUity is the responsibility ofthe application layer.The Application layer contains

various protocolsfor sharing ofresources(e.g. between computers)and remote

access(e.g.terminal-to-computer).The mostcommon TCP/IP applications that are

implemented on almostevery application are SMTP,the Simple Mail Transfer

Protocol,FTP,the File Transfer Protocol, and TELNETfor remote login.A critical

difference between the application layer and the lowerlayers is that it concerns itself

with the details ofthe application without being bothered aboutthe movementof

data across the network.In contrastthe lowerlayersknow nothing aboutthe

application but handle all the communication details.

Asis clearfrom the above explanation,the TCP/IP protocol suite refers to a

collection of protocols thatinclude the Transport ControlProtocoland the Internet

12

Protocol,butis notlimited to these two alone.Thecommonly used TCP/IP protocols

and their a briefdescription dftheirfunctionality is given below.

• TCP

The Transmission ControlProtocolis a transportlayer protocol that

provides reliable movementofdata between applications.

• UDP

The User Datagram Protocolis another transportlayer protocol that

sends and receives datagramsfor applications. Datagrams are units ofinformation

thattravelfrom sender to receiver.UDPis unreliable and does not guarantee that a

datagram will ever get to its final destination.

• IP

The InternetProtocolis the main protocol ofthe network layer.Itis

used by both TCP and UDPfor the movementofdata between hostcomputers.

• ICMP

The InternetControl Message Protocolis used by the IP layer to

exchange error messages and other critical information with the IP layer in another

host.

• IGMP

13

The InternetGroup ManagementProtOGol is another network layer

protocol thatis used with multicasting:sending aUDP datagram to multiple hosts.

In order to transfer datafrom one computer to anothercomputeron the

network,there must besome way to uniquely identify the desdhation computer,For

this,each computer mustbe associated with a unique identifier or address.

Computerson the Internetcontain one or more network interface cards,which

connectthe computers to the Internet.Each network interface card that is attached to

the Internet must possess a unique Internetaddress.AnInternetaddress is known as

anIP address.However,a single hostcomputer on the Internet may have several

networkinterface cards,in wMchc^e it would have several valid IP addresses.An

IP address is 32bits or4bytes wide and is represented in dotted decimal notation.

Forexample,134.24.32.66 represents an IP address.In addition to IP addresses,

TCP/IP associates aport with a protocol.The transportlayer routes packets to and

from application programsand hence requires a way to identify each application.

Each network application has a unique port number thatis assigned to it every time it

creates a session.From the perspective of the Internet,a portis the address ofthe

application or process.Transportlayer protocols store source and destination port

numbers.As discussed previously,the Intemetincludes application protocolsfor the

more commonly used applications like FTP,TELNET,and E-Mailetc. These

applications use well-known portassignmentsthat mecommonly used for that

14

http:134.24.32.66

particular application. Forexample,the well-known port assignmentfor the Simple

Mail Transfer Protocol or SMTP is 25 and thatforTELNETis 23.

2.1.2 The Client-Server Model

TheISO/OSIand the TCP model allows network designers to partition design

issues.The applicationslayer within thesemodels resolves design issues related to

specific applications.Mostsoftware for network applications is based on another

model—the Client-Server Model.Network communication requires a network

connection between two entities that talk to each Other.A networkconnection

consists ofboth ends ofthe communica,tion process,as wellasthe path between

them.The Client-server model divides the network application into two sides: the

clientside and the server side.Like the ISO/OSIreference modeland the TCP/IP

modelthe Client-Server modelseparates network software design issues into

specific, well defined modules namely the clientissues and the server issues.The

mail server designed as partofthis thesis,is based on the client-server modeL

In a typical client-server scenario the server application performs all its

initializations and then goes to sleep,spending mostofits time waiting for a request

from a client application.Server applications provide certain specific services that

may be beneficial to all network users or atleast a group ofnetwork users.For

example,a company's e-mailserver would provide e-mail services thatmay be

accessed from any computer within the company's network,Every time a network

user requests to send a mail message to another user,an e-mail client application like

15

Eudora would transmit a requestacross the network for a connection to an e-mail

server application.The e-mailclient would then request the server to send the mail.

The e-mail server receives and processes the request and performs all the necessary

tasks to ensure proper delivery ofthe mail message.Likewise.;Whenevera user

requests a file transferfrom one computer to another,a client application like FTP

sets up aTCP connection to the FTPserver application residing on the target

machine.The user requestis transmitted to the FTP server which then receives the

file and does all associated processing required to achieve the transfer.

The socket paradigm facilitates creation ofsophisticated server operations

and the development ofrobustclient programs.The socketinterface is an APIfor

TCP/IP networks.The socketinterface allows creation ofcommunication endpoints

called sockets and transferring ofdata between them.A socketrepresents one end of

acommunication link and has access to all the information associated with the link.

However,before a socketcan be accessed across the network,it mustbe bound to an

address.Binding makes the socketaccessible to other sockets on the network by

establishing its address.

In a typical client-server application,the client process requests a connection

and the server process accepts it. The server process creates a socketand then

configures it using the localIP address and protocol portto associate a local address

with the socket.The socketis then bound to the host'sIP address and the

application's protocol port.The server then listensfor the transportlayer to deliver

16

client requests atthe specified protocol port.The client process creates asocketbut

does notneed to bind itto its own localIP address,hi mostcases,on aTCP/IP

network,the socketimplementation selects the protocol portfor the client program

and notifies the client when data arrives at the port. However,the IP address ofthe

remote hostand the protocol portofthe remote server application needs to be

specified to configure the created socketforcommunication with the remote host.

Whenever the client process requests a connection to the server process,the server

accepts the client's request and establishes a connection.Thenceforth,a directfull-

duplex connection exists between the clientand the server processes.The two

processescan send and receive data through their respective connected socketsfor

the duration ofthe connection.

The WindowsSocketInterface is an APIfor TCP/IP networksin the

Windowsenvironmentand is called Winsock.Internet applicationscan be written

using the library functions provided by the Winsock,WINSOCK.DLL.It has been

derived from the Berkeley-socketinterface forUNIX systems.Winsock takes

advantage ofthe Windows message-driven environmentandisimplemented as a

dynamiclink library(DLL)as opposed to the Berkeley socket-interface thatis built

into the UNIX operating system.The library ofsupportfunctiohk exist as an

executable module thatthe Windows operating system canload at execution time.

17

2.2 E-MailServers

Electronic Mail(e-mail)is most definitely one ofthe mostpopular Internet

applications.Figure 2.3shows the basic components that a network e-mailsystem

comprises of.

Background
n
 E-mail Outgoing

k
i1 19 W Transfer

Program Queue

Client

-m—

Sender

□ E-mail User
Mail ServerProgram Mailboxes

Receiver
Network E-mail System

Figure 2.3: Basic Elements of a Network E-Mail System

A user-interface on the sender andreceiver machines provides e-mail access

to network users. The network e-mail system consists of the outgoing queue that

maintains a queue of allmessages to be transmitted, a client process and a server

process and a collection of individual mail boxes for each users incoming mail. The

user-interface or the e-mail program may or fiiay not be ah integralpart of the

network e-mail system, i.e. the user-interface may very well be a separate client

program that uses a client-server model to interact with the e-mail system. The

18

mailbox may be a user address ofasingle user,consisting ofthe usemame and

hostname(e.g.jane@orion.csusb.edu)or it may be a database that maintains e-mail

data.This database physically stores the incoming messagesforindividual users.

Figure 2.4illustrates an overview ofe-mailexchange using TCP/IP.The

actual components thatthe Internete-mailsystem uses are shown in Figure 2.4.

□ User Agent Outgoing
Queue

Message
Transfer

Agent

Sender
TCP Connection

Port 25

n User Agent ^
^

A
1

User
Mailboxes

Message
Transfer

Agent

Receiver

Figure 2.4: Basic Elements of anInternet E-Mail System

The user agent is the e-mail program of Figure 2.3 that users deal with, e.g.

Elm and Pine onUNIX systems and Eudora on Windows-based systems. Likewise

the message transfer agent (MTA) replaces the client and server processes of Figure

2.3 and performs the exchange of mail using TCP. While the task of the user agent is

to provide the Internet user with a friendly front-end to the Internet's e-mail system,

the message transfer agent is mainly concerned with e-mail related services, such as

sending or receiving mail for a host computer. The MTA program shields the host

19

mailto:jane@orion.csusb.edu

from a wide variety ofuser agents or other MTAs.To the hostcomputer,the message

transfer agent represents the e-mail system.It plays acrucial partin all e-mail

transmissions and their role in the Internet's e-mailsystem caniOt be undermined.

Once the user agentsends the e-mail message to the outgoing queue,it is the

responsibility ofthe message transfer agentto retrieve the niessage and transmitit to

another MTA.This process ofpassing the messagefrom one MTA to another

continues untilthe message finally reaches the destination host. Message transfer

agents are client and server programs thatestablish TCPconnections to communicate

with other MTAstypically using the Simple Mail Transfer Protocol(SMTP).

2.2.1 Simple Mail TransferProtocol(SMtP)

Simple Mail Transfer Protocol(SMTP)is the backbone ofthe Internet E-

Mailsystem and providesfortwo way communication betweea the client(local)and

server(remote)MTAs.The objective ofSMTPis to transfer mail reliably and

efficiently.RFC 821[4]specifies the SMTP protocol.RFC822[5]specifies the

formatofthe electronic mail message thatis transmitted using SMTP between two

MTAs.Communication between two MTAsuses Network Virtual Terminal(NVT)

ASCII.NVT uses standard^ 7-bit ASCIIencoding for all data,including letters,

digits,and punctuation marks and hides computer differences related to line-feeds,

form-feeds,carriage-returns,ertd-of-line markers etc.RFC854[6]describes the

NVTformatin detail.SMTPcommands are sent by the client to the server.The

20

server in turn replies back with numeric reply codes and optional human-readable

strings.

In response to user mail request,the sender-SMTP(client)establishes a two-

way transmission channel to a receiver-SMTP(server)onTCP port25.The client

then awaits a greeting message(reply code 220)from the serverSMTP.A typical

mail transaction is shown in Figure 2.5.

R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready

S; HELO USC-ISIF.ARPA ?

Rs 250 BBN-UNIX.ARPA

S: MAIL FROM:<jane@USC-ISIF.ARPA>

R: 250 OK

S: RCPT TO:<Jones©BBN-UNIX.ARPA>

R: 250 OK

S; RCPT TO:<Green@BBN-UNIX.ARPA>

R: 550 No such user here

S: RCPT TO:<Brown@BBN-UNIX.ARPA>

R: 250 OK

S: DATA

R: 354 Start mail input; end with <CRLF>.<CRLF>

S: mail data sent here

S: ...etc. etc. etc.

. "S-: .■

R: 250 OK

S: QUIT
R: 221 BBN-UNIX,ARPA Service closing transmission channel

Figure 2.5: Sample Mail Transaction

As soon as the SMTP server receives a request for a connection it forks a

child process to deal with this new connection. The child process now acts as the

receiver (server) SMTP. The server responds with a 220 reply code and the fully

qualified domain name of the server's host, such as silicon.csci.csusb.edu. Once the

21

http:silicon.csci.csusb.edu
mailto:TO:<Brown@BBN-UNIX.ARPA
mailto:TO:<Green@BBN-UNIX.ARPA
mailto:FROM:<jane@USC-ISIF.ARPA

transmission channelis established,the sender-SMTPsendsthe HELOcommand to

identify itselfto the receiver(server).The argumentto the HEiS0command mustbe

the fully qualified domain name Ofthe client hoste.g. www.sanbemardino.net.Next

the sender-SMTP sends the MAILcommand indicating the sender ofthe mail.Ifthe

receiver-SMTP is ready to accept mailit replies back with an OK(250reply code)

reply.The sender-SMTP then sendsthe RCPTcommand identifying the recipient of

the mail. Ifthe SMTPserver can accept mailfor thatrecipient itresponds with an

OKreply; otherwise it rejects that recipient butnot the whole mail transaction.If

there are multiple recipients to the mail message,the client may send multiple RCPT

commands.Once all the recipients have been negotiated,the clientSMTP sends the

DATAcommand,followed by the mail data,terminating with a special

<CRLF.CRLF> sequence.Ifthe SMTPserver is able to successfully process the mail

data it responds with an OKreply.The communication is purposely achieved in a

lock-step,one-at-a-time manner.SMTPspecifies the MAlL-RCPT-DATA sequence

ofcommandsas a mail transaction or a mail procedure.Thus,there are three steps to

SMTP mail transactions.The transaction begins with the sender sending the MAIL

command which provides sender identification. A series ofone or more RCPT

commandsfollows,providing information aboutthe recipient.The DATAcommand

delivers the mail data.Finally the e:nd ofmail indicator(the <CRLF.CRLF>

sequence confirms the transaction and marks the end ofthe procedure.There may be

multiple mail procedures between a client and a serverSMTPi&the duration ofa

connection.

22-: ''

http:www.sanbemardino.net

The argumentto the MAILcommand is a reverse path specifying the mail

originator. Thisinforms the server MTA how to send error messages back to the e

mail sender.The reverse path includes the mailbox address ofthe sender,like

anand@csci.csusb.edu.Similarly,the argumentto the RCPTcommand is aforward-

path,which specifies the receiver ofthe mail. The forward-path is a source route and

includes the mailbox address ofthe recipient.In case the mail recipientis not

acceptable the SMTPserver responds with a550reply code.An SMTP550reply

code implies that the SMTP servercould notfulfill the client's requestsince the

mailbox was not available.While the serveris obligated to notify the clientofthe

nonexistence ofa recipient,itis notincumbentupon the chentto acton this

information in any particular way.SMTPcommandsand replies have a rigid syntax.

They are notcase sensitive,however this is nottrue for user names.The case ofuser

names must be preserved.Replies musthave a numeric code.Commandsare

character strings terminated by <CRLF>.The command codes are alphabetic

characters terminated by <SP> iffollowed by parameters and <CRLF> otherwise.

In addition to HELO,MAIL,RCPT,and DATA there are three more

commands that are required in the minimum implementation ofSMTP.These are

RSET,NOOP and QUIT.RSET specifies thatthe current mailtransaction is to be

aborted.Whenever the SMTPclientsends aRSETcommand the SMTPserver must

discard any stored sender,recipients,and mail data and send an OKreply back to the

client. The NOOPcommand has no effecton any parameters or any previously sent

23

mailto:anand@csci.csusb.edu

commands.Itspecifies no action exceptthatthe receiver send an OKreply back to

the sender.Lastly the QUITcommand dictates thatthe receivefkniustsend an OK

reply and then end the transmission channel.The serverSMTP mustnotclose the

transmission channel until it receives a QUITcommand and replies back to it.

Likewise,the SMTP client mustnotclose the transmission channel till it sends the

QUITcommand and receives a reply backfrom the server.In any case,if a

connection is closed prematurely the SMTP server mustbehave as ifit hadjust

received aRSETcommand and cancel any pending transaction. All completed

transactions still hold good.The clientSMTP behaves as ifthe transaction in

progress received an error in reply.

There are additional,optionalcommandslike VRFY,EXPN,HELP,TURN,

SEND,SOME,and SAMLthat are briefly explained for the sake ofcompleteness.

The VRFYcommand requests the server to validate the address ofa recipient.EXPN

expands a mailing list. TheHELPcommand allows the chentSMTPto get useful

informationfrom the server SMTP.TURN allows the client and server to switch

roles.The SEND,SGMLand SAMLcommands allow combinations ofthe mail

being delivered directly to the users terminal.

2.2.2 P0P3

Post Office Protocol(POP)is used to retrieve e-mailfrom an Internet

mailbox.POPlooks and works very much like SMTP.Figure 2.6showsa typical

POPsetup.

24

SMTP□ User Agent POP serverPOP

mail clientUser

r User
Mailboxes

Figure 2.6: POP Client/Server Configuration

The POP server acts as an interface to the mailboxes for the user agent. There

are two versions of POP currently in use: P0P2 and P0P3. P0P3 is specifically

related to retrieving mail from PC-based remote systems. Most commonly, e-mail

systems deliver mail to mailboxes located on e-mail server systems. The practice of

delivering mail to individual destination workstations, is becoming less and less

popular. It may not be practically possible to permit a SMTP server and associated

mail delivery system to be continuously operational on a workstation. Similarly,

Internet connectivity is expensive - keeping a personal computer intercoimected to

the Internet for long lengths of time may not be easily feasible. To solve this

problem, many e-mail systems support a node that has a mail server running and

offers a mailbox service to the less endowed nodes. Post Office Protocol -version 3

25

(P0P3)is designed to allow a workstation to retrieve mail by aecessing a mailbox on

aserver that is holding the mailfor it[7].

The basic operation is very similar to SMTP and consists ofa server host

starting theP0P3service by listening on TCP port 110.A client wishing to retrieve

mail,establishes aTCP connection with theP0P3server. Once the connection is

established,theP0P3server responds with a greeting message.The clientand server

can then exchange commandsthat consist ofakeyword,possibly followed by one or

more arguments.Like SMTP allcommands and responses are terminated with a

<CRLF> and keywords and arguments consist ofprintable ASCIIcharacters,

separated by a single SPACE(<SP>)character.Responses consist ofa status

indicator and akeyword that may be followed by additional information.Currently,

the two status indicators thatP0P3recognizes are positive("+0K")and negative("

ERR").Multiline response must be terminated with("CRLF.CRLF")termination

sequence.

A typicalP0P3scenario is described in Figure 2.8. P0P3sessions progress

through three states or stages.The firstis the authorization state in which the client

identifies itselfto the server using the USER <usemame> andPASS <password>

commandcombination.The serverthen determines whether to allow the client

access to the specified mailbox. After successful authorization,the server acquires an

exclusive-access to the mailbox and the session enters the tra/ifiacft'on state.In the

transaction state,the client mayissue the STAT,LIST,RETR,DELE,NOOPand

26

RSET commands.STAT returns the number ofmessages plus the totalsize ofthe

messagesin the mailbox,back to the client.

S: <wait for connection on TCP port 110>

C; <open connection>

S; +0K P0P3 server ready <www.sanbernardino.net>

C: USER;mrose '

S: H-OK password required for mrose •
C: PASS abcdef

S: +0K mrose's maildrpp has 2 messages (320 octets)

C STAT

S +0K 2 320

C LIST

S +bK 2 messages (320 octets)

S 1 120

S 2 200

S

C RETR 1

S +0K 120 octets

S <the P0P3 server sends message 1>

S

C DELE 1

S +0K message 1 deleted

C RETR 2

S +0K 200 octets

S <the P0P3 server sends message 2>

S

C DELE 2

S +0K message 2 deleted

C QUIT .

S +0K P0P3 server signing off (maildrop empty)

C <close conriection>

S <wait for next connection>

Figure 2.7:SampleP0P3Transaction

The LISTcommand has an optional message number argumentIfspecified

the server issues a positive response with a line containing information for that

message.Ifno message number wasspecified the serversends back a multiline

response with each line containing the message number ofthe message and the exact

27

http:www.sanbernardino.net

size ofthe message in octets(8 bit unit).RETRrequires a message number as

argumentand retrieves the message from the mailbox.DELE also requires a message

numberargumentand marksa messagefor deletion.The message is not physically

removedfrom the mailbox tillPOPS enters the nextstage.RSET unmarks all

messages marked for deletion.NOOPrequires no action on part ofthe serverexcept

to respond with a positive response.Finally thePOPS session enters the update state

whenever the client issues aQUITconunandfrom the transaction state. However,if

the QUITcommand is issued from the authorization state,the POPS session

terminates without entering the update state. ThePOPS server removes all messages

marked as deleted and releases any exclusive-lock on the mailbox.TheTCP

connection is then closed.Ifthe session terminatesforsome reason other than the

clientissuing aQUITcommand,the POPS server does notenter the update state and

no messages are removed from the mailbox.These are the commandsrequired in a

minimalimplementation ofPOPS.The optionalcommandsthatmay be implemented

are TOP,UIDL,and APOP.TOP requires a message numberfollowed by a number

oflines argument.POPS sendsthe headers ofthe message and then the number of

lines indicated,from the message's body.UIDL returns the "unique-id"foreach

message.This unique-id ofa message is an arbitrary server determined string that

uniquely identifies a mail message within a mailbox.APOPis a alternate method of

authentication.

28

GHAPTER 3. DATACOMPRESSION

Compression may be defined as"the art or science ofrepresenting

information in a compact form" [8].The compactrepresentation may be created by

identifying and using regularities that existin data.Datacompression involves the

conversion ofdata with the purpose ofreducing its size.A compression technique or

algorithm actuallyconsists oftwo algorithms.One is the compression algorithm that

takes the data and generates a representation thatis smallerin size,and the other is

the reconstruction algorithm that operates on the compressed representation and

generates the reconstruction.There are two kinds ofcompression mechanisms:

lossless compression techniques in which the reconstruction is identical to the

original,and lossy compression techniques in which the reconstruction is not

identical to the original but that achieve highercompression.In other words,no

information is lostin lossless techniques as opposed to lossy teihniques which

provide much better compression at the costofloss ofinformation.Lossless

compression is more commonly used for discrete datalike text,computer-generated

data and some kinds ofimage and video information.Lossless compression preserves

data integrity and does not allow any difference to appear asa result ofthe

compression process.In this thesis we shall only be considering lossless mechanisms

ofdata compression.Compression algorithms can be evaluated in many different

ways.One very logical way ofmeasuring the performance ofan algorithm is to

29

calculate the ratio ofthe number of bits required to represent data before

compression to the number ofbits required to representthe compressed data.This is

called the compression ratio.Performance could also be evaluated by measuring the

time taken to compress data.

3.1 CompressionTechniques

The different data compression algorithms thatcan be used for compressing

mail within the Internet Mailserver need to be reviewed.Compression techniques

can be classified into statistical methods and dictionary methods.The statistical

methodscan be divided into two parts,namely modelling and coding;the model

readsin the characters and generates statistics(probabilities ofcharacter occurrence)

to the coding-part to code the characters. The modeling methods try to extract

information aboutany redundancy that exists in the data,and describe the redundancy

in the form ofa model.These models may then be used to obtain compression.The

common modeling methods are Physical Models,Probability models and Markov

Models.Knowledge aboutthe physics ofdata generation is used to constructthe

Physical model.Agood example ofthis is speech-related applications,in which the

information aboutthe physics of speech production may be used to create a

mathematical model. Statistical models assign a probability ofoccurrence to each

letter in the alphabet. Markoy models are the most popular and provide modelsfor

representing the dependence ofelements ofthe data sequence on each other.

30

Arithmetic coding and Huffman coding are coding techniques thatemploy a

modeling method to actually code the characters. While both Huffman and arithmetic

coding exploit the statistical structure presentin the data to obtain compression,the

dictionary-based coding techniques make use ofthe existence ofrepetitive patterns

by building a dictionary ofsuch patterns.

3.1.1 	Huffman Coding

Huffman coding is a very popular coding algorithm.Coding refers to the

process ofassigning binary sequences to symbols or elements ofan alphabet

Huffman compression is a statistical data compression technique which gives a

reduction in the average code length used to represent the symbols ofan alphabet.

The setconsisting ofthe binary sequences iscalled acode and the elements ofthe set

are termed ascodewords.The collection ofsymbols is cdHHtdi m.alphabet.Symbols

are called letters. The ASCIIcodefor the letter'a'is 1000011.A uniquely decodable

code can be decoded in one,and only one,way.Ifnone ofthe codewordsin a

particularcode is a prefix ofany other codeword the code is called aprefix code.A

prefix code will always be uniquely decodable.TheHuffman procedure is based on

twoimportant observations. First,in an optimum code more frequently occurring

symbols will have shorter codewords than less frequently occurring symbols,and

second,in an optimum code the two leastfrequently occurring symbols will have the

same length.In addition,the Huffman procedure adds one simple requirementto

these observations.The Huffman procedure requires thatthe two leastfrequently

31

occurring symbols have codewords that differ only in the last bit. Huffman coding is

not practical in cases where the size ofthe alphabetis very large.Huffman coding is

very suitable for textcompression.Itis also used forimage compression.Huffman

compression also leads to some reduction in the capacity ofaudio data.One ofthe

main advantages ofHuffman coding is its simplicity.However,it has its limitations

in terms ofthe compression ratios that itcan achieve and some ofthe other

compression techniques score better results.

3.1.2 Arithmetic Coding

Another method ofgenerating variable length codesfor compression

purposesis called arithmetic coding. Arithmetic coding is particularly useful when

dealing with sources with small alphabets,such as binary sources and alphabets in

which the probability ofoccurrence ofthe elements ranges widely.Itis more

efficient to generate codewordsfor groups or sequences ofsymbols rather than

generating a separate codeword for every symbolin a sequence.The Huffman

procedure is not very practicalforlong sequences ofsymbolssince it requires

codewordsfor all possible sequences ofthatlength.This causes the number of

codewords to grow unmanageably large.The arithmetic coding technique provides a

way ofassigning codewords to particular sequences withouthsMng to generate codes

for all sequences ofthatlength.

Arithmetic coding generates a unique identifier called atag for the sequence

to be encoded.This tag is then assigned a unique binary code.A unique binary

32

(arithmetic)code can be generated for a sequence ofa particular lengthI without

being compelled to generate codewordsfor all sequences oflength I. This is the big

advantage ofarithmetic coding over Huffman coding.Generation ofa Huffman code

for a particularsequence oflength I requires the generation ofiodewordsfor all

sequences oflength/.

Arithmetic coding is more complex than Huffman coding.In cases where the

alphabetis relatively large and the probabilities do not vary a great deal,Huffman

coding might be a better solution.However,there are a number ofsources,such as

facsimile,in which the alphabet size is not very large and the probabilities vary

greatly.In such cases,arithmetic coding would produce better results; Arithmetic

coding has been recommended by the Joint Bi-LevelImage Processing Group(JBIG)

[8]as part ofthe standard forcoding binary images.

3.1.3 Dictionary Techniques

Dictionary techniques incorporate the structure inherentin the data to achieve

higherlevels ofcompression.A dictionary ofthe mostfrequently occurring patterns

is created and the code actually consists ofthe index ofthe pattern in the generated

dictionary.Forsources containing a relatively small number ofrecurring patterns,

such as text data and computercommands,this method worksextremely well.

Dictionary techniques may be divided into two main categories: static and

adaptive techniques. Static techniques make use ofaknown data dictionary,which is

33

some statistical distribution ofthe source data,to accomplish compression.An initial

pass over the data may be used to build the data dictionary which is used to encode

the datain the second pass. Adaptive techniques,as the name suggests,adaptto the

source data and constructthe data dictionary on-the-fly.The adaptive dictionary

techniques are ofinterest to us,in the contextofthis thesis. Mostofthe adaptive-

dictionary-based techniques are derivations ofthe algorithms proposed by two Israeli

researchers,Abraham Lempeland Jacob Ziv in theirlandmark papers in 1977[9]and

1978[10].The Lempel-Ziv 77 algorithm(based on the 1977 paper)makes use of

adaptive compression.The Lempel- Ziv method ofcompression is described in[12]

asfollows:

"[The Lempel-Ziv77 algorithm]makes use ofadaptive compression

a kind ofdynamic coding where the input is compressed relative to a model

thatis constructed from the data that hasjust been coded.By basing the

modelon whathas been seen so far,the algorithm is able not only to encode

in a single pass through the inputfile, butis also able to compress a wide

variety ofinputs effectively rather than being fine-tuned for one particular

type ofdata such as English text."

The Lempel-Ziv77 algorithm is also referred to as LZ77.In the LZ77

approach the dictionary entries are simply previously encoded sequences.Symbols

are examined one ata time.Compression is performed symbolwise.The encoding

consists ofalength and an offsetfor a sequence ofone or more symbols.The length

34

denotes the countofmatching symbolsin the sequence,and offsetis the distance of

the sequence being examined from a previous matching sequence.The dictionary

itselfis the source output.LZ77assumes that the recurrence ofa sequence is a local

phenomenon.

The LZ77 algorithm is fairly fastin compression and decompression and the

amountofmemory used is moderate.Itis a also a simple algorithm to implement.

Both textand image data can be compressed easily and quickly.Popular compression

packageslike PKZip and Zip and Lharc all use an LZ77 based algorithm.

The Lempel-Ziv 78 approach(based on the 1978 paper)makes use ofan

explicit dictionary.The dictionary has to be generated by both the encoder and the

decoder.Theinputs are encoded as a pair.The first elementis the index into the

dictionary entry that was the longest match to the input.The second elementis the

code for the character in the inputfollowing the matched portion ofthe input.Each

new entry into the dictionary is one new symbolconcatenated with a previously

existing dictionary entry.This has the drawback thatthe dictionary keepsgrowing

without bound.Toimplementthe LZ78 approach the growth ofthe dictionary has to

be stopped atsome point. Several modifications to the LZ78 approach have been

suggested and ofthese the LZW algorithm is the most well-known[13].Terry Welch

suggested this modification to the LZ78. Welch proposed an encoding method that

does notrequire the encoding to contain the second element,i.e. the code for the

characterimmediately following the matched sequence.The encoding consists only

35

ofan index into the dictionary.To begin with the dictionary is initialized with all the

letters ofthe input alphabet.From then on the dictionary is dynamically constructed

from patterns observed in the source output.TheLZW algorithm is a popular variant

ofthe Lempel-Ziv algorithm.The algorithms used in both UNIXCOMPRESS and

GIF use the LZW algorithm.TheLZW algorithm providesgood resultsfor text

compression as well ascomputer-generated graphicalimages.The presence of

repetitive patterns in such data make them good candidatesfor compression using the

LZW algorithm.

36

CHAPTER4, E-MAILSYSTEM WITHDATACOMPRESSION

This thesis aimsto compress E-mail data near the top network layer,thus

reducing the amountofdata thatthe network musttransport. Assuch,efficient data

compression can significantly boostoverall network performance.Network

bandwidth(or throughput)refers to the amountofdata thatcan flow through a

communication channelin agiven unit oftime.One obvious way ofincreasing

bandwidth is to widen the communication channelby adding more network

connectionsfor a single transport. Another method to increase effective network

bandwidth,and the one explored in this thesis,is to reduce the size ofdata that the

network musttransport.For example,ifan effective data compression technique

allows three mail messages to be reduced to size ofone,three mailmessagescan be

transported for the price ofone.This would increase throughput by afactor ofthree.

It is the goal ofthis thesis to achieve such an increase in effective bandwidth for an

InternetE-mailsystem.

This chapter describes the design ofthe InternetE-mailsystem.The

algorithm used to incorporate compression within the mail server is presented.The

modification to the SMTP protocol necessary for negotiation ofcompression

between two Internet Mailsystems is also described.

37

4.1 PreliminaryInvestigations

The study ofthe various lossless data compression techniques provided an

insight into their strengths and weaknesses.In this thesis,the data compression

mechanism will be employed to compress mail data prior to transmission.Since mail

data may be in theform oftext data orimage data orspeech data,the technique of

choice,mustbe capable ofcompressing all these types ofdata efficiently.The file

compression ratios for a variety offiles, using the differentcompression schemesis

shown in Table 4.1.Based on these results the LZ77 data compression scheme has

been chosen for effective compression of mail data.The mail server has no prior

knowledge ofdata and the LZ77scheme does notrequire any either. Since its a

simple adaptive scheme,that does notmake any assumptions about data

characteristics,it is suitable in that respect It also has the advantage that it does not

require large amounts ofmemory and demonstrates good speed and compression

ratio for both small and large files. Mail data may vary greatly in size and this

property makesit a good candidatefor use in the Internet mail server.

38

Original Huffman LZ77 LZW13 LZW15

Name Size Size Ratio Size Ratio Size Ratio Size Ratio

mbox.cpp 45k 30k 66% 9k 20% 18k 40% 14k 31%

msrvr.exe 449k 324k 72% 151k 34% 453k 101% 266k 69%

thesis.doc 288k 226k 78% 111k 39% 252k 87% 179k 62%

rfc.txt 76k 47k 61% 10k 14% 29k 38% 30k 39%

excite.htm 13k 9k 71% 3k 25% 7k 52% 5k 37%

alska.htm 6k 4k 69% 1.5k 20% 3k 50% 2k 40%

ftr.dll 256k 206k 80% 110k 43% 213k 83% 137k 63%

res.OOl 317k 224k 70.8% 67k 21% 311k 98% 106k 33%

back.pcx 65k 37k 56% 27k 42% 38k 58% 33k 51%

tt25.res 1085k 1010k 93% 778k 72% 1512 139% 968k 89%

Table 4-1:File Size and Compression Ratiosfor Different Kinds ofFiles

4.2 MailServer Architecture

The block diagram ofthe designed Internete-mailsystem with embedded

compression is shown Figure 4.1.

39

P0P3 Mailbox Outgoing SMTP

Server Database Queue Client

1 ,—

,Incoming Mall

▼

SMTP

Sen/er
Outgoing Mall

User

Figure 4,1:Internet MailServer

Following is a brief description ofthe components ofthis e-mailsystem:

4.2.1 The Mailbox Database

The mailbox database contains a setofmailboxes,one per user(client)ofthe

system.The incoming mailfor the users are stored in their respective mailboxes.

This mail could be sent by another user on the same mailsystem,or could be

forwarded by another mail server on the Internet.Each mailbox can store any number

ofmessages.These messages are stored in individualfiles -in uncompressed format.

The mailbox database provides thefollowing setofoperations:

• Add a mailbox user

• Delete a mailbox user

40

Authenticate a user

Open a mailbox after proper authentication

Listthe number ofmessagesin the mailbox

Add a message

Retrieve a message

Mark a message deleted

Purge a message

Peep into message

Resetthe mailbox

GetUID for a message

Close mailbox and unlock resources

4.2.2 Outgoing Queue

The outgoing queue contains aU the Internetbound messages.These

messages could be sent by the mail clients,or may beforwarded by another mail

server on Internet. There is only one outbound queue in the mailsystem.The

messagesin this queue are stored in individual files. These files store uncompressed

data.The outgoing queue provides the following set ofoperations:

• Put message in Queue

• Getmessagefrom Queue

• Listnumberofmessagesin Queue

4.2.3 SMTP Server

TheSMTPserver communicates and receives the mailfrom either a mail

clienton the same host system,orfrom another mailsystem on the Internet.Ifthe

mailis bound to a mail user on the same hostsystem,itis stored in the user's

41

mailbox.Otherwise,the mailisforwarded to the outgoing queue.Ifthe same mail

data is to be sent to multiple users on different hosts,the SMTPserver replicates the

mail message for each userin the outgoing queue.

Mail data is stored as a disk file and is ultimately sentto the address specified

in the forward path.In case ofany errorin delivery,an undeliverable mail

notification is sent back to the originator ofthe mail message using the reverse path

stored in reverse path buffer.

Itis the responsibility ofthe SMTPserver to determine ifthe mail data

comingfrom another mail server is compressed.Ifso,the SMTPserver

decompressesthe data before sending it to either the outgoing queue or to the user's

mailbox.

The operations provided by the SMTPserver are:

Acceptconnectionfrom clientSMTP

Process MAILcommand and storeforward path

ProcessRCPTcommand:check sequence and store reverse path

ProcessDATAcommand:acceptdata and store or queue mail

Process otherSMTPcommandslike HELO,RSETJidtc.

4.2.4 SMTPCUent

The SMTPclient keeps checking the outgoing queue atregular intervals.

Messages on the outgoingqueue are picked up by the SMTPclient and sentto the

appropriate mail server across the Internet.Before sending the messages,the SMTP

client negotiates with the remote mailserver to determine ifthe server supports

. . • .■42 . .■■ ■

compression.Ifso, the SMTPclient compresses the mail data.However,ifthe

compressed data file size is larger than the original file size,the SMTPclient sends

the original data.The operations provided by the SMTPclient are:

• Establish connection with server

• Send mail data by compiling and sending SMTPcommands

4.2.5 P0P3Server

ThePOP3serveris the primary interface between the mail user and his/her

mailbox.In effect,the POP3server interfaces with both the mail client and the

mailbox database.It allows the mail clients to check the user's mailbox and

download mail.It provides several operations on the mailbox.These operations

include:

Acceptconnectionfrom client

Authenticate mail user's name and password

Open and lock mailbox for authenticated user

Getstatus ofuser's mailboxfrom the mailbox database

List mailbox messages

Retrieve messagesform mailbox database using message numbers.

Delete messagesfrom mailbox database

Process all otherP0P3commandslike TOP,UIDL,RSETetc.

43

4.3 DataCompressionHandling TheMailServer

The designed mail serverimplements data compression transparently.The

mailclientsends mail data in any way it wants to the SMTPserver.TheSMTP

serverforwards this data to the outgoing queue.The SMTPclient picks up this mail

datafrom the outgoing queue and prepares to send it to the remote mailserver across

the Internet.Itis at this stage that data compression takes places'

Similarly,theSMTPserver receives(compressed)datafrom the Internet,and

before sending it to anothercomponent,decompresses it.

Asthe above approach shows,all the data compression handling is

encapsulated within the SMTPclient/server components.There is no guarantee that

the incoming(Internet)data is compressed data,or thatthe remote mail server could

handle compressed data.Hence,the SMTP client and the server should be able to

handle both compressed and uncompressed data.TheSMTPclient needs to know

whetherthe remote mail server can handle compressed data.Only then can itsend

compressed data across the Internet.TheSMTPserver needs to publish its

compression abilities.Even then,theincoming datacould be uncompressed and it

needs to know about it. To accomplish the above,an SMTP protocolextension is

proposed and implemented.

44

4.4 SMTPProtocolExtension

SMTP Service extensions(RFC 1869)[14]provide aframeworkfor

extending the SMTPservice by defining a means whereby a server mayinform an

SMTPclient as to the service extensions it supports.Rather than describing the

extension to the SMTP protocol required for incorporating datacompression as a

separate and haphazard entity,thisframework was used to provide the enhancements

in a straightforward fashion,consistent with all other extensions.In particular,this

extension to the SMTPservice allows compression of mail data prior to transmission

using acommonly used compression technique.

RFC 1869[14]introduces the EHLOSMTPcommand to be used instead of

the HELOcommand by anySMTPclient that supports the SMTPservice extensions.

A successful response by the SMTPserver tells the client that it is able to perform

the EHLOcommand.In case the server does notsupportthe SMTPservice

extensions it will generate an error response.Normally,a successful response is a

multiline reply,each line containing akeyword and optionally one or more

parameters.These keywords denote the SMTPextensions thatthe server supports.

Consistent with RFC 1869the definition ofthe compression extension is as

follows:

1. the name ofthe SMTPservice extension defined here is compression',

2. theEHLOkeyword value associated with the extension isXCOMP;

45

3. the parameters used with the XCOMPEHLOkeyword define the

types ofcompression schemessupported by the server. Atpresent only one scheme -

ULll- is supported.Hence,there is only one keyword -LZ77.The syntax ofthe

ehlo-line[14]using ABNF notation is asfollows:

ehlo-line ::="XCOMP"*(SPehlo-param)

ehlo-param ::="LZ77"

4. one optional parameter using the keywordXCOMPis added to the

MAILFROM command.The value associated with this parameter is akeyword

indicating the compression scheme being used forcompressing the mail data that is

being sent. Atpresentonly one compression scheme is supported by the system.The

syntax ofthe optionalesmtp parameter using ABNFnotation is:

esmtp-parameter::="XCOMP="xcomp-value

xcomp-value::= "LZ77"

5. no additional verbs are defined for this extensioh^and,

6. the nextsection specifies how supportfor the extension affects the

behavior ofa server and cUentSMTP.

The clientSMTP that wishes to sendcompressed maildata should start an

SMTPsession with the extended SMTPservice command FHLO.Ifthe SMTP

server responds with code 250to theFHLOcommand and the reply includes the

FHLOkeyword value XCOMPfollowed by the parameter value LZ77,then the

46

server is indicating that it supports the extended MAILcommand and supports the

LZ77compression scheme.Atthis point,the SMTPclient is authorized to send

LZ77compressed data.

SMTPServer; OutGoingMsg: OutGolngQueue SMTP Client:

: Remote Mail

SMTPconn MailData :OutQueue SMTPdi

Server

Create

Put(OutGoingMsg)

OutGoingMsg

+OKXCOMPLZ77
3

MAIL FROM XCOMP=LZ77

Compr^s Data using LZ77

Compressed Data

Figure 4.2: Outgoing Mail Use Case Diagram

47

Ifthe client wishes to transmitLZ77compressed data,itissues the extended

MAILcommand.The syntaxfor this command is identical to the SMTPMAIL

command defined in[4]exceptthataXCOMP parameter must appear after the mail

originator's address. Only oneXCOMPparameter may be used in a single MAIL

command.The value associated with the XCOMPparameter indicates thatthe mail

data wiU be compressed using this(LZ77)algorithm. Although this information may

seem redundantin the presente-mail system since it supports a single compression

scheme,this design allowsfor multiple compression schemesin the future.The

SMTPclientcompresses the data only after receiving a successful response from the

server.The client then issues aDATAcommand to the server and promptly after

receiving a successful response,sends the compressed mail data,terminating it with

the usual <CRLF.CRLF> sequence.Ifa serverSMTP does notsupportthe SMTP

compression extension(either by notresponding with code 250to theEHLO

command,or by notincluding the EHLOkeyword value XCOMPin its response),

then the clientSMTP does notcompress the mail data but ratlier sends it as is.

The extended SMTPserver accepts both HELO andEHLOcommands.When

it receives anEHLOcommand,it replies back indicating the compression schemes it

supports.Ifit receives aXCOMP parameterin the MAILFROM command,it

understands that the SMTPclientis sending compressed data.The SMTPserver

accepts the compressed data,and then decompresses it on the fly.Ifthe SMTP server

48

does notsupport the compression scheme indicated in the MAILFROM command,it

returns an error.

SMTPServer: irwoming Message Mailbox DataBase Add Message To :Message P0P3Server:

; Remote Mail
 SMTPfconn :MailboxDB List;Mailbox POPSconn

Server

+OKXCOMPLZ77

MAIL FROM XCOMP=LZ77

Compressed Data

T

Uncompress Data

1 +0K

U" ' 1

Create |

pui y

For Local User

IF Ŝtore(User Name,Incoming Message)

J Rnd User Mailbox

I(Incoming Mes^p^)

Create(Incoming Message)

Add Messageto List

P

a:

USER <username> I

VrfyUser(usemame)l

U" OK

PASS <password>

1 1

^rfyPass(password)
1 . ^

u
 OK

^ 1 1

RETR <msg#> .

L 1 1 1

Retr(msg#)

Retr

""Message"

Message

Message

+0K I

Message Data Li

Figure 4.3:Incoming Mail Use Case Diagram

49

Thefollowing dialogue illustrates the use ofthe compression service

extension:

R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready

S: EHLO USC-ISIF.ARPA

R: 250-BBN-UNIX.ARPA

R: 250 XCOMP LZ77 .

S: MAIL FROM:<jane®USC-ISIF.ARPA> XCOMP=LZ77

R: 250 OK

S: RCPT TO:<Jones@BBN-UNIX.ARPA>

R: 250 OK

S: RCPT TO:<Green@BBN-UNIX.ARPA>

R: 550 No such user here

S: RCPT TO:<Brown@BBN-UNIX.ARPA>

R: 250 OK

S: DATA

R: 354 Start mail input; end with <CRLF>.<CRLF>

S: LZ77 compressed mail data sent here

S: ...etc. etc., etc.

S:'.

R: 250 OK

S: QUIT

R: 221 BBN-UNIX.ARPA Service closing transmission channel

Figure 4.4: Sample Transaction with SMTPCompression Service Extension

4.5 ImplementationDetails

An Object Oriented approach was used to design the e-mailsystem.The

various components ofthissystem were treated like loosely coupled objects.Every

component was designed keeping in mind the need to preserve data integrity and

consistency.No loss ofmailis allowed by the server.The e-mail system consists of

three major threaids,namely the SMTPserver,die SMTPclient and thePOP3server.

Threads are light weight processes[1].The Mailbox Database and the Outgoing

50

mailto:TO:<Brown@BBN-UNIX.ARPA
mailto:TO:<Green@BBN-UNIX.ARPA
mailto:TO:<Jones@BBN-UNIX.ARPA

Queue are the two other major classes.Thefollowing figure showsthe major classes

and their relationships.

Message

Mailbox OutQueue

0..1

curr

MailboxDB

POP3conn

maild

MallData

SMTPcll

aildat;' _aildata

TGPconn

OutGoingMsg

SMTPconn

uid

Figure 4.5: Main Class Diagram

The Mailbox Database is ofparticular importance in the e-mailsystem.It

serves as a repository for mail data.Figure 4.1 provides a blocB:diagram ofthe

Mailbox Database design.TheMailboxDB class provides the interface to the

mailbox database.

51

Mailbox

1

msg

TListImp

MailData

MailboxDB

Figure 4.6: MailboxDB Class Diagram

There is a single global instance ofthe MailboxDB class.MailboxDB

contains a hstofMailbox class objects.Each time a new mailbox user is added,a

new Mailboxclass object would be created and added to the list. Bach Mailbox class

object maintains a ofMessage class objects.An instance ofthe Message class is

created and added to the list every time anew message is stored in the mailbox.The

message datais stored as maildata objects.The maildata class manages the mail

data,allowing reading and writing ofmail data in segments.Storing mail datain a

disk file saves the overhead ofexcessive memory usage. Also,thisimposesnolimits

on the length ofmail data.The mailbox database is also stored on disk and every

time the system is rebooted,all database files are uploaded.Every time the mailbox

52

database changes state the new state is stored on disk.This has the advantage that no

data is losteven ifthe system is shut down temporarily.

Mailbox 1 message 1 message2 < message4

Mailbox2 ' message 1 message2 message3

Mailbox3 message 1

Mailbox4 message 1 ' message2 message3 message4 message5

Mailbox Database

Figure 4.7: Mailbox Database Design

MailboxDB maintainsexclusive access to the mailboxes.Mutexes[20]are

used to synchronize data access to the mailbox database across the multiple

processes/threads.

The SMTPserveris implemented as a thread thatis started atsystem startup.

The server process creates a socketand then configures it using the localIP address

and the SMTP protocol port.The SMTPserver then waitsfor client requests.

Whenever the server receives a new connection from an SMTP client,it starts a child

53

thread that creates an instance oftheSMTPconn class.TheSMTPconn class has been

derived from the TCP connection class TCPconn.TCPconn manages all the TCP

connection functions such as read and write to socket.TheSMfPconn class contains

methodsto process all the SMTPcommandsreceived from the client.

TCPconn

SMTPconn
SMTPcli

POP3conn

Tiaild

MailData

Figure 4.8:TCP Class Diagram

Once aconnection has been accepted the mail server reads in acommand at a

time and invokes the appropriate SMTPconn method to process the command.Since

a mail transaction involves multiple steps,the commands are parsed and arguments

are treated as data objects to be used in future processing.The argumentto the MAIL

command is the reverse-path which needs to be held pending notonly for insertion at

54

the beginning ofthe mail data as the return path line(in case offinal delivery of

data),but alsofor sending an "undeliverable mail"notification to the originator in

case the mailcould notbe delivered. Similarly,in case of multiple recipientsfor the

same mail data,both the forward path and reverse path need to be preserved till the

end ofthe mail transaction.TheSMTPsupports the extended SMTPservice

extensionscommandEHLO and the SMTPcompression service extension.Ifthe

client begins a transaction with the HELQcommand the server treats the mail data

received with the DATAcommand as normaluncompressed data.However,ifthe

clientsends theEHLOcommand at the onsetofthe mail transaction,theSMTP

server responds by sending 250reply code along with the compression keyword

XCOMP.Only in such cases does the server expectthe mail data to be in a

compressed format.The argumentto the MAILcommand is also checked to make

sure the compression scheme specified is supported by the server.The datafollowing

the DATAcommand is then decompressed using this samescheme.In any case the

server processes the Stored mail transaction information.Ifthe mailis for alocal

recipient,the SMTPserverjust puts itin the users mailbox using the Mailbox

database interface.In case ofa remote client,the mail needsto be sent across the

Internet.In such cases,it is the responsibility oftheSMTPserver to put the maU

message along with the stored mail transaction information in an outgoing queue.

The outgoing qtieue is a globalobjectofthe ciiSiSs OutQueUe.The OutQueue

class maintains a queue ofmessages that need to sentto remote users.New messages

55

are added at the tail ofthe queue,while messages are retrieved from the head ofthe

queue.All OutQueue data is saved to disk every time itchanges state.Forexample

every time a new message is added to the queue,the copy ofthequeue on disk is

updated.This ensures no loss ofdata even ifthe system goes down.The SMTPclient

thread checks the OutQueue Tpehodically for pending messages to be transmitted on

the Internet. Whenever it detects a new message in the queue,the SMTP gets it and

prepares to set up aTCPconnection with the SMTPserver ofthe remote machine.

Once a message has been retrieved from the OutQueue,it is removedfrom the queue.

The SMTPclient thread is anotherindependent process thatis created at

startup. Justlike the SMTPserver keeps listening for a TCP connection,the SMTP

clientkeeps waiting for outbound messages to appearin the queue.Each message

waiting to be sentto a remote mailbox is processed in the orderit was putinto the

queue.An SMTPclient object belonging to the classSMTPcliis created.This

handles allSMTPconnection details rightfrom establishing aconnection with the

remote server to sending the maildata and terminating the connection.The forward

path specified in the mail message is used to get the hostname ofthe recipient.Ifthe

SMTP clientis unable to set up a directconnection with the host,it tries to connect

to one or other ofa set default hosts.Upon successful connection,the client begins

the mail transaction with the extended SMTPEHLOcommand.Ifthe SMTPserver

atthe other end supports the SMTPservice extensions it will give a positive response

along with the extensions it supports.The client then parses the reply to determine if

56

the server will accepta compressed file.SMTPcommands are compiled by

extracting argumentsfrom the mail message,and sent to the server in the proper

sequence.The compression scheme to be used is conveyed to the server as an

argumentofthe DATAcommand and if acceptable,the mail data is compressed

before transmission.Finally,the QUITcommand terminates the connection.

ThePOPSserver process also begins atsystem startup and analogous to the

SMTPserverspends mostofits time listening for a newPOPS connectionfrom a

client.It begins a new thread foreach new connection.ThePOPS connection thread

creates an instance ofthe classPOPSconn.POPSconn is also derived from the class

TCPconn and inherits allTCPconnection attributes and functionalityfrom it. For

each POPScommandPOPSconn contains afunction thatdoes aU the processing

associated with it.POPSconn class interfaces with the Mailbox Database to access

mailboxes and mail messages.POPSconn provides afunction whose sole purpose is

to acceptclientcommands,parse them and accordingly invoke the appropriate

function.ThePOPS connection progresses through three states in the duration ofa

transaction.Initially it is in the authorization state in which it only accepts the USER,

PASS and QUITcommand.The arguments to the USER and the PASScommand are

used to authenticate the user.ThePOPS connection then acquires exclusive access to

the mailbox,assigns a message number to each message and enters the transaction

state. The commandsSTAT,LIST,RETR,DELE,RSET,TOP,UIDL and NOOP are

accepted in this state.Foreach ofthese commandsthePOPS connection interfaces

57

with the mailbox database to acquire the required information to pass back to the

POPS client. Finally it enters the update state when the clientPOPSissues a QUIT

command.Messages marked deleted are purged and the status ofthe mailbox at the

time ofclosing is returned to the client.ThePOPS connection releases any exclusive

lock on the mailbox.

58

CHAPTER 5. PERFORMANCEEVALUATION

5.1 ComparingTransmissionSpeeds

Differentkinds ofmail data was used to test the E-mailsystem.Textual data,

binary data,and graphical data was transported acrossthe Internet using the designed

E-Mail system.Several WindowsNT hosts wereidentified for this experiment.

These hosts were connected with Internet On each ofthe hosts,two E-Mailsystems

were installed - the implemented E-Mail system with embedded compression,and a

standard E-Mail system.Mail data wassentfrom one hostto another.First the mail

data was transferred from one hostto another using the standard E-Mailsystem on

the receiving end,and the designed E-Mail system on the transmitting end.The

uncompressed mail data was transmitted in this case.The designed E-Mailsystem

displays the time taken to transmit the mail data using 'time'system call. This time

was noted.Then the designed E-Mailsystem with embedded data compression was

started at both the hosts and the same mail data was transported between the same

hosts.The compressed mail data was transmitted this time.The time taken in the

transfer was again noted.This time included the time to compress data.This exercise

was repeated ten timesfor each file and each pair ofconnected mail hosts. Again,the

same test was repeated at different timesin the day.Finally,an average transmission

59

time wascomputed foreach file fortransmission withcompression,and for

transmission withoutcompression.

In all cases the time taken to E-Mailafile using the designed server was

considerably less than the time taken to E-Mailthe same file over the standard E-

Mailsystem.This reduction in time is attributed to the data compression employed

by the designed maU server.The table below shows the size ofthe file and the time

taken on both the standard E-Mailsystem and the designed E-Mailsystem.The ratio

between these two times demonstrates the speed up.

File Name File Type Size Average Average Average

Timeon Timeon Transmission

Standard E- Designed E- Time Ratio

MailSystem Mail System

mbox.cpp TextFile 45k 63sec 41 sec 65%

msrvr.exe Binary 449k 527sec 379sec 72%

Executable

thesis.doc MS-Word 288k 317sec 190sec 60%

Document

rfc.txt TextFile 76k 81 sec 38 sec 47%

60

File Name	 File Type Size Average Average Average

Timeon	 Timeon Transmission

StandardE-	 Designed E- Time Ratio

MailSystem	 MailSystem

excite.htm	 HTMLText 13k 45sec 25 sec 55%

alska.htm	 HTMLText 26k 160sec 91 sec 57%

ftr.dU	 Binary DLL 256k 276sec 220sec 80%

res.OOl	 Binary 317k 332sec 235 sec 71%

back.pcx	 Binary 65k 68sec 38sec 56%

Graphics

tt25.res	 Binary 1,085k 1345 sec 672sec 50%

Resource

Average	 260k 309sec 185sec 59%

Table5-1:Comparison ofTransmission Time

Asillustrated by the table,the compressed mail data took considerably less

time to reach its destination.The reduction in time has to be attributed to the

compression ofdata being performed by the mail server. Although network factors

may affect transmission speeds,the consistentreduction in transmission time

61

indicates the superiority in performance achieved by the mail server with embedded

data compression.

5.2 TasksAccomplished

The specific tasks that were achieved during the thesis are listed.:

1.The effect ofincorporating data compression before transmission was

studied. Mail data wascompressed atthe user level prior to transmission.The

reduction in transmission time of a compressed file indicatedthe advantage of

incorporating datacompression within the mail server.

2.Different data Cdihpfessiori algbritlilhs were studied and evaluated.LZ77

wasconsidered the mostsuitable for use in the Internet Mailserver.

3.The E-Mailsystem was designed using Object-Oriented methodology.

Each componentofthe system wastreated as an object and the functionality and

relationships were identified.

4.The Post Office Protocol Version 3(P0P3)clients and servers were

designed and implemented using Object-Oriented methodology.P0P3is used to

retrieve mail. ■

5.The Simple MailTransfer Protocol(SMTP)clients ands servers were

designed and implemented.

62

6.Based on previous evaluations,the LZ77compression scheme was

incorporated within the SMTP clients and servers.The SMTP protocol wasextended

to allow both a mail client and server that supportcompression to recognize each

other assuch and to negotiate compression between Aetwo. f i.

7.The various components were integrated and the fully operational E-Mail

system was tested using a numberofdifferentlands ofmail datafiles.

8.A simple User Agent(UA)thatallows addition ofmailbox users was

designed and implemented.

9.The performance ofthe designed system was evaluated by comparing it

with the existing E-Mailsystems.Asexpected the implemented mail server

demonstrated enhanced transmission speeds.

10.Future enhancements were identified.The E-Mailsystem may be further

improved to support more than one compression scheme.The SMTP protocol

extensions necessaryfor such asystem were designed.

63

CHAPTER 6. FUTUREENHANCEMENTSANDCONCLUSION

The E-Mailsystem may be further enhanced by incorporating certain

extensions.These enhancements are described in this chapter.

6.1 EnhancementsTODesignedServer

6.1.1 Allowing Multiple Compression Schemes

TheSMTPservice extensionsfor compression could be furtherenhanced by

including other compression schemes such as Huffman coding,LZ77 and arithmetic

coding.In such a case the EHLOkeyword value associated with the compression

extension would still be XCOMP,butthe parameters associated with this could have

multiple keyword values.The syntax ofthe value using ABNF notation would then

be;

xcomp-value::=("LZ77")*(SP"LZ77")*(SP"HUFF")

*(SP"ARITH")

Forinstance,anEHLO line such as,250XCOMPLZWLZ77HUFF,would

imply thatthe server supports the compression service extension and is capable of

dealing with data that has been compressed using either the LZW compression

scheme or the LZ77scheme or the Huffman coding scheme.The client would then

have a choice ofcompression schemes to choosefrom.For each mail transaction,the

64

particular scheme being used to compress the ensuing mail data would be specified

in the extended MAILcommand.

In particular,one optional parameter using the keywoitlXCOMPmay be

added to the MAILFROMcommand.The value associated with this parameter

would then be akeyword indicating the specific compression scheme(from the ones

supported by the server)being used to compress the mail data being sent with the

DATAcommand.The syntax ofthe value using ABNF would then be;

xcomp-value::="LZW"/"LZ77"/"HUFF'/"ARTTH"

TheSMTPserver would then expect mail data compressed using the

specified scheme.The server would decompress the data before storing.

6.1.2 Automatic Selection

■ ' , . ■ ■ ■ ■ ■ ■ .i.' ■ ' •

Another usefulfeature would be automatic selection ofthe mostoptimal

algorithm.This would require the system to analyze the data and according to the

structure ofthe mail data,determine which compression scheme would produce the

best results. Depending upon the type ofmail data being transferred,a suitable

scheme would be selected.In such a scenario,text mail data could be compressed

using the LZW scheme and Bi-levelimage datacould be coded very effectively using

arithmetic coding.

65

6.2 ExtendingTheDesignTOOtherServers

The conceptofembedding data compression within the mail server could be

extended to other servers such as the FTP server to compress file data before

transmission.The FTP protocol would need to be extended to incorporate

compression.TheFTP server would check the file being transferred and ifit is not

already in compressed format,the server compress it before sending it across the

Internet.

6.3 Conclusion

In conclusion,incorporating the task ofdata compression within the F-Mail

system achieves the goal ofincreasing effective transmission bandwidth and

reducing network traffic.By embedding an efficient data compression scheme within

the mail server,the time for transmitting mail data across the Internet,is significantly

reduced.If all mail servers were designed to handle data compression,it would result

in a substantial boostin overall network performance.Network bandwidth refers to

the amountofdata thatcan flow through a communication channel within a given

period oftime.Since the designed Internet mail server with embedded data

compression reduces the size ofdata thatthe network musttransport,it helps in

increasing the effective bandwidth.Mail data compression also helps in reducing

network traffic congestion.An Object Oriented approach is effective in designing

66

such a system.Contemporary Windowsfeatures like multi-threading and DLL's

enhance the flexibility and stability ofthe system.

67

APPENDIX A:MAJORCLASSES

The C++code for the thesis may be obtained from the author orfrom

Dr.Tong Yu.The author may be contacted at alka_nand@ftw.paging.mot.com.Dr.

TongYumaybecontactedattongyu@csci.csusb.edu.

+*+ + +++++ + + + + + ++ + ++ + *+ + *J1I0SS3.Q'© d3.SS

class Message //Manages messages stored for each mailbox

{

friend class Mailbox;

private:

//Data

enum status //message marked as deleted or notdeleted

{

deleted =1,

notdeleted = 0

};

int msgnumber; //number of message in mailbox

status Stflag; //status of message; deleted/notdeleted

char *username; //mailbox user owning message

char *msgfile; //name of disk data file

MailData maildata; //mail data object

char msguid[MAXLENOFUID]; //The Unique Id for the message

//functions

int retrmsg(MailData & md);

//compiles response to RETR cmd

int delemsg();//mark as deleted current message

char *retrmsgid(char *) const; //gets the unique Id for this msg

public:

//Constructors

Message();

Message(char *usrnam, int msgno, MailData maildata);

Message(const Message &message); //copy constructor

Message(char *usrnam, int msgno); // for loading from file

//Destructor

--Message();

//Operators

const Message &operator=(const Message ^message);

BOOL operator==(const Message &message) const;

int listmsg(MSGLIST *msglist) const ;

int rsetmsg(); //unmark message if marked deleted

int vrfymsgno(int msgno) const;

//verify if msgno matches msgnumber

//compiles response to list POP3 command

int retrmsgnumber() const { return msgnumber;}

//retrieves message no.

int isdeleted() const { return stflag; }

//returns status of message

//(deleted/notdeleted)

68

mailto:TongYumaybecontactedattongyu@csci.csusb.edu
mailto:alka_nand@ftw.paging.mot.com

long retrsize(void); //retrivfes size of message

int modifymsgnum(int msgno);

//changes msgnumber to m^giio

int rmfileO; //Removes data file if msg marked deleted

void printmsg(void) const;

int savemsg(void); //Saves messzage data in file

int loadmsg(const char *filnam, int fdread);

int retruid(MSGUID *uidstruct) const; //get uid of msg

//******************************Mailbox class ****************************

class Mailbox // Manages the mailbox for a particular user

{

friend class MailboxDB;

private;

//Data

enum state

{

authorization,

transaction,

update

char *username;

char *password;

state currstate;

long size; \

int hoofmsgs;

char *mbfilename;

BOOL storeflg;

//state of mailbox

//[autorization or //transaction or update]

//still verifying mailbox user

//mailbox user identified and mailbox openend

//this state entered when user issues quit

//when in update mode

//name of mailbox user

//password of mailbox user

//current state of mailbox

//size of mailbox in octets

//no. of messages in mailbox

//Name of Mailbox data file(-usefiname.mbx)

//==1 => message can be stored in mailbox

//even if it is not in transaction state

//Reqd to allow smtp server to store msgs

TListImp < Message > msgList;7/need to instantiate a list container

//called msgliist to maihtain list of

//messages

//Functions

int loadmb(const char *filename); //Load Mailbox data from file

int savemb(void) const; //Save Mailbox data into file

int storemb(MailData maildata);

int listmb(MBLIST *mblist) ;7/returns listing of mailbox

int listmbmsg(int msgno, MSGLIST *msglist) const;

int statmb(MBSTAT *mbstat) const;//return status of messages

//return listing of msgno

int retrmb(int msgno, MailData & maildata) const;

//retreive the massage for msgno

int delemb(int msgno);

//mark as deleted the specified msgno

int rsetmbO; //unmark all messages marked deleted

int quitmb(MBSTAT *mbstat);//if in transaction state removes msgs

//marked as deleted from mailbox

int retrnoofmsgs() const { return noofmsgs; }

void changetotxstate() { currstate = transaction; }

//change to transaction state

int assignmsgnomb(); //Assign a msgno to each msg in mbx

char *getfilename(char *filename) const; //Returns name of data

//file in filename

int uidmsgC int msgno, MSGUID *uidstruct) const;

//get uid for specified nummber

int uidlist(MBUID *uidlist) const;

//get uid for all msgs in mb

void setstoreflgon() { storeflg = TRUE; }

//Set store flag on for storing

void setstoreflgoff() { storeflg = FALSE;: }

69

//Set store flag OFF

public:

//Functions

//Constructors

Mailbox (); //Default constructor

Mailbox (const char *usr, const char *passwd);

//type conversion constructor

Mailbox (const char *filename);

//type conversion constructor that

//loads data from file

Mailbox (const Mailbox &mb); //Copy constructor

//Destructor

-Mailbox ();

void printmb(void) const;

//Operators

const Mailbox &operator=(const Mailbox &mb);

BOOL operator==(const Mailbox &mb) const;

BOOL vrfyusrmb(const char *usr) const; //verify user

BOOL vrfyusrmb(const char *usr, const char *passwd) const

//verify user with this passwd

y y * * **************** * ***********MailboxDB class ****************************

class MailboxDB

{ ■ ,
private:

//Data

int noofmailboxes; //no of mailboxes in database

char *dbfile; //name of database file;

TListImp < Mailbox > mbList; //need to instantiate list container

//called mbList to maintain list of

//Mailboxes

//Functions

public: ■

//Constructor

MailboxDB0 ;

MailboxDB(int dummy);

//Destructor

-MailboxDBO { free(dbfile);}

int createMB(const char *usrname, const char *passwd);

//creates a new mailbox

intdeleteMB(const char *usrname, const char *passwd);

//deletes a mailbox

int saveMBDB(); //saves Mailbox database onto disk

int load]yDBDB(); //loads Mailbox database from disk

void printMBDB(void);

BOOL vrfyuser(const char *usrname)const;//verify username

Mailbox *vrfypass(const' char *usrname, const char *passwd);

//verify name and pass

int store(Mailbox *currmb, iyiailData maildata);

//store message for mailbox currently

70

//being usedfor transaction

int store(const char *usrname, MailData maildata);

//store message in mbx f#r'<usrname>

int stat(const Mailbox *currmb, MBSTAT *status);

//get status of mailbox currently

//being used for transaction

int list(Mailbox *currmb, MBLIST *listing);

//list of messages in mailbox

//currently being used for transaction

int listmsgnoC const Mailbox *currmb, int msgno, MSGLIST *listing);

//list of mess msgno in mailbox

//currently being used for transaction

int retr(const Mailbox *currmb, int msgno, MBRETR *retrmsg);

//retreive message msgno from mailbox

//currently being used for transaction

int dele(Mailbox *currmb, int msgno);

//mark as deleted msgno from mailbox

//currently being used for transaction

int rset(Mailbox *currmb);

//unmark deleted messages in mailbox

//currently being used for transaction

int quit(Mailbox *currmb, MBSTAT *mbstat);

//if in transaction state removes msgs

//marked as deleted from mailbox

//currently being used for transaction

int quit(); //Not in transaction state- just

//send quitting message to user

int uidmsg(const Mailbox *currmb, int msgno, MSGUID *uidstruct) const;

//get uid for specified msg nummber

intuidlist(const Mailbox *currmb, MBUIP *uidlist) const;

//get uid for all msgs in specified mb

/***

This is the superclass for the TCP connection classes e.g. POPS

and SMTP. This is an abstract class.

** * * * * * * * * * * * * ******j

class TCPconn

{

protected: //allow subclasses to inherit data

//Data

char inbuf[MAXBUF+1]; // Buffer to store incoming data

char outbuf[MAXBUF + 1]; // Buffer to send outgoing data

int sockhnd; // socket descriptor for connection

int bytecount; // Keeps count of bytes read from sock

//functions

void init(void); // Does all the initializations

int read_data(void); // reads data from socket

int write_data(int n); // writes data to socket

public:

TCPconn(void) { init(); };

TCPconn(int sock);

-TCPconn(void) { };

int connEstbGreeting(void); // Send a greeting message -1:0 client

y************************ * **

71

The class definitions for the P0P3C0NN (P0P3 connection) are contained

herein. All data and functions pertaining to a new P0P3 connection reed,

by the server are handled by this class^

**i

class P0P3conn // New P0P3 connection

{

private j

//Data

static const CMDTBL cmdtbl[] i

const int MAXNUMCMDS;

static const char sepstr[]; // chars used to separate words

enum state //state of P0P3 connection

{ //authorization or transaction or update]

authorization, //still verifying mailbox usser.

transaction, //user identified and mailbox'Openend

update //this state entered when quit command reed,

};

state currstate; //current state of mailbox

char inbuf[MAXBUF+1]; // Buffer to store incoming data

char outbuf[MAXBUF + 1];// Buffer to send outgoing data

int cmdno; //command no. of cmd being processed

int sockhnd; // socket descriptor for connection

MaiIbox *currmb; // mailbox being accessed currently

int bytecount; // Keeps count of bytes read from sock

char *usernaine; // mailbox user currently being accessed

char *password; // passwd of user currently being accessed

//functions

void init(void); // Does all the initializations

int read_data(void); // reads data from socket

int write__data(int n // writes data to socket

int usercmd(void) , // processes USER command

int passcmd(void) // processes PASS cmd

int quitcmd(void)

int statcmd(void)

int listcmd(void)

int retrcmd(void)

int delecmd(void)

int noopcmd(void)

int rsetcmd(void)

int topcmd (void)

int uidlcmd(void)

int notOK(void);

public:

P0P3conn(void);

P0P3conn(int sock);

~P0P3conn(void) { };

int connEstbGreeting(void); // Send a greeting message to client

int getcmd(void); // recv cmd from socket and parse it

/***

The class definitions for the SMTPcli (SMTP client) are contained

herein. All data and functions pertaining to a SMTP client are

are handled by this class, A new SMTP client object is created by

the SMTP client process everytime it discovers that a message has

to be sent to a remote recipient. The SMTPcli object then takes care

of communicating with the receiver SMTP server and transmits the

message.

*********************************** lt***y

72

class SMTPcli :public TCPconn

{

private;

//Data

bool isLZ77comp; // LZ77 compression supported

static const SMTPCMDS smtpcmds[];

const int MAXNUMCMDS;

char hostname[MAXHOSTNAMELEN];

//functions

I

int call_socket(const char *), //Tries to connect to server

public:

//functions

SMTPcli();

int sendmail(const char const char *, MailData &);

j/**

// The class definitions for the OutGoingMsg are contained

// herein. All data and functions pertaining to a new outgoing message that

// is to be transmitted to a remote site are handled by this class.

Ij*** * **************

class OutGoingMsg 11 A new outgoing message to be added to outgoing Q

private:

//Data

char *reversepath; // Path to be used For replyihg to sender

char *forwardpath; // path of mail recievers

MailData maildata; // mail data

int msgnumber; // message number

//functions

int savemsg(void); //Saves messzage data in file

int loadmsg(const char int //load msg data

public:

//functions

void putrevpath(const char *revpath);

void putfwdpath(const char *);

char *getfwdpath(char *);

long getsizeofmsg() {return maildata.GetSizeofMailData(); }

int getmsg(char char MailData &); //Returns msg data

BOOL operator—(const OutGoingMsg) const;

const OutGoingMsg &operator=(const OutGoingMsg &);

int getfilename(char *filename);

//Constructors

OutGoingMsg();

OutGoingMsg(int msgno); //This loads file from disk

OutGoingMsg(const char const char const MailData int);

//takes fwdpath, rev path, & data as input

OutGoingMsg::OutGoingMsg(const OutGoingMsg &msg); //copy constructor

//Destructor

-OutGoingMsg();

73

/***

The class definitions for the SMTPCONN (SMTP connection) are contained

herein. All data and functions pertaining to a new SMTP connection reed,

by the server are handled by this class.

***************★**>

class SMTPconn :public TCPconn // New SMTP connection

{

private:

//Data

static const CMDTBL cindtbl[] ,

const int MAXNUMGMDS;

static const char sepstr[]; / chars used to separate words

int cmdno / command no. of cmd being processed

char *senderSmtp; / name of SMTP-sender (Parameter to HELD)

char *reversepath; / Path to be used For replying to sender

char *forwardpath; / paths of mail recievers

bool isLZ77comp; / LZ77 compression supported

bool data_is_compressed, 11 incoming data compressed

MailData maildata; / mail data

int prevcmdno; / Prev cmd reqd to check proper sequence

/ of cmds (Mail-RCPT-DATA)

int noofIclrcpts; / # of local recipients for this mail data

int noofremrcpts; / # of remote recipients for this mail

char *myhostnanie; / My domain name

LPSTR mylPAddr; / My IP address

FWDREVPATH rempaths[MAXRCPTS] //Array of structs containing fwd path and

//rev path for remote recipients

//functions

void initO // Does all the initializations

int helocmd() // processes USER command

int ehlocmd() // processes USER command

int r^ailcmd() // processes PASS cmd

int rcptcmd()

int datacmd()

int rsetcmd()

int noopcmd()

int quitcmd()

public:

SMTPconn();

SMTPconn(int sock);

-SMTPconn() { };

int cOnnEstbGreeting(void) // Send a greeting message to client

int getcmd(); // recv cmd from socket arid^ parse it

//******************************* * * * * * * * * * * * ***********************************

// The OutQueue class manages the.outmsgQ object. Whenever a new message is

// put in the Q it saves it in a disk file and then adds it to the outmsgQ.

I^********************* * ********************** * ********************************

class OutQueue

{ ■ ' ■ ' ; ■
private:

short noofmsgsinQ;

TQueueAsDoubleList < OutGoingMsg > outmSgQ; //Queue of ;outgoing messages

//Functions

int loadQ(const char *filename); //Load outmsgQ messages from file

74

int saveQ(void) const; //Save outmsgQ data into file

public:

//Constructor

OutQueue (void); //default constr loads outmsgQ from disk

//Destructor

~OutQueue (void);

int put(const char const char *> const MailData &);//creates

//an OutGoingMsg and puts it in

//the outmsgQ

int get(char *, char MailData &); //Gets OutGoingMsg from Q and

//returns the fwd & rev paths & data

int isEmpty(); //Returns True/False

75

ACRONYMS

DLL Dynamic Link Library

FTP File Transfer Protocol

GIF Graphic Interchange Format

ICMP Internet Control Message Protocol

IGMP Internet Group ManagementProtocol

IP InternetProtocol

ISO International Standards Organization

JBIG Joint Bi-LevelImage Processing Group

LZ77 LempelZiv's algorithm based on 1977 paper

LZW LempelZiv algorithm with modifications by Terry Welch

MIME Multipurpose Internet Mail Extensions

MTA Message Transfer Agent

OSI Open SystemsInterconnection

POP Post Office Protocol

POPS Post Office Protocol Ver.3

RFC RequestForComments

SMTP Simple Mail TransferProtocol

76

TCP Transmission ControlProtocol

UA User Agent

UDP User Datagram Protocol

77

REFERENCES

[1] 	 Jamsa,Kris and Ken Cope, "InternetProgramming",Las Vegas:Jamsa

Press, 1995.

[2] 	 Borenstein,N.,and N.Freed,"Multipurpose Internet Mail Extensions",RFC

1521.Bellcore,InnOsoft,September 1993.

[3] 	 Stallings,William, "Data and ComputerCommunications",4th ed.,

Macmillan Publishing Company,New York,NY,1994.

[4] 	 Postel, J.,"Simple Mail Transfer Protocol",STD 10,RFC821,

use/Information Sciences Institute, August 1982.

[5] 	 Crocker,D.,"Standard for the FormatofARPAInternet Text Messages",

STD 11.RFC 822.UDEL.August 1982.

[6] 	 Postel, J.,and J. K.Reynolds,"TelnetProtocol Specification",RFC854,

May 1983.

[7] 	 Myers,J.,Rose,M.,"PostOffice Protocol- Version 3",RFC1725.

November 1994.

[8] 	 Sayood,Khalid,"Introduction to Data Compression",San Francisco,Morgan

Kaufmann Publishers,1996.

[9] 	 Ziv,J and A.Lempel,"A Universal Algorithm for Data Compression",IEEE

Transactions onInformation Theory,TT-23{3):337-343,May 1911.

[10] 	 Ziv,J and A.Lempel,"Compression ofIndividualSequences via Variable-

Rate Coding",IEEE Transactions on Information Theory,IT-24(5):530-536,

September 1978.

[11] 	Cheung,Ada Ying Dee,"Data Transfer Using Controlled Compression",

Masters Thesis,Waterloo,Ontario,Canada,1996.

[12] 	 Witten,I. H.,A.Moffat,and T.Bell,"Managing Gigabits:Compressing and

Indexing Documents and Images",Van Nostrand Reinhold,1994.

[13] 	 Welch,T.A.,"A Techniqiie for High-Performance Data Compression",IEEE

Cow/7Mter,8-19,June 1984.

[14] 	 Klensin,J., N.Freed,M,Rose,E.Stefferud,and D.Crocker,"SMTP Service

Extensions",RFC 1869.MCI,Innosoft,Dover Beach Consulting,Inc.,

78

Network Management Associates,Inc.,Silicon Graphics,Inc.,November

1995.

[15] 	Yu,Tong Lai,"Data Compression forPC Software Distribution",Software

Practice and Experience,Vol.26(11),1181-1195(November 1996),

[16] 	Booch,Grady,"Object Oriented Analysis and Design With Applications",

2nd Ed.,The Benjamin/CummingsPublishing Company,Inc.,Redwood City,

California, 1994.

[17] 	Rumbaugh,J.,M.Blaha,W.Premerlani,F.Eddy and W,Lorensen,"Object

Oriented Modeling and Design",Ehglewood Cliffs,New Jersey:Prentice

Hall 1991.

[18] 	 Stevens,W.Richard,"TCP/IP Illustrated,Volurhe 1",Addison-Wesley

PubUshing Company,Reading,Massachusetts,1994.

[19] 	 Wright,Gary R.and W.Richard Stevens,"TCP/IP Illustrated,Volume 2",

Addison-WesleyPublishing Company,Reading,Massachusetts,1995.

[20] 	 RichteriJeffrey,''Advahced Windows,UieDevelopers Guide tb the WIN32

APIfor WindowsNT 3.5 and Windows95",MicrosoftPress,Redmond,

Washington,1995.

79

	Design and implemetation of internet mail servers with embedded data compression
	Recommended Citation

