195 research outputs found

    Methods in wave propagation and scattering

    Get PDF
    Supervised by Jin A. Kong.Also issued as Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 195-213).by Henning Braunisch

    Adding nonlinearity to an electromagnetic-magnonic quantum hybrid device

    Get PDF
    In this book, hybrid systems based on yttrium-iron-garnet (YIG), three dimensional microwave cavity resonators, and superconducting transmon qubits, are investigated by continuous wave and pulsed microwave spectroscopy. Limitations to the magnetic linewidth in the quantum regime are identified and coherent exchange between a magnon and a superconducting qubit are demonstrated. Finally, a first step towards a strongly coupled hybrid system containing all three components is demonstrated

    Adding nonlinearity to an electromagnetic-magnonic quantum hybrid device

    Get PDF
    In this book, hybrid systems based on yttrium-iron-garnet (YIG), three dimensional microwave cavity resonators, and superconducting transmon qubits, are investigated by continuous wave and pulsed microwave spectroscopy. Limitations to the magnetic linewidth in the quantum regime are identified and coherent exchange between a magnon and a superconducting qubit are demonstrated. Finally, a first step towards a strongly coupled hybrid system containing all three components is demonstrated

    Electromagnetic Theory and Applications

    Get PDF
    This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field

    Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels

    Get PDF
    abstract: There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and apparatus required to implement a flux-channel carrying the magnetic current wave near the speed of light over a very broad frequency range which also makes the design of a frequency independent antenna (spiral) possible. We will learn how to construct extremely thin conformal antennas, frequency-independent permeable antennas, and even micron-sized antennas that can be embedded inside the brain without damaging the tissue.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore