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ABSTRACT 

There is an ever-growing need for broadband conformal antennas to not only 

reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) 

but also to reduce visual and RF signatures associated with communication systems. In 

many applications antennas needs to be very close to low-impedance mediums or 

embedded inside low-impedance mediums. However, for conventional metal and 

dielectric antennas to operate efficiently in such environments either a very narrow 

bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must 

be placed one quarter of a wavelength above the conducting surface. The latter is not 

always possible since in the HF through low UHF bands, critical to Military and Security 

functions, this quarter-wavelength requirement would result in impractically large 

antennas. 

Despite an error based on a false assumption in the 1950’s, which had severely 

underestimated the efficiency of magneto-dielectric antennas, recently demonstrated 

magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal 

applications. Whereas conventional metal-and-dielectric antennas carrying radiating 

electric currents suffer a significant disadvantage when placed conformal to the 

conducting surface of a platform, because they induce opposing image currents in the 

surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. 

Their magnetic currents produce co-linear image currents in electrically conducting 

surfaces.  
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However, the permeable antennas built to date have not yet attained the wide 

bandwidth expected because the magnetic-flux-channels carrying the wave have not been 

designed to guide the wave near the speed of light at all frequencies. Instead, they tend to 

lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a 

slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in 

detail and presented the design approach and apparatus required to implement a flux-

channel carrying the magnetic current wave near the speed of light over a very broad 

frequency range which also makes the design of a frequency independent antenna (spiral) 

possible. We will learn how to construct extremely thin conformal antennas, frequency-

independent permeable antennas, and even micron-sized antennas that can be embedded 

inside the brain without damaging the tissue.  
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 INTRODUCTION 

 

“It is of great advantage to the student of any 

subject to read the original memoirs on that subject, for 

science is always most completely assimilated when it is in 

the nascent state.” 

James Clerk Maxwell 

 

There is an ever growing need for broadband conformal antennas to not only 

reduce the number of antennas utilized to cover a broad range of frequencies (VHF & 

UHF) but also to reduce the visual and RF signatures associated with communication and 

radar systems. The general understanding of an antenna is a device, usually metal, that is 

used to transmit or receive signals. In metal antennas, the wave’s electric field is attached 

to the surface of the wire and the wave is sufficiently bound to be guided close to the 

speed of light. When the wave reaches the end of the antenna, let’s say a metal dipole, it 

will reflect partially and radiate substantially. In penetrable antennas, meaning dielectric 

or magnetic antennas, there are two different mechanisms of radiation. If the cross 

section of the penetrable material is large enough, the wave can actually be trapped inside 

the material as a slow wave. In that case when the trapped wave reaches the end of the 

structure it is strongly reflected and radiates weakly. However if the cross section of the 

penetrable material is not large enough to trap the wave then the wave is weakly bound 

and therefore the wave leaks as it moves along the length of the structure. The wave that 

reaches to the end of the antenna radiates similar to the metal antenna.  

CHAPTER 1 
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Previously used conformal metallic antennas have narrow bandwidth and low 

efficiency because their radiation source is an electric current. Since these antennas are 

mounted on a conducting ground plane, the electric current parallel to the surface fights 

the opposing image current caused by the mentioned ground plane. But if instead of the 

electric current, the primary source of radiation is a magnetic current, as in the case of 

antennas with very high permeabilities, then by mounting these antennas on a conducting 

ground plane there will be no loss of gain or efficiency. The radiating magnetic current of 

these antennas, which we call true magnetic(𝜇𝑟 ≫ 1, 휀𝑟 > 1) antennas, will be aided by 

the image current produced by the metallic ground plane. 

As seen in the figure, the image of the magnetic current in the permeable antenna 

does not oppose the radiation magnetic current since they point in the same direction 

however the image of the electric current in the metal antenna opposes the radiating 

electric current unless the distance between the metal antenna and metal ground plane is 

so large that the antenna is no longer considered conformal  

 

Fig. 1-1 (a) Conformal Permeable Antenna Showing That the Current and the Image Current Are 

Constructive. (b) Metal Antenna Close to a Ground Plane Showing Destructive Image Current (c) Metal 

Antenna Having a Large Distance From the Ground Plane in Order to Have a Constructive Image Current. 
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The importance of permeable antennas (𝜇𝑟 > 휀𝑟) is that they can outperform 

metal (and dielectric) antennas in low impedance environments such as conformal to a 

metal surface, adjacent or inside the human body, immersed in water, or inside the earth.  

Since the human body is a low impedance material, permeable antennas, as small 

as tens of microns, can be used inside the body (brain) [1] and achieve up to 80dB higher 

gain that metal alternatives. They can also be placed close to the body and be used as a 

belt antenna therefore eliminating the need for carrying standard tall whip antennas while 

having a better performance [2] . 

 

Fig. 1-2 (a) Body Wearable Magnetic Belt Antenna [2] (b) Micron Size Magnetic Antenna Embedded 

Inside the Brain for Neuronal Telemetry.  

Most importantly, permeable antennas can be placed in close contact with a metal 

ground plane without degradation of performance which solves the problem of 

electrically small conformal communication. This means that permeable antennas can be 

placed on top of HUMVEEs instead of very long whip antennas. They can be mounted on 

airplanes and they can be used to build very wideband spirals with high gain. 



4 

 

 

Fig. 1-3 (a) 1.5” Thick Magnetic Dipole on Top of an HUMVEE Instead of a 6 Foot Whip Antenna [2] (b) 

Magnetic Spiral Antenna Built Out of Ferrite Tiles (c) Extremely Thin Magnetic Conformal Antenna 

Mountable on an Airplane. 

When a “high impedance” magneto-dielectric material is used as an antenna, it 

can be thought of as a magnetic conductor carrying magnetic currents through the dB/dt 

term in Maxwell’s curl equations. 

The question that needs to be answered at this point is:  Why have magnetic 

antennas not been extensively used before? As pointed out by Sebastian [2], the reason is 

based on a wrong assumption by Rumsey and DeVore [3, 4] that led to the misconception 

that the radiation efficiency of antennas would be reduced by the loss tangent of the 

permeable material. We will prove that the loss tangent does not necessarily cause a 

reduction in the antenna efficiency and by knowing this fact we will demonstrate 

different instances of permeable antennas ranging from conformal antennas mounted on 
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vehicles and airplanes to spirals and in vivo antennas. Novel feeding techniques will be 

presented and the optimum magnetic flux channel will be introduced and studied in detail 

as the next generation of magneto-dielectric antennas. The dissertation covers all these 

subjects in 9 chapters and an extensive appendix. An abstract of the chapters are as 

follows. 

In chapter 2, the subject is introduced by first summarizing the work of Sebastian 

[2] where magnetodielectric antennas were modeled in closed form by using 

Schelkunoff’s electrically-small-antenna models. Including realistic dispersive 

permeabilities, common in magnetic materials, in the model he showed that the radiation 

efficiency of permeable antennas is predominantly a function of the volume of the 

permeable material and the peak Heaviside magnetic conductivity in its permeability 

spectrum. Sebastian’s model is then expanded by obtaining a first approximation to the 

input impedance of linear magneto-dielectric dipoles with the aid of fullwave simulations 

(using ANSYS HFSS). Using this model of the input impedance it is then possible to 

compare like-to-like a conformal magnetodielectric dipole and a conformal metal dipole 

constrained to fit within the same volume on the surface of a conducting ground plane. 

Using as an example a 1 meter long antenna operating from HF to VHF, it is 

proven that the magnetodielectric antenna attains an Efficiency Bandwidth Product 

(EBWP) at least 10dB higher than the corresponding metal antenna over the band. Then, 

using the Best-Yaghjian formalism it is shown that these antennas are easier to match and 

can attain wider bandwidths than equivalent conformal metal antennas. 
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In chapter 3, a conformal permeable toroidal antenna operating in both a 

vertically polarized monopole mode and circularly polarized (CP) dipole mode in the 

UHF frequency range is designed based on the principles of magneto-dielectric radiators 

elucidated in chapter 2. The permeable material for this antenna is a new advanced 

ferromagnetic laminate composite material whose high impedance and anisotropic 

properties support the desired radiation via magnetic currents. Given the measured 

dispersive permeability of the material and the desired Gain, a radiation efficiency 

equation heuristically based on the linear dipole equation from chapter 2 was used to 

determine the approximate toroid diameter and cross section. Thereafter using fullwave 

tools (ANSYS HFSS) the dimensions of the antenna were fine tuned to maximize the 

Peak Gain while minimizing is ripple over the band. 

The final manufactured antenna is less than 0.5 m in diameter and less than 2 cm 

thick. Its performance was verified in an antenna chamber by our customer (JEM 

Engineering) by feeding it with a simple mode former using commercially available 

components. Including the imperfections of the feed network and the performance of the 

simple matching scheme, the antenna is shown to operate from 200MHz to 500MHz with 

an input match of better than -10dB, CP dipole realized gain as high as +2dBi and 

monopole mode vertically polarized gain as high as -1 dBi. 

The success with this antenna demonstrator provided empirical proof that these 

magnetodielectric antennas indeed constitute a new family of high Gain and wide 

bandwidth antennas with a huge potential impact in wireless communication in the 

difficult long wavelength frequencies ranging from HF through UHF. These frequencies 
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are of importance both to Defense applications and City and State safety and security 

applications since these bands of frequency are also used by Fire and Police Departments.  

However, to fully exploit this potential requires the ability to design these 

antennas from first principles. Design by repeated fullwave simulation is not acceptable, 

not even when such “design” is carried out by using a (super) computer with brute force 

optimization. In such an approach, there is no way to know whether the solution obtained 

is indeed the best solution or just a local minimum found by the optimizer within the 

bounds of the rules it was given. The rules must be derived first. Therefore there was a 

clear need to develop a complete analytic theory of these antennas that could be reduced 

to practical rational design rules that the engineer can use to create the magnetodielectric 

antenna solution for the given application.  

Chapter 4 is then the demonstration that we now have a solid foundation for the 

new field of Magnetodielectric Antenna Theory and Design. In this chapter, a model of 

the input impedance of the toroidal permeable antenna, which is the dual of the 

conventional metal loop antenna, is derived, starting from Schelkunoff’s transmission 

line description of the loop antenna instead of the electrically-small-limit model. This 

antenna, as seen in chapter 3, operates in both the monopole mode and circularly 

polarized dipole mode and is constructed from a torus of high permeability material.  

Since the ultimate goal of having an antenna’s input impedance model is to enable 

the derivation of its best matching network; the input impedance is expressed in its widest 

band most general form as a frequency independent resistor terminating a reactive 

network which is called the Darlington form. Because such a circuit mimics closely the 
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input impedance of the dipole modes of the spherical mode expansion, it is a much better 

model of the antennas as we go beyond the electrically small limit. The feed loop 

contribution is explicitly accounted for and the closed-form equation results are 

compared with fullwave simulations of a typical toroidal antenna operating in both 

monopole and circularly polarized dipole mode showing excellent agreement well 

beyond the electrically small limit. 

As briefly mentioned in the initial paragraph of this Introduction, permeable 

materials do not necessarily bind the electromagnetic wave the way a metal wire or 

surface does. Therefore to “force” these conformal magnetodielectric antennas to behave 

as near-perfect duals of metal antennas in free space, the way the permeable flux channel 

contains the B-field needs to be engineered. As a minimum, based on Sebastian’s original 

guidelines, this is guaranteed in the initial design by selecting the size of the cross section 

of the channel such that the onset of the lowest order guided (and radiating) mode (TE01) 

within the magnetodielectric material occurs inside the band of operation not too far 

below its upper edge. If the onset occurs too low in the band, the waves can become too 

strongly trapped in the material at the high frequencies and will not radiate. If the onset is 

set too high, then the wave leaks out of the material at the low frequencies and the 

effective length of the antenna is much smaller than its physical length. Peak performance 

is obtained when the magnetic current inside the antenna uses the full length of the 

antenna over the whole frequency band. That is, we want to maintain the magnetic flux 

contained within the flux channel at all frequencies without trapping it into a slow wave. 
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As Sebastian showed, an engineering trade-off that accomplished this to a degree 

is to feed the antenna with multiple loops. However multiple independent feeds then 

require a feed network (under the antenna ground plane) that distributes the energy from 

the source’s desired one feed point to the several loops. A better solution is the novel 

distributed feed network we call the parallel solenoid. 

Chapter 5, introduces this new kind of electric feed configuration for permeable 

antennas that maintains the magnetic current as uniform as possible inside the flux 

channel while being fed at only one point and incurring none of the deleterious phase 

delay effects that occur when a ferrite rod is fed by a conventional solenoid winding.  

The importance of the feed network for magnetic antennas is explained in detail 

and it is mentioned how this feed configuration can overcome the problems of 

conventional feeds. We will see in this chapter that it was using this structure that enabled 

the toroidal antenna of chapter 3 to attain its maximum bandwidth and peak Gain. This 

proposed solenoid feed will enhance the performance of any permeable antenna that 

needs a flux binding mechanism. At the same time, the mentioned novel feed can be used 

as an impedance tuning mechanism to achieve the particular impedance bandwidth goals 

of the design.  

A key property of the parallel solenoid feed is that it helps bind the magnetic flux 

to the permeable channel at the low frequencies (preventing leakage) while at the same 

time allowing efficient radiation at the high frequencies. This happens because the 

parallel solenoid is itself a frequency dependent structure that can be used to play-off 

against the frequency dependence of the channel (its surface wave onset properties) to 
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obtain a nearly-uniform amplitude traveling current along the channel over the broadest 

possible frequency band. The acid test for this claim is to design a magnetodielectric 

traveling wave antenna. The most severe test of all is to design a frequency independent 

magnetodielectric antenna, namely a spiral, because it is known that the ultrawideband 

performance of spirals hinges on them carrying a uniform amplitude traveling wave near 

the speed of light over the entire band.  

 In chapter 6, we demonstrate a magnetic Archimedean spiral antenna as another 

example of a permeable conformal wideband antenna and show the useful feature of the 

parallel solenoid feed for this specific antenna. It is shown that a wideband and high gain 

spiral antenna can be designed and built with NiZn absorber tiles as long as a flux 

binding mechanism is present. It is proven in this chapter that by adding the parallel 

solenoid feed to the magnetic spiral antenna we could get high gain and efficiency, 

frequency independent behavior resulting in a very good VSWR, and a good axial ratio, 

with a bandwidth of 11:1 (only limited by the dimensions of the spiral).  

The key role of the propagation properties of the magnetic flux channel is then 

addressed in Chapter 7 where again the goal is to derive an analytic model with design 

rules that the engineer can use to design traveling wave antennas and therefore extend the 

theory to the most general types of magnetodielectric antennas needed in practical 

applications. This development is the first step into achieving the optimum permeable 

flux channel for all magnetodielectric antennas. The metallized trough channel is 

introduced as the natural evolution of the previous work.  
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The ultimate goal in designing magnetic antennas is to have an antenna that can 

be absolutely conformal to the aerodynamically designed outer mold-line of its platform 

while maximizing the strength of the magnetic current in the flux channel and at the same 

time pulling the guided wave at the TE01 onset towards the surface of the channel over 

the widest possible frequency range ensuring propagation of the wave near the speed of 

light. These goals are accomplished by using the trough and the slitted trough. Source 

excitation, flux binding, tailoring of the frequency response of the guiding surface are 

attained while the structures becomes completely conformal to any surface. A fullwave 

analytic Green function formulation for the trough is developed and used for this study in 

this chapter. 

In chapter 8, the optimum flux channel is studied further by focusing on its 

omega-beta diagram. The leaky wave and guided wave regimes of these antennas are 

demonstrated. Two additional methods of obtaining the dispersion diagrams are 

presented and it will be shown that the transverse resonance method is a very fast and 

easy method to obtain the dispersion diagram and it is accurate in the frequency range 

where it is needed: around the onset frequency. An estimate is derived of the minimum 

frequency that the TRM method can be trusted to yield correct data on the leaky wave 

behavior of the channel. Below that frequency, we can either use a fullwave simulation to 

obtain the results or use the Green’s function method. This chapter will give a full 

understanding of the dispersion diagram of flux channel structures in order to come up 

with a methodology and proper tools for designing an optimum flux channel 
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Chapter 9 serves as a detailed discussion leading to a design flow graph to obtain 

the optimum flux channel based on all the studies on how the geometry and the material 

properties can be used to flatten the 𝜔 − 𝛽 diagram about onset to obtain the maximum 

operating bandwidth The previous chapters had given us hints all along of what was 

required to design the optimum flux channel: These are now discussed explicitly: using a 

change in the cross section geometry of the channel, adding the slit, the role of the 

parallel solenoid, using a material with certain properties that would make the antenna 

resemble a PEC antenna, or even adding vertical metal walls to the material to artificially 

cause anisotropy. This chapter contains a full discussion and a summary of all these 

methodologies and gives full design guidelines for an optimum flux channel.  

 As a detailed appendix we demonstrate a very interesting application of the 

magnetic antennas which is the ability to use micron sized magnetic antennas for radio 

frequency neuronal telemetry. It is shown that magnetic antennas are the solution to not 

overheating the brain tissue and having very low SAR levels. We will see that true 

magnetic antennas combine the best characteristics of dipoles and loops and by 

calculating the coupling between identical magnetic antennas inside a model of the body 

medium we show an increase in the power transfer of up to 8 orders of magnitude higher 

than could be realized with the loops and dipoles, making the microscopic RF in-vivo 

transmitting antenna possible. 
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CHAPTER 2 

 WHY THE MAGNETIC LOSS TANGENT IS NOT A RELEVANT CONSTRIANT 

FOR PERMEABLE CONFORMAL ANTENNAS 

 

“No amount of experimentation can ever prove me 

right; a single experiment can prove me wrong.” 

Albert Einstein 

 

2.1 Introduction 

An error based on a false assumption in the 1950’s, and perpetuated through re-

derivation in the 1970’s, has hindered the modern use of the “ferrite rod” antenna family 

under the expectation that someday lower loss magnetic materials might be developed. 

Nevertheless, within the last five years several investigators have included ferrite 

materials in fullwave simulations of antennas [5, 6] and have observed unexpected levels 

of efficiency. The purpose of this chapter is to disseminate to the antenna engineering 

community at large the explanation for those results and to provide the foundation for the 

general theory of such magneto-dielectric antennas, specifically when such antennas are 

applied as conformal antennas or as antennas immersed within low impedance media [1, 

7] (e.g. under seawater or inside the human body.) 

 

 

This chapter is based on our paper: Tara Yousefi, Tom Sebastian and Rodolfo E. Diaz, "Why the 

Magnetic Loss Tangent Is Not a Relevant Constraint for Permeable Conformal Antennas," IEEE Trans. 

Ant. Propag., vol. 64, no. 7, pp. 2784-2796, 2016.  
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In addition, in this chapter we introduce the subject of magneto-dielectric 

antennas by summarizing the work of Sebastian [2]. In the referenced dissertation 

magnetodielectric antennas were modeled in closed form by using Schelkunoff’s 

electrically-small-antenna models. These models included realistic dispersive 

permeabilities and showed that the radiation efficiency of permeable antennas is 

predominantly a function of the volume of the permeable material and the peak Heaviside 

magnetic conductivity in its permeability spectrum. We will see this in detail in this 

chapter and a comparison of a conformal magnetodielectric dipole and a conformal metal 

dipole constrained to fit within the same volume on the surface of a conducting ground 

plane will be presented which can also be found in the referenced dissertation [2]. 

This latter point, the application to antennas conformal to a conducting surface, is 

key to this discussion; particularly when the efficiency of a permeable antenna is 

compared to that of an equivalent metallic antenna constrained to operate in the same 

conformal volume. 

Starting from Schelkunoff’s [8] electrically small antenna model, where the 

Inductance, Capacitance, and Radiation Resistance of the external electromagnetic fields 

of the antenna are represented by circuit elements, a closed-form model for a penetrable 

material antenna (i.e. not made from a conductor but from a dielectric) is obtained by 

accounting for the internal electromagnetic fields as an additional impedance placed in 

series with the external one. A similar technique has been applied before by R. W. P. 

King to model resistive dipoles [9]. The resulting circuit model of the input impedance of 

this dielectric antenna is then used to derive the circuit model for the input impedance of 
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its dual, the permeable rod antenna. The form of the circuit is such that the radiation 

efficiency can be derived immediately in closed form in terms of the geometric 

parameters of the antenna and its dispersive (frequency dependent) permeability.  

The first important result arises from comparing this efficiency to that obtained by 

Rumsey [3] and DeVore [4] for the ferrite dipole. It is seen that because Rumsey assumed 

a priori the requirement for low loss (𝜇" ≪ 𝜇′) his resulting efficiency equation obtains a 

term in the denominator of the form  𝜇"/|𝜇′|2 which then leads to the conclusion that the 

only way to maximize efficiency by reducing this term is to minimize 𝜇", that is, reduce 

the loss tangent. By contrast, the correct efficiency equation derived under no a priori 

assumption has in the denominator the term   𝜇"/{|𝜇′|2 + |𝜇"|2}. Immediately we see that 

another way to minimize this term is to have a very large 𝜇", that is, very large loss 

tangents would obviously also lead to high efficiency. This is not surprising since, taking 

the argument to the limit, a Perfect Magnetic Conductor (PMC) is as lossless as a Perfect 

Electric Conductor (PEC.)  

Section 2.2 is concluded by showing a plot of efficiency contours versus the real 

and imaginary parts of the permeability for a given antenna at a given frequency to show 

that large useful regions of the complex permeability plane have remained unexplored to 

date in the search for antenna materials simply because of the long-standing 

misconception caused by an unwarranted assumption back in the 1950’s.  

In Section 2.3 the efficiency equation from Section 2.2 is further simplified by 

acknowledging that all permeable materials are lossy because they are dispersive, and 

that dispersion must satisfy the Kramers-Krönig [10, 11] relations. Therefore, considering 
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the two prototypical physically realizable materials, the Debye relaxation and the Lorentz 

resonance, the frequency dependence of the term 𝜇"/{|𝜇′|2 + |𝜇"|2} is explicitly 

evaluated. The result is a startling simplification that shows this frequency dependent 

function reduces to a constant of the material times the frequency. And this constant of 

the material contains Snoek’s [12] Product, well-known among permeable material 

experts as a fundamental constant that characterizes families of materials.  

A consequence of this result is the “material selection rule” that, given the 

geometric constraints on the antenna (occupied volume) and the desired radiation 

efficiency, reveals the family of materials (Snoek’s product) that will meet the 

requirements. Conversely, given a material, the dimensions of the antenna required to 

attain a given radiation efficiency are determined. These results, derived in the 

electrically small limit are actually valid up to moderate dimensions (over a wavelength) 

as shown by fullwave simulations. A further consequence of these results is that since the 

efficiency is fixed by the material family, the engineer is free to choose which specific 

member of the family to use for the application; and the obvious choice that attains 

maximum bandwidth is the member that exhibits the highest 𝜇" in the band of use. 

Fullwave simulations also verify these results. 

The phenomena that arise when the antenna is no longer electrically small, and 

especially when the interior of the antenna can support surface waves, are discussed in 

the reference dissertation [2] but are not addressed in this paper and left for a future 

communication. For many applications, such effects are not relevant because the 

presence of material loss tends to push the electromagnetic fields to the exterior of the 



17 

 

material as frequency increases and thus the trapping of waves is avoided by judicious 

choice of the material. 

In Section 2.4 the application of these antennas to the problem of electrically 

small conformal communication antennas is specifically addressed. Because the radiating 

currents of these antennas are the magnetic polarization currents in the material, these 

antennas are true duals of conventional electric current antennas. They can be placed in 

intimate contact with a metal ground plane or immersed in a low impedance medium 

without degradation of performance. Experimental results from recent publications 

validating the theory derived here are discussed.  

In Section 2.5 we compare the Efficiency Bandwidth Product (EBWP) of 

conformal permeable antennas to that of metal antennas constrained to the same 

conformal volume. It is shown that the EBWP of the magnetic antennas can far exceed 

that of the metal antennas when the loss in the materials (permeable materials and 

copper) are considered. The reason for this result is the extreme degradation of the 

Radiation Resistance of electric current antennas tangent and proximate to a metal 

ground-plane due to the induced opposing images.  For the same reason, the Match 

Bandwidth of the magnetic antennas is much larger, not because they are lossy but 

because their Radiation Resistance is unaffected by the ground-plane. 

 

2.2 Closed Form Model of an Electrically Small Permeable Dipole 

According to Schelkunoff [8] , in the electrically small limit, the input reactance 

of a dipole antenna can be derived from quasi-electrostatic and quasi-magnetostatic 
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considerations. Combining those with the Radiation Resistance of an elementary dipole 

(triangular current distribution) we obtain the classic model of a small (metallic) 

cylindrical dipole antenna as a series LCR circuit. The circuit parameters are given in 

equations (2-1). 

 

𝐶𝑎𝑛 =
𝜋휀0

𝑙
2

ln (
𝑙/2
𝜌 )
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(2-1c) 

Equations (2-1) denote the external radiation impedance of the antenna; external 

in the sense that all the fields of concern are outside the metal constituting the dipole. 

If now the current flowing in this circuit is not flowing over the surface of a PEC 

cylinder but flowing through a penetrable dielectric cylinder (as conduction current, 

displacement current, or both) then to the same degree of approximation we can derive 

the internal impedance by assuming the electric flux density (d) is constant through the 

cylindrical rod so that the associated B field is purely azimuthal and given by the familiar 

expression for the B-field inside a current carrying wire. Thus, there are an additional 

Capacitance and Inductance in series given by equations (2-2a) and (2-2b), such that the 

internal material impedance to be added in series to the external radiation impedance is 

given by equation (2-2c). And therefore, the input impedance of an electrically small 

dielectric dipole is given by equation (2-2d). 
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 𝐶𝑑𝑖𝑒𝑙 =
휀0(휀𝑟 − 1)𝜋𝜌2

𝑙
 (2-2a) 
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 𝑍𝑚𝑎𝑡_𝑑 = 𝑗𝜔𝐿𝑑𝑖𝑒𝑙 +
1

𝑗𝜔𝐶𝑑𝑖𝑒𝑙
 (2-2c) 

 𝑍𝑖𝑛_𝑑𝑖𝑒𝑙
𝑒 = 𝑍𝑚𝑎𝑡_𝑑 + 𝑗𝜔𝐿𝑎𝑛 +

1

𝑗𝜔𝐶𝑎𝑛
+ 𝑅𝑟𝑎𝑑 (2-2d) 

 

The resulting circuit model is shown in Fig. 2-1. The constitutive properties are 

understood to be complex and frequency dependent  (휀′(𝜔) − 𝑗휀"(𝜔); (𝜇′(𝜔) − 𝑗𝜇"(𝜔)) 

.  

Fig. 2-1 Dielectric Dipole Model Based on Schelkunoff’s Model of Electrically Small Metallic Antennas, 

Including the Dielectric Material’s Impedance. 

King and Wu used a similar argument to derive the properties of resistive 

antennas [9] . Having the input impedance in Ohms of a dielectric antenna it is straight-

forward to derive the dual magnetic input impedance in Mhos of the permeable antenna. 

This magnetic input impedance is what would be seen by a magnetic voltage source, Vm 

(in Amperes) driving a magnetic current, Im (in Volts) into the antenna and it is obtained 

by invoking the duality of Maxwell’s equations as suggested in equation (2-3). (When 
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applying duality, superscript m denotes a magnetic quantity while superscript e denotes 

the conventional electric quantity.) 
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2 |
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      (2-3) 

 

The permeable dipole is fed by driving electric current through a loop at its 

center. In that case the magnetic voltage Vm is the current in the loop Ie , and the 

magnetic current Im is the Voltage at the feed of the loop so that the magnetic input 

impedance is just the conventional Input Admittance seen at the feed of the loop which is 

the inverse of the impedance of its dual: the corresponding dielectric dipole. This is given 

by equation (2-4).  
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Immediately we obtain all the elements of the circuit model for the permeable 

antenna term by term as shown in equations (2-5). Since for the dielectric dipole all the 

elements were in series, for the permeable dipole, its dual, they appear in shunt. 
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The subscript “MD” denotes this is a magneto-dielectric dipole. The end result is 

that now we have a circuit model for the loop-fed permeable dipole as shown in Fig. 2-2, 

under the assumption that the magnetic (polarization) current is uniform within the 

cylindrical rod’s cross section. (No skin effect is being assumed, although as reference 

[2] shows it can be added to the model.)  

 

Fig. 2-2 Circuit Model for the Magneto-Dielectric Dipole Antenna 

As shown in reference [2] , the material admittance for the magneto-dielectric dipole 

takes the form shown in equations (2-6). 
 

 𝑌𝑚𝑎𝑡 = 𝐺𝑚𝑎𝑡 + 𝑗𝐵𝑚𝑎𝑡 (2-6a) 

 
𝐺𝑚𝑎𝑡 =

1

𝜔𝜇0𝜋𝜌2

𝑙

𝜇"

|𝜇𝑟 − 1|2
+
𝜔휀0휀"𝑙

8𝜋
 

(2-6b) 

 

𝐵𝑚𝑎𝑡 = −
1

𝜔
𝜇0𝜋𝜌2

𝑙
|𝜇𝑟 − 1|2

𝜇′ − 1

+
𝜔휀0(휀′ − 1)𝑙

8𝜋
 

(2-6c) 

At this point it is trivial to calculate the Radiation efficiency because the radiation 

conductance, Grad, is in parallel with the loss conductance, Gmat, terms involving 휀" and 

𝜇". It follows that the efficiency is given by equation (2-7).. Here we show the final 

expression in which for the sake of simplicity we ignore the dielectric loss. 
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𝑒𝑀𝐷 =

1

1 +
𝜇"(𝜔)

(𝜇′(𝜔) − 1)2 + (𝜇"(𝜔))
2

6

(
𝜌
𝑙
)
2
(𝑘𝑙)3

 
(2-7) 

Comparing the result of equation (7) with Rumsey’s and DeVore’s results [3, 4] 

in equation (2-8), we see a significant difference. Because both Rumsey and DeVore 

assumed from the outset that the material had to be low loss, they made the 

approximation 𝜇′ ≫ 𝜇" and the  𝜇" 2 term in the denominator never appeared. 

 

 
𝑒𝑅𝑢𝑚𝑠𝑒𝑦 =

1

1 +
𝜇"(𝜔)

(𝜇′(𝜔))
2

6

(
𝜌
𝑙
)
2
(𝑘𝑙)3

 
(2-8) 

The missing term completely changes the conclusions drawn for this efficiency 

equation. It is at once apparent that the limit 𝜇" → ∞ of the PMC is included in equation 

(2-7) and is as expected 100% efficient.  

Because of the duality of Maxwell’s equations, the result in equation (2-7) for a 

permeable dipole is identical to its dual for a dielectric dipole, obtained by simply 

swapping 𝜇 for 휀. However, dielectric dipoles are seldom ever considered (except 

perhaps as a corollary to the cited work of Wu and King [9]) because, for electric dipole 

antennas, metals are freely available. (After all, for a metal 휀" ≫ 휀′, and the radiation 

efficiency tends to 100%.  

Of course, for the metal case, a more accurate evaluation requires taking into 

account the skin depth effect. Since such an effect is second order for the permeable 

materials of interest we have omitted it even though it is contained in [2].)  
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Two important points that are not being addressed in the above development are 

the following: 

(i) It should be clear that in this discussion we are not addressing penetrable 

antennas that are internally electrically large, as in the case of a dielectric resonator 

antenna. The theory and practice for such antennas is well understood; and it is obvious 

that if a significant amount of energy is to reside within a resonator then the imaginary 

part of the constitutive parameter must be much smaller than the real part to avoid 

wasting energy.  

(ii) We have discussed a complete duality between dielectric and permeable 

antennas as the only means of creating true magnetic current radiators. The nonexistence 

of magnetically conducting media (because of the absence of freely moving magnetic 

monopoles) precludes enforcing strict duality to metal antennas at all frequencies. 

 To emphasize what the difference between equations (2-7) and (2-8) means 

regarding the choice of materials available to the engineer, we show in Fig.2-3 contours 

of the radiation efficiency for a 0.6m long dipole, 0.0254m radius
1
, at 250MHz. The 

conventional wisdom that permeable materials must have a low loss tangent to be used in 

antennas structures, has been forcing engineers to look for materials in a low loss region, 

named Region III shown in Fig.2-3. But as shown in Fig.2-3(a) and Fig.2-3(b) a greater 

than 90% efficiency is possible with materials of moderate (Region II) and high (Region 

I) loss (𝜇").  

 

 

1
 Whenever possible, standard metric units have been used for showing antenna dimensions. However on 

occasion metric and English unit are both used since dimensions given by costumers have been in English 

units and we have not changed the costumer design specifications. 
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By comparing Fig.2-3(b) to Fig.2-3(c)  it can be seen that  Rumsey’s and DeVore’s 

equations show a very small region of efficiencies higher than 80% while the results 

obtained from our equations show than these efficiencies can be obtained over a much 

greater region of the 𝜇′ and 𝜇"  space and at high loss tangents. 

The physical reason for these results is the fact that the presence of loss in the 

material, forces the electromagnetic fields to the outside of the material, thus reducing the 

amount of power dissipated inside, but still providing a surface that tends to bind the  

wave and guide it along the length of the dipole to radiate the signal. Whereas the results 

of Fig. 2-3 are given for one specific antenna geometry at one specific frequency, 

equation (2-7) can be cast in a truly universal form applicable to all physically realizable 

permeable materials.  This is the subject of Section III. 
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Fig. 2-3 Contours of Radiation Efficiency: Using Equation (7) Versus μ’ and μ” (a) and Versus μ’ and 

tan(δ) (b). The Three Regions Indicate Region of High Material Loss, Moderate Material Loss And Low 

Material Loss. For Comparison, Contours of Radiation Efficiency Using Equation (8) Versus μ’and tan(δ) 

Are Shown in (c). 
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2.3 The Material Selection Rule 

Because almost all realistic materials of interest for antenna applications obey the 

requirements of causality, linearity, passivity, and energy conservation, the frequency 

dependent permeability and permittivity must be analytic functions of a very precise 

nature that obey the Kramers-Krönig relations [10, 11]. Two classic examples of analytic 

functions that obey these relations, and are observed in the susceptibility spectra of 

ferromagnetic and ferrimagnetic materials, are a Debye function and a Lorentz function 

(equations (2-9), where   𝜇𝑟 = 1 + 𝜒).  

 

𝐷𝑒𝑏𝑦𝑒 
𝜒𝐷𝑒𝑏𝑦𝑒 =

𝜒𝐷𝐶

1 + 𝑗
𝜔
𝜔0

 
(2-9a) 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧 
𝜒𝐿𝑜𝑟 =

𝜒𝐷𝐶

1 + 𝑗
𝜔
𝜔0

𝛼 − (
𝜔
𝜔0
)
2 

(2-9b) 

 

In these, ‘𝜒𝐷𝐶’ is the DC susceptibility, ‘𝜔0’ is the relaxation frequency (or 

resonance frequency) and ‘𝛼’ in the Lorentz function is the damping factor 

An example of these two susceptibility functions is given in Fig.2-4 with 𝜒𝐷𝐶 =

75, 𝜔0 = 2𝜋(1.6𝐺𝐻𝑧) and 𝛼 = 0.8 for the Lorentz function. 
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Fig. 2-4 (a) A Single Debye Susceptibility Function (b) A Single Lorentz Susceptibility Function 

Because the susceptibility spectra of all permeable materials are in principle 

composed of a finite sum of these functions, we consider the two simplest cases, a 

material defined by a single Debye function and a material defined by a single Lorentz. 

The lessons learned can then be extended after that to the most general case. 

The first point to be made is that the loss in frequency dependent permeable 

materials, due to the imaginary part of the permeability, is indistinguishable from the loss 

that would occur if the materials possessed magnetic conductivity. That is, since 

Heaviside defined the magnetic conductivity measured in ohms/meter as  𝜎𝑚 = 𝜔𝜇0𝜇", 

in complete analogy to the relationship between electric conductivity and 휀", all the 
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results of metallic and dielectric antennas have their dual in permeable antennas as long 

as we never address the DC limit. (Since the experimental absence of magnetic 

monopoles precludes the existence of magnetic conductivity at 𝜔= 0.)  

We can then make use of the analytic conductivity function to understand the 

dispersion of the material as was done by Grant for dielectrics [13] . The real parts of the 

complex magnetic conductivity of the two materials of Fig. 2-4 are shown in Fig. 2-5. 

 

 

 

Fig. 2-5 Magnetic Conductivity of the (a) Debye and (b) Lorentz Examples 

The star marker represents the ‘maximum magnetic conductivity’ in both the 

Debye and Lorentz curve. For a Debye equation, this maximum value is twice the 

magnetic conductivity at the relaxation frequency i.e. 2𝜎𝑚(𝜔0) and for the Lorentz 
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function, this value is equal to the magnetic conductivity at resonance i.e. 𝜎𝑚(𝜔0).We 

have given the term “hesitivity” (ℎ𝑚) to this maximum conductivity and it is easy to 

show that it has a form given by equations (2-10) and (2-11) . 

 

 

 

ℎ𝑚(𝐷𝑒𝑏𝑦𝑒) = 2𝜎𝑚(𝜔0) = 𝜔0𝜇0(𝜇𝐷𝐶 − 1)  

 

(2-10) 

 

 

ℎ𝑚(𝐿𝑜𝑟𝑒𝑛𝑡𝑧) = 𝜎𝑚(𝜔0) =
𝜔0𝜇0(𝜇𝐷𝐶 − 1)

𝛼
   

 

(2-11) 

We point out immediately that the hesitivity is proportional to the Snoek’s 

Product (𝜔0𝜇0(𝜇𝐷𝐶 − 1)) [12] and therefore is also a fundamental quantity that 

characterizes families of magnetic materials. Materials that belong to the same family 

have the same hesitivity. For Debye materials, hesitivity and Snoek Product is identical. 

Table 1 shows typical Hesitivities of some magnetic material families. 

Table 2-1 Typical Hesitivities of Microwave Materials 

 

Now, in the efficiency equation (2-7) for a permeable dipole, the complex 

permeability appears in the very specific functional form of equation (2-12).  

Material 𝒉𝒎 (𝛀/𝒎) 

Air 0 

Bulk NiZn ferrite 30,000 

Co2Z Hexaferrite (aligned) 280,000 

CoFeSiB ferromagnetic metal alloy 2,175,000 

CoZrNb ferromagnetic metal alloy 5,000,000 
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𝑓(𝜇) =

𝜇"(𝜔)

|𝜇𝑟(𝜔) − 1|2
=

𝜇(𝜔)"

(𝜇′(𝜔) − 1)2 + (𝜇"(𝜔))2
   (2-12) 

Let,  𝜇′ − 1 = χ′ = 𝑥  and 𝜇" = 𝜒" = 𝑦. Therefore,   

 

 

𝑓(𝜇) =
𝑦

𝑥2 + 𝑦2
  𝑜𝑟 (2-13a) 

 

 

𝑥2 + (𝑦 −
1

2𝑓(𝜇)
)
2

= (
1

2𝑓(𝜇)
)
2

 

 

(2-13b) 

The latter is the equation of a circle with center at    (0, 1/[2𝑓(𝜇)]) and                    

radius ‘1/[2𝑓(𝜇)]’.  

For the Debye susceptibility function, the real and imaginary parts of the function 

can be separated as in equations (2-14). 

 

 

𝜒𝐷𝑒𝑏𝑦𝑒
′ = 𝑥 =

𝜒𝐷𝐶

1 + (
𝜔
𝜔0
)
2 

 (2-14a) 

 

 
𝜒𝐷𝑒𝑏𝑦𝑒
′′ = 𝑦 =

𝜒𝐷𝐶 (
𝜔
𝜔0
)

1 + (
𝜔
𝜔0
)
2 

 (2-14b) 

And it follows that, 

 

 

𝑦 = 𝑥 (
𝜔

𝜔0
) (2-15) 

Substituting (2-14), (2-15) and (2-12) into (2-13b), we get equation (2-16a) that is 

immediately solved to give equation (2-16b). 
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𝑥2 [1 + (

𝜔

𝜔0
)
2

] − 𝑥
1

𝑓(𝜇)
(
𝜔

𝜔0
) = 0 (2-16a) 

 

 

𝑥 =

1
𝑓(𝜇)

(
𝜔
𝜔0
)

1 + (
𝜔
𝜔0
)
2 (2-16b) 

Comparing (2-16b) and (2-9a) we get: 

 

 

𝜒𝐷𝐶 =
1

𝑓(𝜇)
(
𝜔

𝜔0
)    𝑜𝑟  𝜔0𝜒𝐷𝐶 =

𝜔

𝑓(𝜇)
   (2-17) 

 

Finally, since the hesitivity of a single Debye material is defined in (10a) as 

ℎ𝑚(𝐷𝑒𝑏𝑦𝑒) = 𝜔0𝜇0(𝜇𝐷𝐶 − 1), it follows that the function 𝑓(𝜇) has a very simple 

interpretation: 

 

 

𝑓(𝜇) =
𝜔𝜇0

ℎ𝑚(𝐷𝑒𝑏𝑦𝑒)
 

 

(2-18a) 

 

 

 

𝑓(𝜇) =
𝜔𝜇0

ℎ𝑚(𝐷𝑒𝑏𝑦𝑒)
=

𝜔𝜇0
ℎ𝑚(𝐿𝑜𝑟𝑒𝑛𝑡𝑧)

=
𝜔𝜇0
ℎ𝑚

 

 

(2-18b) 

Similarly, if we consider the single Lorentz material, the same derivation leads 

exactly to the same equation. 

Substituting this result into the radiation efficiency equation for the magneto-

dielectric dipole we obtain equation (2-19). 

 

 

𝑒𝑀𝐷_𝑑𝑖𝑝𝑜𝑙𝑒 =
1

1 +
𝜔𝜇0
ℎ𝑚

6

(
𝜌
𝑙
)
2
(𝑘0𝑙)3

  𝑜𝑟 
(2-19a) 
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𝑒𝑀𝐷_𝑑𝑖𝑝𝑜𝑙𝑒
1

1 +
𝜂0
2

(20𝛺) ℎ𝑚 𝑉𝑜𝑙𝑑 𝑘0
2 

 
(2-19b) 

Therefore, the efficiency of a cylindrical magneto-dielectric dipole carrying a 

uniform magnetic current through its cross section and, at worst, the triangular 

distribution along its length (as expected for small dipoles) is uniquely determined by a 

single material parameter, its hesitivity, and its volume. (Of course, to simplify this 

discussion we have assumed the permeable material is also a “good” dielectric with no 

excess dielectric loss or conductivity, a reasonable assumption since there are many such 

materials available to the engineer in the MHz to GHz range.) 

These results can be readily verified using the Ansys HFSS fullwave 

electromagnetic solver. Fig.2-6 shows the candidate antenna: a half cylinder dipole 

conformal to a metal ground plane, of length 1 m and radius 0.0127 m. The dipole is fed 

by 8 loop feeds in phase to maximize the uniformity of magnetic current along its length.  

 

Fig. 2-6 Simulated Antenna: A Half Cylinder Dipole Conformal to A Metal Ground Plane Fed By 8 Loop 

Feeds 
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In Fig. 2-7(a) four hypothetical Lorentz materials are considered as materials of 

construction for this dipole, with very different loss tangent in the 30MHz to 300MHz 

range: ranging from a material with magnetic loss tangent equal to 1 at 100MHz (brown 

solid (𝜇′) and dashed (𝜇") curves) to the material represented by the solid black (𝜇′) and 

dashed black (𝜇") curves, with a worst-case loss tangent of 0.06 at 300MHz.  

As shown in Fig. 2-7(b) all these materials have the same peak magnetic 

conductivity. Equal hesitivity implies by equation (2-19) that if they are used to construct 

the same linear dipole carrying the same current distribution they must all exhibit the 

same radiation efficiency. The calculated Radiation efficiency is then shown in Fig. 2-

7(c). The fullwave simulated result from all four materials are on top of each other 

(dashed curves) and almost identical to the closed form prediction from equation (2-19).  

The purpose of the multiple feeds in the linear dipole of  Fig. 2-6 is to maintain 

the magnetic flux channeled inside the dipole and thus ensure a magnetic current along its 

length that has at worst the triangular distribution expected of electrically small dipoles 

(see Fig. 2-10, as an example).  

As is well known from magnetostatics, the aspect ratio of a permeable object 

affects whether or not the magnetic flux injected by a current loop stays inside the object 

or leaks out to the surrounding space. Whereas a single loop-feed creates a nearly 

uniform flux inside a sphere of any permeability, to maintain a uniform flux within a high 

aspect ratio prolate spheroid, only fed by a single loop, requires that spheroid to have an 

extremely large permeability. The multiple feeds in the linear dipole of Fig. 2-6 thus play 

the same role as the windings of a solenoid do in magnetostatics, ensuring the flux is as 
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contained as possible regardless of the permeability of the cylindrical rod. This ensures 

that the magnetic current along its length that has at worst the triangular distribution 

expected of electrically small dipoles (see Fig. 2-10, as an example).  

We emphasize that the efficiency equation derived under the assumption of an 

electrically small antenna works extremely well throughout this frequency range, even at 

300MHz (with less than 0.5dB deviation) where the dipole is one wavelength long and 

clearly not electrically small. (The dipole of Fig. 2-6, 1m long, is indeed electrically small 

at 30 MHz and under.)  
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Fig. 2-7 Four Hypothetical Lorentz Materials with Very Different Loss Tangents (a) Have Magnetic 

Conductivities (b) That Reach the Same Peak. The Fullwave Simulated Results for The Radiation 

Efficiency from All Four Materials (c) Are on Top Of Each Other (Dashed Curves) And Almost Identical 

to The Closed Form Prediction from Equation (19) (Solid Curve). 
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As shown in [2] the same calculation done with Debye materials of equal 

hesitivity achieves similar success, with the maximum deviation at 300MHz being of the 

order of 1 dB. Therefore equation (2-19) constitutes a material selection rule: 

Given a volume constraint for the permeable antenna and a desired efficiency at a 

given frequency, the hesitivity (and therefore the material family) is determined. 

Conversely, given an available material family (hesitivity), the volume required to attain 

a given efficiency at a prescribed frequency is likewise determined. There is no need for 

blind optimization or random attempts at using a variety of materials; the closed-form of 

equation (2-19) tells us all we need to know to begin the antenna design. 

 

2.4 Experimental Verification 

Antennas designed according to this prescription have been reported in [14-15]. 

Fig. 2-8 extracts the salient results from the first. Fig. 2-8(a) is a plot of the measured 

permeability of the commercially available NiZn absorber tiles from Fair Rite, exhibiting 

a Debye-like behavior. (Similar material is sold by Ferroxcube Corporation).  

The inset shows the full spectrum but the plot focuses on the VHF to UHF 

frequency range. Clearly throughout this range the loss tangent of the material is much 

greater than 1. Fig. 2-8(b) shows a photograph of the test article: a 40 inch long dipole, 4 

inches wide and 1.5 inches thick, mounted on an Aluminum carrier plane and then the 

antenna was mounted on a larger ground plane (or as shown in Fig. 2-9 on the roof of a 

HUMVEE.) In this case four feed loops were used to maximize the uniformity of the 

magnetic current. All four loops were combined directly and fed by a 50 ohm system. 
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Fig. 2-8(c) shows the excellent agreement between the measured realized Gain 

(Gain including the mismatch loss because no matching network was used for the dipole) 

and the HFSS simulated result. Finally, Fig. 2-8(d) shows the HFSS computed radiation 

efficiency compared to the prediction from the closed-form equation and for comparison 

what would have been expected from the old equation derived by Rumsey and DeVore.  

The almost 20dB difference between the old expected efficiency and the true 

efficiency explains why these antennas have not been actively explored until now. The 

fact that no attempt to match the antenna was made can be used to highlight the excellent 

natural Gain Bandwidth product that these antennas exhibit in conformal applications. 
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Fig. 2-8 (a) NiZn Absorber Tiles from Fair Rite Show a Debye-Like Permeability, (b) Test Article Shown 

Is a Dipole Mounted on An Aluminum Carrier Plane. (c) Measured Realized Gain and HFSS Simulated 

Results Are Very Close. (d) The HFSS Computed Radiation Efficiency Closely Agrees with Equation (7), 

But Is Dramatically Different from The Conventional Equation (8). 

 

As Fig. 2-9 shows, when the antenna was placed on the roof of a HUMVEE and 

compared on the same open range to a standard 9 foot whip antenna, the Gain is 

approximately equal or better than that of the whip in the 30MHz to 88MHz range. Both 

antennas exhibit the same ground bounce null around 110MHz and then the magnetic 
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dipole continues to operate above that, whereas the whip is not tuned to work above 

100MHz. 

 

 

 

Fig. 2-9 Installation on The Roof of A HUMVEE Highlights the Difference in Size Between the Antenna 

and A Conventional Whip (a). Gain of The Permeable Dipole (Red) Is Comparable or Better Than That of 

The Whip (b). 

The results attainable using high performance Lorentz-like materials, as with the 

ferromagnetic laminate material used in reference [14], will be discussed in a follow-on 
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paper. The final issue to be addressed for these antennas is the input impedance and the 

question of whether they are harder or easier to match than conventional antennas.  

It should be obvious that these antennas are indicated for those problems requiring 

a conformal antenna solution, for instance on airborne platforms where blade antennas 

add undesirable weight and drag to the aircraft. In such cases a metal (and dielectric) 

conformal antenna suffers from anti-linear images that dramatically reduce its radiation 

resistance. 

Not only do the images reduce the practical gain of metal antennas, they also 

reduce their efficiency to such a degree that the moderate loss experienced by permeable 

antennas is negligible by comparison. We address this point in Section V, again starting 

from the electrically small limit because that is where the greatest problem exists, namely 

at VHF and below where conventional antennas can become inordinately large. 

 

2.5 Proof That a Conformal Magnetic Antenna Always Beats a Conformal Metal 

Antenna 

Using fullwave (HFSS) simulations of a combined-multi-loop fed linear dipole 

39” long, 3.15” wide, 1” thick, a closed-form circuit model of the input impedance was 

derived. Fig. 2-10 illustrates the nearly triangular magnetic current distribution attained 

by the feeding structure from 10MHz through 120MHz even though the maximum 

permeability of the core material is only a moderate 40 (the CZN laminate used in [14]).  

Because the impedance model derived in Section II above (based on [2]) does not 

include the effects of the realistic distributed feed structure, with its inevitable parasitics, 
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we use the HFSS result to obtain a slightly modified circuit model that comes closer to 

matching the simulated results.  

The plots in Fig. 2-11(a) and Fig. 2-11(b) show that the modified circuit model 

exactly matches the reactance but deviates slightly in the resistance term. The latter is 

shown on a logarithmic scale since it changes by two orders of magnitude over the 

frequency range of concern: 10 MHz to 100 MHz. 

Now, we can compare this impedance model to that of a conventional metal 

antenna in exactly the same conformal volume: a metal strip dipole 39” long, 3.15” wide, 

1” above the same ground plane. 

 

Fig. 2-10 The Magnetic Current Distribution Attained by a Distributed Feeding Network on a 𝜇 = 40 

Dipole From 10MHz Through 120MHz is Nearly Triangular. 

The reactance of the metal antenna can be approximated by that of a center series-

fed air substrate microstrip (68Ω impedance) open circuited at both ends (Fig. 2-12), 

whereas the radiation resistance is the free space value for the strip dipole degraded by 

the image factor 𝑠𝑖𝑛2𝑘ℎ, with ℎ = 1" 
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Fig. 2-11 The Impedance of The Modeled Antenna, (a) Imaginary Part and (b) Real Part, Can be 

Approximated with a Closed-Form Circuit Model (Magenta Curve with Symbols) That Improves on 

Sebastian’s [12] Original (Green) to Agree with the HFSS Simulations (Red).  

 

Fig. 2-12 A metal dipole constrained to operate in the same conformal volume as the simulated magnetic 

antenna has an input impedance that can be derived from its microstrip-like geometry. 

As Fig. 2-13(a) shows, the metal dipole’s radiation resistance (blue) is over two 

orders of magnitude lower than the permeable dipole’s (red) due to the ground plane 

image effect. The reactance in Fig. 2-13(b) (blue) is capacitive and though it looks worse 
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in a linear plot as in the figure, if we were to plot it as an absolute value in a logarithmic 

scale relative to a 100Ω system impedance it is really not worse than that of the 

permeable dipole. 

 

 

Fig. 2-13 Comparison of the Real (a) and Imaginary (b) parts of the input impedance of the two antennas. 

The extremely low radiation resistance of the metal conformal dipole implies that 

its Gain-Bandwidth Product (GBWP) is extremely small. And this is the fundamental 

problem with conformal metal antennas. Using the definition that BW~1/Q, we can 

estimate the bandwidth of the conformal metal dipole to be given by equation (2-20): 

 

 
𝑓𝐵𝑊𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑖𝑝 𝑑𝑖𝑝𝑜𝑙𝑒 ≈

𝑅

𝑋
=
200 (

𝑙
𝜆
)
2

𝑠𝑖𝑛2(𝑘𝑡)

136 𝑐𝑜𝑡(𝑘𝑙/2)
 

(2-20) 
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It is true that the electrical distance to ground seen by the metal antenna could be 

increased to  𝜆/4 by using a high permittivity substrate or if desired an artificial magnetic 

conductor (AMC). However, even if doing so increases its radiation resistance to its free 

space value, this only happens over a very narrow band of frequencies. This follows 

because a physically thin grounded substrate (𝑡 ≪ 𝜆0) can only increase the gain of a 

proximate antenna when its reflection coefficient ranges from Γ = −𝑗 to Γ = +𝑗. Thus 

the fractional bandwidth over which an AMC operates is known to be given by equation 

(2-21) below, and can only be increased by the presence of true permeability [15]. 

 

 

𝑓𝐵𝑊𝐴𝑀𝐶 =
∆𝜔

𝜔0
= 2𝜋𝜇𝑟

𝑡

𝜆0
 (2-21) 

But the AMC bandwidth calculated from equation (2-21) is not the final 

bandwidth of the conformal antenna because no attempt at including the effect of the 

stored near-field energy around the antenna has been made.  

A detailed examination of this point is beyond the scope of this chapter. The 

literature on conformal antennas over AMCs shows very different bandwidths being 

reported by different investigators, and in many cases the efficiency of the antennas is not 

reported, making it hard to assess the final GBWP attained.  

Nevertheless, when the AMC is much larger than the antenna so that the 

bandwidth measured is indeed that of the antenna, as modified by the AMC, the 

bandwidth is actually consistent with our equation (2-20), this is the case of [16]. 

However, when the antenna (typically a patch) is positioned over a finite-sized AMC 

such that it is the combination of antenna plus finite AMC, held in free space, that radiate 
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(that is in the absence of any other nearby ground planes) then the bandwidth is much 

larger. This is the case of reference [17]. Then there are the cases where the bandwidths 

calculated from both equations (2-20) and (2-21) are close to each other. In that case the 

effects are confounded as in [18]. 

Since in the present discussion we are concerned with conformal antennas 

operating at low communication frequencies, involving long wavelengths (e.g. 10 m)  

and since we know that for an AMC to work as a ground plane it must be significantly 

larger than the antenna and larger than 4𝜆2 [18], the case of the AMC is not germane.  

Having closed-form impedance models for both antennas we can use the Best-

Yaghjian [19] Match Bandwidth equation (equation (2-22)) to determine the fractional 

bandwidth (FBW) that would result from matching each antenna at every frequency of its 

band. Though this formulation does not tell us how to affect that match, its consistency 

with the Bode-Fano criterion allows us to use it as a formal comparison of the ability to 

match antennas to a given VSWR criterion. 

 𝑄𝐴𝑛𝑡(𝜔0) =
𝜔0

2𝑅𝑖𝑛(𝜔0)
|𝑍𝑖𝑛

′ (𝜔0)| (2-22a) 

 𝑓𝐵𝑊(𝜔0) =
2√𝛽

𝑄(𝜔0)
 (2-22b) 

 𝑤ℎ𝑒𝑟𝑒  𝛽 =
|𝛤|2

1 − |𝛤|2
 

(2-22c) 

 

Consider a 2.5:1 VSWR bandwidth requirement. This corresponds to |𝛤| =

0.429, so that 𝛽 = 0.226. The resulting match bandwidths from 10MHz to 300MHz are 
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shown in Fig. 2-14(a) for the permeable antenna (red) and for two versions of the metal 

antenna: one open at both ends (blue), one shorted at both ends (black).  

 

 

Fig. 2-14 Match Bandwidth From 10MHz to 300MHz For the Permeable Antenna (Red) Exceeds That of 

Two Versions of the Metal Antenna (a).  Similarly, the Efficiency Bandwidth Product of the Permeable 

Antenna Exceeds That of the Metal Antenna (b). 
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Because the permeable core of the permeable antenna is lossy, a more fair 

comparison of the two antennas is the Efficiency Bandwidth product (EBWP). Therefore, 

the BW calculated must be multiplied by the radiation efficiency. But on this account the 

metal antenna also suffers because its radiation resistance is so small that the surface 

resistance of its metal actually competes with it. 

Assuming Copper, the surface resistance of a 1 meter long, 3.15 inch wide 

antenna can be calculated. The result is then the EBWP plots of Fig. 2-14b.  

The permeable dipole has an EBWP that is at worst 12 dB greater than the metal 

conformal antenna and this advantage rises to more than 50dB in the low HF range. 

These results prove that, in the indicated conformal antenna application, the 

permeable antenna is indeed easier to match than an equivalent metal-and-dielectric 

conformal antenna, and that in terms of realizable Gain Bandwidth Product the permeable 

antenna (using commercially available material) has a 10dB to 50dB advantage over any 

equivalent metal antenna over the same frequency range of interest.  

 

2.6 Summary and Conclusions 

A radiation efficiency equation for permeable dipole antennas has been derived in 

closed form in terms of the geometric parameters of the antenna and its dispersive 

permeability. By comparing the efficiency of a ferrite dipole obtained from the derived 

efficiency equation with Rumsey and DeVore’s results we see a significant difference. 

Contrary to the traditional misconception, the radiation efficiency of conformal antennas 
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constructed from dispersive (lossy) ferromagnetic and ferrimagnetic materials is not 

necessarily reduced by the loss tangent of the permeable material.  

We find that both low loss permeable materials and permeable materials with very 

large 𝜇", that is, with very large loss tangents, can achieve high efficiencies. Therefore 

the magnetic loss tangent is not the relevant parameter that determines the efficiency of 

these antennas.  

By using examples of dispersive permeability (as either a Debye-like or Lorentz-

like response) it has been demonstrated that the most important material parameter 

controlling the radiation efficiency is not the instantaneous loss tangent but the peak 

value of the Heaviside magnetic conductivity which is proportional to the well-known 

Snoek’s product.  

A material selection rule has been proposed which states that given the geometric 

constraints on the antenna and the desired radiation efficiency there is a family of 

materials given by Snoek’s product that will meet the requirements. Also, given a 

material, the dimensions of the antenna required to attain a given radiation efficiency are 

determined.  

Furthermore, since the efficiency is fixed by the material family, the engineer is 

free to choose which specific member of the family to use for the application; and the 

obvious choice that attains maximum bandwidth is the member that exhibits the highest 

𝜇" in the band of use.  

It has been shown in theory and with experimental results that these permeable 

antennas can be placed in close contact with a metal ground plane without degradation of 
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performance which solves the problem of electrically small conformal communication. 

Furthermore, it has also been shown that the EBWP of the magnetic antennas and their 

match bandwidth can far exceed that of the metal antennas when the loss in the 

permeable materials and metals are considered.   

Using the example of a 1 meter long antenna operating from HF to VHF and 

proving that the magnetodielectric antenna attains an Efficiency Bandwidth Product 

(EBWP) at least 10dB higher than the corresponding metal antenna over the band and 

furthermore showing that these antennas are easier to match and can attain wider 

bandwidths than equivalent conformal metal antennas by using the Best-Yaghjian 

formalism will obviously lead to an interest in designing different antennas with more 

fascinating properties. 

 An example of this antenna will be proposed in the next chapter which is an 

extremely thin, very wideband conformal antenna that can support both the UHF Line of 

Sight (LOS) and the UHF SATCOM functions for a wide range of airborne and terrestrial 

applications 
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CHAPTER 3 

 A WIDEBAND MULTIMODE PERMEABLE CONFORMAL ANTENNA THINNER 

THAN 𝜆/75 USING ADVANCED FERROMAGNETIC LAMINATE COMPOSITE 

MATERIALS 

 

“When you change the way you look at things, the 

things you look at change.” 

Max Planck 

 

3.1 Introduction 

In the previous chapter the principles of magneto-dielectric radiators have been 

explained in detail. By using the principles of chapter 2 and using new advanced 

ferromagnetic laminate composite material we have designed an extremely thin 

conformal toroidal magneto dielectric antenna, having an instantaneous bandwidth that 

spans the range from 200 MHz through 400 MHz and is able to support both the UHF 

Line of Sight (LOS) and the UHF SATCOM functions for a wide range of airborne and 

terrestrial applications. For the LOS function the antenna produces an azimuthally 

omnidirectional, vertically polarized, antenna pattern (null towards zenith) whereas the 

SATCOM function requires a circular polarization (CP) beam with boresight at zenith.  

 

 

 

This chapter is based on our paper: T. Yousefi, R. Diaz, C. Daniel and D. Aukland, "A Wideband 

Multimode Permeable Conformal Antenna thinner than 𝜆/75 using advanced ferromagnetic laminate 

composite materials," IEEE AWPL Special Cluster on Conformal Antennas and Arrays from New 

Advanced Materials, vol. 15, pp. 1931-1934, 2016.  

 

 



51 

 

The high impedance and anisotropic properties of the new advanced materials 

supports the desired radiation via magnetic currents and since the measured dispersive 

permeability of the material and the desired Gain is given and the radiation efficiency 

equation based on the linear dipole equation from chapter 2 is known, the approximate 

toroid diameter and cross section of the toroid was calculated and using fullwave 

simulation (ANSYS HFSS) [20], the dimensions of the antenna were fine tuned to 

maximize the Peak Gain while minimizing is ripple over the band.  

To absolutely minimize the thickness of a conventional metal antenna in a 

conformal form factor, high impedance permeable substrates are usually, high impedance 

permeable substrates are usually considered mandatory. However, it only takes a 

moment’s consideration of the volume equivalence principle to realize that extremely 

shallow metal radiating structures backed by a permeable substrate over a ground plane 

radiate mostly through the magnetic currents 𝑑𝐵/𝑑𝑡 of the substrate. It follows then that 

the most economical way of using the permeable material is to shape it into the radiating 

element. This goal has been reached by using a new advanced high permeability 

anisotropic ferromagnetic laminate as the permeable material of construction.  

Cobalt-Zirconium-Niobium (CoZrNb) ferromagnetic alloy deposited onto 12 𝜇𝑚 

thick polyimide film by St. Gobain, S.A. is cut into the final desired thickness and wound 

onto a dielectric tape reel. The result is a conformal toroidal magnetic flux channel 

antenna meeting the above requirements, designed based on the theory of magneto-

dielectric radiators [2, 14] and fed by four quadrant feeds.  
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The theory of these magneto-dielectric or magnetic-flux channel antennas, and 

initial demonstration of their unexpectedly high efficiency and peak gain, have been 

described in recent publications [14, 21].  Control of the feeds’ amplitudes and phases 

with a mode-former enables the excitation of a monopole mode (all feed currents in the 

same direction, mode 0) as well as in x and y horizontal dipole modes for CP operation. 

Fig. 3-1(a) shows the idealized geometry from which the closed-form design equations 

are obtained. Fig. 3-1(b) shows the ANSYS HFSS model [20] of one quadrant, 

highlighting the laminated nature of the permeable core and the distributed quadrant feed. 

Fig. 3-1(c) is a schematic illustration of the feed network and Fig. 3-1(d) is a photograph 

of the assembled test prototype.  

 

Fig. 3-1 (a) Theoretical Model of the Permeable Toroid, (b) Detail of a Quadrant in the Simulation, (c) 

Schematic of the Feed Circuit , (d) a Photograph of the Antenna. 

In Section 3.2 we briefly discuss the physical limits that prevent conformal metal 

antennas from ever reaching the kinds of instantaneous bandwidths that these permeable 
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antennas can attain. The key result is that the material loss penalty associated with 

realistic permeable materials is practically insignificant when compared with the loss of 

Gain Bandwidth Product (GBWP) suffered by realistic conformal metal antennas.  

Following the same procedure as Sebastian [2], a closed-form model of the input 

impedance of this antenna can be derived from first principles. This model enables us to 

design the baseline geometry of the antenna and select the materials of construction based 

on the requirements.  

This approach is illustrated by focusing on the CP dipole mode for SATCOM in 

Section 3.3. Then, to account for the realistic details of the antenna construction and for 

the higher order phenomena not included in the closed-form model, a fullwave 

computational electromagnetics (CEM) model is created using ANSYS HFSS. The 

results are discussed in Section 3.4. In Section 3.5, we then compare the performance 

predicted by the antenna model with the performance measured in an anechoic chamber. 

It is shown that by including the measured imperfections of the mode forming feed 

network, the model and experiment agree quite closely. 

 

3.2 The Gain-Bandwidth Problem 

Because the presence of a ground-plane in intimate proximity to a permeable 

antenna does not affect its GBWP, the input impedance of a conformal magnetic flux 

channel antenna is functionally similar to the impedance of a conventional metal antenna 

in free space. The constraining parameter, when these antennas are electrically small, is 

the intrinsic radiation bandwidth of the antenna which has the well-known Fano-Chu 

limit of (𝑘𝑎)3, where 𝑎 is the radius of the circumscribing sphere and 𝑘 is the 
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propagation constant in free space. For planar antenna geometries, this result is lower by 

about at least 6dB.  

However, a conformal metal antenna parallel to a ground plane (e.g. a patch [22]) 

at a height, 𝑡, has its radiation resistance reduced by the factor 𝑠𝑖𝑛2(𝑘𝑡). It follows that 

the GBWP of a metal conformal antenna is reduced at least by this same factor and is 

worse if the close proximity of the metal antenna to its image increases the stored near 

field reactive energy per cycle. Now consider a conformal antenna required to operate at 

300MHz constrained to a maximum diameter of 0.5 m and no taller than 2.5 cm. Since 

the perimeter of the antenna is already more than a wavelength long, the intrinsic 

fractional bandwidth of the antenna is at least 100%. However, if it is a metal conformal 

antenna the factor 𝑠𝑖𝑛2(𝑘𝑡) = 0.025 would bring the actual fractional bandwidth to the 

order of 2.5%, 26 times smaller (-14dB) than the 66% required to cover the band from 

200MHz to 400MHz instantaneously.  

This disadvantage in bandwidth can only be remedied by adding -14dB loss.  By 

contrast, as will be shown below, the theoretical radiation efficiency of a practical 

permeable conformal antenna (that by definition already has at least 100% bandwidth) is 

only -2dB. As would be expected, this disadvantage of metal conformal antennas when 

compared to permeable ones gets catastrophic as the frequency is dropped to the VHF 

and below. 

3.3 The Closed-Form Design of the Antenna 

For the sake of conciseness, we limit the discussion of the closed form model to 

Mode 1; knowing that the steps for Mode 0 are identical. Following [2] we begin with the 
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metal antenna model of the desired permeable antenna. In this case it is a loop antenna 

fed at the centers of four quadrants to create, for instance, a y-directed dipole as 

suggested in Fig. 3-2(a). Following Schelkunoff’s method [8] the series inductance and 

shunt capacitance representing the external near fields are derived in closed form by 

integrating the distributed inductance and capacitance of the principal wave under the 

assumed terminating conditions. The result is the external inductance of the quadrant 

(𝐿𝑄_𝑀1) in series with the external capacitance (𝐶𝑄_𝑀1). When the antenna is not a metal 

but a dielectric, the flux it carries is no longer only the conduction current but includes 

the displacement current through the dielectric. Associated with this internal flux are 

additional electric and magnetic fields inside the dielectric. By integrating over their 

stored energy, we obtain the internal impedance of the antenna and this results in the 

series terms 𝐿𝑖𝑛𝑡 and 𝐶𝑖𝑛𝑡. From the far field power radiated by the current distribution, 

the total radiation resistance follows, and therefrom the quadrants contribution, 

𝑅𝑟𝑎𝑑_𝑄_𝑀1.  

Finally, following Schelkunoff [23] we cast the total circuit into Darlington form 

by finding the coupling inductor, 𝐿𝑃, that turns the modal radiation resistor, 𝑅, into the 

calculated radiation resistance, 𝑅𝑟𝑎𝑑_𝑄_𝑀1, of the antenna. The result is a closed form 

circuit model of the dielectric, quadrant-fed Mode 1 antenna, 𝑍𝑖𝑛𝑝_  (Fig. 3-2(b)). To 

obtain the circuit model of the permeable antenna fed by an ideal frill-loop-current, 

simply swap 𝜇 ↔ 휀 throughout, and obtain the input admittance by 𝑌𝑖𝑛𝑝_𝜇 = 𝑍𝑖𝑛𝑝_ /𝜂0
2, 

where 𝜂0 is the impedance of free space. Given the effective relative permeability of the 

magnetic laminate, 𝜇𝑖𝑛𝑡. (Fig. 3-2(c)) and its effective permittivity,   휀𝑖𝑛𝑡 ≈ 3 , Fig.3-2(d) 
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shows the final closed form circuit model of the permeable antenna. Each of the circuit 

elements can be recognized as the dual inverse of the elements in Fig.3-2(b) and the full 

details of the derivation of this circuit are left for Chapter 4.    

 

Fig. 3-2 Derivation of the Closed-Form Model For the Dipole Mode (Mode 1) of the Permeable Antenna. 

 

The radiation efficiency of the antenna follows immediately by dividing the real 

part of the admittance of the rightmost series RC circuit in Fig. 3-2(d) by the real part of 

the total input admittance. After some algebra, as in [2] , the result simplifies to equation 

(3-1), where the volume of the antenna, Vol, and the peak magnetic conductivity in the 

spectrum of the antenna   (Fig. 3-2(c)), termed the hesitivity, ℎ𝑚, are the dominant factors 

that determine the antenna efficiency.  

 
𝑒𝑓𝑓𝑀1 =

1

1 +
𝜂 ∙ 12𝜋
𝑉𝑜𝑙 ∙ ℎ𝑚

{(0.785𝑎)2 + (
1
𝑘0
)
2

}

 
(3-1) 
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3.4 Full-Wave Model of the Antenna 

The manufactured article shown in Fig. 3-1(b) was simulated using ANSYS 

HFSS. For this demonstrator, a trivial way to match the antenna to a “better than 2:1 

VSWR” requirement, is to feed the antenna with a mode former that creates the desired 

rotating CP beam with peak at zenith. As is well known, a mode former consisting of 180 

and 90 degree hybrids will dump the mismatched power into its “hidden” loads. 

Therefore, all we have to do is transform the impedance at the quadrant ports of the 

antenna from the 50 ohm standard of the mode former ports to the natural locus of the 

mode 1 impedance. This locus is approximately 200 ohms.  

Therefore, 4:1 MACOM MABAES0031 E-Series RF 4:1 Flux Coupled 

Transformers were connected between the coax ports and the quadrant loop feeds. The 

in-house built mode-former operated from 220MHz to 420MHz with a worst case 20 

degree deviation from the ideal 90 degree rotation from quadrant to quadrant and a worst 

case 1dB imbalance in amplitude. As expected the 𝑆11 at the input of the mode former is 

much better than -10dB throughout the band. However, the dumped mismatch loss will 

appear now in the efficiency measured in the antenna chamber.  

The most important insight gained from the fullwave model is the identification of 

the non-idealities to be expected in the measurement. These include artefacts resulting 

from the method of construction of the antenna, such as the presence of excess dielectrics 

used as a hub and capture ring that keep the wound-up laminated ferromagnetic material 

core in place. The next most important non-idealities are the higher order wave 
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phenomena supported by the ferromagnetic core (the flux channel) when its cross section 

is comparable to the wavelength. 

For instance, the corrugated ground-plane formed by the 1.7cm thick and 7.6 cm 

wide laminated core material can carry a slow guided TM wave in the transverse 

direction that can be excited by the feed loop. The phase delay introduced by this slow 

wave plus the distance to ground turns the intended short circuit connection to ground 

into an open, partly interrupting the feed current. This perturbation extends from 261 

MHz through 349 MHz, at which point the surface impedance of the corrugated plane is 

no longer inductive. Since this is a feed point effect the loss in efficiency occurs for both 

Modes. 

The second higher order effect is the onset of 𝑇𝐸01 surface wave guidance by the 

magneto-dielectric core itself. Since the laminates in the anisotropic core are 

perpendicular to ground, this occurs when the internal electrical thickness of the core is a 

quarter wave, that is, when 𝑓𝑇𝐸01 = 𝑐0/(4 ∙ 0.017√40 ∙ 3), approximately 404MHz. 

Above that frequency, a significant part of the input power gets dumped into trapped 

waves instead of radiation. As shown in Fig. 3-3, it is precisely in this frequency range 

that the antenna performance deviates from the closed-form model. Even though mode 

filtering techniques could be implemented into the flux channel design to reduce these 

effects the important point of this effort was to demonstrate that these permeable 

antennas lead to extremely thin useful multimode, multifunction wideband antennas.  
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3.5 Experimental Results 

The antenna efficiency measured in the anechoic chamber referenced to the input 

port of the mode former includes: the radiation efficiency, the mismatch loss, the 

transformer insertion loss, and the mode former loss. 

 
 

Fig. 3-3 The Full-Wave Calculated Radiation Efficiency (a) and Mismatch Loss (b) of the Manufactured 

Demonstrator in Mode 1 Differ From the Ideal Closed-Form Expectation. 

The mismatch loss is 10𝑙𝑜𝑔(1 − |𝑆11|
2), and the closed form result follows from 

the circuit model’s 𝑌𝑖𝑛𝑝−𝜇 relative to the 200Ω system impedance (from the 4:1 

transformers.) The mode-former loss is the deviation of the 4-way amplitude split and 
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phase progression from the ideal for the given mode. This was measured for both the 

monopole (𝑀0) and the CP dipole (𝑀1) modes. This data is shown in Fig. 3-4.   

 

 

Fig. 3-4 Measured Mode-Former Loss and Full-Wave Computed Mismatch Loss Relative to a 200Ω 

System Impedance. 

Because off-the-shelf hybrids were used to construct the mode-former for the 

demonstrator, the hidden loads were not accessible to measure the mismatch loss. 

However, the full-wave simulation can be used to gauge it, and it is also shown in Fig. 3-

4. In principle, the mode-former loss is an “avoidable” imperfection. Very high quality 

and extremely broadband mode-formers can be made in this frequency range using 

lumped elements [24]. Fig. 3-5 compares the measured antenna efficiency shown in 

dashed curves (𝑀0 in blue, 𝑀1  in red) with the expected efficiency based on: the full-

wave data from Fig. 3-3, the mode former loss measured, and the manufacturer’s 

insertion loss specifications for the transformer. Given the other possible sources of 
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variation between experiment and model the agreement is quite good. Fig. 3-6 shows the 

maximum Gain measured in the anechoic chamber for both modes. 

 
Fig. 3-5 Measured (Dashed) and Calculated (Solid) Antenna Efficiency: Mode 0 in Blue, Mode 1 in Red. 

 

 
Fig. 3-6 Measured Gain Blue=𝑀0, Red=𝑀1. 

The CP dipole 𝑀1 (in red) readily attains +2dBi of Gain in the band of operation 

in spite of all the imperfections because the antenna directivity (measured and fullwave 

computed) reaches 9.5dB at 450MHz. The gain in 𝑀0 is about -3dB lower because its 

better mode-former loss is offset by worse mismatch loss and, as the antenna patterns 
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show, the greater “spillover” of its vertically polarized pattern does not allow a 

significant increase of Directivity as frequency goes up. 

Although both modes operate within the same 200 MHz to 500 MHz frequency 

range, they are used for completely different functions, and therefore have to meet 

different requirements. For instance, the gain required of 𝑀1 from 245 MHz to 380 MHz, 

lies in the +2 dBi to +4 dBi range. Fixing the imperfections, we have noted, would make 

this goal attainable. However, the typical gain required of 𝑀0 is of the order of 0 dBi. 

Implementing a dedicated matching network for this mode would also lead to meeting 

that specification. It is because of the multifunction purpose of this antenna that the 

difference in gain between the two modes is not a relevant performance parameter. 

Because what matters for these applications is the capability of the antenna to 

meet the GBWP requirements of the various functions within the overall frequency band, 

we have reported the efficiency in dB and not percent. Although the 10% to 25% (-10 dB 

to -6 dB) efficiency seen in Fig. 3-5 may seem low, we have already pointed out that any 

competing conformal metal antenna, constrained to fit within the same 1.7 cm thick 

profile would suffer a -14dB penalty to its GBWP. 

Finally, Fig. 3-7 shows the measured antenna patterns at 300MHz for both mode 

1 (left) and mode 0 (right). The good azimuthal symmetry maintained by the quadrant 

feed is seen in the similarity between the 0 degree and 45 degree azimuth beams. 
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Fig. 3-7 Measured Antenna Patterns at 0
o
 (Red) and 45

o
 (Blue) Azimuth Versus Elevation For (a) Mode 1 

and (b) Mode 0 at 300MHz. 

3.6 Conclusion 

A permeable toroidal magnetic flux channel antenna has been designed and 

manufactured that is less than 2 cm thick (λ/75 at 200MHz) and has a 43 cm outer 

diameter. The antenna has been fed by a simple mode-former and is designed to operate 

from 200 MHz to 400MHz and attains a measured gain ranging from -3dBi to +2dBi 

through at least 500MHz. The performance of the manufactured antenna has been 

verified in an antenna chapter which shows the design specifications have been met and 

including the imperfections it can operate from 200MHz to 500MHz with an input match 

of better than -10dB, CP dipole realized gain as high as +2dBi and monopole mode 

vertically polarized gain as high as -1 dBi.  If high performance tailor-made components 

(transformers and hybrids) were used, an additional +2dB increase in gain is plausible. 

The successful results of this antenna prove that conformal magneto dielectric 

antennas can indeed open a new window to designing high gain and very wideband 

antennas that can be very thin. This is crucial for wireless communication in the difficult 



64 

 

long wavelength frequencies ranging from HF through UH which are important 

frequencies for many applications ranging from defense applications to  city and state 

safety and security applications since these bands of frequency are also used by Fire and 

Police Departments.  

Since these antennas are very useful and no other conformal antenna with the 

same thickness can compete in terms of efficiency, it would be very helpful to have the 

ability to design these antennas from first principles. In many cases antenna design 

procedures depend on some trial and error and repetitive tuning using fullwave 

simulation which we don’t find acceptable, not even when such “design” is carried out by 

using a (super) computer with brute force optimization. We avoid the confusion of not 

knowing whether the solution obtained by optimization is indeed the best solution or just 

a local minimum found by the optimizer within the bounds of the rules it was given by 

developing a complete analytic theory of these antennas. 

In the next chapter, the complete analytic theory of these conformal magneto 

dielectric antennas is presented and a practical rational design rules which be provided 

that the engineer can use to create the magnetodielectric antenna solution for the given 

application.  
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CHAPTER 4 

 A FIRST ORDER MODEL OF THE MULTIPLE-FEED TOROIDAL MAGNETO-

DIELECTRIC ANTENNA 

 

“The equations at which we arrive must be such 

that a person of any nation, by substituting the numerical 

values of the quantities as measured by his own national 

units, would obtain a true result.” 

James Clerk Maxwell 

 

 

4.1 Introduction 

Several recent papers have addressed the unexpectedly high Efficiency-

Bandwidth Product (EBWP) of conformal antennas constructed from existing realistic 

(dispersive, lossy) magneto-dielectric materials (such as ferromagnetic metal films and 

ferrites) [14, 25, 26] . The reason for this apparently extraordinary behavior lies in an 

unwarranted assumption that was made by the early investigators of the ferrite rod dipole. 

Because they assumed the permeable material had to have low loss ( 𝜇′′ ≪ 𝜇′) their 

calculated efficiency equation was automatically restricted to that limit [2, 27] .Since then 

most antenna engineers have assumed permeable antennas would not work until very low 

loss magnetic materials were invented. This has been shown not to be the case.  

 

 

  

 

This chapter is based on our paper: Tara Yousefi, Rodolfo E. Diaz, “A First Order Model of the 

Multiply-Fed Toroidal Magneto-Dielectric Antenna”, IEEE Antennas and Propagation, accepted. 
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As we had seen in the previous chapter the toroidal magnetic antenna, constructed 

from a high permeability (and low permittivity) dispersive material and used as an 

electrically thin conformal antenna, exhibits a radiation efficiency up to two orders of 

magnitude higher than metal conformal antennas constrained to the same volume [28]. 

We had also mentioned in chapter 3, the need for a solid foundation for the new field of 

Magnetodielectric Antenna Theory and Design and the importance of understanding 

these antennas instead of blind trial and error and depending on full wave simulators and 

optimizers for an optimum design.  

In this chapter, a model of the input impedance of the toroidal permeable antenna, 

which is the dual of the conventional metal loop antenna, is derived, starting from 

Schelkunoff’s transmission line description of the loop antenna instead of the electrically-

small-limit model. This antenna, as seen in chapter 3, operates in both the monopole 

mode and circularly polarized dipole mode and is constructed from a torus of high 

permeability material. We had also seen in the previous chapter that this specific magneto 

dielectric antenna is one of the many instances of permeable antennas all having an 

advantage over metal (and dielectric) antennas in low impedance environments, such as: 

conformal to a metal surface, adjacent or inside the human body, immersed in water, or 

inside the earth. Thus, their applications range from HF communications, through body 

wearable and implantable RF networks [1], to, possibly, subsurface communication and 

imaging. 

The most important feature of the representation described in this chapter is that 

since the ultimate goal of having an antenna’s input impedance model is to enable the 
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derivation of its best matching network; the input impedance is expressed in its widest 

band most general form as a frequency independent resistor terminating a reactive 

network which is called the Darlington form. 

Our goal in this chapter is to put these results in a unified context by developing 

the Impedance model of these antennas in closed form, following Schelkunoff’s principal 

wave model of electrically small to moderate-sized (larger than 1𝜆) antennas [8, 23]. The 

resulting theory yields straight-forward expressions for the input impedance and for the 

radiation efficiency, giving the engineer rules of thumb for designing these antennas. 

 The conformal toroidal magneto-dielectric antenna is used as the exemplar in this 

development because of its versatility as a wideband, multi-function conformal antenna.  

As is well known in the practice of mono-pulse systems, whenever an antenna 

aperture can radiate multiple linearly independent beams, that antenna can serve a variety 

of functions beyond the capabilities of omnidirectional single mode antennas. 

Combination of the multiple beams can be used in direction finding systems or in MIMO 

communication schemes to exploit multipath.  

The multiple-feed toroidal antenna, subject of this paper, has been built and 

demonstrated, as detailed in references [14]and [28]. As stated in [28] our particular 

toroidal antenna was designed to meet the different functions required by different 

communication bands of interest in the UHF range: In the band from 225 MHz to 512 

MHz terrestrial line-of-sight communication (LOSCOM) requires a vertically polarized 

antenna with peak gain near the horizon. Conventional systems meet this requirement 

using vertical whip antennas which have to be approximately 1 to 2 feet tall to operate 
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efficiently at the low end of the band. By feeding all four ports of our toroidal antenna in 

phase, the antenna radiates in Mode 0, the vertically polarized monopole mode, with a 

null to zenith and a maximum towards the horizon, and it is only 0.7 inches tall. 

For communication to satellites in the 245 MHz to 380 MHz band (SATCOM 

MUOS), encompassing both Transmit and Receive bands, the need is for a CP radiator 

with main beam to zenith. In that case feeding the four ports of the antenna with a 

rotating phase of 90 degrees from port to port results in a CP main beam towards zenith, 

Mode 1.  

That is, as is the case with the well-known four-arm sinuous antenna, appropriate 

excitation of the four ports can produce an x-polarized linear dipole or a y-polarized 

linear dipole and these can be combined by the feed network into a rotating CP dipole. 

Because conventional four arm sinuous antennas by default feed opposite arms with 180 

degree phase shift their feed network is simpler, consisting of two selectable 90 degree 

hybrids (one for RHCP one for LHCP), but as a consequence they only have access to 

Mode 1. Because we also want the vertically polarized Mode 0, we use all four ports and 

implement a full four ports mode-former as is the standard practice with four-arm spiral 

antennas (see for instance [29].) 

Note that a conventional four-arm (metal) sinuous antenna could not replace the 

permeable toroidal antenna discussed here for the Mode 1 function because the thickness 

constraint of 0.7 inches would place its radiating elements a distance of ℎ = 𝜆/50 from 

ground, thus incurring a severe bandwidth reduction (of -19dB) because of the image 

factor 𝑠𝑖𝑛2(𝑘ℎ) [27].  
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 Fig. 4-1a below illustrates the simplest mode-former that gives access to the 

desired modes constructed using off-the-shelf power dividers and hybrids. As explained 

in reference [29] custom-made integrated mode-formers using stripline components on a 

single circuit board can attain bandwidths in excess of 10:1. Fig. 4-1b is a photograph of 

the subject antenna. 

 

 

Fig. 4-1 Simple Mode-Former (a) For Feeding the Toroidal Four-Port Antenna (b) and Generating a 

Vertically Polarized Mode 0 and a Rotating Mode 1 [28]. 

 

Significance and impact:  

i. Considering that there is no fundamental theory for magneto-dielectric antennas, 

the first significant contribution is the development of the theory with everything it 

entails, including rules of thumb and closed form expressions. Using the models 

given in this work, small to moderate sized magneto-dielectric antennas can now be 

designed from first principles, with no need for a full wave electromagnetic simulator 

with an optimizer for the design. 
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ii. These permeable conformal antennas have been proven to have much higher 

efficiency compared to metal and dielectric antennas constrained to the same 

conformal volumes, they are easier to match, and can attain wider bandwidths than 

equivalent conformal metal antennas. 

iii. They should also excel in other important low impedance environments such as in 

proximity or inside the human body and sub-surface applications. 

In Section 2 we discuss Schelkunoff’s loop antenna model based on biconical 

transmission lines and we express the input impedance of the loop in Darlington form 

which has a frequency independent resistor terminating a reactive network. Such a model 

is valid beyond the electrically small limit with the important consequence that it leads to 

the correct self-resonance frequency of the loop and a radiation resistance that does not 

always stay as 𝜔4. 

In section 3 we obtain a wideband impedance model of the quadrant fed toroidal 

metal antenna for both Mode 0 and Mode 1, as a prelude for the development of the 

impedance model for dielectric and, ultimately, permeable antennas.  For Mode 0, which 

has the most similarity to the loop, we divide half of the loop into a large number of small 

(differential) segments and use the transmission line model, to obtain the impedance 

circuit model. As expected, the result is equivalent to simply moving the short circuit of 

the loop model of section II from 𝜑 = 𝜋 to the two walls at 𝜑 = 0 and 𝜑 = 𝜋/2. The 

same is done for Mode 1 and, the input impedance is obtained.  

In section 4, the “electric” case of the penetrable antenna, the dielectric antenna, is 

derived from that of the metal antenna of section III by inserting the material properties 
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into that model. Thus, we obtain a wideband impedance model for dielectric quadrant-fed 

antennas.  

In section 5, by using the concept of duality and the results of section IV, we 

obtain an impedance model for quadrant-fed permeable antennas working in both Mode 1 

and Mode 0. 

Section 6 compares the results obtained from the new wideband impedance model 

and the results previously derived, showing that this model works much better when we 

move farther from the small antenna limit.  

Finally, in section 7, the feed loop contribution is explicitly accounted for and the 

results are compared with fullwave simulations [20] of a typical antenna operating in 

both Mode 0 and Mode1, demonstrating very good agreement. 

 

4.2 Wideband Impedance Model of the Conventional Loop Antenna 

Schelkunoff’s model of the principal wave carried by a curved two-wire antenna 

is based on the principal wave impedance of the biconical antenna of arbitrary angle 

between the cones (biconical Vee antenna) [8] . It can be shown that for two diverging 

wires whose radii are 𝑎1 and 𝑎2 while d is the distance between the corresponding 

elements of the wires, the wave impedance can be written as: 

 𝐾 =
𝜂

𝜋
𝑙𝑛 [

𝑑

√𝑎1 × 𝑎2
] (4-1) 

If the cones have the same radius, 𝑎1 = 𝑎2 = 𝜌 at a distance of 𝑑 this becomes: 
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 𝐾 =
𝜂

𝜋
𝑙𝑛 [

𝑑

𝜌
] (4-2) 

This means that the two biconical transmission lines shown in Fig. 4-2 have the 

same impedance although their cone angles and tilt angles are different. 

 

Fig. 4-2 Two Biconical Transmission Lines Having the Same Impedance with Different Cone and Tilt 

Angles. 

As an example of Schelkunoff’s method, consider the loop antenna of Fig. 4-3.  

We can imagine building the loop out of many sections of biconical Vee antennas, 

however for clarity we have only shown 4 sections in Fig.4-3. Thus, for the four sections 

in the figure, from the feed to the first 45 degrees of arc we can imagine a biconical Vee 

of 135 degree cone separation angle (the red dashed outline, where we have omitted the 

symmetric side of the structure for clarity). Then from that point on to 90 degrees of arc 

we can imagine another section of a biconical Vee antenna and so on. 

In Fig. 4-3 we have used the cascade of biconical transmission lines starting at the 

feed as an illustration because it makes the role of the feed in starting the principal wave 
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clear. We then have chosen to draw those transmission lines with symmetry about the 

midplane at the center of the loop because the symmetric modes of excitation of this 

antenna are of interest and therefore we will have a mirror symmetry plane in the middle. 

Regardless of the representation, as Schelkunoff himself points out, the local principal 

wave impedance is the same whether we think of the infinitesimal sections as sections of 

biconical lines or as sections of parallel wire lines; this is why he uses as the physical 

parameters of the line the local cross sectional radius and the center to center separation 

between the wires, instead of the angles of the cones. 

 

Fig. 4-3 Loop Antenna Built from Several Sections of Biconical Vee Antennas. 

Before proceeding with the derivation, it is important to make another point about 

Schelkunoff’s derivation. Although it is traditionally assumed to imply thin wire 

antennas, his baseline model is the biconical transmission line; that means that he is not 

strictly limited to physically thin wires. The key point in his work is the assumption that 

the principal wave dominates the performance, and so there should be no significant 

phase shift around the circumference of the wire. Therefore, as long as there is not a 

considerable phase shift around the circumference, this model should work very well for 

not-physically-thin (fatter) antennas.  
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The proof that this method works for “fatter” cross sections can be seen in section 

VII where the modeled antenna is a rather fat toroid of 7 inch radius with a mean cross 

sectional diameter of 2.24 inches which is about a third of the radius and as can be seen 

later in the paper, the agreement with the model is excellent.   

However, if there is a considerable phase shift around the circumference of the 

wire, not only is Schelkunoff’s basic assumption invalidated, our model would also fail 

on another account: because then the magneto-dielectric rod would trap the wave. So 

indeed, we are staying by definition and practical choice of the cross-section dimensions, 

and overall size of the antenna versus wavelength, within the spirit of the thin wire limit. 

The principal wave’s impedance of each section is given by equation (3), (x=0 is 

the origin, at the feed.) 

 

 𝐾(𝑥) =
𝜂

𝜋
𝑙𝑛 [

𝑑(𝑥)

𝜌(𝑥)
] (4-3) 

With the inductance per unit length and capacitance per unit length given by 

equations (4). 

 

 
�̂� =

𝜇0
𝜋
𝑙𝑛 [

𝑑(𝑥)

𝜌(𝑥)
] , �̂� =

𝜋휀0

𝑙𝑛 [
𝑑(𝑥)
𝜌(𝑥)

]
 

(4-4) 

 

If we assume that the sections shown in Fig. 4-3 are very small, then a sum of the 

inductance per unit length would be analogous to integrating the inductance per unit 
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length and should result in the same value that Schelkunoff gives for the self –inductance. 

Assuming that each quarter of the loop has been divided into N sections, with basic 

mathematical manipulations we can write:  

 

 

 
𝐿𝑡𝑜𝑡𝑎𝑙 = 2 ∙

2𝜋𝑎

4𝑁
∙∑

𝜇0
𝜋
𝑙𝑛 [

2𝑎 ∙ sin ( 𝑖
𝜋
2𝑁)

𝜌(𝑥)
]

𝑁

𝑖=1

 (4-5a) 

 

 
𝐿𝑡𝑜𝑡𝑎𝑙 =

𝜇0𝑎

𝑁
∙ ln ((

2𝑎

𝜌
)
𝑁

(
√𝑁

2𝑁−1
)) (4-5b) 

For large values of N, we reach the limit: 

 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜇0𝑎 ∙ 𝑙𝑛 [
𝑎

𝜌
] (4-6) 

 

This is the procedure used by Schelkunoff to obtain the self-inductance and the 

shunt Capacitance of the small metal loop of constant wire diameter as given in equations 

(7). 

 

 𝐿𝑙𝑜𝑜𝑝 = 𝜇0𝑎 ∙ 𝑙𝑛 [
𝑎

𝜌
] , 𝐶𝑙𝑜𝑜𝑝 =

𝜋2휀0𝑎

3 ∙ 𝑙𝑛 [
𝑎
𝜌]

 (4-7) 

From the far field radiation integral, we also know the radiation resistance of the 

electrically small loop, given by 𝑅𝑟𝑎𝑑 = 20 ∙ 𝜋2(𝑘0𝑎)
4. If we stop at this point and write 

the circuit model of the loop as the parallel combination of L and C from equation (7), the 
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anti-resonance frequency, when the short at the end of the loop opposite the feed is 

reflected as an open at the input, is off by 10% from the expected 𝜋𝑎 = 𝜆0/4. 

 

 

 

𝑓0 =
1

2𝜋√𝐿𝐶
= 0.55

𝑐0
2𝜋𝑎

→ 𝜋𝑎 =
𝜆0
3.6

 

 

(4-8) 

This inconsistency is remedied by writing the circuit model in Darlington form. 

According to Darlington [30] , any two-port LCR network can be realized as a two-port 

LC network terminated in a frequency independent resistor. Schelkunoff obtains such a 

model for the impedance of a small dipole by enforcing its similarity to the impedance of 

the lowest order TM spherical mode [23].  

Following the same reasoning we look for a model of the form illustrated in 

Fig.4-4, where L must be Lloop and we expect C to be close to Cloop while Cs should be 

smaller than C and of the right value to turn the constant radiation conductance G into the 

calculated Rrad; that is, to make  

 

 

𝑅𝑒 (𝑍𝑙𝑜𝑜𝑝(𝜔 → 0)) = 20 ∙ 𝜋2(𝑘0𝑎)
4 

(4-9) 

 

Fig. 4-4 Darlington Form Model of the Loop Antenna. 
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The circuit is shown in its tank form (parallel connection) because according to 

Schelkunoff [8], antennas should be classified in terms of whether they are a pole or a 

zero of the impedance function at DC, and the loop is a zero. From the lowest TE 

spherical mode we require G to be a constant, independent of the thinness factor of the 

loop, 𝑙𝑛(𝑎/𝜌).  

 𝐺 =
1

𝜂

2

3𝜋
 (4-10) 

It is easy to show that Cs must be of the form shown in equation (4-11) in order to 

obtain a Radiation resistance that is indeed independent of the cross section (thinness) of 

the antenna, where g is a constant to be determined. 

 
𝐶𝑠 = 𝑔

휀𝑎

𝑙𝑛 (
𝑎
𝜌)

 
(4-11) 

   From the given circuit, we obtain the admittance of the loop 

 𝑌𝑙𝑜𝑜𝑝(𝜔) = (
1

𝐺
+

1

𝑗𝜔𝐶𝑠
)
−1

+
1

𝑗𝜔𝐿
+ 𝑗𝜔𝐶 (4-12) 

 

 So that the real part of the input impedance of the loop is 

 

𝑅𝑒(𝑍𝑙𝑜𝑜𝑝(𝜔))

=
𝜔4𝐿2𝐶𝑠

2𝐺

(𝐺 − 𝜔2𝐿𝐶𝐺 − 𝜔2𝐿𝐶𝑠𝐺)2 + (𝜔𝐶𝑠−𝜔3𝐿𝐶𝐶𝑠)2
 

(4-13) 

For small 𝜔, we only keep the term 𝐺2 in the denominator resulting in equation 

(4-14): 
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 𝑅𝑒(𝑍𝑙𝑜𝑜𝑝(𝜔 → 0)) =
𝜔4𝐿2𝐶𝑠

2𝐺

𝐺2
=
𝜔4𝐿2𝐶𝑠

2

𝐺
  (4-14) 

Substituting L and 𝐶𝑠 from equations (4-7) and (4-11) yields: 

 
𝑅𝑒 (𝑍𝑙𝑜𝑜𝑝(𝜔 → 0)) =

(𝜔2𝜇0𝑎𝑔휀0𝑎)
2

𝐺
  

 

(4-15) 

Given the value of G from equation (4-10), this results in equation (4-9) if g =1/3. 

With 𝐶 = 𝐶𝑙𝑜𝑜𝑝, 𝐿 = 𝐿𝑙𝑜𝑜𝑝 and 𝐶𝑠 as derived, the anti-resonance of the circuit of Fig. 4-4  

lies within 1% of the expected 𝜋𝑎 = 𝜆0/4. 

 

4.3 Deriving the Model for Quadrant Fed Metal Loop Antennas 

In Schelkunoff’s original model a single feed is assumed for the loop. In our case 

we have more than one feed; but the procedure is the same. For Mode 0, the job of the 

multiple feeds is to maintain the current along the perimeter of the loop as uniform as 

possible. For Mode 1, the multiple feeds are used to excite a cos(𝜑) dependence of the 

current along the perimeter.  

Since we are about to follow the same procedure illustrated with Schelkunoff’s 

single-feed loop in Section II, it bears outlining the whole procedure and its logic before 

proceeding with the details: 

When we start with Schelkunoff’s model, the cascade of transmission lines leads 

to an inescapable frequency dependent input impedance that for the dipole mode is 

capacitive at the low end whereas for the loop mode it is inductive. By going to the DC 

limit, we are forced to select that Capacitance or that Inductance as the value given by the 
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model. Then, still following Schelkunoff, we know that the dipole mode is a pole of the 

impedance function and as such we expect it to have an inductance in series with the DC 

Capacitance. The resonance seen in the input impedance forces the choice of that 

inductance by the requirement  𝜔𝑟𝑒𝑠 = 1/√𝐿𝐶; again, this choice is inescapable. The 

same thing happens with the loop mode: it must be a zero of the impedance function and 

therefore it must have a capacitor in parallel with it. The resonance seen in the impedance 

function determines that Capacitance. 

Then to complete the model we need to add the radiation resistance for the dipole 

mode and the radiation conductance for the loop mode. Since we eventually will have 

multiple feed points, the current carried on the antenna can be guaranteed to stay close to 

the ideal distribution (this is the same trick employed by the clover-leaf antenna loop): 

the loop mode can be assumed to have a uniform azimuthal current whereas the dipole 

mode can be assumed to have the cosine distribution. (Of course, we would expect that 

when the individual center-fed quadrants of the antenna approach a wavelength in length, 

this assumption would break down. That means four feed points are not enough to expect 

the antenna to function up to when it is four wavelengths in circumference. For the 17-

inch diameter antenna used as an example here that occurs above 800MHz.) Given the 

reasonable assumption of the ideal current distribution, the radiation resistance is 

calculated by the far field integration approach and again we have a result forced upon us 

by the principal wave model. 

However, at this point there is an interesting problem. If as customary we were to 

place the frequency dependent radiation resistance in series with the series LC of the 
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dipole mode, we find that the resonance of the antenna does not occur at the frequency it 

is supposed to occur at (2𝜋𝑎 = 𝜆 for Mode 1.) Similarly, for the loop mode, the 

frequency dependent radiation conductance also results in the loop’s tank resonance 

occurring off the expected frequency (𝜋𝑎 = 𝜆/4 for a single-feed loop). The cause of this 

problem is the frequency dependence of the radiation resistance. 

Therefore, we turn to Schelkunoff’s Advanced Antenna Theory [23] where he 

points out that the correct circuit models of these fundamental antennas are not the 

electrically small models (series LCR and shunt LCG) but rather the circuit models that 

closely represent the lowest order spherical TM and TE wave modes. Those are given in 

Darlington form, where the radiation loss is represented by a fixed resistance (a known 

factor of the impedance of free space) that is connected to the rest of the circuit by a 

coupling element. When we adopt that form for the antenna’s modes of concern the value 

of the coupling elements is forced upon us by having to replicate the radiation resistance 

calculated from the far field integral. 

At every turn, following Schelkunoff’s method forces upon us the choice of all 

the circuit elements. The happy result at the end is that indeed now the antenna resonates 

at the expected frequencies. 

In the following section, we outline the steps described above in detail; and to 

maximize clarity we do it for one particular cross section of the antenna, so that the 

various circuit elements have actual units of Farads and Henries, and so forth. When this 

analysis is repeated for a large number of toroidal radii and cross sections, it turns out 

that the fundamental LC circuit elements can always be written down in expressions 
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similar to those derived by Schelkunoff for electrically small antennas, involving factors 

of the radius of the toroid, and logarithms of the ratio of the radius to its cross section. 

We give those closed-form expressions in the text. 

 

4.4 Deriving the Model for a Quadrant Fed Mode 0 

The Mode 0 case can be viewed as an evolution of the single feed loop as 

suggested in Fig. 4-5. Instead of a symmetry PEC at 𝜑 = 𝜋, we now have two walls 

spanning a quadrant (at 𝜑 = 0 and 𝜑 = 𝜋/2  in the figure.) Therefore, to zeroth order we 

expect the quadrant series inductance to be one fourth of that of the singly fed loop and 

the quadrant shunt capacitance to also be one fourth of the shunt capacitance of the singly 

fed loop. This would lead automatically to an anti-resonance frequency that is 4 times 

higher than that of the single loop.  

 

 

Fig. 4-5 Evolution of the Quadrant Fed Mode 0 Model. 

For reasons that will become apparent presently, we first solve the case of PEC 

boundaries at 𝜑 = ±𝜋/2. We divide the half circle into many sections of length 2𝜌 as 

shown in Fig.4-6. 
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Fig. 4-6  The Loop Is Divided into a Large Number of Sections of Lengths 2𝜌(Left). Then the First 

Segment Is Replaced by a Small Bicone as a Feed (Right). 

As shown, the first section is replaced by a bicone with top diameter of 2𝜌 and 

length 𝜌. The impedance of this section, having an internal half angle of 𝜋/4 is: 

 𝑍0 = 120 ∙ 𝑙𝑛 (cot (
𝜋

8
)) (4-16) 

The next segment is a “two wire” line of wire diameter 2𝜌 and center to center 

separation 4𝜌 with impedance of 𝑍1:  

 𝑍1 = 120 ∙ 𝑐𝑜𝑠ℎ−1 (
4𝜌

2𝜌
) (4-17) 

And the total number of sections in the quadrant will be: 

 𝑁 = 𝑟𝑜𝑢𝑛𝑑 [

𝜋
2 𝑎 − 2𝜌

2𝜌
] (4-18) 

For example assuming a=7 inches, and 𝜌 = 0.05 inch, Then the number of 

sections needed is: 

 𝑁 = 𝑟𝑜𝑢𝑛𝑑 [

𝜋
2 ∙ 7 − 0.05

2 ∙ 0.05
] = 109    (4-19) 
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The above dimensions have been chosen because Schelkunoff’s various 

approximations are all equivalent for the case of high fineness antennas (thin wires). 

Once we demonstrate this works, we can extend it to the thicker cross sections common 

to magneto-dielectric antennas.  

The impedance of each section is 

 𝑍𝑛 = 120 ∙ 𝑐𝑜𝑠ℎ−1(
2𝑎 ∙ sin (𝑛 ∙

2𝜌
𝑎 ) 

2𝜌
) (4-20) 

Such that the transmission line cascade ranges for the bicone feed of 105 ohms to 

a last segment of 676 ohms. The impedance seen at the input of the last section is a short 

circuit: 

 𝑍𝑖𝑛𝑁 = 𝑗𝑍𝑛 tan(𝑘0 ∙ 2𝜌) (4-21) 

 

Then the input impedance of each of the sections follows: 

 

𝑍𝑖𝑛𝑚                                                                                       

= 𝑍𝑁+1−𝑚
𝑍𝑖𝑛𝑚−1 cos(2𝑘0𝜌) + 𝑗𝑍𝑁+1−𝑚 sin(2𝑘0𝜌)

𝑍𝑁+1−𝑚 cos(2𝑘0𝜌) + 𝑗𝑍𝑖𝑛𝑚−1 sin(2𝑘0𝜌)
 

(4-22) 

So that the input impedance seen at the feed is 

 𝑍𝑖𝑛 = 𝑍0
𝑍𝑖𝑛𝑁 cos(2𝑘0𝜌) + 𝑗𝑍0 sin(2𝑘0𝜌)

𝑍0 cos(2𝑘0𝜌) + 𝑗𝑍𝑖𝑛𝑁 sin(2𝑘0𝜌)
 (4-23) 

 

From this result, the inductance lumped circuit element is obtained by evaluating 

the effective complex inductance, 𝐿𝑒𝑓𝑓 = 𝑍𝑖𝑛/𝑗𝜔, at zero frequency (DC.) A plot of the 

effective complex inductance is shown in Fig.4-7 (solid line curves). A closed form 
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expression, Lapp, that is within 1% of the DC limit is denoted by the constant dashed line 

and shown in equation (4-24); not surprisingly, half of equation (4-6).  

 𝐿𝑎𝑝𝑝 = 𝐿ℎ𝑎𝑙𝑓𝑀0 =
𝜇𝑎

2
∙ 𝑙𝑛 [

𝑎

𝜌
] (4-24) 

 

 

Fig. 4-7 Effective Complex Inductance Versus Frequency. 

It follows that for the quadrant-fed case, invoking the PEC symmetry plane at 

𝜑 = 0 gives equations (4-25) for the inductance and shunt capacitance, of the circuit.  

 𝐿𝑄_𝑀0 =
𝜇𝑎

4
∙ 𝑙𝑛 [

𝑎

𝜌
] , 𝐶𝑄_𝑀0 =

𝜋2휀𝑎

12 ∙ 𝑙𝑛 [
𝑎
𝜌]

 (4-25) 

Given that one quadrant radiates a quarter of the power. 

 𝑅𝑟𝑎𝑑_𝑄_𝑀0 = 5 ∙ 𝜋2(𝑘𝑎)4     (4-26) 

 

Setting: 



85 

 

 𝐺 = 4 ∙
1

𝜂

2

3𝜋
 𝑎𝑛𝑑 𝐶𝑠 = 𝑔

휀𝑎

𝑙𝑛 (
𝑎
𝜌)
      (4-27) 

The same procedure yields g =4/3 to obtain the Radiation resistance and 

recovering the expected resonant frequency. The equivalent circuit model for Mode 0 is 

the same as that in Fig.4-4 except that the circuit parameters are now those given by 

equations (4-25) through (4-27).  

 

4.5 Deriving the Model for a Quadrant Fed Mode 1 

The evolution of the Mode 1 model is suggested in Fig. 4-8. Similar to Mode 0, 

the active impedance at one feed is obtained by solving the half loop but this time it is 

terminated on a PMC symmetry plane.  

The reason that the PEC and PMC planes have been chosen as seen is that this is 

precisely the symmetry required to create the Mode 1 and Mode 0 aligned with the 

conventional Cartesian axes, Mode 0 being a z polarized monopole mode, while Mode 1 

consists of x-polarized and y-polarized planar dipole modes. This forces the input 

impedance to be calculated at the mid- point between the symmetry planes. However this 

can be easily handled with a displaced impedance when required as done below using the 

asymmetric feed technique. 
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Fig. 4-8 Evolution of the Quadrant Fed Mode 1 Model. 

As before, we divide the half circle into a number of sections of lengths 2𝜌 and 

replace the first section with a bicone with top diameter of 2𝜌 and length 𝜌. The rest of 

the procedure is identical to that for Mode 0 except in this case the cascade of 

transmission lines terminates on an open circuit instead of a short circuit. That is, the only 

difference is the impedance of the last section: 

 𝑍𝑖𝑛𝑁−𝑂𝐶 = −𝑗𝑍𝑛 cot(𝑘 ∙ 2𝜌) (4-28) 

In this case, the shunt capacitance lumped circuit element is obtained by 

evaluating the effective complex Capacitance corresponding to the input admittance, 

𝐶𝑒𝑓𝑓 = 𝑌𝑖𝑛/𝑗𝜔, at zero frequency (DC); where Yin is the inverse of Zin. A plot of the 

effective complex capacitance is shown in Fig.4-9 (solid line curves) and a closed form 

expression, Capp, that is within 1% of the DC limit is denoted by the constant dashed line. 

 
𝐶𝑎𝑝𝑝 =

𝜋휀0 (
𝜋𝑎
2 )

ln(

𝜋
2 𝑎

2𝜌)

  
(4-29) 

The next step is to find the inductance which can be done by using the observed 

series resonance at 297.3 MHz.  
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In this example, we conclude the series inductance is 0.173 micro-Henries a 

quantity closely approximated by the closed-form expression: 

 

𝐿𝑎𝑝𝑝 =

𝜇0 (
𝜋𝑎
2 ) ln(

𝜋
2 𝑎

2𝜌)

3𝜋
 

(4-30) 

 

Fig. 4-9 Effective Complex Capacitance Versus Frequency 

Calculating the Radiation resistance of the full Mode 1 current distribution by 

integrating the far field radiated power, referenced to the total current flowing across the 

y=0 plane we obtain, 𝑅𝑟𝑎𝑑 = 493(2𝑎/𝜆)2. 

 For an antenna that is halved with a PMC wall, the impedance is doubled 

meaning that the impedance of the half antenna will be 𝑅𝑟𝑎𝑑−ℎ𝑎𝑙𝑓−𝑀1 = 2 × 493(2𝑎/𝜆)2 

In the thin wire limit, we expect the resonance to occur when 

 
𝜋

2
𝑎 =

𝜆

4
 (4-32) 

We have so far obtained the zeroth order model of the case shown in Fig. 4-8 (a). 

The series connection of the above L, C and Rrad resonates 10% higher than equation (4-

32). Remembering that we had a similar problem with the simple loop model, and that it 
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was remedied by the Darlington form of the circuit, we proceed for now as is and will 

check to see if the result recovers the expected resonance at the end. 

To model a quadrant, we slice the loop of Fig. 4-8(a) with a PEC symmetry plane 

and the impedance of a quadrant, fed against the PEC plane, is simply half of that of the 

half section: 

 𝑍𝑄_𝑃𝐸𝐶_𝑀1 =
𝑍ℎ𝑎𝑙𝑓𝑀1

2
 (4-33) 

In dividing the source impedance in half we then divide the Radiation resistance 

in half recovering: 

 𝑅𝑟𝑎𝑑_𝑄_𝑃𝐸𝐶 = 493 (
2𝑎

𝜆
)
2

 (4-34) 

But the quadrant of the Mode 1 antenna is fed at the center of the quadrant as 

suggested in Fig.4-8(c). Then it follows, by the rules of the asymmetrically fed antenna 

(or sleeve-fed monopole) that the impedance at the displaced feed-point must deliver the 

same total power as the original base feed. Since the current at the mid quadrant point for 

Mode 1 must have the value cos(𝜋/4) = 0.707 relative to the value at the base, 

𝐼2𝑚𝑖𝑑𝑄𝑍𝑚𝑖𝑑𝑄 = 𝐼2𝑏𝑎𝑠𝑒𝑍𝑏𝑎𝑠𝑒 leads to the impedance being multiplied by a factor of 2 

: 𝑍𝑄_𝑀1 = 2 ∙ 𝑍𝑄𝑃𝐸𝐶𝑀1
. 

In summary, the Mode 1 quadrant circuit elements are:  

 𝐶𝑄𝑐 =
1

2
∙

𝜋2

2 휀𝑎

𝑙𝑛 (

𝜋
2 𝑎

2𝜌)

, 𝐿𝑄𝑐 = 2 ∙

𝜇
𝑎
2
𝑙𝑛 (

𝜋
2 𝑎

2𝜌
)

3
 (4-35) 
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 𝑅𝑟𝑎𝑑_𝑄𝑐 = 2 ∙ 493 (
2𝑎

𝜆
)
2

 (4-36) 

Where the subscript Qc stands for a quadrant center fed. To obtain the Darlington 

form we assume a circuit consistent with the lowest order TM mode as shown in Fig.4-

10, where we have multiplied the TM Resistance by 2 to account for the factor of 2 from 

the quadrant feed. The result is that 𝐿 = 𝐿𝑄𝑐, 𝐶 = 𝐶𝑄𝑐 and following the same kind of 

procedure outlined in equations (9) through (15), we determine the coupling inductor: 

 𝐿𝑃 =
𝜇𝑎

3
 (4-37) 

And the resonance is now exactly at (𝜋/2)𝑎 = 𝜆/4 as desired. Table 4-1 

summarizes the Mode 0 and Mode 1 quadrant-fed metal loop antenna circuit models. 

Table 4-1 Summary of Quadrant Fed Metal Loop Antenna Models 

  

𝐿𝑀0 =
𝜇𝑎

4
∙ 𝑙𝑛 [

𝑎

𝜌
] 𝐿𝑀1 =

𝜇𝑎

3
∙ 𝑙𝑛 (

𝜋
2 𝑎

2𝜌
) 

𝐶𝑀0 =
𝜋2휀𝑎

12 ∙ 𝑙𝑛 [
𝑎
𝜌]

 𝐶𝑀1 =

𝜋2

4 휀𝑎

𝑙𝑛 (

𝜋
2 𝑎

2𝜌)

 

𝐶𝑠 =
4

3

휀𝑎

𝑙𝑛 (
𝑎
𝜌)

 𝐿𝑃 = 𝜇𝑎/3 
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It should be noted that the radiation resistor and the radiation conductor in these 

models differs from Schelkunoff’s TM and TE models by the effect of the quadrant feed. 

In the case of mode 0 it is a factor of 4 because the loop has been cut out into 4 sections 

and in the case of mode 1 it is a factor of 2 because the feed is located at the 45 degree 

line. 

The fact that the circuit elements that couple the antenna to free space (Lp, Cs) in 

the above Darlington models do not alter the value of the near field inductance of the 

antenna models means that we can immediately insert the material properties into these 

models the way Sebastian did in his dissertation [2].  

 

Fig. 4-10 Darlington Form Model of the Quadrant Fed Mode1. 

4.6 Models for Quadrant Fed Dielectric Antennas 

Even though both Mode 0 and Mode 1 are quadrants of the same antenna, the 

interior impedance added in series to the inductance is not the same for both Modes. The 

impedance consists of a quadrant’s worth of dielectric with an excess internal inductance 

per unit length. When the flux is uniform inside the quadrant, as in Mode 0, we 

immediately write for a length of arc of 𝜋𝑎/2: 
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 𝐿𝑖𝑛𝑡𝑀0
=
𝜇0𝜇𝑖𝑛𝑡𝜋𝑎

16𝜋
; 𝐶𝑖𝑛𝑡𝑀0

=
𝜋𝜌2휀0휀𝑖𝑛𝑡

𝜋𝑎
2

 (4-38) 

 
∴ 𝑍𝑖𝑛𝑡_𝑀0 = 𝑗𝜔

𝜇0𝜇𝑖𝑛𝑡𝜋𝑎

16𝜋
+

1

𝑗𝜔
𝜋𝜌2휀0휀𝑖𝑛𝑡

𝜋𝑎
2

   
(4-39) 

However, for the cos (𝜑) flux occurring in the quadrant of Mode 1, the internal 

energy integral is halved, therefore if the feed were at the symmetric (PEC) base point we 

would have: 

 𝐿𝑖𝑛𝑡_𝑀1 =
𝜇0𝜇𝑖𝑛𝑡𝜋𝑎

32𝜋
; 𝐶𝑖𝑛𝑡_𝑀1 =

𝜋𝜌2휀0휀𝑖𝑛𝑡
𝜋𝑎

 ;   (4-40a) 

 ∴ 𝑍𝑖𝑛𝑡_𝑀1_𝑏𝑎𝑠𝑒𝑃𝐸𝐶 = 𝑗𝜔
𝜇0𝜇𝑖𝑛𝑡𝜋𝑎

32𝜋
+

1

𝑗𝜔
𝜋𝜌2휀0휀𝑖𝑛𝑡

𝜋𝑎

 (4-40b) 

However, feeding Mode 1 at the mid quadrant point does not feed it at the peak 

current. Therefore, this internal impedance is also transformed by the factor of 2. 

 
𝑍𝑖𝑛𝑡_𝑀1 = 𝑗𝜔

𝜇0𝜇𝑖𝑛𝑡𝜋𝑎

16𝜋
+

1

𝑗𝜔
𝜋𝜌2휀0휀𝑖𝑛𝑡
𝜋𝑎/2

        
(4-41) 

The fundamental assumption when we insert the material internal impedance into 

the circuit is that all the flux in the antenna goes through the material. This means that the 

internal impedances just derived are placed in series in front of both circuits obtained 

above. Therefore, for Mode 0: 

 
𝑍 _𝑀0 =

𝑗𝜔𝜇0(𝜇𝑖𝑛𝑡 − 1)𝜋𝑎

16𝜋
+

1

𝑗𝜔
𝜋𝜌2휀0(휀𝑖𝑛𝑡 − 1)

𝜋
2 𝑎

   
(4-42) 



92 

 

+
1

1

𝑗𝜔
𝜇0𝑎
4 𝑙𝑛 [

𝑎
𝜌]
+
𝑗𝜔𝜋2휀0𝑎

12 ∙ 𝑙𝑛 [
𝑎
𝜌]
+

1
1

𝑗𝜔
4
3

휀0𝑎

𝑙𝑛 (
𝑎
𝜌)

+ 𝜂
3𝜋
8

 

For Mode 1 we have: 

 

𝑍 _𝑀1 = 𝑗𝜔
𝜇0(𝜇𝑖𝑛𝑡 − 1)𝜋𝑎

16𝜋
+

1

𝑗𝜔
𝜋𝜌2휀0(휀𝑖𝑛𝑡 − 1)

𝜋𝑎/2

  

+
𝑗𝜔𝜇0𝑎

3
∙ 𝑙𝑛 (

𝜋
2 𝑎

2𝜌
) +

1

𝑗𝜔
𝜋2

4 휀0𝑎

𝑙𝑛 (

𝜋
2 𝑎

2𝜌)

+
1

3
𝑗𝜔𝜇0𝑎

+
1
𝜂
3𝜋
4

 
(4-43) 

 

The annotation subscript 휀 reminds the reader that these are the penetrable 

antenna models for dielectric antennas. 

 

4.7 Models for Quadrant Fed Permeable Antennas 

Following Sebastian [2], to enforce duality we swap all 𝜇 for 휀 and vice versa and 

the Impedances above become the Admittances seen by an ideal uniform frill current 

strip at the feed. So, for Mode 0 of the permeable antenna we will obtain equation 44, 

corresponding to the circuit of Fig. 4-11. 
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𝑌𝜇_𝑀0

= 𝑗𝜔
휀0(휀𝑖𝑛𝑡 − 1)𝜋𝑎

16𝜋
+

1

𝑗𝜔
𝜋𝜌2𝜇0(𝜇𝑖𝑛𝑡 − 1)

𝜋
2 𝑎

+
1

1

𝑗𝜔
휀0𝑎
4 ∙ 𝑙𝑛 [

𝑎
𝜌]
+ 𝑗𝜔

𝜋2𝜇0𝑎

12 ∙ 𝑙𝑛 [
𝑎
𝜌]
+

1
1

𝑗𝜔
4
3
𝜇0𝑎

𝑙𝑛 (
𝑎
𝜌)

+
1
𝜂
3𝜋
8

        

(4-44) 

 

Fig. 4-11 Equivalent Circuit for Mode 0 of the Permeable Antenna 

 

For Mode 1 of the permeable antenna we obtain: 

 
𝑌𝜇_𝑀1 = 𝑗𝜔

휀0(휀𝑖𝑛𝑡 − 1)𝜋𝑎

16𝜋
+

1

𝑗𝜔
𝜋𝜌2𝜇0(𝜇𝑖𝑛𝑡 − 1)

𝜋𝑎
2

 
(4-45) 
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+
𝑗𝜔휀0𝑎

3
∙ 𝑙𝑛 (

𝜋
2 𝑎

2𝜌
) +

1

𝑗𝜔
𝜋2

4 𝜇0𝑎

𝑙𝑛 (

𝜋
2 𝑎

2𝜌)

+
1

3
𝑗𝜔휀0𝑎

+ 𝜂
3𝜋
4

  

 

The circuit is shown in Fig.4-12 

 

 

Fig. 4-12 Equivalent Circuit for Mode 1 of the Permeable Antenna 

4.8 Comparison to Previous Results 

The key result of the models originally derived by Sebastian is the closed-form 

determination of the efficiency as a function of frequency. Sebastian gives [2] : 

 

𝑒𝑓𝑓𝑙𝑜𝑜𝑝

=
1

1 +
12

𝜋 (
𝜌
𝑎)

2
(𝑘𝑎)5

(
𝜇"

[𝜇′ − 1]2 + 𝜇"2
) +

3휀"
2𝜋(𝑘𝑎)3

 
  (4-46) 
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𝑒𝑓𝑓𝑑𝑖𝑝𝑜𝑙𝑒

=
1

1 +
6

(
𝜌
𝑎)

2
(𝑘𝑙)3

(
𝜇"

[𝜇′ − 1]2 + 𝜇"2
) +

3휀"
4(𝑘𝑙)

 
    (4-47) 

 

The main difference between those derivations and the ones in this report is the 

explicit representation of the radiation resistance or conductance in Darlington form. This 

form yields results exactly like the low frequency, electrically small limit approximation 

of the radiation terms but has the advantage of deviating realistically from that result at 

high frequencies, precisely when the antenna is no longer electrically small. The 

Darlington form correctly approximates to first order the coupling of the antennas to the 

lowest order spherical wave dipole modes. 

This is important because, while the electrically small radiation resistance of a 

dipole increases as  𝜔2, in reality we know this increase cannot go on forever, so that the 

efficiency expressions of equations (4-46) and (4-47) were overstating the efficiency at 

the high end, by tending to 100% efficiency.  

The efficiency of the antennas is derived directly from the above circuits as the 

ratio of the Radiation Conductance to the total Conductance which includes the loss 

conductance due to the material loss in the permeability of the material, 𝜇𝑖𝑛𝑡. (For 

simplicity, we have ignored the dielectric loss term which can always be included if 

needed.) 

 𝑒𝑓𝑓 =
𝑅𝑒(𝑌𝑟𝑎𝑑)

𝑅𝑒(𝑌𝑙𝑜𝑠𝑠) + 𝑅𝑒(𝑌𝑟𝑎𝑑)
=

𝐺𝑟𝑎𝑑
𝐺𝑙𝑜𝑠𝑠 + 𝐺𝑟𝑎𝑑

 (4-48) 
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The Mode 1 circuit model, it is the simplest case. It should behave like 

Sebastian’s linear dipole model. 

 
𝑒𝑓𝑓𝑀1 =

𝑅𝑒 [
1

3
𝑗𝜔휀0𝑎

+ 𝜂
3𝜋
4

]

𝑅𝑒

[
 
 
 
 

1

𝑗𝜔
𝜋𝜌2𝜇0(𝜇𝑟 − 1)

𝜋𝑎
2 ]

 
 
 
 

+ 𝑅𝑒 [
1

3
𝑗𝜔휀0𝑎

+ 𝜂
3𝜋
4

]

 
(4-49) 

 

 

𝑒𝑓𝑓𝑀1

=
1

1 + [
3𝜋

8𝑘𝑎 (
𝜌
𝑎)

2 +
1.89

(𝑘𝑎)3 (
𝜌
𝑎)

2] (
𝜇"

[𝜇′ − 1]2 + 𝜇"2
)

 (4-50) 

To compare with Sebastian’s original closed form expressions, recall that those 

derivations used the frequency dependent Radiation Resistance form instead of the 

Darlington form of the circuit. Therefore, to recover that approximation all we have to do 

is go to the low frequency limit. This means that in the denominator of the last expression 

we would simply ignore the first term in the square bracket when compared to the 

second. The resulting form is identical to Sebastian’s result in equation (4-47). 

Similarly, the efficiency for Mode 0 is given by the ratio of the conductances, the 

real parts of the admittances: 
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𝑌𝑟𝑎𝑑 =

[
 
 
 
 
 
 

1

1

𝑗𝜔
4
3
𝜇0𝑎

𝑙𝑛 (
𝑎
𝜌)

 +
3𝜋
8𝜂

+
𝑗𝜔

𝜋
12 𝜇0𝑎

𝑙𝑛 (
𝑎
𝜌)

+
1

𝑗𝜔휀0
𝑎
4 𝑙𝑛 (

𝑎
𝜌)

]
 
 
 
 
 
 
−1

 

𝑌𝑙𝑜𝑠𝑠 =
1

𝑗𝜔
𝜋𝜌2𝜇0(𝜇𝑟 − 1)

𝜋𝑎
2

 

(4-51) 

Inserting these expressions into equation (4-48) results in an expression for the 

efficiency of mode 0. 

To illustrate the difference the Darlington form of the circuits makes, we select a 

test case: a toroid of mean radius 7 inches (inner radius 5.5 inches, outer radius 8.5 

inches) and mean cross sectional radius of 1.129 inches (a rectangular cross section of 

width = 3 inches and thickness =0.667” plus its image), assuming the CZN laminate 

material of the antenna in [3] with the permeability shown in Fig.4-13 and a relative 

permittivity of 3.25. 

Fig.4-14, shows the Sebastian result for the loop as the red curve and the results 

from the derivation in this report for Mode 0 as the blue curve. Fig. 4-15 shows the 

corresponding results for Mode 1. Mode 0 peaks at about -0.1dB efficiency. The old loop 

model overstated the efficiency by almost 2.5dB in the 100 MHz range. Mode 1 now 
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tapers off at the high end to about -1dB efficiency instead of approaching 0dB 

asymptotically. 

 

Fig. 4-13 Permeability of the CZN Laminate Material 

 

Fig. 4-14 Original Closed-Form Efficiency Expressions (Red Curve), Results from the Derivation in This 

Report (Blue Curve), Dashed Line Shows 1𝜆 Perimeter. 
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Fig. 4-15 Original Closed-Form Efficiency Expression for a Linear Dipole (Red Curve), Results From the 

Derivation in This Report (Blue Curve), Dashed Line Shows 1𝜆 Perimeter. 

Comparing Fig. 4-14 and 4-15 we see that the dipole (Mode 1) is much more 

efficient than the loop (Mode 0) at the low end, as expected, but the efficiencies cross 

over when the antenna circumference exceeds one wavelength. In this case for the 7 inch 

mean radius antenna the above curves show this happening at 360 MHz.  

 

4.9 The Input Impedance and the Effect of a Realistic Feed Loop 

The circuits derived in the previous sections yield the active impedance seen at 

the quadrant feed under the assumption that a uniform current band excites the toroid at 

the feed position. This is implicit in the method of derivation when we use duality. It is 

akin to the assumption of a perfect Delta Voltage generator or “magnetic current band” 

being used to drive metal antennas. Now, we know from experience, and Schelkunoff’s 

discussion of the feed gap problem of metal antennas [8], that a realistic feed differs from 
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the ideal in the excess capacitance of the feed region. Schelkunoff recommends tapering 

the feed region down as a biconical transmission line and then if this section is long 

enough and the antenna thin enough, the gap capacitance becomes a negligible 

contribution.  

This works with metal antennas because the series impedance of metal is always 

almost zero, so that “necking down” the antenna at the feed does not really block the flux 

injected by the source generator. Unfortunately, in the case of permeable materials, any 

reduction of cross section results in an increase in Reluctance of the local flux path that 

could force the magnetic current to exit the antenna at that point. Therefore such an 

approach must be evaluated carefully, preferably in a fullwave simulation, before 

implementing it. 

Without any such modification, the analog to the excess capacitance at the feed in 

a metal antenna is the excess self-impedance of the metal loop used to drive the exciting 

current around the permeable flux channel. The consequences of this additional 

impedance are now examined. 

The antenna input impedance we have calculated must be related to the 

inductance seen by the feed loop simply by 

 𝐿𝑙𝑜𝑜𝑝𝑓𝑒𝑒𝑑 =
𝑍

𝑗𝜔
 (4-52) 

By definition, we have the correct answer for Z and L, in the case of an idealized 

frill current. However, we note that this inductance is proportional to the susceptance of 

the “core” material (𝜇 − 1). Therefore, we are missing the part of the inductance that the 

loop must see when the material vanishes, that is, the pure self-inductance of the loop in 
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free space, 𝐿𝑙𝑜𝑜𝑝_0. A full model of the transition from the inductance being dominated by 

the core to the inductance being that of the empty loop, as a function of 𝜇 is beyond the 

scope of this paper. However, since the permeable core term appears in terms of the 

susceptance, we should be able to approximate the total inductance seen by the loop by 

equation (4-53). 

 𝐿𝑙𝑜𝑜𝑝𝑓𝑒𝑒𝑑 =
𝑍

𝑗𝜔
+ 𝐿𝑙𝑜𝑜𝑝0      (4-53) 

In addition, we have another term that the frill current does not give us. Because 

by definition the frill current is assumed to be purely circuital, azimuthally constant, and 

electrically small, it develops no shunt capacitance; but we know that all realistic loops 

have such a shunt capacitance. Therefore, for a permeable toroidal antenna in free space 

fed at the quadrants, the true input impedance seen at the loop feed is the parallel 

combination of: 

 

𝐿𝑙𝑜𝑜𝑝𝑓𝑒𝑒𝑑𝑀0,𝑀1
= 𝜇0𝑎𝑤𝑖𝑟𝑒 ∙ 𝑙𝑛 [

𝑎𝑤𝑖𝑟𝑒
𝜌𝑤𝑖𝑟𝑒

] +
𝑍𝑀0,𝑀1
𝑗𝜔

   ; 

  𝐶𝑙𝑜𝑜𝑝𝑓𝑒𝑒𝑑 =
𝜋2휀𝑎𝑤𝑖𝑟𝑒

3 ∙ 𝑙𝑛 [
𝑎𝑤𝑖𝑟𝑒
𝜌𝑤𝑖𝑟𝑒

]
 

(4-54) 

Since normal practice is to use these permeable antennas as conformal antennas, 

flush on a ground plane, we really have half a structure fed by half a feed loop. But when 

we do this, again normal practice dictates that symmetry be maximized by not putting the 

feed at the point where the coax loop breaks through the ground but rather at the top 

midpoint of the permeable core as shown in Fig.4-16, pushing any parasitic resonances of 

the feed region as high in frequency as possible.  
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Fig. 4-16 Schematic of One Quadrant in Mode 1 of the Permeable Antenna Fed at the Top Midpoint of 

Each Quadrant Instead of at the Ground Plane. 

From the discussion on the Mode 0 loop we immediately know that for the 

conformal antenna fed at the top midpoint of the core, against the short circuit at the 

ground plane, the input impedance at the feed loop must then be: 

 

𝐿𝑙𝑜𝑜𝑝𝑐𝑜𝑛𝑓𝑀0,𝑀1 =
𝜇0𝑎𝑤𝑖𝑟𝑒

2
∙ 𝑙𝑛 [

𝑎𝑤𝑖𝑟𝑒
𝜌𝑤𝑖𝑟𝑒

] +
𝑍𝑀0,𝑀1
𝑗𝜔2

 ; 

 𝐶𝑙𝑜𝑜𝑝𝑐𝑜𝑛𝑓 =
𝜋2휀𝑎𝑤𝑖𝑟𝑒

6 ∙ 𝑙𝑛 [
𝑎𝑤𝑖𝑟𝑒
𝜌𝑤𝑖𝑟𝑒

]
 

(4-55) 

 

4.10 The Effect of the Realistic Metal Loop Feed and HFSS Confirmation 

Consider an antenna constructed using the ferromagnetic metal laminate (the 

material of Fig. 4-13) in the form of a half-toroid on ground, 0.667” thick and inner and 

outer radii 5.5” and 8.5”. This is equivalent to a mean toroid cross sectional radius 
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(including the image) of 29mm. For antennas constructed from such metal laminates, the 

cross section of the feed-loop is always made larger than the permeable core cross section 

to prevent the core material from shorting out or capacitively “loading down” the feed-

loop. Thus, we assume a metal feed-loop of radius 𝑎𝑤𝑖𝑟𝑒 = 36𝑚𝑚 and of cross sectional 

radius corresponding to a 0.141” coaxial cable, 𝜌𝑤𝑖𝑟𝑒 = 1.79𝑚𝑚.  

This clearance between the feed-loop metal and the core means that, of the loop 

area, only the fraction (29/35)2 = 0.687 is filled with the permeable material; and so 

the antenna impedance contribution to the loop inductance must be derated by this factor. 

Additionally, even though the permittivity of the magneto-dielectric material is assumed 

to be 3.25, the effective permittivity inside the feed-loop is closer to 2.1 because, again, 

the loop area is larger than the cross section of the material (inserting air gaps in series 

with the loop’s shunt capacitance.) After these corrections, equations (4-55) give the 

expected input impedance in closed-form. For comparison, one quadrant of this half 

toroid on ground was modeled and simulated using HFSS as shown in Fig. 16. The 

results for both Modes 1 and 0 are shown in Figures 4-17 and 4-18.  
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Fig. 4-17 Mode 1 Active Input Impedance at the Feed Loop Based on the Closed Form Equations (Solid) 

and Based on an HFSS Simulation (Dashed). 

 

Fig. 4-18 Mode 0 Active Input Impedance at the Feed Loop Based on the Closed Form Equations (Solid) 

And Based on an HFSS Simulation (Dashed). 

The agreement is quite good all the way through the first anti-resonance, 

especially recognizing that this antenna is one wavelength in circumference at 269 MHz. 

Clearly, the model derived here, using the Darlington form to explicitly represent the 

coupling of the antennas to free space (as Schelkunoff did), is not limited to the 

electrically small limit domain. 
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The differences seen in the figures are either the result of second order corrections 

not taken into account in the model, or the result of the onset of guided wave phenomena 

(as evidenced by the HFSS result distortions beginning at 400MHz in Mode 1). Referring 

back to the circuit models we can see that the low frequency behavior of mode 1 is 

dominated by the external radiation inductance. However, the behavior of mode 0 is 

dominated by the internal inductance which is due to the material. Consequently mode 0 

is much more susceptible to imperfect containment of the flux in the flux channel (that is, 

invalidation of the assumption of uniform current distribution) which may be the reason 

for the slightly greater disagreement between HFSS and the closed form model seen in 

mode 0.  

 

4.11 Conclusion 

A model of the input impedance of the toroidal permeable antenna operating in 

both a vertically polarized monopole Mode 0 and linearly polarized dipole Mode 1 has 

been derived, starting from Schelkunoff’s transmission line description of the loop 

antenna instead of the electrically small limit model, and expressing the result in 

Darlington form. In particular, the impedance model for realistic conformal antennas fed 

at four points around the circumference, and including realistic loop-feed effects, has 

been compared to fullwave simulations.   

The results show that the closed-form model is valid well beyond the electrically 

small limit. Using this exemplar, we have demonstrated that there is a straight-forward 

theory of magneto-dielectric antennas that is just as accessible as the classical theory of 
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metal antennas. However, we had seen in many instances of magneto dielectric antennas 

that there was a metal cage like structure present. The reason for the presence of this 

structure is that as mentioned in the introduction of this dissertation, permeable materials 

do not completely bind the wave therefore a flux binding mechanism is needed. An 

optimum flux binding mechanism needs to ensure that the magnetic current inside the 

antenna uses the full length of the antenna over the whole frequency band and the 

magnetic flux is contained within the flux channel at all frequencies without trapping it 

into a slow wave. 

As shown in the referenced dissertation [2] and repeated in the upcoming chapter, 

an engineering trade-off that accomplished this to a degree is to feed the antenna with 

multiple loops. However multiple independent feeds then require a complicated feed 

network located under the antenna ground plane that distributes the energy from the 

source’s desired one feed point to the several loops. A better and novel distributed feed 

network solution which we call the parallel solenoid is explained in detail in the next 

chapter. 
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CHAPTER 5 

 PARALLEL SOLENOID FEED FOR DIPOLE AND MONOPOLE MAGNETIC 

ANTENNAS 

“Once we accept our limits, we go beyond them.” 

Albert Einstein 

 

5.1 Introduction 

 In the previous chapter we have seen that the toroidal magnetic antenna is able to 

attain high gain and a large bandwidth, however these properties can only be obtained by 

using a proper flux binding mechanism like the parallel solenoid feed structure that 

maintains the magnetic current as uniform as possible inside the flux channel while being 

fed at only one point and incurring none of the deleterious phase delay effects that occur 

when a ferrite rod is fed by a conventional solenoid winding. If the toroidal antenna in the 

previous chapter did not have this feed mechanism, the wave would have not been bound 

inside the material and the high gain and large bandwidth goals would have not been met.  

In this chapter, we introduce this new kind of electric feed configuration used for 

permeable antennas. This feed configuration overcomes the problems of conventional 

solenoid feeds and the better performing multiple parallel loop feed system by optimizing 

the magnetic current distribution and the input impedance of such antennas. 

 

 

 

This chapter is based on our published patent: R. Diaz, T. Yousefi, T. Sebastian, S. Clavijo, “New 

Parallel Solenoid Feed Structure for True Magnetic Antennas”, Patent number: US  20160365642 A1, 

filed on January 2015, Published  
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It therefore can be used to improve broad band matching of broad band antennas or as 

specific tuning aid for narrower band applications. 

The permeable dipole antenna is the electromagnetic dual of the dielectric dipole 

[2]. Duality between the ideal electric and magnetic dipoles is summarized in table 5-1. 

 

Table 5-1 Duality Between the Electric and Magnetic Dipole. 

 

The figure below shows the electric dipole and the magnetic dipole. Strict duality 

requires that since the electrical electric dipole has perfect electric conductor (PEC) feed 

lines and an electric voltage source load (𝑉𝑒), the magnetic dipole should have perfect 

magnetic conductor (PMC) feed lines and a magnetic voltage source (𝑉𝑚) 

Electric dipole Magnetic dipole 

Electric voltage feed Magnetic voltage feed 

carrying an electric current ′𝐼𝑒′ carrying magnetic current ′𝐼𝑚′ 

PEC feed line PMC feed line 

Electric input impedance(ohms) 

Magnetic input impedance(mhos) equal 

to Electric input impedance(ohms)/ 𝜂0
2 
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Fig. 5-1 Electric Dipole and the Magnetic Dipole. 

Since we don’t have PMC feed lines and magnetic voltage sources, we use a PEC 

feed loop to feed the magnetic dipole. This configuration is shown in the figure below. 

 

Fig. 5-2 Magnetic Dipole with Feed Loop. 

The fundamental magnetic conductor dipole can be fed by an electrically small 

current loop or many loops in the shape of a solenoid. The problem with the conventional 

solenoid feed is the significant phase delay it creates as we move away from the feed 

center which can cause destructive interference. The multi-loop parallel feed will 

eventually involve a complicated feed network and usually requires an elaborate 
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matching circuit. The new feed, named the parallel solenoid, utilizes just a single feed 

point for the linear magnetic current dipole antenna which eliminates the need for 

complicated matching circuits. In the case of the toroidal magnetic antenna multiple feed 

points are desirable for multi-mode operation but, still, within each section of the 

antenna, it is desirable to maintain the magnetic current as uniform as possible. Thus, 

each section is fed with a parallel solenoid. The multiple feed with the proper solenoid 

has a superior performance than the multiple feed without the solenoids.   

In addition to the solenoid improving the Gain performance of the antennas it can 

also be used to fine tune the antenna’s input impedance. We will show that the solenoid 

design (namely, the number of grounded loops and the distance between the twin lines) 

can be used to achieve a very good VSWR for Mode 1 of the Toroidal antenna with only 

a 4:1 transformer as matching circuit.  

 

5.2 Parallel Solenoid Feed for Linear Magnetic Current Dipole Antenna 

As a first example to show the effect of the solenoid feed, we start our analysis 

with a permeable magnetic dipole antenna that is 1m long, 0.25” tall and 2.5” wide as 

shown in Fig.5-3. The permeable material used is Bekaert’s CZN laminates.  

 

Fig. 5-3 Magnetic Dipole Antenna Fed with Multiple Electric Loop Feeds 

Three feeds

1m

2.5”

0.25”
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Traditionally, ferrite rod antennas have been fed with a solenoid of many turns. 

The problem with such a configuration, especially at high frequencies, is that since the 

feed current wire is wound on the ferrite, there is a considerable amount of phase delay as 

we go further away from the feed source point. Therefore, the excited magnetic currents 

in the magneto-dielectric material eventually become out of phase and can cancel each 

other. This is the main reason why a parallel feed configuration of multiple feed loops 

might be required.  

The problem with multiple feeds is the need for a feed network consisting of 

splitters and/or hybrids. The more components used in an antenna the more loss is 

incurred and the greater the chance for mismatch due to component tolerances.  

Fig. 5-4 shows the proposed parallel solenoid feed on the linear dipole. In this 

feed, instead of winding just one conductor, which is the center conductor in a coax feed, 

in series as in a regular solenoid, the inner and outer conductor of the coax feed is 

stretched to the ends of the material in the form of a two-wire transmission line with 

grounded shorting pins at regular intervals. This configuration solves the considerable 

phase delay of the conventional solenoid because the principal wave feeding all the loops 

travels along the two-wire line nearly at the speed of light .  
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Fig. 5-4 (a) Parallel Solenoid Fed Antenna Structure and (b) Is a Closeup View Close to the Feed Port of 

the Same. (c) Parallel Solenoid Fed Dipole Antenna with Fewer Turns. 

The configuration in Fig.5-4 (a) is compared with a single loop fed antenna 

having a feed at the center and with a three parallel loop fed antenna (as in Fig.5-3). A 

fourth case is the parallel solenoid fed antenna with fewer turns as shown in Fig.5-4 (c). 

The comparison of peak realized gain is shown in Fig.5-5 (a) and the comparison 

of S11 is shown in Fig.5-5 (b). As expected, the peak realized gain of the single feed 

which is the red curve is the lowest because its magnetic current is least uniform. It can 

be seen that adding two additional feed loops improves the peak realized gain which is 

shown by the green curve. It can also be seen that the realized gain over the whole band 

simulated is considerably better for the case of the parallel solenoid. The S11 of the 
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antenna using the proposed feed method is also the best among the three cases. Therefore, 

without any additional matching circuit, the single loop fed parallel solenoid is superior 

to the single loop fed and three feed antenna in performance. The reduction in the number 

of grounding pins of the parallel solenoid has little effect on its gain performance in this 

case but it can be important since too many bars can cause over binding of the current. 

 

(a) 

 

(b) 

Fig. 5-5 (a) Comparison of Peak Realized Gain (b) S11 of Different Antenna Structures Considered. Note 

That for the Three Feed Case, the Active S11 at the Individual Port Is Plotted. 
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In order to study the reason of this improvement in performance, the magnetic 

current distribution in the dipole has been plotted in Fig.5-6 for the three cases of one 

feed, three feeds, and a parallel solenoid with one feed.  

By looking at the results, it is obvious that the parallel solenoid feed which is 

shown by blue curves draws more magnetic current than the other two cases at every 

frequency close to the feed. Also, the current distribution is considerable more uniform 

than the single feed case. Therefore, the resulting gain and peak realized gain is 

considerably higher.  

 

 

Fig. 5-6 Comparison of the Magnetic Current Distribution of the Different Antenna Configurations for the 

Frequencies 50, 110, 190 and 290 MHz. 
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Fig. 5-7 3D Polar Plot of Total Gain at Different Frequencies for the Parallel Solenoid Feed Magnetic 

Current Dipole Antenna. 

Fig.5-7 shows the 3D polar plot of the total Gain of the parallel solenoid feed 

magnetic current dipole. As expected, the dipole pattern has the donut shape with the 

antenna aligned along the y-axis. 

To emphasize the pay-off of using a parallel solenoid to obtain a nearly ideal 

magnetic current distribution through the antenna we consider the case of a 1m linear 

dipole fed with only one loop and vary the dipole’s permeability. The magnetic current 

distribution along the dipole length for the single feed loop case is shown in Fig.5-8. In 

order to attain a triangular current distribution (the prototypical current distribution of 

electrically small dipoles), we need to have a permeability as high as 300. We can see 

that for lower permeabilities the current decays “exponentially” from the feed; the flux 

leaks out.  
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Fig. 5-8 Current Distribution Along the Dipole Length for the Single Feed Loop Case. 

By contrast in Fig.5-9 we have plotted the normalized current distribution at 

different frequencies versus the distance from the source for a 𝜇 = 40 laminate material 

with a parallel solenoid having loops spaced 3cm apart. All of them are essentially 

triangular current distributions.  It can be seen that by using 𝜇 = 40 laminate material 

and the mentioned parallel solenoid we can have a triangular current distribution down to 

10MHz which clearly proves that the solenoid contains the magnetic current.  

 

Fig. 5-9 Current Distribution Along the Dipole Length With a Solenoid Having Loops Spaced 3cm Apart. 
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5.3 Parallel Solenoid Feed for the Monopole Mode of a Magnetic Current Loop 

The effect of the solenoid feed on antenna performance has been studied for the 

linear magnetic dipole and it was found that the cage helps the electromagnetic wave to 

stay within the magnetic material. In the case of the toroidal magnetic antenna intended 

to be used beyond the electrically small limit, we have to make sure that no higher order 

modes are excited around the circumference. This is accomplished by feeding the antenna 

at multiple points around the circumference. In broad terms, the upper frequency limit of 

performance of the antenna is multiplied by the number of symmetrically disposed feeds. 

The conventional approach which is shown below, injects the magnetic current at four 

feed points to suppress the excitation of higher order modes.  

 

Fig. 5-10 Monopole Mode of a Magnetic Current Loop with 4 Feed Loops. 

The proposed parallel solenoid as shown below, also uses multiple feeds but the 

cage distributes the feed current over wider feed regions of the loop, preventing flux 

leakage and ensuring that all the material available contributes to radiation. As shown in 

the figure the multiple loops are connected to each other by a curved two-wire 

4 Feed Loops
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transmission line. The width of the transmission line conductors and the separation 

between them and the width of the loops are all adjustable parameters. 

 

Fig. 5-11 Monopole Mode of a Magnetic Current Loop with 4 Feed Loops and a Solenoid Cage With 16 

Bars. 

The spacing and dimensions of the bars depends on the specific design but a good 

rule of thumb is to make the space between them equal to the mean cross-sectional 

diameter of the magnetic antenna. The mean cross-sectional radius is defined as the 

square root of the area including the image in the ground plane, divided by 𝜋. Thus, for a 

magnetic antenna which is 2.5 inches wide and 0.25 inches thick and is mounted on a 

ground plane, the effective area is 2.5 × 0.5 inches squared and the mean radius is 1.12 

inches. Therefore, the nominal spacing of the bars should be of the order of 2.24 inches 

+/- 50%.  

This rule of thumb is based on magnetostatics considerations. If there were no 

permeable material, that is, if we had an “air core”, then a distance of one core radius 

between loops would keep the flux uniform, as we know from the Helmholtz coils 

principle.  
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However, since all useful permeable cores have a permeability greater than 1.0 

this minimum distance can be increased. If the permeability of the magnetic antenna 

material is very high its bars can be spaced farther apart since the material presents an 

extremely low reluctance path for the flux and becomes the flux’s preferred channel. On 

the other hand, if it is very low they will need to be placed closer together because the 

higher reluctance allows leakage of the flux into the surrounding space.  

Well known rules for the calculation of leakage flux in conventional magnetic 

circuits can be used to advantage to make these determinations. However, since the goal 

of feeding the antenna with the parallel solenoid is not only to maintain a uniform 

magnetic current through the antenna but also to enable broad band operation by 

exploiting the large Gain Bandwidth product intrinsic to these antennas, other 

considerations cone into play beside magnetostatics. Specifically, at higher frequencies 

the surface wave guidance onset frequency appropriate to the material’s cross section is 

approached [2] . At that point and above wave effects such as phase delay become more 

important. Therefore, in practice the magnetostatics rule of thumb is used to begin the 

design and then the final design of the solenoid is performed using full physics (fullwave) 

solutions of the particular antenna design. Figures 5-12 and 5-13 show the dimensions of 

a quarter of the designed toroidal antenna.  
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Fig. 5-12 Side View of a Quarter of the Designed Circular Antenna. 
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Fig. 5-13 Top View of a Quarter of the Designed Circular Antenna. 

Beside the number of bars in the solenoid feed, the width of the transmission line 

conductors connecting the bars, and the separation between them are adjustable 

parameters. As shown in Fig.5-14 the peak gain of the parallel solenoid cage with 16 or 

40 bars is higher than the antenna without the parallel solenoid. Fig.5-15 shows that in 

order to obtain the highest realized gain in a desired frequency band we can use the 

number of bars as a design parameter and in this case 16 bars results in the highest 

realized gain. We surmise that forty bars “over bind” the magnetic current wave, trapping 

he energy in the material at the high frequencies. 
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Fig. 5-14 Peak Gain of the Monopole Mode with 4 Feed Loops (Red 40 Bars, Blue 16 Bars, Black No 

Cage). 

 

Fig. 5-15 Realized Gain of the Monopole Mode with 4 Feed Loops (Red 40 Bars, Blue 16 Bars, Black No 

Cage).  
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The figures below show the return loss for the three different cases which shows 

how the number of bars can be used as a tuning aid to achieve a better return loss. 

 

 

Fig. 5-16 Return Loss (S11) of the Monopole Mode with 4 Feed Loops(Red 40 Bars, Blue 16 Bars, Black 

No Cage).  

The patterns of the three different cases have also been plotted below. 
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Fig. 5-17 Pattern Versus Theta of the Monopole Mode with 4 Feed Loops(Red 40 Bars, Blue 16 Bars, 

Black No Cage) at 420 MHz and Phi=0 Degrees. 

5.4 Parallel Solenoid Feed for the Dipole Mode of a Magnetic Current Loop 

The same reasoning can be followed for the dipole mode of a magnetic current 

toroidal antenna, and the peak gain, realized gain, and the patterns have been plotted. As 

shown below we can conclude that the peak gain and the realized gain of the 16 bar 

configuration is higher than the other two alternatives. Again, the number of bars and the 

width of the different parts of the cage can be used as peak gain and realized gain tuning 

parameters as stated for the monopole mode. Clearly, for this multi-mode antenna the 

best parallel solenoid design is obtained by an engineering trade-off between the benefits 

afforded each mode and the corresponding specifications that they must meet. 
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Fig. 5-18  Peak Gain of the Dipole Mode with 4 Feed Loops (Red 40 Bars, Blue 16 Bars, Black No Cage).  

The following figure also shows that the realized gain achieved by using the 

parallel solenoid is higher than the configuration with only 4 feed loops. 
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Fig. 5-19 Realized Gain of the Dipole Mode with 4 Feed Loops (Red 40 Bars, Blue 16 Bars, Black No 

Cage).  

 

Fig. 5-20 Pattern Versus Theta of the Dipole Mode with 4 Feed Loops (Red 40 Bars, Blue 16 Bars, Black 

No Cage)  at 420 MHz and Phi=45 Degrees. 
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As an example to show how we can use different parameters as tuning aids for 

desired frequency bands, the gap between the transmission lines connecting the bars has 

been used as a tuning parameter. It can be seen that we can obtain an optimum value for 

the gap to get a higher peak gain. 

 

 

Fig. 5-21 Peak Gain of the Dipole Mode with Different Spacing Between the Wires of the Transmission 

Line (Red 0.05 Inch , Blue 0.02 Inch, Green 0.25inch).  

5.5 Using the Parallel Solenoid Feed as a Tuning Aid to Achieve a Good VSWR 

In previous sections, we have introduced the parallel solenoid feed as a new way 

to feed true magnetic antennas. It will be shown that not only does the solenoid contain 

the magnetic current inside the magnetic material, as seen in previous sections, but also 

the width of the transmission line conductors and the separation between them and the 

width and number of the loops can be adjusted for each specific design. 
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Specifically, we will see how changing the number of bars and the distance 

between the twin lines can result in a very good VSWR for mode 1 with only a 4:1 

transformer and without needing any complex matching circuit.  

True magnetic antennas have high gain and a broad bandwidth. However, in order 

to have a good realized gain, the antenna needs to have a good VSWR. Many matching 

schemes can be used, with some of them involving many inductive and capacitive circuit 

elements which would add to the complexity of the structure.  

Fig. 5-22. Shows the side and top views of a quadrant of the toroidal magnetic 

antenna. As seen in the figure, the full antenna has 4 feed loops and a solenoid with 16 

bars to the ground. 

 

Fig. 5-22 Quadrant of the Toroidal Magnetic Antenna with 4 Feed Loops and a 16 Bar Solenoid (a) Side 

View (b) Top View. 

The peak gain and S11 of the antenna, normalized to a 50 ohm impedance, with 4 

feed loops and a solenoid with 16 bars is shown in Fig.5-23. The important frequency 

range for this mode in the envisioned application is the range from 280 MHz to 400 

MHz, and we see that the VSWR needs improving.  
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Fig. 5-23 (a) Peak Gain and (b) S11 of the Mentioned Antenna Normalized to a 50 Ohm System 

Impedance. 

In order to start a matching approach, we should first look at the impedance of the 

antenna through both the real and imaginary parts of the impedance and the smith chart. 

Fig5-24 shows the input impedance and smith chart normalized to a 50 ohms system 

impedance. It can be understood from Fig5-24(b) that we would probably need a 

complex matching system.  

 

Fig. 5-24 (a) Input Impedance (b) Smith Chart Mentioned Antenna Normalized to a 50 Ohm System 

Impedance. 
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We can see in Fig5-25 that changing the reference impedance from 50 ohms to 

other impedances for example 200 ohm does not improve the VSWR therefore a simple 

transformer cannot help in this case.  

 

 

Fig. 5-25  (a) Antenna S11 (b) Smith Chart (c) Input Impedance of the Mentioned Antenna Normalized to a 

200 Ohm System Impedance. 

Redesigning the solenoid structure can give us a practical way to achieve a 

wideband match for the toroidal antenna without needing a complex matching system. 

The solenoid of the new antenna configuration has more bars and the gap between the 

curved twin line is bigger than the previous antenna structure.  
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Fig5-26 shows the side view and top view of a quadrant of the toroidal magnetic 

antenna with 4 feed loops, 24 bars to the ground, and a bigger distance between the 

curved twin lines than the previous structure.  

 

 

Fig. 5-26 Quadrant of the Toroidal Magnetic Antenna with 4 Feed Loops and a 24 Bar Solenoid (a) Side 

View (b) Top View. 

The peak gain and S11 of the antenna with 4 feed loops and a solenoid with 24 

bars is shown in Fig.5-27 and we see that the VSWR (normalized to a 50 ohm system 

impedance) does not show any improvement compared to the previous geometry. We 

will see later that the VSWR of this geometry will have a considerable improvement 

when normalized to a 200 ohm system impedance. 
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Fig. 5-27 (a) Peak Gain and (b) S11 of the Mentioned Antenna Normalized to a 50 Ohm System 

Impedance. 

In order to see the impedance behavior of the new antenna configuration we again 

look at both the impedance of the antenna and the smith chart. Fig. 5-28 shows the input 

impedance and smith chart normalized to a 50 ohms system impedance. Although the 

reflection coefficient plotted in the smith chart in Fig.5-28 (b) is not located at the center 

of the smith chart, which is shown as an undesirable VSWR in Fig 5-27 (b), we can see 

that it is centered at the 250 ohm location in the smith chart.  As shown in Fig 5-29(b) if 

we use a 200 ohm system impedance (a 4:1 transformer) we can move the reflection 
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coefficient to the center of the smith chart meaning that we will have a good wideband 

match. 

 

Fig. 5-28 (a) Input Impedance and (b) Smith Chart of the Mentioned Antenna Normalized to a 50 Ohm 

System Impedance. 

In Fig. 5-29, the S11 of the new antenna configuration and the smith chart can be 

seen normalized to a 200 ohm system impedance which shows a good VSWR with only a 

4:1 transformer needed, proving that tuning the solenoid structure can be used to achieve 

good VSWR in the desired frequency range from 280 MHz to 400 MHz. 
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Fig. 5-29 (a) Antenna S11 (b) Smith Chart of the Mentioned Antenna Normalized to a 200 Ohm System 

Impedance. 

5.6 Conclusion 

In this chapter, it has been shown that using the proposed parallel solenoid feed 

system for permeable antennas eliminates the significant phase delay problem of 

conventional solenoids and the complex feeding circuit required for multiple feed loops.   

In antennas such as toroidal magnetic antennas, using the proposed solenoid feed 

will enhance the performance of the antenna by maintaining the flux inside the antenna 

which results in higher peak gain and higher realized gain. Although the superior 

performance of the parallel solenoid feed system has been shown by some antenna 

examples, it is not limited to the mentioned antennas. Any type of antenna that needs to 

have a contained flux can benefit from a properly designed solenoid feed. Any true 

magnetic antenna using permeable magnetic material and having magnetic current in a 

permeable channel can have its current distribution tailored and its efficiency optimized 

by the use of a parallel solenoid. Once the baseline rules of thumb are used to begin the 
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design, the antenna engineer can use full wave simulation software like HFSS or CST to 

fine tune the solenoid parameters for their particular antenna. The key goal is to 

determine the number of bars needed to maintain the flux at low frequencies while 

allowing the wave to radiate easily at high frequencies.  

Additionally, this new proposed feed structure can be used as a tuning mechanism 

to achieve specific input impedance design goals. In a specific example, changing the 

number of grounded bars and the distance between the curved twin lines in the solenoid, 

we achieved a very good VSWR with only a 4:1 transformer.  

Up to this point in the dissertation we have seen that the parallel solenoid feed 

helps to bind the magnetic flux to the permeable channel at lower frequencies, preventing 

leakage, while at the same time not over binding the flux and allowing an efficient 

radiation at higher frequencies. The reason the parallel solenoid is able to do this is that it 

is a frequency dependent structure and therefore can manipulate the frequency dependent 

behavior of the channel itself so it can carry a nearly uniform amplitude magnetic current 

wave.  

The ultimate test in the applicability of the parallel solenoid structure would be to 

use it in a frequency independent magneto dielectric antenna, for example a spiral, since 

we know that the ultra-wideband performance of the spiral is dependent on the current 

channel carrying a uniform amplitude traveling wave near the speed of light over the 

entire large bandwidth. This is the topic of the next chapter and we will demonstrate the 

importance of the parallel solenoid feed structure on a magneto-dielectric Archimedean 

spiral antenna and prove the crucial importance of the flux binding structure.  
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CHAPTER 6 

 DEMONSTRATION OF THE EFFECT OF THE PARALLEL SOLENOID FEED ON A 

MAGNETIC ARCHIMEDEAN SPIRAL ANTENNA  

 

“The human mind always makes progress, but it is 

a progress in spirals.” 

Madame de Stael 

 

6.1 Introduction 

As mentioned in the previous chapter, the parallel solenoid feed is a new kind of 

electric feed configuration for permeable antennas and it is crucial to their performance 

because all realistic magneto dielectric antennas need a flux binding mechanism. In this 

chapter, we show that this feed mechanism can pass the ultimate test which is flux 

binding for a frequency independent magneto dielectric antenna for the specific example 

of an Archimedean spiral. In previous chapters, we have shown for the toroidal magnetic 

antenna that in addition to the solenoid overcoming the problems of conventional feeds it 

can be used as a tuning aid to obtain desirable input impedance properties. At the same 

time, the antenna performance is enhanced by maintaining the flux inside the material 

which results in higher peak gain and higher realized gain.  

 

 

 

 

This chapter is based on our published patent: R. Diaz, T. Yousefi, T. Sebastian, S. Clavijo, “New 

Parallel Solenoid Feed Structure for True Magnetic Antennas”, Patent number: US  20160365642 A1, 

filed on January 2015, Published  
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The magnetic antenna presented in this chapter is a spiral antenna. We 

demonstrate the design and simulation of a magnetic spiral antenna built with 123 NiZn 

tiles each with a 4inch × 4inch cross section and 6mm thickness. Similar to the 

previously designed toroidal magnetic antenna, this magnetic antenna also needs a proper 

flux channel to prevent the flux from escaping the magnetic material. Our goal is to 

design a spiral antenna with high gain, frequency independent impedance behavior, and a 

circular polarization; and we will show how the parallel solenoid feed is necessary to 

obtain the desirable antenna properties.   

In section 2 we will start with the theory of spiral antennas and how it would 

affect the design of the proposed magnetic antenna in terms of the spiral active region. As 

a baseline the Archimedean spiral with one feed at the center using the ferrite tiles will be 

demonstrated. 

Section 3 shows how using a solenoid feed helps with both increasing the gain 

and achieving a frequency independent behavior. In this section we will also compare 

three different magnetic spiral antenna geometries which are the magnetic spiral antenna 

without any solenoid feed, the same antenna with an 8 loop solenoid touching the ferrite, 

and the final design which is the parallel solenoid fed antenna with 30 loops to ground. 

The comparison shows the benefit of the solenoid feed and the importance of having a 

small gap between the solenoid and the ferrite surface. In this section, we will see how 

crucial the parallel solenoid feed is.  

In section 4, the final antenna geometry and results are shown and the radiation 

patterns show the circular polarization. We have also shown that the antenna has a good 
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efficiency in the frequency range of operation defined by the smallest and largest active 

region. It is also shown that using the CZN Ferromagnetic metal laminates to build the 

antenna instead of the NiZn tiles would result in a significant increase in gain and 

efficiency which is the result of much higher Hesitivity of the laminates. 

 

6.2 Basic Archimedean Spiral with One Feed at the Center 

In order to get an idea of how the parallel solenoid works for the case of the spiral 

antenna and why it is necessary; we have to first understand how the spiral antenna 

works. A spiral antenna is a frequency independent antenna by nature. The figure below 

shows the current on a two wire spiral antenna. If the wavelength is very large as is the 

case shown in the figure, we can see the current amplitude in the first half wavelength 

which is a sine function. If we make the wave length too long it will look like we have a 

bent two wire transmission line that where ever we have a current, right next to it we 

have an opposing current and an observer at the far field would not expect radiation to 

occur.  

 

Fig. 6-1 Currents on a Spiral Antenna Near the Feed Tend to Cancel Each Other as Seen from the Far Field 
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However, if we go far enough we will reach a point over which the wave on the 

wire undergoes a 180 degree phase shift as the wire physically sweeps zero degrees to 𝜋. 

We will get to a point on the spiral that the currents on adjacent arms on the spiral are 

pointing in the same direction and the currents on the other side are also pointing in the 

same direction. Thus a far field observer will not see any radiation coming from the 

origin but he will see a region (a band) that seems to be the source of all the radiation. 

The circle seen in Fig.6-2 is called the active region and in that region we seem to have 

all the radiation sources for the specific frequency in which 2𝜋𝑅 = 𝜆 

The reason that this structure is frequency independent is that at all frequencies; if 

the spiral is big enough, we will have an active region for that frequency. The region 

appears for high frequencies near the origin and for the lower frequencies far from the 

origin. 

 

Fig. 6-2 Currents on a Spiral Antenna at the Active Region. 
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If in addition to the scaling property, the structure is also self-complementary then 

absolute frequency independence of the impedance is guaranteed. Since we are limiting 

the dimension of the antenna, we will have a minimum frequency that the antenna could 

work in defined by the outer radius of the spiral and a maximum defined by the smallest 

turn near the center. Fig.6-3 shows the smallest and largest active region expected for a 

general spiral antenna and Fig.6-4 shows the smallest and largest active region expected 

for the Archimedean spiral built using 4 inch square ferrite tiles. The largest active region 

which defines the low end is approximately when the outer perimeter is 1 lambda which 

in this case is at 95MHz (purple circle). The high end has to start around the red circle 

since the central three tiles would be just a linear dipole. This is about 0.95m in perimeter 

or 315MHz. This behavior will show itself as a drop in efficiency and gain after 315 

MHz . 

 

Fig. 6-3 Smallest and Largest Active Region Supported by a General Spiral Antenna.  
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Fig. 6-4 Smallest and Largest Active Region Supported by Our Specific Antenna Delimit Its Operational 

Band to Between 95 MHz and 315 MHz 

The Archimedean spiral suggested in Fig. 6-3 was designed using 123 NiZn tiles 

each with a 4inch × 4inch cross section and 6mm thickness and the unit tile highlighted 

in Fig. 6-4(b) consists of three tiles stacked on top of each other resulting in 18mms total 

height of the spiral. The spiral shown in Fig.6-4(b) has been fed with one feed loop at the 

center of the antenna. The permeability of the material is that shown in Fig.6-4(a) with a 

𝜇𝐷𝐶of the order of 2500 and a relaxation frequency of about 3MHz. 

At this point we expect the flux to leak in the VHF frequency range and higher 

since the permeability drops in that frequency range and we only have one feed at the 

center. As we have guessed at this point and the results will prove later, the parallel 

solenoid feed is necessary to keep the flux inside the magnetic spiral.  



142 

 

 

Fig. 6-5 (a) Frequency Dependence of the Permeability of Nizn Tiles (b) Basic Model of a Ferrite 

Archimedean Spiral Antenna with Only One Feed at the Center. 

The efficiency, gain, and the impedance of the basic ferrite Archimedean spiral 

antenna are shown in Fig.6-6 (a) Fig 6-6(b) and Fig. 6-7.  
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Fig. 6-4 (a) Efficiency of the Single Loop Fed Spiral Antenna (b) Peak Gain of the Single Loop Fed Spiral 

Antenna, and the Impedance of the Basic Ferrite Archimedean Spiral Antenna. 

 

Fig. 6-5 Impedance of the Single Loop Fed Spiral Antenna 
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Fig.6-7 shows that the impedance response is not frequency independent which 

we already expected since there is no way to keep the flux from leaking from the 

structure. A plot of the ∮𝐸 ∙ 𝑑𝑙 along the structure which is the magnetic current 𝐼𝑚 can 

clearly show if this is the case. 

In order to do this, we will use HFSS field calculator as follows. We define 

integration paths as shown by the black loop in Fig.6-7. The distance from feed is defined 

as the length of the path from feed to the integration path as shown by the yellow arrow. 

After calculating the integral along a number of integration paths we can plot ∮𝐸 ∙ 𝑑𝑙 as a 

function of distance from the feed point.  

 

 

Fig. 6-6 Impedance of the Single Fed Spiral Antenna. 

A few integration paths and a table of the distance of the paths from the center can 

be seen in Fig.6-8 and the numbering of the lines is as shown in the HFSS model below. 
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Fig. 6-7 A Few Integration Paths and a Table of the Distance of the Paths From the Center For the Single 

Loop Fed Spiral Antenna. 

By having the integration data, we can plot the integral versus frequency for 

different lines as seen in Fig. 6-10.  We can see that as we get further from the feed, the 

flux escapes therefore similar to other magnetic antennas, using the parallel solenoid is 

necessary. 

We have also plotted ∮𝐸 ∙ 𝑑𝑙  versus distance from the feed at three different 

frequencies as seen in Fig. 6-11.   
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Fig. 6-8 Integral Versus Frequency for Different Lines for the Single Loop Fed Spiral Antenna. 

 

Fig. 6-9 Value Of ∮𝐸 ∙ 𝑑𝑙  Versus Distance from the Feed 
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The previous figure also shows that there is no mechanism to keep the flux inside 

the material. Therefore, the next logical step would be adding a solenoid feed with loops 

to ground as seen below. First, we start with a solenoid feed with only 4 loops to ground. 

The lines shown in black are integration paths and numbering of the lines is similar to 

what we had before and in this structure, there is a 3mm distance between the solenoid 

and the ferrite. The integration lines (paths) have a 1mm distance from the ferrite which 

makes them identical to the paths for the previous case (without the solenoid).  

A few integration paths and a table of the integration values can be seen In Fig. 6-

12 below.  

 

 

Fig. 6-10 A Few Integration Paths and a Table of the Distance of the Paths From the Center for the 4 Loop 

Solenoid Fed Spiral Antenna.  
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The integral versus frequency for different lines is shown in Fig. 6-13.  It can be 

seen that a line that is farther from the feed, does not necessarily have lower flux at all 

frequencies which is the effect of adding the solenoid.   

 

Fig. 6-11 Integral Versus Frequency for Different Lines for the 4 Loop Solenoid Fed Spiral Antenna  

This means that there is a mechanism that is trying to keep the flux inside the 

material. A plot of the ∮𝐸 ∙ 𝑑𝑙 versus distance from the feed at a few frequencies similar 

to what had been done in Fig.6-11 will help to see this more clearly. In order to compare 

these two cases, we have shown the flux versus distance of the two cases side by side. It 

can be seen that at the position of the loop to ground we have an increase in the flux. 

Therefore, in the next section we will study the effect of adding more grounded loops to 

the solenoid.  
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Fig. 6-12 Plots of 𝐼𝑚 = ∫𝐸. 𝑑𝑙 for (a) Spiral Antenna with One Feed Loop at the Center (b) the Solenoid 

Fed Spiral Antenna With 4 Loops to Ground. Showing an Increase In 𝐼𝑚 at the Position of the Loop. 

6.3 The Effect of Using a Solenoid Feed with Multiple Grounded Loops 

In the previous section, we saw that adding four grounded loops and using a 

solenoid feed begins to help maintain the flux in the material. Therefore, we will study 

the effect of adding even more loops to ground. Our goal is to achieve a high gain while 

having impedance that is frequency independent since the impedance shown in Fig. 6-7 is 

not. We will also show that the solenoid should be spaced a small distance from the 

ferrite surface to minimize near field loss and then we will show that adding the number 

of loops will result in smoother impedance and a higher gain and efficiency. 

The figure below shows how the peak gain changes with adding more and more 

loops. It should be noted that as the red plot shows, when the solenoid feed is touching 
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the ferrite we have a significant loss. Therefore, in all other cases, which are named as 

distanced, we have a 3mm gap between the solenoid feed and the ferrite. 

 

 

Fig. 6-13 Changes in Peak Gain When We Change the Number of Loops to Ground From 4 Loops to 30 

Loops and Comparing the Results to the Case Without the Solenoid and the Case of the 8 Loop Structure 

Touching the Ferrite. 

The comparisons between the gains show that adding the loops will increase the 

gain but another important factor is the impedance behavior. Fig. 6-14 (a) and (b), below 

show two different cases. The first case is the magnetic spiral antenna without any 

solenoid feed and the second case is the solenoid fed antenna with 30 loops to ground. 

The impedance of each of these antennas has been plotted in Fig. 6-14(c) and the gain is 

plotted in Fig.6-16(d). We see that the antenna with the 30 loop solenoid has both high 

gain and nearly frequency independent impedance. 
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Fig. 6-14 (a) Magnetic Spiral Antenna Without any Solenoid Feed, (b) Magnetic Spiral Antenna With an 8 

Loop Solenoid Touching the Ferrite and,  (c) the Solenoid Fed Spiral Antenna With 30 Loops to Ground, 

(d) the Impedance of Each of the Antennas (e) the Gain of the Antennas. 

At this point a comparison between the reflected power, the radiated power, and 

the lost power of the three mentioned antennas would be useful. These powers are 

defined as seen in equations below and can be calculated from the data obtained from 

HFSS.   

 

 𝑃𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 = 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × (1 − |𝛤|2) (6-1) 

 𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = |𝛤|2 (6-2) 

 𝑃𝑙𝑜𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 − 𝑃𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 (6-3) 
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 𝑃𝑙𝑜𝑠𝑡 = (1 − |𝛤|2) − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × (1 − |𝛤|2) (6-4) 

The table below shows the values of these powers for each antenna 

 

Table 6-1 Values of Powers for Each Antenna. 

Results at 250 MHz 𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑃𝑙𝑜𝑠𝑡 

Antenna with no 

solenoid 

62% 6% 32% 

8 loop antenna 8% 2% 90% 

30 loop antenna 15% 16% 69% 

 

We can see that the final antenna (Antenna with 30 loops to ground) has the most 

power radiated which again shows the importance of the solenoid feed. The reason that 

the power lost in the case with no solenoid seems to be low is that most of the power is 

already reflected which means frequency dependent behavior and bad VSWR. The low 

reflected power of the final antenna shows a good match.  

It should be noted that the NiZn ferrite tiles being used for this antenna are sold as 

RF absorber tiles for Electromagnetic Compatibility (EMC) anechoic chambers. As the 

permeability spectrum shows in Figure 6-4 the permeability at 250MHz is predominantly 

imaginary. Thus, losing input power is not a surprise, the surprise is that only 69% of the 

power is lost and that Gain approaching 0dB CP can be attained.  
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6.4 Final Antenna Geometry and Results 

The figure below shows the final antenna geometry with the dimensions. The 

distance between the vertical rods and the ferrite is 6mm and the distance between the 

horizontal rods and the ferrite is 3mm. The solenoid consists of 30 loops to ground and 

there is no resistor termination for the low end is needed.  

 

Fig. 6-15 Model and Dimension of the Final Design of the Magnetic Spiral Antenna. 

To put in perspective the contribution of the parallel solenoid Fig. 6-18 compares 

the original 4 loop design to the final design. The figure shows that the measured 

performance matched the computational simulations within the expected measurement 

and fabrication uncertainties (middle top). The next iteration of the parallel solenoid is 

shown in the lower CAD figure and its performance in the second plot in the middle. The 
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design with 30 loops to ground increases the Gain by up to 4dB and smooths out the 

performance over the band. As the input impedance plots at the bottom show the input 

impedance is indeed slowly varying with frequency and easily matched to a 50 ohm 

standard microwave system by simply using a 2:1 transformer.  

 

Fig. 6-16 (a) Photograph of the First Version of the Spiral Fed by a 4-Loop Parallel Solenoid (b) HFSS 

Models of the Same Structure With 4 Loops and 30 Loops and the Measured and Simulated Gain (c) Input 

Impedance and Smith Chart Representation  

In the following plot, the S11 of the structure can be seen after the 2:1 transformer 

which shows a 11:1VSWR bandwidth 
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Fig. 6-17 S11 of the Spiral Antenna Showing a Very Good Match After Only A 2:1 Transformer 

In order to see if the antenna has a circular polarization we will plot the antenna 

pattern in a lower and a higher frequency. We see that we have a very good circular 

polarization in lower frequencies and the axial ratio get worse as we go to higher 

frequency. Fig. 6-20 shows the Gain𝜃  pattern at f=95MHz at 𝜑 = 0 and 𝜑 = 90 and Fig. 

6-21 shows the Gain𝜃  pattern at f=235MHz at 𝜑 = 0 and 𝜑 = 90 

 

Fig. 6-18 Gain𝜃  Pattern at f=95MHz at 𝜑 = 0 and 𝜑 = 90 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 
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Fig. 6-19 Gain𝜃  Pattern at f=235MHz at 𝜑 = 0 and 𝜑 = 90 𝐷𝑒𝑔𝑟𝑒𝑒𝑠. 

Fig. 6-22 shows the efficiency of the final parallel solenoid fed antenna, the 

theoretical efficiency of an Archimedean antenna with a height of 18mms and the spiral 

fed with a single loop and the antenna when the solenoid is touching the surface of the 

ferrite. The center fed spiral has high efficiency but is not frequency independent and the 

case of the solenoid touching the ferrite has a frequency independent behavior but has 

low efficiency. It can be seen that the final antenna design has both high gain and a 

frequency independent behavior within its expected band of operation (95MHz to 

315MHz) and more.  
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Fig. 6-20 Plot of the Efficiency of the Final Parallel Solenoid Fed Antenna, the Theoretical Efficiency of an 

Archimedean Antenna with a Height of 18mms, and the Spiral Fed with a Single Loop and the Antenna 

When the Solenoid Is Touching the Surface. 

6.5 Archimedean Spiral Antenna Built Using CZN Laminates Instead of NiZn Tiles 

In this section we show the gain results that would be obtained using CZN 

ferromagnetic laminates instead of the tiles. If we can find a way to use the laminate 

material we expect to have a much higher efficiency at a specific bandwidth but there is a 

risk of lower gain and efficiency at lower frequencies because the 𝜇𝐷𝐶 of the laminates 

are much lower than the tiles.  Another important fact is that we no longer need to have a 

4inch × 4inch cross section and we can have a smaller thickness (if needed). 
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We know that both material volume and hesitivity are important to get a high 

efficiency. The Hesitivity of NiZn  is about 35,000 ohms per meter and the Hesitivity of 

the laminates is 350,000 ohms per meter which is much higher . In order to model the 

laminate material in HFSS we have to take note that this material is anisotropic and the 

mu tensor has different values for different directions. In order to solve this problem we 

model the spiral antenna as seen below.  

 

Fig. 6-21 Model of the Spiral Antenna Using CZN Laminates. The Different Regions, Due to the 

Anisotropic Material, Are Shown in Green and Blue. 

In Fig. 6-23 we see the x-directed sections shown in green and the y directed 

sections shown in blue. Since the CZn laminate is an anisotropic material each of these 

sections had to be defined with their own tensors shown as 𝜇𝑋  and 𝜇𝑌  below. 

𝜇𝑋=[
𝜇𝐶𝑍𝑛(𝜔)

1
1

]                                                 𝜇𝑌=[
1

𝜇𝐶𝑍𝑛(𝜔)

1

] 
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This model includes a 2mm gap at the mitered corners and yet the parallel 

solenoid prevents the flux from escaping at those corners. The figure below shows a 

comparison between the peak gain of the ferrite tile antenna and the CZN laminate 

antenna which shows that the laminate antenna has much higher gain. 

 

Fig. 6-22 Peak Gain of the Ferrite Tile Antenna (Purple) and the CZN Laminate Antenna(Blue). 

 

6.6 Conclusion 

In the previous chapters, we had shown that using the new concept of parallel 

solenoid feed system for permeable antennas instead of the conventional feeds resulted in 

higher gain and better impedance properties. In this chapter, we have demonstrated the 

importance of using the parallel solenoid feed mechanism for a magnetic Archimedean 
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spiral antenna. We have proved that by adding the parallel solenoid feed to the magnetic 

spiral antenna we could get high gain and efficiency and frequency independent behavior, 

good axial ratio, and a bandwidth of 11:1 (only limited by the dimensions of the spiral) 

which shows the necessity of using the parallel solenoid feed for these types of antennas. 

The next logical evolution of this work would be to design a much more general 

magnetic flux channel in which source excitation, flux binding, tailoring of the frequency 

response of the guiding surface are all attained. As we will see in full detail in the next 

chapter, by pushing the magnetic material inside the ground in a trough like structure, this 

will be possible and the structure will be completely conformal to the outer platform. The 

metalized trough channel will be introduced in the next chapter in full detail as an 

evolution to the work done in the previous chapters with the goal of obtaining analytic 

model with design rules that can be used by engineers to design optimum flux channels 

for practical applications. 
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CHAPTER 7 

 Comprehensive Study on Metalized Magnetic Flux Channel Antenna 

 

“The significant problems we face today cannot be 

solved at the same level of thinking we were at when we 

created them.” 

Albert Einstein 

 

7.1 Introduction 

In our previous chapters, we have addressed the unexpectedly high Efficiency-

Bandwidth Product (EBWP) of conformal antennas constructed from existing realistic 

(dispersive, lossy) magneto-dielectric materials (such as ferromagnetic metal films and 

ferrites) [2, 27, 28]. For instance, the toroidal magnetic antenna, constructed from a high 

permeability (and low permittivity) dispersive material and used as an electrically thin 

conformal antenna, exhibits a radiation efficiency up to two orders of magnitude higher 

than metal conformal antennas constrained to the same volume. This is an instance of the 

general principle that permeable antennas have an advantage over metal (and dielectric) 

antennas in low impedance environments, such as: conformal to a metal surface, adjacent 

or inside the human body, immersed in water, or inside the earth.  

One of the most important factors in designing a magneto dielectric antenna with 

a large bandwidth is making sure that the antenna can guide the wave along the structure 

with a speed close to the speed of light. When this is the case, we are assured by the 

duality of Maxwell’s equations that the permeable antenna conformal to a metal ground 
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plane will behave exactly (in a complementary sense) like conventional metal antennas 

suspended in free space. 

 The success of the parallel solenoid feed must therefore be attributable in part to 

this phenomenon. The two-wire transmission line that carries the excitation from the feed 

to all the loops by definition carries a TEM-like wave that must travel close to the speed 

of light. However, we have also found out that there are limits to the performance of the 

parallel solenoid feed whereby using too many loops appears to over-bind the wave, trap 

it at high frequencies, and therefore lead to sub-optimal performance. We therefore need 

an explicit design technique and apparatus that can allow us to control the propagation of 

the magnetic current wave in these permeable antennas in such a way that near-light-

speed propagation can be obtained over the widest frequency band possible.  

Figure below shows the toroidal magnetic antenna [28] and the Archimedean 

spiral magnetic antenna using the parallel solenoid feed as the flux binding method. 

 

Fig. 7-1 (a) Magneto Dielectric Archimedean Spiral and a (b) MD Toroid Fed with a Multiloop Solenoid 

Feed 
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We can recognize that the parallel solenoid is simply an approximate, discrete, 

instance of the more general concept of an admittance surface surrounding the magneto-

dielectric flux channel. The trough geometry, seen below, is the most convenient way to 

implement this tailored-admittance surface concept. We will explain the effect of the 

trough with the spiral antenna as an example. 

 

 

Fig. 7-2 The Generalized Magneto Dielectric Trough Antenna 

 

The Spiral antenna seen below and explained in detail in the previous chapter is 

an example of an antenna that uses the parallel solenoid to help contain the magnetic flux 

inside the material and make the dB/dt magnetic current as uniform as possible over a 

broad band. As previously mentioned, This Spiral was built using 123 NiZn tiles each 

with a 4inch × 4inch cross section and 6mm thickness we started with using only 4 loops.  
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Fig. 7-3 Spiral Antenna with a 4 Loop Solenoid Feed 

We have seen many times that the number of loops in the solenoid is a very 

important factor in flux binding therefore a simulation was done using 30 loops instead of 

4 loops. The resulting gain using a 30 loop solenoid compared to a 4 loop solenoid can be 

seen below. We repeat this so we could use this as a comparison to the more generalized 

flux channel in the trough form.  
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Fig. 7-4 Comparison of the Gain of a Spiral Antenna Using Different Number of Loops in the Solenoid 

Feed. 

The figure above shows more than 4dB improvement in VHF gain by increasing 

the number of loops. The next logical step is to see if we can improve the results using 

the trough structure instead of the parallel solenoid. The figure below shows the spiral 

antenna buried inside the trough with the material surface having a 6mm distance from 

the metal surface and the parallel solenoid implemented as thin metal bars connected to 

the surrounding ground plane. 
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Fig. 7-5 Different Views of the Magnetic Trough Spiral Antenna 

The peak gain and efficiency of the solenoid fed antenna and the trough antenna 

can be seen in figure 7-6. It shows that the trough geometry has resulted in a significant 

increase in both gain and efficiency and now we can put those antennas conformal to any 

conducting surface. 

 

Fig. 7-6 (a) Peak Gain (b) Efficiency of the Spiral Antenna with the Solenoid and with the Trough  
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Now that the effect of the trough on the antenna parameters is obvious we will 

follow with studying the trough structure in detail. Our goal in proposing and studying 

the trough has been to create a structure where source excitation, flux binding, and 

tailoring of the frequency response of the guiding surface can be tuned and controlled. To 

make these results most useful to the engineer we seek to develop them in closed form, 

not by repeated fullwave simulation. Thus, when we wish to incorporate the surface 

admittance on the mouth of the trough the simplest implementation is a slitted plane, a 

well-known capacitive boundary that also admits of a closed form solution. 

 In this chapter, we develop the theory of the magneto dielectric open trough and 

the trough having a slit. We will see how the geometry (cross section) of the open trough 

and the dimensions of the slit affect its. 

The ultimate purpose of this work is to lay down the foundation for the next 

generation of magneto dielectric antennas attained by giving the structure these additional 

degrees of freedom. In the same way that the magneto dielectric antenna can be viewed 

as a revisiting of the ferrite rod antenna of AM radio days and taking it to its logical 

extreme, the process of deriving the new structures in this paper can be viewed as the 

result of revisiting the classic leaky antennas studied by Oliner and others [31, 32] and 

taking them to their logical extreme. 

Because the performance of the new antenna will be compared to that of the 

magneto-dielectric rod, we recap the approach to the solution and results for the infinite 

MD rod in Appendix B. The approach is to solve the Green function problem of the 

structure excited by a current band with the only limitation that we assume the current 
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band and the fields it excites are uniform in the direction of the current (that is no phi 

dependence for the rod geometry and only TE0n modes excited inside the trough.) 

In section 2 we will see how the phase and amplitude of the magnetic current 

distribution changes as a function of distance from the feed for these antennas. The slope 

of the current amplitude plot (𝑛𝑎𝑚𝑒𝑑 𝑡ℎ𝑒 𝛼 𝑝𝑙𝑜𝑡) and the slope of the current phase 

(𝑛𝑎𝑚𝑒𝑑 𝑡ℎ𝑒 𝛽 𝑝𝑙𝑜𝑡)will be studied as a measure of wave decay and wave velocity 

respectively. Later we will calculate the total power dissipated using the induced EMF 

method and the radiated power from the Poynting vector and show the formation of the 

modes and the bandwidth. 

Section 3 will cover the theory of the open magneto dielectric trough. The fields 

of this geometry will be examined and both the amplitude and phase of the magnetic 

current of the open magneto dielectric trough will be plotted. Similar to what had been 

done for the MD rod, the 𝛼 𝑝𝑙𝑜𝑡 and the 𝛽 𝑝𝑙𝑜𝑡 will be obtained for the open trough and 

the total power and the radiated power will also be shown for this geometry 

In section 4, the slitted trough geometry will be introduced and all the parameters 

mentioned in previous sections will be calculated for this case in order to be used as a 

means of comparing the behavior of the three proposed geometries 

Section 5 will serve as a comparison study to show which geometry has more 

degrees of freedom and how these degrees of freedom can be used to design the best 

magneto dielectric antenna. 
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7.2 Theory of the infinite magneto dielectric rod  

The Magneto-Dielectric Antenna is obtained by replacing the electric conductor 

of the conventional metal antennas with a penetrable permeable material. Appendix B 

contains the details of the derivation 

 

 Phase and amplitude plots of the magnetic current of the MD rod 7.2.1

Fig.7-7, shows the amplitude and phase of 𝑰𝒎 as a function of the distance from 

the feed multiplied in units of  (𝑧/𝜆) for a magneto-dielectric rod with a 2 inch radius and 

a material with 𝜇 = 80  and 휀 = 2. The 2” rod serves as an example to study the 

behavior. The light line is the line of 2 radians phase shift per wavelength. 

 

Fig. 7-7 Amplitude (a) and Phase (b) of the Current as a Function of the Distance From the Feed Multiplied 

by the Wavelength (𝑧/𝜆) for a Magneto-Dielectric Rod With a 2 Inch Radius and a Material with  𝜇 = 80  

And 휀 = 2. Frequencies Go From 30 MHz to 170 MHz In 20 MHz Steps. The Star Symbol Shows the 

Current Wave Approaching the Light Line. 
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By looking at both the amplitude and the phase plots we see that at very low 

frequencies the waves are fast (below the light line) and the amplitude decays 

precipitously away from the feed. These are leaky waves. As we get closer to 170MHz, 

the approaching surface wave onset tends to flatten the amplitude of the current wave and 

brings its speed close to light, thus the MD rod behaves more and more like a PMC metal 

antenna as it approaches onset. The star symbol in the phase plot highlights these 

conditions. At this point it would be interesting to see what happens as we go higher in 

frequency and cross the onset therefore we will examine another set of 8 frequencies 

 

Fig. 7-8 Amplitude (a) and Phase (b) of the Current as a Function of the Distance From the Feed Multiplied 

by the Wavelength (𝑧/𝜆) For a Magneto-Dielectric Rod with a 2 Inch Radius and a Material with   𝜇 = 80  

and 휀 = 2. Frequencies Go From 190 MHz to 330 MHz in 20 MHz Steps. The Star Symbol Shows the 

Current Wave Approaching the Light Line. The Blue Arrows Shows the Current Wave Going from One 

Mode to Another Mode and the Red Arrow Shows the Plateau That’s the Indication of the New Mode 

Starting to Appear  

Fig.7-8 shows the amplitude and phase of 𝑰𝒎 versus distance from the feed in 

wavelengths for frequencies from 190MHz to 330MHz with 20MHz frequency steps. In 

Fig.7-7 we saw that in the 170MHz frequency we are close to the speed of light and the 
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amplitude started to get flat. Now by looking at Fig.7-8, as shown by the start symbol, we 

see that at 190 MHz, the phase is very close to (5 × 2𝜋 = 31.41) which means we are 

just above onset of the guided wave shows amplitude behavior very much like the PMC 

with decay close to log(1/|z|). It also shows a phase velocity very close to that of light.  

As we go from 190 MHz to higher frequencies up 270 MHz which is shown in 

green we see that the slope of the phase increases and the amplitude keeps getting flatter 

(more uniform). In this region, we have started to guide the TE01 mode and we will see 

that since the slope of the phase is more than the light-line we have waves that are slower 

than light and all of these show a guided wave.  

As we follow the blue arrows and go higher than 270 MHz (starting from the 

orange line), we see a sudden change in both phase and amplitude. This means that the 

next mode which is the TE02 is beginning to appear and as shown with the red arrow, we 

have a fast wave with a large attenuation constant near the feed. The plateau shown in 

both phase and amplitude curve reveals a very slow wave, probably the last time we can 

excite the TE01 mode from the surface of the rod. After 310 MHz we are at a frequency 

that TE02 has not reached onset and similar to the lower frequencies we again start with 

the leaky fast waves. 

Fig.7-9 shows the same plots from 350 MHz to 490 MHz.  Around 410 MHz 

(blue curves) the amplitude becomes much like the PMC antenna’s and the phase 

velocity crosses the light line. Above that the wave continues to become better bound 

again, this time as TE02, but in complete analogy to what we saw above already. 
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Fig. 7-9 Amplitude (a) and Phase (b) of the Current as a Function of the Distance From the Feed Multiplied 

by the Wavelength (𝑧/𝜆) for a Magneto-Dielectric Rod with a 2 Inch Radius and a Material with   𝜇 = 80  

And 휀 = 2. Frequencies Go from 350 MHz to 490 MHz in 20 MHz Steps.  

In this sub-section we have plotted the phase and amplitude plots of the magnetic 

current and found out that as we approach the onset frequency the amplitude tends to get 

flatter and the slope of the phase reaches the value of 2𝜋 per wavelength at onset. This 

leads us to use the slope of the phase and amplitude plot as parameters that describe the 

wave velocity and attenuation respectively. As we will see in the next subsection we will 

name the slope of the amplitude plot versus frequency the 𝛼-plot and the slope of the 

phase plot versus frequency the 𝛽-plot 

 

 Using Savitzky-Golay filters to smooth data and obtaining 𝛼 and 𝛽 plots for MD 7.2.2

rod 

In this subsection, we briefly explain how the Savitzky-Golay filters work and we 

describe the procedure of obtaining the required slopes to plot the 𝛼-plots and  𝛽-plot. By 

looking at Fig.7-10, we see that it is important to decide which values of (𝑧/𝜆)  are 



173 

 

chosen for slope estimation. Starting with the magneto dielectric rod, we see in Fig.7-

10that the lower values of (𝑧/𝜆) have been chosen for the estimation of the slope.  

As seen in Fig.7-10 we have chosen the amplitude data that is closer to the feed. 

For some frequencies, we might have some deviation (similar to the 30MHz in the 

picture or even more deviation for different geometries) which makes finding a linear fit 

somewhat difficult. Therefore, we need a proper lowpass filter to smooth the data and 

give the closest linear fit and the slope. The lowpass filter that has been chosen is the 

Savitzky-Golay filters which we will briefly introduce in this subsection. 

 

Fig. 7-10 Amplitude of the Current as a Function of the Distance from the Feed Divided by the Wavelength 

(𝑧/𝜆) for a Magneto-Dielectric Rod with a 2 Inch Radius and a Material with  𝜇 = 80 and 휀 = 2. 

Frequencies Go from 30 MHz to 170 MHz in 20 MHz Steps.  

What is interesting about Savitzky-Golay filters is that Savitzky and Golay’s 

paper , published in 1964, was described in 2000 by editors of the journal Analytical 

Chemistry as number five among the top ten papers ever published in that journal.  

In the mentioned paper, they proposed a method of data smoothing based on local 

least-squares polynomial approximation. They showed that fitting a polynomial to a set 
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of input samples and then evaluating the resulting polynomial at a single point within the 

approximation interval is equivalent to discrete convolution with a fixed impulse 

response. They were interested in smoothing noisy data obtained from chemical spectrum 

analyzers, and they demonstrated that least squares smoothing reduces noise while 

maintaining the shape and height of waveform peaks.  

The original paper showed that at each position, the smoothed output value 

obtained by sampling the fitted polynomial shown with the red circle is identical to a 

fixed linear combination of the local set of input samples shown with the blue circles. 

This means that the set of 2M+1 input samples (In the example figure, we have M=2 so 

we have a set of 5 samples) within the approximation interval are effectively combined 

by a fixed set of weighting coefficients, shown with green x’s, that can be computed once 

for a given polynomial order N and approximation interval of length 2M+1.  

 

Fig. 7-11 Demonstration of Least-Squares Smoothing by Locally Fitting a Second-Degree Polynomial 

(Solid Line) to Five Input Samples. Blue Dots Show the Input Samples, Red Circles Show the Smoothed 

Output Sample, and Green X’s Show the Effective Impulse Response Samples (Weighting Constants).  
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To clarify this smoothing technique, as seen in Fig.7-11, a set of (2M+1+5) points 

and a polynomial of the order N=2 have been chosen as the best fit to the 5 points (the 

polynomial is shown with the black line). The value of the polynomial at the center point 

(shown as zero) is the smoothed value. Then the 5 points are shifted to the right and the 

next smoothed value will be obtained. What Savitzky and Golay proved is that there is no 

need to do this since a discrete convolution with a fixed impulse response can give you 

the same results which is much more efficient. This means that the output samples can be 

computed by a discrete convolution of the form 

 

 𝑦[𝑛] = ∑ ℎ[𝑚]𝑥[𝑛 − 𝑚]

𝑀

𝑚=−𝑀

= ∑ ℎ[𝑚]𝑥[𝑛 − 𝑚]

𝑀

𝑚=−𝑀

 (7-1) 

Tables of convolution coefficients, calculated for m up to 25, were published for 

the Savitzky–Golay smoothing filter in 1964 but it is not necessary use the Savitzky–

Golay tables since the values can be obtained in closed form.  

As seen below we will find the slope of the amplitude plot of the magneto 

dielectric rod with a 2” radius in the following steps: 

Step1) We choose small values of (𝑧/𝜆) from the amplitude plot 

Step2) We use the Savitzky–Golay lowpass filtering technique on the data 

Step3) A least square method gives the approximate slope of the lowpassed data 
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Fig. 7-12 Showing the Steps of Obtaining the Slope of the Amplitude of a 2” Magneto Dielectric Rod. 

At this point we have the slopes of the amplitude plot at different frequencies so 

we can plot them as a function of frequency and obtain the 𝛼-plot as seen in the figure 

below. 
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Fig. 7-13 Slope of the Current Amplitude of a 2” Magneto Dielectric Rod or the 𝛼-Plot in Nepers Per 

Wavelength. 

The next step is doing the same for the phase plot of the rod. We use the same 

three steps to obtain the slope of the phase plot versus frequency (𝛽-plot).  

Step1) We choose small values of (𝑧/𝜆) from the phase plot 

Step2) We use the Savitzky–Golay lowpass filtering technique on the data 

Step3) A least square method can give the approximate slope of the lowpassed 

data 
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Fig. 7-14 Showing the Steps of Obtaining the Slope of the Phase of a 2” Magneto Dielectric Rod 

At this point we have the slopes of the phase plot at different frequencies so we 

can plot them as a function of frequency and obtain the 𝛽-plot as seen in the figure 

below. 
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Fig. 7-15 Slope of the Current Phase of a 2” Magneto Dielectric Rod or the 𝛽-Plot in Radians Per 

Wavelength 

Here we see that the 𝛽-plot gets close to the light line at 170 MHz which means 

that in the case of the rod with a 2” inch radius we don’t pass the lightline at 170 MHz. 

Another example is a rod with a 1.6” radius the phase and amplitude plots of the 

magnetic current can be seen below and we can see a comparison between the two rods. 

We can see that the rod with more material (more volume) approaches the lightline at 

lower frequencies than the rod with less material.  
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Fig. 7-16 Current Phase and Amplitude Plots of Rod with Different Radii  

For the next step, we will go to frequencies higher than 170 MHz for the 1.6” rod 

so that the rod passes the lightline. The phase and amplitude plots can be seen below. 

Somewhere between the pink line (210 MHz) and the brown line (230MHz) we are 

passing the light line  
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Fig. 7-17 Current Phase and Amplitude Plots of the 1.6” Rod at Higher Frequencies and Passing the Light-

Line 
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Similar to what we did before we will plot the 𝛼-plot and 𝛽-plot for the rod and 

see the passing of the light line.  

 

Fig. 7-18 Current Phase and Amplitude Plots of the 1.6” Rod at Higher Frequencies and Passing the Light-

Line 

In the phase plot, higher slopes mean lower wave speed (slow waves) and when 

the curve passes 2𝜋 we have passed the lightline. Another useful figure is to plot 
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2𝜋/(𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑐𝑢𝑟𝑣𝑒𝑠) to show the velocity of the wave compared to light. This 

plot can be seen below. 

 

Fig. 7-19 Phase Velocity Plot for the 1.6” Rod at Higher Frequencies and Passing the Light-Line 

 

 Radiated power of the antenna obtained from the Poynting vector 7.2.3

In this section, we will obtain the radiated power of the antenna from the Poynting 

vector. By plotting the radiated power, we can have a measure of the bandwidth and a 

new way of studying the antenna behavior.  

From the theory of antennas, we know that the Integration of the complex 

Poynting vector over a surface enclosing the antenna results in a complex number with 

the real part being identified as the radiated power. In this section we will obtain the 

Poynting vector and radiated power of the magneto dielectric rod.  
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The figure below shows the infinite magneto dielectric rod. The first step to 

finding the pointing vector and the radiated power is to write the fields of this antenna for 

the outside medium.  

 

Fig. 7-20  Infinite Magneto Dielectric Rod 

The fields in the outside medium of the magneto dielectric rod are as follows: 

 

𝐸𝜑

=
−𝑗𝜔𝐼𝜇0𝑎

2𝜋
∫

𝜇𝑟𝐽1(𝑘𝜌1𝑎)𝐻1
(2)
(𝑘𝜌0𝜌)𝑒

−𝑗𝑘𝑧𝑧𝑑𝑘𝑧

𝜇𝑟(𝑘𝜌0𝜌)𝐽1(𝑘𝜌1𝑎)𝐻0
(2)(𝑘𝜌0𝜌) − (𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)𝐻1

(2)(𝑘𝜌0𝜌)

∞

−∞

 

𝐻𝜑𝑧 =
𝐼𝑎

2𝜋
∫

𝜇𝑟𝑘𝜌0𝐽1(𝑘𝜌1𝑎)𝐻0
(2)
(𝑘𝜌0𝜌)𝑒

−𝑗𝑘𝑧𝑧𝑑𝑘𝑧

𝜇𝑟(𝑘𝜌0𝜌)𝐽1(𝑘𝜌1𝑎)𝐻0
(2)(𝑘𝜌0𝜌) − (𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)𝐻1

(2)(𝑘𝜌0𝜌)

∞

−∞

 

(

(7-2) 



185 

 

𝐻𝜑 =
𝐼𝑎

2𝜋
∫

𝜇𝑟𝑘𝑧𝐽1(𝑘𝜌1𝑎)𝐻0
(2)
(𝑘𝜌0𝜌)𝑒

−𝑗𝑘𝑧𝑧𝑑𝑘𝑧

𝜇𝑟(𝑘𝜌0𝜌)𝐽1(𝑘𝜌1𝑎)𝐻0
(2)(𝑘𝜌0𝜌) − (𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)𝐻1

(2)(𝑘𝜌0𝜌)

∞

−∞

 

 

The Poynting vector is defined as: 

 𝑃 =
�⃗� × �⃗⃗� ∗

2
=
𝐸𝜑�̂�𝜑 × 𝐻𝑧

∗�̂�𝑧

2
 (7-3) 

As expected the Poynting vector is a radial vector and in order to obtain the 

radiated power we should integrate the pointing vector over a cylindrical surface 

enclosing the antenna.  

 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 = ∫ ∫ 𝑃𝜌�̂�𝜌. 𝜌𝑑𝜑𝑑𝑧
𝑧=−∞

𝑧=−∞

𝜑=2𝜋

𝜑=0

�̂�𝜌 (7-4) 

The resulting radiated power for a rod with 𝜇 = 80 and a 2” radius is shown 

below. In the figure we have also shown a 0.5 dB bandwidth edge which is where the 

radiated power drops to 90% and the relative 0.5dB bandwidth is also shown for all 

modes. Obviously there can be different bandwidths defined, like a 3dB bandwidth, but 

this was our choice for demonstration. The bandwidth values showed are relative 

bandwidths which are defined as follows:  

 

 𝐵𝑊 =
𝑓𝑐 − 𝑓0.5𝑑𝐵

𝑓𝑐
 (7-5) 
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Fig. 7-21  Radiated Power of a Magneto Dielectric Rod with r=2” and  𝜇 = 80 with the 0.5db Bandwidth 

Edges and Relative Bandwidths Shown in the Figure 

A reasonable sanity check would be to compare the frequency of the peak of the 

radiated power to the cutoff frequency of each mode. We expect the peak to happen near 

the onset. As we had seen before the onset can be obtained from the phase plot of the 

magnetic current and it approximately happens when the phase plot crosses 10𝜋 at 

𝑧/𝜆 = 5 which is equivalent to the phase plot having a slope of 2𝜋. Figures below show 

the onset frequency of different modes of the rod with 𝜇 = 80 and a 2” radius and it also 

shows that the location of the peak of the radiated power happens close to the onset 

frequency for all modes. 
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Fig. 7-22  Phase Plots of a Magneto Dielectric Rod With r=2” and  𝜇 = 80 Showing the Onset Frequency 

of Each Mode. 

The next step is finding the radiated power for rods with different radii and 

comparing the bandwidth of different rods using the radiated power. The same fields 

have been derived and the same calculation has been carried out for a rod with r=1.6” 

and 𝜇 = 80. The following figures show the radiated power for the r=1.6” and 

𝜇 = 80 magneto dielectric rod and the 0.5dB bandwidth edges and the peak of the 

radiated power have been shown for each mode.  
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Fig. 7-23  Radiated Power of a Magneto Dielectric Rod with r=1.6” and  𝜇 = 80 with the 0.5db Bandwidth 

Edges and Relative Bandwidths Shown in the Figure 

Again, we have shown the phase plots for the different modes to compare the 

frequency of the radiated power peak to the onset frequency. It can be seen that 

similar to the r=2” rod, the peak approximately happens at the onset frequency.  

 

Fig. 7-24 Phase Plots of Magneto Dielectric Rod with r=1.6” and  𝜇 = 80 Showing the Onset Frequency of 

Each Mode 
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A comparison between the two rods shows that the rod with a larger cross 

section has almost the same relative bandwidth as the one with smaller cross section 

which is as expected. 

 

 

Fig. 7-25 Comparing the Rod with the Larger Cross Section to the Rod with Smaller Cross Section Shows 

That, as Expected, They Have Almost the Same Bandwidth 

Even though the simulations show that the bandwidth of the magnetodielectric 

rod cannot be designed by changing the radius and the permeability and that the 
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fractional bandwidth about onset is the same for all rods carrying the TE01 mode, to 

completely understand this phenomenon and the reason this happens we will provide 

a proof. We will prove that the permeability and radius can only determine where the 

onset occurs and the band edges will also change accordingly so that the bandwidth of 

the trough about onset is constant and not dependent on the radius of the rod or the 

permeability. This is a problem with the rod which we will later show that our new 

proposed structures don’t have.  

To start with the proof we will note that since the rod is an infinite magneto 

dielectric rod, the bandwidth can be written in terms of radius and material properties 

as follows:  

 𝐵𝑊 ∝ (𝑘𝑎)2 (7-6) 

   

We should note that since the magnetodielectric rod is infinite in the z 

direction the bandwidth has been written in terms of (𝑘𝑎)2 instead of  (𝑘𝑎)3 which is 

what we are familiar with from the Fano-Chu limit. At this point we need to find the 

dependence of the wavenumber on the radius to see how the bandwidth changes. We 

can write: 

 

 

(7-7) 

Going even further we can show that the quality factor which is the inverse of 

bandwidth and is the stored energy divided by the radiated energy is also constant. 
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 𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝜇𝐻2 × 𝑣𝑜𝑙  (7-8) 

 
𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦(1)

𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦(2)
=
[𝜇𝐻2 × 𝑣𝑜𝑙](1)

[𝜇𝐻2 × 𝑣𝑜𝑙](2)
  (7-9) 

   

 

 

  (7-10) 

 
𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦(1)

𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦(2)
=
𝜇(1)

𝜇(2)
    (7-11) 

Now we will see how the radiated energy changes 

 

 

 (7-12) 

 
𝑄 =

𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦

𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦
= 𝑐𝑜𝑛𝑠𝑡 ⇒ 𝐵𝑊 = 𝑐𝑜𝑛𝑠𝑡 

(7-13) 

 

This means that the bandwidth of the rod close to onset is not a design 

parameter that can be tuned with changing the parameters of the rod and even though 

the permeability and radius can change the onset frequency, the band edges will 

change so that the bandwidth around onset will stay constant. 

 

 Finding the location of bandwidth edge of the rod on 𝛼 and 𝛽 plots 7.2.4

In the previous section, we had plotted the radiated power obtained from the 

integration of the Poynting vector and showed the 0.5dB bandwidth edges. Here we 

want to see the location of the 0.5 dB bandwidth edge on the 𝛼 and 𝛽 plots. The 
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figure below shows the radiated power and the position of the 0.5dB (or 90% radiated 

power) bandwidth edge on both the 𝛼 and 𝛽 plots. This means that the antenna will 

radiate 90% of its maximum power at 98MHz which translates to 𝛼 = 0.8 and 

𝛽 = 0.3. If we see that the 0.5dB power for rods with different radii happens at the 

approximate same 𝛽 value we can conclude that we can use the inverse slope of the 𝛽 

plot as a measure of bandwidth. We should note that both beta and alpha are 

normalized to the wavelenghth.  

 

Fig. 7-26 Radiated Power of a Magneto Dielectric Rod with r=2” and  𝜇 = 80 and the Location of the 

0.5db Bandwidth Edge on the 𝛼 and 𝛽 Plots 
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The wave velocity and the 0.5 dB point can be seen below rod with r=2” and  

𝜇 = 80. Similar to the beta and alpha plot, it should be mentioned that the wave velocity 

is normalized to the velocity of light.  

 

Fig. 7-27 Location of the 0.5dB Bandwidth Edge on the Wave Velocity Plot 

In order to see if this happens for different rod radii, we will repeat the same for a 

rod with radius of 1.6” and the permeability of 𝜇 = 80. The figure below shows the 

radiated power and the position of the 0.5dB (or 90% radiated power) bandwidth edge on 

both the 𝛼 and 𝛽 plots for a r=1.6” rod.  

Again we can see that the value of 𝛼 and 𝛽 and the wave velocity at the 

bandwidth edge is similar to their value for the rod with r=2” and  𝜇 = 80 



194 

 

 

Fig. 7-28 Radiated Power of a Magneto Dielectric Rod with r=1.6” and  𝜇 = 80 and the Location of the 

0.5db Bandwidth Edge on the 𝛼 and 𝛽 Plots 

The wave velocity and the 0.5 dB point can be seen below rod with r=1.6” and  

𝜇 = 80. 
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Fig. 7-29 Location of the 0.5dB Bandwidth Edge on the Wave Velocity Plot 

As the last example for this case we will plot the radiated power and the 

position of the 0.5dB (or 90% radiated power) bandwidth edge on the 𝛽 plot for a 

r=2.4” rod which shows that the 0.5dB bandwidth edge happens at the same value of 

𝛽 for different rod radii. 

 

Fig. 7-30 Radiated Power of a Magneto Dielectric Rod with r=2.4” and  𝜇 = 80 



196 

 

 

Fig. 7-31  Location of the 0.5dB Bandwidth Edge on the Wave Velocity Plot and the 𝛽 Plot 

Here we can conclude that since the lower 90% band edges happen at 1.36 for all 

different examples, the slope of the velocity plot can also be used as a measure of 

bandwidth in addition to the radiation plots.   

 

 Obtaining the total power dissipated in the antenna using the induced EMF 7.2.5

method 

In the previous sections we have found the radiated power of the antenna by 

integrating the complex Poynting vector over a surface enclosing the antenna which 

resulted in a complex number with the real part being identified as the radiated power. In 

this section, we will describe a different way of obtaining the power of the antenna which 

is called the induced EMF method. 

In this method, in order to obtain the antenna power, we will first calculate the 

voltage around the loop which is as follows: 

 𝑉 = ∫𝐸. 𝑑𝑙 = 2𝜋𝑎𝐸𝜑          (7-14) 
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We already know that 𝐸𝜑 of the magneto dielectric loop can be written as follows: 

 

𝐸𝜑 =
−𝑗𝜔𝐼𝜇0𝑎

2𝜋
 

∫
𝜇𝑟𝐽1(𝑘𝜌1𝑎)𝐻1

(2)
(𝑘𝜌0𝜌)𝑒

−𝑗𝑘𝑧𝑧𝑑𝑘𝑧

𝜇𝑟(𝑘𝜌0𝜌)𝐽1(𝑘𝜌1𝑎)𝐻0
(2)(𝑘𝜌0𝜌) − (𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)𝐻1

(2)(𝑘𝜌0𝜌)

∞

−∞

 

  (7-15) 

All this is similar to the reaction integral which is ∫ 𝐽. 𝐸𝑑𝑣  which is the same as 

∫𝐾. 𝐸𝑑𝑠 for a current band that is carrying a current K and for our antenna this current 

band has a width of w and a radius of 𝜌 and the reaction integral gives the power which is 

the voltage times the current with the voltage being defined as seen in the previous 

equations. If we calculate the reaction integral in space, then the current band is a step 

function therefore the current can come out of the integral and we are only dealing with 

calculating the voltage.  

It is obvious that the real part of this voltage times the current will yield the total 

power of the antenna. However, we have to take note that the power obtained from the 

EMF method contains both the radiated power and the lost power.  

As the next step, we will show that in the case of the perfect PMC rod, the power 

obtained from the EMF method and the radiated power obtained from the Poynting 

vector method give the same results. The Poynting vector method and the induced EMF 

method are obtained from the fields of the PMD rod which are as follows (The details of 

obtaining the fields can be found in previous sections and will not be repeated here) 

 𝐸𝜑𝑃𝑀𝐶 = −𝑗
𝜔𝜇0𝑎

(𝑘𝜌0𝑎)

𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)(𝑘𝜌0𝑎)

𝐾𝑒𝜑𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-16a) 
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 𝐻𝑧𝑃𝑀𝐶 =
𝐻0
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)(𝑘𝜌0𝑎)

𝐾𝑒𝜑𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-16b) 

 𝐻𝜌𝑃𝑀𝐶 = 𝑗 (
𝑘𝑧𝑎

𝑘𝜌0𝑎
)
𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)(𝑘𝜌0𝑎)

𝐾𝑒𝜑𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-16c) 

As a sanity check we expect the total radiated power obtained from the EMF 

method to agree with the radiated power obtain from the Poynting vector method for a 

PMC rod. The figures below show the results obtained from both methods for different 

rod radii and we see that they give the exact same results. 

 

Fig. 7-32 Radiated Power and Total Power of a PMC Rod with Different Radii 

The total power of the magneto dielectric rod antenna rod with r=1.6” and  

𝜇 = 80 has been obtained. This total power is the radiated power and the loss and this is 

the reason that in the case of the perfect magnetic conductor rod these two plots overlap. 
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The difference between the power obtained from the EMF method and the radiated power 

will also be important because it is the power that is lost into the surface waves. 

 

Fig. 7-33 Radiated Power and Total Power of a Magneto Dielectric Rod. The Difference Between Them Is 

the Power Lost into Surface Waves. 

7.3 Theory of the Magneto dielectric open trough  

In this section we start with the theory of the magneto dielectric open trough. The 

magneto dielectric (MD) open trough is obtained by burying the permeable material 

inside the trough as seen in Fig.7-34  
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Fig. 7-34 Magneto Dielectric Open Trough with the Fields Shown  

In order to obtain the magnetic current, 𝐼𝑚 , similar to what we did for the MD rod 

we will first assume the parallel plane separation is small so that inside Region I we only 

have 𝑬𝒙 as shown with the yellow arrows. The x directed E field which is arriving from 

the left side (from inside) will cause a voltage to be formed at the opening that will look 

to the outside world as a z-directed magnetic current in the opening which is shown by 

the blue arrow. This z directed magnetic current, will excite cylindrical waves that are 

purely TEz. By knowing all this we can write the fields in both regions which are as 

follows: 

Fields in region (1) 

 𝐸𝑥 = 𝐴(𝑘𝑧)𝑠𝑖𝑛(𝑘𝑦𝑦)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-17a) 

 𝐻𝑧 = −𝑗
𝑘𝑦

𝜔𝜇0𝜇𝑟
𝐴(𝑘𝑧)𝑐𝑜𝑠(𝑘𝑦𝑦)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-17b) 
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 𝐻𝑦 =
𝑘𝑧

𝜔𝜇0𝜇𝑟
𝐴(𝑘𝑧)𝑠𝑖𝑛(𝑘𝑦𝑦)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-17c) 

 

With: 𝑘𝑚
2 = 𝑘𝑦

2 + 𝑘𝑧
2 

Fields in region (2) 

 𝐸𝜑 = −𝐶(𝑘𝑧)
𝑘𝜌0

휀0
𝐻1
(2)
(𝑘𝜌0𝜌)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-18a) 

 𝐻𝑧 = −𝑗𝐶(𝑘𝑧)
𝑘𝜌0

2

𝜔𝜇0휀0
𝐻0
(2)
(𝑘𝜌0𝜌)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-18b) 

 𝐻𝜌 = 𝐶(𝑘𝑧)
𝑘𝜌0𝑘𝑧

𝜔𝜇0휀0
𝐻1
(2)
(𝑘𝜌0𝜌)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-18c) 

 

With : 𝑘𝜌0
2 + 𝑘𝑧

2 = 𝑘0
2 = 𝜔2𝜇0휀0 

Similar to what we did for the MD rod we need to know the current to find A and 

C so we can write the fields. By looking at the previous figure we see that we can assume 

we have an  x-directed electric source current at the interface between the regions at y=d.  

If we look from the outside it seems like we have a -𝜑 directed band of current. The 

rotated figure of the trough shows it better. At this point our goal is to find 𝐴(𝑘𝑧) and 

𝐶(𝑘𝑧). In order to do that and to satisfy the jump discontinuity for Hz we first have to 

write the current Just like what we did for the infinite rod 

 𝐾𝑥(𝑘𝑧) =
1

2𝜋
∫ {𝐶0 (𝑟𝑒𝑐𝑡(

𝑧

𝑠
))} 𝑒𝑗𝑘𝑧𝑧𝑑𝑧

+∞

−∞

 (7-19a) 
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 𝐶0 (𝑟𝑒𝑐𝑡(
𝑧

𝑠
)) = ∫ 𝐾𝑥(𝑘𝑧)𝑒

−𝑗𝑘𝑧𝑧𝑑𝑘𝑧

+∞

−∞

 (7-19b) 

 𝐾𝑥(𝑘𝑧) =
1

2𝜋
∫ 𝐶0𝑒

𝑗𝑘𝑧𝑧𝑑𝑧

+
𝑠
2

−
𝑠
2

=
𝐶0𝑠

2𝜋
[
𝑠𝑖𝑛(𝑘𝑧𝑠)

(𝑘𝑧𝑠)
] (7-19c) 

 

Fig. 7-35 Magneto Dielectric Open Trough with the Fields Shown  

The following conditions will give us all the fields (The green term is the 

contribution from the inside and the brown term is from the outside)  

It is important to note that this procedure it due to the method used by 

Schelkunoff to equate the voltages instead of the tangential field at the boundaries. 

 𝑬𝒙(𝒚 = 𝒅) ∙ 𝒘 = −𝝅
𝒂

𝟐
𝑬𝝋(𝝆 =

𝒂

𝟐
) (7-20a) 

 𝑯𝒛 (𝝆 =
𝒂

𝟐
) − 𝑯𝒛(𝒚 = 𝒅) = 𝑲𝒙   (7-20b) 
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Now we can find 𝐴(𝑘𝑧) and 𝐶(𝑘𝑧).  

 

 

 

                (7-21) 

 

Solving we find: 

 𝐴(𝑘𝑧) =

𝜋
2 𝐶

(𝑘𝑧)
𝑘𝜌0
휀0

𝐻1
(2)
(𝑘𝜌0

𝑤
2)

𝑠𝑖𝑛(𝑘𝑦𝑑)
 

   (7-22a) 

 

𝐶(𝑘𝑧)

=

𝑗𝐾𝑥
𝜔𝜇0휀0
𝑘𝜌0

𝑘𝜌0𝐻0
(2) (𝑘𝜌0

𝑤
2) −

𝜋𝑘𝑦
2𝜇𝑟

𝐻1
(2)
(𝑘𝜌0

𝑤
2) 𝑐𝑜𝑡𝑎𝑛(𝑘𝑦𝑑)

 
     (7-22b) 
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Now we have all the fields but since we are interested in 𝑰𝒎, we write 𝑬𝝋 

 

𝐸𝜑

= −𝜔𝜇0
𝑎

2

𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0

𝑤
2)

𝑗𝐾𝑥𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)

(𝑘𝜌0
𝑎
2)
𝐻0
(2) (𝑘𝜌0

𝑤
2)

𝐻1
(2)
(𝑘𝜌0

𝑤
2)

−
𝜋𝑘𝑦
2𝜇𝑟

𝑤
2 𝑐𝑜𝑡𝑎𝑛(𝑘𝑦𝑑)

 (7-23) 

Calculating the integral similar to the MD rod will give 𝐼𝑚 

 

𝐸𝜑(𝑧)𝜋
𝑎

2
= 𝐼𝑚(𝑧)

= −𝑗𝜔𝜇0
𝑎2

8
𝐼0 ∫

[
𝑠𝑖𝑛 (𝑘𝑧

𝑠
2)

(𝑘𝑧
𝑠
2)

] 𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)

(𝑘𝜌0
𝑤
2)

𝐻0
(2) (𝑘𝜌0

𝑤
2)

𝐻1
(2)
(𝑘𝜌0

𝑤
2)

−
𝜋𝑘𝑦𝑑
2𝜇𝑟

(
𝑤/2
𝑑
) 𝑐𝑜𝑡(𝑘𝑦𝑑)

𝑑𝑘𝑧

+∞

−∞

 

    (7-24) 

Again we have to be careful when we integrate this function because of the poles 

but adding an imaginary part to the permeability and changing the integration path close 

to the pole using a smooth curve will solve this problem.  

At this point we can calculate the integral for the open trough with dimensions 

shown below. The trough is made square 2” wide by 2” deep. 
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Fig. 7-36 A 2” by 2” Magneto Dielectric Open Trough with 𝜇 = 80 

 Now we can plot the amplitude and phase of the magnetic current  

 

Fig. 7-37 Amplitude and Phase of the Current Wave as a Function of Distance from Feed for a 2” by 2” 

Trough Filled with 𝜇 = 80 and휀 = 2, from 30 MHz to 170MHz 

Fig 7-38 shows the amplitude and phase from 190MHz to 330MHz which shows 

behavior similar to the rod with the bound wave eventually getting hard to excite (190 

MHz to 250MHz) as it retreats into the trough. Thus, the amplitude drops from the 

uniform value to an exponential decay and the phase velocity gets very slow and then 



206 

 

suddenly switches to the fast leaky mode behavior above (270 MHz up). Arrows have 

been added to the plot to guide the eye in following this changing behavior with 

frequency. 

 

Fig. 7-38 Amplitude (Top) and Phase (Bottom) of the Current Wave as a Function of Distance from Feed 

for a 2” by 2” Trough Filled with 𝜇 = 80 and휀 = 2, from 190 MHz to 330MHz 

Fig. 7-39 shows the results from 350MHz to 490 MHz, very similar to Fig. 7-15 

in cycling through the same behavior with the next mode TE20. 
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Fig. 7-39 Amplitude and Phase of the Current Wave as a Function of Distance from Feed for a 2” by 2” 

Trough Filled with 𝜇 = 80 and휀 = 2, from 190 MHz to 330MHz 

From these results we conclude that the trough filled with the permeable material 

and the MD rod exhibit analogous behavior. We will study this similarity in more detail 

later in this section  

 Magneto dielectric open trough with different cross sections  7.3.1

In this subsection, we study the effect of the dimensions of the cross section of the 

open through on the amplitude and phase behavior. We see the difference be tween the 
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square, the wide, and the deep open trough. Figure below shows the chosen dimensions 

of the wide trough. In order to have a meaningful comparison we will keep the cross-

section constant and only change the width to depth ratio.  

 

Fig. 7-40 Geometry of 4” by 1” Depth Open Trough Filled with a Material with  𝜇 = 80 , 휀 = 2 

Fig.7-41, shows the amplitude and phase of 𝐼𝑚 as a function of the distance from 

the feed multiplied by the wavelength (𝑧/𝜆) for the trough geometry shown in Fig.7-47. 

We see that in this case, in the frequency range shown, we will not reach the onset of the 

first mode and we have fast waves with phase plots under the light-line and non-uniform 

amplitude plots. This means that a wider trough pushes the onset frequency to much 

higher frequencies and that the aspect ratio can be used a tuning parameter for the 

magneto dielectric trough antenna. 
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Fig. 7-41 Amplitude (a) and Phase (b) of the Current as a Function of the Distance from the Feed 

Multiplied by the Wavelength (𝑧/𝜆) for a Magneto-Dielectric Shallow Open Trough with a 4 Inch by 1 

Inch Cross-Section and a Material with  𝜇 = 80  and 휀 = 2. Frequencies Go from 30 MHz to 170 MHz in 

20 MHz Steps. The Star Symbol Shows the Current Wave Does Not Reach the Light-Line. 
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The next logical example is studying the deep trough. Again, we will keep the 

cross-section constant and just change the aspect ratio. Figure below shows the 

dimensions of the deep trough 

 

Fig. 7-42 Geometry of a 1” Width by 4” Depth Deep Open Trough Filled with a Material with  𝜇 = 80  and 

휀 = 2 

Fig.7-43, shows the amplitude and phase of 𝐼𝑚 as a function of the distance from 

the feed multiplied by the wavelength (𝑧/𝜆) for the trough geometry shown in Fig.7-42. 

We see that from 30MHz to 70 MHz we are getting close to the light-line and at 70 MHz 

we have already passed it so we are dealing with slower waves (The star symbol shows 

when we pass the line). Up to 110 MHz we have uniform amplitude. As we go from 130 

MHz to higher frequencies we see a sudden change in both phase and amplitude which 

means that the next mode is beginning to appear and at 190 MHz (magenta), we again 

have a fast wave with and the next mode has not reached onset. 
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Fig. 7-43 Amplitude (a) and Phase (b) of the Current as a Function of the Distance from the Feed 

Multiplied by the Wavelength (𝑧/𝜆) for a Magneto-Dielectric Deep Open Trough with a 1 Inch by 4 Inch 

Cross-Section and a Material with  𝜇 = 80  and 휀 = 2. Frequencies Go from 30 MHz to 170 MHz in 20 

MHz Steps. The Star Symbol Shows the Current Wave Reaches the Light Line and Goes to Another Mode 

Similar to What Happened for the High Frequency Magneto Dielectric Rod. 

This means that a deeper trough pushes the onset frequency to much higher lower 

and again we see that the aspect ratio can be used a tuning parameter for the magneto 

dielectric antenna. 
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 Using Savitzky-Golay filters to smooth data and obtaining 𝛼 and 𝛽 plots for MD 7.3.2

open trough 

In the previous section we had found the 𝛼 and 𝛽 plots for the magnetic rod and 

we will repeat the same procedure and find the plots for the 2" × 2" open trough. The 

figure below shows the magnetic current amplitude of the 2" × 2" open trough and the 

same plot for lower values of (𝑧/𝜆).  

 

Fig. 7-44 Amplitude of the Current as a Function of the Distance from the Feed Divided by the Wavelength 

(𝑧/𝜆) for a Magneto-Dielectric 2" × 2" Open Trough and a Material with  𝜇 = 80  and 휀 = 2 and for Very 

Small Values of  (𝑧/𝜆). Frequencies Go From 30 MHz to 170 MHz in 20 MHz Steps.  

 

Similar to the rod, a Savitzky-Golay lowpass filter has been used and a least 

square linear fit has been obtained for the lowpass filtered data. Fig.7-44 and Fig. 7-45 

show the initial data and the linear fit. The next step, as done for the rod, is plotting the 

slope of the magnetic current amplitude plots as a function of frequency. This plot is 
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shown in Fig.7-46 which shows that the slope tends to very small values which indicates 

passing the lightline. Similar to the rod, a study of the phase would show the frequency in 

which the cutoff happens. 

 

Fig. 7-45 Amplitude of the Current for Very Small Values of (𝑧/𝜆) for the 2" × 2" Open Trough. Solid 

Lines Show the Low Pass Filtered Data and the Dotted Lines Show the Linear Fit. Frequencies Go From 30 

MHz to 170 MHz in 20 MHz Steps. 

 

Fig. 7-46 The Slope of the Amplitude Decay or the 𝛼 Plot of a Magneto-Dielectric Rod with a 1.6 Inch 

Radius and a Material with  𝜇 = 80  and 휀 = 2 Extended to Higher Frequencies  
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The next step is to repeat the same procedure for the phase of the 2" × 2" open 

trough and obtain the 𝛽 plot. The figure below shows the phase of the magnetic current of 

the 2" × 2" open trough and the same plot for lower values of (𝑧/𝜆).  

 

Fig. 7-47 Phase of the Current as a Function of the Distance from the Feed Divided by the Wavelength 

(𝑧/𝜆) for a Magneto-Dielectric 2" × 2" Open Trough and a Material with  𝜇 = 80  and 휀 = 2 and for Very 

Small Values of  (𝑧/𝜆). Frequencies Go From 30 MHz to 170 MHz in 20 MHz Steps.  

After repeating the same procedure for the phase of 2" × 2" open trough and 

obtaining the 𝛽 plot as shown in Fig. 7-48, we see that similar to the rod, as the amplitude 

gets flatter, the slope of the phase gets higher. When the phase plot in Fig.7-47 reaches 

5 × 2𝜋  at (𝑧/𝜆)=5 we have reached the light-line. As seen in Fig.7-47 this happens at 

somewhere between the green line (110 MHz) and the orange line (130MHz). The slope 

of the phase is shown in Fig 7-48. We can see that the lightline is crossed at about 118 

MHz and after that we will have bounded slower waves.   
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Fig. 7-48 The Slope of the Phase Plot or the 𝛽 Plot of a Magneto-Dielectric 2" × 2" Open Trough and a 

Material with  𝜇 = 80  and 휀 = 2  

 The effect of the open trough’s aspect ratio on the bandwidth and cutoff 7.3.3

frequency using the β plots or the velocity plots 

We already know that the dimensions of the trough (aspect ratio of the open 

trough which is ratio of width to depth) gives an extra degree of freedom compared to the 

rod and that the aspect ratio serves as a tuning parameter that allows us to control the 

onset frequency. By knowing this, it is important to see how the aspect ratio of the open 

trough affects the bandwidth and the cutoff frequency.  

We expect the cutoff frequency or the onset of guidance for the open trough to 

occur close to the frequency when the depth is approximately medium/4 but in order to 

find how the bandwidth changes we will use the 𝛽 plots as a measure of bandwidth. Later 

in this Chapter we will see that the radiated power can also clearly show the bandwidth 

however the slope of the 𝛽 plots can also be used as a measure of the bandwidth. 
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Since we are only showing the effect of the aspect ratio of the open trough we 

have obtained the phase data of the magnetic current for different open trough geometries 

all having the same cross section of 4𝑖𝑛2 and permeability of 80. The reason this is 

important is that the aspect ratio of the trough give a new degree of freedom compared to 

the rod and we want to see how we can use this as a parameter to achieve larger 

bandwidths. Therefore, in this study the only parameter that is changed it the aspect ratio 

of the open trough. This means that while changing the width(g), we will make sure that 

all geometries have 𝑑𝑒𝑝𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ = 4𝑖𝑛2 so the important factor of permeability × 

volume is kept the same. 

In order to see how the antenna behavior changes with changing the aspect ratio, 

we have changed the width (g) from 2” to 5” in small steps and obtained the  𝛽 plots for 

all geometries. The slope of the 𝛽 plot close to the cutoff can be used as a measure of the 

bandwidth. It is obvious that same can be said for the velocity plot which is 2𝜋/𝛽. We 

will keep in mind that a larger slope means that the bandwidth in which the wave 

propagates close to the speed of light is smaller, therefore the inverse of the 𝛽 plot slope 

will serve as a bandwidth measure. 

We have obtained the 𝛽  plots for many open trough geometries with widths 

ranging from 2” to 5” but as an example we have plotted the 𝛽  plot and velocity plot of 

only three of the different dimensions which can be seen in the figure below. We should 

remember that in the ideal case the velocity of the wave stays very close to the light-line 

therefore in order to have a measure of the bandwidth we find the slope of the plot near 

the cutoff and the inverse of the slope gives us an idea of the bandwidth. In Section 4 of 



217 

 

this chapter, after we have obtained the radiated power, we will see that the bandwidth 

can also be directly obtained from the amount of radiated power. By looking at these 

plots we already expect the structure with higher aspect ratio to have a larger bandwidth 

 

 

 

Fig. 7-49 (a)  𝛽 Plots of Three Structures (b) the Wave Velocity of Three Structures 

 

As previously mentioned and showed in Fig.7-50 , in order to have a measure 

of the bandwidth, we have obtained the slope of the 𝛽 plots for a different range of 
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open trough widths. The inverse of the slopes versus the aspect ratio (width/depth) 

can be seen below. It should be mentioned that this plot shows the absolute 

bandwidth and not the relative bandwidth. In order to show the relative bandwidth, 

we have to divide this by the cutoff frequency which we will get into more detail after 

we calculate the radiated power. What this plot shows is that as we increase the aspect 

ratio, even with the same material volume and permeability, we can achieve a larger 

bandwidth.  

 

Fig. 7-50  Inverse of the Slope of the 𝛽 Plots Versus Aspect Ratio 

It can be seen that even though we can use the aspect ratio of the trough to 

push the onset frequency to lower frequencies, we will have a smaller bandwidth of 

operation. 
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 Calculating the radiated power of the magneto dielectric open trough 7.3.4

In this sub section, similar to what we did for the rod, we will calculate the 

Integration of the complex Poynting vector of the open trough over a surface enclosing 

the antenna and store the real part of this complex result as the radiated power of the 

trough.  

The radiated power of the magneto dielectric trough versus frequency can show 

the formation of different modes and can be a way to define a bandwidth and it can be 

used to compare the bandwidth of the open trough to the rod. In order to find the radiated 

power, as explained before, we will write the fields of the open trough in the outside 

medium and calculate the Poynting vector.  

After obtaining the complex Poynting vector, we calculate its integral over a 

surface enclosing the antenna. This will result in another complex number with the real 

part being identified as the radiated power. 

The fields of the open trough in the outside medium as seen in many previous 

reports is as follows: 

 𝐸𝜑 = −𝐶(𝑘𝑧)
𝑘𝜌0

휀0
𝐻1
(2)
(𝑘𝜌0𝜌)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-25a) 

 𝐻𝑧 = −𝑗𝐶(𝑘𝑧)
𝑘𝜌0

2

𝜔𝜇0휀0
𝐻0
(2)
(𝑘𝜌0𝜌)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-25b) 

 𝐻𝜌 = 𝐶(𝑘𝑧)
𝑘𝜌0𝑘𝑧

𝜔𝜇0휀0
𝐻1
(2)
(𝑘𝜌0𝜌)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (7-25c) 

With : 𝑘𝜌0
2 + 𝑘𝑧

2 = 𝑘0
2 = 𝜔2𝜇0휀0 

The Poynting vector is defined as: 
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 𝑃 =
�⃗� × �⃗⃗� ∗

2
=
𝐸𝜑�̂�𝜑 × 𝐻𝑧

∗�̂�𝑧

2
 (7-26) 

As expected the Poynting vector is a radial vector and in order to obtain the 

radiated power we should integrate the pointing vector over a cylindrical surface 

enclosing the antenna.  

 

𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟

= 𝑅𝑒 {∫ ∫ 𝑃𝜌�̂�𝜌. 𝜌𝑑𝜑𝑑𝑧
𝑧=−∞

𝑧=−∞

𝜑=2𝜋

𝜑=0

�̂�𝜌} 

(7-27) 

In order to show the radiated power of the trough we have to choose a certain 

dimension for the magneto dielectric trough. It would be interesting to choose a 

dimension for the trough that would give us the same cutoff frequency as the 1.6” rod 

while having the same cross section so that later we could do a comparison. The 

dimensions that would give the same cutoff is seen below.  

 

Fig. 7-51 The Open Trough and the Rod Having the Same Cross Section Area and the Same Cutoff 

Frequency 
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We will plot the 𝛼 and 𝛽 plots of the MD 3.8" × 1.053" open trough so we can 

later compare them to the rod with 1.6” radius. Fig. 7-52 shows the  𝛼 plot and 𝛽 plot of 

the open trough. The wave velocity can also be seen in the figure.  

 

Fig. 7-52 (a) Open Trough with 3.8" × 1.053" Cross Section (b) 𝛼 Plot of the Structures (c) 𝛽 Plots of the 

Structures (d) the Wave Velocity of the Structure  

The radiated power obtained from the Poynting vector of the open trough can be 

seen below which again shows that the maximum of the radiated power happens close to 

the cutoff frequency. 
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Fig. 7-53 (a) Radiated Power of a Magneto Dielectric Rod with r=1.6” and  𝜇 = 80 (b) Radiated Power of a 

3.8" × 1.053" Magneto Dielectric Open Trough with 𝜇 = 80 

Later in the comparison section we will see in detail that the trough and the rod of 

identical cutoff and identical permeability times area have the same exact behavior.  

 

7.4 Theory of the magneto-dielectric trough with a slit 

In the previous section, we mentioned that a desirable feature of the trough is the 

additional degree of freedom. We would like to have more degrees of freedom to control 

the guidance and radiation behavior of the MD trough structure.  Therefore, we add a slit 

to the open trough and we obtain the structure shown in Fig.7-54. Similar to the open 

trough structure, the permeable material of the MD is buried into a trough but this time a 

metal slit is added to control the radiating aperture of the trough. 
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Fig. 7-54 Geometry of the Magneto Dielectric Slitted Trough 

At this point we will try to find the fields in the two regions shown in Fig.7-54 

with region (1) filled with a material of  𝜇𝑟 and 휀𝑟 while region (2) is free space. For this 

case as shown in Fig.7-55, If we assume the slit is an infinitesimal distance inset into the 

waveguide, the normalized Admittance looking in is that of the short at y=d plus the 

shunt admittance of the slit as seen in Fig.7-55 below 

 

Fig. 7-55  The Normalized Admittance Seen from the Opening of the Slit Looking Inside the Material 
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The value of the capacitance is obtained from chapter 3-5 of Marcuvitz’s 

waveguide handbook which is half of the angle-dependent admittance of an E-plane slit 

in a parallel plane waveguide. The reason we have divided this impedance by two is that 

we are only accounting for the inside fields. Therefore, the input admittance could be 

written as: 

 

𝑌𝑖𝑛(𝑠𝑙𝑖𝑡𝑡𝑒𝑑 𝑡𝑟𝑜𝑢𝑔ℎ)

= −𝑗𝑐𝑜𝑡(𝑘𝑦𝑑) + 𝑗𝑘𝑦
𝑎

𝜋
𝑙𝑛 (𝑐𝑠𝑐

𝜋𝑔

2𝑎
) 

      (7-28) 

The input impedance for an open through only consists of the short circuit term 

and can be written as: 

 𝑌𝑖𝑛(𝑜𝑝𝑒𝑛  𝑡𝑟𝑜𝑢𝑔ℎ) = −𝑗𝑐𝑜𝑡(𝑘𝑦𝑑)          (7-29) 

According to the calculations in the previous section we had obtained the electric 

field of the open trough to be as follows: 

 

𝐸𝜑

= −𝜔𝜇0
𝑎

2

𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0

𝑎
2)

𝑗𝐾𝑥𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)

(𝑘𝜌0
𝑎
2)
𝐻0
(2) (𝑘𝜌0

𝑎
2)

𝐻1
(2)
(𝑘𝜌0

𝑎
2)

−
𝜋𝑘𝑦
2𝜇𝑟

𝑎
2 𝑐𝑜𝑡(𝑘𝑦𝑑)

 (7-30) 

By replacing 𝑗𝑐𝑜𝑡(𝑘𝑦𝑑) for the open trough with −𝑗𝑐𝑜𝑡(𝑘𝑦𝑑) + 𝑗𝑘𝑦(𝑎/

𝜋)𝑙𝑛(csc (𝜋𝑔/2𝑎)), we can obtain 𝐸𝜑 for the slitted trough as follows: 

 𝐸𝜑 = −𝜔𝜇0
𝑔

2

𝐻1
(2)(𝑘𝜌0𝜌)

𝐻1
(2) (𝑘𝜌0

𝑔
2)

×         (7-31) 
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𝑗𝐾𝑥𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)

(𝑘𝜌0
𝑔
2)
𝐻0
(2) (𝑘𝜌0

𝑔
2)

𝐻1
(2)
(𝑘𝜌0

𝑔
2)

− (
𝜋𝑔
2𝑎)

(𝑘𝑦
𝑔
2)

𝜇𝑟
[𝑐𝑜𝑡(𝑘𝑦𝑑) − 𝑘𝑦

𝑎
𝜋 𝑙𝑛 (𝑐𝑠𝑐

𝜋𝑔
2𝑎)]

 

 

 

The next step would be finding the magnetic current by integrating 𝐸𝜑 at 𝜌 = 𝑎/2 

which will be as follows: 

 

𝐸𝜑(𝑧)𝜋
𝑔

2
= 𝐼𝑚(𝑧) = −𝑗𝜔𝜇0

𝑔2

8
𝐼0 × 

∫

[
𝑠𝑖𝑛 (𝑘𝑧

𝑠
2)

(𝑘𝑧
𝑠
2)

] 𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)

(𝑘𝜌0
𝑔
2)
𝐻0
(2) (𝑘𝜌0

𝑔
2)

𝐻1
(2)
(𝑘𝜌0

𝑔
2)

− (
𝜋𝑔
2𝑎)

(𝑘𝑦𝑑)
𝜇𝑟

(
𝑔/2
𝑑
) [𝑐𝑜𝑡(𝑘𝑦𝑑) − 𝑘𝑦

𝑎
𝜋 𝑙𝑛 (𝑐𝑠𝑐

𝜋𝑔
2𝑎)]

𝑑𝑘𝑧

+∞

−∞

 

(7-32) 

Now that we have obtained 𝐼𝑚(𝑧), we can plot it’s amplitude and phase for 

different slit widths.  

By looking at the plots we see that as the slit gets smaller the cutoff frequency 

gets lower. In the next report, we will see that by using the open trough and the slitted 

trough we can achieve lower cutoff frequencies compared to the rod with lower 

permeabilities.   
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Fig. 7-56  Phase and Amplitude Plots of the Slitted Trough with Different Slit widths 

 

 Obtaining the 𝛽 plots for MD slitted trough and the radiated power using the 7.4.1

Poynting vector 

 

By looking at the previous figures we see that by changing the dimensions of the 

slit we can reduce the cutoff frequency therefore as an example we will use the Savitzky-

Golay filters on the following dimensions of the slitted trough to obtain the 𝛽 plot.  

These dimensions have been chosen as an example since with the same cross 

section area as the rod and the open trough but with 1/4
th

 of the permeability we have 

been able to obtain the same cutoff frequency as both the open trough and the magneto 

dielectric rod.  

In the next section we will do a comprehensive comparison between these three 

geometries.  



228 

 

 

Fig. 7-57 Magneto Dielectric Slitted Trough with Given Dimensions 

The figure below shows the 𝛽 plot obtained from the phase plots using the same 

steps explained in the previous sections. We have plotted the 𝛽 plot to show that the 

cutoff of this structure that has a significantly less permeability and the same cross 

section area can be tuned to be the same as the open trough and the magneto dielectric 

rod with the same cross section area but much higher permeability of 80.  
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Fig. 7-58  𝛽 Plot Which Has Been Obtained from the Phase Plots of the 2” by 2” Slitted Trough 

The radiated power obtained from the Poynting vector of the slitted trough with 

the mentioned dimensions can be seen below which again shows that the maximum of the 

radiated power happens close to the cutoff frequency. 

 

Fig. 7-59 Radiated Power of the 2 by 2 Slitted Trough Showing That the Peak of the Radiated Power 

Happens Close to the Onset Frequency 
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At this point, similar to both the rod and the open trough we will see that the 

maximum radiation happens at the onset frequency which is a sanity check since we 

already expect the structure to behave like a PEC radiator at onset. 

As has been briefly pointed out after each set of calculations the behavior of these 

structures obeys certain universal rules. We proceed now to a detailed comparison in 

order to spell out these rules explicitly. 

 

7.5 Comparison of the MD rod, MD open trough, and the MD slitted trough 

 Comparing the MD rod and the square open trough with the same volume 7.5.1

 

The figure below shows the phase plot slopes of the two cases. It is clear that the 

rod crosses the lightline at a much higher frequency than the trough. Therefore, although 

the two cases have the same volume (4 inch squared), they do not have the same cutoff. 

 

Fig. 7-60 The Slope of the Phase Plot or the 𝛽 Plot of the Magneto-Dielectric Rod (Left) and the 2" × 2" 

Open Trough (Right) Both Having a Material with  𝜇 = 80  and 휀 = 2  
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We have to also note that the phase slope plots are the curve of the phase versus 

(𝑧/𝜆). Higher slopes mean lower wave speed (slow waves) and when the curve passes 2𝜋 

we have passed the lightline and into the guided wave region. To make the comparison 

easier, we will plot 2𝜋/(𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑐𝑢𝑟𝑣𝑒𝑠) to show the velocity of the wave 

compared to light. This plot can be seen below. 

The trough, with the lower onset frequency exhibits a higher slope at onset. 

 

Fig. 7-61 The Wave Velocity of the MD Rod and Trough Normalized to the Speed of Light 

 Comparison of a MD open trough to the magneto-dielectric rod with both the 7.5.2

same volume and the same cutoff frequency 

Now we ask, what happens if both the volume and the cutoff frequency are the 

same? We have seen that for wider shallower troughs, the cutoff happens at higher 

frequencies. Therefore, we look for a wide trough having a 4 inch squared cross section 

and the same cutoff frequency as the rod with the 1.6inch radius. This occurs for a 3.8” 

by 1.053” wide trough. Thus, this trough and the 1.6inch radius rod have the same cutoff 

frequency (215 MHz) and the same material volume. 
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Fig. 7-62 Wide Trough and Rod Having the Same Volume and the Same Cutoff Frequency 

In order to show that these two structures have the same cutoff we will plot the 

phase of the magnetic current for both cases (We have already plotted the phase of the 

rod shown but we will show it again for comparison). Fig.7-63 shows the two plots side 

by side. It is clear that both structures pass the light line, at the same frequency.  

 

Fig. 7-63 Unwrapped Phase of the Current as a Function of the Distance from the Feed Divided by the 

Wavelength (𝑧/𝜆) for a Magneto-Dielectric Wide Trough (Left) and a Rod with a 1.6 Inch Radius (Right) 

Both Having a Material with  𝜇 = 80  and 휀 = 2. Frequencies Go from 30 MHz to 270 MHz in 20 MHz 

Steps.   
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For a more clear demonstration, in Fig 7-64, we have plotted the phase of both 

structures versus (𝑧/𝜆)on the same figure for frequencies from 110 MHz to 270 MHz.  

 

 

Fig. 7-64 Phase of Both Structures Versus (𝑧/𝜆)on the Same Figure for Frequencies from 110 MHz to 270 

MHz.   

In the next figure, we see the amplitude plots of the two cases which show that 

they are very similar. 
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Fig. 7-65 Amplitude of the Current as a Function of the Distance from the Feed Divided by the Wavelength 

(𝑧/𝜆) for a Magneto-Dielectric Wide Trough (Left) and a Rod with a 1.6 Inch Radius(Right) Both Having 

a Material with  𝜇 = 80  and 휀 = 2. Frequencies Go from 30 MHz to 270 MHz in 20 MHz Steps.   

The next logical step is to compare the 𝛼 and 𝛽 plots of the MD 3.8" × 1.053" 

open trough with the rod with 1.6” radius. Fig 7-66 shows the  𝛼 plot of both structures 

(up left) and the 𝛽 plots are shown in the down left plot. The wave velocity can also be 
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seen. These curves are essentially identical and this proves that we have discovered a 

universal behavior: For rod and trough flux channels, if permeability and the volume are 

the same and the onset frequency is the same, the omega beta diagrams will be the same.  

 

Fig. 7-66 (a) Trough and Rod with the Same Volume and the Same Cutoff (b) 𝛼 Plot of Both Structures 

(Blue Shows the Rod and Green Sows the Trough) and (c) the 𝛽 Plots of Both Structures (d) the Wave 

Velocity of Both Structures  

The next logical step in this section is to see if the universal behavior holds even 

if we reduce the permeability to lower values. We will first try with a permeability of 40 

and compare the wave velocity of the rod to the open trough. Since the cutoff frequency 

of 𝜇 = 40 happens at higher frequencies compared to 𝜇 = 80  we have to obtain the 
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phase plots at even higher frequencies. Figure below shows the phase plots of the two 

structures with 𝜇 = 40  which are very similar. However, we will see the universal 

behavior much more clear as a velocity plot or a beta plot. 

 

Fig. 7-67  Phase Plots of (a) Trough with the Same Volume as the Previous Figure and Half the 

Permeability (b) Rod with the Same Volume as the Previous Figure and Half the Permeability   

Fig.7-68 shows the attenuation plot, the slope of the phase plot and the wave 

velocity plot of the same structures shown in Fig.7-68(a). We see that phase slope, 

amplitude slope and the wave velocity plots are very close which shows that the universal 

behavior holds even at lower permeabilities.   
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Fig. 7-68 (a) Trough and Rod with the Same Volume and the Same Cutoff (b) 𝛼 Plot of Both Structures 

(Blue Shows the Rod and Green Sows the Trough) and (c) the 𝛽 Plots of Both Structures (d) the Wave 

Velocity of Both Structures  

As the last example to show the effect of permeability on the universal behavior, 

we will compare the same structures at even lower permeability of 20. Fig. 7-69 shows 

the phase plot and the wave velocity plot of the two structures having a permeability of 

20 which shows that even in lower permeabilities we will still have the universal 

behavior as long as both the material volume and the cutoff frequency of the magneto 

dielectric rod and open trough are the same. 
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Fig. 7-69 (a)  𝛽 Plots of Both Structures with the Same Volume as the Previous Figures and 𝜇 = 20 (b) the 

Wave Velocity of Both Structures with the Same Volume as the Previous Figures and 𝜇 = 20 

We have showed that even at much lower permeabilities we still have the 

universal behavior. However, we will show that in order to have a universal behavior we 

don’t need the permeability and the volume of the structures to be equal and it is enough 

to have a rod and an open trough with the same permeability × volume (that is, 

permeability times cross sectional area). Figure below shows two structures: The same 

MD rod as before, having a radius of 1.6” with the permeability of 80 and the other one is 

a trough with 1/4
th

 of the permeability but 4 times the volume.  

 

Fig. 7-70 (a)  𝛽 Plots of Both Structures with the Same Volume as the Previous Figures and 𝜇 = 20 (b) the 

Wave Velocity of Both Structures with the Same Volume as the Previous Figures and 𝜇 = 20 
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In Fig.7-71 the phase plots of the two structures have been plotted which shows 

that they are very similar. However, in order to show the universal behavior more clearly 

we will plot them in the same figure. 

 

 

Fig. 7-71 Phase Plots of (a) Trough with 12.8 Inch Squared  Cross Section and  𝜇 = 25  (b) Rod with the 

Same Volume as the Previous Figure 𝜇 = 80   
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Fig. 7-72 Phase Plots of the Trough with 12.8 Inch Squared Cross Section and  𝜇 = 25  Rod with the Same 

Volume as the Previous Figure and 𝜇 = 80 Plotted in the Same Figure. We Can See They Are Overlapping 

the Colored Lines Show the Trough and the Dashed Black Lines Show the Rod 

Similar to what we did before, the slope of the phase plot and the wave velocity 

plot of the two structures are shown below. This shows that as long as the value of the 

permeability × volume (or more precisely permeability times area) for the open trough 

and the rod are the same, we can find specific dimensions for the trough that would result 

in the exact same behavior as the rod. The different choices of the dimensions of the 

trough give us an additional degree of freedom compared to the rod.  
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Fig. 7-73 (a)  𝛽 Plots of the Rod and the Trough Having the Same Permeability × Volume (b) the Wave 

Velocity of the Rod and the Trough Having the Same Permeability × Volume 

Another important comparison is the bandwidth of the trough compared to the 

rod. We had proven that the fractional bandwidth about onset of the rod is constant, 

independent of the particular rod diameter and permeability, so we will plot the 

bandwidth of the trough versus aspect ratio for troughs that have the same onset 

frequency as the rod. The point shown with the star is the aspect ratio that is equivalent to 
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the rod (from Fig.7-72) so we are normalizing to the bandwidth of the rod. The data is 

fitted to a line passing zero therefore we can write: 

 

 𝐵𝑊𝑛𝑒𝑤 =
𝑎𝑛𝑒𝑤
𝑎𝑏𝑎𝑠𝑒

× 𝐵𝑊𝑏𝑎𝑠𝑒 (7-33) 

 

Fig. 7-74 Normalized Bandwidth vs Aspect Ratio of the Trough and Fitted Line 

This means that unlike the rod, the bandwidth of the open trough can be tuned by 

using the aspect ratio. However, increasing the aspect ratio means increasing the volume 

and makes the antenna more expensive, yet this is part of an engineering trade-off 

decision because in almost all applications our goal is to maximize the bandwidth. 

As a result of comparing the open trough with the magneto dielectric rod we have 

found out that the open trough gives us an additional degree of freedom compared to the 

MD rod. The slitted trough gives us even more degrees of freedom. The most general 

form however would be a designable admittance surface surrounding the magneto-

dielectric flux channel. The trough geometry can make all this possible. Before moving to 
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comparing the slitted trough to the two other structures we will add a flow chart that 

shows our choices in designing an antenna. 

 

 

Fig. 7-75 Flow Chart Showing Our Choices in Designing the Rod and the Open Trough Antenna. 

 

What this flowchart shows is that if we have the cutoff and a certain maximum for 

the permeability and the material volume. The rod radius and the permeability can be set 

depending on the project specifications. If for a certain permeability we need a lower 

height for the antenna, we need to use the trough since it is shallower. Also if we need 

more bandwidth we need to use the trough because the bandwidth of the rod is constant 

but we can tune the bandwidth of the trough with the aspect ratio. However increasing the 
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aspect ratio means that we would need more material which makes the structure more 

expensive. This can be solved with the slitted trough geometry.  

In the previous figures we had plotted the slope of the phase plot , or the 𝛽 plot, 

and the wave velocity plots. These plots showed that as long as the value of the 

permeability × volume (or cross-sectional area) for the open trough and the rod are the 

same, the extra degree of freedom of the open trough allows us to find specific 

dimensions for the trough that would result in the exact same behavior as the rod. This 

means that as long as we are not limited by how wide the trough can get we can achieve 

the same behavior as the rod by using a material with a much lower permeability. 

 In general, lower permeability means a less expensive material therefore the 

importance of this phenomenon is that it is possible to use a much less expensive material 

(however more volume of it would be needed) and achieve a conformal structure that has 

the same behavior as a magneto dielectric rod using a much more expensive material. 

Alternatively, the choice can lead to finding a light weight solution for a particular 

application. For instance, for frequencies below VHF, high permeability ferrites are 

available but, being ceramics, they are heavy. Laminated ferromagnetic alloy permeable 

materials can attain moderate permeabilities with a small amount of metal per unit 

volume, so that their effective mass density is much lower than a ceramic. Therefore, by 

designing the antenna based on a lower permeability laminate, the weight can actually be 

reduced. 

Although we have shown that it is possible to achieve the same behavior as the 

rod with an open trough with much lower permeability, the price we pay is the increase in 
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the trough’s cross section. In this section we will show that we can use the extra degree of 

freedom of the slitted trough to achieve the same cutoff frequency as the rod with the 

same cross section and lower permeability. We have to take note that in the cases that 

will follow, the permeability × volume of the open trough and the slitted trough is much 

smaller than the rod therefore we don’t expect them to have the exact same behavior in 

all the frequency range of interest. However, we can achieve the same onset frequency as 

the rod with much lower permeability and all the interesting behavior occurs precisely 

near onset. We expect the price we pay to be the bandwidth. 

The figure below shows four different geometries; the rod with r=1.6” and 

𝜇 = 80 as a reference (which had the same results as the open trough with the width of 

3.8” and depth of 1.053” and = 80 ), open troughs with 𝜇 = 25 and 𝜇 = 15 and a slitted 

trough with 𝜇 = 15. All these structures have the same cross sections and the same cutoff 

frequency however the permeability ×volumes(cross section) of the four cases are 

different.  This value is shown as  𝜇 × 𝑆 in the figure 

 

Fig. 7-76 Structures Having the Same Volume (Cross-Section) , and the Same Cutoff Frequency But 

Different Values of Permeability × Cross Section  
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An important fact that has to be pointed out is that with a specific value for the 

permeability of the open trough for example (𝜇 = 25), there is only one specific choice 

of width and depth dimensions for the open trough to get a certain cutoff frequency and 

keep the same volume. However, the slitted trough has another degree of freedom which 

is the width of the slit which means that the dimensions of the slitted trough shown is not 

necessarily the only dimensions that gives the desired cutoff.   

 

(a) 
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Fig. 7-77 (a)  𝛽 Plots of Four Structures (b) the Wave Velocity of Four Structures 

From the previous figure we can see that although all four cases have the same 

volume and the same cutoff frequency, the structure with higher permeability × cross 

section, which is the rod, has the smallest slope as it passes the light line. This means that 

although we have the same cutoff frequency we have smaller bandwidth. Another 

example can be seen in the following figures which shows three different geometries; the 

rod with r=1.6” and 𝜇 = 80 as a reference (which had the same results as the open trough 

with the width of 3.8” and depth of 1.053” and = 80 ), an open trough with 𝜇 = 40 , and 

a slitted trough with 𝜇 = 40. All these structures have the same cross sections and the 

same cutoff frequency however the permeability ×volumes(cross section) of the three 

cases are different.  This value is shown as  𝜇 × 𝑆 in the figure 

 

(b) 
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Fig. 7-78 Structures Having the Same Volume (Cross-Section) , and the Same Cutoff Frequency But 

Different Values of Permeability × Cross Section  

In this case the high permeability rod still has the shallowest slope but only 

marginally. In fact, for practical purposes all three designs have essentially the same 

bandwidth. Therefore, the aspect ratio of the trough and the dimension of the slit can be 

used to improve the bandwidth of the antenna without being wholly constrained by the 

permeability-cross-sectional-area product. 

 

(a) 
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Fig. 7-79 (a)  𝛽 Plots of Three Structures (b) the Wave Velocity of Four Structures 

However, when we use all the degrees of freedom at the same time:     

permeability ×cross section, trough aspect ratio, and slit width, we can obtain extremely 

wide bandwidth. A comparison between the slitted trough and the open trough with the 

same cutoff frequency, volume, and permeability demonstrate this.  

(b) 
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Fig. 7-80 𝛽 Plots of and Wave Velocity Plot of the Open Trough and the Slitted Trough with Same Onset 

Frequency  

Fig 7-80 shows that the slit can help to achieve a much larger bandwidth. In order 

to do a final comparison between the open trough and the slitted trough we will plot the 

radiated power and compare the bandwidths. 

Fig 7-81 shows the radiated power of the open trough and the slitted trough with 

the same volume, same permeability, and the same cutoff frequency. In this figure it is 

clear that the slit can help to achieve a much larger radiation bandwidth.  
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Fig. 7-81 𝛽 Plots of and Wave Velocity Plot of the Open Trough and the Slitted Trough Showing Enhanced 

Radiation Bandwidth 

To recapitulate the key results from this investigation, let’s compare our initial 

1.6” rod, its equivalent open trough and the slitted trough.   

 

Fig. 7-82 Three Permeable Channels with the Same Onset Frequency and Same Permeability Times Cross 

Section Product. 
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Fig 7-83 shows the radiated power of the initial rod, its equivalent open trough 

and the slitted trough with the same volume, same permeability, and the same cutoff 

frequency. In this figure it is clear that the slit can help to achieve a larger bandwidth 

while both the open trough and the slitted trough have additional degrees of freedom.  

 

Fig. 7-83 Radiated Power Versus Frequency of the Permeable Channels of Figure 7-82 Showing the 

Enhanced Bandwidth Available with the Slitted Trough Structure 

Before going to the final conclusion, we will add a flow chart that compares all 

three structures. What this flowchart shows in addition to the previous flowchart is that if 

we want to increase the bandwidth and not increase the volume, our only choice is the 

slitted trough. At the same time the slitted trough is shallower and has more degrees of 

freedom. 
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Fig. 7-84 Complete Flowchart of Choices Given with the Trough and the Slitted Trough 

 

7.6 Conclusion 

Conformal antennas made from existing realistic (dispersive, lossy) magneto-

dielectric materials (such as ferromagnetic metal films and ferrites) have Efficiency-

Bandwidth Products much higher than electric and dielectric antennas constrained to the 

same conformal volume. These true magnetic antennas can operate in all classic antenna 

topologies. For example we have proven their superior performance in dipole, toroidal 

multimode, and even spiral geometries.   
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An important factor in designing these antennas and ensuring they have a large 

bandwidth is using a feed mechanism that helps to guide the feed current (and therefore 

the magnetic current of the antenna) along the structure at nearly the speed of light. This 

band of frequencies (when the speed of light is within c0 by +/- 30%) coincides with the 

band of frequencies where the antenna radiates most efficiently. The parallel solenoid 

was used as a flux binding mechanism that by the nature of its TEM two-wire line 

transmission line geometry also had this property of inducing the magnetic current wave 

near the speed of light. The trough geometry with an admittance surface at its mouth (in 

the cases demonstrated, a capacitive slit) is the most general manifestation of this 

concept.  

The natural evolution of the previous work on magnetic antennas is the trough 

metalized channel. The metalized channel geometry has several useful features: First, it 

enables the antenna to be absolutely conformal to the aerodynamically designed outer 

mold-line of its platform. The incursion into the inner mold-line is already known to be 

vastly smaller than any conventional cavity backed antenna. Second, the trough geometry 

maximizes the strength of the magnetic current in the flux channel by maximizing the 

number of favorable images of the magnetic current in the surrounding metal. Third, at 

the same time the trough, and particularly the slit design, pulls the guided TE01 wave at 

towards the surface of the channel thus extending the frequency band over which the 

guided wave travels close to the speed of light and maximizing the bandwidth of 

operation. 
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The trough structure has enabled us to create a structure where source excitation, 

flux binding, and tailoring of the frequency response of the guiding surface can be tuned 

and controlled while the structures can be conformal to any surface. 

In addition, we have shown that a fullwave analytic Green function formulation 

for the trough enables us to rapidly understand the changes induced by variations in 

materials and dimensions of the flux channel features without having to resort to brute 

force general purpose computational electromagnetics simulators, such as using ANSYS 

HFSS. 

Although this Green function formulation is much faster than CEM methods, it is 

still not the simplest closed-form model of the channel. Because engineering rules of 

thumb are easiest to understand and developed when the theory has been reduced to its 

simplest form we continue this study in the next chapter. In this next chapter we obtain 

the 𝜔 − 𝛽 diagram using the simple and readily accessible transverse resonance method 

and the confirm it (and establish its range of applicability) using a fullwave CEM 

simulation method. The results obtained from these two methods will be compared to the 

analytic Green function method, and the leaky wave and guided wave regimes of the 

antenna structure will be presented and studied in full detail 
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CHAPTER 8 

 DISPERSION FEATURES OF THE OPEN TROUGH AND SLITTED TROUGH IN 

BOTH BOUND-WAVE AND LEAKY-WAVE REGIONS  

 

“Every word or concept, clear as it may seem to be, 

has only a limited range of applicability.” 

Werner Heisenberg 

 

8.1 Introduction 

In the previous chapter we introduced the open trough and the slitted trough as the 

natural evolution of the work done in the previous chapters and as the first step into 

achieving the optimum permeable flux channel for all magnetodielectric antennas. An 

analytic Greens function solution had also been obtained in the previous chapter that led 

to a very detailed understanding of these metalized flux channels. In this chapter, we will 

go much further into understanding the behavior of the metalized flux channel and 

present different methods of studying the dispersion diagram of the antennas. 

 The dispersion features of structures like permeable rods, troughs, and other open 

electromagnetic waveguides can usually be divided to guided wave regions and leaky 

wave regions. There have been extensive studies on the guided mode characteristics of 

many open electromagnetic waveguides however the behavior of the leaky wave region is 

relatively unknown especially at lower frequencies.   

In the previous chapter we studied a trough filled with a permeable material that 

had 𝜇𝑟 and 휀𝑟 (𝜇𝑟 ≫ 휀𝑟) and we assumed the material was frequency independent and 
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homogeneous. In this section, we will present a solution for this structure obtained from 

fullwave simulation using HFSS. The feed that is defined in HFSS, a coax going from 

one side of the trough to the other side, will cause a voltage at the top center of the 

channel which in turn will excite an electric field inside the trough that looks like Fig. 8-1 

below.  

 

Fig. 8-1 An Open Trough with Isotropic Permeable Material  

This lowest order mode is uniform in the transverse direction and has a maximum 

at the interface of the material and free space, and drops in strength as we go down and 

get close to the metal at the base of the trough. This mode is essentially half of the TE01 

mode of the rectangular waveguide of width w and full height 2d.  

The principal magnetic field then flows along the channel (out of the figure) 

constituting the radiating magnetic current. In general, the width w is small compared to 

the wavelength and the surface wave onset frequency is determined only by the depth of 

the trough and the composition of the material. As we have seen, the radiation band 

occurs when the flux channel supports its guided wave close to the speed of light 

(nominally within +/- 30%). The optimized channel would then be one that does this with 
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minimized loss over a maximized frequency bandwidth. It has already been shown that 

for a given depth (onset frequency) the wider the trough (the more material is used), the 

wider the frequency band over which the guided wave in the neighborhood of onset 

travels close to the speed of light.  

When the distance d is approximately a quarter wavelength in the material, this 

material can guide the wave. If we are at lower frequency in which 𝑑 < 𝜆/4 the wave is 

not truly guided since the wave in space is not decaying exponentially (the wave outside 

is not evanescent) and therefore the structure radiates. However, if we go to higher 

frequencies in which 𝑑 > 𝜆/4 then we have an exponentially decaying solution outside 

and the wave is increasingly bound. The guided wave onset frequency is defined as the 

frequency at which the structure can start guiding waves, it is the boundary between these 

two regions: Below that frequency we are in the leaky wave region and above that we are 

in the bound wave region.  

As we had seen in the previous chapter, the onset is very important since near 

onset the wave travels very close to the speed of light, and our goal is to operate in as 

large a frequency range as possible with near-light speed propagation so that the 

permeable channel fully emulates the dual of conventional free-space metal antennas. As 

would be expected, it is in this frequency range that the channel naturally radiates 

efficiently. 

Why is radiation less efficient outside this (+/- 30% band) At higher frequencies, 

the waves are too tightly bound (too slow to radiate even at discontinuities) and in lower 

frequencies the wave is a leaky wave with phase velocity higher than the speed of light so 
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that the energy input into the channel tends to radiate out immediately from the “feed” 

region, and the antenna does not have maximal length. Beyond these limitations, the 

other concern common with wide band antennas is the suppression of parasitic higher 

order modes. By feeding the flux channel at its top center position we are already 

applying a mode suppression philosophy because such a symmetric feed favors the TE0n 

modes over TEmn modes with transverse variation.  

This ability to increase the operational frequency band without changing the onset 

frequency (at the expense of adding material) makes the trough implementation of the 

magnetic flux channel superior to the flux channel that results from simply placing the 

permeable material on top of the ground plane. (This added degree of freedom arises 

because the rectangular metal wall geometry constrains more strongly the polarization of 

the Electric field inside the material, making the lowest order mode inside the trough 

similar to a Cartesian TE01 waveguide mode inside the material as opposed to the more 

general (cylindrical dielectric-rod like) Bessel function field structure in an open flux 

channel.  The difference is illustrated below: 

 

Fig. 8-2 Difference Between the Electric Field in a Trough and an Open Flux Channel 

In order to see this behavior very clearly we simulate a trough with the same 

homogenous and isotropic material that was seen in the examples of the previous chapter 
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using HFSS and we will compare the results obtained from HFSS to the results obtained 

from the transverse resonance method and to the Greens function method and we will 

keep in mind that the results from HFSS are the most realistic results that take into 

account all the higher order modes excited at the feed since it is a fullwave simulation. 

The HFSS method gives the most correct results and takes the most time to analyze. The 

transverse resonance method code takes a very short time to run but gives the correct 

dispersion diagram in a smaller frequency range about onset. However, it is a very good 

engineering design tool because its range of applicability coincides with the operating 

band we are after. The comparisons will show the use of different methods and when and 

why they deviate from each other.  

Later we will see the effect of adding vertical conducting walls to the 

homogenous isotropic material inside the open trough and the slitted trough and see how 

those walls which are modeling an anisotropic material would change the dispersion 

diagram behavior. At this point the permeability is effectively a tensor. The metal plates 

turn out to be desirable because they suppress higher order modes with transverse 

variation that show themselves in higher frequencies.  

There have been a number of studies about the different regions of the dispersion 

diagram however many of them don’t discuss the range of frequencies in which the 

transverse resonance method (TRM) solutions are applicable. Oliner [31, 32], has done 

studies on bound-wave and leaky-wave ranges for open guiding structures and the 

dispersion diagrams have been plotted that shows both regions. As an example, [33], the 
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dispersion diagram for a dielectric-loaded open guiding structure obtained by Oliner can 

be seen below  

 

Fig. 8-3 (a) Cross Section of the Partially Dielectric-Loaded Millimeter-Wave Antenna (b) Dispersion Plot 

Over a Very Wide Frequency Range for the Structure Shown in Fig. 8-3 (a) When a = 2.20 mm, a’= 1.00 

mm, b = 1.59 mm, d = 0.10 mm, and e, = 2.56.  

The dispersion plot shows that at higher frequencies we have bound waves that 

travel slower than the speed of light and when it crosses onset, the waves are leaky which 

travel faster than the speed of light. However, at lower frequencies the 𝛽 plot turns 

around and again crosses 1 (indicating slow leaky waves) which is clearly unphysical.  

The questions that needs to be answered is: At what frequency does the TRM 

solution to the dispersion relation become unphysical? An easy answer that has been 

repeated in publications [34] is the point at which it passes 1. However, a closer look at 

the dispersion diagram shows a rising edge which is not expected to happen when we are 

dealing with fast waves. 

Another example is the solution given for the guided and leaky waves in a circular 

dielectric rod waveguides in the dissertation by Kim [34]. In this reference, the author has 

tried to solve the complex characteristic equation obtained as follows [34] : 
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(8-1) 

Where 휀1 and 휀2 are the dielectric constants of the dielectric and free space 

regions, respectively, 𝜇1 and 𝜇2 are the relative permeability of the dielectric and free 

space regions, respectively and 𝑘1 and 𝑘2 are the propagation constants in the transverse 

direction. 

As stated in the dissertation, the complex characteristic equation cannot be solved 

analytically therefore, Davidenko’s method has been applied to the dispersion analysis of 

the rod. The author presents Fig. 8-2 for the normalized phase constant of a dielectric rod 

waveguide with a dielectric constant of 5 and radius of 5.0 mm. As seen in the figure, the 

cutoff frequencies for the guided mode were 11.48, 26.36, 41.32, and 56.30 GHz for the 

TM01, TM02, TM03, and TM04 modes, respectively  

 

Fig. 8-4 Normalized Phase Constant of Circular Dielectric Rod Waveguide. The Dielectric Constant and 

Radius of the Rod Were Assumed to Be 5.0 and 5.0 mm, Respectively. [34] 
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It is obvious that at low frequencies where the normalized phase constants exceed 

unity, the answer for the leaky wave region has no physical meaning. Crossing unity 

happens at 3.51, 1.98, 1.95, and 1.94 GHz for the TM01, TM02, TM03, and TM04 

modes however we again see the curving of the dispersion diagram at the low frequencies 

in the leaky wave region before the rising tail that is shown with the arrow.  

This increase which happens at much higher frequencies compared to the unity 

crossing was also present in the article by Oliner which has been shown in Fig.8-3. Yet as 

will be shown form the fullwave solution and the Green function solution no such 

curving and rising of the dispersion diagram should exist. This means that the dispersion 

diagram obtained by the TRM method loses its credibility well before the point at which 

it crosses unity. The important question that needs to be answered is at what point in the 

lower frequencies should we stop trusting the solution of the leaky wave region obtained 

from the transverse resonance method? And second, what is the correct physical answer 

for the full fast wave region? 

In the comparison between the TRM solution and the fullwave solutions we will 

also show a successive approximation method for obtaining the dispersion diagram that 

avoids the use of non-linear optimizers (such as Davidenko’s complex root finder 

algorithm). We show that for the leaky wave regime the iterations can be nested inside 

each other so that a single (messy) equation yields the propagation constant,  𝑘𝑧 , to the 

second approximation, a result good enough to model the behavior around onset.  

This expression is then applied to the case of dispersive (frequency dependent) 

permeable material filing the trough. The permeability and permittivity of the baseline 
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CZN laminate is used as the example. The result is that the material dispersion, even 

though it adds loss, flattens the slope of 𝛽 near onset even more. 

 

8.2 Transverse resonance solution to the trough 

According to Marcuvitz [35], with a parallel plane waveguide in TEM mode 

opening onto an infinite slit on a ground plane and a spacing between the parallel planes 

equal to b, we have the equivalent circuit parameters as seen below: 

 

Fig. 8-5 (a)Front View (b) Sideview (c) Equivalent Circuit  

The equivalent circuit parameters at reference plane T are as follows: 

 

 

𝐺

𝑌0
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(8-2) 
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(8-3) 

Where 
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𝑘 =
2𝜋

𝜆′
              𝜆′ =

𝜆

𝑐𝑜𝑠𝛼
         𝑒 = 2.718     𝛾 = 1.781   

 

(8-4) 

 The small argument approximation will result in the following equation: 

 

 

𝑌𝑇 ≅ 𝑌0 [
𝑘𝑥𝑏

2
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𝜋
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(8-5) 

First assuming the medium inside the parallel plate region is free space, we will 

have: 
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(8-6) 

In the geometries that we are studying, the waveguide is filled and the outside is 

air therefore we define this terminating admittance in terms of an empty outside region: 

 𝑌𝑇 = (
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑏
)] (8-7) 

The transverse resonance problem is seen from the inside therefore, all that is 

needed is to relate 𝑘𝑥0 to the 𝑘𝑥 inside. With the ultimate goal being to obtain the fast 

waves below onset in order to compare to Oliner’s work, we will go forward with the 

transverse resonance method.  
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(8-8) 

The constraint equations are 

 휀𝜇𝑘0
2 − 𝑘𝑥

2 ≡ 𝑘𝑧
2 ≡ 𝑘0

2 − 𝑘𝑥0
2  (8-9) 

By definition, onset occurs when 𝑘𝑧 = 𝑘𝑧0 = 𝑘0 so that 𝑘𝑥0 = 0 . This means 

 𝑘𝑥
2 = 휀𝜇𝑘0

2 − 𝑘0
2 → 𝑘𝑥 = 𝑘0√𝜇휀 − 1 (8-10) 

Since the right hand side of the transverse resonance equation is zero, the left side 

should also zero also and which means that 𝑘𝑥𝑑 = 𝜋/2. Therefore 

 𝑘0_𝑜𝑛𝑠𝑒𝑡 =
𝜋

2𝑑√𝜇휀 − 1
 (8-11) 

Guided waves exist above this 𝑘0 and the leaky waves exist below. The guided 

waves will be obtained later and at this point we will obtain the leaky waves. 

 

 The leaky wave regime solution using successive approximation 8.2.1

Two different methods can be used to obtain the solution to the equation in order 

to obtain the leaky wave behavior of the structure. One method which will be presented 

later is a complex root finding optimization method using an unconstrained minimization 

technique. Another method is an approximation method which will be explained in detail.  

For leaky waves, 𝑘𝑧 = 𝛽𝑧 − 𝑗𝛼𝑧 with 𝛼𝑧 positive since the energy is leaving the 

trough. It is easy to see from both constraint equations that when the trough is filled with 
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a lossless material, this forces both 𝑘𝑥 and 𝑘𝑥0 to have negative alphas. The proof is as 

follows: 

 

𝑘𝑧
2 = 𝛽𝑧

2 − 𝛼𝑧
2 − 𝑗2𝛽𝑧𝛼𝑧

≡ 𝑘0
2 − (𝛽𝑥0

2 − 𝛼𝑥0
2 ± 𝑗2𝛽𝑥0𝛼𝑥0) 

     (8-12) 

 

Since 𝑘0 is purely real, the left hand side imaginary parts must equal each other 

and this forces 𝑘𝑥0 to have a sign that is opposite to 𝑘𝑧. 

The fact that needs to be further explained is the growing exponential outside 

which as Oliner pointed out a long time ago can be understood as an “apparent” growth 

of the signal observed along x, due to the fact that the source wave is decreasing as it 

travels along z. 

 For inside, it means that the maximum of the E-field exists at the mouth of the 

trough and decreases exponentially or as a sine as we travel towards the short circuit. 

This condition naturally results if we assume a sinh function form to the E field inside but 

then it wouldn’t be clear what it means for the sign of 𝛼𝑥. 

So we must have 

 𝑘𝑧 = 𝛽𝑧 − 𝑗𝛼𝑧 ;  𝑘𝑥 = 𝛽𝑥 + 𝑗𝛼𝑥 ;  𝑘𝑥0 = 𝛽𝑥0 + 𝑗𝛼𝑥0 (8-13) 

All alphas are then positive definite. 

We are looking for the solution to: 

 

(
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑏
)] − 𝑗

𝑘𝑥
𝜔𝜇0𝜇

𝑐𝑜𝑡(𝑘𝑥𝑑)

= 0 

(8-14) 

It can be proven that the solution in terms of 𝑘𝑥0 is located close to 
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 𝛽𝑥0 = √(
𝜋

2𝑑
)
2 1

𝜇휀 − 1
− 𝑘0

2 (8-15) 

With 𝑘𝑥0 being easiest to find close to the value that makes the real part of the 

TRM equation zero. So, we must substitute 𝑘𝑥 in terms of 𝑘𝑥0  

 𝑘0
2(𝜇휀 − 1) + 𝑘𝑥0

2 = 𝑘𝑥
2 (8-16) 

At this point the tangent function needs to be approximated. 

It is known that for purely real values, the singularity extraction approximation to 

the tangent spanning its first Riemann sheet is 

 𝑡𝑎𝑛(𝑥) = (1 −
8

𝜋2
) 𝑥 + (

1
𝜋
2 − 𝑥

−
1

𝜋
2 + 𝑥

) (8-17) 

That can be analytically continued to complex z more accurately by: 

 𝑡𝑎𝑛(𝑧) = (1 −
8

𝜋2
) 𝑧 + (

1
𝜋
2 − 𝑧

−
1

𝜋
2 + 𝑧

) + 0.0055 ∙ 𝑧3 (8-18) 

Multiplying the TRM equation by 𝑗𝜇𝑑 we will have: 

 −𝑗𝜇
𝑘𝑥0

2𝑑𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑏
)] =

𝑘𝑥𝑑

𝑡𝑎𝑛(𝑘𝑥𝑑)
 (8-19) 

Knowing that 𝑘𝑥 is mostly real to first order and using the simplest approximation 

we obtain: 
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−𝑗𝜇
𝑘𝑥0

2𝑑𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑏
)]

=
1

(1 −
8
𝜋2
) + (

2

(
𝜋
2)

2

− (𝑘𝑥𝑑)2
)

 

 

(8-20) 

Or 

 

−𝑗𝜇
𝑘𝑥0

2𝑑𝑏

2
+ 𝜇

𝑘𝑥0
2𝑑𝑏

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑏
)

=
1

(1 −
8
𝜋2
) + (

2

(
𝜋
2)

2

− (𝑘𝑥𝑑)2
)

 

 

(8-21) 

The next step to the solution is by successive approximations. Since the log term 

changes slowly, we can as a first approximation replace 𝑘𝑥0 with our first guess of 𝛽𝑥0. 

This makes the log term purely real. Also, we will assume that since the second term in 

the denominator is infinite at onset, that it will be larger than the first 

 (1 −
8

𝜋2
) = 0.189 (8-22) 

Therefore, we proceed with the first guess 

 

−𝑗𝜇
𝑘𝑥0

2𝑑𝑏

2
+ 𝜇

𝑘𝑥0
2𝑑𝑏

𝜋
𝑙𝑛 (

4.795

𝛽𝑥0𝑏
)

=
(
𝜋
2)

2

− (𝑘0
2(𝜇휀 − 1) + 𝑘𝑥0

2 )𝑑2

2
 

(8-23) 
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𝑘𝑥0
2 − 𝑗𝜇𝑘𝑥0

2 𝑏

𝑑
+ 2𝜇

𝑘𝑥0
2𝑏

𝜋𝑑
𝑙𝑛 (

4.795

𝛽𝑥0𝑏
)

= (
𝜋

2
)
2 1

𝑑2
− 𝑘0

2(𝜇휀 − 1) 

(8-24) 

 

To be solved for the complex 𝑘𝑥0 we first solve for 𝑘𝑥0
2  That is: 

 𝑘𝑥0
2 =

(
𝜋
2𝑑
)
2

− 𝑘0
2(𝜇휀 − 1)

[1 − 𝑗𝜇
𝑏
𝑑
+
2𝜇𝑏
𝜋𝑑

𝑙𝑛 (
4.795
𝛽𝑥0𝑏

)]
 (8-25) 

Then we take the square root ensuring that it has the form 𝛽𝑥0 + 𝑗𝛼𝑥0. 

And we have our first approximation for 𝑘𝑥0. Then the iteration will be follows: 

 
𝐺𝑖𝑣𝑒𝑛 𝑘0 < 𝑘0−𝑜𝑛𝑠𝑒𝑡; 𝛽𝑥0 = √(

𝜋

2𝑑
)
2 1

𝜇휀 − 1
− 𝑘0

2  

𝑘𝑥0|0 = 𝛽𝑥0 

(8-26) 

 

 

𝐺𝑖𝑣𝑒𝑛 𝑘𝑥0|𝑛 → 𝑘𝑥|𝑛 = √𝑘0
2(𝜇휀 − 1) + (𝑘𝑥0|𝑛)2 

𝑅𝐻𝑆𝑛 =
𝑘𝑥|𝑛𝑑

tan (𝑘𝑥|𝑛𝑑)
 

(8-27) 

 𝐿𝐻𝑆𝑓𝑎𝑐𝑡𝑜𝑟𝑛 = −𝑗𝜇
𝑏𝑑

2
(1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0|𝑛𝑏
)) (8-28) 
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 𝑘𝑥0|𝑛+1 = √
𝑅𝐻𝑆𝑛

𝐿𝐻𝑆𝑓𝑎𝑐𝑡𝑜𝑟𝑛
 (8-29) 

 

 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 = 1 −
𝑘𝑥0|𝑛+1
𝑘𝑥0|𝑛

 (8-30) 

Repeat until 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 <0.001 or desired accuracy 

The next step is to obtain the solution to the guided wave regime 

 Guided wave regime solution using successive approximation 8.2.2

Using the same result to the transverse resonance method we proceed: 

 

 𝑗
𝑘𝑥
𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑) =

𝑘𝑥0
2𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑏
)] (8-31) 

 

However, 𝑘𝑥0 = −𝑗𝛼𝑥0 therefore: 

 

 𝑗
𝑘𝑥
𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑) = −

𝛼𝑥0
2𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

−𝑗𝛼𝑥0𝑏
)] (8-32a) 

 𝑗
𝑘𝑥
𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑) = −

𝛼𝑥0
2𝑏

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) + 𝑗

2

𝜋
𝑙𝑛𝑗] (8-32b) 

 𝑗
𝑘𝑥
𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑) = −

𝛼𝑥0
2𝑏

2
[𝑗
2

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
)] (3-32c) 

 𝑗
𝑘𝑥
𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑) = −𝑗

𝛼𝑥0
2𝑏

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-32d) 
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 −
𝑘𝑥𝑑

𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑) =

𝛼𝑥0
2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-32e) 

 
𝑘𝑥𝑑

𝑡𝑎𝑛(𝑘𝑥𝑑)
= −𝜇

𝛼𝑥0
2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-32f) 

 

Since we know that𝑘𝑥𝑑 starts at 𝜋/2, solve for the position past 𝜋/2; that is: 

 

𝜋
2 + 𝛿

𝑡𝑎𝑛 (
𝜋
2
+ 𝛿)

= −𝜇
𝛼𝑥0

2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-33a) 

 
(
𝜋
2 + 𝛿) (1 − 𝑡𝑎𝑛

𝜋
2 𝑡𝑎𝑛𝛿)

𝑡𝑎𝑛 (
𝜋
2) + 𝑡𝑎𝑛𝛿

= −𝜇
𝛼𝑥0

2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-33b) 

Since the trig identity must always be true and 𝑡𝑎𝑛(𝜋/2) = ∞ we will have: 

 −(
𝜋

2
+ 𝛿) 𝑡𝑎𝑛𝛿 = −𝜇

𝛼𝑥0
2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-34a) 

 (
𝜋

2
+ 𝛿) 𝑡𝑎𝑛𝛿 = 𝜇

𝛼𝑥0
2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-34b) 

At this point, if we do the singularity expansion approach we see we don’t have 

𝑥/tan (𝑥) but 𝑥tan (𝑥). If we do the expansion, we will get a fourth order polynomial 

which helps us see the dominant term. 

 

 

(
𝜋

2
+ 𝛿) [(1 −

8

𝜋2
) 𝛿 + (

2𝛿

(
𝜋
2)

2

− 𝛿2
)]

= 𝜇
𝛼𝑥0

2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) 

(8-35) 
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Rearranging to solve for 𝛿 

 

 

(
𝜋

2
+ 𝛿) [(1 −

8

𝜋2
) [(

𝜋

2
)
2

− 𝛿2] 𝛿 + 2𝛿]

= {𝜇
𝛼𝑥0

2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
)} [(

𝜋

2
)
2

− 𝛿2] 

(8-36a) 

 

𝐴 [(
𝜋

2
)
2

− 𝛿2] 𝛿 (
𝜋

2
+ 𝛿) + 2𝛿 (

𝜋

2
+ 𝛿)

= 𝐵(𝛼𝑥0) [(
𝜋

2
)
2

− 𝛿2] 

(8-36b) 

 

[𝐴 (
𝜋

2
)
2

𝛿 − 𝐴𝛿3] (
𝜋

2
+ 𝛿) + 2𝛿2 + 𝛿𝜋

= 𝐵(𝛼𝑥0) [(
𝜋

2
)
2

− 𝛿2] 

(8-36c) 

 

𝐴 (
𝜋

2
)
2

𝛿 (
𝜋

2
+ 𝛿) − 𝐴𝛿3 (

𝜋

2
+ 𝛿) + 2𝛿2 + 𝛿𝜋

= (
𝜋

2
)
2

𝐵(𝛼𝑥0) − 𝛿
2𝐵(𝛼𝑥0) 

(8-36d) 

 

[𝐴 (
𝜋

2
)
3

+ 𝜋] 𝛿 + (2 + 𝐵(𝛼𝑥0) + 𝐴 (
𝜋

2
)
2

) 𝛿2 −
𝜋

2
𝐴𝛿3

− 𝐴𝛿4 − (
𝜋

2
)
2

𝐵(𝛼𝑥0) = 0 

(8-36e) 

 

This equation can be solved as a fourth order polynomial however, if 𝛿 is small 

the first term dominates and we can start the successive approximations method. 
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𝐺𝑖𝑣𝑒𝑛 𝛼𝑥0 = 𝑓 ∙ 𝑘𝑜𝑛𝑠𝑒𝑡 ; 𝑓 𝑟𝑎𝑛𝑔𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑛𝑒𝑎𝑟 0 𝑡𝑜 30  

 

 

 𝐵(𝛼𝑥0) = 𝜇
𝛼𝑥0

2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) (8-37a) 

 𝛿0 =
(
𝜋
2)

2

𝐵(𝛼𝑥0)

𝐴 (
𝜋
2)

3

+ 𝜋
  ;  𝐴 = 1 −

8

𝜋2
 (8-37b) 

But now the TRM equation tells us: 

 (
𝜋

2
+ 𝛿) 𝑡𝑎𝑛𝛿 = 𝜇

𝛼𝑥0
2𝑏𝑑

𝜋
𝑙𝑛 (

4.795

𝛼𝑥0𝑏
) ≡ 𝐵(𝛼𝑥0) (8-38) 

 

So the next step is to substitute 𝛿0 into one of these deltas and solve for the other 

and see if that gets better. A quick experiment shows: 

 (
𝜋

2
+ 𝛿0) 𝑡𝑎𝑛𝛿1 = 𝐵(𝛼𝑥0) (8-39) 

So that 

 𝛿1 = 𝑎𝑡𝑎𝑛 [
𝐵(𝛼𝑥0)

(
𝜋
2 + 𝛿0)

] (8-40) 

And to do N iterations we will end up with this nice repeated fraction: 
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𝛿𝑁

= 𝑎𝑡𝑎𝑛

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐵(𝛼𝑥0)

(

 
 
 
 
 
 
 
 
 
 

𝜋
2 + 𝑎𝑡𝑎𝑛

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐵(𝛼𝑥0)

(

 
 
 
 
𝜋
2 + 𝑎𝑡𝑎𝑛

[
 
 
 
 
 
 

𝐵(𝛼𝑥0)

(
𝜋
2 + 𝑎𝑡𝑎𝑛 [

𝐵(𝛼𝑥0)

(
𝜋
2 + 𝛿0)

])

]
 
 
 
 
 
 

)

 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(8-41) 

At which point it follows that 

 𝑘𝑥𝑚 =

𝜋
2 + 𝛿

𝑑
    (8-42a) 

 𝑘0 = √
𝛼𝑥02 + 𝑘𝑥𝑚2

𝜇휀 − 1
  (8-42b) 

 𝑘𝑧 = √𝑘0
2 + 𝛼𝑥02 (8-42c) 

   

 Simplified successive approximation method 8.2.3
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It turns out that for the cases of interest just two iterations are enough to converge 

on the behavior near onset. This means that we can write a closed form expression for the 

two approximations by inserting he first approximation directly into the second. 

That is, since the constraint equation 

 휀𝜇𝑘0
2 − 𝑘𝑥

2 ≡ 𝑘𝑧
2 ≡ 𝑘0

2 − 𝑘𝑥0
2  (8-43) 

Tells us that 

 𝑘𝑥
2 ≡ 𝑘0

2(휀𝜇 − 1) + 𝑘𝑥0
2  (8-44) 

Then the TRM equation solves for 𝑘𝑥0 as: 

 𝑘𝑥0
2 =

𝑘𝑥𝑑
𝑡𝑎𝑛(𝑘𝑥𝑑)

𝜇
𝑑𝑏
2 [−𝑗 +

2
𝜋 𝑙𝑛 (

4.795
𝑘𝑥0𝑏

)]
 (8-45) 

Furthermore, near onset with very a high index medium in the trough, since 𝑘𝑧 is 

of the order of 𝑘0, 𝑘𝑥 inside the channel is of the order of 𝑘𝑚𝑒𝑑𝑖𝑢𝑚 of the channel. So 𝑘𝑧 

is of the order of 

 𝑘𝑧 = √𝑘0
2 − 𝑘𝑥0

2 ≅ √𝑘0
2 −

𝑘0√휀𝜇
𝑡𝑎𝑛(𝑘𝑥𝑑)

𝜇
𝑏
2 [−𝑗 +

2
𝜋 𝑙𝑛 (

4.795
𝑘𝑥0𝑏

)]
 (8-46) 

Now replace all 𝑘𝑥 with functions of 𝑘𝑥0 and the 𝑘𝑥0 in the log with functions of 

𝑘𝑥 from TRM 
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𝑘𝑧

≅

√
  
  
  
  
  
  
  
  
  
  
  
 

𝑘0
2 −

𝑘0√휀𝜇

𝑡𝑎𝑛 (𝑑√𝑘0
2(휀𝜇 − 1) + 𝑘𝑥0

2 )

𝜇
𝑏
2

[
 
 
 
 
 
 
 

−𝑗 +
2
𝜋 𝑙𝑛

(

 
 
 
 
 

4.795

𝑏√

𝑘𝑥
𝑡𝑎𝑛(𝑘𝑥𝑑)

𝜇
𝑏
2 [−𝑗 +

2
𝜋 𝑙𝑛 (

4.795
𝑘𝑥0𝑏

)]
)

 
 
 
 
 

]
 
 
 
 
 
 
 
 

(8-47) 

Now replace every 𝑘𝑥0 with the TRM expression so it is again in terms of 𝑘𝑥 and 

then again 

 

𝑘𝑧

≅

√
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

𝑘0
2 −

𝑘0√휀𝜇

𝑡𝑎𝑛

(

 
 
 

𝑑
√
𝑘0
2(휀𝜇 − 1) +

√𝑘0
2(휀𝜇 − 1) + 𝑘𝑥0

2

𝑡𝑎𝑛 (𝑑√𝑘0
2(휀𝜇 − 1) + 𝑘𝑥0

2 )

𝜇
𝑏
2
[−𝑗 +

2
𝜋
𝑙𝑛 (

4.795
𝑘𝑥0𝑏

)]

)

 
 
 

𝜇
𝑏
2

[
 
 
 
 
 
 
 
 
 

−𝑗 +
2
𝜋 𝑙𝑛

(

 
 
 
 
 
 
 

4.795

𝑏
√

√𝑘0
2(휀𝜇 − 1) + 𝑘𝑥0

2

𝑡𝑎𝑛 (𝑑√𝑘0
2(휀𝜇 − 1) + 𝑘𝑥0

2 )

𝜇
𝑏
2 [−𝑗 +

2
𝜋 𝑙𝑛 (

4.795
𝑘𝑥0𝑏

)]
)

 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 

 (8-48) 

 

And now replace 𝑘𝑥0 with its first guess 𝑘𝑥0 
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𝑘𝑧

≅

√
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

𝑘0
2 −

𝑘0√휀𝜇

𝑡𝑎𝑛

(

 
 
 

𝑑
√
𝑘0
2(휀𝜇 − 1) +

√𝑘0
2(휀𝜇 − 1) + 𝛽𝑥0

2

𝑡𝑎𝑛 (𝑑√𝑘0
2(휀𝜇 − 1) + 𝛽𝑥0

2 )

𝜇
𝑏
2
[−𝑗 +

2
𝜋
𝑙𝑛 (

4.795
𝛽𝑥0𝑏

)]

)

 
 
 

𝜇
𝑏
2

[
 
 
 
 
 
 
 
 
 

−𝑗 +
2
𝜋 𝑙𝑛

(

 
 
 
 
 
 
 

4.795

𝑏
√

√𝑘0
2(휀𝜇 − 1) + 𝛽𝑥0

2

𝑡𝑎𝑛 (𝑑√𝑘0
2(휀𝜇 − 1) + 𝛽𝑥0

2 )

𝜇
𝑏
2 [−𝑗 +

2
𝜋 𝑙𝑛 (

4.795
𝛽𝑥0𝑏

)]
)

 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 

 (8-49) 

 

 

Where 

 𝛽𝑥0 = √(
𝜋

2𝑑
)
2 1

𝜇휀 − 1
− 𝑘0

2 (8-50) 

 

Using either method, at this point we can plot 𝑘𝑧versus 𝑘0  diagram in both the 

leaky wave and the guided wave regimes. As an example, the real and imaginary parts of 

𝑘𝑧 has been plotted versus 𝑘0 for a 1” by 1” trough filled with a material with 𝜇 = 40 and 

휀 = 3.2. 
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Fig. 8-6 Real and Imaginary Parts of  𝑘𝑧 for a 1” by 1” Open Trough Using the Transverse Resonance 

Method 

 In the previous figure, it is clearly seen that the real part of  𝑘𝑧 is crossing the 

light-line. The meaning of this crossing in terms of the wave velocity can be seen in the 

velocity plot below: 

 

Fig. 8-7 Velocity Normalized to the Speed of Light Versus Free-Space Wavenumber 

It can be seen that the phase velocity rises below onset but then its stops rising 

and turns around until it eventually gets smaller than the speed of light at very low values 
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of 𝑘0 (smaller frequencies) even though we should still be in the fast wave region. We 

had seen this before in Oliner’s work however before going to the next section we will 

present the other method of solving the transverse resonance equation that we mentioned 

before and show that it gives the exact same results as the approximation method. 

 

 Transverse resonance equation solution using unconstrained minimization 8.2.4

routine 

Another way to solve the transverse resonance equation is to use an unconstrained 

minimization routine to the solve the equation. This optimization technique, finds the 

minimum to the transverse resonance equation and obtains the value of 𝑘𝑧 that results in 

the minimum. The results can be seen in the figure below in the same plot as the results 

obtained from the approximation method.   
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Fig. 8-8 Real and Imaginary Parts of 𝑘𝑧 Obtained from Optimization and from the Approximation Method  

Even though the perfect agreement of the two solutions shows that the 

optimization method can be trusted, a sanity check will be to ensure that the solution 

obtained by the optimization method is unique and the results are correct even with initial 

values that are not close to the solution. We have picked initial values far from the correct 

results and plotted contour plots of the inverse of the transverse resonance equation. The 

reason we are plotting the inverse of the function is that the maximum can be seen with 

much more clarity on the contour plot compared to the minimum of the transverse 

resonance function. The plot below shows that the point which gives the minimum value 

of the transverse resonance function is unique. 
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Fig. 8-9 Values of 𝑅𝑒(𝑘𝑥0) and 𝐼𝑚(𝑘𝑥0) That Results in the Minimum of the Transverse Resonance 

Equation 

 

8.3 Comparing the transverse resonance method to the Greens function method and to 

full wave simulation 

In the previous chapter we had found the Greens function solution to a 3.8” by 

1.053” open trough seen in Fig. 8-10  
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Fig. 8-10 Open Trough Geometry Filled with a Permeable Material 

We can also obtain the 𝛼 and 𝛽 plots for the mentioned dimensions and the 

material properties using the transverse resonance method and plot them in the same 

graph. Another useful comparison would be to use a fullwave simulator to find the slope 

and amplitude plots of the magnetic current similar to what we did in the Green’s 

function method. The HFSS results take into account every realistic detail of the structure 

and can be used as a substitute for the Greens function method. 

In order to simulate this structure in HFSS, the dimensions of the sides of the 

computational domain is chosen to be large enough so that the results does not change 

with increasing the dimensions of the trough sides. As seen below, integration lines have 

been defined at different distances along the trough and the ∫𝐸. 𝑑𝑙 has been calculated 

along each path.  

Similar to the Green’s function method, the slope of the unwrapped phase and the 

slope of the amplitude plots will result in the 𝛽 and 𝛼  plots respectively. 
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Fig. 8-11 Open Trough Structure Simulation in HFSS Showing the Integration Paths to Obtain the 

Magnetic Current 

The figure below shows the 𝛼 and 𝛽 plots obtained from the three different 

methods 
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Fig. 8-12  𝛽 Plot Obtained from Three Different Methods for a 3.8” by 1.053” Open Trough with 𝜇 =

80,휀 = 2 

 

Fig. 8-13  𝛼 Plot Obtained Three Different Methods for a 3.8” by 1.053” Open Trough with 𝜇 = 80 and 

휀 = 2 
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In the previous figures we see that the three methods have a very good agreement 

in higher frequencies and they deviate as we go lower in frequency. Also we see the 

curving of the beta plot obtained from the transverse resonance has the same behavior 

that was present in Oliner’s work therefore at lower frequencies it becomes unphysical.  

However, the Green’s function method and the full wave simulation have a good 

agreement even in smaller frequencies and the deviation from the transverse resonance 

method starts at higher frequencies than the “unphysical” point at which the solution 

crossed the light line again. 

As another example, we will compare the transverse resonance solution to the 

HFSS simulation results of a trough with different dimensions and material properties. 

The results seen below is for a 1” by 1” trough with the permeability of 40 and 

permittivity of 3.2.  
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Fig. 8-14 𝛽 Plots of a 1”by1” Trough with 𝜇 = 40 and 휀 = 3.2 Using HFSS and Transverse Resonance 

Method 

In Fig. 8-14 we see that the results from the transverse resonance starts to increase 

at almost 150MHz which means the waves in the leaky wave region are starting to get 

slower however as we expect from a physical dispersion behavior and as we had seen in 

the previous example, the curving of the beta plot does not happen in the HFSS results. 

We have not gone lower in frequency for the HFSS results since the results where 

starting to get noisy. However we had seen an agreement with the Green’s function 

method and the Green’s function method can go to very low frequencies if the data is 

needed. A question that needs to be answered at this point is, can give an estimation of 

the frequency in which we can no longer trust the transverse resonance method? 

If we go back to the example of the 1.053” by 8.3” inch trough with the 

permeability of 80 and the permittivity of 20 we can this time plot the 𝛽𝑥0 and 𝛽𝑥𝑚𝑒𝑑 
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obtained from TRM relative to the propagation constants in air and the medium inside the 

trough. In the following figures, we see that both 𝛽𝑥0 and 𝛽𝑥𝑚𝑒𝑑 cross 1. That is deep 

inside the leaky wave regime the solution is telling us that the x-component of the phase 

constant inside the trough becomes slower than the medium’s total propagation constant, 

which is impossible and has no physical meaning.  

 

Fig. 8-15 𝛽𝑥0/𝛽0 Plots of a 1.053” by 8.3” Trough with 𝜇 = 80 and 휀 = 2 

 

Fig. 8-16 𝛽𝑥𝑚𝑒𝑑/𝛽𝑚𝑒𝑑 Plots of a 1.053” by 8.3” Trough with 𝜇 = 80 and 휀 = 2 
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Comparing these figures to Fig.8-12 show that the point in which 𝛽𝑥0 and 𝛽𝑥𝑚𝑒𝑑 

cross one can be an estimation for when the results start to deviate. This is the frequency 

point in which the 𝛽 plot experiences an inflection point that changes the character from a 

downwards bending curve to a curve that eventually bends upwards.. To prove this, we 

calculate the second derivative for the TRM dispersion curve. Indeed, the second 

derivative of the 𝛽 plot becomes zero very close to the point when the x-components of 

the propagation constants become slower than should be possible. 

 

Fig. 8-17 Plot of  𝑘𝑧/𝑘0 and the First and Second Derivative Showing That the Zero Crossing of the Second 

Derivative Can Be Used as an Approximate Measure of Defining the Minimum Frequency of 

Accountability of the Transverse Resonance Method 
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The calculation is repeated for a 1” by 1” cross section trough to verify this 

observation. 

 

Fig. 8-18 𝛽𝑥0/𝛽0 Plots of a 1” by 1” Trough with 𝜇 = 40 and 휀 = 3.2 

 

 

Fig. 8-19 𝛽𝑥𝑚𝑒𝑑/𝛽𝑚𝑒𝑑 Plots of a 1” by 1” Trough with 𝜇 = 40 and 휀 = 3.2 
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The second derivative of the beta plot is also shown below which shows that the 

deviation happens very close to the point where the x-components of the TRM solution 

become unphysical. 

 

Fig. 8-20 Plot of the Second Derivative of a  𝑘𝑧/𝑘0 of 1” by 1” Trough with 𝜇 = 40 and 휀 = 3.2 Showing 

That the Zero Crossing of the Second Derivative Can Be Used as an Approximate Measure of Defining the 

Minimum Frequency of Accountability of the Transverse Resonance Method 

Now that we have recognized an approximate lower frequency limit above which 

we can trust the transverse resonance method, an interesting study would be to check 

other rules we had found in the Green’s function method for example the rule that as long 

as the cross section area times the permeability is the same for two troughs, then their 

beta plots will be the same. We will use the same examples as the previous section. 
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Fig. 8-21 Two Open Trough Structures with Different Permeabilities and Cross Sections While Having the 

Same Cross Section Area Times the Permeability. 

The beta plots obtained from the transverse resonance method are seen below 

which shows that they are exactly the same until we reach the frequency of the inflection 

point below which we can no longer trust the transverse resonance method.  

 

Fig. 8-22 Beta Plots of the Two Geometries with the Same 𝜇. 𝑣𝑜𝑙 Showing That the Rules Found Before 

Holds in the Transverse Resonance Method for Frequencies Higher Than the Reliable Frequency 



293 

 

This means that in order to obtain the dispersion features of the trough, we can 

use the transverse resonance method until the frequency in which the second derivative of 

the beta plot crosses zero and in order to obtain the dispersion relation of lower 

frequencies we can either use the Green’s function method or a fullwave simulation of 

the structure.   

 

8.4 Application of transverse resonance method to a slitted trough 

As mentioned in detail in the previous chapter, the external admittance is the same 

as the previous case where b is replaced with g 

 𝑌𝑇 = (
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑔

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑔
)] (8-51) 

But the internal now has half the capacitance of a slitted plane at the mouth 

 𝑌𝑠𝑙𝑖𝑡 = (
𝑘𝑥

𝜔𝜇0𝜇
) 𝑗
𝑘𝑥𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] (8-52) 

 

Fig. 8-23 Geometry of the Slitted Trough Where the Slit Adds a Capacitance Term 

Then by using the transverse resonance method we will have:  
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�̅�𝑙𝑒𝑓𝑡 = −𝑗
𝑘𝑥

𝜔𝜇0𝜇
{𝑐𝑜𝑡(𝑘𝑥𝑑) −

𝑘𝑥𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

= −�̅�𝑟𝑎𝑑

= −(
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑔

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑔
)] 

(8-53) 

Probably the easiest way to solve this case given the previous case is to convert 

the 𝑘𝑥 in the new term in the LHS into 𝑘𝑥0 terms. 

 

−𝑗
𝑘𝑥
𝜔𝜇0𝜇

𝑐𝑜𝑡(𝑘𝑥𝑑) + 𝑗
𝑘𝑥

2

𝜔𝜇0𝜇

𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]

= −(
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑔

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑔
)] 

(8-54) 

Then after doing that move it to the RHS 

 

−𝑗
𝑘𝑥
𝜔𝜇0𝜇

𝑐𝑜𝑡(𝑘𝑥𝑑)

= −(
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑔

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑔
)]

− 𝑗
𝑘0
2(휀𝜇 − 1) + 𝑘𝑥0

2

𝜔𝜇0𝜇

𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-55) 

collect 



295 

 

 

−𝑗
𝑘𝑥
𝜔𝜇0𝜇

𝑐𝑜𝑡(𝑘𝑥𝑑)

= −(
𝑘𝑥0
2

𝜔𝜇0
) {
𝑔

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑔
)]

+ 𝑗
𝑏

𝜇𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

− 𝑗
𝑘0
2(휀𝜇 − 1)

𝜔𝜇0𝜇

𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-56) 

Now collect again and recognize that 𝜇 ≫ 1  so that (휀𝜇 − 1)/𝜇 is approximately 

휀 

 

−𝑗
𝑘𝑥
𝜇
𝑐𝑜𝑡(𝑘𝑥𝑑)

≅ −𝑘𝑥0
2 {

𝑔

2

+
𝑗

𝜋
[𝑔 ∙ 𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝜇
∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

− 𝑗
𝑘0
2𝑏휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-57) 

 

As before, multiply both sides times 𝑗𝜇𝑑 

 

𝑘𝑥𝑑

𝑡𝑎𝑛(𝑘𝑥𝑑)
≅ −𝑗𝑘𝑥0

2 𝜇𝑑 {
𝑔

2

+
𝑗

𝜋
[𝑔 ∙ 𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝜇
∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

+
𝑘0
2𝑏𝑑𝜇휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-58a) 
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𝑘𝑥𝑑

𝑡𝑎𝑛(𝑘𝑥𝑑)
≅ 𝑘𝑥0

2 𝜇𝑑 {−𝑗
𝑔

2

+
1

𝜋
[𝑔 ∙ 𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝜇
∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

+
𝑘0
2𝑏𝑑𝜇휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-58b) 

 

Or making it look like the previous case 

 

−𝑗𝜇𝑘𝑥0
2
𝑑𝑔

2
+ 𝜇

𝑘𝑥0
2 𝑑𝑔

𝜋
[𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝑔𝜇

∙ 𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔

2𝑏
])]

+ 𝜇
𝑘0
2𝑏𝑑휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] =

𝑘𝑥𝑑

𝑡𝑎𝑛(𝑘𝑥𝑑)
 

(8-59) 

Invoking the singularity expansion of the tangent as before 

 

−𝑗𝜇𝑘𝑥0
2 𝑑𝑔 + 𝜇

2𝑘𝑥0
2 𝑑𝑔

𝜋
[𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝑔𝜇

∙ 𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔

2𝑏
])]

+ 𝜇
2𝑘0

2𝑏𝑑휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]

= (
𝜋

2
)
2

− (𝑘0
2(𝜇휀 − 1) + 𝑘𝑥0

2 )𝑑2 

(8-60) 

Collect 
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𝑘𝑥0
2 {−𝑗𝜇𝑑𝑔 +

2𝜇𝑑𝑔

𝜋
[𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝑔𝜇
∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

= (
𝜋

2
)
2

− (𝑘0
2(𝜇휀 − 1) + 𝑘𝑥0

2 )𝑑2

− 𝜇
2𝑘0

2𝑏𝑑휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-61) 

or 

 

𝑘𝑥0
2 {−𝑗𝜇𝑑𝑔 +

2𝜇𝑑𝑔

𝜋
[𝑙𝑛 (

4.795

𝑘𝑥0𝑔
) +

𝑏

𝑔𝜇
∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]

+ 𝑑2}

= (
𝜋

2
)
2

− 𝑘0
2𝑑2(𝜇휀 − 1)

− 𝜇
2𝑘0

2𝑏𝑑휀

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-62) 

And solve for 𝑘𝑥0
2  

 

𝑘𝑥0
2

=
(
𝜋
2𝑑
)
2

− 𝑘0
2(𝜇휀 − 1) − 𝜇

2𝑘0
2𝑏휀
𝜋𝑑

[𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔
2𝑏
])]

1 − 𝑗𝜇
𝑔
𝑑
+
2𝜇𝑔
𝜋𝑑

[𝑙𝑛 (
4.795
𝑘𝑥0𝑔

) +
𝑏
𝑔𝜇 ∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]

 

(8-63) 

Now remembering that the 휀 on the numerator right hand term was really 

(𝜇휀 − 1)/𝜇  we collect terms by returning to that form 

 

𝑘𝑥0
2

=
(
𝜋
2𝑑
)
2

− 𝑘0
2(𝜇휀 − 1) {1 +

2𝑏
𝜋𝑑

[𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔
2𝑏
])]}

1 − 𝑗𝜇
𝑔
𝑑
+
2𝜇𝑔
𝜋𝑑

[𝑙𝑛 (
4.795
𝑘𝑥0𝑔

) +
𝑏
𝑔𝜇 ∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]

 
(8-64) 
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Whereas for the open trough, before, we had: 

 𝑘𝑥0
2 =

(
𝜋
2𝑑
)
2

− 𝑘0
2(𝜇휀 − 1)

[1 − 𝑗𝜇
𝑏
𝑑
+
2𝜇𝑏
𝜋𝑑

𝑙𝑛 (
4.795
𝑘𝑥0𝑏

)]
 (8-65) 

The above is the TRM condition using the singularity extraction approximation 

for the tangent. Formally the TRM condition is: 

 

𝑘𝑥0
2

=

𝑘𝑥𝑑
𝑡𝑎𝑛(𝑘𝑥𝑑)

− 𝜇
𝑘0
2𝑏𝑑휀
𝜋 [𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]

−𝑗𝜇
𝑑𝑔
2 [1 + 𝑗

2
𝜋 [𝑙𝑛 (

4.795
𝑘𝑥0𝑔

) +
𝑏
𝑔𝜇 ∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]]

 
(8-66) 

Whereas without he slit it was: 

 𝑘𝑥0
2 =

𝑘𝑥𝑑
𝑡𝑎𝑛(𝑘𝑥𝑑)

−𝑗𝜇
𝑑𝑏
2 [1 + 𝑗

2
𝜋 𝑙𝑛 (

4.795
𝑘𝑥0𝑏

)]
 (8-67) 

Similar to the previous case we again argue that the log term with 𝑘𝑥0 is slowly 

varying and therefore we can put inside it our first guess for 𝑘𝑥0, namely 𝛽𝑥0 from onset. 

But when does onset occur for the case of the slit? 

 

Onset still occurs when 𝑘𝑧 = 𝑘𝑧0 = 𝑘0 so that 𝑘𝑥0 = 0. This means 

 𝑘𝑥
2 = 휀𝜇𝑘0

2 − 𝑘0
2 → 𝑘𝑥 = 𝑘0√𝜇휀 − 1 (8-68) 

Since TRM is 
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−𝑗
𝑘𝑥
𝜔𝜇0𝜇

{𝑐𝑜𝑡(𝑘𝑥𝑑) −
𝑘𝑥𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]}

= −(
𝑘𝑥0
𝜔𝜇0

)
𝑘𝑥0𝑔

2
[1 + 𝑗

2

𝜋
𝑙𝑛 (

4.795

𝑘𝑥0𝑔
)]

= 0 

(8-69) 

We must have 

 𝑐𝑜𝑡(𝑘𝑥𝑑) =
𝑘𝑥𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] (8-70) 

And so onset occurs earlier than 𝑘𝑥𝑑 = 𝜋/2. Assuming we will be close to the 

original onset (the slit is a perturbation) we write the onset condition as: 

 𝑐𝑜𝑡 (
𝜋

2
− 𝛿) =

𝑘𝑥𝑏

𝜋
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] (8-71) 

Where 𝑘𝑥𝑑 =
𝜋

2
− 𝛿 so that 𝑘𝑥 =

𝜋

2𝑑
−

𝛿

𝑑
. We can rewrite then: 

 

𝑡𝑎𝑛(𝛿) = (
𝜋

2
− 𝛿)

𝑏

𝜋𝑑
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]

=
𝜋

2

𝑏

𝜋𝑑
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])]

− 𝛿
𝑏

𝜋𝑑
[𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔

2𝑏
])] 

(8-72) 

Since we are close to the origin if 𝛿 is small, the first guess for 𝛿 is 

 𝛿0 =

𝑏
2𝑑

[𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔
2𝑏
])]

1 +
𝑏
𝜋𝑑

[𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔
2𝑏
])]

 (8-73) 

For the next approximation use the next terms in the Taylor series 
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 𝛿𝑚 =

𝑏
2𝑑

[𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔
2𝑏
])] −

𝛿𝑚−1
3

3 −
2𝛿𝑚−1

5

15

1 +
𝑏
𝜋𝑑

[𝑙𝑛 (𝑐𝑠𝑐 [
𝜋𝑔
2𝑏
])]

 (8-74) 

Consider the case above where b=3.8 inches and d=1.053 inches and we make 

g=0.5b, 𝛿0 = 0.447, 𝛿1 = 0.426, and 𝛿2 = 0.428. 

So onset occurs at 

 𝑘0−𝑜𝑛𝑠𝑒𝑡 =
𝑘𝑥−𝑜𝑛𝑠𝑒𝑡

√𝜇휀 − 1
=

𝜋

2𝑑√𝜇휀 − 1
−

𝛿2

𝑑√𝜇휀 − 1
 (8-75) 

And our first guess for kx0 is (as before): 

 𝑘𝑥00 = √𝑘0−𝑜𝑛𝑠𝑒𝑡
2 − 𝑘0

2
 (8-76) 

Therefore since 

 𝑘𝑥 = √(휀𝜇 − 1)𝑘0
2 + 𝑘𝑥0

2  (8-77) 

  

The first approximation 

 

𝑘𝑥01

=

√
  
  
  
  
  𝑑√(휀𝜇 − 1)𝑘0

2 + 𝑘𝑥00
2

𝑡𝑎𝑛 (𝑑√(휀𝜇 − 1)𝑘0
2 + 𝑘𝑥00

2 )
− 𝜇

𝑘0
2𝑏𝑑휀
𝜋 [𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]

−𝑗𝜇
𝑑𝑔
2 [1 + 𝑗

2
𝜋 [𝑙𝑛 (

4.795
𝑘𝑥00𝑔

) +
𝑏
𝑔𝜇 ∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]]

 

(8-78) 

And again 
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𝑘𝑥02

=

√
  
  
  
  
  𝑑√(휀𝜇 − 1)𝑘0

2 + 𝑘𝑥01
2

𝑡𝑎𝑛 (𝑑√(휀𝜇 − 1)𝑘0
2 + 𝑘𝑥01

2 )
− 𝜇

𝑘0
2𝑏𝑑휀
𝜋 [𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]

−𝑗𝜇
𝑑𝑔
2 [1 + 𝑗

2
𝜋 [𝑙𝑛 (

4.795
𝑘𝑥01𝑔

) +
𝑏
𝑔𝜇 ∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]]

 

(8-79) 

And again 

 

𝑘𝑥02

=

√
  
  
  
  
 
 

𝑑√(휀𝜇 − 1)𝑘0
2 + 𝑘𝑥02

2

𝑡𝑎𝑛 (𝑑√(휀𝜇 − 1)𝑘0
2 + 𝑘𝑥02

2 )
− 𝜇

𝑘0
2𝑏𝑑휀
𝜋 [𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]

−𝑗𝜇
𝑑𝑔
2 [1 + 𝑗

2
𝜋 [𝑙𝑛 (

4.795
𝑘𝑥02𝑔

) +
𝑏
𝑔𝜇 ∙ 𝑙𝑛 (𝑐𝑠𝑐 [

𝜋𝑔
2𝑏
])]]

 

(8-80) 

 

For a meaningful comparison let’s make a slit g=0.5b but reduce the depth to keep 

the onset at 250 MHz like before. This happens for d=0.67” (𝜇 = 40, 휀 = 3.2, b=3.8”). 

We are therefore reducing the amount (volume) of material used. 

Again, similar to the case of the open trough, we can either use this approximation 

method or to use an unconstrained minimization routine to solve the equation and they 

will both give the same results.  

The red curves are the no slit case and the black are with the slit. Since this is a 

TRM solution we ignore the “up turn” of the black beta curve below 160MHz since we 

now this is an unphysical result. 
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Fig. 8-24 Inverse Velocity (𝛽/2𝜋) Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in 

Red and the Same Plot for a 0.67” by 3.8”  Slitted Trough with the Same Material and a 0.335”Slit Shown 

in Black 
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Fig. 8-25 α Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in Red and the Same Plot 

for a 0.67” by 3.8” Slitted Trough with the Same Material and a 0.335” Slit Shown in Black 

 

The key result is that in the neighborhood of onset the slope becomes higher 

(reducing the bandwidth), making the leaky wave attenuation also higher, because we 

have reduced the amount of material (by 36%) and yet retained the 250 MHz onset. 

What happens now if we retain the amount of material, namely increase b? So, we 

increase b by the same factor that we have decreased d. Then adjust the slit to get back to 

250 MHz to g=0.595b (b=5.972, d=0.67”) . 

The results can be seen below. 
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Fig. 8-26 Inverse Velocity (𝛽/2𝜋) Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in 

Red and the Same Plot for a 0.67” By 3.8”  Slitted Trough with the Same Material and A 0.335”Slit Shown 

In Black and the Same Plot for a 0.67” by 5.972”  Slitted Trough with the Same Material and a 0.595” Slit 

Shown in Magenta 
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Fig. 8-27 Α Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in Red and the Same Plot 

For a 0.67” by 3.8”  Slitted Trough with the Same Material and A 0.335” Slit Shown in Black and the Same 

Plot for a 0.67” by 5.972”  Slitted Trough With the Same Material and a 0.595” Slit Shown in Magenta 

 

The figures show that we recover the beta slope at onset. The slope below onset is 

higher than for the no slit case and so is the attenuation constant. However, and most 

importantly, the slope is shallower to higher frequencies because the shallower depth of 

the trough pushes away the next higher order mode (d ~3/4 wavelength). 

This is exactly what we had seen in the previous chapter when studying the 

bandwidth, the radiation bandwidth of the Green function solution is widened upwards 

by the slit, all other things remaining constant. 
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8.5 Full wave simulation results of the slitted trough  

As the next step in studying the slitted trough, we have simulated the geometry of 

the slitted trough in HFSS and we have compared the results to the transverse resonance 

method obtained in section 8.4. The geometry simulated in HFSS can be seen below 

which has the same dimensions and material properties as the example demonstrated in 

chapter 7.  

 

Fig. 8-28 Geometry of a 5”by 0.8” Slitted Trough Simulated in HFSS and Showing the Integration Lines 

This structure has the same amount of material as the 3.8” by 1.053” open trough 

and has the same material properties which are 𝜇 = 80, 휀 = 2,. The dimensions of this 

structure can be seen in the figure and the slit has been chosen to ensure that the onset 

happens at the same frequency as the open trough. Note that a small air gap has been 

inserted between the slit planes and the material as was done with the parallel solenoid 

conductors. The figure below shows the comparison to the results obtained from the 

transverse resonance method. 
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Similar to what we saw for the trough, the fullwave simulation and the transverse 

resonance have a very good agreement but they deviate as we go lower in frequency. 

Also, we see the curving of the beta plot obtained from the transverse resonance has the 

same behavior that was present in Oliner’s work therefore at lower frequencies it 

becomes unphysical.  

 

Fig. 8-29 𝛽 Plots of a 5”by 0.8” Slitted Trough Obtained Using Fullwave HFSS Simulation and Transverse 

Resonance Method 

8.6 Application of transverse resonance method to dispersive permeable material 

At this point it would be interesting to use this solution to study what happens 

when the material in the trough is dispersive. For instance, let the material filling the 

trough be the CZN laminate  
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𝜇 = 1 +
39

1 + 𝑗
𝑓

1.5 ∙ 109
∙
1

0.75
− (

𝑓
1.5 ∙ 109

)
2 

휀 = 3.2 

(8-81) 

We can use the successive approximation method or the optimization method. 

However before going forward it should be noted that if we are using the transverse 

resonance method with a complex material we need to pay attention to an important 

detail about the 𝛼 plots that wouldn’t cause any trouble in the lossless case but might 

cause a problem in using the transverse resonance method in the lossy material case. 

The difference between a material with a lossless permeability and a lossy 

permeability is that in the lossless case we know that before onset we have a fast wave 

with a wave number as  𝑘𝑧 = 𝛽𝑧 − 𝑗𝛼𝑧 and from the outside world, we have 𝑘𝑥0 =

 𝛽𝑥0 + 𝑗𝛼𝑥0 which is a leaky wave. In the guided wave region since 𝑘𝑧 > 𝑘0 then we 

have 𝑘𝑥0 = −𝑗𝛼𝑥0 and we have a decaying wave as expected. This means that the 

solution to the transverse resonance method for a lossless material is unique both in leaky 

wave and in fast wave regions. The same cannot be said for the lossy material since we 

don’t know the correct solution to 𝛼𝑧 since the solution to the transverse resonance 

method for 𝑘𝑥0 is no longer unique and can even have a positive or negative answer.  

This problem has been seen before in the subject of surface waves on lossy 

materials in stealth. The question that is always present is does the wave on the lossy 

material get sucked in so it is slowed down and absorbed or does it get peeled off because 

it is too lossy to be guided? This is similar to our problem in defining a unique and clear 

alpha and not being able to make a decision using the eigenvalue problem (that is, TRM). 
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Therefore, we will obtain the beta plots using the transverse resonance method and leave 

the alpha plots for a more complete method like the Green’s function method. We can 

also show that after a certain frequency we have more than one answer in the optimizer’s 

zero search for 𝑘𝑥0. 

Now we will compare the lossless case 휀 = 3.2, 𝜇 = 40 with the dispersive case. 

The figure below compares the optimization solution of the lossless case 휀 = 3.2, 𝜇 = 40 

(black) with the dispersive case (magenta): 

 

Fig. 8-30 Inverse Velocity (𝛽/2𝜋) Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in 

Black and Inverse Velocity (𝛽/2𝜋) Plot for the Same Dimensions and CZN Material Filling  
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The fact that in the dispersive material there is loss slows the wave down earlier 

than the original onset (if we define onset as the beginning of slowing down, that is, 

v=c0). This is surprising: It modifies the onset by moving it from 248 MHz to 232 MHz 

even though the ferromagnetic resonance is far away, at 1.5GHz. 

From the viewpoint of the slope of the beta plot, it is interesting that adding loss 

flattens the slope. This is because waves guided by a lossy surface have more of their 

energy in the exterior space and therefore tend to travel close to the speed of light. (e.g. 

see the solution for a highly lossy half-space in the lossy earth problem). 

Now, we know that the efficiency of conformal antennas based on a dispersive 

permeable flux channel is a function of the hesitivity. Sebastian had pointed out that from 

the viewpoint of bandwidth, all things (in particular efficiency) being equal it is 

preferable to place the ferromagnetic resonance in the band of use, thus leading to the 

final material selection rule. In this case we are looking at operation in the low VHF 

through UHF (100MHz to 600MHz) but CZN resonates at 1.5GHz. Therefore, we 

artificially “Snoek” the permeability by raising 𝜇𝐷𝐶 by a factor and dropping the resonant 

frequency by the same factor thus preserving the hesitivity.  

The figure below shows the case where the material has been Snoeked by a factor 

of 2,  𝜇𝐷𝐶 at 79 and the resonance at 750MHz, just outside the upper edge of our desired 

band of operation.  

 

At first glance, the results are startling. As would be expected the “onset” is 

pushed back because now there is a higher 𝜇 but, in addition, because loss tends to guide 
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a wave, the leaky waves below onset are not as leaky.  In other words, we actually reduce 

the attenuation constant of the low end and bring the propagation speed within 10 percent 

of lightspeed over a very wide frequency range. 

 

 

Fig. 8-31 Inverse Velocity (𝛽/2𝜋) Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in 

Black and Inverse Velocity (𝛽/2𝜋) Plot for the Same Dimensions and CZN Material Snoeked to 0.75GHz 

 

The trend continues when we Snoek by factors of 3 and 4, until we see the 

approach to the “lossy magnetic conductor” tending to PMC in the figures below: 
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Fig. 8-32 Inverse Velocity (𝛽/2𝜋) Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in 

Black and Inverse Velocity (𝛽/2𝜋) Plot for the Same Dimensions and CZN Material Snoeked to 0.5GHz 
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Fig. 8-33 Inverse Velocity (𝛽/2𝜋) Plot for a 1.053” by 3.8” Open Trough with 𝜇 = 40, 휀 = 3.2 Shown in 

Black and Inverse Velocity (𝛽/2𝜋) Plot for the Same Dimensions and CZN Material Snoeked to 0.375GHz 

8.7 Full wave simulation results of the trough and the slitted trough filled with metal 

walls 

Electromagnetic materials may possess anisotropic constitutive properties. That 

is, the permittivity and permeability may depend on the direction of the applied field. In 

permeable ferromagnetic (metallic) and ferrimagnetic (ceramic) materials this anisotropy 

may be a result of the manufacturing process but it also can be produced by the method 

of construction. In particular, ferromagnetic laminates, ferromagnetic artificial materials 

resulting from alternating thin metal films with thin insulating (non-magnetic) dielectrics, 

are anisotropic in both effective permittivity and effective permeability.  
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In the next chapter, we will explain the reason we choose adding vertical metal 

films (walls) instead of horizontal films inside the magnetic material as one of the 

methods of obtaining the optimum flux channel and why we expect them to have a mode 

filtering effect in higher frequencies. However, in this section we proceed to demonstrate 

results that show the metal walls can help in the ultimate goal of increasing the 

bandwidth.  

In order to prove the mode filtering technique works, the flux channel described 

in this chapter, 3.8 inches wide, 1.053 inches deep, filled with homogeneous isotropic 

휀 = 2, 𝜇 = 80 material, and excited by a coax feed at its center was simulated using 

ANSYS HFSS. The channel was terminated at both ends into the computer code’s 

absorbing boundary conditions which approximately simulate an infinitely long trough. 

To show the effect of constructed anisotropy, a model of a trough filled with permeable 

material that has vertical PEC walls inside has been simulated in HFSS. For the sake of 

completeness, we distinguish between the case where the walls are touching the ground 

and the case where they are not. Figure below shows the trough with vertical PEC walls 

that are touching the ground plane.  
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Fig. 8-34 Geometry of a 1.053”by 3.8” Open Trough Simulated in HFSS with Added Vertical Metal Walls 

Touching the Ground 

In order to see how the vertical PEC walls with a gap to ground affects the results, 

we have included a 1mm gap between the walls and the lower ground plane as seen 

below. 

 

Fig. 8-35 Geometry of a 1.053”by 3.8” Open Trough Simulated in HFSS with Added Vertical Metal Walls 

and a 1mm Gap from Ground 
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The beta plots have been compared and since the amount of material used has 

been kept the same, the onset frequency of the structures happen approximately at the 

same frequency. And the gap between the conducting walls and the ground unnecessary. 

 

 

Fig. 8-36 𝛽 Plots of a 1.053”by 3.8” Open Trough with Homogenous Material, with Added Walls 

Touching the Ground and with Added Walls with a Gap to Ground  

At first look, it seems like the walls are causing no specific difference however 

the mode filtering effect shows up later. The figure below shows a plot of the magnetic 

current amplitude along the channel from the feed to a distance 2.6 wavelengths away at 

400MHz. The isotropic material case is the blue curve whereas the material with 

400MHz. The isotropic material case is the blue curve whereas the material with metal 

plates added into it to create the desired artificial anisotropy yields the red curve. 
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The red curve is characteristic of a pure guided mode excited at the feed and 

propagating outwards from the feed in the “trapped wave” regime. The ten percent 

“ripple” overlaid on an otherwise smooth amplitude with a slight slope (this slope 

denoting that the trapped wave is radiating because it is not completely trapped at this 

frequency) is a result of the imperfect absorbing boundary terminations of the computer 

code.  

 

Fig. 8-37 Magnitude of the Magnetic Current Versus Distance from Feed in Wavelengths for the Case of 

the Open Trough with Walls and the Case of the Open Trough without Walls Showing the Mode Filtering 

Effect of the Vertical Walls 

By contrast the blue curve shows what appears to be a severe beat phenomenon, 

exactly what would be expected from the co-existence of two traveling modes in the 

trough at the same time, the intended TE01 mode and the undesired TE21 mode. As is 

well known in the case of structures supporting more than one propagating mode, the 

wave injected at a feed-point travels along the structure by transferring its energy back 
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and forth from one mode to the other along the propagation direction leading to a beat 

(this is called mode conversion).  

 

8.8 Conclusion 

Continuing the work of the previous chapter on the dispersion diagrams of the 

open trough and the slitted trough, we have presented two additional methods of 

obtaining these diagrams. We have seen that the transverse resonance method is a very 

fast and easy method to obtain the dispersion diagram and it is accurate around the onset 

frequency. An estimation has been given of the minimum frequency that the TRM 

method can be trusted and it has been shown that below that frequency, we can either use 

a fullwave simulation to obtain the results or use the Green’s function method. 

In order to come up with the best way to design a flux channel it is important to 

know how the dispersion diagram works and it has been shown in this chapter that 

depending on the frequency range of interest, the amount of memory needed, or the time 

available for obtaining the dispersion relations there are different methods available. Each 

method has its benefits and drawbacks however it is crucial to completely understand the 

dispersion behavior of the demonstrated antenna structures to know how they can be 

manipulated to have the best functionality. 

Since the ultimate goal is to come up with a design methodology for an optimum 

flux channel, this chapter served as a study on how the geometry and the material 

properties can be used to flatten the 𝜔 − 𝛽 diagram about onset. From now on we have 

the tools to design the optimum channel using a change in the cross section geometry, 
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adding the slit, using a dispersive permeable material, or even adding vertical metal walls 

to artificially cause anisotropy. The next chapter will contain a detailed discussion and 

summarize these methodologies and give a full design guideline for an optimum flux 

channel.  
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CHAPTER 9 

 OPTIMAL PERMEABLE ANTENNA FLUX CHANNELS FOR CONFORMAL 

APPLICATIONS SUMMARY AND DESIGN GUIDELINES 

 

“All of physics is either impossible or trivial. It is 

impossible until you understand it, and then it becomes 

trivial.” 

Ernest Rutherford 

 

9.1 Introduction 

The ultimate goal of all the design and fabrication procedures and technical 

features of this dissertation was to obtain optimal true magnetic antennas also known as 

permeable antennas or magnetic flux channel antennas. As mentioned in the previous 

chapters, these antennas have been recently demonstrated to exhibit extraordinary 

efficiency in conformal antenna applications. These antennas constitute the most 

advanced members of a family of antennas that began with the ferrite dipole in the 1950’s 

and includes the mast-clamp antenna, and other ferrite based antennas reported in the 

technical and patent literature. The advantage of the magnetic flux channel dual antennas 

is that, in practical implementation, they are conformal to a metallic surface. This 

metallic surface then acts as the dual of the “open circuit” or perfectly magnetically 

conducting symmetry plane of their electric metal antenna counterparts. 

 

 

This chapter is based on our recently filed patent: R. Diaz ,T. Yousefi, “Optimal permeable 

antenna flux channels for conformal applications” 
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The advantage of the magnetic flux channel dual antennas is that, in practical 

implementation, they are conformal to a metallic surface. This metallic surface then acts 

as the dual of the “open circuit” or perfectly magnetically conducting symmetry plane of 

their electric metal antenna counterparts. This is important because as mentioned in the 

previous chapters, electric antennas using metallic conductors to carry radiating electric 

currents suffer a significant disadvantage when placed conformal to the conducting 

surface of a platform. This platform can be air, land, or sea vehicle, or even the human 

body.  

The previous chapters and references at the end of this dissertation contains a list 

of the recent publications that detail the properties of these true magnetic antennas and 

why they are one to two orders of magnitude more efficient and wider in bandwidth than 

corresponding metal antennas constrained to the same conformal volume. 

In this chapter, we bring together all the key features of a novel implementation of 

permeable antennas that maximizes efficiency and bandwidth beyond any other current 

implementation in the literature or disclosed in patents to date, while using realistic 

(dispersive) materials, as gleaned from the investigations detailed in all previous 

chapters.  

The prototypical magnetic flux channel antenna considered in this dissertation 

consists of an infinitely long conducting trough in a ground plane – filled with permeable 

material (𝜇𝑟 > 휀𝑟). For the purposes of deriving and verifying the design procedure we 

have shown that the antenna’s electromagnetic behavior can be accurately modelled with 

a “principal mode” Green function model over the band of interest and approximately 
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modeled in the neighborhood of the surface wave onset frequency with a Transverse 

Resonance Method model. The latter method is a very fast design method to obtain the 

dimensions of the flux channel; and other methods can be used to give correct data as we 

go far from the onset frequency. This has been verified by comparing the models to full 

physics simulation using industry standard computational electromagnetics codes 

(ANSYS HFSS) [20] and ASU’s in-house Finite Difference Time Domain code. 

The reason the behavior near the surface wave onset frequency is important is that 

in that frequency range the magnetic flux channel guides an electromagnetic wave over 

its surface at approximately the speed of light. As seen from the outside, the magnetic 

field flux lines of this guided wave appear to terminate in the channel and thus this wave 

is the electromagnetic dual of the wave guided by metal conductors used in conventional 

antennas. Therefore, in this frequency range the magnetic flux channel behaves most like 

a magnetic conductor and all presently known antennas implemented with metals can be 

duplicated with identical antennas made from magnetic flux channels. 

 

9.2 The generalized admittance surface 

The onset frequency occurs when the transverse geometry of the trough first 

satisfies the Transverse Resonance condition. That is, when a quarter wavelength of the 

guided wave fits in the thickness d, such that the TE01 mode’s electric field is zero at the 

short circuit at the bottom of the trough and a maximum at the open mouth (which 

behaves as an open circuit.) From the practice of waveguide resonator and filter design 
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we know we can alter the impedance of the mouth of the trough by adding a shunt 

admittance; that is, covering the open mouth of the trough with an admittance surface. 

 In particular if we add a capacitive shunt admittance at the mouth then the 

thickness d required for the quarter wave resonance is reduced. This means that we can 

attain a given desired onset frequency by using a shallower trough than is possible with 

just the open trough. A simple implementation of the capacitive admittance sheet is a 

slitted metal plane. Since the trough is now shallower, we can keep the same amount of 

permeable material and make the trough wider. Therefore, we obtain a trough that has a 

much wider band of operation.  

In the figure below, two troughs containing the same amount of material (same 

cross-sectional area, 4 square inches) of relative permeability 40 (assumed purely real for 

the sake of simplicity) and relative permittivity 3.2, have been designed to have an onset 

frequency of 220 MHz. The maximum radiation band (over which 90% of the feed power 

is radiated) has been determined to occur when the speed of propagation of the guide 

wave lies between 1.36 times the speed of light and 0.76 times the speed of light, and 

these are denoted by the dashed lines in the phase velocity plot. The conventional trough 

crosses these boundaries around 140MHz and 300MHz.   By comparison the slope of the 

slitted trough’s curve is much shallower than that for the conventional trough so that it 

does not cross the upper edge of the maximum radiation band until 450MHz.  
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Fig. 9-1  (a) Open and Slitted Troughs Containing the Same Amount of Material of Relative Permeability 

40 (b) Phase Velocity of Both Troughs Showing the Slope of the Slitted Trough’s Curve Is Much 

Shallower Than That for the Conventional Trough (c) Radiated Power Versus Frequency for Both Troughs 

This is confirmed in the third figure by direct calculation of the total power 

radiated to the far field. The slitted trough has almost twice the operational frequency 

bandwidth as the conventional trough. 

As is well known in the practice of microwave filters and frequency selective 

surfaces, there are many ways of implementing a capacitive admittance at a surface. The 

slitted conducting plane is the simplest one, and one for which a closed form expression 

of its sheet capacitance is well known. Using it as the exemplary case does not limit the 

conceived technique to said implementation. Other well-known options include a thin 

high dielectric constant slab covering the mouth of the trough or a layer of printed circuit 

capacitive frequency selective surface (such as an array of metal squares, an array of 
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overlapping metal squares, and so forth, as in the practice of the design of artificial 

dielectrics).  

 

Fig. 9-2  Example of a Frequency Selective Surface 

Recognizing that the admittance at the mouth of the trough not only affects the 

propagation velocity of the guided wave but also the input impedance produced by said 

wave at the feed, it follows that a purely capacitive admittance is not the only 

advantageous implementation of this admittance surface. Therefore we recognize that the 

parallel solenoid feed structure of US Patent Application, US2016/0365642A1, published 

Dec. 15, 2016, “Parallel Solenoid Feeds for Magnetic Antennas” [36] is a particular 

implementation of the slitted plane trough and thus constitutes one possible 

implementation of the generalized admittance surface disclosed in this document. 

The figure below from previous chapters and from the cited patent application 

[36] shows half of a permeable dipole placed on a conducting surface, fed by a coaxial 

transmission line at its center loop. This center loop is electrically connected by a two-

wire transmission line to a series of parallel loops all surrounding the permeable material 

and terminating on the ground. 
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Fig. 9-3  Half of a Permeable Dipole Placed on a Conducting Surface, Fed by a Coaxial Transmission Line 

at its Center Loop. 

As the figure below suggests, if we imagine the spaces between the loops of the 

parallel solenoid and their connection to the twin-line filled with metal, we see that the 

permeable material has simply been surrounded by a rectangular metal enclosure with a 

slit at the top. In other words, this is a variation of the slitted permeable trough where the 

trough has been moved to be on top of the conducting plane. The parallel solenoid then is 

recognized really as an inductive grid version of the slitted plane, where the conducting 

planes bounding the slit have been replaced by a grid of wires.  

 

Fig. 9-4  Geometry of an Antenna Consisting of a Permeable Material Surrounded by a Rectangular Metal 

Enclosure with a Slit at the Top 
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Such a wire grid construct has long been known in microwave theory, the practice 

of frequency selective surfaces, and the design of electromagnetic wave polarizers. For 

example, it is treated in Section 5.19 of the standard reference Waveguide Handbook by 

Marcuvitz [35] and the equivalent circuit parameters have been given in the same chapter 

for this geometry. 

 

 

Fig. 9-5  Front View, Top View, and Equivalent Circuit of Inductive Strips which Are Infinitely Extended 

Plane Grating Formed by Metallic Strips of Zero Thickness with Edges Parallel to the Electric Field and the 

Plane Wave in Free Space Incident at Angle 𝜃 [35] 

 

As an inductive shunt obstacle, the inductive grid presents a short circuit 

reflecting barrier to low frequency electromagnetic waves that becomes less and less 

reflective as frequency rises. That is, it is a frequency dependent short circuit. Since the 

flux channel antenna input impedance is also frequency dependent by nature it is no 

surprise that tuning the frequency dependence of the conducting path of the slitted 

plane’s admittance surface can be used as a design parameter to optimize the band of 

operation of magnetic flux channel antennas. The Parallel solenoid patent application 

shows that this is indeed the case without dwelling on the root cause of why it works. 
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Based on the subsequent work detailed in the previous chapters we can state that 

when the parallel solenoid works it does so because it is the appropriate generalized 

admittance surface required to maximize the radiation bandwidth of the given magnetic 

flux channel antenna.  

From the viewpoint of the transmission line model of the transverse resonance 

circuit of the flux channel, the parallel solenoid is an instance of terminating the channel 

with a shunt inductor-capacitor (LC) series circuit (where the inductors are the bars to 

ground and the capacitor is the gap between the two conductors of the two-wire line 

connecting the loops). This is as opposed to the nearly pure capacitance of the slitted 

plane. 

 

 

Fig. 9-6  (a) Transmission Line Model of the Nearly Pure Capacitance of the Slitted Plane (b) Parallel 

Solenoid Modeled as a Shunt Inductor-Capacitor (LC) Series Circuit  

The practical use of the parallel solenoid’s twin-line-loop construct as an LC 

shunt admittance surface on the mouth of a trough has already been demonstrated and the 

first ever frequency independent permeable antenna, using an Archimedean spiral 

geometry constructed from NiZn ferrite tiles has been designed.  
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Conventional two-arm spiral antennas attain broad bandwidth of operation 

because they support a traveling wave along the winding wires that resonates at the active 

region of the dipole modes of the spherical wave spectrum.  

Therefore, to successfully create the electromagnetic dual of a spiral antenna for 

conformal applications we needed to give the magnetic flux channel constructed from 

NiZn ferrite tiles the ability to guide the wave along its entire length near the speed of 

light at all frequencies.  

Full wave simulations and experiment show that simply feeding the spiral at its 

center (as suggested in [37]) does not accomplish this goal. But feeding the ferrite spiral 

with a parallel solenoid with the correct number of loops to ground does so.  

The figure below extracted from our previous chapters shows (top left) a 

photograph of the first version of the spiral fed by a 4-loop parallel solenoid as illustrated 

in the CAD drawing on the top right. The measured performance matched the 

computational simulations within the expected measurement and fabrication uncertainties 

(middle top). The next iteration of the parallel solenoid is shown in the lower CAD figure 

and its performance in the second plot in the middle. The design with 30 loops to ground 

increases the Gain by up to 4dB and smooths out the performance over the band. As the 

input impedance plots at the bottom show the input impedance is indeed slowly varying 

with frequency and easily matched to a 50 ohm standard microwave system by simply 

using a 2:1 transformer. The disclosure on the spiral antennas of US 8847846 B1 does not 

make either claim or show any evidence for true frequency independent behavior. 
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Fig. 9-7  (a) Photograph of the First Version of the Spiral Fed by a 4-Loop Parallel Solenoid (b) HFSS 

Models of the Same Structure with 4 Loops and 30 Loops and the Measured and Simulated Gain (c) Input 

Impedance and Smith Chart Representation 

This work was continued beyond what is shown in the previous figure to consider 

the case where the ferrite spiral is buried into a trough and then the parallel solenoid used 

at its surface. As the next figure shows the performance is even better with higher gain 

and an operational band from 50MHz to 550MHz.  
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Fig. 9-8  (a) HFSS Models of the 30 Loop Spiral in a Trough Geometry (b) Comparison Between the Peak 

Gain of the Spiral on Ground and the Spiral in the Trough Geometry (c) S11 of the Trough Spiral and the 

Smith Chart Representation Showing a Very Large Operational Bandwidth from 50 MHz to 550 MHz 

In the figure above, the CAD drawing top left shows the ferrite tiles sunk into a 

conducting trough in the conducting surface leaving a small (nominally 10 thousands of 

an inch) gap between the tile surface and the top edge of the trough. The parallel solenoid 

structure is then placed across the mouth of the trough, the twin line running as before 

along the center line of the ferrites and the loops to ground now simply being conducting 

bars connecting to the edges of the trough. As the plot in the top right shows, the Gain of 

this configuration is even higher than that of the best one in the previous figure (where 

the material was placed on top of the conducting ground plane). The Smith Chart plot on 

the bottom right shows that the antenna can be closely matched to a 50 ohm system with 
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a simple matching circuit consisting of two capacitors and a transformer. The S11 plot on 

the lower left (Input match, that is, Reflection coefficient at the feed as a function of 

frequency) shows that an operational frequency bandwidth from 50MHz to 550MHz 

(11:1) band is obtained with better than a 2:1 VSWR match (better than -10dB) and better 

than -20dB from 60MHz to 240MHz proving that true frequency independent permeable 

antennas can be constructed following the teachings of this dissertation. 

The enhanced Gain can be understood as arising in part due to the additional 

(favorable) images of the magnetic current that are produced on the sidewalls of the 

channel as opposed to the case when the material is on top of the ground plane. 

Alternatively, the enhanced Gain can be understood as arising from better confinement of 

the magnetic current resulting in a stronger flux as is obtained using flux concentrators in 

the practice of magnetic levitation melting.  

Therefore we have shown that a key element of the optimized permeable antenna 

is the creation of a flux channel in trough form that maximizes the radiation bandwidth of 

the antenna by (i) selecting the optimal modal structure of the desired Electric field inside 

the channel (TE01 Cartesian) and then (ii) covering the mouth of that trough channel 

with a generalized admittance surface that may be Capacitive (like the slitted plane), 

series inductive capacitive (like the parallel solenoid) or take the form of any other circuit 

as learned from the art of frequency selective surfaces that may include also parallel 

combinations of inductors and capacitors (for instance as in the gapped ring resonator 

structure) or even circuit constructs including resistive element for, say, terminating the 

antenna. These circuit constructs in the form of the admittance surface are selected to 
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modify not only the admittance at the mouth of the trough, and thus its effect on the 

propagation velocity of the guided wave, but also to optimize the level and bandwidth of 

the input impedance by compensating for the natural frequency dependence of the 

antenna resulting from its shape and the frequency dependent properties of its materials 

of construction. 

It should be evident to a person versed in the art of electromagnetic engineering 

that the generalized admittance surface provides a “tool box” with a large number of 

degrees of freedom for the engineer to use to optimize a given permeable antenna 

configuration. The design process can then follow standard approaches of impedance 

matching and broad-banding or be performed using computational tools and appropriate 

computational optimizers exploiting these degrees of freedom. 

 

9.3 Enforcing anisotropy in the materials of construction 

As mentioned in the previous chapter, the anisotropy of magnetic materials may 

be a result of the manufacturing process but it also can be produced by the method of 

construction. In particular, ferromagnetic laminates, ferromagnetic artificial materials 

resulting from alternating thin metal films with thin insulating (non-magnetic) dielectrics, 

are anisotropic in both effective permittivity and effective permeability. Here we explain 

why we had chosen vertical metal films in the previous chapter 
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Fig. 9-9  (a) Ferromagnetic Artificial Materials Resulting from Alternating Thin Metal Films with Thin 

Insulating (b) Composite Material Used as a Substrate 

 

The theory of these materials has been known for decades. For example, Adenot 

[38, 39] discusses such a ferromagnetic laminate (for a tunable microstrip device shown 

in Figure 9-9) and points out a simple approximation for the effective permeability 

parallel to the laminae and effective permittivity perpendicular to the laminae. These 

being most relevant to his application of placing the material under a microstrip as shown 

in the figure. 

 𝜇𝑒𝑓𝑓 = 𝑞𝜇𝑖 + 1 − 𝑞 𝑎𝑛𝑑 휀𝑒𝑓𝑓 =
휀𝑚
1 − 𝑞

 (9-1) 
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Where q is the volume fraction of the metal (ratio of thickness of metal film to the 

thickness of one period of the periodic arrangement (metal film thickness plus dielectric 

insulator thickness). 

More accurately the full tensor expressions for the constitutive properties of such 

a laminated material are given by: 

 𝜇𝑒𝑓𝑓 =

(

 
 
1 + (𝜇𝑖𝑥 − 1) (

𝑡𝑚
𝑡𝑚 + 𝑡𝑑

) 0 0

0 1 + (𝜇𝑖𝑦 − 1) (
𝑡𝑚

𝑡𝑚 + 𝑡𝑑
) 0

0 0 1)

 
 

 (9-2) 
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0 0
휀𝑖𝑦
𝑡𝑑

𝑡𝑚 + 𝑡𝑑)

 
 
 
 
 
 

 

(9-3) 

 

Where the x-y plane is the plane of the laminae and z is the direction 

perpendicular to said plane. And 𝜇𝑖𝑥, 𝜇𝑖𝑦 are the intrinsic frequency dependent relative 

permeability properties of the permeable metal film in the x and y directions and 

휀𝑖𝑥, 휀𝑖𝑦, 휀𝑖𝑧 are the relative permittivities of the insulating dielectric in the three directions, 

and 𝜎  is the conductivity of the metal films (assumed to be isotropic.) 

In practice, the metal films are chosen thinner than the skin depth at the 

frequencies of use. The insulating dielectrics then prevent circulating currents (in the xz 
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or yz planes from propagating from one lamina to another.  Thus in such a laminate 

material, magnetic flux can flow unimpeded along the xy plane without being blocked by 

eddy currents even though the total metal area in the cross section of the material may 

exceed many times the skin depth.  

 

Fig. 9-10  (a) Laminate Material Blocking the Flow of the Eddy Currents (b) Solid Ferromagnetic Material 

Allowing the Eddy Current to Flow 

An important result of the laminate structure and the tensor properties is that 

given the very high conductivity of the metal films, the x-y permittivity properties of the 

laminate material are dominated by the metallic conductivity and therefore the material 

behaves as a conductor in those two directions. This is why the intrinsic permeability of 

the ferromagnetic metal in the z direction is unimportant and labeled as 1; in practice the 

magnetic field inside this composite laminate material cannot penetrate in the z direction. 

The eddy currents induced in the x-y metal planes completely block any magnetic flux 

from crossing them. 

Many of the thin magnetic metal films used for laminates are intrinsically 

anisotropic so that, for instance,  𝜇𝑖𝑥 ≫ 𝜇𝑖𝑦. Then it is obvious that the flux channel must 
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be designed such that the magnetic current flux flowing along the channel uses the high 

permeability orientation of the material. 

What is not obvious and does not appear disclosed in the technical or patent 

literature is that this material anisotropy can be used to advantage to improve the 

performance of permeable antennas. Consider using a ferromagnetic laminate material as 

the material of construction for a permeable antenna. When the flux channel is formed by 

placing the material on the surface of the ground plane, the laminate planes can either be 

placed perpendicular to or parallel to this ground plane. Even though both flux channels 

have the same cross sectional area and same permeability in the direction of the desired 

magnetic current, they are not equivalent in performance.  As the figure below shows 

they support the TE01 magneto-dielectric rod mode differently. The black arrows denote 

the Electric field while the “arrow heads” seen end-on in red denote the magnetic flux 

(magnetic current)  

 

Fig. 9-11  (a) TE01 Mode Fields Shown for the Case of Laminate Plate Parallel to the Ground Plane (b) 

Fields Shown for the Case of Laminate Plate Perpendicular to the Ground Plane 

Because for conformal antennas we want the channel to be as thin as possible, the 

engineer prefers shallow and wide channels. The problem that arises is that the laminate 
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structure, in addition to supporting the desired magneto-dielectric-rod-like TE01 field in 

the space surrounding the channel (as suggested in the figure above) also supports a 

parasitic parallel plane TEM mode with the electric field terminating on the laminates 

and traveling parallel to (between) the laminate planes. Because it is always possible to 

excite this mode at asymmetries in the antenna feed structure or discontinuities in the 

antenna it is always in danger of being excited.  

It is obvious from inspection that the case on the left looks like a stack of 

microstrip lines capable of carrying such a mode both along the length of the channel and 

transverse to it. The former would have its magnetic field, not longitudinal as desired for 

the magnetic current radiator, but transverse.  As discussed in the Sebastian dissertation 

such a mode is the dual not of an antenna but of two wire transmission line and therefore 

is a very poor radiator. Just based on this fact the configuration with laminate planes 

parallel to the ground plane is to be avoided. Where manufacturing constraints to force 

this orientation, it would be necessary to implement a mode filter such as inserting 

vertical conducting pins through the middle of the channel along its full length to short 

out the propagating TEM mode. 

Following this discussion, it is then obvious that the vertical laminate structure 

has a built-in mode filter against this traveling TEM wave mode, because the ground 

plane short circuits the TEM E field and prevents the TEM wave from ever propagating 

along the channel. As would be expected, at higher frequencies parasitic parallel plane 

TE (waveguide like) modes could also propagate guided by the laminate plane structure. 

These would bounce from side to side transversely as they propagate along the channel. 
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On this account, the vertical laminate placement is to be preferred. As the figure below 

shows, a shallow wide flux channel could start multi-moding and carrying this parasitic 

wave at lower frequencies if the laminates are parallel to the ground than if they are 

perpendicular.  

 

Fig. 9-12  TEM Parasitic Mode Shown in the Horizontal and Vertical Laminates Showing that the Vertical 

Laminate Structure Has a Built-in Mode Filter Against This Traveling TEM Wave Mode. The Red “Arrow 

Points” Indicate the Desired Magnetic Field (Magnetic Current). 

Furthermore, the fact that he electric field has one full half wavelength variation 

along the channel for the case on the left again results in a poorly radiating mode since 

the magnetic current changes direction within the channel. However, the parasitic TE 

mode on the vertical laminates only has a quarter wave variation, meaning the electric 

field all points in the same transverse direction and the longitudinal magnetic current also 

points in only one direction everywhere in the channel cross section.  

Therefore, the case on the right with a TE mode traveling within the channel still 

produces the desired radiation and the mode is not really “parasitic”. It can be surmised 

that for the flux channel with vertical laminates perpendicular to the ground plane, both 

the magnetodielectric rod TE01 desired mode and this TE mode coexist and contribute 

with possibly different strengths to the radiation of the antenna. However, if the two 
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coexisting modes have different characteristic propagation velocities then interference 

between them may induce a frequency dependent variation into the electromagnetic 

properties of the channel.  

Therefore, it is concluded that to maximize the bandwidth of operation and 

radiation efficiency of a magnetic flux channel constructed from laminate structure 

placed on top of a ground plane, the preferred orientation for the laminates must be 

perpendicular to the ground plane. 

This restriction holds also and even more strongly for the flux channel in the 

trough configuration. As the figure below shows, the desired propagating mode in the 

flux channel has a transverse E field (TE01 rectangular mode) that is a maximum at the 

mouth of the flux channel and minimum (zero) at the bottom of the channel. Clearly for 

the laminates parallel to the bottom of the trough, the metal laminate surfaces short out 

this desired Electric field and we would expect it is very difficult to carry the desired 

mode in preference to a TEM mode trapped between the laminates.  This is readily 

confirmed by full physics simulation of such a flux channel, where the onset frequency is 

found to occur at an anomalously high frequency and the desired magnetic current is not 

adequately guided.  

 

Fig. 9-13  TE01 Rectangular Mode for Horizontal and Vertical Laminates Showing That the Horizontal 

Laminates Short Out This Desired Electric Field 
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On the other hand for the laminates vertical, perpendicular to the bottom of the 

trough, as on the right figure, the mode enforced by the boundary conditions of the trough 

is exactly the TE mode we mentioned exists on the structure even when it is on the top of 

the ground. In other words, the trough configuration limits the propagation of the desired 

mode in the case of the vertical laminates to one unique lowest order mode. 

Supporting only one lowest order mode is always preferred whenever broadband 

electromagnetic structures are desired. (Avoiding any interference between multiple 

modes.) 

So far this discussion has shown that knowledge of the modal structure supported 

by a laminated permeable material leads to a design criterion that dictates the preferred 

orientation of said laminates. But in addition to dictating this preferred orientation 

(laminate planes perpendicular to the bottom of the trough) we disclose here that even in 

the case of a material of construction that is originally, by nature, isotropic, it is 

advantageous to render it anisotropic by adding conducting planes to enforce the behavior 

discussed above. 

The reason for this becomes apparent when we consider extremely broadband 

applications like spiral antennas and log periodic antennas. As has been discussed 

shallow and wide trough magnetic channels are preferred for conformal antennas and 

offer the widest possible radiation bandwidth. In such applications the width b of the 

trough will eventually become long enough to exceed one wavelength. For instance 

consider a trough that is 3.8 inches wide, 1.053 inches deep, filled with a permeable 

material of 𝜇𝑟 = 80 and 휀𝑟 = 2. Its onset frequency is 220 MHz. At that frequency the 



342 

 

1.053 inch depth is approximately a quarter wave in the permeable material. This means 

the trough aperture being almost four times larger than the depth is already almost one 

wavelength across.  

As the figures here suggest, a symmetrically disposed coax feed excites first the 

TE01 mode Efield at the mouth of the trough, and by symmetry suppresses the odd TE11 

mode. But the TE21 mode has even symmetry also. This mode with one wavelength 

variation across the trough will therefore be excited at higher frequencies. But because its 

electric field changes direction, its corresponding magnetic current also changes direction 

inside the channel, and it is on the whole a very poor radiator.  

 

Fig. 9-14  Trough Geometry with the Vertical Metal Plates Showing That the Vertical Metal Plates 

Suppress the Side to Side Propagation of the Higher Order TE21 Mode  
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As is known in the practice of waveguide design, whenever a higher order mode 

is to be suppressed, mode filters are indicated. Fortunately, for the ferromagnetic 

laminate permeable material, that mode filter is built-in. The vertical metal plates 

suppress the side to side propagation of the higher order TE21 mode because when that 

mode travels along the channel it carries a transverse magnetic field in addition to its 

longitudinal field. That field, perpendicular to the laminate planes, induces strong eddy 

currents in the planes of the laminates and thus the laminates tend to block it. 

Therefore, it follows that when the permeable material available to fill the channel 

is not a ferromagnetic laminate but a naturally homogenous isotropic material, the mode 

suppression is to be accomplished by dividing the homogeneous isotropic permeable 

material into thin segments aligned with the flux channel axis and separating these with 

thin metal planes.  Thus, for instance, in the case of the ferrite tile spiral antenna, if we 

wish to extend its range of operation into the GHz range we would have the 4 inch-wide 

tiles sliced into 1 inch wide sections and insert thin copper plates between these (or paint 

the faces between them with a  conducting paint). By this procedure the frequency at 

which the undesirable TE21-like mode can be excited would be pushed up by at least a 

factor of 4. 

The point is to convert the permeable material filling the channel into an 

anisotropic magneto-dielectric material with tensor constitutive properties equivalent to 

those of a ferromagnetic laminate. 
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9.4 Exploiting the frequency dependent dispersion of realistic permeable materials 

All real material are frequency dependent and therefore exhibit complex 

constitutive parameters (where the real part of the constitutive parameter denotes the 

energy storage capacity of the material while the imaginary part denotes the dissipation 

of energy in the material, that is, loss). There is no such thing as a lossless dielectric or 

lossless permeable material. Recent previous art on this subject of permeable antennas 

such as the cited “pseudo-conductor antenna” patent US 8847846 B1 [37]and its 

companion patents [40] assumes that high efficiency permeable antennas require the real 

part of the material permeability to exceed the imaginary part, and the claims so state it. 

However, this concept has been demonstrated to be a fallacy as seen in the previous 

chapters of this dissertation. 

It is now known that highly efficient conformal permeable antennas can be 

designed and implemented where the imaginary part of the permeability of the material 

of construction is comparable to or greater than the real part. In fact, the NiZn tile 

material used for the spiral antenna cited earlier in this document, and for a permeable 

dipole in one of the bibliography references, is sold as an electromagnetic absorber for 

use in EMC chambers. This material has a Debye-like dispersion (frequency dependence) 

in its permeability so that its real and imaginary parts are approximately equal at 3MHz 

and above that frequency the imaginary part becomes increasingly dominant. Yet as 

shown here the antenna attains Gain comparable to (that is, only 2 to 3dB lower than) a 

metal spiral in free space. That is, this antenna alone is a counter example to the claims 
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made in the pseudo-conductor patents cited above that the preferred material for 

permeable antennas should have 𝜇′ > 𝜇" . 

This is extremely important because that means realistic dispersive materials can 

be used over wide frequency bands and not only over those frequency bands where the 

real part dominates. Similar statements have been made by wideband phased array 

designers using permeable material as groundplane covers to implement a high 

impedance boundary. 

We now have proven that the presence of the correct amount of loss, and 

therefore the correct dispersion in the permeability, can prevent the guided wave from 

being trapped inside the material at high frequencies and therefore also prevent the 

excitation of higher order modes inside the channel. Therefore, the statement that the 

high frequency regime above onset is sub-optimal for these antennas can now be 

modified.  

A judicious amount of loss forces the wave to travel on the surface of the flux 

channel and prevents it from being trapped inside the material. The result is a permeable 

flux channel that carries its wave close to the speed of light over a broader frequency 

range than an identical channel using a low loss material.  

Promoting such a true surface guidance is also the reason why the slitted plane at 

the mouth of the trough tends to guide the wave closer to the speed of light over a broad 

frequency range above onset: the edges of the slit pull the energy of the wave to the 

surface exposing more fields to the free space above and thus increasing the phase 

velocity, to bring it closer to the speed of light in free space. 
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We have illustrated how this technique works using the examples of the 3.8 

inches wide trough, 1.053 inches deep filled with homogenous material of DC 

permeability = 40 compared to a realistic lossy material with dispersive permeability and 

the Snoeked version of the materials in chapter 8 of this dissertation.  

It was concluded that this change in material can be used to create a channel that 

guides waves near the speed of light for an extremely broad range of frequencies, not 

only because the loss pushes the fields to the surface but because the frequency 

dependent change in the permeability changes the transverse resonance condition of the 

channel such that there is no longer a unique (real) onset frequency but instead a 

continuous distribution of complex onset frequencies over the entire band. 

Since as described in the discussion on the spiral antenna, the active region of 

spirals is one wavelength in circumference, this moderate amount of loss has only a small 

effect on the performance of the antenna, and this has been demonstrated in our example 

where the material of construction is an absorbing NiZn ferrite tile. 

It now remains to the engineer to decide, based on the requirements of the 

communication system and the type of antenna being considered, where precisely to 

place the resonant frequency of the material dispersion. This is a standard trade-off 

exercise that can be readily performed by using the transverse resonance analysis as 

disclosed in this dissertation.  

These results thus extend the initial discovery that the loss of permeable materials 

is not a hindrance to their use as conformal antennas. We go beyond that statement to 

show that such dispersion, inevitable in realistic materials, is in fact desirable and 
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necessary to enable the creation of magnetic flux channels that approach the ideal 

electromagnetic dual behavior of conventional metal antennas in free space.  

Beyond enabling the electromagnetic engineer to design highly efficient 

wideband conformal permeable antennas, this result also serves as a guidance to 

magnetic material development technologists to provide direction on the development of 

future materials. Even though the trend over the last several decades has been for the 

development of magnetic materials with increasingly high resonance frequency, even at 

the expense of the initial permeability, because for many magnetic recording and 

microwave device applications there is a requirement for low 𝜇" with increasing 

operational frequency, that is not the direction to go in for maximizing the performance 

of permeable antennas. The development for antenna applications should go in the 

opposite direction, drop the resonance frequency and raise the initial permeability.  

 

9.5 Conclusion 

The optimal conformal permeable antenna flux channel is defined as one 

consisting of antenna elements or sections that behave as closely as possible to the 

electromagnetic dual of conventional metal antennas in free space. This implies that the 

flux channel should guide its magnetic current near the speed of light over the widest 

possible band of frequencies and with the minimum practical loss. The typical approach 

to the construction of these optimal flux channels is as follows: 

Based on the system requirements of operational frequency band and gain, and 

constraints of available installation area and thickness for the antenna,  
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 Select the antenna type and shape 

 Select a permeable material that will meet the efficiency (Gain) requirements within 

the Volume constraints 

 To the degree that the radii of curvature of the platform surface (and other mechanical 

constraints such as the composition of the selected material) allow it, implement the 

permeable material as a laminate structure where conducting planes are to be placed 

perpendicular to conducting surface of the platform. 

 Design the flux channel as a conducting trough in the conducting surface of the 

platform. 

 Design the cross section of the trough such that for the chosen permeable material 

filling it, the surface wave guidance onset frequency falls within the band of operation 

near the bottom of the band, nominally such that the bottom of the band is 

approximately 0.5 the onset frequency. 

 Design the cross section of the trough and the admittance surface at its mouth to 

obtain a phase velocity of propagation as flat as possible, and as close as possible to 

the speed of light in free space, as a function of frequency, over the band of operation. 

 Perform a final engineering trade-off of the features using full physics modeling of 

the designed structure, trading off as necessary bandwidth, input impedance, and 

Gain. Fine tune the design, build, and test. 

 

 



349 

 

 

Fig. 9-15  Flow Graph of the Design Procedure of the Optimum Flux Channel  
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APPENDIX A 

OTHER INTERESTING APPLICATIONS OF MAGNETIC ANTENNAS: PUSHING 

THE LIMITS OF RADIO FREQUENCY (RF) NEURONAL TELEMETRY 
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“Nothing is more practical than a good theory.” 

Ludwig Boltzmann 

 

A.1 Introduction 

In previous publications by Sebastian and Diaz [7] it was shown that the channel 

capacity of an in vivo communication link using microscopic antennas at radiofrequency 

is severely limited by the requirement not to damage the tissue surrounding the antennas. 

For dipole-like antennas the strong electric field dissipates too much power into body 

tissues. Loop-type antennas have a strong magnetic near field and so dissipate much less 

power into the surrounding tissues but they require such a large current that the antenna 

temperature is raised to the thermal damage threshold of the tissue. The only solution was 

increasing the antenna size into hundreds of microns, which makes reporting on an 

individual neuron impossible. However, recently demonstrated true magnetic antennas 

offer an alternative not covered in the previous report. 

The near field of these antennas is dominated by the magnetic field yet they don’t 

require large currents. Thus they combine the best characteristics of dipoles and loops. 

By calculating the coupling between identical magnetic antennas inside a model of the 

body medium we show an increase in the power transfer of up to 8 orders of magnitude 

higher than could be realized with the loops and dipoles, making the microscopic RF in-

vivo transmitting antenna possible.  

 

 

This chapter is based on our paper: T. Yousefi and R. E. Diaz, "Pushing the limits of radiofrequency 

(RF) neuronal telemetry," Nature Scientific reports, vol. 5, no. 10588, 2015. 
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In reference [7] the electromagnetic limits to radiofrequency (RF) telemetry from 

within the brain, have been discussed. By establishing a link budget consistent with 

picowatts of radiated power at the surface of the head, it was shown that to avoid thermal 

damage to tissue surrounding the transmitting embedded antenna, and still be able to 

communicate at 300 Kbps with a reasonable link margin from within the human brain, 

electric dipoles at least 680 𝜇 m in length or magnetic dipoles at least 59 𝜇 m in diameter 

would be required. For the rodent brain case these numbers become 250 𝜇 m and 26 𝜇 m 

respectively. In the rodent case, it was estimated that a 14.5 𝜇 m diameter loop antenna 

with a magnetic core (that raised its dipole moment by a factor of 3) could communicate 

at the reduced rate of 3Kbps. Making the antennas any smaller increases the power 

dissipated into the proximate tissues above the accepted safety limits [41] . Assuming that 

the desired size of a sufficiently unobtrusive embedded telemetry node (antenna plus on-

board transmitter) is 10 𝜇 m, these results rendered unfeasible the prospect of using such 

a microwave RF telemetry system to track neuronal activity in-vivo [42, 43, 44].  

The root of the problem is that small electric dipole antennas embedded in lossy 

dielectric media suffer very large near field loss in the process of radiating a signal and 

loop antennas suffer excess Ohmic loss in their metal elements. Therefore when these 

antennas are fed sufficient power to transmit through the brain, the electric dipole would 

damage the nearby tissue through specific absorption rate (SAR) deposition and the 

electric loop antenna through heat conduction. But this is not the end of the story.  

In the reference paper [41] , the effect of a magnetic core for loop antennas was 

only modeled as an increase of the antenna’s dipole moment thus leading to a slight 
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benefit in radiated gain. The reality, evident from recent work on magnetic conformal 

antennas [2, 14, 21] is that the magnetic core of a loop antenna can dramatically alter its 

input impedance, changing its behavior from that of a metal loop to that of a permeable 

dipole. In the regime where the magnetic core dominates the behavior, the principal 

radiating current is not the electric current in the loop but the magnetic polarization 

current in the core material. Because of the high efficiency properties of these magnetic 

dipoles, when located in a low impedance environment, have not been reported until 

recently [2, 14, 21] we describe them below before proceeding with their application to 

the in vivo neuronal telemetry scenario. 

A.2 True Magnetic Antennas 

Although in the conventional practice of Antenna Theory and Design a distinction 

is made between electric dipole antennas (generally metal rods carrying an alternating 

electric current) and magnetic dipole antennas (generally metal loops carrying an 

alternating electric current,) in reality both of these antennas are electric current radiators. 

In the first, the electric current is linear and couples most efficiently to the electric dipole 

modes of the spherical mode spectrum; in the second the electric current is 

circumferential and couples most effectively to the magnetic dipole modes of the 

spherical mode spectrum. Since the work of O. Heaviside [45] in the late 1880’s it has 

been known that Maxwell’s equations also admit of the presence of magnetic currents. 

Therefore behaviors, equivalent to magnetic current radiators exist in principle.  

Most antenna practitioners assume that the absence in nature of observed 

magnetic monopoles precludes the existence of true magnetic currents and therefore 



360 

 

whenever the term magnetic dipole is used, a loop antenna is usually meant, and 

whenever the term magnetic current is used, a fictitious magnetic current is usually 

meant. The latter currents arise in Schelkunoff’s Equivalence Theorem whenever it is 

desired to summarize all the sources on one side of a closed mathematical surface by 

using the tangential electromagnetic fields existing on that surface. Thus the surface 

fictitious magnetic current, Km (measured in Volts/meter) is defined as the cross product 

of the surface normal and the tangential Electric field on that surface. 

However, here we are talking about true (as opposed to fictitious) magnetic 

current radiators. That is, in the same way that electric current density, Je, (measured in 

A/m
2
) flows through a medium with electric conductivity, 𝜎𝑒 (measured in 

Siemens/meter), as: 

 

 

𝐽𝑒 = 𝜎𝑒 �⃑⃗� 

 

(A-1) 

Magnetic current density, Jm, (measured in V/m
2
) flows through a medium with 

magnetic conductivity, 𝜎𝑚 (measured in Ohms/meter), as 

 

 

𝐽𝑚 = 𝜎𝑚�⃑⃗⃗� 

 

(A-2) 

Even though magnetic conductivity does not exist at zero frequency (because of 

the absence of magnetic monopoles), as far as Maxwell’s equations are concerned, it 

exists at any frequency in which a material exhibits a magnetic loss tangent. This is 

because the imaginary part of the complex permittivity and complex permeability of 
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materials, 휀(𝜔) = 휀0(휀
′ − 𝑗휀"), and 𝜇(𝜔) = 𝜇0(𝜇

′ − 𝑗𝜇"), imply the existence of a 

corresponding conductivity through the relations: 

 

 

𝜎𝑒 = 𝜔휀0휀" 

 

(A-3) 

 𝜎𝑚 = 𝜔𝜇0𝜇" 
 

(A-4) 

Thus in Maxwell’s curl equations; the terms involving the rate of change of the 

flux densities imply the existence of magnetic currents as well as electric currents as 

shown below: 

 

𝑗𝜔𝐷 = 𝑗𝜔휀(𝜔)𝐸 = 𝑗𝜔휀0(휀
′ − 𝑗휀")𝐸

= 𝑗𝜔휀0휀
′𝐸 + 𝜔휀0휀"𝐸 = 𝑗𝜔휀0휀

′𝐸 + 𝜎𝑒𝐸

= 𝑗𝜔휀0휀
′𝐸 + 𝐽𝑒  

 

(A-5a) 

 

 

𝑗𝜔𝐵 = 𝑗𝜔𝜇(𝜔)𝐻 = 𝑗𝜔𝜇0(𝜇
′ − 𝑗𝜇")𝐻

= 𝑗𝜔𝜇0𝜇′𝐻 + 𝜔𝜇0𝜇"𝐻 = 𝑗𝜔𝜇0𝜇′𝐻 + 𝜎𝑚𝐻

= 𝑗𝜔𝜇0𝜇′𝐻

+ 𝐽𝑚                                                                                                      

 

(A-5b) 

 

Therefore, whenever a lossy permeable material is used to carry an alternating 

magnetic field, it behaves exactly as if it were carrying a magnetic current measured in 

Volts (whereas electric current is measured in Amps) as suggested in Fig.A-1. 
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Fig.A-1 shows an electric dipole carrying an alternating electric current and its 

electromagnetic dual which is the magnetic dipole (in this case modeled as rods). Duality 

requires that since the electric dipole has Perfect Electric Conductor (PEC) feed lines and 

an electric voltage source load (𝑉𝑒), the magnetic dipole should have Perfect Magnetic 

Conductor (PMC) feed lines and a magnetic voltage source (𝑉𝑚). Since there is no access 

to PMC feed lines and magnetic voltage sources, a PEC feed loop is used instead to feed 

the magnetic dipole [2].  

 

 

Fig.A-1: Electric Dipole Carrying an Alternating Electric Current and Its Electromagnetic Dual Which Is 

the Magnetic Dipole (in This Case Modeled as Rods). 

Accordingly, throughout this paper the term electric loop refers to a metal loop 

with no core, electric dipole refers to our copper sphere model of a linear conventional 

electric dipole, and the true magnetic antennas just defined, will be referred to as 

magnetic dipoles. 
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The impact this difference makes in the results of the previous study [7] can be 

understood in its simplest terms by comparing the two magnetic dipole radiators, one the 

conventional electric loop antenna, the other, the same loop antenna wrapped around a 

sphere of dispersive ferromagnetic (or ferrimagnetic) material and comparing their input 

resistance and radiation efficiency at resonance. 

 

A.3 Comparison of the true magnetic dipole to the conventional loop 

To highlight the difference in performance between the true magnetic dipole and a 

conventional loop antenna it suffices to compare them in free space. The magnetic core 

will be assumed to be a laminated ferromagnetic material like those used in the magnetic 

read-head industry. The typical frequency dependent permeability of a single metal layer 

of such a material (CoZrNb, abbreviated CZN, thin film [39]) is shown Fig.A-2. 

Heaviside’s magnetic conductivity is defined as 𝜎𝑚 = 𝜔𝜇0𝜇", where 𝜇0 is the 

permeability of free space and 𝜇" is the imaginary part of the relative permeability.  

Assuming the electric loop antenna is a copper loop of conductivity 𝜎𝐶𝑢 = 6 ∙

107𝑆/𝑚 , radius a=10 𝜇m and wire cross sectional radius 𝜌 = 0.5𝜇𝑚. The relevant 

parameters for both antennas can be approximated as shown in Table A-1.  
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Fig.A-2.  Relative Permeability (Left, Unitless) and Corresponding Heaviside Magnetic Conductivity 

(Right, in Ohms/Meter) of a Typical High Frequency Ferromagnetic Material (𝝁𝒊𝒏𝒊𝒕𝒊𝒂𝒍 = 𝟒𝟓𝟎). 

Table A-1 Radiation Resistance, Material Resistance, Efficiency and Input Impedance at 

Resonance of Electrical Loop and Magnetic Dipole Antennas 

Antenna Electric Loop antenna magnetic dipole 

Radiation Resistance 

(electric or magnetic) 

𝑅𝑟𝑎𝑑 = 31171(
𝜋𝑎2

2
)

2

 𝑅𝑟𝑎𝑑𝑚 =
2

3𝜋
(
2𝜋𝑎


)
2

𝑆 

Material Resistance 

(electric or magnetic) 

𝑅𝑙𝑜𝑠𝑠 =
2𝜋𝑎

𝜎𝐶𝑢𝜋𝑎
2
  

 

𝑅𝑙𝑜𝑠𝑠𝑚 =
2𝑎

𝜎𝑚𝜋𝑎
2
 𝑆 

Efficiency 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑙𝑜𝑜𝑝  

=
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑 + 𝑅𝑙𝑜𝑠𝑠
 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑝𝑜𝑙𝑒  

=
𝑅𝑟𝑎𝑑𝑚

𝑅𝑟𝑎𝑑𝑚 + 𝑅𝑙𝑜𝑠𝑠𝑚
 

Input Impedance at 

resonance (Ω) 

𝑍𝑖𝑛𝑝𝑢𝑡_𝐿 = 𝑅𝑟𝑎𝑑 + 𝑅𝑙𝑜𝑠𝑠  

𝑍𝑖𝑛𝑝𝑢𝑡_𝑚

=
1

𝑅𝑟𝑎𝑑𝑚 + 𝑅𝑙𝑜𝑠𝑠𝑚
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Since the radiation efficiency of an antenna is the ratio of its radiation resistance 

to its total resistance, at 1.5GHz (the resonance peak of the permeable core) we find that 

the efficiencies of the electric loop and the magnetic dipole are:  

 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑙𝑜𝑜𝑝 = 1.44 ∙ 10−12 

  𝑎𝑛𝑑 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑝𝑜𝑙𝑒 = 9.69 ∙ 10−9 
(A-6) 

As expected the efficiencies of these microscopic antennas are very small, but that 

of the magnetic dipole is over 6500 times greater than that of the electric loop antenna. At 

the same time,  𝑍𝑖𝑛𝑝𝑢𝑡_𝐿 = 1.33  while 𝑍𝑖𝑛𝑝𝑢𝑡_𝑚 = 174. The magnetic dipole has a 

much higher input impedance than the electric loop. Therefore, while the electric loop 

must draw a large current to radiate its signal (and thus gets very hot), this magnetic 

dipole instead develops a high voltage while radiating its signal (much like conventional 

electric dipoles).  

Since we know from the previous study that near field SAR deposition into the 

surrounding tissue is not a concern for magnetic dipoles the only damage risk here comes 

from raising the antenna temperature. But because the true magnetic dipole has a much 

higher impedance than the conventional loop antenna it follows that to radiate equivalent 

power it will draw a much lower current and thus dramatically reduce the risk of damage 

through heat conduction. 

The end result of these considerations is that the link budget calculation 

performed in the original report must be redone for this new type of antennas. However, 

that calculation will be left to a future third report in this series because there is a more 
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important development that results from choosing microscopic magnetic dipoles as 

candidate in-vivo RF telemetry antennas. The benefits highlighted by the calculations 

above in free space, pale in comparison to the benefits derived inside the dielectric lossy 

medium of the body especially if we also assume that the receiving antenna is a magnetic 

dipole itself. 

In the first report, it was seen that the best case human subject scenario requires 

the receiving antenna to be located just outside the head. Of course any antenna in close 

proximity to the head will still be affected by the lossy properties of the brain, given the 

extent of penetration of the antenna’s near field. This point was not belabored in that 

report because accurate modeling of reasonable external antenna configurations would 

not have changed the essence of the pessimistic results obtained. However, in light of the 

potentially optimistic results that magnetic dipoles might bring, it is important to consider 

this effect. And we do so as the worst case scenario where the receiving antenna is itself 

assumed to be completely immersed in the same lossy dielectric medium as the 

transmitting antenna. 

Therefore, for the balance of this report we concentrate on calculating the signal 

received from a microscopic antenna by a second microscopic antenna of the same kind 

in the same medium. The calculation is simplified by assuming (as in the first report) 

reasonable simple models of the antennas that allow the derivation of a closed-form 

expression for the mutual coupling between the antennas. The efficiency of signal 

transmission is then simply expressed as the ratio of the current induced on the receiving 

antenna to the current driving the transmitting antenna.  Since received power is 
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proportional to the square of the antenna current, the gain in efficiency is proportional to 

the square of this ratio.  

A.4 The case of the insulated Electric Dipole 

Before proceeding with this comparison, it is worth mentioning the case of the 

insulated electric dipole, a case also not addressed in the original report [7]. Long linear 

electric dipoles are commonly used for communication under sea water, an extreme case 

of a low impedance medium. Because of the obvious conductivity of seawater medium, it 

is to be expected that these dipoles should be insulated from the medium to prevent the 

medium from shorting them out. And the question then arises, should not electric dipoles 

inside the body also be insulated? The answer can be found in in Kraichman’s 

monograph [46] . Although under seawater electric dipoles are insulated for most of their 

length, they only attain maximum gain if their ends are electrically connected to the 

conducting medium. If they are completely insulated, instead of an antenna we have a 

center fed coaxial cable, with the antenna as the inner conductor and the seawater 

boundary as the outer conductor. The wave injected at the feed of the dipole remains 

trapped in this coaxial line, reflecting back and forth between its ends.  

The same effect arises in the case of our model spherical antenna immersed in the 

lossy body dielectric, except in our case the ends of the dipole are the conducting 

hemispheres and the insulated length is the assumption that the feed region itself is 

insulated from the medium. That is, our closed-form model of the electric dipole as a 

spherical antenna already behaves as if a narrow strip of insulator were wrapped around 

the equator where the voltage is applied to the hemispheres. If we were to insulate any 
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portion of the hemispheres themselves the result would be to add a shunt capacitance at 

the feed that diverts part of the feed current back to the source, thus reducing the amount 

of radiating current and therefore the gain. At the same time, the loss resistance presented 

to the antenna by the outer medium, contacting through a smaller area of the 

hemispheres, would be increased. 

If we suppose that the entire antenna was insulated by a very thin dielectric layer 

of thickness of tL, then it is true that we have removed a layer of thickness tL from the 

near field ohmic loss integration because now the integral does not extend from a to ∞ 

but instead from   a + tL to ∞. However, this would happen automatically if we had 

increased the radius of the dipole by the same thickness tL. So the change in near field 

loss due to a change in radius is not a relevant comparison.   

Suppose we keep the outer radius constant and decrease the metal sphere’s radius 

by inserting the insulating layer. The biggest impact of the insulating layer is that we 

have effectively placed the dipole at the center of an insulating dielectric cavity inside the 

conducting body medium. Now the input impedance of the small spherical dipole is given 

by putting in series with the external capacitance, the capacitance of the insulating layer. 

This capacitance reduces the antenna’s total capacitance, therefore raising its capacitive 

reactance, and requiring now a larger inductor to resonate it. But that’s not the main 

problem. Some flux lines from the upper hemisphere do terminate on the cavity wall 

while some flux lines terminate on the lower hemisphere. Only those flux lines 

terminating on the wall induce charges on the surface of the body boundary and it is only 

those oscillating charges that constitute the dipole moment radiating into the body. The 
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field lines not terminating on the wall simply constitute a shunt capacitance. Thus for a 

given input voltage we end up reducing the radiated power and increasing the stored 

energy. The only thing this accomplishes is decreasing the bandwidth of the antenna, and 

all the near field loss from a to ∞ is still there. 

Thus, the original conclusion from the first report [7] still holds: antennas 

operating in the magnetic dipole mode have a decided advantage. We show in this 

contribution that two identical microscopic true magnetic dipole antennas can 

communicate inside the lossy dielectric body medium with an efficiency that is over 8 

orders of magnitude greater than could be attained by conventional electric dipoles or 

electric loop antennas of the same size. It appears that microscopic RF telemetry inside 

the brain is now feasible. 

 

A.5 RESULTS 

It is known that micron sized antennas store much more energy in their near field 

per cycle than the power they can radiate to the far field by a ratio called the Quality 

factor of the antenna. The Fano-Chu limit sets a lower limit [19, 47]for this ratio which 

can be approximated by 𝑄 ≈ 1/(𝑘𝑎)3, where k is the propagation constant of the 

medium and a the radius of the smallest sphere that can enclose the antenna. For example 

if the body were considered a lossless dielectric, a 20micron antenna inside the body at 

2GHz, would have a minimum Q of 40million and an 80micron antenna at the same 

frequency would have a Q of the order of 600,000. Since the body is a lossy dielectric, 

these Q values are reduced in actuality but they still serve to gauge the amount of energy 
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per cycle stored in the near field, energy that is then consumed as heat. Therefore to 

produce a reasonable radiated power outside the head (in the picowatts range) it was 

found in our previous analysis that microscopic antennas must be supplied with 

microwatts of power. 

The baseline assumption made in the analysis of reference [7] is that one isolated 

antenna tries to communicate to the outside world by direct radiation of its signal. 

Furthermore, in that analysis the effect of adding a magnetically permeable core to a loop 

antenna was only modeled as an increase in the dipole moment of the loop by at most a 

factor of 3. The effect on the input impedance of the loop antenna and the possibility that 

the main radiating current could be the polarization current of the core and not the 

electric current of the loop were not considered. Yet, recent developments in the theory 

and practice of magnetically permeable antennas [2, 14, 21] have shown that such 

antennas exhibit unprecedented gain and efficiency in the presence of a low impedance 

environment. The result is that a conformal magnetic antenna (constructed from a lossy 

ferrite) only 1.5 inches thick, lying directly on the conducting roof of a High Mobility 

Multipurpose Wheeled Vehicle (HUMVEE), was shown to outperform an eight-foot-tall 

conventional metal monopole antenna on the same vehicle [21].  Since complete 

immersion in a lossy dielectric also presents a low impedance medium to an antenna, it 

can be expected that microscopic magnetic antennas inside the body dielectric will also 

show unprecedented gain and efficiency. This is demonstrated by calculating the mutual 

coupling between two identical electric dipole antennas, magnetic dipole antennas and 

electric loops antennas immersed in the body dielectric. 
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From the impedance point of view, electric loops and electric dipoles are the two 

fundamental types of antennas. According to Schelkunoff [8] although in order to 

calculate the impedance of an antenna we might have to solve Maxwell’s equation 

subject to the specific boundary conditions of the antenna, we can obtain some of the 

important general properties of the impedance from much more basic considerations. An 

interesting fact is that these properties are not limited to antennas or electrical systems. 

They are common to all dynamic systems (for example mechanical and acoustical) and 

they don’t even depend on the form of the dynamical equations as long as those equations 

are linear. A brief consideration of these general properties of impedance will help to 

understand the reason for the difference in the antennas’ behavior.  

For any transmitting antenna, the voltage and current at the input terminals can be 

written as a function of a complex variable which can be called “p” where 𝑝 = 𝑗𝜔 and 𝜔 

is the frequency of oscillation. The ratio of the functions V(p) and I(p) is called the input 

impedance Z(p) of the antenna and the inverse is called the input admittance Y(p). 

The schematic in Fig.A-3 shows a network with two accessible terminals and in 

order to introduce the two fundamental antenna types we can write the impedance and 

admittance as stated in the figure without being interested in their interior structure. 
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Fig. A- 3.  A Schematic of a Network with Two Accessible Terminals. 

The roots of the equation 𝑍(𝑝) = 0 are called the zeros of the input impedance 

which are the case for which the voltage across the input impedance vanishes while the 

current does not. The poles of the impedance are the zeros of the admittance and are roots 

of the equation 𝑌(𝑝) = 0  and it is obvious that in this case the input current goes to zero 

while the voltage does not which means that the terminals of the antenna are floating or 

the antenna is an open circuit.  

If the terminals of an antenna are open circuited conductors, we can place 

opposite charges on these conductors and create a voltage across the input impedance and 

the current will be zero therefore having p=0 as a pole of its input impedance. These 

antennas are called dipole antennas. On the other hand, an antenna consisting of a single 

perfect conductor having a steady current flowing in it would not have loss. These 

antennas are called electric loops and p=0 is a zero of the impedance of a perfectly 

conducting electric loop. Fig. A-4, shows the electric dipole and the electric loop as the 

two general types of antennas. 
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Fig. A-4. Two General Types of Antennas. (a) Dipole Antenna (b)Loop Antenna 

This fundamental difference between electric dipole antennas and electric loop 

antennas is carried through to the case of realistic imperfect environments and materials. 

The open circuit nature of an electric dipole immersed in a lossy conducting dielectric 

means that the large voltage developed between its opposite terminals drives a current 

directly in the medium surrounding it, following the field lines of its near electric field 

and depositing power into the medium. The short circuit nature of the electric loop means 

that it cannot drive a current directly in the surrounding medium. Instead currents are 

induced via electromagnetic induction of eddy currents by its magnetic near field. As 

shown in reference [41] this results in the loop dissipating much less power into the 

surrounding medium; but the fact that copper is not a perfect conductor means that the 

current in the electric loop will cause it to heat up and dissipate power into its own 

materials. Given these two different behaviors we could ask if there is another kind of 

antenna that can combine the best features of these, one whose near field is dominated by 

a magnetic field and yet does not behave as a short circuit to draw large currents. This is 

precisely what permeable magnetic dipoles do.  
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For the sake of the computational examples we assume spherical antennas 10 𝜇𝑚 

in radius. (The derivations are included in the Methods section to enable the reader to 

replicate these results.)  Fig.A-5 is a sketch of the idealized antenna models represented 

by these dipoles. We have chosen the sphere geometry as a convenient form for the 

dipole antennas for many reasons. The spherical geometry of the dipoles makes the 

radiated field and the mutual coupling calculations straight forward because they can be 

written in a self-consistent closed form. As we will see later, by using spherical dipoles, 

we can normalize the radiated field to the field on the surface of the spheres and we can 

also normalize the induced current to the source current, thus enabling us to compare 

electric and magnetic antennas on equal footing.   

 

Fig. A-5. Sketch of the Idealized Antennas Considered in This Analysis. (a)Electric Dipole Antenna 

(b)Magnetic Dipole Antenna 

The electric dipole can be imagined as a hollow sphere cut in half and fed by a 

distributed electric voltage source, VE, at the equator such that the total electric current 
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flowing depends on the self-impedance of the antenna (measured in Ohms) according to 

equation(A-6). 

 𝐼𝐸 =
𝑉𝐸

𝑍𝐸 𝑠𝑒𝑙𝑓
 ; 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐼𝐸√

8

3
𝑎 (A-6) 

 

 

The magnetic dipole can be imagined as a solid permeable sphere with a 

conducting belt around its equator, said belt fed by a current source. The current flowing 

through the belt in Amps is the magnetic Voltage, VM, and the total magnetic current 

flowing depends on the magnetic self-impedance of the antenna (measured in Siemens) 

according to equation (A-7). 

 

 𝐼𝑀 =
𝑉𝑀

𝑍𝑀 𝑠𝑒𝑙𝑓
 ; 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝐼𝑀√

8

3
𝑎 (A-7) 

The complete duality in Maxwell’s equations that is evident once magnetic 

currents were introduced by O. Heaviside, allow the engineer to translate conventional 

results of electrically conducting antennas driven by an electric voltage at a gap into the 

results for magnetically conducting antennas driven by a current flowing in a metal feed 

loop surrounding the permeable material. 

Conventional metal antennas have an Impedance given by the ratio of the applied 

Voltage, V, to the current that flows in the metal, Ze measured in Ohms. The current, I, 

can be measured by performing the circulation integral of Ampere’s law around the metal 

wire, that is 
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 𝐼 = ∮ �⃑⃗⃗� ∙ 𝑑𝑙⃗⃗⃗⃑   (A-8) 

In the same way, permeable antennas have a dual magnetic impedance, Zm 

measured in Siemens, given by the ratio of the applied Current, I,  in the feed loop to the 

electromotive force around the permeable rod 

 𝑉 = ∮ �⃑⃗� ∙ 𝑑𝑙⃗⃗⃗⃑   (A-9) 

This is why Zm has the inverse units of Ze. In the referenced dissertation [2], it is 

shown that Zm is nothing but the electric admittance, Ye in Siemens, measured by the 

source driving the current in the permeable antenna’s feed loop. 

In an ensemble of spheres, the mutual coupling between spheres is represented by 

the mutual impedance. For electric and magnetic dipoles located on the same x-y plane, 

all polarized along the z-axis, these are given by equations (A-10) and (A-11). 

 
            𝑍𝐸𝑚𝑛

=

8
3
𝑎2


0

√휀𝑟(𝜔)
𝑒−𝑗𝑘𝑟

4𝜋𝑟
(𝑗𝑘 +

1

𝑟
+

1

𝑗𝑘𝑟2
)  

(A-10) 

            𝑍𝑀𝑚𝑛
=

8
3𝑎

2𝑒−𝑗𝑘𝑟


0

√휀𝑟(𝜔)
4𝜋𝑟

(𝑗𝑘 +
1

𝑟
+

1

𝑗𝑘𝑟2
)  (A-11) 

   

Zmn is the mutual impedance between the m
th

 and n
th

 sphere. Setting r=a (the 

radius of the sphere) yields Zmm, the self -impedance. (See the Methods section for the 

details.) With this formulation it is straight-forward to solve self-consistently the problem 

of the excitation of an ensemble of spheres by any incident field or in particular by one 
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member of the ensemble. Focusing on the simplest case of two spheres, the Voltage at the 

feed of each antenna depends on the currents on itself and the other antenna, satisfying an 

equation of the form: 

 𝑉1 = 𝐼1𝑍11 + 𝐼2𝑍12  (A-12) 

Thus, under the assumption that the two spheres share the same equatorial plane, 

the problem of an array of two spheres is represented by a matrix equation of equation 

(A-13), where all the terms of the Impedance matrix, �̅�, are known from equations (A-10) 

and (A-11). 

 𝒁 ∙ 𝑰 = 𝑽 → (
𝑍11 𝑍12
𝑍21 𝑍22

) (
𝐼1
𝐼2
) = (

𝑉1
𝑉2
) (A-13) 

To maximize the power transfer from the source to the antenna (and from the 

antenna to its receiver) we assume that the antennas have been tuned to resonance at the 

operating frequency either by aid of a matching circuit or the natural resonance of its 

constitutive materials.  This simply means that the self-reactance has been cancelled.  

 𝑍𝑠𝑒𝑙𝑓_𝑡𝑢𝑛𝑒𝑑 = 𝑍𝑚𝑚 → 𝑅𝑒(𝑍𝑚𝑚) (A-14) 

 

To illustrate how the materials of construction can be used to tune the antenna 

requires a brief digression. In reference [21] it is shown that, to first order, the input 

impedance of an electrically small material antenna (as opposed to the idealized perfectly 

conducting antenna) can be obtained by simply adding in series with the conventional 

antenna model, the internal Impedance of the material. R. W. P. King and T. T. Wu use a 

similar argument
 
to analyze the imperfectly conducting antenna.  
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In the simplest case of a small metal dipole (our spherical dipole antenna) we can 

approximate its external impedance by the capacitance of its external near field in series 

with its radiation resistance. In a lossy dielectric medium, the near field capacitance is 

complex and thus adds extra resistance to the antenna. To resonate (that is to tune) such 

an antenna the common practice is to add a series inductor such that the series sum of the 

added inductive reactance and the external capacitive reactance equals zero. 

In the same sense a small spherical permeable antenna of radius a, has an external 

impedance dominated by the magnetic capacitance of its near field. Thus, its dual 

magnetic input impedance is approximately 

 

 𝑍𝑚 ≈
1

𝑗𝜔𝐶𝑚𝑒𝑥𝑡

+ 𝑅𝑚 =
1

𝑗𝜔𝜇0
3𝜋
2 𝑎

+ 𝑅𝑚   (A-15) 

 

 

Where 𝑅𝑚 is the magnetic dipole’s (dual) radiation resistance. Now, assuming the 

flux inside the permeable sphere is uniform, the internal capacitance can be roughly 

approximated by a term of the form: 

 𝐶𝑚_𝑖𝑛𝑡 = 𝜇0𝜇𝑟(𝜔)
𝜋𝑎2

2𝑎
  (A-16) 

   

Therefore the total impedance of the material antenna is: 
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𝑍𝑚 ≈
1

𝑗𝜔𝜇0
3𝜋
2 𝑎

+ 𝑅𝑚 +
1

𝑗𝜔𝜇0𝜇𝑟(𝜔)
𝜋𝑎2

2𝑎

= 𝑅𝑚 +
1

𝑗𝜔𝜇0
𝜋
2 𝑎

(
1

3
+

1

𝜇𝑟(𝜔)
)  

(A-17) 

 

In this last equation we see that the internal and external capacitances add in 

series and it is clear that when the real part of the relative permeability of the material, 

 𝜇𝑟(𝜔), gets close to the  value -3, the reactance is cancelled and the antenna is resonant. 

At resonance the input impedance of the antenna is purely resistive, consisting of the 

radiation resistance, the loss resistance of the antenna metal components and the body 

dielectric, and the loss contributed by the permeable material’s imaginary part of the 

permeability. Because a ferromagnetic material having a strong Lorentz-like resonance 

exhibits negative permeability values just past that resonance it is clear that choosing 

using such a material for the magnetic dipole’s permeable core can result in an antenna 

that is automatically tuned by its materials of construction. 

Returning now to the calculation of mutual coupling between antennas, in the 

most general case where the m
th

 sphere of an array is excited and the rest are passive, the 

currents on all antennas are obtained by setting Vm =1, all other 𝑉𝑛≠𝑚 = 0 and inverting 

the matrix: 

 Y = Z
−1
∴ I = YV (A-18) 

The case of the electric loops is solved similarly and the details of the derivation 

can be found in the methods section. The final step before solving the case of interest is 
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to define the medium in which the antennas are immersed. As in reference 1, a good 

approximation below 3 GHz to the FCC accepted model for the human head is the a 

medium of unity relative permeability and relative permittivity given by the following 

multi-Debye relaxation model including a DC conductivity of 0.68 S/m (with the 

frequency written in GHz): 

 

휀𝑟(𝑓) = 휀′ − 𝑗휀"

= 8 +
18

1 + 𝑗
𝑓𝐺𝐻𝑧
0.185

+
7

1 + 𝑗
𝑓𝐺𝐻𝑧
9

+
18

1 + 𝑗
𝑓𝐺𝐻𝑧
12

− 𝑗
0.68

0.056𝑓𝐺𝐻𝑧
 

(A-19) 

The propagation constant and medium impedance appearing in equations (A-10) 

and (A-11) become:  

 

𝑘0 =
2𝜋

𝜆0
→ 𝑘𝑚𝑒𝑑 = 𝑘0√휀𝑟(𝑓) ,     

 𝜂0 = 377 → 𝜂𝑚𝑒𝑑 = 𝜂0/√휀𝑟(𝑓) 

(A-20) 

 

The mutual impedances are then: 

 

𝑍𝑚𝑢𝑡𝑢𝑎𝑙
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =

8
3𝑎

2𝜂𝑚𝑒𝑑𝑒
−𝑗𝑘𝑚𝑒𝑑𝑟

4𝜋𝑟
(𝑗𝑘𝑚𝑒𝑑 +

1

𝑟

+
1

𝑗𝑘𝑚𝑒𝑑𝑟2
)    𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑑𝑖𝑝𝑜𝑙𝑒𝑠 

(A-21) 
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 𝑍𝑚𝑢𝑡𝑢𝑎𝑙
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

=
𝑍𝑚𝑢𝑡𝑢𝑎𝑙
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

(𝜂𝑚𝑒𝑑)2
       𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑝𝑜𝑙𝑒𝑠   (A-22) 

 

 

𝑍𝑚𝑢𝑡𝑢𝑎𝑙
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
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4𝑟
(𝑘𝑚𝑒𝑑𝑎)

2 (1

−
𝑗

𝑘𝑚𝑒𝑑𝑟
−

1

(𝑘𝑚𝑒𝑑𝑟)2
) 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑙𝑜𝑜𝑝𝑠   

(A-23) 

 

These closed form equations are easy to use and have the pleasing feature that to 

get the self-impedance we simply set r = a. However, as explained above, for the 

magnetic dipole case the self-impedance has an additional series term
6
 due to the material 

properties of the core. 

 𝑍𝑚 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ≅
1

𝑗𝜔𝜇0(𝜇(𝜔) − 1)
𝜋𝑎2

2𝑎

 (A-24) 

 

So that for the magnetic dipoles the total self- impedance at resonance is given by 

equation (9-25). 

 

𝑍𝑚 𝑠𝑒𝑙𝑓 = 𝑅𝑒 [
1

𝑗𝜔𝜇0(𝜇(𝜔) − 1)
𝜋𝑎2

2𝑎

]

+ 𝑅𝑒[𝑍𝑚𝑢𝑡𝑢𝑎𝑙
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐(𝑟 = 𝑎)] 

(A-25) 
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The first term on the left, the real part of the internal impedance, represents the 

loss inside the permeable core. This turns out to be inversely proportional to the 

Heaviside magnetic conductivity of the material (𝑅𝑙𝑜𝑠𝑠𝑚 =
2𝑎

𝜎𝑚𝜋𝑎2
) and thus is minimized 

when the material has a very large initial permeability (500 in our example) and when the 

operating frequency is chosen as the resonant frequency of the material. This choice also 

maximizes the input impedance. 

Having defined all the relevant parameters, we can calculate the current induced 

on a second antenna as a function of the current in the source antenna and the separation 

between them. For example, assuming there are two spheres (or loops) each of radius 

𝑎 = 10𝜇𝑚, separated from each other by a distance d, we let the distance d range from 

5mm to 4 cm in steps of 5mms. The results, plotted as the ratio of the induced current to 

the source current, are shown as the symbols in Fig.A-6. The advantage of the magnetic 

dipole antenna by about 4 orders of magnitude is startling. This corresponds to an 8 order 

of magnitude increase in power transmission, that is, +80 dB gain over the conventional 

alternatives. 

To emphasize that the nature of the receiving antenna is as important as that of the 

transmitting antenna, we have also plotted in Fig.A-6, as curves, the ratio of the principal 

field at the distance r=d to the maximum value of that field at the surface of the antenna 

r=a. 
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𝐸𝜃(𝑟) =
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(A-26) 
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(A-27) 

 

 

𝐻𝜃(𝑟)

=
−(𝑘𝑎)2𝐼𝑒

4𝑟
𝑒−𝑗𝑘𝑟 (1 +

1

𝑗𝑘𝑟

−
1

(𝑘𝑟)2
) 𝑠𝑖𝑛𝜃                          𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑙𝑜𝑜𝑝𝑠  

(A-28) 
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Fig. A- 6. The Fields of the Electric Dipole Antenna, Magnetic Dipole Antenna and the Loop Antenna 

Normalized to the Fields on Their Surface Is Plotted in the Same Figure as the Induced Current in Each of 

These Antennas Normalized to the Source Current. The Distance Between the Antennas Has Been Change 

from 5mm to 40 mm with 5mm Steps. The Normalized Fields of the Three Different Antennas are the 

Same But Using a Pair of Magnetic Dipole Antennas Results in a Four Order of Magnitude Improvement in 

the Mutual Coupling, Eight Order of Magnitude Improvement on Power Transfer, When Compared to the 

Conventional Electric Dipoles and Loops.  

 

By examining this graph we again see the significance difference in the behavior 

of the mutually coupled magnetic dipoles. All the normalized fields lie on top of each 

other and 4 centimeters away the normalized field has dropped down by a factor of 
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3 × 10−10 compared to the field at the surface: -190 dB down. Electric dipole to electric 

dipole mutual coupling follows this same trend being slightly larger by a factor of 3, 

while the electric loop to electric loop coupling follows the same trend but stronger by 

about a factor of 10. The magnetic dipole coupling exceeds the field ratio by almost 5 

orders of magnitude. 

The efficiency of the magnetic dipole antennas are much higher than the other 

two alternatives (the electric dipole antenna and the electric loop antenna) because the 

magnetic material used for these antennas changes contributes to both the dipole moment 

and the input impedance. The material used for the magnetic dipole antenna calculations 

was assumed to have the permeability shown in Fig.A-2. These magnetic materials 

already exist, and having a high 𝜇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is an important factor which will result in having 

a strong magnetic conductivity. To illustrate the importance and role of the high 

permeability material, we have added two more data points at the distance of 4cms 

showing that for   𝜇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 50 and 𝜇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 200 (with the same assumed resonant 

frequency) the advantage is not as significant as the 𝜇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 450.  

An additional lesson from these calculations is that only looking at the rate of 

drop of a field component does not tell us the whole story because the field distribution in 

this space is dominated by the spherical spreading of the source field and the attenuation 

due to the medium whereas the way a receiving antenna can harvest energy out of this 

field is dominated by its self and mutual impedance properties. 
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A.6 METHODS 

Throughout this derivation we exploit the principle of duality inherent in 

Maxwell’s equations where to every conventional electric measurable (Voltage, Current) 

there is a dual magnetic measurable related through the transformations 𝐸 → 𝐻,𝐻 →

−𝐸, 𝜇 ↔ 휀, 𝑍𝑚 = 𝑍𝑒/ 
2. The principal polarization fields radiated by electric and 

magnetic spherical dipoles of radius a, at a distance r, in terms of the current at the feed 

are respectively: 
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0
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8
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𝐻𝜃 =
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3𝑎

4𝜋𝑟
𝑒−𝑗𝑘𝑟 (𝑗𝑘 +

1

𝑟
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1

𝑗𝑘𝑟2
) 𝑠𝑖𝑛𝜃 

(A-29) 

The quantity 𝑎√8/3 is known as the antenna height, h, for the spherical dipole 

that defines the voltage impressed across its feed by an incident electric field as 𝑉𝑓𝑒𝑒𝑑 =

𝐸𝑖𝑛𝑐ℎ (and it is also the moment arm of its dipole moment.) For the electric dipole the 

current Ie is in Amps and is the conventional total current that would be crossing the 

equator of the sphere. For the magnetic dipole the current Im is in Volts and is equal to the 

total polarization current crossing the equator of the sphere 
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𝑎

0

2𝜋

0

𝑅𝑑𝑅𝑑𝜑 

(A-30) 

For simplicity we assume that the input impedance of the spherical antennas is 

closely modelled by the modal impedance of the first spherical wave mode (TM10 for the 

electric dipole and TE10 for the magnetic dipole.) For the small electric dipole this is 

given by equation (9-31) . 

 
𝑍𝑒1 =

1

𝑌1
 ;  𝑌1 =

𝑗𝑘𝑎

80√
1
휀𝑟

[
1 − 𝑗(𝑘𝑎)3

1 − (𝑘𝑎)2 + (𝑘𝑎)4
] 

(A-31) 

And for the magnetic dipole by its dual  

 
𝑍𝑚1 =

𝑍𝑒1

(

0

√휀𝑟
)
2 

(A-32) 

 

Then a self-consistent definition of the mutual Impedance is given by equation 33 

where the numerator is the Reaction Integral between the two currents, that is, the inner 

product of the current in antenna 1 times the field antenna 2 produces on it. By the 

reciprocity of the Reaction Integral Z12=Z21. 

 

𝑍𝑒12 = −
∭ 𝐽𝑒1 ∙ 𝐸2⃗⃗⃗⃗⃑𝑑𝑉11

= ∬ �⃑⃗⃗�𝑒1 ∙ 𝐸2⃗⃗⃗⃗⃑𝑑𝑆11

𝐼𝑒1𝐼𝑒2
 

(A-33) 
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Where 𝐽𝑒1 is the volumetric current and �⃗⃑⃗�𝑒1 is the surface current and the 

numerator is showing both the volumetric current version and the surface current version 

of the reaction theorem. 

 

Again, by duality: 

 
𝑍𝑚12 =

𝑍𝑒12

(

0

√휀𝑟
)
2 

(A-34) 

 

Assuming the spheres are small and far from each other the Reaction Integral 

simplifies by assuming a uniform field over the uniform current of the dipole and we get: 
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(A-35) 

 

In practice when the second sphere is farther than one diameter from the surface 

of the first sphere, the field is uniform enough that it can be extracted from the reaction 

integral as previously mentioned. Even though by definition the field wouldn’t be 

uniform closer than the mentioned distance, using this mutual impedance equation and 
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coming exactly to the surface of the source antenna gives an answer that converges on the 

correct self-impedance. This convenient behavior is a result of the variational properties 

of the Reaction Integral in equation (A-33). 

The mutual impedance of the electric loop has been obtained using two different 

methods. The first method is finding the mutual inductance and the second method which 

also serves as a verification check is calculating the reaction integral (∫𝐸. 𝐽 𝑑𝑙) by 

replacing the loop with a curvilinear square of equal area to make the calculation of the 

integral very easy.  

The mutual inductance found from the first method and the mutual impedance are 

as follows, where ‘r’ is the distance between the antennas. (As alluded to above, the 

mutual impdance tends to the self impedance at r=a.) 

 𝑀𝑚𝑢𝑡𝑢𝑎𝑙(𝑟)

= −
𝜇0(𝜋𝑎
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2
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+
𝑗

[𝑘0√휀𝑟]𝑟
− 1) 

(A-36) 

 

 𝑍12 = 𝑗𝜔𝑀12 (A-37) 
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(A-38) 

For the second method we will perform the reaction integral of 𝐸𝜑 times the 

circulating current in the loop and that would give us the mutual impedance. A good 

approximation is to replace the the loop with a curvilinear square of equal area. Now the 

reaction integral is trivial. 

 

𝑍𝑚𝑢𝑡𝑢𝑎𝑙𝑙𝑜𝑜𝑝

= −
{𝐸𝜑(𝑟 − 𝑎) ∙ 𝐼𝑒𝑙𝑜𝑜𝑝(𝑟 − 𝑎)− 𝐸𝜑(𝑟 + 𝑎) ∙ 𝐼𝑒𝑙𝑜𝑜𝑝(𝑟 + 𝑎)}

𝐼𝑒𝑙𝑜𝑜𝑝𝐼𝑠𝑜𝑢𝑟𝑐𝑒
 

(A-39) 

 

After simplifying we will have: 
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(A-40) 

 

And the final result is as follows: 
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(A-41) 

 

The results obtained from the two different methods are very close. 

A.7 Finite difference time domain (FDTD) simulation approach 

The results shown in Fig. A-6, show a dramatic advantage in the case of true 

magnetic antennas. Even though the closed-form expressions for analyzing this problem 

have been derived following classic approaches in antenna theory, the results are almost 

“too good to be true.” Therefore, it is appropriate to spot check the result by an alternate 

method. The alternative to the analytic formulation is a numerical simulation approach. 

Such an approach is not without its own difficulties.  

In many ways, the problem addressed here resembles the problem of the 

scattering of light from plasmon resonant sub-wavelength particles. In that case, for 

particles of the order of 10 nm in diameter the scatterer is of the order of two hundredths 

of a wavelength. In our case an antenna 20 microns across at 2GHz in the body dielectric 

is less than one thousandth of a wavelength. To faithfully model such small particles and 

correctly simulate the resonant behavior with frequency domain Volume Integral 

Equation methods or Finite Element methods requires an extremely fine mesh and the 
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inversion of a matrix that at resonance has a nearly zero determinant. Special methods for 

dealing with this sub-wavelength problem have been devised but are not usually 

implemented in the commercially available software.  

Because all we want to do is spot check the result, a reliable brute force approach 

is to solve the problem using the Finite Difference Time Domain (FDTD) method. By 

recognizing that the advantage of the magnetic antenna occurs for every separation 

distance considered, we can choose a case where two antennas are relatively close and 

thus examine the case of strong near field coupling. A best case for the electric dipole 

antenna is chosen where the average body dielectric is more heavily biased towards fat, 

thus assuming a dielectric constant near 2GHz of 56 and an equivalent conductivity of 

1.07 S/m. The antennas are 10 𝜇m in radius, 56 𝜇m center to center apart. The closed 

form expressions for this case yield the induced magnetic current on the second particle 

to be of the order of 0.67 (-3.47dB) that of the first whereas for electric dipoles it is 0.06 

(-24 dB) of the first. 

We choose an FDTD domain discretized uniformly with dx=dy=dz=ds=4𝜇m, and 

dimension 70 ds by 70 ds by 70 ds. This domain is small enough to run 2.5 million time 

steps in 2 hours on a 16 core CPU. Such a small domain (𝜆/100 on the side) could not be 

used to calculate far field radiation from these antennas. However since it is 14 antenna 

diameters across it is large enough to accommodate the quasi-static near field that 

dominates the behavior of these antennas. Even at this small size, the discretization is 

coarse as illustrated in Fig A-7 where the two antennas are shown as seen from above.  
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Fig. A-7. Top View of the FDTD Domain Used to Analyze Two Coupled Micro-Antennas 

A closed flux path formulation has been employed to maximize symmetry; as in 

the PEC blocks mentioned in the work done by Z. Zhang and R. E. Diaz [48]. Because of 

the coarse discretization, even though the antennas are spheres 2.5 ds in radius their 

actual physical size may appear to be larger by one discretization cell (24 microns rather 

than 20 Microns). Similarly, it is evident that since the conducting bands have been made 

thick for the same reason, the actual equivalent separation between the antennas for near 

field coupling may be one cell shorter or 52 microns instead of 56 microns. Such 

deviations of up to 20% in linear dimension are considered to be slight for the purpose of 

this computation because the difference in coupling between these antennas according to 

the closed form model is of the order of 20dB, that is, a factor of ten in induced current. 

Since we have mentioned that the actual physical sizes may appear to vary by one 
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discretization cell we have found the closed form expressions for different sizes and 

distances and the results are very close ranging from -3.75dB to -3.29dB for the magnetic 

dipoles and -23.1 dB to -24.6 dB for the electric dipoles, showing that the deviations in 

size are in fact too small to make a significant difference in the coupling. 

Since the principal loss mechanism for the case of the magnetic antennas is the 

permeable material, the spherical core is assumed to have a relative permeability of 300-

j300. That would be the equivalent of using a laminate of 0.75𝜇m CZN ferromagnetic 

alloy layers alternating with 0.5𝜇m layers of insulator (SiO2). In the case of the electric 

antennas the principal loss mechanism is the current induced in the body medium; thus 

the core for that case was assumed to be a perfect electric conductor. The core is shown 

as the pink region in the center of each sphere. 

The antennas are made to resonate by wrapping them around the equator with a 

perfectly conducting “belt” (electrically conducting for the magnetic dipole, magnetically 

conducting for the electric) that has a gap of one discretization cell on one side of the 

antenna (the white region surrounding the core). The gap (orange squares in the figure) is 

filled with a low loss material of high permittivity (magnetic antenna) or permeability 

(electric antenna) such as to induce resonance close to 2GHz. Although this construction 

is less realistic than that assumed in the paper it ensures that the comparison between 

electric antennas and magnetic antennas is as fair as possible by minimizing their 

differences.  

The antenna on the left is excited by driving a time domain field impulse from 

one end of the gap in the belt to the other. In the case of the magnetic antenna this is an 
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electric field impulse. In the case of the electric antenna this is a magnetic field impulse. 

Using a magnetic field impulse on a perfectly magnetically conducting belt as the source 

for the electric antenna also eliminates any question about whether or not the electric 

antenna source at its feed could be short circuited by the body dielectric. Fig.A-8 shows 

the results of the time domain simulation.  

 

 

Fig. A-8. Time Domain History of the Interaction Between the Antennas When the First One Is Excited by 

an Impulse. (a) Current in the Source Antennas Where Blue Shows the Electric Dipole and Red Shows the 

Magnetic Dipole. (b) Current in the Second Antennas Where Blue Shows the Electric Dipole and Red 

Shows the Magnetic Dipole. 

The field produced just above the pole of the antennas is measured as a function 

of time. Because of the continuity of the total Maxwell current density this field value is a 
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direct measure of the current “flowing” through the antenna. The upper figure shows the 

current in the source antenna while the lower figure shows the current in the second 

antenna. The difference between a magnetic antenna and an electric antenna in the body 

medium is evident. The source antenna current dies off exponentially for the electric 

antenna (blue in the figures) whereas for the magnetic antenna (red in the figures) the 

drop at the source is a combination of a weak exponential attenuation and attenuation due 

to the transfer of energy to the second antenna. 

 

Fig. A-9. Frequency Domain Induced Current on the Second Antenna 

That this is what is happening is evident from the second antenna current where 

we see that for the magnetic antenna the oscillation is still going strong after 2.5 million 

time steps (only 17 ns of real time has been simulated).  Taking the Fourier Transform of 

these currents and expressing the current in the second antenna relative to the first we 

obtain the result shown in Fig. A-9.  The current induced on the magnetic antenna is -3dB 
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down from the source whereas the current induced on the electric antenna is -21dB down 

which shows results similar to those obtained from the closed form calculations. 

 

A.8 Discussion and conclusions 

In reference [7] the best antenna considered was the electric loop. The Fig.A-6 

plot of the induced current in the electric loop shows that the normalized induced current 

in the electric loop at 4 cm (far enough to get to the surface of the head from almost 

everywhere inside the brain) is stronger than the normalized induced current in the 

electric dipole and, at 3 × 10−9, it is about an order of magnitude stronger than the 

normalized field. But the current induced in the magnetic dipole is 2 × 10−5 , almost five 

orders of magnitude larger than the field ratio. Why is this so? 

The time domain response of an antenna to an ambient driving field depends on 

the quality or the “Q” of its resonance. Since the Q is inversely proportional to the 

damping, a very low Q antenna is strongly damped. This means that when driven by an 

ambient field such an antenna will respond, one to one, in direct proportion to the field 

strength it receives from the very beginning. However, a high Q antenna under the same 

ambient field will experience an ever-increasing amplitude of oscillation until it reaches a 

steady state where the power dissipated matches the power input by the field.  

The Electric dipoles at the considered size are strongly damped because of the 

near field direct loss in the body, and similarly, at this size, electric copper loops are also 

very much damped because of the required large current that dissipates a large amount of 

energy into their own conductivity. Therefore, the response of electric dipoles and 
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electric loops follow the field without any resonant amplification. But since true magnetic 

dipoles induce low body currents and require low metal currents to radiate they are much 

less damped and therefore develop a much higher current at resonance in response to the 

applied field.  

Alternatively, we can say that the excess loss of the metal antennas results in 

reduced receiving and transmitting cross sections when compared to the more efficient 

magnetic dipoles. 

In summary, although the magnetic dipole antenna is fed by a loop, the effect of 

the permeable core is to change the character of the antenna from the short circuit of the 

electric loop, which has a high current, to an antenna that tends to an open circuit at 

resonance which as mentioned before is typical of dipoles, since dipoles are open circuits. 

Therefore, its damping is dominated not by the copper loss but by the constitutive 

properties of its core. The ferromagnetic metals developed for the magnetic read-head 

industry on purpose combine high permeability with low damping and this is evidenced 

in the Lorentz line shape of their frequency dependent permeability; they are by design 

high Q materials. 

As a “verification check” we performed an additional set of calculations in which 

we set the surrounding medium to free space. This change must remove the advantage of 

the magnetic dipoles. Indeed, in that case we find that all of the antennas showed the 

exact same induced current.  

Although the materials needed for the magnetic antennas already exist, the results 

obtained points out the importance of developing magnetic materials with high 
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permeability and high resonant frequency. Given the small size of the antennas involved 

and the level of maturity of magnetic read-head industry it can be anticipated that the 

development and production cost of these materials would not be an obstacle to their use. 

Magnetic read-head industry materials include multi-layers of “Permalloy” or other 

alloys with transition metals that have permeabilities in the hundreds and resonance 

frequencies as high as a few GHz. The magnetic properties of these materials can further 

be controlled by patterning their layers to control the formation of domains and alter the 

magnetic anisotropy [49]. Typical dimensions for these design features are in the 0.2 𝜇𝑚 

range [50]
  
fully compatible with an antenna structure in the assumed 10 𝜇𝑚 size. 

We have come to the conclusion that using coupled magnetic dipole antennas as 

microscopic links in an in-vivo telemetry system is a solution to the tissue damage 

problem caused by electric dipole antennas through SAR deposition and the electric loop 

antennas through heat conduction. If we model the head as a sphere of approximately 

5cm radius, communication between a transmitting microscopic antenna anywhere inside 

the brain and an identical one used as a repeater node located just under the skull would 

derive the +80dB in gain seen is Fig. A-6 as compared to conventional antenna 

alternatives. Although full re-evaluation of the link budget for a telemetry system 

exploiting these antennas is yet to be performed we can state that microscopic neuron-by-

neuron RF telemetry from within the brain is feasible to the extent that the antennas are 

no longer the bottleneck. 
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APPENDIX B 

DETAILS AND CALCULATIONS ON THE THEORY OF THE INFINITE 

MAGNETO DIELECTRIC ROD 
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The figure below shows the infinite magneto dielectric rod. The first step to 

solving this problem is writing the fields of this antenna for both the inside and outside 

medium. 

 

Fig. B-1 Infinite Magneto Dielectric Rod Showing the Current Band at the Origin 

 

 

 

The next step is to expand the current band at the origin into an infinite sum of 

current waves traveling along the z-axis as follows: 
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𝐾𝜑(𝑘𝑧)

=
1

2𝜋
∫ {𝐶0 (𝑟𝑒𝑐𝑡 (

𝑧

𝑠
))} 𝑒𝑗𝑘𝑧𝑧𝑑𝑧

+∞

−∞

; 𝐶0 (𝑟𝑒𝑐𝑡(
𝑧

𝑠
))

= ∫ 𝐾𝜑(𝑘𝑧)𝑒
−𝑗𝑘𝑧𝑧𝑑𝑘𝑧

+∞

−∞

 

(B-1) 

Resulting in: 

 𝐾𝜑(𝑘𝑧) =
1

2𝜋
∫ 𝐶0𝑒

𝑗𝑘𝑧𝑧𝑑𝑧

+
𝑠
2

−
𝑠
2

=
𝐶0𝑠

2𝜋
[
𝑠𝑖𝑛(𝑘𝑧𝑠)

(𝑘𝑧𝑠)
] 

 

(B-2) 

Now, using the fields, we can write (the terms shown in blue are the contribution 

of the inside fields): 

 

𝑯𝒛 →   𝑗𝐶0𝑛
𝑘𝜌0

2

𝜔𝜇0휀0
𝐻0
(2)(𝑘𝜌0𝑎) + 𝑗𝐴0𝑛

𝑘𝜌1
2

𝜔𝜇1휀1
𝐽0(𝑘𝜌1𝑎)

= 𝐾𝜑 

𝑬𝝋 →   𝐶0𝑛
𝑘𝜌0

휀0
𝐻1
(2)
(𝑘𝜌0𝑎) = 𝐴0𝑛

𝑘𝜌1

휀1
𝐽1(𝑘𝜌1𝑎) 

 (B-3) 

Without getting into the calculation details, both 𝐴0𝑛 and 𝐶0𝑛 are obtained as 

follows: 

 

𝐶0𝑛(𝑘𝑧)

=
𝑗𝐾𝜑(𝑘𝑧)𝑑𝑘𝑧

𝑘𝜌0
2

𝜔𝜇0휀0
𝐻0
(2)
(𝑘𝜌0𝑎) {1 −

𝑘𝜌1𝜇0
𝑘𝜌0𝜇1

𝐻1
(2)
(𝑘𝜌0𝑎)𝐽0(𝑘𝜌1𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)𝐽1(𝑘𝜌1𝑎)

}

 

 

 

(B-4a) 
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𝐴0𝑛(𝑘𝑧)

=

𝑘𝜌0휀1
𝑘𝜌1휀0

𝐻1
(2)
(𝑘𝜌0𝑎)

𝐽1(𝑘𝜌1𝑎)
(𝑗𝐾𝜑(𝑘𝑧)𝑑𝑘𝑧)

𝑘𝜌0
2

𝜔𝜇0휀0
𝐻0
(2)
(𝑘𝜌0𝑎) {1 −

𝑘𝜌1𝜇0
𝑘𝜌0𝜇1

𝐻1
(2)
(𝑘𝜌0𝑎)𝐽0(𝑘𝜌1𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)𝐽1(𝑘𝜌1𝑎)

}

 

 

 

(B-4b) 

We see that when the part shown in red in the denominator goes to zero, we will 

have a pole and later we will need to take this pole into account while integrating to 

obtain the magnetic current. The next step is rewriting the fields with the obtained  

𝐴0𝑛(𝑘𝑧) and 𝐶0𝑛(𝑘𝑧). The fields for the inside and outside medium are as follows: 

The fields inside the material are: 

 

𝐸𝜑(𝜌, 𝑧) = − ∫ 𝑗𝜔𝜇0𝑎

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝜌)
)

 

(B-5a) 

 

𝐻𝑧(𝜌, 𝑧)

= ∫
𝑘𝜌1𝑎

𝜇𝑟

𝐽0(𝑘𝜌1𝜌)

𝐽1(𝑘𝜌1𝑎)

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

+∞

−∞

 

(B-5b) 
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𝐻𝜌

= ∫ 𝑗

+∞

−∞

∙
𝑘𝑧𝑎

𝜇𝑟

𝐽1(𝑘𝜌1𝜌)

𝐽1(𝑘𝜌1𝑎)

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-5c) 

And the fields outside are as follows: 

 

𝐸𝜑

= − ∫ 𝑗 ∙ 𝜔𝜇0𝑎
𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0𝑎)

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

             (B-6a) 

 

𝐻𝑧

= ∫ 𝑘𝜌0𝑎
𝐻0
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0𝑎)

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-6b) 
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𝐻𝜌

= ∫ 𝑗 ∙ 𝑘𝑧𝑎
𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0𝑎)

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-6c) 

   

We note that all fields have in common the following term in the denominator: 

 {1 −
𝑘𝜌1𝜇0

𝑘𝜌0𝜇1

𝐻1
(2)
(𝑘𝜌0𝑎)𝐽0(𝑘𝜌1𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)𝐽1(𝑘𝜌1𝑎)

} (B-7) 

When this is zero we have a pole. Rearranging the terms: 

 𝐻0
(2)
(𝑘𝜌0𝑎)𝐽1(𝑘𝜌1𝑎)

𝜇𝑟
𝑘𝜌1

=
1

𝑘𝜌0
𝐻1
(2)
(𝑘𝜌0𝑎)𝐽0(𝑘𝜌1𝑎) (B-8) 

We recognize this as precisely the transcendental equation for the propagation 

constant of the TE01 mode in a permeable rod. Thus during the calculation of the Fourier 

Transform to reconstruct the spatial fields we will have to deal with these surface wave 

poles as is well known.  

These poles can only arise in the range: 

 𝑘0 < 𝑘𝑧 < 𝑘1 (B-9) 

Because in this range  𝑘𝜌0 = √𝑘0
2 − 𝑘𝑧2 = −𝑗𝑘0√𝑘𝑧2 − 𝑘0

2;  𝑘𝜌0 is a negative 

imaginary number while  𝑘𝜌1 = √𝑘1
2 − 𝑘𝑧2   is a positive number. Now since: 
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 𝐾∝(𝑥) =
𝜋

2
(−𝑗)∝+1𝐻∝

(2)(−𝑗𝑥) (B-10) 

 

We can write 𝐻0
(2)(−𝑗𝑥) and 𝐻1

(2)(−𝑗𝑥) in terms of 𝐾0(𝑥) and 𝐾1(𝑥) 

 𝐾0(𝑥) =
𝜋

2
(−𝑗)0+1𝐻0

(2)(−𝑗𝑥) =
−𝑗𝜋

2
𝐻0
(2)(−𝑗𝑥) (B-11) 

 𝐾1(𝑥) =
𝜋

2
(−𝑗)1+1𝐻1

(2)(−𝑗𝑥) =
−𝜋

2
𝐻1
(2)(−𝑗𝑥) (B-12) 

Therefore we can write: 

 
𝐻1
(2)(−𝑗𝑥)

𝐻0
(2)(−𝑗𝑥)

= 𝑗
𝐾1(𝑥)

𝐾0(𝑥)
 (B-13) 

At this point it is instructive to see how this surface wave pole enters the 

integrand as a function of frequency. Thus we study the term in common among all these 

fields responsible for the pole versus kz for the case of a rod of 𝜇𝑟 = 80 and 휀𝑟 = 2 and 

radius = 2 inches from HF (30MHz) into the UHF range (350MHz). The common term is 

shown in the following equation: 

 

𝐶𝑜𝑚𝑚𝑜𝑛(𝑘𝑧)

=

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]

(𝐽1(𝑘𝜌1𝑎) −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

] (𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎))

 
(B-14) 

The quantity 

 
𝐻1
(2)(−𝑗𝑥)

(−𝑗𝑥) × 𝐻0
(2)(−𝑗𝑥)

=
−𝐾1(𝑥)

𝑥𝐾0(𝑥)
 (B-15) 

is purely real and is shown in figure below for 0.08 < 𝑥 < 0.6 
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1

(−𝑗𝑥)

𝐻1
(2)(−𝑗𝑥)

𝐻0
(2)(−𝑗𝑥)

 (B-16) 

 

Fig. B-2 A Plot of the Real Part of −𝐾1(𝑥)/𝑥𝐾0(𝑥) 

  

 

Fig. B-3  A Plot of the Imaginary Part of −𝐾1(𝑥)/𝑥𝐾0(𝑥) 
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The reason we have chosen to plot 0.08 < 𝑥 < 0.6 is that if we plot 𝑘𝜌0𝑎 versus 

𝑘𝑧 normalized to k1 (𝑘𝑧/𝑘1) we will see that 𝑘𝜌0𝑎 will be purely imaginary starting from 

0.08 

 

Fig. B-4  A Plot of 𝑘𝜌0𝑎 Versus Normalized 𝑘𝑧  

Now looking back at the common term we can see that the nominator is purely 

real and negative and the denominator can be zero at a certain values of 𝑘𝑧/𝑘1 where 

 𝐽1(𝑘𝜌1𝑎) −
1

𝜇𝑟
[
1

𝑘𝜌0𝑎

𝐻1
(2)(𝑘𝜌0𝑎)

𝐻0
(2)(𝑘𝜌0𝑎)

] (𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎) = 0 (B-17) 

We also know that since both the nominator and the denominator have real values 

after 𝑘𝑧/𝑘1 = 0.08 then we will only have a real part which shows the pole.Fig. B-11. 

shows the common term before the pole appears for 𝑘𝑧 > 𝑘0 at a few different 

frequencies. 
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Fig. B-5  Plot of the Common Term Before the Pole Appears for 𝑘𝑧 > 𝑘0 at 30 MHz, 110MHz, and 

170MHz 

At this point, since we have no loss in the material, the imaginary part will stay at 

zero and the pole will move as seen below 
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Fig. B-6  Plot of the Common Term After the Pole Appears for 𝑘𝑧 > 𝑘0 at 210 MHz, 300 MHz, and 

350MHz 

By adding some loss and changing 𝜇𝑟 from 80 to 80-j0.1 we will see that the 

surface wave pole first appears at 188 MHz. As the Figures below show, the analytic 

continuation of the pole arises in the 𝑘𝑧 < 𝑘0 range (fast wave range) and as the onset 
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frequency is approached it becomes stronger and migrates towards the horizon 𝑘𝑧 = 𝑘0 , 

until it is the full-fledged singularity at onset. After onset it continues to travel past 

𝑘𝑧 = 𝑘0 towards 𝑘1 and eventually shrinks.  

This is important because these singularities tend to dominate the k-spectrum. The 

fact that the pole becomes strongest around 𝑘𝑧 = 𝑘0 may explain the dominance of that 

region in the spatial domain. A wave guided near the speed of light is what we would 

tend to see in the spatial domain.  This is the principal wave we are after if we want the 

rod to act similar to a conventional metal antenna. 
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Fig. B-7 Plots of the Common Term at 188MHz, 210MHz, 300 MHz, and 350 MHz, After Adding Some 

Loss and Changing 𝜇𝑟 from 80 to 80-j0.1, to See the Appearance of the Surface Wave Pole and Its 

Behavior at Higher Frequencies 

From the results in the previous figures it is clear that at frequencies when the 

surface wave is guided, the k-space integral will have to account for the location of the 

pole. In the case of a perfectly magnetically conducting (PMC) rod (the dual of the metal 

antenna case), the only singularity lies at the horizon. Since this case is of interest as the 

limiting case of the permeable rod, we write its fields immediately: 

 𝐸𝜑𝑃𝑀𝐶 = −𝑗
𝜔𝜇0𝑎

(𝑘𝜌0𝑎)

𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)(𝑘𝜌0𝑎)

𝐾𝑒𝜑𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (B-18a) 

 𝐻𝑧𝑃𝑀𝐶 =
𝐻0
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)(𝑘𝜌0𝑎)

𝐾𝑒𝜑𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (B-18b) 

 𝐻𝜌𝑃𝑀𝐶 = 𝑗 (
𝑘𝑧𝑎

𝑘𝜌0𝑎
)
𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)(𝑘𝜌0𝑎)

𝐾𝑒𝜑𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧) (B-18c) 
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In this case, at the horizons (𝑘𝑧 = ±𝑘0)  𝑘𝜌0 = 0, and the expression below tends 

to infinity which is the well-known branch point. 

 
1

(𝑘𝜌0𝑎)

𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻0
(2)
(𝑘𝜌0𝑎)

 (B-19) 

At this point we will calculate the integrals to obtain the fields of the MD rod  

For <a 

 

𝐸𝜑(𝜌, 𝑧) = − ∫ 𝑗𝜔𝜇0𝑎

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝜌)
)

 

(B-20a) 

 

𝐻𝑧(𝜌, 𝑧)

= ∫
𝑘𝜌1𝑎

𝜇𝑟

𝐽0(𝑘𝜌1𝜌)

𝐽1(𝑘𝜌1𝑎)

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

+∞

−∞

 

(B-20b) 

 

𝐻𝜌

= ∫ 𝑗

+∞

−∞

∙
𝑘𝑧𝑎

𝜇𝑟

𝐽1(𝑘𝜌1𝜌)

𝐽1(𝑘𝜌1𝑎)

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-20c) 
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In this form we can see that for 𝜌 <a , the only singularity arises at the surface 

wave poles when the denominator of the form 1-f(x) becomes zero.  

For 𝜌 > 𝑎: 

 

𝐸𝜑

= − ∫ 𝑗 ∙ 𝜔𝜇0𝑎
𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0𝑎)

+∞

−∞

∙

[
1

𝑘𝜌0𝑎

𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎

𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-21a) 

 

𝐻𝑧

= ∫ 𝑘𝜌0𝑎
𝐻0
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0𝑎)

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-21b) 

 

𝐻𝜌

= ∫ 𝑗 ∙ 𝑘𝑧𝑎
𝐻1
(2)
(𝑘𝜌0𝜌)

𝐻1
(2)
(𝑘𝜌0𝑎)

+∞

−∞

∙

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]𝐾𝜑(𝑘𝑧)𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

 

(B-21c) 
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In this case, if 𝐽1(𝑘𝜌1𝑎) and 𝑘𝜌1𝑎 go to zero in the denominator, they take care of 

each other and if 𝐽1(𝑘𝜌1𝑎)  goes to zero the denominator goes to infinity and all we have 

is a net zero. The only thing here in the denominator is an H1
(2)

 but outside the origin it 

never goes to pure zero (being always complex). And Hankels in the numerator outside 

the origin are always finite.  Therefore there are no other singularities in the entire range 

of 𝑘𝑧 except the surface waves in the range between 𝑘0 and 𝑘1. 

In the case of magneto dielectric rod we have a guided displacement current 

which is dB/dt  and since we are interested in the guided current we will obtain this by 

integrating the circulating E-field at the surface of the rod: 

 ∮ �⃑⃗� ∙ 𝑑𝑙⃗⃗⃗⃑ = ∫−
𝜕�⃗⃑�

𝜕𝑡
∙ 𝑑𝑆 = 𝐼𝑚 (B-22) 

The resulting 𝐼𝑚 is as follows: 

 

𝑰𝒎(𝑧) = −𝑗𝜔𝜇0𝑎
2𝐼0 

∫

[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]

(1 −
1
𝜇𝑟
[
1

𝑘𝜌0𝑎
𝐻1
(2)
(𝑘𝜌0𝑎)

𝐻0
(2)
(𝑘𝜌0𝑎)

]
(𝑘𝜌1𝑎)𝐽0(𝑘𝜌1𝑎)

𝐽1(𝑘𝜌1𝑎)
)

𝑒𝑥𝑝(−𝑗𝑘𝑧𝑧)𝑑𝑘𝑧

+∞

−∞

 

(B-23) 

 

Now we are ready for the integration but we have to also be careful about the 

pole. We have different ways of dealing with the poles and choosing either way will give 

the same results. We can add an imaginary part to 𝜇𝑟 or indent the integration path when 

crossing the poles. 

 


