1,955 research outputs found

    Direct and inverse measurement of thin films magnetostriction

    Full text link
    Two techniques of measurements of thin film magnetostriction are compared: direct, when changes of the substrate curvature caused by the film magnetization are controlled, and inverse ("indirect"), when the modification of the magnetic anisotropy induced by the substrate deformation (usually bending) is measured. We demonstrate how both the elastic strength of the substrate and the effective magneto-mechanical coupling between the substrate deformation and magnetic anisotropy of the film depend on different conditions of bending. Equations to be used for magnetostriction value determination in typical cases are given and critical parameters for the corresponding approximations are identified.Comment: 13 pages, 10 figures, 1 table, submitted to JMM

    Thickness dependent magnetic anisotropy of ultrathin LCMO epitaxial thin films

    Get PDF
    The magnetic properties of La0.7Ca0.3MnO3 (LCMO) manganite thin films were studied with magnetometry and ferromagnetic resonance as a function of film thickness. They maintain the colossal magnetoresistance behavior with a pronounced metal-insulator transition around 150-200 K, except for the very thinnest films studied (3 nm). Nevertheless, LCMO films as thin as 3 nm remain ferromagnetic, without a decrease in saturation magnetization, indicating an absence of dead-layers, although below approx. 6 nm the films remain insulating at low temperature. Magnetization hysteresis loops reveal that the magnetic easy axes lie in the plane of the film for thicknesses in the range of 4-15 nm. Ferromagnetic resonance studies confirm that the easy axes are in-plane, and find a biaxial symmetry in-plane with two, perpendicular easy axes. The directions of the easy axes with respect to the crystallographic directions of the cubic SrTiO3 substrate differ by 45 degrees in 4 nm and 15 nm thick LCMO films.Comment: Presented at Intermag conference (Madrid, 2008). Accepted for publication in IEEE Transactions on Magnetic

    Investigation of single crystal ferrite thin films

    Get PDF
    Materials suitable for use in magnetic bubble domain memories were developed for aerospace applications. Practical techniques for the preparation of such materials in forms required for fabrication of computer memory devices were considered. The materials studied were epitaxial films of various compositions of the gallium-substituted yttrium gadolinium iron garnet system. The major emphasis was to determine their bubble properties and the conditions necessary for growing uncracked, high quality films

    Magnetism in reduced dimensions

    Get PDF
    We propose a short overview of a few selected issues of magnetism in reduced dimensions, which are the most relevant to set the background for more specialized contributions to the present Special Issue. Magnetic anisotropy in reduced dimensions is discussed, on a theoretical basis, then with experimental reports and views from surface to single-atom anisotropy. Then conventional magnetization states are reviewed, including macrospins, single domains, multidomains, and domain walls in stripes. Dipolar coupling is examined for lateral interactions in arrays, and for interlayer interactions in films and dots. Finally thermally-assisted magnetization reversal and superparamagnetism are presented. For each topic we sought a balance between well established knowledge and recent developments.Comment: 13 pages. Part of a Special Issue of the C. R. Physique devoted to spinelectronics (2005

    Growth-Induced In-Plane Uniaxial Anisotropy in V2_{2}O3_{3}/Ni Films

    Full text link
    We report on a strain-induced and temperature dependent uniaxial anisotropy in V2_{2}O3_{3}/Ni hybrid thin films, manifested through the interfacial strain and sample microstructure, and its consequences on the angular dependent magnetization reversal. X-ray diffraction and reciprocal space maps identify the in-plane crystalline axes of the V2_{2}O3_{3}; atomic force and scanning electron microscopy reveal oriented rips in the film microstructure. Quasi-static magnetometry and dynamic ferromagnetic resonance measurements identify a uniaxial magnetic easy axis along the rips. Comparison with films grown on sapphire without rips shows a combined contribution from strain and microstructure in the V2_{2}O3_{3}/Ni films. Magnetization reversal characteristics captured by angular-dependent first order reversal curve measurements indicate a strong domain wall pinning along the direction orthogonal to the rips, inducing an angular-dependent change in the reversal mechanism. The resultant anisotropy is tunable with temperature and is most pronounced at room temperature, which is beneficial for potential device applications
    • …
    corecore