115,100 research outputs found

    Drift-Free Indoor Navigation Using Simultaneous Localization and Mapping of the Ambient Heterogeneous Magnetic Field

    Full text link
    In the absence of external reference position information (e.g. GNSS) SLAM has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the ICP algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue indoors); however, no assumptions are required for the general motion of the sensor.Comment: ISPRS Workshop Indoor 3D 201

    UJIIndoorLoc-Mag: A New Database for Magnetic Field-Based Localization Problems

    Get PDF
    2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 13-16 October 2015, Banff, Albeta, CanadaIndoor localization is a key topic for mobile computing. However, it is still very difficult for the mobile sensing community to compare state-of-art Indoor Positioning Systems due to the scarcity of publicly available databases. Magnetic field-based methods are becoming an important trend in this research field. Here, we present UJIIndoorLoc-Mag database, which can be used to compare magnetic field-based indoor localization methods. It consists of 270 continuous samples for training and 11 for testing. Each sample comprises a set of discrete captures taken along a corridor with a period of 0.1 seconds. In total, there are 40,159 discrete captures, where each one contains features obtained from the magnetometer, the accelerometer and the orientation sensor of the device. The accuracy results obtained using two baseline methods are also presented to show the suitability of the presented database for further comparisons

    Statistical Sensor Fusion of a 9-DoF MEMS IMU for Indoor Navigation

    Full text link
    Sensor fusion of a MEMS IMU with a magnetometer is a popular system design, because such 9-DoF (degrees of freedom) systems are capable of achieving drift-free 3D orientation tracking. However, these systems are often vulnerable to ambient magnetic distortions and lack useful position information; in the absence of external position aiding (e.g. satellite/ultra-wideband positioning systems) the dead-reckoned position accuracy from a 9-DoF MEMS IMU deteriorates rapidly due to unmodelled errors. Positioning information is valuable in many satellite-denied geomatics applications (e.g. indoor navigation, location-based services, etc.). This paper proposes an improved 9-DoF IMU indoor pose tracking method using batch optimization. By adopting a robust in-situ user self-calibration approach to model the systematic errors of the accelerometer, gyroscope, and magnetometer simultaneously in a tightly-coupled post-processed least-squares framework, the accuracy of the estimated trajectory from a 9-DoF MEMS IMU can be improved. Through a combination of relative magnetic measurement updates and a robust weight function, the method is able to tolerate a high level of magnetic distortions. The proposed auto-calibration method was tested in-use under various heterogeneous magnetic field conditions to mimic a person walking with the sensor in their pocket, a person checking their phone, and a person walking with a smartwatch. In these experiments, the presented algorithm improved the in-situ dead-reckoning orientation accuracy by 79.8 - 89.5% and the dead-reckoned positioning accuracy by 72.9 - 92.8%, thus reducing the relative positioning error from metre-level to decimetre-level after ten seconds of integration, without making assumptions about the user's dynamics

    Human Crowdsourcing Data for Indoor Location Applied to Ambient Assisted Living Scenarios

    Get PDF
    In the last decades, the rise of life expectancy has accelerated the demand for new technological solutions to provide a longer life with improved quality. One of the major areas of the Ambient Assisted Living aims to monitor the elderly location indoors. For this purpose, indoor positioning systems are valuable tools and can be classified depending on the need of a supporting infrastructure. Infrastructure-based systems require the investment on expensive equipment and existing infrastructure-free systems, although rely on the pervasively available characteristics of the buildings, present some limitations regarding the extensive process of acquiring and maintaining fingerprints, the maps that store the environmental characteristics to be used in the localisation phase. These problems hinder indoor positioning systems to be deployed in most scenarios. To overcome these limitations, an algorithm for the automatic construction of indoor floor plans and environmental fingerprints is proposed. With the use of crowdsourcing techniques, where the extensiveness of a task is reduced with the help of a large undefined group of users, the algorithm relies on the combination ofmultiple sources of information, collected in a non-annotated way by common smartphones. The crowdsourced data is composed by inertial sensors, responsible for estimating the users’ trajectories, Wi-Fi radio and magnetic field signals. Wi-Fi radio data is used to cluster the trajectories into smaller groups, each corresponding to specific areas of the building. Distance metrics applied to magnetic field signals are used to identify geomagnetic similarities between different users’ trajectories. The building’s floor plan is then automatically created, which results in fingerprints labelled with physical locations. Experimental results show that the proposed algorithm achieved comparable floor plan and fingerprints to those acquired manually, allowing the conclusion that is possible to automate the setup process of infrastructure-free systems. With these results, this solution can be applied in any fingerprinting-based indoor positioning system

    Методика обчислення параметрів магнітного поля обмеженої території

    Get PDF
    . Global Earth’s Magnetic field is one of the most important things in planetary structure. Also magnetic field is one of the key elements for navigation purposes. Its parameters are extremely important for direction detection and other applications. For example in inertial navigation systems global magnetic field has been used for sensors calibration. Characteristics of magnetic field have been using for rotation detection and angular speed calculation too. Typically total magnetic field in some point of atmosphere has been sum of thee different components: main magnetic field – is result of geomagnetic process inside of Earth core; external magnetic field – is result of sun influence, depends on current solar activity and usually less than 5% of total magnetic field; anomalous – is result of influence of different ground anomalous areas which contain some ore deposits with magnetic characteristics in earth crust. Nowadays it is possible to detect influence of different human – made structures to total magnetic field. This is the result of wide metal construction usage in city building. Of course this type of influence is a part of anomalous magnetic field, but it is directly connected with results of human changing. In this case we can access natural and human based components of anomalous field. Also for humane based part we can include different electrical devices which can result in magnetic injection. Nowadays different international programs investigate and monitor characteristics of magnetic field. National oceanic and atmospheric administration (NOAA), U.S. Geological Survey (USGS), Swarm earth explorers by European Space Agency (ESA) investigate this problem, but in common way all of them are been oriented into global scale of magnetic field. Modern navigation devices and sensors grounded on magnetic field characteristics have been using magnetic field models which don’t contain data about humane-based part of magnetic field. In result non accurate model produce errors which will be in result of positioning or heading error. In some cases influence of human-based field will be very valuable for navigation purposes. That’s why the aim of this work to describe methodology of local magnetic field parameters measurement by typical users equipment

    Modeling of a Patient Positioning System for use in MRI Machines

    Get PDF
    Since its commercial introduction in the early 1980s, Magnetic Resonance Imaging (MRI) has become an important medical diagnostic tool for radiologists. Researchers and manufacturers have refined the imaging hardware and expanded the intended uses for MRI devices over time. However, MRI manufacturers have not improved the design of the mechanisms and control schemes used to move the patient.Patient positioning systems are required to handle unknown weights up to 225 kilograms, accommodate friction disturbances, move long distances at high speed, move small distances in less than 1 second, and attain sub millimeter bidirectional precision. Little research is available on model based design of patient positioning mechanisms.A representative model of an MRI patient positioning device is proposed. The novelty of patient positioning system design in a strong magnetic field is examined in detail. Methods for creating an appropriate fidelity high level system friction, single degree of freedom Simulink model of the system are discussed. A physical facsimile of the system is constructed. The output of the Simulink model is compared to the physical system performance with respect to robustness against friction coefficient sensitivity, load mismatches and noise disturbances. Potential model simplifications and future work opportunities are highlighted

    Closed-loop control of magnetotactic bacteria

    Get PDF
    Realization of point-to-point positioning of a magnetotactic bacterium (MTB) necessitates the application of a relatively large magnetic field gradients to decrease its velocity in the vicinity of a reference position. We investigate an alternative closed-loop control approach to position the MTB. This approach is based on the characterization of the magnetic dipole moment of the MTB and its response to a field with alternating direction. We do not only find agreement between our characterized magnetic dipole moment and previously published results, but also observe that the velocity of the MTB decreases by 37% when a field with alternating direction is applied at 85 Hz. The characterization results allow us to devise a null-space control approach which capitalizes on the redundancy of magnetic-based manipulation systems. This approach is based on two inputs. The first controls the orientation of the MTB, whereas the second generates a field with alternating direction to decrease its velocity. This control is accomplished by the redundancy of our magnetic-based manipulation system which allows for the projection of the second input onto the null-space of the magnetic force-current map of our system. A proportional–derivative control system positions the MTB at an average velocity and region of convergence of 29 μm s−1 and 20 μm, respectively, while our null-space control system achieves an average velocity and region of convergence of 15 μm s−1 and 13 μm, respectively

    Tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi MARA terhadap mata pelajaran Bahasa Inggeris

    Get PDF
    Kajian ini dilakukan untuk mengenal pasti tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi Mara Sri Gading terhadap Bahasa Inggeris. Kajian yang dijalankan ini berbentuk deskriptif atau lebih dikenali sebagai kaedah tinjauan. Seramai 325 orang pelajar Diploma in Construction Technology dari Kolej Kemahiran Tinggi Mara di daerah Batu Pahat telah dipilih sebagai sampel dalam kajian ini. Data yang diperoleh melalui instrument soal selidik telah dianalisis untuk mendapatkan pengukuran min, sisihan piawai, dan Pekali Korelasi Pearson untuk melihat hubungan hasil dapatan data. Manakala, frekuensi dan peratusan digunakan bagi mengukur penguasaan pelajar. Hasil dapatan kajian menunjukkan bahawa tahap penguasaan Bahasa Inggeris pelajar adalah berada pada tahap sederhana manakala faktor utama yang mempengaruhi penguasaan Bahasa Inggeris tersebut adalah minat diikuti oleh sikap. Hasil dapatan menggunakan pekali Korelasi Pearson juga menunjukkan bahawa terdapat hubungan yang signifikan antara sikap dengan penguasaan Bahasa Inggeris dan antara minat dengan penguasaan Bahasa Inggeris. Kajian menunjukkan bahawa semakin positif sikap dan minat pelajar terhadap pengajaran dan pembelajaran Bahasa Inggeris semakin tinggi pencapaian mereka. Hasil daripada kajian ini diharapkan dapat membantu pelajar dalam meningkatkan penguasaan Bahasa Inggeris dengan memupuk sikap positif dalam diri serta meningkatkan minat mereka terhadap Bahasa Inggeris dengan lebih baik. Oleh itu, diharap kajian ini dapat memberi panduan kepada pihak-pihak yang terlibat dalam membuat kajian yang akan datang

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Accurate Estimation of a Coil Magnetic Dipole Moment

    Full text link
    In this paper, a technique for accurate estimation of the moment of magnetic dipole is proposed. The achievable accuracy is investigated, as a function of measurement noise affecting estimation of magnetic field cartesian components. The proposed technique is validated both via simulations and experimentally.Comment: Preprin
    corecore