247 research outputs found

    A Hermite interpolatory subdivision scheme for C2C^2-quintics on the Powell-Sabin 12-split

    Get PDF
    In order to construct a C1C^1-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme. In this paper we introduce a nodal macro-element on the 12-split for the space of quintic splines that are locally C3C^3 and globally C2C^2. For quickly evaluating any such spline, a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system Sage. Using the available first derivatives for Phong shading, visually appealing plots can be generated after just a couple of refinements.Comment: 17 pages, 7 figure

    Locally supported, piecewise polynomial biorthogona wavelets on non-uniform meshes

    Get PDF
    In this paper, biorthogonal wavelets are constructed on non-uniform meshes. Both primal and dual wavelets are explicitly given locally supported, continuous piecewise polynomials. The wavelets generate Riesz bases for the Sobolev spaces H s for j s j < 3 2 . The wavelets at the primal side span standard Lagrange nite element spaces

    Composite wavelet bases with extended stability and cancellation properties

    Get PDF

    Numerical Methods for the Chemical Master Equation

    Get PDF
    The dynamics of biochemical networks can be described by a Markov jump process on a high-dimensional state space, with the corresponding probability distribution being the solution of the Chemical Master Equation (CME). In this thesis, adaptive wavelet methods for the time-dependent and stationary CME, as well as for the approximation of committor probabilities are devised. The methods are illustrated on multi-dimensional models with metastable solutions and large state spaces

    Wavelet-based Edge Multiscale Parareal Algorithm for subdiffusion equations with heterogeneous coefficients in a large time domain

    Full text link
    We present the Wavelet-based Edge Multiscale Parareal (WEMP) Algorithm, recently proposed in [Li and Hu, {\it J. Comput. Phys.}, 2021], for efficiently solving subdiffusion equations with heterogeneous coefficients in long time. This algorithm combines the benefits of multiscale methods, which can handle heterogeneity in the spatial domain, and the strength of parareal algorithms for speeding up time evolution problems when sufficient processors are available. Our algorithm overcomes the challenge posed by the nonlocality of the fractional derivative in previous parabolic problem work by constructing an auxiliary problem on each coarse temporal subdomain to completely uncouple the temporal variable. We prove the approximation properties of the correction operator and derive a new summation of exponential to generate a single-step time stepping scheme, with the number of terms of O(logτf2)\mathcal{O}(|\log{\tau_f}|^2) independent of the final time, where τf\tau_f is the fine-scale time step size. We establish the convergence rate of our algorithm in terms of the mesh size in the spatial domain, the level parameter used in the multiscale method, the coarse-scale time step size, and the fine-scale time step size. Finally, we present several numerical tests that demonstrate the effectiveness of our algorithm and validate our theoretical results.Comment: arXiv admin note: text overlap with arXiv:2003.1044

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin
    corecore