10 research outputs found

    Machine-Learning-Based No Show Prediction in Outpatient Visits

    Get PDF
    A recurring problem in healthcare is the high percentage of patients who miss their appointment, be it a consultation or a hospital test. The present study seeks patient’s behavioural patterns that allow predicting the probability of no- shows. We explore the convenience of using Big Data Machine Learning models to accomplish this task. To begin with, a predictive model based only on variables associated with the target appointment is built. Then the model is improved by considering the patient’s history of appointments. In both cases, the Gradient Boosting algorithm was the predictor of choice. Our numerical results are considered promising given the small amount of information available. However, there seems to be plenty of room to improve the model if we manage to collect additional data for both patients and appointments

    Investigating key contributors to hospital appointment no-shows using explainable AI.

    Get PDF
    The healthcare sector has suffered from wastage of resources and poor service delivery due to the significant impact of appointment no-shows. To address this issue, this paper uses explainable artificial intelligence (XAI) to identify major predictors of no-show behaviours among patients. Six machine learning models were developed and evaluated on this task using Area Under the Precision-Recall Curve (AUC-PR) and F1-score as metrics. Our experiment demonstrates that Support Vector Classifier and Multilayer Perceptron perform the best, with both scoring the same AUC-PR of 0.56, but different F1-scores of 0.91 and 0.92, respectively. We analysed the interpretability of the models using Local Interpretable Model-agnostic Explanation (LIME) and SHapley Additive exPlanations (SHAP). The outcome of the analyses demonstrates that predictors such as the patients' history of missed appointments, the waiting time from scheduling time to the appointments, patients' age, and existing medical conditions such as diabetes and hypertension are essential flags for no-show behaviours. Following the insights gained from the analyses, this paper recommends interventions for addressing the issue of medical appointment no-shows

    No-Show in Medical Appointments with Machine Learning Techniques: A Systematic Literature Review

    Get PDF
    No-show appointments in healthcare is a problem faced by medical centers around the world, and understanding the factors associated with no-show behavior is essential. In recent decades, artificial intelligence has taken place in the medical field and machine learning algorithms can now work as an efficient tool to understand the patients’ behavior and to achieve better medical appointment allocation in scheduling systems. In this work, we provide a systematic literature review (SLR) of machine learning techniques applied to no-show appointments aiming at establishing the current state-of-the-art. Based on an SLR following the PRISMA procedure, 24 articles were found and analyzed, in which the characteristics of the database, algorithms and performance metrics of each study were synthesized. Results regarding which factors have a higher impact on missed appointment rates were analyzed too. The results indicate that the most appropriate algorithms for building the models are decision tree algorithms. Furthermore, the most significant determinants of no-show were related to the patient’s age, whether the patient missed a previous appointment, and the distance between the appointment and the patient’s scheduling.N/

    Reducing non-attendance in outpatient appointments: predictive model development, validation, and clinical assessment

    Get PDF
    Background Non-attendance to scheduled hospital outpatient appointments may compromise healthcare resource planning, which ultimately reduces the quality of healthcare provision by delaying assessments and increasing waiting lists. We developed a model for predicting non-attendance and assessed the effectiveness of an intervention for reducing non-attendance based on the model. Methods The study was conducted in three stages: (1) model development, (2) prospective validation of the model with new data, and (3) a clinical assessment with a pilot study that included the model as a stratification tool to select the patients in the intervention. Candidate models were built using retrospective data from appointments scheduled between January 1, 2015, and November 30, 2018, in the dermatology and pneumology outpatient services of the Hospital Municipal de Badalona (Spain). The predictive capacity of the selected model was then validated prospectively with appointments scheduled between January 7 and February 8, 2019. The effectiveness of selective phone call reminders to patients at high risk of non-attendance according to the model was assessed on all consecutive patients with at least one appointment scheduled between February 25 and April 19, 2019. We finally conducted a pilot study in which all patients identified by the model as high risk of non-attendance were randomly assigned to either a control (no intervention) or intervention group, the last receiving phone call reminders one week before the appointment. Results Decision trees were selected for model development. Models were trained and selected using 33,329 appointments in the dermatology service and 21,050 in the pneumology service. Specificity, sensitivity, and accuracy for the prediction of non-attendance were 79.90%, 67.09%, and 73.49% for dermatology, and 71.38%, 57.84%, and 64.61% for pneumology outpatient services. The prospective validation showed a specificity of 78.34% (95%CI 71.07, 84.51) and balanced accuracy of 70.45% for dermatology; and 69.83% (95%CI 60.61, 78.00) for pneumology, respectively. The effectiveness of the intervention was assessed on 1,311 individuals identified as high risk of non-attendance according to the selected model. Overall, the intervention resulted in a significant reduction in the non-attendance rate to both the dermatology and pneumology services, with a decrease of 50.61% (p<0.001) and 39.33% (p=0.048), respectively. Conclusions The risk of non-attendance can be adequately estimated using patient information stored in medical records. The patient stratification according to the non-attendance risk allows prioritizing interventions, such as phone call reminders, to effectively reduce non-attendance rates

    Predicting no-show appointments in a pediatric hospital in Chile using machine learning

    Get PDF
    The Chilean public health system serves 74% of the country’s population, and 19% of medical appointments are missed on average because of no-shows. The national goal is 15%, which coincides with the average no-show rate reported in the private healthcare system. Our case study, Doctor Luis Calvo Mackenna Hospital, is a public high-complexity pediatric hospital and teaching center in Santiago, Chile. Historically, it has had high no-show rates, up to 29% in certain medical specialties. Using machine learning algorithms to predict no-shows of pediatric patients in terms of demographic, social, and historical variables. To propose and evaluate metrics to assess these models, accounting for the cost-effective impact of possible intervention strategies to reduce no-shows. We analyze the relationship between a no-show and demographic, social, and historical variables, between 2015 and 2018, through the following traditional machine learning algorithms: Random Forest, Logistic Regression, Support Vector Machines, AdaBoost and algorithms to alleviate the problem of class imbalance, such as RUS Boost, Balanced Random Forest, Balanced Bagging and Easy Ensemble. These class imbalances arise from the relatively low number of no-shows to the total number of appointments. Instead of the default thresholds used by each method, we computed alternative ones via the minimization of a weighted average of type I and II errors based on cost-effectiveness criteria. 20.4% of the 395,963 appointments considered presented no-shows, with ophthalmology showing the highest rate among specialties at 29.1%. Patients in the most deprived socioeconomic group according to their insurance type and commune of residence and those in their second infancy had the highest no-show rate. The history of non-attendance is strongly related to future no-shows. An 8-week experimental design measured a decrease in no-shows of 10.3 percentage points when using our reminder strategy compared to a control group. Among the variables analyzed, those related to patients’ historical behavior, the reservation delay from the creation of the appointment, and variables that can be associated with the most disadvantaged socioeconomic group, are the most relevant to predict a no-show. Moreover, the introduction of new cost-effective metrics significantly impacts the validity of our prediction models. Using a prototype to call patients with the highest risk of no-shows resulted in a noticeable decrease in the overall no-show rate.</p

    Reducing waiting times and crowding in hospital emergency departments using Machine Learning

    Get PDF
    Waiting times are linked to risks for the patient and higher mortality rate. We propose a model to reduce waiting times in the ER by using the patient's previous history data from various heath services

    Machine-Learning-Based No Show Prediction in Outpatient Visits

    No full text
    A recurring problem in healthcare is the high percentage of patients who miss their appointment, be it a consultation or a hospital test. The present study seeks patient’s behavioural patterns that allow predicting the probability of no- shows. We explore the convenience of using Big Data Machine Learning models to accomplish this task. To begin with, a predictive model based only on variables associated with the target appointment is built. Then the model is improved by considering the patient’s history of appointments. In both cases, the Gradient Boosting algorithm was the predictor of choice. Our numerical results are considered promising given the small amount of information available. However, there seems to be plenty of room to improve the model if we manage to collect additional data for both patients and appointments

    Machine-Learning-Based No Show Prediction in Outpatient Visits

    No full text
    corecore