82 research outputs found

    CAPTCHaStar! A novel CAPTCHA based on interactive shape discovery

    Full text link
    Over the last years, most websites on which users can register (e.g., email providers and social networks) adopted CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) as a countermeasure against automated attacks. The battle of wits between designers and attackers of CAPTCHAs led to current ones being annoying and hard to solve for users, while still being vulnerable to automated attacks. In this paper, we propose CAPTCHaStar, a new image-based CAPTCHA that relies on user interaction. This novel CAPTCHA leverages the innate human ability to recognize shapes in a confused environment. We assess the effectiveness of our proposal for the two key aspects for CAPTCHAs, i.e., usability, and resiliency to automated attacks. In particular, we evaluated the usability, carrying out a thorough user study, and we tested the resiliency of our proposal against several types of automated attacks: traditional ones; designed ad-hoc for our proposal; and based on machine learning. Compared to the state of the art, our proposal is more user friendly (e.g., only some 35% of the users prefer current solutions, such as text-based CAPTCHAs) and more resilient to automated attacks.Comment: 15 page

    Machine learning attacks against the Asirra CAPTCHA

    Full text link

    Machine learning attacks against the Asirra CAPTCHA

    Full text link

    Completely Automated Public Physical test to tell Computers and Humans Apart: A usability study on mobile devices

    Get PDF
    A very common approach adopted to fight the increasing sophistication and dangerousness of malware and hacking is to introduce more complex authentication mechanisms. This approach, however, introduces additional cognitive burdens for users and lowers the whole authentication mechanism acceptability to the point of making it unusable. On the contrary, what is really needed to fight the onslaught of automated attacks to users data and privacy is to first tell human and computers apart and then distinguish among humans to guarantee correct authentication. Such an approach is capable of completely thwarting any automated attempt to achieve unwarranted access while it allows keeping simple the mechanism dedicated to recognizing the legitimate user. This kind of approach is behind the concept of Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), yet CAPTCHA leverages cognitive capabilities, thus the increasing sophistication of computers calls for more and more difficult cognitive tasks that make them either very long to solve or very prone to false negatives. We argue that this problem can be overcome by substituting the cognitive component of CAPTCHA with a different property that programs cannot mimic: the physical nature. In past work we have introduced the Completely Automated Public Physical test to tell Computer and Humans Apart (CAPPCHA) as a way to enhance the PIN authentication method for mobile devices and we have provided a proof of concept implementation. Similarly to CAPTCHA, this mechanism can also be used to prevent automated programs from abusing online services. However, to evaluate the real efficacy of the proposed scheme, an extended empirical assessment of CAPPCHA is required as well as a comparison of CAPPCHA performance with the existing state of the art. To this aim, in this paper we carry out an extensive experimental study on both the performance and the usability of CAPPCHA involving a high number of physical users, and we provide comparisons of CAPPCHA with existing flavors of CAPTCHA

    Random Image Matching CAPTCHA System

    Get PDF
    Security risks is an important issues and caught the attention of researchers in the area of networks, web development, human computer interaction and software engineering. One main challenge for online systems is to identify whether the users are humans or software robots (bots). While it is natural to provide service to human users, providing service for software robots (bots) comes with many security risks and challenges. Software robots are often used by spammers to create fake online accounts, affect search engine ranking, take part in on-line polls, send out spam or simply waste the resources of the server. In this paper we introduce a visual CAPTCHA technique that is based on generating random images by the computer, theuser is then asked to match a feature point between two images (i.e. solve the correspondence problem as defined by the researchers in the computer vision area). The relationship between the two images is based on a randomly generated homography transformation function. The main advantage of our approach compared to other visual CAPTCHA techniques is that we eliminate the need for a database of images while retaining ease of use

    Nouncaptcha: An Image-Based CAPTCHA Backed by an ESP Game Implementation

    Full text link
    Honors (Bachelor's)Electrical Engineering and Computer ScienceElectrical Engineering and Computer ScienceNaval Architecture and Marine EngineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/107736/1/cjjeakle.pd

    A security analysis of automated Chinese turing tests

    Get PDF
    Text-based Captchas have been widely used to deter misuse of services on the Internet. However, many designs have been broken. It is intellectually interesting and practically relevant to look for alternative designs, which are currently a topic of active research. We motivate the study of Chinese Captchas as an interesting alternative design - counterintuitively, it is possible to design Chinese Captchas that are universally usable, even to those who have never studied Chinese language. More importantly, we ask a fundamental question: is the segmentation-resistance principle established for Roman-character based Captchas applicable to Chinese based designs? With deep learning techniques, we offer the first evidence that computers do recognize individual Chinese characters well, regardless of distortion levels. This suggests that many real-world Chinese schemes are insecure, in contrast to common beliefs. Our result offers an essential guideline to the design of secure Chinese Captchas, and it is also applicable to Captchas using other large-alphabet languages such as Japanese

    FR-CAPTCHA: CAPTCHA Based on Recognizing Human Faces

    Get PDF
    A Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is designed to distinguish humans from machines. Most of the existing tests require reading distorted text embedded in a background image. However, many existing CAPTCHAs are either too difficult for humans due to excessive distortions or are trivial for automated algorithms to solve. These CAPTCHAs also suffer from inherent language as well as alphabet dependencies and are not equally convenient for people of different demographics. Therefore, there is a need to devise other Turing tests which can mitigate these challenges. One such test is matching two faces to establish if they belong to the same individual or not. Utilizing face recognition as the Turing test, we propose FR-CAPTCHA based on finding matching pairs of human faces in an image. We observe that, compared to existing implementations, FR-CAPTCHA achieves a human accuracy of 94% and is robust against automated attacks

    CAPTCHA Types and Breaking Techniques: Design Issues, Challenges, and Future Research Directions

    Full text link
    The proliferation of the Internet and mobile devices has resulted in malicious bots access to genuine resources and data. Bots may instigate phishing, unauthorized access, denial-of-service, and spoofing attacks to mention a few. Authentication and testing mechanisms to verify the end-users and prohibit malicious programs from infiltrating the services and data are strong defense systems against malicious bots. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is an authentication process to confirm that the user is a human hence, access is granted. This paper provides an in-depth survey on CAPTCHAs and focuses on two main things: (1) a detailed discussion on various CAPTCHA types along with their advantages, disadvantages, and design recommendations, and (2) an in-depth analysis of different CAPTCHA breaking techniques. The survey is based on over two hundred studies on the subject matter conducted since 2003 to date. The analysis reinforces the need to design more attack-resistant CAPTCHAs while keeping their usability intact. The paper also highlights the design challenges and open issues related to CAPTCHAs. Furthermore, it also provides useful recommendations for breaking CAPTCHAs
    corecore