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ABSTRACT
Text-based Captchas have been widely used to deter misuse
of services on the Internet. However, many designs have
been broken. It is intellectually interesting and practically
relevant to look for alternative designs, which are curren-
tly a topic of active research. We motivate the study of
Chinese Captchas as an interesting alternative design – co-
unterintuitively, it is possible to design Chinese Captchas
that are universally usable, even to those who have never
studied Chinese language. More importantly, we ask a fun-
damental question: is the segmentation-resistance principle
established for Roman-character based Captchas applicable
to Chinese based designs? With deep learning techniques,
we offer the first evidence that computers do recognize in-
dividual Chinese characters well, regardless of distortion le-
vels. This suggests that many real-world Chinese schemes
are insecure, in contrast to common beliefs. Our result offers
an essential guideline to the design of secure Chinese Capt-
chas, and it is also applicable to Captchas using other large-
alphabet languages such as Japanese.

Keywords
Chinese Captcha; Convolutional Neural Network; Deep Ne-
ural Network; security; usability

1. INTRODUCTION
Captchas have been widely deployed by websites for pre-

venting malicious bot programs from misusing Internet re-
sources or services. The most commonly used Captchas are
text-based, in which challenge appears as an image of text
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and users are required to recognize and retype the text. To
resist attacks from auto-recognition programs, the text in
the image has to be distorted and camouflaged. However,
too sophisticated distortion may also degrade the readabi-
lity for humans. It is thus critical for a Captcha scheme to
be well balanced between usability and security [46].

Many text Captchas have been broken, e.g. [30,44,45], and
it is an active research area to explore alternative designs -
recent efforts include image recognition Captchas [28], mo-
tion Captchas [11], and game Captchas [2]. However, these
alternative designs have been either broken [37,43,48] or not
widely deployed.

Traditional wisdom is that text Captchas should use Ro-
man characters, which are recognizable universally and thus
avoid localization issues – you do not have to design a diffe-
rent Captcha for a different natural language. In this paper,
we will show that counter-intuitively, it is possible to design
Chinese Captchas that are universally usable, even to those
who have never studied Chinese language. On the other
hand, given hundreds of millions of Chinese Internet users,
there is a huge customer base for Chinese Captchas. Some
major websites in China have used such Captchas already,
for example, QQ.com (ranked by Alexa.com as Top 8 web-
site in the world and Top 2 in China), Tianya.cn (ranked
by Alexa.com as Top 60 website in the world and Top 11 in
China), China.com (ranked by Alexa.com as Top 112 web-
site in the world and top 19 in China) and Renren.com (ran-
ked by Alexa.com as Top 1,292 website in the world and Top
187 in China). Therefore, we argue that Chinese Captchas
can be an interesting alternative design, and deserve more
attention in the research community than now.

Early research suggested that computers are good at re-
cognizing single Roman characters, even if the characters
have undergone sophisticated distortions [19]. This has led
to an important principle: the robustness of text Captchas
should rely on the difficulty of finding where the character is
(segmentation), rather than which character it is (recogni-
tion). This principle, often referred to as the segmentation-
resistance principle, has become the footstone for designing
text Captchas.

However, a fundamental open question remains: is the
segmentation-resistance principle established for Captchas
using Roman characters applicable to Chinese based de-
signs? The former have a small alphabet, but the latter a
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much larger one. The empirical work establishing this prin-
ciple does not offer any evidence to either support or disa-
pprove the extension. In the wild, most, if not all, deployed
Chinese Captchas assume either explicitly or implicitly that
it is hard for computers to recognize distorted single charac-
ters from a large character set like Chinese, and the security
of such Captchas relies on this unproven hardness.

In this paper, with deep learning techniques, we will offer
the first evidence that computers do recognize individual
Chinese characters with a high accuracy, regardless of disto-
rtion levels. However, not all machine learning techniques do
well with this task. Our result suggests that many real-world
schemes, including those designed for Chinese communities
only, and those designed for universal usability, are insecure,
in contrast to common beliefs. This result is also relevant
to Captcha designs based on other large-alphabet languages
such as Japanese. Overall, our work also contributes to the
understanding of what can computers do well and what they
cannot, and to the understanding of better Captcha design.

We review related work in Section 2. Section 3 provides a
survey and an analysis of real-world Chinese Captchas. In
Section 4, we show that the popular Convolutional Neural
Network Le Net 5 [34] do not do well in recognizing our
synthesized datasets of distorted Chinese characters, but a
newer Deep Neural Network (DNN) [24] achieves impressive
performance, instead. In Section 5, we show that the DNN
also achieve similarly good performances on a dataset col-
lected from a deployed, representative Chinese Captcha. In
Section 6, we compare our experiments with handwritten
Chinese recognition. We argue that handwritten Chinese
and our synthesized datasets might appear to be slightly di-
fferent, but they are significantly different image objects for
computers. We conclude in Section 7 by summarizing the
lessons that we have learned.

2. RELATED WORK

2.1 Text-based Captchas
By far, text-based, particularly Roman characters based

Captcha, is still the major type worldwide adopted. Many
studies explored how to design text Captchas properly, and
most of the studies built on attacks on existing Captchas.

Early efforts to break text Captchas include [20, 38, 39].
In [38], Mori and Malik used sophisticated object recogni-
tion algorithms to break EZ-Gimpy and Gimpy, two early
simple Captchas, with a success of 92% and 33% respecti-
vely. In [39], Moy et al. increased the success rate on EZ-
Gimpy to 99% with their distortion estimation techniques.
They also achieved a success rate of 78% on the 4-characters
Gimpy-r scheme. In [20], Chellapilla and Simard worked on
a variety of text Captchas taken from the Internet and re-
ported success from 4.89% to 66.2%.

In contrast to the early works that relied on sophisticated
computer vision or machine learning algorithms, Yan et al.
proposed an attack that only used näıve pixel counting me-
thod and simple pattern recognition algorithms [44]. Their
method achieved almost 100% success rate on a number of
Captchas. The same authors have subsequently reported
successful attacks on a series of Captchas designed and de-
ployed by Microsoft, Yahoo and Google [45]. Their novel
character segmentation techniques have been proven effec-
tive and of general value. In [26], they also broke a novel
text Captcha deployed by the Megaupload website which

featured a new anti-segmentation technique.
Bursztein et al. [18] developed an automated tool called

Decaptcha that was able to break 13 out of 15 most widely
acknowledged Captcha schemes. They reported 1% − 10%
success rate on Baidu and Skyrock, 10 − 24% on CNN and
Digg, 25 − 49% on eBay, Reddit, Slashdot and Wikipedia,
and 50% or higher on Authorize, Blizzard, Captcha.net, Me-
gaupload and NIH. Decaptcha failed (0% success rate) to
break the Google and reCaptcha schemes. However, the
two schemes were later broken by Yan’s team [27].

Lately, Gao et al. [29] performed the first security analysis
of hollow Captcha, one of the latest designs. A novel attack
using a Convolutional Neural Network with a graph search
algorithm was implemented against five hollow Captchas de-
ployed by Yahoo, Tencent, Sina, CmPay and Baidu. Their
attack achieved a success rate from 36% on Yahoo to 89%
on Tencent.

Most recently, the joint team of Gao and Yan published
in 2016 a surprisingly simple, low-cost, generic but powerful
attack that breaks a wide variety of Roman-character based
Captcha designs [30].

2.2 Alternative Captchas
Along with text Captcha research, there are many efforts

to develop alternative Captcha schemes. The underlying
principle is to exploit other human abilities which are be-
lieved more difficult for computers to defeat, e.g. human’s
capability of understanding image semantics, or instructions
and fulfil a specified task accordingly.

Microsoft ASIRRA [28] is a Captcha that asks users to
identify cats out of a set of 12 photos of cats and dogs (see
figure 1 (a)). The images used in this Captcha come from
a private database of over three million images. Golle [31]
reported an attack to ASIRRA. A combination of Support
Vector Machine (SVM) classifiers were trained on the color
and texture features extracted from the ASIRRA images.
An accuracy of 82.7% was achieved in distinguishing cat
from dog in a single image. But the overall success rate
of attack dropped to 10.3% since there are 12 images to
distinguish in each ASIRRA puzzle.

Confident Captcha [6] is another Captcha design that is
built on image semantics. Users are asked to click those
images out of 9 images according to a text description, as
shown in figure 1 (b). The main problem of this scheme is its
scalability since the images and their semantic labels have
to be manually maintained.

Gossweiler et al. [32] proposed an image orientation Cap-
tcha in which the user is asked to adjust a randomly rotated
image into an upward orientation, as shown in figure 1 (d).
This Captcha’s limitation is that the pictures used must be
cautiously selected because upright positions of some images
might be ambiguous.

Figure 1 (c) shows a novel Captcha proposed in [40] for
smartphone and tablet devices. The user is asked to drag
a small noise image patch around on the background noise
image until a hidden message emerges.

Some Captchas frame the puzzle as a game. An example
is the PlayThru Catpcha [2]. As shown in figure 1 (e), this
Captcha requires users to fulfil a task which is simple and fu-
nny. Unfortunately, the PlayThru Catpcha is broken in [7].
One major problem of such game Captchas is the transmis-
sion cost that fetching a game puzzle from the server is much
slower than a text-based one. In [37], Mohamed et al. pro-



 

(d) Image Orientation 

CAPTCHA by Google. 
(c) CAPTCHA for Smartphone 
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(a) Microsoft's ASIRRA. (b) Confident CAPTCHA. 

(e) PlayThru CAPTCHA. 

Figure 1: Alternative CAPTCHAs

vided a more thorough investigation into the security and
usability of game Captchas.

Some other Captcha designs are: the Drawing Captcha
[42] which was broken by Lin et al. [35] with an Erosion-
based approach; the motion-based NuCaptcha [11] which
was broken by Xu et al. [43] and Bursztein [8] separately,
using different approaches.

To sum up, conventional Roman text Captchas, although
having been compromised in many scenarios, still have many
virtues, especially in implementation and maintenance. The
various alternative Captcha designs have not completely sol-
ved the problem because most of them suffer from scalability
limitation. The backend database or puzzle pool is hard to
generate and update, making it difficult for wide deploy-
ment. As a result, it is of practical value to explore more
alternative options for Captcha design, such as using large-
alphabet language like Chinese.

3. REAL-WORLD CHINESE CAPTCHAS:
A SURVEY AND ANALYSIS

Many Chinese Captchas have been deployed on the Inter-
net. We classify them into two categories: 1) Local Chinese
Captchas, which are for Chinese-speaking users. 2) Univer-
sal Chinese Captchas, which are universally usable, even to
users who are illiterate in Chinese.

3.1 Chinese Characters
Chinese language has a large character set, with thousands

of commonly used characters. The brute-force search space

of Chinese characters is far bigger than Roman characters.
Moreover, there are several other features of Chinese charac-
ters that should be taken into account for a proper Captchas
design. (1) Chinese characters have no connectivity guaran-
tee. A large number of Chinese characters comprise discon-
nected parts, e.g. 儿(child), 呵(breath out), 旧(old). This
favoring feature naturally serves a segmentation-resistance
means. Computers would easily make wrong segmentations
on disconnected parts. (2) Except for a small number of
simple ones, most Chinese characters are composed of ra-
dicals, and some radicals can be valid, independent charac-
ters, e.g. 加(add) = 力(force) + 口(mouth). This may ca-
use usability problems when applying some well-established
anti-segmentation techniques such as the “crowding toge-
ther” and the “using variant widths”. For example, the cha-
racter 加 is composed of two radicals 力 and 口, which are
both valid characters themselves. If the captcha engine ha-
ppens to select these two characters and crowd them close,
it will be confusing for human users whether to recognize
them separately or as a whole. (3) Many characters are only
subtly different from each other, e.g. 天(sky) vs. 夭(tender);
日(day)vs.目(eye), which demand that the distortion and ca-
mouflaging applied to a Chinese Captcha be carefully con-
trolled to avoid poor usability.

Typing Chinese usually requires special software or plug-
in which may not be accessed on every computer or device.
Thus it would be of great value to design a secure Chinese
Captcha scheme worldwide usable.

3.2 Local Chinese Captchas
Websites in China have been increasingly employing Chi-

nese Captchas. They require users to recognize Chinese cha-
racters and type them to pass a test. They are designed for
Chinese-speaking users. Figure 2 shows a number of such
schemes taken from popular websites.

Basically, these Chinese Captchas all follow the same style
as the conventional Roman Captchas. A fixed number of
Chinese characters are randomly chosen and placed horizon-
tally on a background canvas, with certain degree of distor-
tions and camouflages applied. However, as will be discussed
later, with some processing, those camouflages can mostly be
removed and individual characters located. In other words,
rather than adopting the segmentation-resistance principle,
most of these Chinese Captchas base their security on hin-
dering auto-recognition of individual Chinese characters.

3.2.1 Schemes (a) and (b)
BotDetect, a commercial Captcha vendor, provides a vari-

ety of localized text-based Captcha schemes, protecting over
2500 websites [3]. Figure 2 (a) and (b) give two Chinese
schemes from BotDetect.

Chess Scheme
Chinese characters are embedded with a chessboard, appea-
ring in white color on black squares and in black color on
white squares. El Ahmad and Yan [26] have previously pro-
posed a simple method to extract Latin Characters from
the Chess scheme. The attack can also be applied to this
Chinese Chess Captcha as follows:

• Examine each square on the chessboard. If the ma-
jority of pixels in a square are black, convert all the
black pixels to white and the white to black. Nothing



 

(d) Tom.com 

(e) 1905.com 

(l) cnfol.com 
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(c) Tianya.cn 
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(k) Renren.com 

(b) BotDetectTM-Collage (a) BotDetectTM-Chess 
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Figure 2: Real-world local Chinese Captchas.

will be done if the majority of pixels in the square are
white. The result of this process is demonstrated in
Figure 3(b).

• Slice the image vertically into several segments using
the method introduced in our previous work [44]. Each
segment contains one Chinese character.

 
(a) Challenge           (b) Extracted characters 

Figure 3: Chess scheme from BotDetectTM

Collage scheme
Chinese characters are rendered with colorful texture and
the background is split into several vertical regions, each
painted in a different pale color. The characters can be
extracted with simple image processing:

• Binarize a challenge image, as shown in Figure 4 (b).
This operation is possible due to the significant in-
tensity difference between foreground characters and
background canvas.

• Remove the noise-dots left after the binarization ope-
ration, as shown in Figure 4 (c). There are many tech-
niques available for this goal. One possible way is by
removing chunks of small pixel counts.

• Vertically segment the image into individual charac-
ters, using the method of [44].

 
(b) Binarized image (a) Sample challenge  (c) After noise removal 

Figure 4: Collage scheme from BotDetect

Note that the Captcha length in BotDetect schemes can be
customized. When more characters are used in the Captcha,
the characters tend to be crowded together, making the seg-
mentation task more difficult. But obviously the usability
of the Captcha has to be compromised in this case.

3.2.2 Scheme (c)
Figure 2(c) is an example taken from Tianya.cn, the lar-

gest Chinese forum online in the world [13]. In this scheme
each Chinese character is randomly positioned inside a dark
brown square. Segmenting the image into individual charac-
ter boxes is trivial, but a main hurdle here is to distinguish
the character from the noise-like background in each box. It
can be observed that after binarization the character boxes
exhibit two styles. The style 1 box, as shown in Figure 5 (b)
presents the character in black on a white background with
surrounding single-pixel noise. The style 2 box, as shown in
Figure 6 (a), is presented in exactly the opposite colors but
can be converted to its complement form as shown in Figure
6 (c). After the two styles being unified, the noise-dots in
each box can be cleared as follows:

• Clean up the character box by removing any small
black chunks. The results of this operation are shown
in Figure 5 (c) and Figure 6 (d) respectively.

• Draw a bounding box around the Chinese glyph and
remove all the black pixels outside the boundary. The
results are shown in Figure 5 (d) and Figure 6 (e) res-
pectively.

 
(a)                       (b)                       (c)                        (d) 

Figure 5: Processing style 1 images. (a) Original; (b) Bina-
rized image; (c) After noise removal; (d) After cropping and
rescaling

 
(a)              (b)                  (c)                (d)               (e) 

Figure 6: Processing style 2 images. (a) Original; (b) Bina-
rized image; (c) Complement form; (d) After noise removal;
(e) After cropping and rescaling

3.2.3 Schemes (d)-(j)
All the schemes shown in Figure 2 (d)-(j) implement the

segmentation-resistance principle with cluttered backgro-
und. The scheme in Figure 2(d) from Tom.com [14] uses
a background with gradually changing colors, attempting to
interfere with the automatic extraction of the characters.
However, since the color applied to each character is con-
stant and of obviously higher intensity than the background,



it is not difficult to distinguish the individual characters from
the background.

The schemes in Figure 2 (e)-(j), although taken from diffe-
rent websites such as QQ.com [12], China.com [4], 1905.com
[1], uuu9.com [16], it168.com [9], and mouldsell.com [10], all
use the same type of background cluttering. Specifically,
one-pixel-thick arcs as well as one-pixel dots are randomly
rendered as clutters on the background. These clutters as
well as the target characters are in arbitrary colors, with the
exception that the scheme (j) uses the same color for both
the characters and the clutters. In fact, this cluttering style
has been well studied in previous works. Cleaning such kinds
of clutters has proved to be a trivial task. Some effective te-
chniques can be found in [18,46] for this purpose. Moreover,
using invariant number of characters in addition to distinc-
tive color for each character makes it easy to segment and
extract the individual characters [46].

3.2.4 Schemes (k) - (m)
Rather than relying on cluttered background, the schemes

shown in Figure 2 (k), (l) and (m) roughly exploit the“crow-
ding together” rule to resist auto segmentation. In these
schemes, there is hardly any space between adjacent charac-
ters. In particular, the rotation in scheme (l) makes it more
difficult to segment the characters by vertical slicing. Howe-
ver, these schemes are easy to break. This is because the
Chinese characters, unlike Roman characters, do not differ
much in their sizes. In other words, given the same font,
the square boundaries of each Chinese character are almost
the same. This feature can be used to roughly segment the
characters even though they are connected to each other,
especially when the number of characters is constant. To
make it worse, for scheme (k) and (m), we can simply iden-
tify and separate individual characters by detecting their
distinct colors.

3.2.5 Scheme (n)
The last example in Figure 2(n) hardly applies any effec-

tive technique to resist auto-extraction of target characters.
The characters are well separated apart, without any clut-
ters connecting or crossing them. The noise-dots can be
easily cleared due to its slight density.

3.3 Universal Chinese Captchas
It seems impossible at first glance to develop Chinese Cap-

tchas that can be used by people who have never studied.
However, there are a few such universal Chinese Captcha
schemes available on the Internet. The Touclick and the
CCaptcha are among the most popular ones, which will be
discussed as follows.

3.3.1 Chinese Touclick
As shown in Figure 7, Touclick [15] works as follows. Two

Chinese characters are randomly placed on background pic-
ture. A hint which contains the two characters is displayed
below the puzzle. Users are required to find out the two
characters in the puzzle and click them in the same order as
they appear in the hint. The fact that no Chinese typing is
required makes Chinese Touclick applicable to users who do
not know Chinese at all.

The background picture is randomly chosen, most of which
are arts of natural sceneries. These fancy background pictu-
res are supposed to play the role of disturbance to stop com-

puters from solving the puzzle. However, the appearance of
scenery and a Chinese character is quite different. Shen et
al. have successfully hacked the Chinese Touclick in [41],
exploiting the fact that Chinese characters have much more
corners than a natural scenery image. They first render two
character images according to the hint and extract the cor-
ner features from them. These features are then compared
to those extracted from the puzzle image to pick the cha-
racters out of the background. Since there is hardly any
distortion applied to the Chinese characters in the puzzle,
a simple Euclidean distance based matching process suffices
to locate the target characters. The reported accuracy is
100%.

 

Figure 7: Examples of the Chinese Touclick CAPTCHA.(a)
taken from [41]; (b) from Touclick website [15]

3.3.2 CCaptcha
The CCaptcha scheme, filed as a US patent application [5],

exploits a database of Chinese characters, as well as radicals
of these characters. Although each puzzle could hardly be
solved by the well-known OCR techniques [22], it can easily
be solved via observation by human users who are not neces-
sarily literate in Chinese. The designers performed a large
scale user study, in which native speakers and foreigners
who did not know Chinese achieved similarly high accuracy
in solving this Captcha [21].

A CCaptcha challenge (Figure 8) is composed of 10 ima-
ges. The bigger image on the left is a Chinese character that
can be decomposed into elementary radicals. The other nine
smaller images represent candidate radicals, among which
some are real radicals from the target character and the rest
are faux ones. To pass the test, a user has to recognize all
real radicals and click corresponding images. Selecting any
faux radical will fail the test.

 

Figure 8: Example of a CCAPTCHA puzzle

The inventors applied OCR software to recognize distor-
ted characters and radicals used in this scheme, but to no
avail. And this is their main argument for the security of
the scheme [22].



3.3.3 Observations
Clearly, these Chinese Captchas that we examined above,

whether local ones or universal ones, mostly build their se-
curity on the assumed recognition-resistance of Chinese cha-
racters to computers. It is therefore natural to ask a fun-
damental question: does the large Chinese character set rea-
lly provide this recognition-resistance capability? This open
question motivates our following experiments.

4. CAN COMPUTERS RECOGNIZE DIS-
TORTED SINGLE CHINESE CHARAC-
TERS?

4.1 Prior Art
Chellapilla et al. [19] examined how good computers are

at recognizing single Roman characters with the hindrance
of distortions and random clutters. Their result suggests
that computers are able to achieve close to 100% success
in most of the situations they tested. Their recognition rate
deteriorated with the increasing number of thick intersecting
foreground arcs, but remained above 60% even in the worst
situation where human’s recognition accuracy dropped to
below 10%.

This work has established the principle of segmentation re-
sistance that has a profound impact on Roman-character ba-
sed text Captchas. It suggests that the designers of Roman-
character based text Captchas should not build their secu-
rity on the task of character recognition, which is an easy
task for computers.

However, it is unclear whether their result is relevant to
Captchas that are based on a language of a large character
set, such as Chinese and Japanese. As the character sets in
these languages are much larger than the Roman alphabet
(thousands vs. dozens), intuitively it makes it a much har-
der problem to automatically recognize the former than the
latter.

Our analysis in the previous section suggests that the
state-of-the-art Chinese Captchas mostly rely on the assu-
med but never tested hardness of recognizing distorted sin-
gle characters by computers. To find out whether computers
can be impeded by a large character set, we extend Chella-
pilla et al.’s experiments to Chinese characters. To the best
of our knowledge, our experiment is the first of its kind,
and there is no direct evidence to either support or deny
the extension of the results of [19] to a language of a large
character set.

4.2 Data Preparation
We use 3755 most popular Chinese characters from China

National Standard GB2312.
The recognition experiments in [19] tested 7 different com-

binations of distortion and clutter style. For each configura-
tion, the distortion and clutter range from easy to difficult
with 4 or 5 scales, leading to a total of 33 rounds of expe-
riments. Such settings were possible for a recognition task
that involves 30 characters (uppercase letters and digits ex-
cluding a few characters that can be easily confused), but
they become prohibitive when applied to Chinese character
recognition experiments that involve thousands of charac-
ters.

It should be noted that our goal is not exactly the same
as in [19]. Their purpose was to compare the capability

of computers and humans in recognizing distorted charac-
ters. As a result, their experiment settings were pushed to
extreme cases that would not be considered in real-world
Captchas. However, our experiments are mainly to find out
whether computers would be deterred by the large alpha-
bet set of Chinese characters as this is not established yet.
Based on the above considerations and given the time and
computation capacity permitted, we decided to tailor our ex-
periments to three configurations. Our principles are simply
that when necessarily, we follow all the methods and confi-
gurations as in [19], but we also avoid design choices that
are appropriate for Roman characters but not for Chinese
characters.

Specifically, we followed the same geometric transforma-
tions as in [19], which combined scaling (randomly from −20
to +20 percent) and rotation (randomly from −20 to +20
degrees).

We did not separate the local warp and global warp for
the sake of simplification. Instead, we generated a unified
parameterized distortion field and empirically fixed the pa-
rameter to ensure a distortion that was more difficult than
the state-of-the-art Chinese Captchas but still acceptable for
humans.

We also discarded the use of background arcs and non-
intersecting foreground arcs, because they had been proven
in [19] as the least useful in confusing computers. The most
challenging setting revealed in [19] was the foreground arcs
intersecting with the character. We kept this setting in our
experiments but only tried on two scales, i.e. 8 arcs and
16 arcs per character respectively. Note that the arcs we
rendered were all one-pixel-wide. This is because within
an image of 40 × 40 pixels (as required by our recognition
engine), there is no adequate space to render thicker arcs.
Given the complexity of Chinese characters, if thicker arcs
were used, the image would easily be filled up, making it
meaningless for either computers or humans.

Figure 9 gives examples of three groups of datasets we
generate. The specifications are described as follows:

• Group1: Geometric transformation plus random war-
ping.

• Group2: In addition to the same processing as Group
1, eight one-pixel-wide foreground arcs are randomly
generated and placed on top of each character.

• Group3: The same processing as in Group 2 with the
number of arcs doubled to sixteen.

All the Chinese characters are normalized to 40 × 40 and
then centered on a 48 × 48 blank background canvas.

For each group, we generate for each character a training
set containing 260 samples, and a test set of 60 samples. The
total number of samples in each group is: 3755×(260+60) =
1, 201, 600.

Each group of training/test dataset is converted into two
files, one with the images and one with the corresponding
labels as follows:

• Training set files: contain 260×3755 = 976, 300 images
and their corresponding labels.

• Test set files: contain 60×3755 = 225, 300 images and
their corresponding labels.
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Figure 9: Examples of groups 1, 2 and 3, respectively

4.3 A Failed attempt
We conducted a number of trials using the Convolutional

Neural Network (LeNet-5) which is widely used to recognize
digits and Roman characters.

We first conducted our experiments on a group of 1000
Chinese characters. We used 161 training samples and 20
testing samples for each single character. On a standard
desktop with 8 GB RAM and Intel(R) Core(TM) i7-3770
CPU @3.40GHz, our CNN achieved 68.18% success on the
test set. It took approximately 24 epochs to train the engine;
each epoch taking about 10 minutes.

We then test on a group of 3755 Chinese characters. We
used 161 training samples and 20 testing samples for each
single character. The desktop used for the previous trial
was not up to this task, making nearly zero progress after
weeks. Finally, we decided to run the experiment on an
expensive huge machine with 64 GB RAM and 2 Intel(R)
Xeon(R) CPU E5-2650L 0 @ 1.80GHz CPUs. This time, it
took about 24 epochs to train the engine, each epoch taking
about 4-5 hours. The trained CNN engine achieved less than
35% success on the test set. By using a doubled sample size
(322 × 3755 training samples) and (40 × 3755 test set), the
required learning time is doubled for each epoch, but the
eventual recognition success decreased to less than 11% on
the test set.

Our initial failure suggests that 1) the automated recogni-
tion of distorted single Chinese characters is not trivial, and
2) the complexity of recognizing such characters provides
some evidence that Chinese Captchas based on recognition
difficulty are more secure than their Roman counterparts.

These observations are reasonable, given that the tested
Chinese alphabet (3375 classes) is over one hundred times
bigger that the Roman alphabet (26 classes). This increa-
ses the difficulty of the problem by requiring both bigger
networks and much more training data. Therefore, we are
motivated to use deeper and wider NNs (i.e. Deep Neural
Networks).

4.4 DNNs and Multi Column DNNs
Lately, Deep Neural Networks (DNN) significantly decrea-

sed the error rate on many classification tasks [23,24,33]. A
DNN obtained the best results at two competitions about
classification of offline (no temporal information) handwrit-
ten Chinese characters organized at ICDAR 2011 [36] and
ICDAR 2013 [47]. We decided to use similar architectures
for our experiments.

4.4.1 DNN architecture
A DNN uses a feed-forward architecture, without recur-

rent connections. It starts with an input layer and conti-

nues with a linear succession of various types of layers. Our
DNNs use convolutional, max-pooling and fully connected
layers. Each non-fully connected layer has its neurons ar-
ranged in a list of rectangular maps. Figure 11 depicts the
architecture of one of the DNN we use in the paper.

The convolutional layers (in red in Figure 11) extract
features from the maps in the previous layer by convolving
their input with a small filter that contains the feature to
be detected. These filters are learned during the training
process.

The max-pooling layers (in blue in Figure 11) select the
locations where the features were most active by choosing
the maximum in non-overlapping square patches, usually
2 × 2 in size.

Convolutional and max-pooling layers repeat several ti-
mes, building more complex feature detectors with each ad-
ditional stage.

When the size of the maps becomes too small to add ano-
ther stage of convolutional and max-pooling layers, we use
fully connected layers to classify the features extracted
by the previous layers. The very last layer uses a soft max
activation function that outputs probabilities for the input
to be part of a particular class.

4.4.2 MCDNN architecture
We also use a MCDNN as in [23], averaging the outputs of

several independently trained DNN. A MCDNN is used only
during testing, corresponding output neuron values being
averaged (see Figure 10).

For simplicity, we choose to use DNNs with identical ar-
chitecture. Still, they differ because they are initialized with
different random weights, the image-label pairs are presen-
ted randomly during training, and the distortions applied
on the input characters are also random. 

1 

 

 

 

 

DNN1 

DNN2 

DNN3

DNN4

2304 AVERAGE 3755 

3755 

3755 

3755 

3755 

2304 

2304 

2304 

Figure 10: 4-column DNN. Each character (48x48 pixels) is
sent to the input of each DNN column. After processing,
the output vectors are averaged component wise.

4.5 Experiments and Results
We depict the characters on 40 × 40 pixels images, as

done in [23]. These images are centered in a 48 × 48 pixel
image, to allow space for small distortions which are used
to augment the training set. The characters are stored in
gray scale images with 0-255 for pixel intensity information.
The input of the network directly maps to the pixel values,
without any feature extraction. As the neurons work with
real values from [−1,+1], the pixels intensities are linearly
translated and rescaled.

The DNN used for ICDAR competitions [25] has hun-
dreds of maps per layer. As our characters are artificially
generated, thus probably easier to classify than handwritten
characters, we start with smaller architectures. We keep the
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Figure 11: A Chinese character (left) is propagated through a trained DNN with architecture 48×48-300C3-MP2-300C2-MP2-
300C2-MP2-300C2-MP2-300N-3755. For space reasons only the first 100 maps in each convolutional (red) and max-pooling
(blue) layers are shown. The fully connected (green) layers are scaled up 4x, the rest of the net is drawn at scale. It can be
observed that one of the 3755 output neurons, corresponding to the class of the image at the input, is lit up.

convolutional and max-pooling layers, but we use far fewer
maps in every layer, e.g. instead of 100-450 maps, we only
use 50 maps for our smallest networks. All DNN share the
same template, we only modify the numbers of maps per
layer and the number of neurons in fully connected layers.
Due to the smallest convolutional and max-pooling kernels,
this template has the advantage of creating the deepest po-
ssible network for the 48 × 48 input size.

A compact representation of our DNN looks like this:
48x48-mC3-MP2-mC2-MP2-mC2-MP2-mC2-MP2-nN-3755N,
where 48 × 48 is the input layer, m is the number of maps
in convolutional and max-pooling layers, C3 denotes a con-
volutional layer with a convolution filter of 3 × 3, MP2
denotes a max-pooling layer with a kernel of 2 × 2, n re-
presents the number of neurons in the hidden fully con-
nected layer, and 3755 is the number of categories to re-
cognize. To further clarify the notation, our bigger ne-
twork is named 48x48-300C3-MP2-300C2-MP2-300C2-MP2-

300C2-MP2-300N-3755 (see Figure 11 for graphical depic-
tion). This network has 1024859 neurons, 2574455 weights
and 224018555 connections.

We use a GPU implementation of the training algorithm
(Stochastic Gradient Descent - SGD) described in [24]. This
allows us to train and test several DNN in a reasonable amo-
unt of time. All weights are randomly initialized with values
from [−0.05, 0.05]. The initial learning rate is 0.001 and is
multiplied with 0.95 at the end of every epoch. We train the
DNNs on the training dataset from each group. If we train
the DNN with distortions, then the characters from the trai-
ning set are always distorted prior to be passed through the
network. At the beginning of every epoch, new distorted
versions are generated from the originals, thus if the net is
trained for 50 epochs, then it will see 50 times more cha-
racters than the characters from the training data, although
they are variations of the original characters. For validation
we use the original, undistorted training set. The characters
from the test set are used exclusively for testing and they
are not distorted. We train 10 DNNs (Table 1) using the
three data groups. We also build two MCDNNs with the
networks trained on Group 3.

4.5.1 Differences between Le Net 5 and DNN
When it was introduced, Le Net 5 was state of the art for

convolutional neural networks. It represented an impressive
achievement of research and engineering. More than ten
years later, current DNNs use many of the ideas from Le
Net 5, but complement them with state of the art layer
architecture, better training algorithms and sheer size.

The biggest distinction between Le Net 5 and a DNN is
their size; the latter is both deeper (more layers) and wider
(more maps/neurons in each layer). The four convolutional
layers of DNN compared to the only two of Le Net 5 allow
for extracting more complicated features. Le Net 5 has only
6 and 16 maps in the first and the second convolutional
layers, respectively. Our DNN has 50 to 300 maps in each
of the convolutional layers. The easiest way to compare the
complexity of the two models is to look at the number of
connections: 340068 for Le Net 5 versus 224018555 for our
biggest DNN (658 times more connections!).

Le Net 5 uses trainable subsampling layers. DNNs use
simple but efficient max-pooling layers which perform fea-
ture selection by choosing the maximum activation from the
corresponding input patch.

4.5.2 Experiments on Group 1
As this group is the simplest, we start with a “thin” ne-

twork (DNN1) which has only 50 maps in each convolutional
and max-pooling layer. This architecture seems to be suffi-
cient as it almost fully learns the training/validation set and
reaches a very low 0.342% error rate on the test set.

We try to prevent the network to overfit on the training set
and make training harder by adding full distortions on the
training set (please note that the training set is already com-
posed of distorted characters as described in [19], here we
generate online new versions of these characters), i.e. ma-
ximum 10% translation, maximum 10°rotation, maximum
10% scaling, and elastic distortions. Although this prevents
the network (DNN2) to fully learn the training data, it does
not help with generalization, as the error on the test set
increases to 0.475%.

We do not experiment with wider networks because the
error on test characters is sufficiently low to consider this
task solved.



Table 1: DNN experiments on single Chinese characters. (Epochs: the number of epochs required to reach minimum error
on validation data. Distortions: translation / rotation / scaling / elastic parameters)

DNN/
MCDNN

Architecture
(maps/neurons

per layer)
Data Epochs Distortions

Validation
error [%]

Test
error
[%]

Test error
(first 10

predictions)
[%]

Training
time per
epoch [s]

Test
time per
char [ms]

1 50/200 G1 121 No 0.004 0.342 2900 1.15

2 50/200 G1 113 10/10/10/6/30 0.407 0.475 3230 1.15

3 50/200 G2 50 No 6.767 14.763 2750 1.09

4 100/200 G2 65 No 0.695 11.597 5550 1.15

5 200/200 G2 24 No 0.036 10.052 16800 2.84

6 300/300 G2 19 No 0.000 7.805 34950 5.30

7 300/300 G3 29 No 0.000 19.948 3.233 35000 5.37

8 300/300 G3 135 10/0/0/0/0 9.587 15.531 2.324 35000 5.32

9 300/300 G3 95 10/5/0/0/0 9.918 15.528 2.306 35000 5.32

10 300/300 G3 95 10/5/5/0/0 9.903 15.517 2.279 35000 5.32

11 3 nets: 8, 9, 10 G3 - - - 10.812 1.416 - 15.96

12 4 nets: 7-10 G3 - - - 10.086 1.291 - 21.33

4.5.3 Experiments on Group 2
We start with exactly the same architecture and distor-

tions as for Group 1 (DNN1). If before the validation error
was practically 0, now (DNN3) it is 6.767% showing that
this dataset is much harder to learn. In the next three ex-
periments we keep increasing the width of the networks to
100 (DNN4), 200 (DNN5) and 300 (DNN6) maps per layer.
Both validation and test error are decreasing, indicating that
more capacity is needed. The biggest network reaches zero
error on validation and 7.805% error on test.

Distortion could be used to prevent learning the training
set and improve generalization, but we decide that it is bet-
ter use our limited computing time to experiment with the
hardest dataset, Group 3.

4.5.4 Experiments on Group 3
For the hardest dataset we start directly with the same

architecture as the biggest network trained on Group 2. Al-
though this network (DNN7) manages to learn the entire
training set, almost one test character out of five is misre-
cognized (test error is 19.948%). Looking for better gene-
ralization, we train three more networks (DNN 8, 9 and
10) with various amounts of affine distortions. All of them
reach similar test error (15.5%) and improve over DNN7.
After one single training epoch, DNN10 is capable of cor-
rectly classifying more than 60% of the characters from the
test set (Figure 12). It needs 26 epochs to reach 20% error
and 95 epochs to go to 15.517% error on the test set.

We also compute how many characters are not recognized
even when looking at the highest 10 predictions the networks
compute, i.e. the label is not part of the classes with the hi-
ghest ten probabilities. This error is important because the
characters in this list have similar appearance, thus probably
they will share many of their radicals. Even if the charac-
ter is incorrectly classified, the probability is high that it
contains the required radicals.

 

 

Figure 12: Error rates for training of DNN 10.

4.5.5 Experiments with MCDNN (on Group 3)
We tested the method from [23] by building two MCDNNs

(committees of NN): one averages the networks trained with
distorted images, and the other averages all DNN trained on
Group 3. Both MCDNNs significantly decrease the recogni-
tion error with up to 35.01% with respect to the best DNN.

The test error computed considering the characters with
the highest 10 predictions is almost halved, reaching a low
1.291%.

4.5.6 Speed
We use relatively old NVIDIA GTX 580 graphics cards for

all experiments. It is slow to train DNNs when the datasets
contain over one million characters and the networks have
hundreds of millions of connections. If the small networks
require less than 1 hour of training per epoch, the biggest
networks need about 10 hours per epoch.

Once trained, testing is much faster at 1.1 to 5.3ms per
character for various networks. The MCDNNs are slower
because they need to calculate the output of four networks.



Even so, up to 50 characters can be checked each second.
Individual DNNs can be computed separately, thus the clas-
sification time decreases linearly with the number of CPUs/
GPUs used.

The test phase can be further optimized specifically for
this task, and ported to the state-of-the-art GPUs like NVI-
DIA Titan X. This should decrease the time required to test
a character by 5 to 10 times.

5. EXPERIMENTS ON CCAPTCHA
Sections (4.5.2 - 4.5.5) show that MCDNNs and DNNs

can recognize Chinese characters with high accuracy even
though the characters are simultaneous distorted (affine and
elastic) and overlapped by up to 16 arcs in an attempt to
make the problem even more difficult (Figure 9). Here we
try to attack CCaptcha (Section 3.3.2) by the means of the
same DNNs/MCDNNs.

5.1 Data
CCaptcha uses 66111 characters/radicals, thus its size is

66111 (categories) × 260 (samples per category) × 48 × 48
(character size) = 36.9GB. This exceeds by far our machines
DRAM (which has to store multiple buffers related to the
dataset, and several DNNs). Randomly accessing the data
from a Solid State Drive slows down the training process by
over one order of magnitude compared to reading the data
from DRAM. We are updating our code and machines to
deal with datasets of this size. For this work we decided
to use a subset, specifically 3755 categories (the same as in
Sections 4.5) out of the 66111. We name this set G4. This
preliminary test will show if DNNs can break.

Exploiting an information leakage hole that we discovered
in the design of CCaptcha (details see [17]), for each of the
3755 classes, we collect 260 samples for training and another
60 for testing. The total number of samples in G4 is: 3755×
(260+60) = 1, 201, 600. G4 includes a mixture of characters
and radicals where:

• There are roughly over 2500 classes of characters com-
posed of more than 3 explicit radicals.

• Less than 300 classes are definitely radicals because
they could not be further broken into smaller parts.

• Some samples have only two explicit radicals.

These observations point out that this data set is largely
composed of complex enough characters (some of which are
even more complex than our previous data G1-G3).We can
thus confirm that G4 is not biased by the complexity of the
characters. That is, characters in G4 have similar or higher
complexity than those from G1-G3. Thus, the results of the
experiments are influenced mostly by the level of distortions
and noise.

5.2 Preprocessing
The character/radical images collected from the CCapt-

cha server have arbitrary sizes. Their width and height have
random values from and 138–166 and 64–97 pixels, respecti-
vely. The sizes of characters/radicals and their locations on
the canvas vary, too. To make the data compatible with our
DNN engine, preprocessing is required. We first locate the
bounding box of the glyph and extract it from the original
canvas. We then scale the extracted glyph to fit a 40 × 40

pixels box. The scaled glyph is then placed in the center of a
48× 48 pixels patch that is cut from the original canvas. In
this way, we are able to keep the original distortions and ca-
mouflages (salt/pepper noise and 3 overlapping lines) while
scaling the image to satisfy the DNN specifications. Figure
13 gives examples of G4.

 

 
 

 Figure 13: Examples from G4.

The training and the test datasets of G4 are converted to
two files in the same way described in previous sections, one
with the images and one with the corresponding labels.

5.3 Results
We trained several networks with identical architectures

to those in Table 1. DNNs learn very fast to classify charac-
ters from G4. After only several epochs the error on the test
set is already well under 1%. In just one epoch DNN5 and
DNN6 (the biggest networks) go under 0.5%. Comparing
“Test errors” in Table 1 and Table 2, we observe that G4 da-
taset is much easier than G1, G2 and G3. The fact that G4
is easier than G1 (compare DNN1 from Table 1 and Table
2) could seem counterintuitive because G4 has both salt and
pepper noise and 3 overlapping segments. We observe that
characters from G1 are overly processed and with rough ed-
ges (Figure 9). G4 has smooth strokes, as we use the original
characters from CCaptcha. It turns out that the quality of
the strokes has a greater positive effect on recognition than
the negative effect of the noise and segments.

G2 and G3 contain 8, respectively 16, arcs intersecting
the characters. The lowest error (7.805%) is obtained with
DNN6 (Table 1). An identical network (DNN6 in Table 2)
trained on G4 reaches 0.002% error rate, practically solving
the CCaptcha problem with 3755 categories. There are only
four incorrectly recognized characters (Figure 14).
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Figure 14: The four incorrectly classified characters of G4
by DNN6.

Although increasing the number of maps in each convo-
lutional layer helps in decreasing the error, all DNN from
Table 2 have very small errors, almost close to 0%. We in-
terpret this result as an indication that DNN should work
well even on the full CCaptcha with 66111 categories. For
the reduced set we did not use MCDNN, but they could
prove useful for the big dataset.

5.4 Breaking CCaptcha
We briefly discuss how to convert the power of DNN/

MCDNN attacks to break CCaptcha.
At least several methods can break CCaptcha. One is

to combine the power of DNN/MCDNN with a dictionary
attack. Exploiting API vulnerabilities that we identified in



Table 2: DNN experiments on 3755 categories from CCaptcha

DNN/
MCDNN

Architecture
(maps/neurons

per layer)
Data Epochs Distortions

Validation
error [%]

Test
error
[%]

Test error
(first 10

predictions)
[%]

Training
time per
epoch [s]

Test
time per
char [ms]

1 50/200 G4 62 No 0.002 0.162 0.003 2900 1.15

2 50/200 G4 113 10/5/5 0.102 0.124 0.000 3230 1.15

3 100/200 G4 32 No 0.000 0.067 0.000 5550 1.15

4 100/200 G4 31 10/5/5 0.034 0.042 0.000 5680 1.15

5 300/300 G4 8 No 0.000 0.023 0.000 35000 5.37

6 300/300 G4 31 10/5/5 0.001 0.002 0.000 35000 5.32

CCaptcha, we can build a dictionary that maps each Chinese
character to a set of valid radicals (details see our previous
work [17]). Or, we could build such a dictionary using ge-
neral Chinese reference books. To solve a CCaptcha puzzle,
we simply pick up its target character, as well as nine radi-
cals from the traffic. We then let the trained DNN/MCDNN
recognize each of them. A dictionary lookup will tell which
are valid radicals for a given character.

Alternatively, we can train a DNN/MCDNN to identify
each character-radical pairwise relationship. Then, to solve
a CCaptcha, we pick up images from the traffic both for the
target character and the 9 radicals, and then use the trained
DNN/MCDNN to find valid radicals.

6. COMPARING WITH HANDWRITTEN
RECOGNITION

Considering the very low error rate for G4, we can con-
clude that DNNs are very good image denoisers, as they can
easily deal with noise (pixels and 3 random segments) and
moderate distortions (affine and elastic).

We compare our results with the results obtained in [25]
with identical DNN architecture, applied to handwritten
Chinese characters. Our results on G4 are unexpected to
us, as we expected G4 to have a similar difficulty as Han-
dwritten Chinese Recognition (HCR) without noise.

The much higher error rate obtained for handwritten cha-
racters (4.21%, see [25]) suggests that the stroke variabi-
lity and the deformation/placement of radicals present in
handwritten characters are significantly harder to generalize
from than the artificially generated characters from CCAP-
TCHA (G4), even if they are elastically distorted and con-
tain noise. Although we had no possibility to use exactly the
same categories as in [25], we checked visually that the com-
plexity of the categories from the two datasets (handwritten
and CCAPTCHA) is similar.

Only when the added noise becomes too intense as a con-
sequence of too many arcs intersecting the characters’ stro-
kes (G2 and G3) the DNNs start to have difficulties in re-
cognizing the artificially generated characters. This indi-
cates that by themselves the geometric distortions used in
CCAPTCHA are too low to confuse a DNN.

Handwritten Chinese and automatically distorted Chinese
characters in our synthesized datasets might appear to be
only slightly different, but they are significantly different
image objects for computers. Figure 9 shows some distorted
characters that are much harder to recognize than handwrit-

ten ones even for humans.

7. CONCLUSIONS
We for the first time have systematically analyzed Chi-

nese Captchas, and answered a fundamental question: is
the segmentation-resistance principle established for Capt-
chas using Roman characters applicable to Chinese based
designs? With deep learning techniques, we have offered
the first evidence that computers do recognize individual
Chinese characters well, regardless of distortion levels. This
result suggests that most real-world Chinese Captchas are
not secure, in contrast to common beliefs. Our result is also
applicable to Captcha designs based on other large-alphabet
languages such as Japanese.

In summary, we have the following lessons and guidelines
for Chinese Captcha design.

• Although most such Captchas are designed for Chinese
users alone, it is possible to design Chinese Captchas
that are universally usable. The trick is that each Chi-
nese character is effectively a picture, and thus it is po-
ssible to design a Captcha that is both a text scheme
and an image recognition scheme, simultaneously.

• In contrast to CCaptcha’s security argument, our work
suggests that CCaptcha, as is, is not secure. Given
its clever and counterintuitive idea, it is worthwhile
to improve it into a more secure design, rather than
throwing it away altogether.

• It is more demanding to break recognition-based Chi-
nese schemes than Roman-character ones. The for-
mer’s large alphabet does raise the bar for recognition
attacks with machine learning techniques.

• However, the principle of segmentation resistance is
applicable to Chinese Captchas. That is to say, they
have to be segmentation-resistant to be secure.

It is interesting future work to systematically study how
to design Chinese Captchas that are simultaneously secure
and usable.
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