645 research outputs found

    SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud

    Full text link
    Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern CNNs and the increasing diversity of deployed devices. A popular alternative comprises offloading CNN processing to powerful cloud-based servers. Nevertheless, by relying on the cloud to produce outputs, emerging mission-critical and high-mobility applications, such as drone obstacle avoidance or interactive applications, can suffer from the dynamic connectivity conditions and the uncertain availability of the cloud. In this paper, we propose SPINN, a distributed inference system that employs synergistic device-cloud computation together with a progressive inference method to deliver fast and robust CNN inference across diverse settings. The proposed system introduces a novel scheduler that co-optimises the early-exit policy and the CNN splitting at run time, in order to adapt to dynamic conditions and meet user-defined service-level requirements. Quantitative evaluation illustrates that SPINN outperforms its state-of-the-art collaborative inference counterparts by up to 2x in achieved throughput under varying network conditions, reduces the server cost by up to 6.8x and improves accuracy by 20.7% under latency constraints, while providing robust operation under uncertain connectivity conditions and significant energy savings compared to cloud-centric execution.Comment: Accepted at the 26th Annual International Conference on Mobile Computing and Networking (MobiCom), 202

    System Abstractions for Scalable Application Development at the Edge

    Get PDF
    Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which collect or generate huge amounts of data. Given diverse device capabilities and application requirements, data processing takes place across a range of settings, from on-device to a nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been studied extensively from the perspectives of job placement, scheduling and joint optimization. Typical approaches focus on performance optimization for individual applications. This often requires domain knowledge of the applications, but also leads to application-specific solutions. Application development and deployment over diverse scenarios thus incur repetitive manual efforts. There are two overarching challenges to provide system-level support for application development at the edge. First, there is inherent heterogeneity at the device hardware level. The execution settings may range from a small cluster as an edge cloud to on-device inference on embedded devices, differing in hardware capability and programming environments. Further, application performance requirements vary significantly, making it even more difficult to map different applications to already heterogeneous hardware. Second, there are trends towards incorporating edge and cloud and multi-modal data. Together, these add further dimensions to the design space and increase the complexity significantly. In this thesis, we propose a novel framework to simplify application development and deployment over a continuum of edge to cloud. Our framework provides key connections between different dimensions of design considerations, corresponding to the application abstraction, data abstraction and resource management abstraction respectively. First, our framework masks hardware heterogeneity with abstract resource types through containerization, and abstracts away the application processing pipelines into generic flow graphs. Further, our framework further supports a notion of degradable computing for application scenarios at the edge that are driven by multimodal sensory input. Next, as video analytics is the killer app of edge computing, we include a generic data management service between video query systems and a video store to organize video data at the edge. We propose a video data unit abstraction based on a notion of distance between objects in the video, quantifying the semantic similarity among video data. Last, considering concurrent application execution, our framework supports multi-application offloading with device-centric control, with a userspace scheduler service that wraps over the operating system scheduler

    Fog Computing

    Get PDF
    Everything that is not a computer, in the traditional sense, is being connected to the Internet. These devices are also referred to as the Internet of Things and they are pressuring the current network infrastructure. Not all devices are intensive data producers and part of them can be used beyond their original intent by sharing their computational resources. The combination of those two factors can be used either to perform insight over the data closer where is originated or extend into new services by making available computational resources, but not exclusively, at the edge of the network. Fog computing is a new computational paradigm that provides those devices a new form of cloud at a closer distance where IoT and other devices with connectivity capabilities can offload computation. In this dissertation, we have explored the fog computing paradigm, and also comparing with other paradigms, namely cloud, and edge computing. Then, we propose a novel architecture that can be used to form or be part of this new paradigm. The implementation was tested on two types of applications. The first application had the main objective of demonstrating the correctness of the implementation while the other application, had the goal of validating the characteristics of fog computing.Tudo o que não é um computador, no sentido tradicional, está sendo conectado à Internet. Esses dispositivos também são chamados de Internet das Coisas e estão pressionando a infraestrutura de rede atual. Nem todos os dispositivos são produtores intensivos de dados e parte deles pode ser usada além de sua intenção original, compartilhando seus recursos computacionais. A combinação desses dois fatores pode ser usada para realizar processamento dos dados mais próximos de onde são originados ou estender para a criação de novos serviços, disponibilizando recursos computacionais periféricos à rede. Fog computing é um novo paradigma computacional que fornece a esses dispositivos uma nova forma de nuvem a uma distância mais próxima, onde “Things” e outros dispositivos com recursos de conectividade possam delegar processamento. Nesta dissertação, exploramos fog computing e também comparamos com outros paradigmas, nomeadamente cloud e edge computing. Em seguida, propomos uma nova arquitetura que pode ser usada para formar ou fazer parte desse novo paradigma. A implementação foi testada em dois tipos de aplicativos. A primeira aplicação teve o objetivo principal de demonstrar a correção da implementação, enquanto a outra aplicação, teve como objetivo validar as características de fog computing

    Energy Aware Runtime Systems for Elastic Stream Processing Platforms

    Get PDF
    Following an invariant growth in the required computational performance of processors, the multicore revolution started around 20 years ago. This revolution was mainly an answer to power dissipation constraints restricting the increase of clock frequency in single-core processors. The multicore revolution not only brought in the challenge of parallel programming, i.e. being able to develop software exploiting the entire capabilities of manycore architectures, but also the challenge of programming heterogeneous platforms. The question of “on which processing element to map a specific computational unit?”, is well known in the embedded community. With the introduction of general-purpose graphics processing units (GPGPUs), digital signal processors (DSPs) along with many-core processors on different system-on-chip platforms, heterogeneous parallel platforms are nowadays widespread over several domains, from consumer devices to media processing platforms for telecom operators. Finding mapping together with a suitable hardware architecture is a process called design-space exploration. This process is very challenging in heterogeneous many-core architectures, which promise to offer benefits in terms of energy efficiency. The main problem is the exponential explosion of space exploration. With the recent trend of increasing levels of heterogeneity in the chip, selecting the parameters to take into account when mapping software to hardware is still an open research topic in the embedded area. For example, the current Linux scheduler has poor performance when mapping tasks to computing elements available in hardware. The only metric considered is CPU workload, which as was shown in recent work does not match true performance demands from the applications. Doing so may produce an incorrect allocation of resources, resulting in a waste of energy. The origin of this research work comes from the observation that these approaches do not provide full support for the dynamic behavior of stream processing applications, especially if these behaviors are established only at runtime. This research will contribute to the general goal of developing energy-efficient solutions to design streaming applications on heterogeneous and parallel hardware platforms. Streaming applications are nowadays widely spread in the software domain. Their distinctive characiteristic is the retrieving of multiple streams of data and the need to process them in real time. The proposed work will develop new approaches to address the challenging problem of efficient runtime coordination of dynamic applications, focusing on energy and performance management.Efter en oföränderlig tillväxt i prestandakrav hos processorer, började den flerkärniga processor-revolutionen för ungefär 20 år sedan. Denna revolution skedde till största del som en lösning till begränsningar i energieffekten allt eftersom klockfrekvensen kontinuerligt höjdes i en-kärniga processorer. Den flerkärniga processor-revolutionen medförde inte enbart utmaningen gällande parallellprogrammering, m.a.o. förmågan att utveckla mjukvara som använder sig av alla delelement i de flerkärniga processorerna, men också utmaningen med programmering av heterogena plattformar. Frågeställningen ”på vilken processorelement skall en viss beräkning utföras?” är väl känt inom ramen för inbyggda datorsystem. Efter introduktionen av grafikprocessorer för allmänna beräkningar (GPGPU), signalprocesserings-processorer (DSP) samt flerkärniga processorer på olika system-on-chip plattformar, är heterogena parallella plattformar idag omfattande inom många domäner, från konsumtionsartiklar till mediaprocesseringsplattformar för telekommunikationsoperatörer. Processen att placera beräkningarna på en passande hårdvaruplattform kallas för utforskning av en designrymd (design-space exploration). Denna process är mycket utmanande för heterogena flerkärniga arkitekturer, och kan medföra fördelar när det gäller energieffektivitet. Det största problemet är att de olika valmöjligheterna i designrymden kan växa exponentiellt. Enligt den nuvarande trenden som förespår ökad heterogeniska aspekter i processorerna är utmaningen att hitta den mest passande placeringen av beräkningarna på hårdvaran ännu en forskningsfråga inom ramen för inbyggda datorsystem. Till exempel, den nuvarande schemaläggaren i Linux operativsystemet är inkapabel att hitta en effektiv placering av beräkningarna på den underliggande hårdvaran. Det enda mätsättet som används är processorns belastning vilket, som visats i tidigare forskning, inte motsvarar den verkliga prestandan i applikationen. Användning av detta mätsätt vid resursallokering resulterar i slöseri med energi. Denna forskning härstammar från observationerna att dessa tillvägagångssätt inte stöder det dynamiska beteendet hos ström-processeringsapplikationer (stream processing applications), speciellt om beteendena bara etableras vid körtid. Denna forskning kontribuerar till det allmänna målet att utveckla energieffektiva lösningar för ström-applikationer (streaming applications) på heterogena flerkärniga hårdvaruplattformar. Ström-applikationer är numera mycket vanliga i mjukvarudomän. Deras distinkta karaktär är inläsning av flertalet dataströmmar, och behov av att processera dem i realtid. Arbetet i denna forskning understöder utvecklingen av nya sätt för att lösa det utmanade problemet att effektivt koordinera dynamiska applikationer i realtid och fokus på energi- och prestandahantering

    Computation Offloading in Multi-access Edge Computing using Deep Sequential Model based on Reinforcement Learning

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Multi-access Edge Computing (MEC) is an emerging paradigm which utilizes computing resources at the network edge to deploy heterogeneous applications and services. In the MEC system, mobile users and enterprises can offload computation-intensive tasks to nearby computing resources to reduce latency and save energy. When users make offloading decisions, the task dependency needs to be considered. Due to the NP-hardness of the offloading problem, the existing solutions are mainly heuristic, and therefore have difficulties in adapting to the increasingly complex and dynamic applications. To address the challenges of task dependency and adapting to dynamic scenarios, we propose a new Deep Reinforcement Learning (DRL) based offloading framework, which can efficiently learn the offloading policy uniquely represented by a specially designed Sequence-to-Sequence (S2S) neural network. The proposed DRL solution can automatically discover the common patterns behind various applications so as to infer an optimal offloading policy in different scenarios. Simulation experiments were conducted to evaluate the performance of the proposed DRL-based method with different data transmission rates and task numbers. The results show that our method outperforms two heuristic baselines and achieves nearly optimal performance.Engineering and Physical Sciences Research Council (EPSRC
    corecore