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Abstract—Multi-access Edge Computing (MEC) is an
emerging paradigm which utilizes computing resources
at the network edge to deploy heterogeneous applications
and services. In the MEC system, mobile users and enter-
prises can offload computation-intensive tasks to nearby
computing resources to reduce latency and save energy.
When users make offloading decisions, the task depen-
dency needs to be considered. Due to the NP-hardness of
the offloading problem, the existing solutions are mainly
heuristic, and therefore have difficulties in adapting to
the increasingly complex and dynamic applications. To
address the challenges of task dependency and adapting to
dynamic scenarios, we propose a new Deep Reinforcement
Learning (DRL) based offloading framework, which can
efficiently learn the offloading policy uniquely represented
by a specially designed Sequence-to-Sequence (S2S) neural
network. The proposed DRL solution can automatically
discover the common patterns behind various applications
so as to infer an optimal offloading policy in different sce-
narios. Simulation experiments were conducted to evaluate
the performance of the proposed DRL-based method with
different data transmission rates and task numbers. The
results show that our method outperforms two heuristic
baselines and achieves nearly optimal performance.

I. INTRODUCTION

The technological evolution of smartphones,
tablets, and wearable devices is driving the emer-
gence of novel computationally demanding services
and applications such as virtual reality (VR), aug-
mented reality (AR), face recognition, and mobile
healthcare. Although new generations of mobile de-
vices possess more computing power, they are still
unable to run the computation-intensive applications
efficiently. To address this challenge, Multi-access

Edge Computing (MEC) [1] has been proposed to
move computing and storage out of the remote cloud
and closer to the user. Therefore, the computation-
intensive applications in MEC can be offloaded to
computing resources at the network edge in order
to achieve high Quality-of-Service (QoS) and low
energy consumption.

An MEC application must be able to decide
which tasks should be offloaded to nearby com-
puting resources. A good task offloading strategy
can save energy on devices and reduce the response
time of applications. On the contrary, an inap-
propriate offloading policy can cause high energy
consumption and poor response time. The existing
works generally consider independent tasks [2] [3]
offloading or dependent tasks offloading [4] [5]. For
example, Lin et al. [4] propose an offloading method
with task dependency on different processors based
on Heterogeneous Earliest Finish Time (HEFT). De
Maio et al. [5] propose a heuristic based approach to
find a trade-off solution among application runtime,
battery lifetime and user cost. Most of the existing
works on offloading strategies are based on heuristic
algorithms, because of the NP-hardness of MEC
offloading. However, with the increasing complexity
of MEC applications and wireless network architec-
ture, it is hard for any heuristic offloading strategy
to fully adapt to the various scenarios in MEC.

In order to tackle this issue, we propose a
deep reinforcement learning (DRL) based offloading
framework. Recent breakthroughs in DRL have been
achieving great successes in different areas includ-
ing gaming, robotics, resource allocation, computer
systems, etc. One of the most well-known achieve-
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ment is AlphaGo, which beats the best human play-
ers in the game of Go [6]. DRL has a strong ability
to handle complex problems by efficiently learning
from experiences, and therefore it is naturally suited
to obtain the optimal offloading policies in various
complicated MEC scenarios.

Using DRL methods in MEC has multiple ben-
efits. First, the dynamics of MEC systems can be
highly complex and hard to model. DRL methods
treat the complicated system as a black box and
interact with it to learn the optimal policies with-
out modelling the system dynamics. Second, DRL
methods combine Deep Neural Network (DNN)
which can effectively extract hidden patterns from
large and complex datasets of heterogeneous MEC
applications.

Although there are emerging DRL-based offload-
ing methods [7], [8], [9], they assume that the
tasks are independent. In our work, we consider
the general task dependency and model it as a
Directed Acyclic Graph (DAG). To the best of our
knowledge, this work is the first of its kind to solve
the offloading problem in MEC considering the
general task. Inspired by the previous work [10] on
Travelling Salesman Problem (TSP), we utilize the
Sequence-to-Sequence (S2S) neural network with
DRL training to solve the challenging problem of
task offloading in MEC.

Although there are outstanding merits in DRL
methods, there remain significant challenges when
applying DRL to solve task offloading problems
in MEC. One key challenge is how to represent
the state and action space as well as the reward
function in the RL framework for MEC offloading.
Moreover, an appropriate DNN structure is needed
for representing an effective offloading policy (i.e., a
mapping from state to action). This paper proposes
effective DRL methods to address these challenges
for task offloading in MEC. The main contributions
are concluded as follows:
• The offloading problem in MEC is formulated

as a Markov Decision Process (MDP). More
specifically, we model the offloading plan and
the DAG of tasks as the state, the offloading
decision for each task as the action and the
negative increment of the running cost as the
reward.

• To capture the characteristics of DAGs, a new
S2S neural network is proposed for state repre-
sentation. We encode the vertices and adjacent

information into embedding vectors, which are
used as the input of the S2S neural network.
The output is the sequence vectors representing
the offloading policies for DAGs.

The rest of this article is organized as follows.
The proposed DRL-based offloading architecture
is described in Section II. The model details of
the offloading solution are presented in Section
III. Simulation results are presented and discussed
in Section IV. Finally, Section VI concludes this
article.

II. OVERALL DESIGN OF THE DRL-BASED
OFFLOADING FRAMEWORK IN MULTI-ACCESS

EDGE COMPUTING

In this section, we firstly introduce the basic
concept of MEC and the formulation of the task
offloading problem. The proposed DRL-based of-
floading framework is then presented in detail.

A. Multi-access Edge Computing (MEC)
MEC utilizes computing and storage resources

deployed at the network edge for running applica-
tions and computation tasks. Numerous MEC appli-
cations have emerged in different areas, which im-
prove the quality of living and enhance productivity.
Meanwhile, a variety of applications such as social
networking, gaming, and AR become increasingly
complex, and therefore demand more computing
resources and energy. Offloading some tasks in these
applications to MEC servers can increase the QoS
and reduce energy consumption. Another attractive
application scenario of MEC offloading is in the
intelligent transportation system, where vehicles can
offload the tasks of sensory data analysis and navi-
gation path identification to road side units (RSUs)
for fast processing. However, the diversity of ap-
plication scenarios brings about unpredicted chal-
lenges to offloading methods. Therefore, efficient
and flexible task offloading methods are crucial to
the success of MEC.

B. Task offloading in MEC: Problem Formulation
In general, a mobile application consists of dif-

ferent tasks with dependencies. For example, a face
recognition application consists of two main logical
blocks: a face detector and a classifier, which can
be composed into several dependent tasks [11]. We
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Fig. 1. The proposed DRL-based computation offloading framework in MEC systems.

model a mobile application by using a DAG, where
a vertex represents a task in the application and a
directed edge represents the dependency between
tasks. A task can start to run only when all of its
predecessors are finished.

We assume all tasks in the application DAG can
be offloaded to an MEC server or run locally on
mobile devices. The MEC server receives offloaded
tasks and executes them one by one. After finishing
executing each task, the processing results will be
returned to mobile devices. Therefore, the offloading
cost of a task includes the cost of uploading the
task data, executing the task on the server, and
downloading the execution results.

We assume that the required CPU cycles and
transmission data sizes (both uplink and downlink)
for each task in a given DAG are known as a
prior. A scheduling plan of a DAG is defined as
a sequence of offloading decisions for all the tasks
in the DAG. Solving the offloading problem means
to find an optimal scheduling plan where the total
running cost is minimal. The running cost is a
general definition depending on the specific service
request. For example, the total running cost can
be latency if it is a delay-sensitive service request,
or energy consumption if it is an energy-efficient
service request, or the combination of both if it is

a hybrid service request. In this work, we solely
consider latency as the running cost, thus the target
is to minimize the overall latency of the service.

C. The proposed DRL-based Framework

As shown in Fig. 1, the DRL-based offloading
framework is integrated into the MEC system. In
the application layer, an offloading scheduler is
embedded to each mobile device, which will decide
the scheduling targets for tasks. A key component
for the offloading scheduler is an S2S neural net-
work, which can make offloading decisions through
network inference. In the MEC layer, a task queue is
used to receive offloaded tasks from mobile devices
while an MEC processing unit executes those tasks.
The Cloud layer includes two components: one
is the task graph pool which is used to gather
application DAGs from mobile devices; the other
is the scheduler training module which conducts
DRL training based on the gathered DAGs and
the environment. In the following, we explain the
training and offloading data flows of our framework.
• Training Data Flow: Application DAGs are

gathered into the task graph pool through MEC
servers. Next, the scheduler training module
starts to train the S2S neural network based
on the task graph pool. Afterwards, the trained
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neural network parameters are sent back to
mobile devices. The training procedure is done
in cloud because the training for deep neural
networks requires powerful computing, while
we need to make full use of the limited re-
sources in MEC servers to provide better QoS
for applications.

• Offloading Data Flow: With the trained neural
network, forward propagation is run to make
offloading decisions for tasks. Next, the tasks
are either offloaded to the task queue and
then processed by the MEC processing unit,
or executed by the local processing unit.

III. MODELS AND ALGORITHMS FOR THE
DRL-BASED TASK OFFLOADING SOLUTION

In this section, we present the details of our DRL-
based offloading solution. We first briefly introduce
the key concepts of DRL. The offloading problem
is then formulated as an MDP and a new S2S
neural network is proposed to model the offloading
policy. Finally, the methods of the policy network
inferencing and DRL training are presented.

A. Deep Reinforcement Learning

In the framework of RL, an agent interacts with
the environment and learns an optimal policy by
trial and error for sequential decision-making. For-
mally, a policy is defined as the probability of taking
an action after observing a state of the environment.
When the agent takes an action, the environment
provides a numerical reward and shifts its state. The
goal of RL is to learn an optimal policy which can
get the maximal total reward.

Recently, DRL was proposed to handle large state
spaces by combining RL with DNN. The DRL
methods can be classified into two categories: value-
based and policy-based. In value-based methods, the
value function is used to represent how good is the
state. Value-based methods indirectly obtain optimal
policy via learning the optimal value function. One
typical value-based method is deep Q-Learning [12].
For policy-based methods, the optimal policy is
trained directly through policy gradient descent.
Specifically, the policy is represented through a
probability model (e.g. DNN) rather than greedily
selecting actions based on the value function.

Mobile Devices MEC Server

Environment
ActionState &

Reward
Task Graph 

Pool

Agent

Fig. 2. Modelling the MEC offloading as a RL problem.

B. The MDP model for Task Offloading
The factors that influence the offloading decision

of each task include the DAG structure, the task
properties and the states of the MEC server and
mobile devices. As shown in Fig. 2, the MEC
server, mobile devices, mobile applications, and the
wireless channel are considered as the environment.
The environment is treated as a black box in DRL.
Therefore, we can ignore the dynamics of the envi-
ronment and only observe the reward signals and
states from it. The state space, action space and
reward function are designed as follows:
• State Space: The state space is represented

as a combination of the encoded DAG and
offloading plan. Formally, we denote a state as
s = (G, A1:i) where G represents the DAG and
A1:i is a vector representing the offloading plan
for the first i tasks. More specifically, G con-
sists of a sequence of task embedding vectors,
and each of them is a concatenation of three
vectors: 1) A vector that embeds the current
task index i and the estimated task costs. 2)
A vector that contains the direct predecessors’
indices. 3) A vector that contains the direct
successors’ indices.

• Action Space: In our setting, a task can be
offloaded to an MEC server or executed in a
local device, thus we define the action space as
A = {1, 0}, where 1 represents offloading and
0 stands for local execution.

• Reward Function: The objective of the of-
floading problem is to minimize the total la-
tency of tasks. To achieve this objective, we
first design the reward function as the estimated
negative increment of the latency after making
a decision (offloading or local execution). Next,
the DRL method will learn an optimal offload-
ing policy to get the maximal accumulative



5

Task DAG

……

Offloading 
Results

Task Queue

Step 1: task 
serialization 

Step 3: 
Offloading 
and 
executing 
tasks

… …

0 1 0…

attention 
vector

Offloading 
Scheduler

Step 2: Inferencing 
by policy network

Task sequence

Embeddings

MEC 
Processing Unit

Mobile 
Devices

Encoder Decoder
MEC 
Server

Local 
Processing Unit

Fig. 3. Detailed structure of the S2S neural network and the process of task offloading.

reward, which is equivalent to the minimal total
latency.

C. S2S Policy Network Architecture
According to the definition of our state space,

we can convert the offloading problem into an S2S
prediction problem where the input sequence is
the task embedding vectors and the output is the
decision sequence for tasks. The policy is defined
as the probability distribution over the actions for
a task after observing the state. For a DAG with
n tasks, an offloading plan represents a decision
sequence for all tasks. Therefore, the probability
of having the offloading plan can be obtained by
applying chain rules of probability on the policy
for each task.

In our proposed method, we use an S2S archi-
tecture with attention mechanism [13] to model
the policy. As shown in Fig. 3, our proposed S2S
architecture consists of encoder and decoder parts.
Both the encoder and decoder are implemented by
a Recurrent Neural Network (RNN). The encoder
is used to encode the sequence of input tasks and
the decoder outputs the offloading decision for each
task.

D. Task Offloading and Model Training Process
Fig. 3 illustrates the details of the offloading

process, which consists of three steps:
Step 1: The DAG is transformed into task se-

quences by a specially designed topological sort
referring to the estimated average finish time (EFT).
We calculate the EFT of each task by summing up

the running cost of the current task and the maximal
EFT of previous tasks. The tasks are then indexed
in ascending order of EFT.

Step 2: The task sequence is converted into
embedding vectors as defined in state space. The
embedding vectors are fed into the encoder. After
encoding, the output of the encoder will then be fed
to the decoder. At each decoding step, the decoder
outputs the action for each task and feeds the action
as the input of the next decoding step.

Step 3: With the results of offloading decisions,
each task is offloaded to the MEC server or executed
in the local processing unit of the mobile device.

According to our definition of MDP for this
offloading problem, the training goal is to obtain
an optimal policy to maximize the expected value
of the cumulative sum of rewards. Since we use the
S2S neural network with parameters θ to represent
the policy, the training goal is then equivalent to
obtaining an optimal θ for the S2S neural network.

The S2S neural network is trained via the Prox-
imal Policy Optimization (PPO) [14] algorithm
which has a high training performance and stability.
At the beginning of PPO, two S2S neural networks
are initialized with the same parameters. One neural
network is used for sampling, and the other is
for updating. In each training loop, the training
process can be divided into two stages: exploration
and exploitation. At the exploration stage, we use
the sampling neural network to sample the action
sequence of each DAG based on the sequence of
initial states. Rewards are obtained by applying
the sampled actions to the environment. At the
exploitation stage, the gradients of the loss function
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defined in PPO are calculated based on the collected
sequences of states, actions and rewards. We then
run the minibatch stochastic gradient ascent on the
updating neural network for several epochs. At the
end of each training loop, the parameters of the two
S2S neural networks are synchronized.

IV. NUMERICAL RESULTS

In order to simulate the variety of user applica-
tions, we implement a synthetic DAG generator to
randomly generate application graphs. The genera-
tor produces DAGs with the following parameters:
• n: the number of tasks in each DAG.
• fat: the width of the DAG. A small value can

lead to a thin DAG while a large value results
in a fat DAG.

• density: the numbers of dependencies between
tasks of two consecutive DAG layers.

• ccr: communication to computation ratio,
which is the ratio of the average communica-
tion cost to the average computation cost. A
low ccr means that the application is compu-
tation intensive while a high ccr means that it
is communication intensive.

Eight DAG sets with different task numbers n and
various characteristics are generated for evaluating
the performance of the proposed offloading method.
We increase n from 10 to 45 with a step size of
5. We randomly select fat from the set [0.3, 0.5,
0.7], density from [0.6, 0.7, 0.8] and ccr from [0.3,
0.4, 0.5]. Notice that since most of the mobile
applications are computation intensive, we set the
ccr less than 0.5. For each generated DAG, we
randomly assign the transmission data size from
5KB to 50KB for each task. The number of CPU
cycles required by each task ranges from 10 to 100
megacycles.

We assume a small cell network where mobile
devices have different transmission rates depending
on their distances from the Access Point (a longer
distance means a smaller rate). The transmission
rates from a distal end to a proximal end are set
as [1.2Mbps, 7Mbps, 20Mbps, 30Mbps, 65Mbps].
The computing capabilities of the mobile device and
MEC server are 1GHz and 10GHz, respectively. In
order to evaluate the impact of the transmission rate
to our proposed method, we generate 100 different
DAGs with 10 tasks each and run our method on
the fly. We implement the S2S neural networks and

Fig. 4. The average latency of offloading methods with different
transmission rates.

TABLE I
THE AVERAGE LATENCY (ms) OF OFFLOADING METHODS WITH

DIFFERENT TASK NUMBERS (n).

Optimal DRL-based HEFT-based Round-robin
n=10 347.14 349.7 365.05 436.53
n=15 528.25 537.63 559.31 654.88
n=20 616.56 632.80 672.57 771.45
n=25 764.98 790.79 833.90 948.71
n=30 N/A 899.7 968.52 1066.62
n=35 N/A 1096.86 1168.28 1283.87
n=40 N/A 1185.59 1262.06 1372.12
n=45 N/A 1358.26 1450.44 1573.01

PPO algorithm by using Tensorflow. The Optimal
algorithm is implemented via exhaustive search in
solution space. We also compared our method with
two heuristic baselines: the HEFT-based algorithm
and Round-robin. Specifically, the HEFT-based al-
gorithm is implemented by two steps: 1) it first
prioritizes the tasks in DAG following the strategy
in work [4]. 2) the tasks are then scheduled to the
resource (local processor or remote MEC server)
with earliest estimated finish time.

Fig. 4 shows the comparison results of the av-
erage latency of applications between different of-
floading methods. When the transmission rate is
extremely low, the Round-robin algorithm results
in huge latency because offloading tasks with low
transmission rate can lead to the high commu-
nication cost. The HEFT-based algorithm gener-
ally performs well via greedy selecting resources
according to the estimated finish time. However,
greedy selecting can easily lead to local optimal.
The DRL-based algorithm outperforms the heuristic
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baselines and approximates the optimal solutions in
all scenarios.

We further run the experiment on varying DAG
sets with different task numbers. The transmission
rate is fixed at 7Mbps. The results are shown in
Table I. When n is larger than 25, it is impos-
sible to find the optimal solution in a reasonable
amount of time. The table shows that the DRL-
based method can achieve nearly optimal results
with polynomial time complexity. In all cases, the
DRL-based method outperforms both the HEFT-
based and the Round-Robin algorithms.

V. CONCLUSION

In this article, we investigate the challenging
problem of computation offloading in MEC systems.
We first introduce the MEC system and describe
the offloading problem in detail. In order to solve
the problem, we propose a novel DRL-based of-
floading framework, where the offloading problem
is modelled as an MDP and an S2S neural network
is designed to represent the offloading policy. The
policy network is trained using a tailored policy
gradient method. Numerical results show that our
proposed method achieves lower latency than two
heuristic baselines in scenarios with different trans-
mission rates and task numbers. Moreover, our
method can obtain the nearly optimal results while
having polynomial time complexity.
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