9,999 research outputs found

    Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest

    Get PDF
    The automatic detection of pulse during out-of-hospital cardiac arrest (OHCA) is necessary for the early recognition of the arrest and the detection of return of spontaneous circulation (end of the arrest). The only signal available in every single defibrillator and valid for the detection of pulse is the electrocardiogram (ECG). In this study we propose two deep neural network (DNN) architectures to detect pulse using short ECG segments (5 s), i.e., to classify the rhythm into pulseless electrical activity (PEA) or pulse-generating rhythm (PR). A total of 3914 5-s ECG segments, 2372 PR and 1542 PEA, were extracted from 279 OHCA episodes. Data were partitioned patient-wise into training (80%) and test (20%) sets. The first DNN architecture was a fully convolutional neural network, and the second architecture added a recurrent layer to learn temporal dependencies. Both DNN architectures were tuned using Bayesian optimization, and the results for the test set were compared to state-of-the art PR/PEA discrimination algorithms based on machine learning and hand crafted features. The PR/PEA classifiers were evaluated in terms of sensitivity (Se) for PR, specificity (Sp) for PEA, and the balanced accuracy (BAC), the average of Se and Sp. The Se/Sp/BAC of the DNN architectures were 94.1%/92.9%/93.5% for the first one, and 95.5%/91.6%/93.5% for the second one. Both architectures improved the performance of state of the art methods by more than 1.5 points in BAC.This work was supported by: The Spanish Ministerio de Economía y Competitividad, TEC2015-64678-R, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), UPV/EHU via GIU17/031 and the Basque Government through the grant PRE_2018_2_0260

    Research into the formation of a soccer curriculum in early childhood education Through the action research with students belonging to IPU’s soccer club and nursery school children

    Get PDF
    This six-month research examined the influence of playing soccer on the mental and physical development of 5 year old nursery school children under the corporation of students from IPU’s soccer club. Our objectives were to observe: 1) how soccer is a stimulative for young children as a content of early childhood education, 2) what kinds of effects children gain from a developmental point of view. 3) the possibility developing a new area of the early childhood education and care. Our conclusions suggest the following findings: 1)soccer is effective for improving children\u27s health, motor skills and the formation of human relations ability, 2)the most important coaching method for young children is child-oriented[without strong teacher intervention eacherintervention]as children develop their ability in small group, 3)it provides numerous chances to understand each child’s personality more deeply through such activities

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    Sudden Cardiac Arrest Prediction through Heart Rate Variability Analysis

    Get PDF
    The increase in popularity for wearable technologies (see: Apple Watch and Microsoft Band) has opened the door for an Internet of Things solution to healthcare. One of the most prevalent healthcare problems today is the poor survival rate of out-of hospital sudden cardiac arrests (9.5% on 360,000 cases in the USA in 2013). It has been proven that heart rate derived features can give an early indicator of sudden cardiac arrest, and that providing an early warning has the potential to save many lives. Many of these new wearable devices are capable of providing this warning through their heart rate sensors. This thesis paper introduces a prospective dataset of physical activity heart rates collected via Microsoft Band. This dataset is indicative of the heart rates that would be observed in the proposed Internet of Things solution. This dataset is combined with public heart rate datasets to provide a dataset larger than many of the ones used in related works and more indicative of out-of-hospital heart rates. This paper introduces the use of LogitBoost as a classifier for sudden cardiac arrest prediction. Using this technique, a five minute warning of sudden cardiac arrest is provided with 96.36% accuracy and F-score of 0.9375. These results are better than existing solutions that only include in-hospital data
    corecore