117 research outputs found

    Computer assisted detection of polycystic ovary morphology in ultrasound images

    Get PDF
    Polycystic ovary syndrome (PCOS) is an endocrine abnormality with multiple diagnostic criteria due to its heterogenic manifestations. One of the diagnostic criterion includes analysis of ultrasound images of ovaries for the detection of number, size, and distribution of follicles within the ovary. This involves manual tracing of follicles on the ultrasound images to determine the presence of a polycystic ovary (PCO). A novel method that automates PCO morphology detection is described. Our algorithm involves automatic segmentation of follicles from ultrasound images, quantifying the attributes of the segmented follicles using stereology, storing follicle attributes as feature vectors, and finally classification of the feature vector into two categories. The classification categories are PCO morphology present and PCO morphology absent. An automatic PCO diagnostic tool would save considerable time spent on manual tracing of follicles and measuring the length and width of every follicle. Our procedure was able to achieve classification accuracy of 92.86% using a linear discriminant classifier. Our classifier will improve the rapidity and accuracy of PCOS diagnosis, and reduce the chance of the severe health implications that can arise from delayed diagnosis

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography

    Get PDF
    Pathological ovary is categorized into cystic tumors, solid tumors and mixed, according to the content of the affected ovary. Accordingly, the degree of benignity or malignity thereof is established. The imaging study for the preliminary morphological assessment of PO is ultrasound, in its pelvic and transvaginal modalities, for which wellestablished criteria are available. Once the ultrasound findings suggest malignancy, complementary studies such as abdominal-pelvic tomography images and tumor markers are requested. This type of images has challenging problems called noise, artifacts and low contrast. In this paper, in order to address these problems, a computational technique is proposed to characterize a pathological ovary. To do this, a thresholding and the median and gradient magnitude filters are applied, preliminarily, to complete the preprocessing stage. Then, during the segmentation, the algorithm of region growing is used to extract the threedimensional morphology of the pathological ovary. Using this morphology, the volume of the pathological ovary is calculated and it allows selecting the surgical-medical behavior to approach this kind of ovary. The validation of the proposed technique indicates that the results are promising. This technique can be useful in the detection and monitoring the diseases linked to pathological ovary

    Segmentation of human ovarian follicles from ultrasound images acquired in vivo using geometric active contour models and a naïve Bayes classifier

    Get PDF
    Ovarian follicles are spherical structures inside the ovaries which contain developing eggs. Monitoring the development of follicles is necessary for both gynecological medicine (ovarian diseases diagnosis and infertility treatment), and veterinary medicine (determining when to introduce superstimulation in cattle, or dividing herds into different stages in the estrous cycle).Ultrasound imaging provides a non-invasive method for monitoring follicles. However, manually detecting follicles from ovarian ultrasound images is time consuming and sensitive to the observer's experience. Existing (semi-) automatic follicle segmentation techniques show the power of automation, but are not widely used due to their limited success.A new automated follicle segmentation method is introduced in this thesis. Human ovarian images acquired in vivo were smoothed using an adaptive neighbourhood median filter. Dark regions were initially segmented using geometric active contour models. Only part of these segmented dark regions were true follicles. A naïve Bayes classifier was applied to determine whether each segmented dark region was a true follicle or not. The Hausdorff distance between contours of the automatically segmented regions and the gold standard was 2.43 ± 1.46 mm per follicle, and the average root mean square distance per follicle was 0.86 ± 0.49 mm. Both the average Hausdorff distance and the root mean square distance were larger than those reported in other follicle segmentation algorithms. The mean absolute distance between contours of the automatically segmented regions and the gold standard was 0.75 ± 0.32 mm, which was below that reported in other follicle segmentation algorithms.The overall follicle recognition rate was 33% to 35%; and the overall image misidentification rate was 23% to 33%. If only follicles with diameter greater than or equal to 3 mm were considered, the follicle recognition rate increased to 60% to 63%, and the follicle misidentification rate increased slightly to 24% to 34%. The proposed follicle segmentation method is proved to be accurate in detecting a large number of follicles with diameter greater than or equal to 3 mm

    KLASIFIKASI POLYCYSTIC OVARY SYNDROME BERDASARKAN CITRA ULTRASONOGRAFI MENGGUNAKAN PRINCIPAL COMPONENT ANALYSIS DAN NAÏVE BAYES UNTUK MEMBANTU MENDETEKSI KESUBURAN WANITA

    Get PDF
    Polycystic Ovary Syndrome (PCOS) adalah kelainan sindrom yang diderita wanita di sistem reproduksinya, seseorang dikatakan menderita Polycystic Ovary Syndrome (PCOS) jika ada lebih dari 12 follicle berukuran 2-9 mm atau bertambah besarnya volume follicle di ovarium hingga lebih dari 10 cm3[3]. Saat ini untuk mendeteksi Polycystic Ovary Syndrome (PCOS) dokter harus melakukan scan USG, dan secara manual menghitung jumlah follicle yang ditandai dengan area hitam di gambar. Pada penelitian sebelumnya [1, 3, 5] hanya berfokus pada peningkatan kualitas citra dan juga pendeteksian ukuran dan jumlah follicle untuk mempermudah tenaga medis melihat follicle dan menentukan diagnosis pasien. Sehingga saat ini dokter membutuhkan suatu sistem yang dapat membantunya dalam mendiagnosis Polycystic Ovary Syndrome (PCOS) secara otomatis berdasarkan citra USG untuk pendeteksian kesuburan wanita. Pada tugas akhir ini dibangun sebuah sistem klasifikasi dengan menggunakan kombinasi metode Principal Component Analysis (PCA) yang berfungsi sebagai dimensi reduksi dan Naïve Bayes yang merupakan salah satu turunan dari Bayesian Network sebagai classifiernya. Dari hasil pengujian menggunakan metode k-fold cross validation dengan k=8 dan pengujian dilakukan sebanyak 50x pengujian, dapat dilihat sistem yang dibangun dengan menggunakan metode Principal Component Analysis (PCA) dan Naïve Bayes, memiliki performansi rata-rata F1 Score tertinggi sebesar 84.76%, dengan parameter uji jumlah distribusi data ditiap kelas pada data training masing-masing 40 gambar, dan jumlah principal component sebanyak 53 serta data telah dinormalisasi

    Endometriosis

    Get PDF
    Endometriosis is a common and serious disease that is estimated to cost the world economy $9.7 billion a year. Most of these costs come from lost productivity at work. As such, it is important to help women receive earlier diagnosis and more effective treatment. This book presents a comprehensive overview of endometriosis, including information on molecular diagnostics and imaging methods for early detection as well as new, less-invasive treatments that preserve women’s fertility

    A matter of timing : A modelling-based investigation of the dynamic behaviour of reproductive hormones in girls and women

    Get PDF
    Hypothalamus-hypofyse-gonade aksen er en del av det kvinnelige endokrine systemet, og regulerer evnen til reproduksjon. Hormoner produsert og utskilt fra tre kjertler (hypotalamus, hypofysen, eggstokkene) påvirker hverandre via tilbakemeldingsinteraksjoner, som er nødvendige for å etablere en regelmessig menstruasjonssyklus hos kvinner. Matematiske modeller som forutsier utviklingen av slike hormonkonsentrasjoner og modning av eggstokkfollikler er nyttige verktøy for å forstå menstruasjonssyklusens dynamiske oppførsel. Slike modeller kan for eksempel hjelpe oss med å undersøke patologiske tilstander som endometriose og polycystisk ovariesyndrom. Videre kan de brukes til systematiske undersøkelser av effekten av medikamenter på det kvinnelige endokrine systemet. Derfor kan vi potensielt bruke slike menstruasjonsyklusmodeller som kliniske beslutningsstøttessystemer. Vi trenger modeller som forutsier hormonkonsentrasjoner sammen med modningen av eggstokkfollikler hos enkeltindivider gjennom påfølgende sykluser. Dette for å kunne simulere hormonelle behandlinger som stimulerer vekst av eggstokkfolliklene (eggstokkstimuleringsprotokoller). Her legger jeg fram et forslag til en matematisk menstruasjonsyklusmodell og viser modellens evne til å forutsi resultatet av eggstokkstimuleringsprotokoller. For å kalibrere denne typen modell trenges individuelle tidsseriedata. Innsamling av slike data er tidskrevende, og forutsetter høy grad av engasjement fra deltakerne i studien. Det er derfor viktig å finne brukbare datatyper som er mindre tid- og ressurskrevende å samle inn, og som likevel kan brukes til modellkalibrering. En type data som er enklere å samle inn er tversnittdata. I denne avhandlingen har jeg utviklet en prosedyre for å bruke tversnittpopulasjonsdata i modellens kalibreringsprosess, og viser hvordan en modell kalibrert med tversnittdata kan brukes til å forutsi individuelle resultater ved oppdatering av en del av modellens parametere. I tillegg til det vitenskapelige bidraget, håper jeg at avhandlingen min skaper oppmerksomhet rundt viktigheten av forskning på kvinners reproduktive helse, og at avhandlingen underbygger verdien av matematiske modeller i forskning på kvinnehelse.The hypothalamic-pituitary-gonadal axis (HPG axis), a part of the human endocrine system, regulates the female reproductive function. Feedback interactions between hormones secreted from the glands forming the HPG axis are essential for establishing a regular menstrual cycle. Mathematical models predicting the time evolution of hormone concentrations and the maturation of ovarian follicles are useful tools for understanding the dynamic behaviour of the menstrual cycle. Such models can, for example, help us to investigate pathological conditions, such as endometriosis or Polycystic Ovary Syndrome. Furthermore, they can be used to systematically study the effects of drugs on the endocrine system. In doing so, menstrual cycle models could potentially be integrated into clinical routines as clinical decision support systems. For the simulation-based investigation of hormonal treatments aiming to stimulate the growth of ovarian follicles (Controlled Ovarian Stimulation (COS)), we need models that predict hormone concentrations and the maturation of ovarian follicles in biological units throughout consecutive cycles. Here, I propose such a mechanistic menstrual cycle model. I also demonstrate its capability to predict the outcome of COS. Individual time series data is usually used to calibrate mechanistic models having clinical implications. Collecting these data, however, is time-consuming and requires a high commitment from study participants. Therefore, integrating different data sets into the model calibration process is of interest. One type of data that is often more feasible to collect than individual time series is cross-sectional data. As part of my thesis, I developed a workflow based on Bayesian updating to integrate cross-sectional data into the model calibration process. I demonstrate the workflow using a mechanistic model describing the time evolution of reproductive hormones during puberty in girls. Exemplary, I show that a model calibrated with cross-sectional data can be used to predict individual dynamics after updating a subset of model parameters. In addition to the scientific contributions of this thesis, I hope that it creates attention for the importance of research in the area of women's reproductive health and underpins the value of mathematical modelling for this field.Doktorgradsavhandlin
    corecore