
COMPUTER ASSISTED DETECTION OF

POLYCYSTIC OVARY MORPHOLOGY IN

ULTRASOUND IMAGES

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Division of Biomedical Engineering

University of Saskatchewan

Saskatoon

By

Maryruth Pradeepa Raghavan

c©Maryruth Pradeepa Raghavan, August 2008. All rights

reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226131794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Division of Biomedical Engineering

Room 2A20 Engineering Building

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5A9

i



ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine abnormality with multiple diagnos-

tic criteria due to its heterogenic manifestations. One of the diagnostic criterion includes

analysis of ultrasound images of ovaries for the detection of number, size, and distribu-

tion of follicles within the ovary. This involves manual tracing of follicles on the ultra-

sound images to determine the presence of a polycystic ovary (PCO). A novel method that

automates PCO morphology detection is described. Our algorithm involves automatic

segmentation of follicles from ultrasound images, quantifying the attributes of the seg-

mented follicles using stereology, storing follicle attributes as feature vectors, and finally

classification of the feature vector into two categories. The classification categories are

PCO morphology present and PCO morphology absent. An automatic PCO diagnostic

tool would save considerable time spent on manual tracing of follicles and measuring the

length and width of every follicle. Our procedure was able to achieve classification ac-

curacy of 92.86% using a linear discriminant classifier. Our classifier will improve the

rapidity and accuracy of PCOS diagnosis, and reduce the chance of the severe health im-

plications that can arise from delayed diagnosis.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Overview of PCOS

Polycystic Ovary Syndrome (PCOS) is an endocrine and metabolic abnormality that af-

fects 5-10% women of reproductive age [13]. It is a condition that is comprised of het-

erogenous symptoms making it difficult to establish consistent diagnostic criteria based

on a single biochemical/clinical assessment. Some of the symptoms exhibited by women

with this condition are menstrual irregularity, anovulation or oligoovulation, obesity, in-

fertility, and hyperandrogenism that presents as acne, male pattern baldness, and male

pattern hair growth. The diagnostic criteria for PCOS were originally established by two

different bodies; the ESHRE (European Society of Human Reproduction and Embryol-

ogy), and the ASRM (American Society of Reproductive Medicine). The ESHRE criteria

required the presence of polycystic ovaries on an ultrasonographic examination in addi-

tion to symptoms of hyperandrogenism and anovulation/oligoovulation. It also required

the absence of any pituitary or adrenal disease [14]. The ASRM criteria required clinical

signs of hyperandrogenism and ovulatory abnormality in the absence of adrenal hyper-

plasia (impairment of a key enzyme in the production of cortisol and aldosterone by the

adrenal gland). It did not require ultrasonographic examination of the ovaries. This dispar-

ity has now been resolved and the diagnostic criteria of PCOS have been jointly redefined

by ASRM and ESHRE in an international consensus meeting as the presence of at least

two of the following three criteria: 1) Oligo or anovulation; 2) biochemical and/or clinical

signs of hyperandrogenism; and, 3) the presence of at least one polycystic ovary on an ul-
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Normal ovary Polycystic ovary

Figure 1.1: Example of normal and polycystic ovaries

trasonographic examination. A polycystic ovary (PCO) is one that is characterized by the

presence of 12 or more follicles measuring around 2-9 mm in diameter and/or measured

ovarian volume of > 10 cm3 [1].

Analysis of ultrasonographic images for detecting follicle morphology is an important

diagnostic marker in the refined definition of PCOS as per the international consensus cri-

teria. Hence, ultrasonographic imaging of the ovaries is included in routine checkups for

menstrual abnormalities, infertility treatments, and/or hyperandrogenic symptoms. Fig-

ure 1.1 shows ultrasonographic images of a normal ovary and a polycystic ovary. In a

normal ovary the follicle count is lesser than in a polycystic ovary, and the follicles ex-

hibit a random distribution within the ovary. Alternatively, polycystic ovaries exhibit more

smaller, possibly irregularly shaped follicles, and, in most of the cases, a peripheral distri-

bution of follicles.

A decision as to whether a patient has PCO or not is made by counting the number

of follicles, determining the size (diameter) of each follicle and/or calculating the ovarian

volume. This is a subjective process, and is highly dependent on the experience and pro-

ficiency of the ultrasonographer. Even though expert decisions are reliable, an automation

of the process would minimize the subjectivity of the analysis, the interobserver variabil-

ity that may arise, the need to convert between national/international standardizations, and

2



the fatigue that could happen when reading numerous images every day. It would also in-

crease the number of images that can be analyzed per day thereby increasing the number

of patients that can be handled on a day to day basis as well as improving the accuracy

with which the images can be interpreted. It could provide the patient with a quick re-

sponse time allowing them to seek medical advice/treatments quickly that may abate or

obviate the severe consequences of the disease. The healthcare system could also benefit

by this quick response time. This not only off-loads the strenuous work from the imaging

specialist, but could also prove to be economically beneficial to the Heath Care systems of

federal and provincial Governments.

1.2 Goals and Challenges

Our objective was to test the hypothesis that PCO morphology can be detected effectively

(> 90%) in ultrasonographic images using an automated image analysis technique. Our

work aims to automate the analysis of pelvic ultrasonographic images for detecting PCO

morphology by examining the number, size, and distribution of follicles within the ovary.

Automation of the analysis of pelvic ultrasonographic images was achieved using a three

step process that involved: 1) Segmentation of follicles from the ultrasonographic images

using image processing methods; 2) application of a mathematical methodology called

stereology to quantify the attributes of the segmented follicles and store them as feature

vectors; and, 3) classifying the feature vector obtained from the previous step into one of

the two categories: PCO morphology present or normal. These are the three key steps

that form the basis of the automatic PCO morphology detection system. We faced some

challenges to accomplish this automatic detection as ultrasonographic images are noisier

than images obtained from other modalities due to the physics of acoustic imaging. Also,

in ultrasonographic images the borders of follicle regions may not be well defined due to

artifacts such as reverberation and acoustic shadowing/enhancement, which makes it diffi-

cult for a follicle segmentation algorithm to interpret the exact border. For this reason, the

regular thresholding techniques or the edge detection methods that perform segmentation

do not give acceptable results.

3



1.3 System Architecture

This software system is divided into three modules: 1) Fully automated follicle segmenta-

tion; 2) quantification of follicle morphology; and, 3) classification of follicle morphology.

The novelty of our method lies in the amalgamation of the follicle segmentation technique

with the stereological methodology from which a feature vector quantifying the ovarian

morphology can be derived. The first module segments the follicle based on Potočnik and

Zazula’s [2] fully automated follicle segmentation algorithm, the second module quan-

tifies the segmented follicles using stereology to derive the feature vectors, and the final

module classifies the feature vectors using a linear discriminant classifier, support vector

machine (SVM) classifier, and k nearest neighbor classifier (KNN).

1.4 Thesis Organisation

Chapter 2 of the thesis gives a general background of reproductive biology to present the

reader with a clear understanding of ovarian and follicle morphology. Brief introductions

to the physics of ultrasonography and principles of stereology are also presented.

Chapter 3 discusses previous work in the analysis of ovarian ultrasonographic images.

Algorithms for analyzing follicle/ovarian morphologies, and techniques for analyzing tis-

sue characterization of ovarian abnormalities are discussed. It also briefly discusses the

different classifiers used for the classification of feature vectors.

Chapter 4 gives a detailed description of the methodology adopted to achieve automatic

analysis of PCO morphology and includes description of the automated follicle segmen-

tation, stereology, and classification including cross validation techniques. The problem

of detecting the overall spatial distribution of follicles in the ovary is also discussed. Two

types of distributions are possible: Peripheral distribution and random distribution. In pe-

ripheral distribution, follicles are distributed along the periphery of the ovary. In a random

distribution, follicles are distributed in a random fashion within the ovary. Normal ovaries

usually present a random distribution and may exhibit one or two “dominant” follicles

which, by definition, are at least 2-3mm larger than the rest. Polycystic ovaries typically
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exhibit a more peripheral distribution pattern, although there are notable exceptions.

Results of our experiments with details on the performance analysis are presented in

Chapter 5. Conclusion and future work are discussed in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Human Ovarian Physiology

The main organs of the female reproductive system are the uterus, ovaries, and the fallop-

ian tubes. Figure 2.1 shows the organs of the female reproductive system. The uterus is

a hollow muscular organ which houses the fertilized egg and is the site of gestational de-

velopment until birth. Ovaries are roughly ellipsoidal strucutures housed on either side of

the uterus and are the master organs of the female reproductive system. They are respon-

sible for the secretion of the reproductive hormones estrogen and progesterone, and for

the production, storing, and release of the ovum or the mature egg. Each ovary measures

approximately 3 cm x 1.5 cm x 1.5 cm in an adult woman. The fallopian tubes, through

which the mature egg or the ovum travels to reach the uterus extend from the ovary to the

upper part of the uterus [5].

The ovum develops inside a follicle in an ovary. An ovary contains a few hundred

thousand primordial (microscopic) follicles at birth; only around 400 follicles develop into

a preovulatory follicle (mature/dominant follicle) in an adult woman’s lifetime [15]. At

given times, a cohort of follicles are chosen for maturation. The chosen follicles grow from

the initial stage in which they are called primordial follicles into the final stage in which

they are called preovulatory follicles reaching up to a size of 20 mm to 25 mm. Hence, the

ovary at anytime has follicles in several different stages of development [16]. The chosen

cohort of follicles compete with one another for FSH (Follicle Stimulating Hormone) for

physiologic dominance. One follicle can become dominant and ovulate. The growth of

the other competing follicles is inhibited and they die. This type of programmed follicle

death is called atresia. Once the ovum is released from the mature follicle, remnants
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Figure 2.1: Main organs of female reproductive system showing ovary,
uterus, and fallopian Tube [5]

of the ruptured follicle becomes a corpus luteum. The stages of a follicle life cycle or

folliculogenesis is shown in Figure 2.2. If this cycle is disrupted, ovulation would be

affected which might lead to infertility and/or other forms of ovarian abberation [17].

Polycystic Ovary Syndrome (PCOS) is an abberation in the ovarian function that re-

sults in irregularities where no follicle from the cohort of chosen follicles can develop

into a mature follicle capable of ovulation. Since there is no dominant follicle, atresia or

follicle death of the competing follicles does not occur. This syndrome gets its name poly-

cystic from the “cystic” appearance of the multiple follicles that were unable to develop

into a dominant follicle. Figure 2.4 shows polycystic ovaries and ultrasonographic images

of polycystic ovaries.

2.2 Polycystic Ovary Syndrome

2.2.1 PCOS causes: Hypotheses

Polycystic ovary syndrome affects 5 to 10 % of women of reproductive age [13]. Some

of the theories that have been proposed as the underlying cause of PCOS are aberrations

7



Figure 2.2: Folliculogenesis: Stages of an ovarian follicle [6]

Figure 2.3: Human secondary follicle [7]
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in the physiology of the hypothalmic-pituitary-ovarian axis which directs the ovarian cy-

cle, intra-ovarian growth factors, fetal programming, metabolic consequences of insulin

resistance, and heredity [14]. Of these theories, insulin resistance and the consequent

metabolic syndrome X are gaining ground as the most probable hypotheses. Metabolic

syndrome X is a cluster of risk factors associated with insulin resistance such as the over-

production of male hormones, elevated levels of blood fats, high blood sugar, obesity,

hypertension, and ovarian dysfunction. Not all women with PCOS are diagnosed with in-

sulin resistance; hence, there needs to be further research to establish the exact cause. The

clinical phenotypes of patients diagnosed with PCOS fall under three categories:1) Oligo-

ovulation+hyperandrogenism+hirsutism; 2) Oligo-ovulation+hyperandrogenism; and, 3)

Oligo-ovulation+hirsutism, where oligo-ovulation means irregular ovulation, hyperandro-

genism means excess male hormones, and hirsutism means male patterm hair growth [18].

The presence of such different clinical phenotypes among PCOS patients implies that the

metabolic factors associated with the pathophysiology of PCOS could be varied indicating

the variations in the clinical presentation of PCOS. Due to the various phenotypic exhi-

bitions, the international consensus requires the presence of two of the following three

criteria for the diagnosis of PCOS: 1) Oligo or anovulation; 2) biochemical and/or clin-

ical signs of hyperandrogenism; and, 3) the presence of at least one polycystic ovary on

ultrasonographic examination [1].

2.2.2 Morphology of the Polycystic Ovary: Manual measurement of

external and internal features [1]

2.2.2.1 External features of PCO: Volume

The volume of each ovary is calculated by measuring the maximum diameter of the

ovary in the three planes: 1) Longitudinal; 2) transverse; and, 3) anterposterior [1]. The

ovarian volume is calculated using the formula of a prolate ellipsoid, which is given as
π

6×(maximal longitudinal× transverse× anteroposterior diameters). The ovarian vol-

ume was calculated using other formulae that based their calculations on giving different

weights to the different planes such as π

6 ×AP2×TV , or π

6 × (T+L+A
3 )3, where T = trans-
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verse, L = longitudinal, A = anteroposterior, AP = anteroposterior diameter, and TV =

transverse diameter. The consensus definition for a PCO includes an ovarian volume of

> 10cm3 calculated using the formula for the prolate ellipsoid. The consensus drew this

conclusion based on a number of studies which reported the mean ovarian volume to be

> 10cm3 for PCOS controls. The consensus opinion also states that until more data are

collected and validated, the formula for prolate ellipsoid should be used for computing the

ovarian volume [1].

2.2.2.2 External features of PCO: Surface Area

Three different methods are proposed for computing the ovarian area in a 2D ultrasono-

graphic image. In the first method, the ovarian area is computed using the formula for an

ellipse: π

4 ×ma jor axis×minor axis. In the second method, an ellipse is fitted to the ovary

and the area is computed automatically using the ultrasound machine. The third method

computes the area by outlining the ovary by hand with automatic detection of the outlined

area.

2.2.2.3 Internal features of PCO

The follicle size and count are estimated after scanning the ovary in the longitudinal plane

covering from the inner to the outer margin, and the follicle diameter is estimated as the

mean of the diameters in the longitudinal, transverse and antero-posterior planes. The use

of a follicle count of > 12 each measuring between 2−9 mm diameter for the diagnosis of

PCO morphology was based on a study by Jonard et al., 2003 [19]. A size range of 2−9

mm has been suggested as the diameter of the follicles with PCO morphology because,

it was found that hyperandrogenism might result in excessive early follicular growth upto

2− 5 mm but, the growth of these follicles is stunted when they reach a size of around

6−9 mm.

The following list of PCO definitions is quoted from the international consensus defi-

nition [1].

1. The PCO should have at least one of the following: either 12 or more follicles

measuring 2-9 mm in diameter or increased ovarian volume (> 10 cm3). If there is
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evidence of a dominant follicle (>10 mm) or a corpus luteum, the scan should be

repeated during the next cycle.

2. The subjective appearance of PCOs should not be substituted for this definition. The

follicle distribution should be omitted as well as the increase in stromal echogenicity

and/or volume. Although the latter is specific to polycystic ovary, it has been shown

that measurement of the ovarian volume is a good surrogate for the quantification of

the stroma in clinical practice.

3. Observation of just one ovary fitting this definition or a single occurrence of one

of the above criteria is sufficient to conclude the existence of the PCO. If there is

evidence of a dominant follicle (>10 mm) or corpus luteum, the scan should be

repeated next cycle. The presence of an abnormal cyst or ovarian asymmetry, which

may suggest a homogeneous cyst, necessitates further investigation.

4. This definition does not apply to women taking the oral contraceptive pill, as ovarian

size is reduced, even though the “polycystic” appearance may persist.

5. A woman having PCO in the absence of an ovulation disorder or hyperandrogenism

(‘asymptomatic PCO’) should not be considered as having PCOS, until more is

known about the patient’s condition.

6. In addition to its role in the definition of PCO, ultrasound is helpful to predict fertil-

ity outcome in patients with PCOS (response to clomiphene citrate, risk for ovarian

hyperstimulation syndrome (OHSS), decision for in-vitro maturation of oocytes). It

is recognized that the appearance of PCO may be seen in women undergoing ovar-

ian stimulation for in vitro fertilization (IVF) in the absence of overt signs of PCOS.

Ultrasound also provides the opportunity to screen for endometrial hyperplasia.

7. The following technical recommendations should be respected:

(a) State-of-the-art equipment is required and should be operated by appropriately

trained personnel. Whenever possible, the transvaginal approach should be

preferred, particularly in obese patients.
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Figure 2.4: (A) Gross and (B) Ultrasonographic images representative of
polycystic ovaries [8] [9]

(b) Regularly menstruating women should be scanned in the early follicular phase

(days 3-5). Oligo-/amenorrhoeic women should be scanned either at random

or between days 3-5 after a progestogen-induced bleed.

(c) If there is evidence of a dominant follicle (>10 mm) or a corpus luteum, the

scan should be repeated the next cycle.

(d) Calculation of ovarian volume is performed using the simplified formula for a

prolate ellipsoid (0.5× length×width× thickness).

(e) Follicle number should be estimated both in longitudinal, transverse and antero-

posterior cross-sections of the ovaries. Follicle size should be expressed as the

mean of the diameters measured in the three sections.

2.3 Ultrasonographic Imaging of Ovaries

Ultrasonographic imaging is a non-invasive imaging modality and is routinely used in

scanning the uterus, ovaries, and the fetus because it is non-ionizing and inexpensive.

This imaging technique is based on transmission of high frequency sound waves into the
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body using a transducer and reconstructing the sound waves that are reflected off from the

various organs. Reconstruction of the reflected sound waves as a two dimensional image is

done based on calculating the depth of the tissue interface by measuring the time of return

of the echo back to the transducer probe using the speed of sound in tissue and the time

of the return of the echo [20] [21]. The intensity of a pixel on the reconstructed image

depends on the strength of the echo. A strong echo is represented as a white pixel and a

weak echo is represented as a black pixel and everything in between are represented by

different shades of grey. A water based gel is applied on the surface of the skin before

scanning to obtain good acoustic coupling, i.e., to lower the acoustic impedance mismatch

between air and skin, where impedance is calculated as the product of the medium density

and the velocity of the ultrasound beam in the medium. If no gel is applied, most of the

transmitted sound waves will be reflected back because of the high impedance mismatch

between air and skin [20] [21]. Energy reflected from an interface depends on the differ-

ence in acoustic impedance of the media on opposite sides of the interface. As water is

a good transmitter of ultrasound and as the acoustic impedance of water is 1.5Kg
m2s ∗ 10−4,

which is close to the acoustic impedances of many organic substances, a better transmis-

sion coefficient is obtained when gel is applied before scanning [20] [21]. In Figure 2.4 the

ovarian follicles appear as dark structures because the follicles are filled with fluid; as wa-

ter is a good transmitter of ultrasound, most of the energy is transmitted and only a weak

signal is reflected back to the transducer. There are two different ultrasonographic modali-

ties available to image the female reproductive organs: trans-abdominal and trans-vaginal.

Transrectal and tranlabial ultrasonographic modalities are also used rarely.

2.3.1 Artifacts

The common types of artifacts that occur in ultrasonographic imaging are reverberation,

acoustic shadowing, acoustic enhancement, and refraction. Reverberation artifacts are

caused by sound bouncing back and forth between two interfaces. Some of the sound

returning to the transducer is reflected back to the patient. This pulse is hit again by

the same interface and is reflected back to the transducer a second time. This type of

artifact occurs mostly when the ultrasound pulse is perpendicular to a soft tissue - air
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interface [20] [21].

Acoustic shadowing is caused by an imaged tissue whose rate of attenuation of sound

is greater than that of the surrounding medium. This results in added loss of intensity when

the pulse traverses through the tissue, making all points beyond the imaged tissue appear

less brighter than expected. Acoustic enhancement is the opposite of acoustic shadowing,

where the imaged tissue has a rate of attenuation of sound lower than the surrounding

medium making all points beyond the tissue appear brighter than expected [20] [21].

Refraction artifact occurs when the ultrasound beam crosses tissues of different den-

sities, which bends the beam due to the difference in velocity and the angle of incidence,

creating a virtual object at a displaced position in the transducer [20] [21].

2.4 Stereology

It is important to derive the quantitative features of the follicles from the ovarian ultra-

sonographic images for making PCO diagnosis. It can be done manually or automatically

using digital image analysis techniques. Computing two-dimensional features such as the

diameter, perimeter, or the area on the two-dimensional ultrasonographic images can be

done by counting the number of pixels in the given digital image, whereas computing

the three-dimensional parameters is not as straight-forward. Three-dimensional attributes

of a structure can be computed using methods such as 3D reconstruction, morphometry,

and stereology. Of these, 3D reconstruction is complex and is mostly used for visual-

ization purposes. Alternatively, stereology estimates 3D parameters of structures from

the two-dimensional measurements that are obtainable on sections of the structure[22].

Stereological methods provide information on the dimensions of the spatial objects that

make up a structure by studying its sections. Sections can be interpreted as projections of

three-dimensional objects. Stereology has been used for studying the three-dimensional

attributes of cellular structures and geological structures where test systems with known

configuration are overlayed on top of these structures and the intersections of the struc-

tures with the points/grid lines are evaluated to derive the three-dimensional attributes of

the unknown structures [22]. This methodology is well-suited for our application because
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it allows direct estimation of the required three-dimensional follicle attributes. Some of

the quantitative follicle features that are needed for the PCO diagnosis are the volume

density and surface density of the follicles. Volume density is defined as the volume of

the phase in the unit volume of the structure, where phase is defined as the aggregate of

identical parts and surface density is defined as the surface area of the phase in the unit

volume of the structure [22] .

2.4.1 Terminology of Stereology

The terminology followed by stereology has some unique definitions for some of the com-

mon terms like structure, components, phase, objects or particles, density, section, and

profile. A structure is defined as a container with at least two parts or components, where

a component is made up of either discrete units called objects or particles or occurs as a

phase which is an aggregate of identical parts, such as the mitochondrial phase, where all

the mitochondria of a cell constitute to the mitochondrial phase. A structure can be quan-

titatively described based on the density of the components within the structure. Hence,

density of components in its varied forms becomes an important quantitative descriptor

of the structure. Volume of the component phases, its surface area, length or the number

of its particles play an important role in quantitatively describing the strucuture and are

referred as the volume density, surface density, length density, and numerical density re-

spectively. Density as a quantitative descriptor becomes important because sectioning is

used as the sampling process, where sections are obtained by intersecting planes into the

structure. The resulting images of the components or the structure within the section is

termed a profile. Stereology establishes relationships between the density of the compo-

nent profiles (within the structure profiles) and the density of the components (within the

structure) by mathematical reasoning [22].

2.4.2 Stereological Principles

Stereological methods are based on geometric probabilities and are statistical in nature [22].

There are specific methods in stereology for making measurements of volume density, sur-
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face density, length density, mean curvature density, numerical density, shape and mean

tangent diameter of convex solids, profile size and particle size. Some of the more com-

monly used methods are the priniciple of Delesse, linear integration, the point counting

method, intersections with test lines/profile boundaries and the Buffon priniciple. Vol-

ume density is measured using the Priniciple of Delesse, linear integration, and the point

counting method. Surface density is measured using intersections with test lines/profile

boundaries.

2.4.2.0.1 Volume density measurements[22] The principle of Delesse is based on

the research of a French geologist who proved that the volume density of the various

components making up a rock can be estimated by measuring their relative areas on the

random sections, also called the areal density, of the profiles [22]. Principle of Delesse

states that volume density of a component can be defined as the ratio of the sum of the

object profile area (A0) to the area of the object slide surface (AT ). This principle can be

demonstrated by considering a model cube containing a tissue of one component spread

out as evenly distributed irregular objects. The cube should be a part of a larger object so

that the distribution of the tissue inside the cube should be consistent throughout down to

the edges. Let the cube be placed in a x,y,z- coordinate system, parallel to the x,z plane

and cut into slices of thickness dy. The area of the slide surfaces are given as aT , where

the area of the object profiles inside the section are given as a0. The volume v0 of these

profiles can be calculated as a0 ∗dy. The total volume of the slice is calcuated as aT ∗dy.

The volume density can be calculated by summing up the object volumes and the slice

volumes of all the tissue slices and finding the ratio between them, which is given as:

Σv0

ΣvT
=

V0

VT
= Vv. (2.1)

If the object volume and the slice volume are replaced with the product of its respective

area and slice thickness, Equation 2.1 can be rewritten as:

Σ(a0 ∗dy)
Σ(aT ∗dy)

=
dyΣa0

dyΣaT
=

A0

AT
= AA. (2.2)

Linear integration was proposed by Rosiwal for estimating AA, which involves laying

out test lines on the sections and measuring the fractional length of these lines included in
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the profiles of the objects.

Point counting method for estimating volume density was proposed by Glagolev (1933)

and Thomson (1930). This procedure was independently introduced by Chalkey (1943) in

biology. In this method, a square grid is overlayed on top of a slice(structure), and the area

of an object profile within the slice is determined by counting the number of squares that

contain the object profile relative to the total number of squares on the section. For cases

where an object profile occupies a square only partially, the decision to include or exclude

the square for the area calculation depends on checking if at least half the square covers

the object profile. If it does, the square is added in, else it is not. To make the area calcula-

tion simpler, the square grid can also be replaced with a grid of test points overlayed over

the structure, where the number of test points covered by the object profiles relative to the

total number of test points on the structure gives the areal density of the profile regions.

2.4.2.0.2 Surface density measurements[22] Surface density Sv is defined as the amount

of surface area Sa contained in unit volume of tissue Vc. In stereology, surface density is

estimated as (4/π)×boundary density [22], where boundary density is the ratio of the

length of profile boundary (Ba) to the section area of the ovary. The relationship between

surface density and boundary density was derived by considering a model cube of side

l containing a single sphere of radius R. A trace of the sphere taken by a plane section

traversing the sphere will be a circle whose diameter depends on the distance of the plane

section from the center of the sphere. The average radius of such circles produced by

random sectioning is given as [22]:

r =
π

4
R. (2.3)

The average length of circle perimeter is given as:

b = 2πr =
π2

2
R. (2.4)

As the relative number of random sections that will hit the sphere depends on the ratio of

the sphere diameter to the length of the cube (2R
l ), the mean trace or the average circle

perimeter of all the sections (B) is given as:

B = b.
2R
l

=
π2R2

l
. (2.5)
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With the section area (Ac) given as l2, the mean boundary density (BA) is given as:

BA =
Ba

Ac
= π[

πR2

l3 ]. (2.6)

The surface density of the sphere (component) is given as the ratio of the surface area

of the sphere (component) contained in unit volume of the cube (structure). Thus, surface

density (Sv) of the sphere is given as:

Sv =
4πR2

l3 . (2.7)

From Equation 2.7 it can be seen that, the term within square brackets in Equation 2.6

is 1
4 of Sv. That is:

BA = π
Sv

4
. (2.8)

or,

Sv =
4
π

BA. (2.9)

Hence, it can be seen that the surface density of a component can be obtained from its

boundary density.
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CHAPTER 3

PREVIOUS WORK

This chapter gives a general overview of how ovarian ultrasonographic images are

analyzed to study the tissue characteristics of ovaries or structures within it. Previous

work in follicle segmentation and tissue characterization are discussed. The final section

of this chapter discusses classifiers used for the classification of the tissue characterisitics

or the features obtained from ovarian structures.

3.1 Follicle segmentation

The manual task of identifying the inner and the outer boundary of the follicle can be

replaced with automated computerized approaches. Various follicle segmentation tech-

niques have been proposed, and they can be categorized into grey-level thresholding and

graph searching techniques [10], [23], region growing methods [2], texture-based meth-

ods [24] , object recognition algorithms [25], active contours or “snakes” [26], [27],

and minimum cross entropy thresholding techniques [28]. Computer-aided diagnosis of

prostate cancer with emphasis on ultrasound-based approaches are reviewed in [29]. The

following sections review some of these techniques.

3.1.1 Graph searching

3.1.1.1 Semiautomated segmentation [10]

Sarty et al. [10] implemented a semiautomated segmentation method that identifies the

outer boundary wall of a follicle using a knowledge-based graph searching algorithm.

This method is based on using some a priori information available on follicle charac-
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teristics. That is, follicles are fluid-filled structures and follicle fluid appears dark on an

ultrasonographic image. Hence, the inner follicle wall that surrounds the fluid appear as

a bright band around a dark region, whereas the outer follicle wall appears as a dark band

that separates the follicle interior from the outside tissue. This a priori knowledge along

with the knowledge that the follicle wall is of uniform thickness is used as the basis of

this segmentation method that uses a graph searching technique to define the outer follicle

border.

This method is divided into three main steps: 1) Defining an annular region of interest

(AROI) to mark the follicle of interest; 2) detecting the approximate inner wall boundary

of the follicle using Nilsson’s graph searching algorithm with manual editing if needed;

and, 3) automated detection of the outer follicle wall.

3.1.1.1.1 Defining AROI The follicle is defined using an annular region of interest, or

AROI. An AROI has two concentric circles with the smaller circle completely inside the

follicle-fluid and the larger circle completely enclosing the follicle. The diameters of the

two circles are adjusted accordingly.

3.1.1.1.2 Detecting approximate inner boundary wall An edge sub image was con-

structed from the area inside the AROI using a 5 X 5 sobel-like edge operator with the

following convolution masks:

h1 =



64 64 0 −64 −64

64 64 0 −64 −64

127 127 0 −127 −127

64 64 0 −64 −64

64 64 0 −64 −64


(3.1)

h2 =



64 64 127 64 64

64 64 127 64 64

0 0 0 0 0

−64 −64 −127 −64 −64

−64 −64 −127 −64 −64


(3.2)
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and the edge magnitude of each pixel inside the subimage is calculated as: M =
√

x2 + y2,

where x and y are the responses from h1 and h2 respectively. The area inside AROI is

then resampled and the subimage is straightened out as a rectangular image with the inner

circle of the AROI mapped to the top of the rectangle and the outer circle of the AROI

mapped to the bottom of the rectangle. The edge direction, dI(k, i) for each pixel in the

subimage was determined using a Prewitt operator, where k is the angular coordinate and

i is the radial coordinate. This subimage is the 2D inner border detection graph that is

searched to find the approximate inner follicle boundary wall. The inner wall is found by

finding the minimum cost path through the graph. The node costs are determined by first

finding the edge pattern strength PI(k, i) of each node as follows:

PI(k, i) =

 fI(k, i) for dI(k, i) ∈ {−π/4,0,π/4}

fI(k, i)−d p otherwise,
(3.3)

where d p is the directional penalty applied to nodes that do not favor the preferred edge

direction, where the preferred edge direction is dark to bright edges when viewed from

inside the AROI. The node cost is given as:

cI(k, i) = max
y∈Y
{PI(k, i)}−PI(k, i). (3.4)

where Y is the width of the straightened edge subimage. Here, assignment of node costs

are based on the a priori knowledge that the follicle-fluid appears dark. Once, the node

costs are assigned, Nilsson’s graph searching algorithm is applied to the edge subimage,

which gives the optimal inner border. At this stage, there is an interactive correction of the

inner border wall if there are any variations.

3.1.1.1.3 Detecting the outer follicle wall Once the approximate inner follicle border

wall is estimated, the edge subimage is again resampled and straightened out with new

dimensions based on the newly estimated approximate inner border. The new region of

interest (ROI), is moved by 1.4 mm inward, in the direction perpendicular to the inner

wall border, and is the inside limit of ROI. The outer limit of ROI is estimated by moving

the inside limit of ROI by 4.2 mm outward. This dimension was chosen to make sure

that the outer and the inner border wall lies within the ROI. This resampled edge image is
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used as the outer border detection graph, and the new edge intensities fO(k, i) and edge

directions dO(k, i) are calculated. The node costs in the outer border detection graph are

determined using the revised edge pattern strengths, which depend on the following local

edge functions:

fBW (k, i) =

 fO(k, i) for dO(k, i) ∈ {−π/4,0,π/4}

fO(k, i)−d p otherwise,
(3.5)

fWB(k, i) =

 fO(k, i) for dO(k, i) ∈ {3π/4,π,−3π/4}

fO(k, i)−d p otherwise,
(3.6)

where, fBW favors an edge direction from black to white and fWB favors white to back,

when viewed from inside the ROI. Unlike in the approximate inner wall border detection

where edge strength of a node depends upon just its edge intensity and direction (local

edge strength), in outer wall border detection the edge strength of a node is also affected by

the nearby edge strengths coming from the inner wall border (ei(k, i)), and the inner/outer

wall border of the nearby follicles (eo(k, i)) (Figure 3.1). Hence, the edge pattern strength

PO(k, i), is given as a weighted sum of its local edge strength, ei(k, i), and eo(k, i):

PO(k, i) = W0 fWB(k, i)+W1ei(k, i)+W2e0(k, i), (3.7)

where

ei(k, i) = max
y∈{−6,...,−2}

{ fBW (k, i+ y)}, (3.8)

eo(k, i) = max
y∈{2,...,10}

{ fBW (k, i+ y)}. (3.9)

The node cost function was assigned as:

cO(k, i) = max
y∈Y
{PO(k,y)}−PO(k, i), (3.10)

where, Y represents the width of the straightened subimage. The inner wall border served

as the shape model for the outer wall border detection and it corresponded to a straight

line in the outer wall border detection graph. Hence, any deviations from the straight line

were assigned a penalty mp, to the node cost cO(k, i). The node cost cO(k, i) is further
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Figure 3.1: Location of the edges that affects the cost function. [10].

revised by taking into account the direction from which the node (k, i) was reached from

its predecessor (k−1, j) and is given as:

Cmodel(k, i) =

 cO(k, i) if predecessor border node j = i

cO(k, i)+mp otherwise,
(3.11)

The outer follicle wall is determined by searching the outer border detection graph

with the new nodal costs, Cmodel(k, i) and are mapped back into the original image.

3.1.1.2 Automated segmentation [23]

The fully automated follicle segmentation method of Krivanek and Sonka [23] follows a

four step process: 1) Watershed segmentation to isolate the antrum (follicle-fluid interior)

to find the approximate inner border; 2) selection of the follicle of interest; 3) inner border

detection; and, 4) finally outer border detection using Nilsson’s graph searching technique.

3.1.1.2.1 Watershed segmentation The process of finding the approximate inner bor-

der is further divided into four stages: 1) Preprocessing the original image; 2) watershed

segmentation of grayscale image; 3) watershed segmentation of binary image; and, 4)

postprocessing to get rid of false separations.

3.1.1.2.1.1 Preprocessing A subimage is obtained from the original 640×480 in-

put image and is smoothed twice using adaptive neighborhood smoothing method. Deter-
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mination of the threshold is experimentally determined relatively easily since the antrum

(interior) of the follicle is dark and will consistently have lower intensities than the chosen

threshold T .

3.1.1.2.1.2 Watershed segmentation of grayscale image A watershed algorithm

segments an image similar to how crestlines isolate catchment basins of topographical

surfaces. That is, if we imagine poking holes in regions of minima in the given image

and immersing it in water, watershed lines are built at locations where two catchment

basins would merge as a result of further immersion. The iterative immersion watershed

algorithm of Vincent and Soille [30] is used to perform watershed segmentation of the

grayscale smoothed subimage. This method first sorts the pixels in the increasing order

of the grayscale intensities and then performs a breadth-first search flooding. Watershed

segmentation results in over-segmentation if there is noise and local irregularities in the

gradient image, hence the segmented image is processed further to resolve the problem of

over-segmentation. A mosaic image is constructed from the labelled image of watershed

transformation by assigning the average of the pixels of each labelled region from the

smoothed image to each labelled region and thresholding the resulting mosaic image. This

image is processed further to separate the connected follicles.

3.1.1.2.1.3 Watershed segmentation of binary image A morphology image (im-

age that is constructed by applying morphological operators) is constructed from the bi-

nary image of the previous step by removing small objects, separating out overlaps of

smaller objects, and correcting sporadic variations along the object edges. Then, the in-

verse Euclidean distance map (EDM) is calculated for the morphology image, where the

distance of each pixel to its boundary is mapped as the brightness level of a pixel in the

EDM. Finally, watershed segmentation is applied to this image.

3.1.1.2.1.4 Post-processing This step is performed to distinguish correct and in-

correct region splitting, by merging false separations that results from applying watershed

transformation to the smoothed morphology image. This is done by first calculating the

border length, average edge strength, and average gray level along the boundary in an
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eight-connected neighborhood. The subregions are merged based on the following algo-

rithm:

1: if ESb > ESthresh then

2: Split

3: else

4: if Bl > RmA then

5: Merge

6: else

7: if AGb < Bthresh then

8: Merge

9: else

10: if ESb < ESthresh then

11: Merge

12: else

13: Split

14: end if

15: end if

16: end if

17: end if

where ESb is the edge strength along the boundary; ESthresh is the edge strength threshold;

Bl is the boundary length between two subregions; RmA is the ratio of the minor axis; AGb

is the average gray level along the boundary; and Bthresh is the brightness threshold. So, if

a common boundary defines a strong edge, then the subregions are split.

3.1.1.2.2 Identification of follicle of interest This is the only interactive step of this

otherwise fully automated method. The user points to the follicle of interest using a mouse.

As the antrum (follicle interior) of all the follicles has been already determined using the

watershed transformation method, pointing the mouse over the follicle of interest gives the

screen coordinates of the mouse click that automatically chooses the correct subimage that

should be processed further to determine the exact inner and outer boundary wall. Thus,
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the region of interest (ROI) is found automatically.

3.1.1.2.3 Inner wall detection The inner and the outer limits of the inner border region

of interest (IROI) are found by scaling the marked follicle to 80% of its original size, which

gives the inner limit, and then moving 30 pixels outward from the inner limit, which gives

the outer limit of IROI. Edge intensity, edge direction, edge pattern strength, and nodal

costs for IROI are the same as the previous technique. To find the exact inner border, the

nodal costs are further modified that takes into account the direction from which the node

(k, i) was reached from its predecessor (k− 1, j), and applies a penalty mp, if node (k, i)

was reached from (k− 1, j) when j 6= i. The optimal path through this graph gives the

inner wall border.

3.1.1.2.4 Outer wall detection The outer wall border can be defined from the inner

wall border. The inner limit of the outer border region of interest (OROI) is found by

moving 1.4 mm inwards from the already detected inner border, and the outer limit of

OROI is found by moving 2.8 mm outwards from the detected inner border. Once the

inner and outer limits of OROI is determined, the edge pattern strengths, nodal costs, and

revised nodal costs of the subimage are computed. The optimal path through OROI gives

the outer border wall of the follicle of interest.

3.1.2 Follicle segmentation with region growing [2]

The region growing method of Potočnik and Zazula[2] is based on considering the folli-

cles as homogeneous dark regions on which region growing is performed. This method

is a fully automated algorithm requiring no human intervention at any stage unlike the

previously discussed segmentation methods. It is composed of three main steps: 1) Iden-

tification of the homogeneous regions; 2) growing the homogeneous regions until they

reach the inner border wall; and, 3) finally extracting the follicle from the grown regions.

The automatic segmentation of follicles in our system was done using a modified version

of this algorithm and is explained in detail in Chapter 4.
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3.2 Analysis of normal and PCOS ovaries

The other important application of processing ultrasonographic images is to distinguish

between normal and abnormal ovaries. That is, ovarian ultrasound is also used for de-

tecting abnormalities such as ovarian cancer, and ovarian cysts (which is an indication of

ovarian tumor), although the image speckle of ultrasonographic images makes it difficult

to process the image for such abnormalities.

The texture-based segmentation of Jiang and Chen [3] uses a texture-based pixel clas-

sifier based on four texture energy measures to distinguish between normal and abnormal

ovaries for the detection of ovarian cancer. Zimmer et al. [4] have presented a semiauto-

matic way for quantification of ovarian cysts.

3.2.1 Texture-based pixel classifier [3]

Texture-based k-means cluster analysis [3] does not use the standard intensity-direction

edge information for segmentation, because tissue edges are blurred in ultrasonographic

images and is also indistinct because of speckle noise. This texture-based pixel classifier

reevaluates the original Laws’ feature masks and derives new texture features to be applied

to the k-means clustering as it has been found that the original feature masks does not give

satisfactory results on ultrasonographic images.

Laws’ texture feature masks representing different operations are derived by convo-

lution of three basic vectors L3 = (1, 2, 1), E3 = (-1, 0, 1), and S3 = (-1, 2, -1), which

represents one-dimensional center-weighted local averaging, first differencing for edge

detection, and second differencing for spot detection respectively. These vectors can be

convolved with themselves or with one another to give five vectors: averaging filter L5 =

(1, 4, 6, 4, 1), edge detector E5 = (-1, -2, 0, 2, 1), spot detector S5 = (-1, 0, 2, 0, -1), ripple

detector R5 = (1, -4, 6, -4, 1), and wave detector W5 = (-1, 2, 0, -2, 1). These five vectors

give 25 5×5 feature masks, which is obtained for example by multiplying a column vec-

tor L5 with a row vector E5 that gives a 5×5 feature mask, and repeat this for each of the

five vectors which would give 25 5× 5 feature masks. The feature masks can extract 25

patterns by convolving with an image with different textures. However, Jiang and Chen
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showed that a clear pattern of texture features can be extracted from ultrasonographic im-

ages using just four masks L5 ∗E5, S5 ∗E5, E5 ∗L5, and E5 ∗E5 (Figure 3.2). The original

Figure 3.2: Feature masks [3].

image is convolved with the four feature masks to give the feature image g(i, j), from

which the mean and deviation around each pixel is calculated as follows:

s[i, j] =
1

(2n+1)2

i+n

∑
k=i−n

i+n

∑
l=i−n

|g[k, l]−mean| (3.12)

where,

mean =
1

MN ∑
i j

g[i, j], (3.13)

and s[i, j] forms the four-dimensional feature space for the k-means clustering process that

divides each pixel in the image as one of the following three groups: 1) Non-ovarian tissue;

2) normal ovarian tissue; and 3) abnormal ovarian tissue. This is done by selecting three

seed points from three feature vectors that are centers of three regions in feature space. It

takes the current seed points, classifies them based on the minimum Euclidean distance

between the seed points and the feature vectors. Once a seed point belongs to a particular

class, the seed points are recalculated as the mean of the pixels in the class. This process

is repeated until the shift in the means becomes less than a preset value. This method

achieves a good segmentation of normal and abnormal ovarian tissues.

28



3.2.2 Semiautomatic algorithm for quantification of ovarian cysts by

Zimmer et al. [4]

The morphological characteristics of an ovarian cyst include its size, regularity and thick-

ness of its boundary, fluid characteristics, and the presence of structures such as papil-

lations and septations. Papillations are structures that grow from inside the boundary of

a cyst towards its lumen or the inner membrane space. They are incomplete and do not

divide the cyst into separate regions (unilocular). A septation is long and divides the cyst

into separate regions (multilocular). The algorithm of Zimmer et al. does a morphological

classification of these structures to determine the malignancy of the ovarian pathology, us-

ing scoring systems and a minimum error rate Bayesian classifier. That is, the quantified

properties of these cystic structures are scored according to a predetermined table and the

resulting values are used for classification.

This method starts by separating the cysts from the background as the cysts appear

as dark regions in ultrasound B-scans. Next, convex hulls of the cysts are determined to

calculate the convex deficiency of the cyst. Convex deficiency is obtained by subtracting

the original cyst from its convex hull. This value gives an indication of the upper limit

of the area of the cystic structures. Then a new image is formed by applying a morpho-

logical closing using a binary disk on the original cyst. This results in closing the convex

deficiency indicative of the cystic structures, but which leaves a crater in the outer part

of the concavities. Binary disks of different radii are applied and the minimal radius that

covers at least 50% of the convex deficiency is chosen. If the disks fill only a small part

of the convex deficiency leading to the underestimation of the cystic structures, then the

convex deficiency is used for describing the cystic structures, instead of the result of the

morphological closing. There can be an underestimation of the cystic structures when

morphological closing is applied as can be seen in Figure 3.3(b). This can be corrected

by taking the regions for which the morphological closing was applied and replacing them

with their convex hulls (Figure 3.3(c).

Figure 3.3(a) shows the initial convex deficiency, 3.3(b) shows the result of mor-

phological closing using a binary disk, and 3.3(c) shows the structures on which the
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morphological closing was applied replaced with its convex hull.

Figure 3.3: In this figure, the original cyst is white and the convex de-
ficiency is gray. (a) Initial convex deficiency obtained by subtracting the
original cyst from the convex hull (b) Convex deficiency after morpholog-
ical closing (c) Corrected convex deficiency after replacing figure (b) with
the convex hull [4].

The shape features for the classification were chosen to be the area, roundness of

the shape (compactness), and a value specifying what percentage of the cystic structure

touches the cyst boundary (white region in Figure 3.3). The last measure is called the

“pop” and it is given as:

pop = 100∗ length o f portion touching cyst
total length o f perimeter

. (3.14)

This value is an indication of the kind of structure present inside the cyst. For example, a

value of pop between 75%-95% represents that it is a septation, a value between 60%-80%

means it is a papillation, and a value of 50%-60% indicates it is a side structure meaning

that it would not be used in the quantification. Also, structures that have an area less

than 1% of the area of the cyst are categorized as false structures and are removed. The

available data for a specific shape are described as a feature vector in a two-dimensional

feature space. Then this shape belongs to class k, if it gives a minimal value for the
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equation over all classes:

Fk = (x−µk)t
−1

∑
k

(x−µk)+ ln(|∑
k
|) (3.15)

where, k = 1, 2, 3, µk is the mean vector of class k, and ∑
k

is the covariance matrix of class

k. The mean vector and the covariance matrix of class k are found using a training sample

set. Then the classification technique was applied to a test group of unidentified shapes

using the obtained values. Once the structures are identified using the Bayes classifier, the

quantitative data is extracted using morphological erosions (Appendix 2 of [4]). The final

classifications were compared with that of a human expert in the field. This technique

achieved correct classification rates of 72.3% for the papillations (34 out of 47 cases),

75% for the septations (12 out of 16 cases), and 90.2% for the side structures (37 out of

41 cases) [4].

3.3 Classifiers

The tissue characterisitics or the features obtained from the ovarian structures are classified

using classifiers such as the linear discriminant classifier, k-nearest neighbor classifier

(knnclassify in Matlab R2006a), and the Support Vector Machine Classifier (function

svmclassify in Matlab R2006a). The two former implementations are part of Matlab’s

statistics toolbox, and the latter is from Matlab’s Bioinformatics toolbox.

3.3.1 Linear discriminant

The method of linear discriminant analysis was originally developed by R.A. Fisher in

1936 and is a classic method used for categorical classification. The basic idea of this

method is to classify two or more categories(groups) with n variables by projecting the

high dimensional data onto a line and performing classification in this one-dimensional

space. If for example there are two groups (classes) involved, the projection should max-

imize the distance between the mean of these two groups (between-class variance), and

minimize the within-class variance of each group (variance within each class). For all
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Figure 3.4: LDA: 3-class feature data projected on two rotated axes[11]

linear projections w, the following measure J(w) should be maximized as per the Fisher

criterion [31].

J(w) =
|m1−m2|2

s2
1 + s2

2
(3.16)

where m1 and m2 are the means of class1 and class2, and s1 and s2 are the variance of

class1 and class2. The projection seeks to rotate the axes so that the when classes are pro-

jected onto this axes the differences between the classes are maximized. In Figure 3.3.1,

the projection of the categories to the lower left axes gives the worst separation of the

classes, and the projection to the lower right axes gives the best separation of the classes.

3.3.2 KNN K-Nearest Neighbor Classification

K-nearest neighbor algorithm is one of the simplest machine learning algorithms. In this

algorithm, an unknown feature (test dataset/pattern) is classified as belonging to the class

to which the majority of its K closest training neighbors in the feature space belong. First,

all the training datasets/patterns represented as feature vectors are positioned on a multi-

dimensional feature space. Then, the distance between the unknown feature (test feature)

and the training feature vectors is computed using a distance metric such as the Euclidean

distance to choose the K- nearest neighbors of the unknown feature. If the value of K is
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Figure 3.5: KNN: Distribution of the training vectors on a feature space

chosen as one, it is called the nearest-neighbor algorithm. The optimal value of K can be

determined using cross-validation technique. To eliminate situations of tie, K can be cho-

sen as an odd number. Once the K-nearest neighbors are found, the class of each of those

neighbors is determined and the unknown feature is assigned to the class to which majority

of its K neighbors belong. This algorithm might become computationally expensive if the

training dataset is large as the Euclidean distance must be computed for every vector in the

feature space. The performance of this algorithm is also limited when there is more noise

in the training dataset as it might introduce bias during classification, especially when K

is chosen as a small integer.

Figure 3.5 shows the distribution of the training vectors on a feature space [32]. The

unknown vector (green dot) is classfied to the class of red triangles if K = 2, but would be

classfied to the class of blue squares if K = 3. It would still be classified to the class of blue

squares if K = 5 (3 nearest blue squares versus 2 nearest red triangles). This classification

was implemented using the knnclassi f y function of Matlab R2006a.

3.3.3 Support Vector Machine Classification

The SVM classifier tries to build a maximum-margin separating hyperplane that maxi-

mizes the distance between two parallel hyperplanes that separate the data. The vectors

that lie on the two parallel hyperplanes are called the support vectors. Mostly, all linear

classifiers are based on the idea of building a hyperplane to separate the two sets of data

and the difference between the SVM classifier and the other linear classifiers is that the

SVM classifier tries to maximize the distance between the two parallel hyperplanes to
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minimize the generalization error. The dividing hyperplane takes the form

w · x−b = 0, (3.17)

where w is normal to the dividing hyperplane and the offset b allows to increase the margin

without which the hyperplane would pass through the origin.The two parallel hyperplanes

are described as

w · x−b = 1 (3.18)

w · x−b = −1, (3.19)

where 1 or -1 is the constant denoting the class to which the point xi belongs to, where xi

is a p-dimensional vector. Using geometry, it is found that the distance between the two

parallel hyperplanes is given as 2
|w| . So, to maximize the distance between the two parallel

hyperplances, |w| has to be minimized. Data points can be excluded by ensuring for each i

Equation 3.20 is followed. Figure 3.6 [12] shows the dividing hyperplane, support vectors,

and the two parallel hyperplanes.

w · xi−b ≥ 1or (3.20)

w · xi−b ≤ −1 (3.21)

Equation 3.20 can be rewritten as

ci(w · xi−b)≥ 1,1≤ i≤ n (3.22)

where ci is a contant 1 or −1 representing the class of xi, and n is the number of training

patterns used to train the classifier. Thus, the primal form is to minimize |w| subject to the

constraint Equation 3.22. This is a Quadratic programming (QP) optimization problem.

For non-linear classification, the kernal trick is applied to the separating or the maximum-

margin hyperplanes. The kernel trick transforms the non-linear observations to a higher di-

mensional space where the linear classfier would be subsequently applied. So, this makes

the linear classfication in the new space a non-linear classification in the original space.

Thus, in the resulting algorithm each dot product of the linear classifier is replaced with a

non-linear kernel function to make the maximum margin hyperplane fit in the transformed
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Figure 3.6: Maximum-margin hyperplane and margins for a SVM trained
with samples from two classes. Support vectors lie on lines w.x - b=1 and
w.x - b=-1 [12].

feature space. Some of the non-linear kernels used are polynomial, radial basis function,

and sigmoid functions.

In Matlab, the SVM classifier is first trained using function svmtrain that accepts as

input the rows of training data and a column vector of the class information for each row

of training data. Each row in the training data is an observation and each column is a fea-

ture. The default setting of the svmtrain function is the linear kernel or dot product which

was also used for our training dataset. The information about the trained SVM classi-

fier is returned in a structure SV MStruct that has the following fields: SupportVectors;

Alpha, Bias; KernelFunction; KernelFunctionArgs; GroupNames; SupportVectorIndices;

ScaleData; and, FigureHandles. This structure can now be used to classify the test data

using svmclassi f y, which accepts as its input the structure (SV MStruct) and the test data.

The return value of svmclassi f y indicates the class to which each row of test data has

been assigned to. The performance of the classifier can be analyzed using Matlab function

classper f .
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3.3.4 Validation

Once a classifier model has been learned from the training patterns, its ability to classify

new patterns can be assessed using cross validation techniques. This is accomplished by

using only part of the available patterns for training. The remaining “test” data are used

to test the performance of the learned model. Common types of cross validation methods

are the holdout method, and the k-fold cross validation method [33].

In the holdout (or half-and-half) method, the data set is randomly split into a training

set and a testing set. A model is learned from the training set and the validity of the

model checked by determining the classification accuracy of the model using the testing

set. Model accuracy is dependent on the particular split of the data. The disadvantage of

the holdout method can be avoided by using the k-fold cross validation technique. In this

method, the data set is divided into k folds, out of which k−1 folds are used as the training

set, and the remaining fold is used as the testing set. The holdout method is performed

k times, each using a different fold as the testing set thus eliminating the dependence on

the division of the data points among the training and the testing sets. The classification

accuracy is averaged over the k trials and the variance decreases as k increases.

36



CHAPTER 4

METHODOLOGY

The automatic detection of polycystic ovary morphology involves three steps: 1) Seg-

mentation of follicles from the ultrasonographic images; 2) application of stereological

methods on the segmented follicles to derive their quantitative features; and 3) finally

classification of the derived follicle features as polycystic or normal.

The region growing method of Potočnik and Zazula [2] was chosen for follicle seg-

mentation due to its fully automatic nature. The regions corresponding to the ovaries were

manually segmented from the ultrasound images first before being input to this algorithm.

In tests of this method, the recognition rate of follicles was approximately 78% with a

misidentification rate of 29%(std 25%) [2].

4.1 Follicle Segmentation

The region growing algorithm of Potočnik and Zazula [2] operates in three phases: 1)

identification of homogeneous regions; 2) region growing; and 3) follicle extraction. Since

this algorithm was designed to segment follicles in normal ovaries, some modifications

were made in order to segment polycystic ovaries. Subsections 4.1.1 through 4.1.3 detail

the algorithm; modifications from the original version [2] are noted.

4.1.1 Identification of Homogeneous Regions

A homogeneous region was considered to be one in which the pixels had similar greyscale

values. Identification of homogeneous regions was achieved by filtering the image with

an adaptive neighborhood median filter using a threshold T1, which was set to the mean

grey level of the original image. Pixels with intensity below T1 were filtered using an
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11×11 neighborhood, and pixels with intensity above this threshold were filtered using a

5× 5 neighborhood. This causes a greater amount of smoothing in darker regions which

are more likely to be part of a follicle and better preserves edges in brighter regions. The

smoothing step was then repeated to ensure elegant smoothing of follicle regions. An

11×11 neighborhood size was chosen because a distance of 50 to 60 pixels in an ovarian

ultrasonographic image corresponds to approximately 10 mm in reality. This size ensured

that follicle interior regions were smoothed more thoroughly than the follicle edges or

the high intensity regions. Since this step was part of the coarse estimation of follicle

regions, highly accurate determination of the threshold T1 was not paramount. The filtered

image was then thresholded using a new rough threshold, T2, which was set to the mean

intensity of the smoothed image minus one standard deviation of pixel intensities in the

smoothed image. Structures which were incorrectly merged using this procedure were

coarsely separated using binary watershed segmentation. The above procedure resulted

in some undesired homogeneous regions that were too small to be follicle regions. Such

regions were removed by deleting regions whose area in pixels fell below a threshold of T3.

T3 was set to 50, which is approximately a quarter of the area of the minimum detectable

follicle size. The identified homogeneous regions were then sorted in descending order by

area and passed on to the region growing step.

4.1.2 Region growing

The homogeneous regions from the previous phase are intial approximations of the fol-

licles. The approximation typically underestimates follicle area and results in regions

roughly centered within the actual follicle region. It is therefore appropriate to use region

growing to expand the regions to the actual follicle boundary.

Each homogeneous region was grown using an iterative process in which an individual

pixel is marked as a potential candidate for merging with a homogeneous region if it

satisfied two merging criteria. The first criterion (Equation 4.1) is based on the intensity

of an individual pixel; the second criterion (Equation 4.3) is based on weighted gradients.

Let R0 be the initial homogeneous region prior to being grown. Region growing pro-

ceeds iteratively. Let Ri denote the resulting region after i iterations of region growing.
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Let p0...pn be the pixels from the outer boundary of region Ri. For each iteration, Equa-

tions 4.1 and 4.3 were evaluated for all pixels p0...pn in the outer boundary. Pixels that

satisfied both criteria were marked as potential candidates for merging with Ri to form

Ri+1. The first criterion was:

|I(pi)−m(Ri)| ≤ ασ(Ri), (4.1)

where, I(pi) is the intensity of pixel pi, m(Ri) is the mean grey-level of region Ri, and

σ(Ri) is the standard deviation of grey-levels for pixels in Ri. The scaling parameter, α ,

was chosen to be 1.

The second criterion used edge and texture information. Edges can be detected by

computing the gradient of the image. However, since region boundaries are not well ex-

pressed in ultrasonographic images, a weighted gradient was used. The weighted gradient

magnitude is:

grad(pi) = ||∇Ik(pi)||(eG/tex(pi)−1), (4.2)

where ||∇Ik(pi)|| is the gradient magnitude of Ik, tex(pi) is the ratio of the mean grey-level

and one standard deviation of grey-levels in the 11×11 neighborhood about pixel pi, and

G = 2ln(2). As tex(pi)→ ∞, the exponential approaches 0, and when tex(pi) = 1.91,

exponential quantity is 1. The value 1.91 is the average signal-to-noise ratio (SNR) in

regions with ultrasound speckle. Hence, grad(pi) is small for anechogenic follicle regions

in which there is no speckle and large for edges and noisy regions. The second merging

criterion was given as:

|grad(pi)−m(grad(Ri))| ≤ ασ(grad(Ri)), (4.3)

where, m(grad(Ri)) is the mean weighted gradient and σ(grad(Ri)) is the standard devi-

ation of the weighted gradient in region Ri. The scale factor α was set to 2 [2].

In the original method, the marked potential candidates were merged with the homo-

geneous region if at least four of their neighbors were either in Ri already, or had also

been marked as potential candidates. In our method, two new criteria have been added

in addition to the above two merging criteria. Marked potential candidates are merged

with the homogeneous regions based on the values of two region-based scalar descriptors:
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solidity and eccentricity. Solidity is the proportion of the pixels in the convex hull of a

region that are also in the region, and eccentricity is the ratio of the lengths of the major

and minor axes of a region. If the solidity of the merged region (original region merged

with a potential candidate), is less than the original region, then the potential candidate is

unmarked. Also, if eccentricity of the merged region is greater than the original region,

or if it is greater than a threshold T4 which is set as 0.72, then the potential candidate is

unmarked. An eccentricity of 1 corresponds to a circular shape, and it was found that an

eccentricity of 0.72 gave optimum results for segmentation of follicular structures. These

shape descriptors are an important addition to the merging criteria as they ensure that re-

gions retain a compact shape during growth. The growing was halted when the final region

Rn was equal to that of the previous step Rn−1.

4.1.3 Follicle extraction

The identified regions of the previous step were further analyzed in an attempt to remove

those that did not correspond to an actual follicle. Identified regions with an area less than

220 pixels were removed since this corresponds to the approximate area of the smallest

visible follicles (2 to 3 mm diameter). Also, if the ratio of a follicle’s area to that of the

area of its bounding box was less than 0.5, it was removed from consideration. All the

regions satisfying these two measures were labelled and holes inside them filled.

4.2 Stereology and Feature Extraction

The second phase of the polycystic ovary detection algorithm is the generation of a feature

vector for the segmented (labelled) follicles in a given image. These feature vectors are

used in the third phase of the algorithm (see Section 4.3) which classifies feature vectors

as either from polycystic or normal ovaries.

Features were derived using a mathematical methodology called stereology [22], orig-

inally developed to understand the 3D geologic composition of the earth from core sam-

ples. Stereology is now routinely used in histology (study of tissues or cells using a mi-

croscope [34]) to infer 3D structure from small samples or biopsies. In stereology, two-
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dimensional images are viewed as projections of three-dimensional objects. Stereology

relates three-dimensional parameters of structures to two-dimensional measurements that

are obtained from 2D slices through the structures [22]. A variety of geometric attributes

of follicles can be calculated using stereology, such as the follicle count, distribution of

follicles within the ovary, and follicle size.

The quantitative properties of the ovary with respect to the follicles can be described

by their volume density, surface density, numerical density, and the mean follicle dimen-

sion. Volume density is defined as the volume of the phase within the unit volume of the

structure, surface density is surface area of the phase within unit volume of the structure,

and numerical density is the number of follicles in the structure [22].

In stereology, volume density of a component is calculated as the ratio of the sum of

component profile areas to the sum of the sectional area of the structure following the

Principle of Delesse, where profile area means the area of the object cross-section or the

area of the component cross-section, and section area means the area of the structure cross-

section, where the area is calculated using a stereological method called the point counting

method.

The areal density and thereby the volume density of objects in a given slice is deter-

mined by summing up the individual profile areas, where the area of a profile in stereologic

measurement is computed using point counting method, which is explained in Chapter 2.

This stereologic method is commonly used on histological slices, but for digital im-

ages, this method of area calculation can be replaced with an automatic area estimation of

the segmented and labelled follicles in Matlab R2006a. The section area of a structure is

calculated as:

sectionArea = width(columns)×height(rows) (4.4)

where the width and height attributes of the image region can be obtained using a function

called imattributes in Matlab R2006a, which returns an array with the image information.

The object profile area is calculated using a Matlab function bwarea as pro f ileArea =

bwarea( f ollicles), where bwarea estimates the area of the objects in binary image and

f ollicles represent the segmented follicle regions in the binary image. Thus, the areal
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density (volume density) of the follicle profiles can be calculated as

volumeDensity(V D) =
pro f ileArea
sectionArea

. (4.5)

Surface density Sv is defined as the amount of surface area Sa contained in unit volume

of tissue Vc. In stereology, surface density is estimated as (4/π)×boundary density [22],

where boundary density is the ratio of the length of follicle boundary (Ba) to the section

area. Length of the follicle boundary was calculated by counting the number of pixels that

make up the boundary of the follicle region, and was calculated using Matlab as given

below.

[B] = bwboundaries(follicles,8,’noholes’)

for k = 1 to length(B) do

boundary = B{k};

count = count + length(boundary);

end for

where bwboundaries traces the exterior boundaries of objects(follicles), in the binary im-

age f ollicles. Thus, boundary density was estimated as count
sectionArea , and surface density

was estimated as 4
π
× boundary density.

Numerical density (number of follicle regions per unit area) was obtained by counting

the number of follicles in the ultrasonographic image. Follicle size was calculated by

computing the average diameter of all the follicle regions in the given image. This was

achieved by finding the equivalent diameter of a circle with the same area as a follicle

region and was computed as
√

4∗Area/π . It can also be computed automatically using

Matlab function EquivDiameter.

The five quantitative descriptors were thus calculated for the segmented follicles of

the given ultrasonographic images and were used as follicle features for the final clas-

sification step. The following five stereological features were used to construct a feature

vector describing the follicles segmented from the input image: 1) surface density (SD); 2)

volume density (VD); 3) number of follicle regions per image (Profiles); 4) mean follicle

diameter (meanD); and, 5) maximum follicle diameter (maxD). These features were cho-

sen because they characterize the most important aspects of follicles within the ovary and
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Table 4.1: Mean and standard deviation of the feature vectors surface den-
sity(SD), volume density (VD), number of follicle profiles, mean and max-
imum diameters extracted from polycystic ovaries.

µ and σ SD VD Profiles Mean Diameter Max Diameter

Mean(n = 33) 0.0304 0.1354 11 24.37 mm 42.66 mm

σ 0.12 0.06 5 3.69 mm 10.74 mm

Table 4.2: Mean and standard deviation of the feature vectors surface den-
sity(SD), volume density (VD), number of follicle profiles, mean and max-
imum diameter extracted from expert traced polycystic ovaries.

µ and σ SD VD Profiles Mean Diameter Max Diameter

Mean(n = 32) 0.0302 0.1504 13 25.50 mm 37.59 mm

σ 0.0084 0.05 4 4.45 mm 7.86 mm

abnormalities in follicle morphology are a primary indication of PCO. Table 4.1 contain

feature vectors extracted from images of polycystic ovaries obtained after the segmenta-

tion and feature extraction (stereology) phases. Table 4.3 contain feature vectors extracted

from normal ovaries. Table 4.2 and table 4.4 contain feature vectors extracted from expert

traced PCO and normal ovaries respectively. In table 4.3 and table 4.1, SD denotes the

surface density and V D denotes the volume density. Figure 4.1 shows a scatter plot of

the population of feature observations of PCO and normal ovaries, where the red x denote

the normal feature plots and the blue o represent the PCO feature plots. Each individual

set of axes in the figure contains a scatter plot of the columns of the feature observations

against each other, grouped into two classes as normal and PCO, where the columns are

a set of observations of a single feature over multiple samples. That is, column one is

surface density(SD), column two is volume density (VD), column three is the number of

follicle profiles, column four is the mean follicle diameter, and column five is the maxi-

mum follicle diameter over multiple samples of normal and PCO ovaries. For example,

for the axis SD versus maxD, the scatter plot plots the population of observed SD obser-
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Table 4.3: Mean and standard deviation of the feature vectors surface den-
sity(SD), volume density (VD), number of follicle profiles, mean and max-
imum diameters extracted from normal ovaries.

µ and σ SD VD Profiles Mean Diameter Max Diameter

Mean(n = 37) 0.0224 0.1244 6 32.60 mm 48.06 mm

σ 0.01 0.05 3 12 mm 21.38 mm

Table 4.4: Mean and standard deviation of the feature vectors surface den-
sity(SD), volume density (VD), number of follicle profiles, mean and max-
imum diameters extracted from expert traced normal ovaries.

µ and σ SD VD Profiles Mean Diameter Max Diameter

Mean(n = 36) 0.0166 0.1347 4 41.01 mm 60.02 mm

σ 0.0068 0.07 2 20.66 mm 33.87 mm

vations versus MaxD observations for each of the classes. The five columns against each

other gives 25 set of axes. Each plot in the upper triangular block of plots corresponds to

a plot in the lower triangular block of plots that is itself flipped about the line y = x. For

example, the plot of SD versus maxD is the same as the plot of maxD vs SD flipped about

the line y = x. The five diagonal axes starting from the top left to the bottom right are the

histograms of SD, VD, number of follicle profiles, mean follicle diameter, and maximum

follicle diameter respectively for both the PCO and the normal features combined. This

scatter plot helps to infer the distribution of the PCO and the normal feature observations.

For example, the axis maxD versus SD shows that PCO features dominate the second half

of the SD axis; that is, have higher surface densities, but have lower values for the maxi-

mum diameter. From the same axis, it can also be inferred that normal features have higher

values for the maximum diameter but have smaller values for SD. Each set of indices can

be thus interpreted to study the correlation of the PCO and the normal feature observations

against the five different features.
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Figure 4.1: Scatter plots of the set of feature observations of PCO and
normal ovaries: Each individual set of axes contain a scatter plot of the
columns of the feature observations against each other, grouped as normal
and PCO. Red x represent the normal features and the blue o represent the
PCO features. The diagonal axes are the histograms of SD, VD, number of
follicle profiles, mean follicle diameter, and maximum follicle diameter for
both the PCO and the normal features combined.
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4.3 Classification

The feature vectors obtained from the previous step were classified into one of the follow-

ing two classes: (i) PCO present; or, (ii) PCO absent. The linear discriminant classifier,

k-nearest neighbor classifier (KNN), and Support Vector Machine (SVM) classifier avail-

able in Matlab R2006a Bioinformatics toolbox (The Mathworks, Inc) were evaluated for

their ability to correctly determine classes of feature vectors. The classification rates of

each classifier were determined using k-fold cross validation methodology (Matlab func-

tion crossvalind).

4.4 Follicle distribution

An algorithm was devised to automatically classify the spatial distribution of follicles in

an ovary as either random or peripheral. For each ovary, the centroid of each segmented

region was found. The mean centroid (centroid of the centroids), denoted mc, also was

computed. The mean and standard deviation of the distances between each region centroid

and mc were used as features for this classification. Higher order moments such as skew

and kurtosis of region centroid distances to mc were not found to improve the classification

results presented below. The classification was performed on 23 PCO ovaries, of which

11 were peripherally distributed and 12 were randomly distributed. The features were

extracted and classification was performed using the linear discriminant classifier and the

KNN classifier. Figure 4.2 shows the follicle centroids, where the blue stars represent the

follicle centroid, and the green circle is the mean centroid or the centroid of the centroids.

4.5 Experimental Setup

The ovarian ultrasonographic images were obtained from the Women’s Health Imaging

Research Laboratory (WHIRL) in Saskatoon, Canada. This set contained images of both

polycystic ovaries (n = 33) and normal ovaries (n = 37). These images were chosen from

19 normal patients and 10 PCOS patients. Pair of ovaries were not considered as a single
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Figure 4.2: Centroids of the follicle regions

unit. That is, these images are either from the right or the left ovary of each patient,

and were picked randomly. The region corresponding to the ovary were then manually

segmented from these ultrasound images before being input to the software. A feature

vector was extracted from each image using phases 1 and 2 of our algorithm (see Sections

4.1 and 4.2).

The 70 feature vectors were randomly divided into k = 10 folds for evaluation us-

ing the k-fold cross validation technique. Comparison of the classifier performance and

classification results were done using this cross validation method.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Results and Discussion

Since the segmentation algorithm used to identify follicles was a slightly modified version

of the algorithm in [2], a segmentation validation was performed to verify the accuracy of

the modified algorithm. This process is detailed in Section 5.1.1. Section 5.1.2 presents

the classification results for the three classifiers. Section 4.4 discusses results of a small

experiment to classify the spatial distribution of follicles as random or peripheral automat-

ically (as described in Section 2.2) using the linear discriminant and KNN classifiers.

5.1.1 Segmentation validation

The accuracy of follicle segmentation was measured by comparing manual segmentations

generated by a human expert (ground truth) with our automatic segmentation results using

the following similarity metrics: Hausdorff distance (HDist), mean distance (MDist), and

DICE coefficient (DICE).

Hausdorff distance measures the largest minimum distance between a point on the

automatically segmented region and all the points on the expert marked region and vice

versa. It characterizes the maximum deviation of the segmentatation boundary from the

ground truth. Let A denote the set of points in the automatically generated boundary and

let G denote the set of points in the ground truth boundary. The Hausdorff distance is then
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given by

d(p,B) = min
b∈B
||b− p||, (5.1)

HDist = max
[

max
a∈A

[d(a,G)],max
g∈G

[d(g,A)]
]
, (5.2)

where d(p,B) is the minimum Euclidian distance between a point p and the boundary B.

Thus, a smaller Hausdorff distance indicates a more accurate segmentation. The average

Hausdorff distance for all the automatically segmented follicles was 46.16 pixels.

Mean distance (Mdist) is the average minimum distance between a point on A and the

boundary G. It is formally defined as:

MDist =
1
2

[
1
nA

∑
a∈A

d(a,G)+
1

nG
∑

g∈G
d(g,A))

]
, (5.3)

where nA is the total number of pixels in the segmented region and nG is the total number of

pixels in the expert traced region. The average MDist for all the automatically segmented

follicles was 7.65 pixels. This result, combined with the average Hausdorff distance of

46.16 indicates there were few long segments of follicle boundaries that exhibited signifi-

cant deviation from the ground truth.

The DICE coefficient is defined as the ratio of the area of intersection between the

automatically segmented region A and the ground truth region G to one half of the total

area of the automatically segmented and the expertly segmented regions:

DICE =
A∩G

0.5(|A|+ |G|)
. (5.4)

This characterizes the percentage of ovarlap between the two regions. For our images,

the average percentage of overlap between the automatically segmented images and the

expert segmented images was found to be 62.39%.

Figure 5.1 depicts example automatic segmentations. The output of automatic seg-

mentation is similar to the manually traced expert segmentation. Table 5.1 summarizes

the segmentation validation results. A common mode of error is the division of single

follicles into multiple regions.

The recognition rate (RR) and misidentification rate (MR) also were computed in order

to characterize the ability of the segmentation algorithm to locate follicle regions regard-

less of the boundary accuracy. Recognition rate is the ratio of the number of actual follicles
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in the ground truth that correspond to some automatically segmented follicle to the actual

number of expert traced follicles. The number of follicles in the segmented image that

corresponds with an actual expert traced follicle is counted for each image. That is, these

follicles (obtained from automatic segmentation) overlap with follicles from the expert

traced image. The ratio of this count to the total count of expert traced follicles in a given

image, multiplied by 100 gives the recognition rate of the automatically segmented folli-

cles in each image. This is computed by first finding the maximum number of regions in

the expert traced image. The different regions are numbered by giving each region a label.

1: for i=region 1 to n do

2: Get the indices of the expert traced label image that correspond to region i

3: For the above indices get the corresponding value in the intersection label image,

where intersection image is the image obtained by & operation of expert traced and

automatically segmented image

4: Get the unique, non-zero elements(labels) from the above labels: UNIQNONZERO

5: if UNIQNONZERO >= ONELABEL and DICE coefficient (combined of all la-

belled regions in intersection label image corresponding to region i of expert traced

image) >50% then

6: Increment follicle intersect count. That is, consider that follicle recognized

7: end if

8: end for

9: Recognition Rate (RR) = f ollicleintersectcount
counto f o f experttraced f ollicles ×100

10: Misidentification Rate (MR) =counto f auto.segmented f ollicles− f ollicleintersectcount
counto f o f auto.segmented f ollicles ×100

The average recognition rate for all our images was 83%. The original method of [2]

achieved a RR of 78%.

The misidentification rate is defined as the proportion of the total number of segmented

regions that did not correspond to an expert-identified follicle (false positives). It gives an

indication of the regions that have been marked as a follicle by the automatic segmentation

algorithms but that does not correspond to the expert traced follicle. As can be seen

from the formulae of MR from the above algorithm, misidentification rate increases as

the count of automatically segmented follicles that do not correspond to the expert traced
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Table 5.1: Mean validation metrics for the automatic segmentation algo-
rithm over all follicles in the data set.

Mean HDist 46.16 pixels

Mean MDist 7.65 pixels

Mean DICE 62.39%

Mean RR 83%

Mean MR 26.13%

follicle increases (numerator of the MR formulae). Oversegmentation of follicles in the

segmentation step was a major contributer to the misidentification rate because it increased

the count of the segmented follicles that do not correspond to the expert traced follicle.

In oversegmentation, what experts perceive as a single follicle is split into two or more

by the segmentation algorithm due to the way homogeneous regions are selected, and

region growing is executed, thereby contributing a higher value to the numerator of the

MR formulae.

The average MR for our images was 26.13%. The original algorithm had an MR of

29% [2].

5.1.2 Classification results

The accuracy of the classification of the feature vectors as polycystic or normal by the

three classifiers as determined by the k-fold cross validation method is given in Table 5.2.

Sensitivity is the proportion of polycystic ovaries for which there was a positive test. The

linear discriminant classifier exhibited a sensitivity of 90.90% and the KNN classifier ex-

hibited a sensitivity of 93.94%.

Specificity is defined as the proportion of disease-free ovaries for which there was a

negative test. Consistently high rates of specificity were exhibited by all three classfiers.

The linear discriminant classifier achieved the best sensitivity of 94.59%.

CorrectRate in Table 5.2 is the overall classification rate and indicates the percentage

of ovaries for which a correct classification was made. The linear discriminant classifier
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Table 5.2: Performance results for the linear discriminant (LDC), k-nearest
neighbor (KNN) and support vector machine (SVM) PCO classifiers.

Classifier CorrectRate Sensitivity Specificity

LDC 0.9286 0.9091 0.9459

KNN 0.9143 0.9394 0.8919

SVM 0.9143 0.9091 0.9189

Table 5.3: Follicle distribution.

Classifier CorrectRate Sensitivity Specificity

LDC 0.8125 0.9167 0.5000

KNN 0.6250 0.7500 0.2500

produced the highest classification rate of 92.86%, while the KNN and SVM classifiers

made correct decisions 91.43% of the time.

Table 5.3 shows the results of the follicle distribution classification using a linear dis-

criminant classifier, and k-nearest neighbor classfier as determined by 10-fold cross vali-

dation. A correct classification rate of 81.2% was obtained using the linear discriminant

classifier.
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Manual Automatic

Manual Automatic

Manual Automatic

Figure 5.1: Examples of automatic segmentation results
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CHAPTER 6

CONCLUSION AND FUTURE WORK

A method for automatically discriminating between normal ovarian follicle morphol-

ogy and follicle morphology in polycystic ovaries was done in three phases: 1) Follicle

segmentation using a region growing method; 2) quantification of the attributes of the seg-

mented follicles using stereology; and 3) classification of the resulting feature vectors as

either normal or polycystic. A slightly modified version of the algorithm in [2] was used

for performing the automatic follicle segmentation, and feature vectors for the automati-

cally segmented follicles were obtained using stereologic techniques that are commonly

used in applications that need to obtain three dimensional attributes from two dimensional

histological sections. We used the stereological quantitative descriptors to obtain the fea-

tures from the follicle regions, but replaced the stereological techniques with some au-

tomated functions available in Matlab R2006a. The follicle feature vectors were then

analyzed using three different classifiers: 1) linear discriminant; 2) KNN; and 3) SVM

classifier. All the three classifiers performed well. Classification rates were 92.8%, 91.4%,

91.4%, respectively.

A classifier to analyze the distribution of the follicles inside polycystic ovaries was

developed. It used two features, the mean and standard deviations of the distances of the

centroids of individual follicles to the mean centroid. A linear discriminant classifier had

a classification rate of 81% as determined by 10-fold cross validation.

Our results offer the promise of deploying a robust automated screening system for

polycystic ovary morphology which will improve the rapidity and accuracy of diagnosis

of Polycystic Ovarian Syndrome and facilitate early diagnosis and therefore reduced risk

from the severe complications that can arise from this undiagnosed condition. This thesis

has appeared in [35].
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6.1 Future Work

A common mode of error in the automatic segmentation algorithm is the division of sin-

gle follicles into multiple regions. This problem could be targeted in the future work

which would help to increase the recognition rate and decrease the misidentification rate.

Classification accuracy could be tested by adding more features to the feature set and by

increasing the sample size to see if improvement can be achieved. Finally, future work on

automatically segmenting the ovary region will improve the overall time, and the whole

system could be setup as an add-on to an ultrasound machine with no manual interaction

needed at any stage. Thus, all the ovarian ultrasonographic images taken for follicle anal-

ysis could be automatically added as a data set to the classifier and with time, the training

data for the classifier would keep increasing thereby improving the classifier performance

as well. Also, the time taken for the diagnosis will improve as the patient and their physi-

cians would know the results of the scan instantly.
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