11,009 research outputs found

    Dynamic association between perfusion and white matter integrity across time since injury in Veterans with history of TBI.

    Get PDF
    ObjectiveCerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI.Methods37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI.ResultsRegression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum (p < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI.ConclusionsOur results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Is traumatic and non-traumatic neck pain associated with brain alterations? : a systematic review

    Get PDF
    Background: Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. Objectives: This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Study Design: Systematic review. Methods: The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Results: Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Limitations: Only 12 articles were included, which allows only cautious conclusions to be drawn. Conclusion: Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable in future research

    Advancing imaging technologies for patients with spinal pain : with a focus on whiplash injury

    Get PDF
    Background: Radiological observations of soft-tissue changes that may relate to clinical symptoms in patients with traumatic and non-traumatic spinal disorders are highly controversial. Studies are often of poor quality and findings are inconsistent. A plethora of evidence suggests some pathoanatomical findings from traditional imaging applications are common in asymptomatic participants across the life span, which further questions the diagnostic, prognostic, and theranostic value of traditional imaging. Although we do not dispute the limited evidence for the clinical importance of most imaging findings, we contend that the disparate findings across studies may in part be due to limitations in the approaches used in assessment and analysis of imaging findings. Purpose: This clinical commentary aimed to (1) briefly detail available imaging guidelines, (2) detail research-based evidence around the clinical use of findings from advanced, but available, imaging applications (eg, fat and water magnetic resonance imaging and magnetization transfer imaging), and (3) introduce how evolving imaging technologies may improve our mechanistic understanding of pain and disability, leading to improved treatments and outcomes. Study Design/Setting: A non-systematic review of the literature is carried out. Methods: A narrative summary (including studies from the authors' own work in whiplash injuries) of the available literature is provided. Results: An emerging body of evidence suggests that the combination of existing imaging sequences or the use of developing imaging technologies in tandem with a good clinical assessment of modifiable risk factors may provide important diagnostic information toward the exploration and development of more informed and effective treatment options for some patients with traumatic neck pain. Conclusions: Advancing imaging technologies may help to explain the seemingly disconnected spectrum of biopsychosocial signs and symptoms of traumatic neck pain

    Neurological consequences of traumatic brain injuries in sports.

    Get PDF
    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological mechanisms are discussed. This article is part of a Special Issue entitled 'Traumatic Brain Injury'

    Exploring the physiological correlates of chronic mild traumatic brain injury symptoms

    Get PDF
    We report on the results of a multimodal imaging study involving behavioral assessments, evoked and resting-state BOLD fMRI, and DTI in chronic mTBI subjects. We found that larger task-evoked BOLD activity in the MT+/LO region in extra-striate visual cortex correlated with mTBI and PTSD symptoms, especially light sensitivity. Moreover, higher FA values near the left optic radiation (OR) were associated with both light sensitivity and higher BOLD activity in the MT+/LO region. The MT+/LO region was localized as a region of abnormal functional connectivity with central white matter regions previously found to have abnormal physiological signals during visual eye movement tracking (Astafiev et al., 2015). We conclude that mTBI symptoms and light sensitivity may be related to excessive responsiveness of visual cortex to sensory stimuli. This abnormal sensitivity may be related to chronic remodeling of white matter visual pathways acutely injured
    corecore