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Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and pro-
gressive aftermath of TBI in boxers depicted as punch drunk syndromewas described almost a century ago and is
now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury
including subdural haematoma and catastrophic brain injurymay lead to death, whereasmild TBI, or concussion,
causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion,
symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usu-
ally resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient
nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neuro-
chemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and
neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing
brains in children and adolescents aremore susceptible to concussion than adult brain. Themechanism bywhich
acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the
development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in
close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology
for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular
integrity, breach of the blood brain barrier, resulting inflammatory cascade andmicroglia and astrocyte activation
are likely to be the basis of themechanistic link of TBI and CTE. This article provides an overview of the acute and
long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysio-
logical mechanisms are discussed. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, traumatic brain injury (TBI) and chronic traumatic
encephalopathy (CTE) in contact sports participants have received in-
tense media, medical and scientific attention. TBI is generally divided
into acute and chronic (Blennow et al., 2012). Acute brain injury in
sports-related trauma may lead to concussion, subconcussion, haemor-
rhage or other structural brain damages. The chronic consequence of TBI
is CTE, a neurodegenerative condition, in which progressive clinical
symptoms often begin several years after retiring from the sport with
abnormal tau accumulation as the histological hallmark.

The aim of this review is to give an overview of the short and long
term neurological consequences of sports-related TBI, including the
characteristic clinical and neuropathological findings (Table 1). The
pathophysiology of TBI and the possible mechanisms leading to pro-
gressive histological changes of CTE in later life years after the TBI has
ceased are discussed.
2. Acute TBI

2.1. Catastrophic brain injuries

Common acute TBIs in sports are skull fracture, subdural and epidu-
ral haematoma and ruptured vertebral arterywith subarachnoid haem-
orrhage (Logan et al., 2001; Miele et al., 2004). Catastrophic brain
injuries refer to severe brain trauma associated with intracranial bleed-
ing or cerebral contusions which may result in death or long term neu-
rological sequelae. The most common cause of death in sports-related
TBI is subdural haematoma especially in boxers (Guterman and Smith,
1987; Unterharnscheidt, 1995). Approximately ten deaths occur each
year in boxing, most of which following knockout or technical knockout
(Svinth, 2011). Most deaths are in lower weight classes in boxing.
Table 1
Acute and chronic consequences of sports-related traumatic brain injuries (TBIs).

Acute sports-related TBIs: Chronic sequelae of sports-related TBIs:

• Skull fracture
• Subdural haematoma
• Epidural haematoma
• Subarachnoid haemorrhage
• Intracranial haematoma
• Cerebral contusion
• Juvenile head trauma syndrome
• Second impact syndrome
• Concussion and subconcussion
(or mild TBIs)

• Postconcussive syndrome

• Chronic postconcussive syndrome
• Chronic traumatic encephalopathy
• Chronic hypopituitarism especially growth
hormone deficiency (Tanriverdi et al., 2007)

• Increased risk of neurodegenerative disorders
including cognitive impairment, Alzheimer's
disease, motor neuron disease and Parkinson's
disease
Decline in fatalities since 1983 might be related to shorter careers and
fewer fights, hence, reduced exposure to repetitive TBIs (Baird et al.,
2010). In the United States, there have been 133 catastrophic brain inju-
ries registered among non-professional American football players since
1982: 90% were high school athletes and 8% were college players
(Mueller and Cantu, 2009).

2.2. Juvenile head trauma syndrome

Minor head trauma can sometimes cause severe and even fatal cere-
bral oedema and coma following a lucid interval. This delayed cerebral
oedema, or otherwise known as the juvenile head trauma syndrome,
has been described in collision sports involving children and adoles-
cents (McQuillen et al., 1988), some of whom were found to carry the
CACNA1A gene mutation linked with familial hemiplegic migraine
(Kors et al., 2001).

2.3. Second impact syndrome

The term second impact syndrome (SIS) is a rare but widely feared
complication of TBI among athletes. SIS refers to ‘an athlete who has
sustained an initial head injury, most often a concussion, sustains a sec-
ond head injury before the symptoms associated with the first have
fully cleared’ (Cantu, 1998). The second head injury is typically only a
minor blow to the head, but within minutes, the athlete collapses into
a coma. It is postulated that severe cerebrovascular engorgement and
cerebral oedema ensue following the second impact leading to brain
herniation. Like juvenile head trauma syndrome, SIS is also more
common in children and adolescents with a mean age of 17.9 (range:
10–24), predominantly male, and 71% occurred in American football
players, usually at the high school level, 14% in boxing, and few cases
were reported in karate, skiing and ice hockey (Mori et al., 2006). The
relationship between SIS and juvenile head trauma is uncertain but
both conditions are associated with malignant cerebral oedema after
TBI. The replacement of the controversial and possibly misleading
term of SIS with diffuse cerebral swelling has been proposed by some
critics (McCrory, 2001).

2.4. Concussion

Concussion is the most common form of acute TBI in high-impact
sports. Concussion is frequently referred as mild TBI in the literature
and the two terms are used interchangeably. A concussion is defined
as ‘a complex pathophysiological process affecting the brain, induced
by biomechanical forces either by a direct or indirect blow resulting in
an impulsive force transmitted to the head.’ (McCrory et al., 2013).
Concussion does not cause structural injuries detectable by conventional



Table 2
Top 20 sports and recreational activities with the highest risk of head injuries requiring
hospital emergency care or evaluation.a

1. Cyclingb (H)
2. Footballb (H)
3. Baseball and softballb (H—when batting)
4. Basketballb

5. Water sportsb

6. Powered recreational vehiclesb (H)
7. Soccerb

8. Skateboards and scootersb (H)
9. Fitness, exercise and health club

10. Winter sports (skiing (H), sledging, snowboarding (H), snowmobiling)b

11. Horseback riding (H)
12. Gymnastics, dance, cheerleading
13. Golf
14. Hockey (H)
15. Other ball sports
16. Trampolinesb

17. Rugby
18. Lacrosse
19. Roller and inline skating
20. Ice skating

(H): Risk sports in which helmet or head gear use should be worn at all times. Proper
fitting and safety standard approved by regulatory bodies such as the American Society
for Testing andMaterials (ASTM) are necessary for helmet and head gear to provide max-
imum protection against sports-related head injuries.

a Data obtained from an American Association of Neurological Surgeons (AANS) study on
sports-related head injuries treated at the hospital emergency service in the United States in
2009 (http://www.aans.org/patient%20information/conditions%20and%20treatments/
sports-related%20head%20injury.aspx).

b Top 10 sports-related head-injury categories among children aged 14 or below in the
AANS study in 2009.
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neuroimaging. Severe concussion can lead to loss of consciousness
which may be prolonged. Acute concussion is a clinical diagnosis
based on clinical evaluation of symptoms such as headache, cognitive
(e.g., feeling like in a fog, reduced attention and concentration, amnesia
and slowing of cognitive processing speed) and neuropsychiatric
(e.g., emotional lability, irritability) changes and sleep disturbance,
which reflect functional disturbance (Hall and Chapman, 2005).

If an athlete shows any clinical symptoms, on-field or sideline eval-
uation is required. Neuropsychiatric testing is an important aid in the
overall assessment of concussion and contributes to the return-to-play
decision (Walker and Tesco, 2013). Rest for 24–48 h is thought to be
of benefit in the acute symptomatic period although further research
to evaluate the benefit of long-term rest is required (McCrory et al.,
2013). Low-level rehabilitation or exercise programme may be benefi-
cial after a month if symptoms persist (Gagnon et al., 2009; Leddy
et al., 2010). About 80–90% of concussions resolve in 7–10 days but
the recovery time for children and adolescents is longer (McCrory
et al., 2005).

In boxing, a ‘knockout’ is associated with concussion and loss of
consciousness by definition. Due to the nature of the sport, concussion
occurs more frequently in professional boxing than in amateur boxing
Table 3
Differentiating histological features between CTE and Alzheimer's disease (Geddes et al., 1999;

CTE

Tau isoforms Mixed 3R and 4R
Distribution of astrocytic tangles and NFTs –Patchy and irregular

–Absence of neuritic plaques
–Predilection for perivascular regions, in de
–NFTs are predominant in the superficial co
and upper third of layer III) and periventric
–Early involvements of the frontal and tem

Aβ pathology Rare; if present, likely to be age- or Alzheim
Tau pathology in locus coeruleus Early
Ghost tangles Frequently observed
TDP-43 inclusions Frequently observed
or other contact sports (Koh et al., 2003). Concussion is reported in
other martial arts including karate (Stricevic et al., 1983), taekwondo
(Koh et al., 2003) and kickboxing (Gartland et al., 2001; Zazryn et al.,
2003) but is an area in need of more research to highlight the potential
magnitude of the TBI-related risks in view of their global popularity. Of
the 2328 competitors in a Korean taekwondo tournament, the incidence
of head blows and concussions was 226 with a higher propensity for
younger participants, likely related to less competition experience,
and thosewho lacked blocking skills (Koh and Cassidy, 2004). In soccer,
heading, a manoeuvre using the head to advance or redirect the ball, or
collisions with another player, the goalpost or the ground are the com-
mon causes of concussion.

2.5. Postconcussive syndrome

Postconcussive syndrome (PCS) is a clinical entity referred to as the
presence of persistent neurological symptoms lasting for more than
3 months and is observed in 40–80% of individuals exposed to mild
TBI (Hall and Chapman, 2005). About 10–15% of individuals experience
persistent symptoms after 1 year (Roe et al., 2009; Williams et al.,
2010). Neuropsychological tests reveal that cognitive impairment
often persists beyond the subjectively symptomatic time in boxers fol-
lowing mild TBI or a knockout. Cognitive function is measurably im-
paired for days following a knockout in amateur boxers (Bleiberg
et al., 2004). The seemingly mild head injury causing these subtle sub-
jective and objective neuropsychiatric deficits is sometimes referred to
as subconcussion (Guskiewicz et al., 2007b). Inappropriate manage-
ment of concussion and subconcussionmay put the athlete at risk of de-
veloping SIS and/or chronic PCS (CPCS) with persistent neurological
symptoms, most commonly, headache, dizziness, impaired attention,
poor memory, executive dysfunction, irritability and depression. CPCS
is a clinical entity of chronic TBI, which is probably distinct from CTE,
and the onset of neurological symptoms begins rapidly after the head
trauma and persists but rarely progresses. The pathological substrate
of CPCS is yet to be established as is its precise relation to CTE regarding
its molecular pathology (Harmon et al., 2013; Kelly and Rosenberg,
1998).

3. Pathophysiology of sports-related TBI

3.1. Biophysical mechanisms in risk sports

Rapid acceleration and deceleration forces on the brain, either linear
or rotational, are the primary mechanism in which concussion and
subconcussion occur. Rotational acceleration such as blows to the
head by hook punches in boxing results in concussion more frequently
than linear acceleration caused by straight head blows and head con-
tacts in other sports such as American football (Ohhashi et al., 2002)
(Table 2). When subjected to rapid acceleration, deceleration and rota-
tional forces, the brain and all its components including neurons, glial
cells and blood vessels are stretched, which may disrupt their normal
Hof et al., 1992; Ling et al., 2014; McKee et al., 2013).

Alzheimer's disease

Mixed 3R and 4R

pths of cerebral sulci
rtical layers (layer II
ular regions
poral cortices

–Neuritic and mature plaques rather than astrocytic tangles
–NFTs are predominant in the deep cortical layers
–Early involvements of the hippocampal formation and
limbic region

er-related Abundant amyloid deposition and plaques
Early
Frequently observed
Occasionally observed

http://www.aans.org/patient%20information/conditions%20and%20treatments/sports-related%20head%20injury.aspx
http://www.aans.org/patient%20information/conditions%20and%20treatments/sports-related%20head%20injury.aspx
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functions. Axons that span longdistances from the cell bodies are partic-
ularly susceptible to stretching, whichmay lead to diffuse axonal injury,
a basis for the symptoms experienced in concussion (McKee et al.,
2014) (Fig. 1).

3.2. Neurobiology and neurometabolic cascade

A neurometabolic cascade of concussion sets into motion imme-
diately following the biomechanical injury to the brain, with rapid
release of neurotransmitters, efflux of K+ and influx of Na+, causing
an increase in intra-axonal calcium concentrations, which activates
protease calpain and triggers calpain-mediated proteolysis of the
cytoskeletal proteins, a process that can potentially lead to irrevers-
ible axonal pathology (Blennow et al., 2012; McKee et al., 2014) (Fig.
1). An increase in intra-axonal calcium also stimulates glutamate re-
lease and glutamate-mediated activation of N-methyl-D-aspartate
receptors causing depolarization of neurons (Spain et al., 2010). To
restore the ionic balance, glucose consumption is increased, which
depletes the energy stores, leading to events of impaired oxidative
metabolism, glycolysis with lactate production resulting in acidosis
and cerebral oedema (Barkhoudarian et al., 2011). Progressive mi-
crotubule disassembly is evident at the time of acute TBI impairing
axonal transport. Axonal swellings occur and axons become discon-
nected at the location of the injury, which most commonly occur in
the deep gyri at the grey and white matter interface (Barkhoudarian
et al., 2011). Diffusion tensor imaging has found a correlation be-
tween white matter abnormalities after mild TBI and the severity
of postconcussive cognitive problems (Bazarian et al., 2007).

3.3. Functional abnormalities following TBI

Despite the transient nature of clinical symptoms which usually re-
solve within 7–10 days, magnetic resonance spectroscopy, electrophys-
iological data and neuropsychological assessments indicate that the
functional disturbance takes 30–45 days to return to baseline level
(Brooks et al., 2000; Iverson et al., 2004). Functional MRI studies have
shownalterations in brain activation patterns in individualswith persis-
tent symptoms after TBI despite normal neurocognitive task perfor-
mance (Chen et al., 2008; Gosselin et al., 2011; Lovell et al., 2007). Re-
allocation of neurocognitive resources as a compensatory mechanism
and recruitment of brain regions outside the normal cognitive network
is thought to enable the maintenance of a normal level of neuropsychi-
atric performance (Smits et al., 2009). Neuropathological analyses show
axonopathy may persist for years after TBI (Johnson et al., 2013).

Children and adolescents experience prolonged recovery rates after
TBI compared to adults (Field et al., 2003) and poorer outcome (Giza
et al., 2005). The reasons for the greater susceptibility of the developing
brain to TBI than adult brain are possibly due to the differences in the
degree of myelination, volume ratio of brain to water, elastic properties
and blood–brain barrier integrity (Anderson et al., 2000). To educate
and raise awareness of the risk of contact sports in children is a public
health responsibility to enable parents to make informed decision.

4. Biomarkers

4.1. Cerebrospinal fluid

Several cerebrospinal fluid (CSF) biomarkers of TBI have been
established (Zetterberg et al., 2013). The levels of total tau protein and
neurofilament light polypeptide (NFL) are raised reaching peak levels
4–10 days after TBI (Neselius et al., 2012; Zetterberg et al., 2006). Tau
protein is highly expressed in thin, non-myelinated axons of cortical in-
terneurons and NFL is found in large-calibre myelinated axons which
project into deep brain layers and the spinal cord. The distinct regional
distribution of tau and NFL is likely to indicate the components of the
brain being affected by injury with raised CSF total tau protein
representing axonal damage in grey matter neurons and raised CSF
NFL signifying long myelinated axonal damage in white matter
(Zetterberg et al., 2013).

Total tau protein levels in ventricular CSF correlate with lesion size
and clinical outcome in patients with TBI (Franz et al., 2003; Ost et al.,
2006; Zemlan et al., 2002). Total tau protein levels are elevated in lum-
bar CSF in boxers 4–10 days after a bout and in boxers who have not
been knockout (Neselius et al., 2012; Zetterberg et al., 2006). The level
of total tau protein levels normalize within the 8–12 weeks providing
the boxers have not been subjected to further bouts (Neselius et al.,
2012; Zetterberg et al., 2006).

Levels of NFL in lumbar CSF from amateur boxers withmild TBI after
a bout are also raised (Neselius et al., 2012; Zetterberg et al., 2006). The
raised level of NFL is of a larger magnitude than that of total tau protein,
suggesting NFL in lumbar CSF is probably the most sensitive biomarker
of axonal injury, representing the susceptibility of long myelinated
axons tomild TBI (Zetterberg et al., 2013). NFL levels in lumbar CSF cor-
relatewith amateur boxers' exposure to head trauma, includingnumber
of blows to the head (Neselius et al., 2012; Zetterberg et al., 2006).

S100-B and glial fibrillary acidic proteins represent astroglial injury
and have been shown to increase following TBI but to a lesser degree
than NFL and total tau protein (Neselius et al., 2012; Zetterberg et al.,
2006).

4.2. Blood

Blood biomarkers have been studied but no reliable markers of TBI
have been established owing to various difficulties including proteolytic
degradation of potential markers, clearance from blood via the liver or
kidney, binding to carrier proteins and interference of lysis of red
blood cells (Zetterberg et al., 2013). Levels of total tau and S100-B in
the blood are increased in professional ice-hockey players following
concussion and returned to pre-concussion baseline levels during reha-
bilitation, suggesting acute axonal and astroglial injury associated with
the concussion. Future validation of these potential blood biomarkers
of TBI is required (Shahim et al., 2014).

5. Pathology of acute TBI

5.1. Microscopic findings

Neuropathological findings in the literature on individuals who died
of acutemild TBI are rare andhave been compiled either as isolated case
reports or small case series only (Blumbergs et al., 1994; Oppenheimer,
1968). Oppenheimer described microglial clusters that had appeared in
less than 24 h after TBI (Oppenheimer, 1968). In some cases, petechial
haemorrhage was observed, a result of stretching of the microvascular
structures. Myelin destruction and numerous axonal retraction bulbs
were found in variable regions likely to have been subjected to the
most acceleration and deceleration forces. In cases with survival times
of 6weeks ormore after TBI, the appearance of ‘glial stars’wasobserved,
which is now known as astrocytic tangles, one of the characteristic his-
tological features of CTE along with neurofibrillary tangles (NFTs).
Importantly, Oppenheimer concluded that ‘permanent damage, in the
form of microscopic destructive foci, can be inflicted on the brain by what
are regarded as trivial head injuries’ (Oppenheimer, 1968). We now
know that repeated TBI can potentially lead to irreversible and progres-
sive neurodegeneration of CTE.

5.2. APP and Aβ

Blumbergs et al. performed immunohistochemistry with antibody
to amyloid precursor protein (APP), a marker of fast axonal transport,
in 5 postmortem cases with mild TBI and demonstrated APP-
immunoreactive multifocal axonal injury in the fornix, a region which
forms themajor hippocampal projection pathways involved inmemory



Fig. 1. Schematic illustration of the proposed cascade of events triggered by acute TBIs and its possible mechanistic links with the development of CTE pathology (Blennow et al., 2012;
Lucke-Wold et al., 2014; Morales et al., 2009).
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function (Blumbergs et al., 1994). APP is cleaved to amyloid-β (Aβ) pep-
tides, a key component in the pathophysiology in Alzheimer's disease.
Nevertheless, multiple studies using various techniques demonstrate
the absence of Aβ pathology in most cases of acute TBI and CTE, partic-
ularly in young individuals and in early stages (Geddes et al., 1999; Hof
et al., 1992; McKee et al., 2013); those with positive Aβ pathologymost
likely represent co-incidental age-related changes in older individuals
(Tokuda et al., 1991).

5.3. Mechanistic link between TBI and CTE

Themechanismbywhich acute TBI leads to tauhyperphosphorylation
and the development of neurofibrillary tangles (NFTs) in CTE remains
speculative (Fig. 1). A histological report of 6 athletes who died within
6 months of a reported concussion revealed focal tau-positive NFTs
and neurites in close proximity to focal axonal injury and foci of
microhaemorrhage (McKee et al., 2014). It is also well recognised that
NFTs in CTE have a predilection for perivascular and subcortical areas
near reactive astrocytes and microglia (Geddes et al., 1999; Hof et al.,
1992). It is possible that acute TBI leads to axonal injury, loss of micro-
vascular integrity and breach of the blood brain barrier, triggering an in-
flammatory cascade andmicroglia and astrocyte activation, which form
the basis of a mechanistic link with the subsequent development of
CTE-tau pathology (Lucke-Wold et al., 2014) (Fig. 1).

6. CTE

6.1. Historical aspects

The concept that exposure to TBI can lead to neurodegenerative
changes was first introduced in 1926 in a presentation at the annual
meeting of theAmericanNeurological AssociationbyOsnato andGiliberti,
neurologists from New York (Osnato and Giliberti, 1927). In 1928, a New
Jersey pathologist, HarrisonMartland, described ‘punch drunk syndrome’
in retired boxers who developed chronic motor and neuropsychiatric
symptoms (Martland, 1928). In 1937, Millspaugh introduced the term
‘dementia pugilistica’ describing the potential long-term aftermath of re-
petitive TBI from professional and amateur boxing supported by neuro-
pathological findings (Millspaugh, 1937). In 1949, the eminent British
neurologist, Macdonald Critchley coined the term CTE (Critchley, 1949),
which has become the prevailing term used in modern day literature in
recognition that this potential long-term neurological consequence of re-
petitive TBI also occurs in other contact sports, such as American football,
wrestling, rugby, ice hockey, steeplechase horse racing and basketball
(Foster et al., 1976; Geddes et al., 1999; Hof et al., 1992; McKee et al.,
2013, 2014; Omalu et al., 2005, 2006, 2010) as well as in war veterans
and in people who have been repeatedly battered (Geddes et al., 1999;
McKee and Robinson, 2014; McKee et al., 2013). In particular, the post-
mortem case reports of American football players have attracted signifi-
cant media attention in recent years (Omalu et al., 2005, 2006).

6.2. Epidemiology

1969, Roberts reported a prevalence of CTE of 17% among retired
boxers in the UK. Risk factors for CTE include high number of bouts
(N20bouts), older age at retirement fromboxing, longer length of boxing
career (N10 years) (McCrory, 2011; Roberts, 1969) and possibly positive
apolipoprotein e4 allele (Jordan et al., 1997; Kutner et al., 2000).

Epidemiological data in non-boxing sports is scant (McCrea et al.,
2003; Pellman et al., 2004). Gavett et al. estimated a lifetime prevalence
of CTE of 3.7% among National Football League athletes but this figure
would require validation in large scale longitudinal study in view of
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the potential selection bias of the propensity for performing post-
mortem in more symptomatic athletes (Gavett et al., 2011).

The risk of CTE from heading the ball in soccer is increasingly
recognised. Early CTE changes were reported in an amateur soccer player
(Geddes et al., 1999). Soccer players who head the ball more than 1800
times per year were found to have microstructural abnormalities in the
temporo-occipital white matter on diffusion tensor imaging correlating
with poorer memory scores (Lipton et al., 2013). In a human experimen-
tal study of controlled headings in soccer, no changes in CSF biomarkers
for neuronal or astroglial injury were seen (Zetterberg et al., 2007). This
may indicate that the ball-to-head contact may not be the primary prob-
lem, but instead headingmay represent a risk situation for other head in-
juries, for instance, head-to-head contact accidents. Enforcers in ice
hockey have high overall exposure to repetitive TBI and the profile of
the linear and rotational head impacts differs from those in American
football players (Wilcox et al., 2014).

Exposure to single bout ofmoderate to severe TBI have been shown to
attribute to an increased risk of dementia in later life but this concept re-
mains controversial due to potential recall bias (Smith et al., 2013).

On the other hand, repetitive TBI is now firmly linkedwith dementia
with a ‘dose-response’ relationship (Guskiewicz et al., 2005; Lye and
Fig. 2. Chronic traumatic encephalopathy (CTE) pathology. Tau immunohistochemistry demons
astrocytic tangles (B–C). Neurofibrillary tangles (NFTs) are occasionally observed in the periva
NFTs (arrow) in the CA1 hippocampal subregion onH&E (D) and amyloid-β deposition on the g
neuronal cytoplasmic inclusions (NCIs) in the dentate fascia of the hippocampus (E) and a neuro
immunoreactive NFTs and neuropil threads (NTs, H) in the hippocampal formation. These NFTs
(J). A, B, C, H: tau immunohistochemistry (AT8), D: H&E, inset in D: Aβ immunohistochemistry
istry. Bar in J = 50 μm in A, H–J, =100 μm in B and =25 μm in D–G.
Shores, 2000), particularly in individuals with greater severity of TBI
(Plassman et al., 2000) and history of loss of consciousness (Guo et al.,
2000). Onset of dementia is accelerated in individuals with a history
of TBI-related loss of consciousness for more than five minutes
(Nemetz et al., 1999; Schofield et al., 1997). Epidemiological studies
have also linked sports-related TBI to mood disorders (Guskiewicz
et al., 2007a) and suicide (Roberts, 1969).

Nevertheless, not all boxers developdementia or have CTE-taupathol-
ogy in post-mortemdespite exposure to repetitive TBI (Stern et al., 2011).
A study found 68 out of 85 (80%) participantswith histories of repetitive e
head injury had CTE pathology (McKee et al., 2013). It is possible that
some individuals may be resilient to the development of CTE following
TBI and potential protective factors such as genetic (Zhou et al., 2008),
sex, age or environmental interplay (Cottler et al., 2011; Okawa et al.,
2003; Ramage et al., 2005) await to be investigated.

6.3. Clinical features

Martland in his monograph on the punch drunk syndrome described
unsteadiness of gait,mental confusion, slowing ofmuscularmovements
and, occasionally, hesitancy in speech, tremors of the hands and
trates subpial astrocytic tangles in the depth of sulci of the frontal cortex (A), perivascular
scular region (white arrow, B). Marked neuronal loss with ghost tangles (arrowhead) and
host tangles can be observed (inset inD). TDP-43 immunohistochemistry shows occasional
nal intranuclear inclusion (NII) (F), NCIs and threads (G) are demonstrated. Extensive tau-
and NTs are characteristically immunoreactive for 3-repeat (I) and 4-repeat tau antibodies
, E–G: TDP-43 immunohistochemistry, I: 3-repeat, and J: 4-repeat tau immunohistochem-
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nodding of the head (Martland, 1928). Behavioural disturbances are
usually the earliest findings in CTE and may include depression, mood
swings, apathy, impulsivity, aggression and suicidality (Corsellis et al.,
1973; Critchley, 1949; Jordan, 2013; McKee et al., 2013; Roberts,
1969). Cognitive deficits include attention and concentration impair-
ment, memory problems, executive dysfunction and eventually demen-
tia. Common motor symptoms are parkinsonism, tremor, dysarthria,
coordination difficulties and ataxia, reflect extrapyramidal and pyrami-
dal system and cerebellum involvements. Headache is another promi-
nent feature but may represent comorbid CPCS. Research and clinical
diagnostic criteria have been proposed but their accuracies in predicting
underlying CTE pathological changes will require validation (Jordan,
2013; Montenigro et al., 2014; Victoroff, 2013). In 2014, a large
cohort of pathologically confirmed CTE delineated CTE into two clinical
phenotypic presentations: onewith predominantmood and behaviour-
al symptoms in younger individuals in the third decade and another
with cognitive impairment presenting in the fifth decade (Stern et al.,
2013). The majority of cases (86%) with mood and behavioural
changes at presentation gradually developed cognitive andmemory im-
pairment prior to death. It should be noted that environmental influ-
ences such as alcohol, opioid and performance-enhancing drugs may
attribute to the mood and behavioural symptoms especially in the
younger subgroup leading to potential bias in the delineation of clinical
phenotypes.
6.4. Neuropathological findings

The macroscopic features of CTE include diffuse brain atrophy,
ventricular dilatation, cavum septumpellucidumwith orwithout fenes-
trations, cerebellar scarring and depigmentation and degeneration of
the substantia nigra. Marked atrophy of the medial temporal lobe,
thalamus, hypothalamus and mammillary bodies becomes evident in
advanced CTE.

The histological hallmarks are extensive NFTs composed of mixed
3-repeat (3R) and 4-repeat (4R) tau isoforms (Fig. 2). NFTs and
astrocytic tangles in CTE are most abundant in the frontal and tem-
poral cortices, often patchy and irregular, with predilection for
perivascular regions, in the depths of cerebral sulci and in the super-
ficial cortical layers and periventricular regions (Geddes et al., 1999;
Hof et al., 1992). NFTs are abundant in the limbic regions, dienceph-
alon and brainstem. Although both are mixed 3R and 4R tauopathies,
CTE is distinctive from Alzheimer's disease by the lack of or relatively
few Aβ deposition especially in younger individuals and in early
stage of CTE. Astrocytic tau pathology in CTE is predominantly 4R
tau and is more widely distributed than those observed in ageing
and Alzheimer's disease (Table 3). Tau pathology in locus coeruleus
is an early finding in CTE and can be abundant even in individuals
under the age 30.

Ghost tangles, representing residual NFTs lying in the neuropil fol-
lowing neuronal death, are frequently observed in the limbic region
and temporal neocortex, especially in the CA1 hippocampal subregion,
and are visible in sections stained with H&E and Bielschowsky's silver
impregnation (Ling et al., 2014). In the presence of ghost tangles, sec-
ondary Aβ deposition on extracellular protein aggregates is an accom-
panying feature.

TAR DNA binding protein (TDP-43) inclusions are the hallmark of
amyotrophic lateral sclerosis (ALS) and a subtype of frontotemporal
lobar degeneration (FTLD-TDP) and can be observed in a number of
other neurodegenerative diseases (Neumann et al., 2006). TDP-43 is a
RNA binding protein that regulates gene expression. TDP-43 pathology
is found in the majority of CTE cases across all disease stages (McKee
et al., 2013). In stage IV CTE cases, severe and extensive TDP-43
immunoreactive intraneuonal and glial inclusions in the cortex, white
matter, diencephalon, basal ganglia and brainstem are observed
(McKee et al., 2013).
6.5. Pathological diagnostic criteria

In the seminal clinicopathological series of 15 boxers, Corsellis et al.
proposed four major criteria for CTE (Corsellis et al., 1973): 1. Abnormal-
ities of the septum pellucidum (i.e., cavum, fenestrations), 2. Cerebellar
scarring on the inferior surface of the lateral lobes (especially the tonsillar
regions), 3. Degeneration of the substantia nigra (pallor) and 4. Wide-
spread NFTs containing hyperphosphorylated tau in the cerebral cortex
and brainstem. Two recent and competing neuropathological criteria
have since been proposed (McKee et al., 2013; Omalu et al., 2011):
Omalu et al. identified four phenotypes of CTE andMcKee et al. classified
CTE into four pathological stages. The McKee et al. (McKee et al., 2013)
staging system indicates that NFTs and astrocytic tangles in the sulcal
depths and subpial regions in the superior and dorsolateral frontal lobes
frontal cortices are the earliest features, concurring with one of the four
features delineated by Corsellis et al. (Corsellis et al., 1973), whereas the
other 3 features represent more advanced disease stages. McKee et al.
proposes that NFT pathology becomes more extensive over decades of
the disease progression, initially involving superior and dorsolateral fron-
tal lobes, thepathology eventually affectsmost regions of the cerebral cor-
tex are involved, aswell as the diencephalon, basal ganglia, brainstemand
spinal cord, in association with marked axonal loss of subcortical white
matter tract (McKee et al., 2013).

6.6. Clinicopathological correlations

The progression from multifocal stage (stage II) to widespread dis-
ease (stage III) is likely to represent an exponential increase in tau accu-
mulation through mechanisms of protein templating and other modes
of interneuronal spreading (McKee et al., 2014; Morales et al., 2009).
Asymptomatic CTE can be observed in 11% of all pathologically
confirmed CTE cases with the majority in early stage of disease
(stage I) (McKee et al., 2013). Clinically, stage II and III disease correlate
with the onset of intrusive neuropsychiatric symptoms including de-
pression and death due to suicide, alcohol or drug overdose. Stage IV
is associatedwith overt dementia. The degree of tau and TDP-43 pathol-
ogies, neuronal loss and cerebral atrophy increase with longer survival
and all of which in combination attributes to the relentlessly progres-
sive clinical symptoms (McKee et al., 2014).

The early and predominant involvement of tau pathology in the su-
perior and dorsolateral frontal lobes in American football players corre-
sponds to the more vulnerable regions subjected to the acceleration–
deceleration force of the TBC due to high frequency of head collisions
to the top-front of the head, a finding that is also confirmed by function-
al MRI data (Guskiewicz et al., 2007b).

6.7. Co-morbid neurodegenerative diseases

A third of CTE cases have comorbid neurodegenerative diseases
(McKee et al., 2013, 2014). Of the 103 path confirmed CTE cases, co-
existing Lewy body diseases was found in 12 (12%), motor neuron dis-
ease in 13 (13%), Alzheimer's disease in 15 (15%) and frontotemporal
lobar degeneration in 6 (6%). We reported the case of a retired boxer
with concomitant CTE and PSP pathologies (Ling et al., 2014). It is plau-
sible that either the CTE-tau pathology or the repetitive TBI and the
resulting axonal injury increase the risk of another neurodegenerative
processes (Blennow et al., 2012; Morales et al., 2009).

Some data suggests trauma and athletic exposure are risk factors for
developing ALS (Chen et al., 2007; Chio et al., 2005, 2009). American
football players who played professionally for more than 5 seasons
show four times higher risk of mortality from ALS than age- and
gender-matched controls. The incidence of ALS and mortality are un-
usually high among professional soccer players in Italy (Chio et al.,
2005, 2009).

In McKee et al. series, 13% of CTE also had motor neuron disease
(CTE-MND) (McKee et al., 2013). Among the CTE-MND cases, those
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with predominant motor symptoms including motor weakness,
atrophy, fasciculations havemilder CTE at death (stages II–III), probably
due to shortened life span, whereas those who present with cognitive
symptoms die with advanced CTE (stage III and IV). Behavioural chang-
es and cognitive impairment usually develop several years after the
onset of motor symptoms. All CTE-MND cases show distinct TDP-43 pa-
thology in the brain and spinal cord (McKee et al., 2014).

7. Conclusion

Increasing data supportive of the link of repetitive TBI with axonal in-
jury and long term neurodegenerative consequence has had significant
implications in sports which have already lead to changes in the rule
and management of many popular sports. Understandably, resistance
and refusal to accept the risk of TBI exist due to potential enormousfinan-
cial repercussions, major change in the rule of the sports and even the
possibilities of banning some high risk contact sports entirely or among
children who are more susceptible to damage than adults.

Many unknowns related to thefieldwill require clarification, includ-
ing the risk of a single bout of TBI, other risk and protective factors, clin-
ical diagnostic criteria, CSF, blood and radiological biomarkers, the
precise pathophysiological cascade of events fromTBI to CTE and poten-
tial therapeutic strategies. Prospective longitudinal studies along with
clinicopathological evaluation would be the key in providing more in-
formation on the acute and long-term consequences of TBI in sport.
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