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We report on the results of a multimodal imaging study involving behavioral assessments, evoked and resting-
state BOLD fMRI, and DTI in chronic mTBI subjects. We found that larger task-evoked BOLD activity in the
MT+/LO region in extra-striate visual cortex correlatedwithmTBI and PTSD symptoms, especially light sensitiv-
ity. Moreover, higher FA values near the left optic radiation (OR) were associated with both light sensitivity and
higher BOLD activity in theMT+/LO region. TheMT+/LO regionwas localized as a region of abnormal functional
connectivity with central white matter regions previously found to have abnormal physiological signals during
visual eye movement tracking (Astafiev et al., 2015). We conclude that mTBI symptoms and light sensitivity
may be related to excessive responsiveness of visual cortex to sensory stimuli. This abnormal sensitivity may
be related to chronic remodeling of white matter visual pathways acutely injured.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The Centers for Disease Control and Prevention (CDC) estimate that
each year approximately 2.5 million Americans sustain a traumatic
brain injury (Faul et al., 2010). Traumatic brain injuries can be classified
into mild, moderate, and severe categories, and about 90% of all TBI
cases in USA are classified as mild TBI (mTBI) (Narayan et al., 2002).

Mild TBI is associated with a host of symptoms and signs: headache,
confusion, lightheadedness, dizziness, blurred vision or tired eyes, ringing
in the ears, fatigue or lethargy, a change in sleep patterns, behavioral or
mood changes (including posttraumatic stress disorder (PTSD) and de-
pression), and problems with memory, concentration, and attention
(Chen and D'Esposito, 2010; Gerber and Schraa, 1995; Ghajar, 2000;
Kushner, 1998; McAllister, 2011; McDowell et al., 1997). It is unknown
why a percentage of mTBI individuals (~10–15% of adults, and up to
40% of children) (Crooks et al., 2007; Dikmen et al., 1986; McCrea et al.,
2009; Thornhill et al., 2000) continue tomanifest symptoms at the chron-
ic stage. Conventional structural imaging scans are typically normal.

Many studies suggest that mTBI symptoms largely overlap with
symptoms of PTSD and depression (Barnes et al., 2012; Bryant, 2011;
Hoge et al., 2008; Mac Donald et al., 2014; McKee et al., 2013;
Schneiderman et al., 2008). A recent study (Hoge et al., 2008) found
that adjusting for PTSD and depression symptoms eliminated the asso-
ciation between mTBI and most physical symptoms (except for head-
ache) in U.S. soldiers, indicating the importance of determining the

overlap between depression, PTSD andmTBI symptoms. Another recent
study (Mac Donald et al., 2015) demonstrated that a diagnosis of trau-
matic brain injury, older age, and more severe post-traumatic stress
symptoms predicted poor outcome after military mTBI. Similarly, an-
other study from the same group (MacDonald et al., 2014) demonstrat-
ed high rates of PTSD and depression 6–12 months after concussive
blast-plus-impact complex TBI One hypothesis is that chronic mTBI
symptoms are in large part psychosomatic, representing a learned pat-
tern of behavior that partly relates to depression and PTSD.

In a previous paper (Astafiev et al., 2015) we demonstrated that
symptomatic chronic mTBI subjects show abnormal brain activation dur-
ing visual tracking tasks. Abnormal activitymeasuredwith blood oxygen-
ation level dependent (BOLD) functional magnetic resonance imaging
(fMRI) occurred in a common set of subcortical andwhitematter regions
including the anterior internal capsule (IC) and superior longitudinal fas-
ciculus (SLF) whitematter pathways that have been previously identified
as particularly susceptible to trauma (Bendlin et al., 2008; Huisman et al.,
2004; Laitinen et al., 2009; Lipton et al., 2008; Niogi et al., 2008). In con-
trast, normal responses were observed in frontal eye field and
intraparietal sulcus, cortical regions that are commonly recruited during
eye movements and visual attention. The abnormal BOLD signals in the
subcortical regions and white matter accurately differentiated chronic
mTBI patients from healthy controls at the level of single subjects (linear
discriminant analysis accuracy using ‘leave-one-out’ cross-validation was
78.4%), but did not correlate with symptoms or neuropsychological per-
formance. We proposed that the abnormal BOLD signals might reflect
structural remodeling secondary to acute injury.

In this paper, we test the hypothesis that remodeled regions in the
white matter or subcortical nuclei are abnormally connected with
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other cortical regions, and that activity in abnormally connected cortical
regions will relate to mTBI symptoms. Currently, no consistent brain
mechanism or localization has been found that explains mTBI symp-
toms (Barnes et al., 2012; Hoge et al., 2008; Mac Donald et al., 2014;
Mayer et al., 2015; McKee et al., 2013; Schneiderman et al., 2008). Our
hypothesis is quite novel as it starts from a physiological hypothesis
about the origin of mTBI symptoms, which is consistent with findings
of abnormal cortical dynamics in severe TBI (Palacios et al., 2013;
Rigon et al., 2015; Venkatesan et al., 2015), as well as in other diseases
of the white matter, e.g. multiple sclerosis (Hawellek et al., 2011;
Rocca et al., 2015).

To localize cortical regions with abnormal connectivity we em-
ployed resting state functional connectivity MRI (rs-fcMRI or FC), a
method sensitive to the statistical co-variation of activity between
brain regions (Biswal et al., 1995). Rs-fcMRI has been shown recently
to detect directional gradients in the white matter approximating
those measured with DTI (Ding et al., 2013). By seeding the subcorti-
cal/white matter regions with abnormal BOLD responses during eye
tracking in (Astafiev et al., 2015), we identified one region in extra-
striate visual cortex (Middle Temporal/Lateral Occipital: MT+/LO)
that was abnormally connected in mTBI. Activity in this region during
eye tracking was abnormally high in mTBI and related to symptoms,
especially headaches and light sensitivity. Moreover, we found that
DTI in the optic radiation was abnormal, and predicted both BOLD
signals in MT+/LO mTBI symptoms. Our findings therefore support
the hypothesis that symptoms in mTBI are due to abnormal activity in
abnormally connected cortical regions.

2. Materials and methods

2.1. Subjects

Twenty chronic mTBI patients (9 males) and twenty-two age and
education-matched normal control subjects (10 males) participated.
All mTBI patients were diagnosedwithmTBI at theWashington Univer-
sity School of Medicine Concussion clinic. All patients reported post-
traumatic amnesia (PTA), and 94% of subjects reported loss of con-
sciousness (LOC) (see Supplemental Table S1 in (Astafiev et al., 2015)
for detailed description of the subjects). Informed consentwas obtained
in accordance with procedures approved by the local human studies
committee.

Based on the literature (Boake et al., 2005; Kovesdi et al., 2010;
Leddy et al., 2010; McCrea et al., 2009; Yuh et al., 2013), we defined
mTBI as chronic after 3 months post injury. The inclusion criteria were
as follows: isolated traumatic brain injury with or without loss of con-
sciousness (LOC) between 3 months to 5.5 years prior to testing, any
persistent post-concussive symptoms, any length of post-traumatic am-
nesia (PTA), Glasgow Coma Scale (GCS) of 13–15 at time of injury, age
18–60. Exclusion criteria for both controls and mTBI patients were as
follows: neurological or pre-morbid psychiatric disorders (including
ADHD and seizure disorder), alcohol (ETOH)/substance abuse, gross vi-
sual (worse than 20/30 corrected) or hearing problems,metal objects in
body (except objects that are proven to be safe for 3T MRI), pregnancy
and severe claustrophobia.

Informed consent was obtained in accordance with procedures ap-
proved by the local human studies committees. Normal control subjects
were recruited from theuniversity's database of healthy researchvolun-
teers. They were not related to the mTBI subjects and were matched for
age and education. Control subjects were required to have no history of
TBI, closed head injury, or concussion as confirmed by BISQ (Brain Injury
Screening Questionnaire) as well as depression and PTSD (Post-Trau-
matic Stress Disorder).

Behavioral data from one chronic mTBI patient were incomplete.
One control subject was not able to participate in the imaging sessions
due to claustrophobia. Two mTBI subjects withdrew from the imaging
study, and one was removed due to excessive movement. One healthy

subject did not participate in the imaging session due to claustrophobia
and one was removed because of excessive movement. Therefore, 17
chronic mTBI patients and 20 control subjects were included in the
final analysis of the fMRI scans of the visual tracking tasks.

2.2. Neuropsychological testing

The following neuropsychological tests were administered: Head In-
jury Symptom Checklist (HISQ), Brain Injury Screening Questionnaire
(BISQ), Center for Epidemiologic Studies Depression Scale (CES-D),
PTSD CheckList — Civilian Version (PCL_C) among others (see Astafiev
et al. (2015) for the detailed description). If normative data were avail-
able, raw neuropsychological scores were transformed to standardized
scores; otherwise, we transformed the raw scores into z-scores based
on the healthy controls and mTBI patient samples. Post-concussive
symptoms were measured using the HISQ 1-20. The results of several
tests: Head Injury SymptomChecklist (HISQ), Conners Center for Epide-
miologic Studies Depression Scale (CES-D), PTSD Checklist (PCL_C)
were reported as raw scores for the lack of normative scores.

2.3. Visual tracking tasks

The detailed description and analysis of the visual tracking taskswas
presented in a previous report (Astafiev et al., 2015), so they are only
briefly described in this paper. The pursuit target was a red diskmoving
clockwise in a circular trajectory with a radius of 6° at 0.4 Hz. Three dif-
ferent smooth-pursuit tracking tasks were used:

During a ‘TrackingAlone’ (TA) task, only the targetwas presented on
screen, as in Maruta et al. (2010). During a ‘Tracking with Distracters’
(TD) task, a distracter disk (a red disk identical to the target, butmoving
with a slightly different circular trajectory) was occasionally presented
for 800–1200 ms with a random ISI of 800–1500 ms. The distracter
phase angle always crossed the target phase angle (i.e. the path of the
distracter either fell behind or moved ahead of the target), although
the target and distracter stimuli always remained distinct throughout
the trajectory because of their different radial distances or eccentricities.
This task was designed to measure a patient's ability to suppress
distracting information, a frequent complaint of mTBI patients.

During a Gap (GAP) task the target sometimes disappeared. The sub-
ject was instructed to follow the target's movement as closely as possi-
ble and anticipate the target's movement if it was not visible. Three gap
durationswere randomly presented: short: 30° (208ms); medium: 45°
(312 ms); long: 60° (416 ms) with random ISI of 1250–3250 ms. This
task was designed to measure a patient's ability to maintain predictive
signals, which are necessary for accurate tracking, in the absence of sen-
sory input (Diwakar et al., 2015).

During all 3 tasks, a central red dot was presented when the target
was not moving (fixation-only periods). Each eye movement task was
performed in three separate scans, where each scan lasted for 2.8 min.
The order of scans was determined using a Latin square. Each trial of
tracking lasted 15 s, consisting of six 2.5 s cycles, and was followed by
a fixation period (only central red fixation dot presented) of 9 s, 11 s
or 13 s, randomly determined. A random fixation interval allowed us
to estimate the BOLD signal during the visual tracking task without
assuming a hemodynamic response function (Boynton et al., 1996;
Ollinger et al., 2001). Six trials were presented within each scan. Before
each MRI scan started, the name of the task was visually presented on
screen for several seconds, disappearing with the start of first MRI
frame and replaced by the central red fixation dot, whichwas presented
for 8 s. Eye movements were recorded in all subjects. A nine-point eye
position calibration was performed before each block in all sessions.

2.4. Apparatus

An infrared eye-tracker (EyeLink 1000, SR Research Ltd., Ontario,
Canada) was used to record eye movements binocularly in the
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behavioral session (sampling at 500 Hz) and monocularly during the
MRI sessions (sampling at 500 Hz). A desktop mount with chin rest
was used in the behavioral session, and a long-range mount with head
stabilization was used in the MRI session.

Stimuli were generated on a PC running Windows XP (Microsoft,
WA, USA) and using Experiment Builder (SR Research Ltd., Ontario,
Canada), which allowed online integration with the EyeLink 1000 (SR
Research Ltd., Ontario, Canada) eye tracker. Visual stimuli were present-
ed during the behavioral session on a Samsung SyncMaster 2233RZ
(Samsung, NJ, USA) LCD monitor (1680 × 1050 @ 120 Hz; see (Wang
and Nikolic, 2011)), during the imaging session on a Boxlight CD715X
(Boxlight Corporation, WA, USA) DLP projector (1024 × 768 @ 75 Hz)
and rear projection screen.

2.5. MRI imaging sessions

All scans were collected on a Siemens 3T Tim-Trio scanner. Structur-
al scans included a sagittal MPRAGE (magnetization-prepared rapid ac-
quisition gradient echo) T1-weighted image; TR = 1950 ms, TE =
2.26 ms, flip angle = 9°, voxel size = 1.0 × 1.0 × 1.0 mm) and a trans-
verse turbo spin-echo T2-weighted image (TR=2500ms, TE=435ms,
voxel-size = 1.0 × 1.0 × 1.0 mm).

BOLD contrast (for both task-evoked data and rs-fcfMRI) was mea-
sured with a gradient echo EPI sequence (TR = 2000 msec, TE =
27 ms, 32 contiguous 4 mm slices, 4 × 4 mm in-plane resolution). Pre-
processing consisted of the following steps: 1) asynchronous slice ac-
quisition was compensated by sinc interpolation to align all slices;
2) elimination of odd/even slice intensity differences resulting from in-
terleaved acquisition; 3) a whole brain normalization corrected for
changes in signal intensity across scans; 4) data was realigned within
and across scans to correct for head movement; 5) EPI data was co-
registered to the subject's T2-weighted anatomical image, which in
turn was co-registered with the T1-weighted MP-RAGE, in both cases
using a cross-modal procedure based on alignment of image gradients
(Rowland et al., 2005). The MP-RAGE was then transformed to an
atlas-space (Talairach and Tournoux, 1988) representative target
using a 12-parameter affine transformation. Movement correction and
atlas transformation was accomplished in one resampling step
(resulting in an isotropic 3 mm voxel size) to minimize blur and noise.
The first four frames of each scan were eliminated to allow steady-
state magnetization, and the remaining frames were concatenated. In
preparation for the rs-fcfMRI analysis, datawere passed through several
additional preprocessing steps previously described (Baldassarre et al.,
2014; Fox et al., 2005): (1) spatial smoothing (6 mm full width at half
maximum Gaussian blur in each direction); (2) temporal filtering
retaining frequencies in the 0.009–0.08 Hz band; (3) removal of the fol-
lowing sources of spurious variance unlikely to reflect spatially specific
functional correlations through linear regression: (i) six parameters
obtained by rigid body correction of head motion, (ii) the whole-brain
signal averaged over a fixed region in atlas space, (iii) signal from a ven-
tricle, and (iv) signal from a white matter region.

DTI scans consisted of two averages of a 64-direction diffusion tensor
imaging sequence (voxel size = 2 × 2 × 2 mm; TR = 9200 ms; TE =
92ms; 9 × b-value= 0 s/mm2; the rest b-value= 1000 s/mm2. Similar
to the BOLD data, DTI data were preprocessed and transformed into
standardized Talairach atlas space. Co-registration of each DTI image
set was performed using vector gradientmeasure (VGM)maximization
(Rowland et al., 2005). The first acquired, unsensitized (b= ~0 s/mm2)
DTI volume was registered to the T2 image; stretch and shear was
enabled (9-parameter affine transform) to partially compensate for
subject motion and eddy current distortion. T2 then was co-registered
similarly to T1, which was registered into standardized Talairach atlas
space (Talairach and Tournoux, 1988). We conducted voxelwise analy-
ses inwhich theBOLDmagnitudes in a seed ROIwere correlatedwith FA
(fractional anisotropy) values in white and gray matter. Results of
voxel-wise statistical tests were corrected for multiple comparisons

(Monte Carlo correction; cluster size of 53 voxels with z ≥ 2.25). In
order to analyze only thewhitematter voxels inside an ROI, we selected
voxels that had an FA value of 0.2 or higher.

We collected structural scans, DTI scans plus 7 rs-fcfMRI scans (128
frames per scan; 4.3 min duration) during the first imaging session and
9 task scans (83 frames per scan; 2.8 min duration), in which subjects
performed the ocular pursuit tasks inside the MRI scanner, during the
second imaging session. The mean time interval between the two ses-
sions was 21.4 (SD = 28.5) days for mTBI patients and 9.9 (SD =
9.03) days for control subjects. There were no significant differences
in time interval between the two sessions for TBI patients and controls.
All frames in rs-fcfMRI scans (imaging session 1)with DVARS (temporal
derivative of timecourses of RMS variance over voxels) value of 3.7 or
higher were removed from the analysis. DVARS indexes the rate of
change of the BOLD signal across the entire brain at each frame of
data; DVARS was calculated as described in Power et al. (2012). To de-
fine the DVAR threshold for our group of subjects, we computed mean
plus 2SD of DVARS values for all frames, excluding first 4 frames in the
group of matched control subjects. In addition, all functional MR frames
in the imaging session involving ocular pursuit tasks with a total head
movement score of 0.9 mm or higher, including the frame immediately
after the frame that exceeded the movement threshold, were removed
from the analysis. Headmovement values were calculated by differenti-
ating head realignment parameters across frames (which yielded a six
dimensional timeseries that represents instantaneous head motion)
and converting them to a single number using a previously-published
method (Power et al., 2012).

The blocked-design task scans were analyzed using an assumed
hemodynamic response function (HRF) (Boynton et al., 1996) within
the general linear model (GLM) to estimate the magnitude of the
BOLD response at each voxel. An additional set of GLMs was computed
that did not assume a shape for the HRF. This GLM was used to extract
timecourses of the BOLD signal.

2.6. Statistical analyses

All statistical analysis, except for voxel-wise and regional ANOVAs
and t-tests of fMRI data, was performed using IBM SPSS Statistics, v.20
(IBM Corporation, NY, USA). We used in-house software (FIDL) to
analyze the fMRI data and results of voxel-wise statistical tests were
corrected for multiple comparisons using a z-score/cluster size threshold
determined from Monte Carlo simulations. Comparisons of eye data pa-
rameters and fMRI data were conducted with repeated-measures mixed
model ANOVA. A sphericity correctionwas applied if necessary. The Inde-
pendent Samples Mann–Whitney U test was used to compare means for
behavioral data and the Independent Samples t-test was used to compare
voxel-wise data BOLD and DTI data. Tests of normality were performed
using the Shapiro–Wilk test. Statistical significance was preset at p b 0.05.

3. Results

3.1. Analysis of mTBI symptoms

Mild TBI symptoms were classified based on the HISQ 1–20 scale.
Headache is a frequently reported symptom in mTBI patients. 65% of
our mTBI patients (13 out of 20) reported headaches, 40% reported
sensitivity to light, 25% reported blurred vision, and 65% reported trou-
ble concentrating, but only 20% reported depression (Fig. 1A). As ex-
pected based on the literature, there was a strong positive correlation
of the PCL_C, a PTSD scale, with head injury symptoms (HISQ 1-20
(Spearman's rho = 0.57, p = 0.009; (Fig. 1B). The CES-D, a depression
scale, was not significantly correlated with either HISQ 1-20 (Fig. 1C)
or PCL_C scores. There was no correlation between mTBI symptoms
(HISQ 1-20, PCL_C, CES-D) and months post-injury (MPI), anterograde
post-traumatic amnesia (aPTA) duration, loss of consciousness (LOC)
or radiological findings.
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In summary the behavioral data indicate a typical distribution of
mTBI symptoms with frequent reports of headache and light/noise
sensitivity. Also mTBI and PTSD were more correlated with each other
than with depression symptoms.

3.2. Analysis of resting state functional connectivity

Fig. 2A displays the ‘abnormal’ ROI from our previous study. This re-
gion includes several common (across subjects) foci in the centralwhite
matter including superior longitudinal fasciculus (SLF) and internal cap-
sule (IC), subcortical nuclei like the basal ganglia, and some inferior
frontal regions. Supplementary Fig. 1 contains a brief summary of the
physiological signals previously reported in that ROI during visual track-
ing in mTBI patients relative to controls (Astafiev et al., 2015).

The time courses of the BOLD signal from the ‘abnormal’ ROI were
significantly different betweenmTBI patients and controls (Supplemen-
tary Fig. 1A), but there were no significant correlations between mTBI
related symptoms and BOLD magnitudes (Supplementary Fig. 1B-D)
(Astafiev et al., 2015). Since these signals were recorded at the chronic
stage, we posited that these regions (mainly subcortical and white
matter) had been remodeled after the acute injury, and that the abnor-
mal BOLD signal physiology reflected such remodeling. Hence we used
rs-fcMRI to identify other brain regions that were functionally connect-
ed with the abnormal ROI. While rs-fcMRI is typically used to identify
functional connections between brain regions, recent work indicates
that it can also be used to trace connections in the white matter (Ding
et al., 2013).

Fig. 2B and C show FC from the abnormal ROI to the rest of the brain
in healthy controls and mTBI, while Fig. 2D shows a voxelwise t-test
between the 21 matched control subjects and 20 mTBI patients. This
analysis is unbiased since the abnormal ROI was determined from task
scans while FC was assessed in a separate set of resting state scans. FC
was in general very similar in mTBI patients and controls (Figs. 2B-C).
The t-test (with resulting z-maps corrected for multiple comparisons;
cluster size of 53 voxels with z ≥ 2.25), however, indicated that mTBI
patients showed smaller FC with left MT+/LO (Middle Temporal and
Lateral Occipital visual areas) and higher FC with left and right globus
pallidus (GP) and right frontal cortex (Fig. 2D). The strength of resting
FC between the abnormal ROI and the ROI in MT+/LO was not related
to the presence of headache or sensitivity to light in patients.

3.3. Control analysis on resting state functional connectivity

On average, 83.4% of the volume of the abnormal ROI was localized
to thewhite matter. Hence the following control analyses were restrict-
ed to the white matter component. In standard FC processing streams,
‘nuisance’ signals from a standard white matter region are often
regressed out, and our initial analysis (presented in paragraph 3.2)
followed this procedure. However, since we decided to focus on the FC
in the white matter, white matter nuisance regression was not appro-
priate. Also, since FC is typically not computed using a multi-focal ROI,
FC from differentWM foci within the abnormal ROIwere separately an-
alyzed, without using aWM nuisance regressor. We selected the top 10
ROIs from our ‘abnormal ROI’, as determined by an automatic peak-

Fig. 1. (A): Bar graph representing the percentage of mTBI patients having specific symptoms from the HISQ 1-20 questionnaire. Blue bars represent somatic/physical symptoms, red bars
represent mood/emotional/affective symptoms and green bars represent cognitive symptoms. (B): PCL_C scores in mTBI patients (X axis) vs. number of reported mTBI symptoms
(measured by HISQ 1-20 questionnaire) in mTBI patients (Y axis). (C): CES-D scores in mTBI patients (X axis) vs. number of reported mTBI symptoms in mTBI patients (Y axis). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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finding algorithm, and restricted those ROIs to white matter (i.e. for
each patient and control subject we selected voxels that were inside
the WM for all subjects). This procedure allowed us to use the same
WM ROI for each patient and control subject, eliminating the possi-
bility that the size of the ROI affected FC. Nine of the 10 top foci
contained voxels that were entirely in the WM in all patients and
controls. An example of one WM ROI is presented in Supplementary
Fig. 2A (“ROI”).

Notably, the FC from/to this WMROI (“FC of ROI”) revealed connec-
tivity with bilateral central and posterior WM similar to recently pub-
lished studies using similar method (Ding et al., 2013). A voxelwise
comparison of the FC for this WM ROI between mTBI patients and con-
trols revealed an MT+/LO region similar to the ROI in Fig. 2D (yellow
outline). Interestingly, all 9 WM foci taken from the ‘abnormal ROI’
showed FCwith a similar MT+/LO region, as determined by the overlap
of thresholded (|z| N 1.96) Z-maps (Supplementary Fig. 2B) or by the
average of the same unthresholded Z-maps (not shown). Therefore,
most of the major WM sub-regions of the abnormal ROI showed FC
with MT+/LO.

Since regressing out a WM signal during FC preprocessing is a
standard part of fcMRI processing streams, we retained the use of
a WM nuisance regressor in the analyses described below. More-
over, since single WM foci inside the ‘abnormal ROI’ produced FC
similar to the FC of the multifocal ROI, we present the FC analyses
using the entire multifocal ‘abnormal ROI’. Use of the entire abnor-
mal ROI may identify structures most affected by diffuse and multi-
focal white matter damage.

3.4. Analysis of task-evoked BOLD activity in visual cortex

Next, we compared task-evoked activity for patients and controls in
the three regions that showed larger FCwith the abnormal ROI (L and R
GP, and right frontal cortex, Fig. 2D), and the one region that showed
smaller FC (MT+/LO, Fig. 2D). Regional ANOVAs with the factors Task
(TA, TD, GAP), Group (mTBI patients, Controls) and Time (16 MR
frames) indicated that only the MT+/LO ROI (atlas coordinates
x,y,z = −35, −84, 0) demonstrated group differences in the task-
evoked BOLD response. This group difference was task specific
(Group × Task × Time; F(30,1050) = 1.9, p = 0.008 after sphericity
correction). MT+/LO also showed a Task × Time interaction
(F(30,1050) = 3.4, p b 0.0001 corrected), indicating that activity
in the region differed across tasks, but no Group × Time interaction,
indicating that the overall task-evoked BOLD activity in this region
was normal.

The time courses of the BOLD signal from the MT+/LO region
(Fig. 2D and insert in Fig. 3) indicated a normally shaped BOLD response
during all tracking tasks in themTBI patients, similar to other cortical re-
gionswithin theDAN andvisual system (Astafiev et al., 2015). However,
this region showed a larger BOLD response in patients than controls
during the TD task, in which distracters were presented as well as the
target, relative to the TA Task, in which only the target was presented.
(i.e. in Fig. 3A, the difference between the solid (TA) and dotted (TD)
lines is larger in mTBI patients (red lines) than controls subjects
(blue)). This difference appeared to reflect the fact that mTBI patients
showed both a smaller BOLD response in the TA task and a higher
BOLD response in the TD task, relative to controls. A sub-ANOVA that
compared the tracking alone and tracking with distracters tasks (Task
(TA/TD), Group (mTBI patients/Controls) and Time (16MR frames)) in-
dicated a significant Group × Task × Time interaction (F(15,525)= 3.6,
p = 0.0001 after sphericity correction) and Task × Time interaction
(F(15,525) = 5.4, p b 0.0001 sphericity corrected), confirming the larg-
er response in mTBI patients during the TD task. The larger response
was not accompanied by higher distractibility, based on eye movement
recordings (Astafiev et al., 2015). In particular, we did not observe
significant differences in tracking accuracy after distracter presentation
between mTBI patients and control subjects. Normal performance on
the oculomotor task suggests that chronic mTBI patients used compen-
satory mechanisms and/or showed plasticity in response to injury in
order to maintain performance in demanding tasks.

It is important to note that the present findings relating BOLD re-
sponse magnitudes in MT+/LO to mTBI status are not inconsistent
with our recently published report (Astafiev et al., 2015). In the first
study the analysis was voxel-wise, not regional, and therefore much
more conservative due to the need for a multiple-comparison correc-
tion. Accordingly, the MT+/LO response did not show a significant dif-
ferent between mTBI and healthy controls. In the current paper, the
MT+/LO ROI was defined from an independent set of resting-state
scans allowing a more sensitive regional analysis.

We then determined whether the task-evoked BOLD activity in the
MT+/LO region was correlated with mTBI symptoms. Analysis of
BOLD magnitudes in mTBI patients across all 3 tasks from the MT+/
LO region revealed a significant positive correlation with mTBI
symptoms (HISC 1-20; Spearman's rho = 0.57; p = 0.016; Fig. 3B),
and with PTSD symptoms (PCL_C total; Spearman's rho = 0.52; p =
0.034; Fig. 3C). There was no correlation of BOLD magnitudes in mTBI
patients with depression scores (CES-D; Spearman's rho = −0.12;
p = 0.65; Fig. 3D). The correlation of BOLD magnitudes from the
MT+/LO region with mTBI symptoms remained significant
(Spearman's rho = 0.52; p = 0.033) after regressing out the PCL_C
total and CES-D scores, supporting the specificity of the association
with mTBI symptoms. However, the correlation of PTSD symptoms
with BOLD magnitudes in MT+/LO was not significant after regressing
out HISQ and CES-D scores (Spearman's rho = .279, ns). Patients with
‘Complex mTBI’, who have positive radiological findings and/or aPTA

Fig. 2. RS-fcfMRI analysis using the ‘abnormal ROI’, which showed reduced BOLD
magnitudes during tracking tasks in mTBI patients relative to controls as a seed region
(see text for definition). (A) The ‘abnormal ROI’. (B) Selected brain slices displaying
results of a one sample t-test on rs-fcfMRI between the abnormal ROI and the rest of the
brain for 21 matched control subjects, with t-values converted to z-values and corrected
for multiple comparisons using a Monte Carlo correction. (C) The same analysis as
(B) for 20 mTBI patients. (D) Independent unpaired t-test (with resulting z-maps
corrected for multiple comparisons) between control subjects and mTBI patients. Color
scale represents z-scores. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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longer than 24 h, are indicated in Fig. 3B by green diamonds. Complex
mTBI patients did not have higher HISQ 1-20 scores or higher BOLD
magnitudes in MT+/LO than mTBI patients.

Interestingly, mTBI patients with reported light sensitivity on the
HISQ 1-20 questionnaire (Figs. 3B and 4B-C, open diamonds) had higher
scores on the HISQ 1-20 questionnaire (Independent Samples Mann–
Whitney U test (U test) p = 0.007), higher BOLD magnitudes in the
MT+/LO region (U test p = 0.001), and higher PTSD scores (U test
p = 0.007) than mTBI patients without reported light sensitivity
(Fig. 3B and 4B,C, filled diamonds). These results suggest that hyper-
activation of the MT+/LO region may underlie some of the visual-
related symptoms of mTBI patients. Values from the CES-D scale were
also higher inmTBI patients with light sensitivity, but did not reach sig-
nificance (U test, p = 0.21). A comparison of patients with headache
and without headache did not indicate significant differences in BOLD
magnitudes from MT+/LO ROI. In summary, BOLD signals in MT+/LO
showed significant differences between mTBI patients and controls,
and were positively correlatedwithmTBI and PTSD symptoms, particu-
larly light sensitivity.

3.5. Analysis of correlation of BOLD magnitudes in MT+/LO with FA

The large overlap of the abnormal ROI with white matter (Astafiev
et al., 2015) and the smaller FC in mTBI patients between anterior and
posterior parts of the brain, suggest that white matter was damaged in
ourmTBI patients, consistentwith earlier DTI studies. However, we pre-
viously reported that a TBSS analysis of axial diffusivity (AD), radial dif-
fusivity (RD) and mean diffusivity (MD) did not reveal any significant
differences between mTBI patients and controls (Astafiev et al., 2015).

In order to investigate whether whitematter abnormalities were re-
lated to the abnormalities of the task-evoked BOLD signal in the MT+/
LO region, we conducted a voxel-wise analysis in the mTBI patients to

correlate BOLD magnitudes with FA values. Because recent studies
(Bouix et al., 2013; Ling et al., 2012; Lipton et al., 2012; Mac Donald
et al., 2011; Shenton et al., 2012; Spitz et al., 2013; Strangman et al.,
2012) have reported abnormal (both increases and decreases) FA values
in both gray and white matter, the analysis was not restricted to white
matter voxels. Again importantly, we are not looking for mean differ-
ences in FA between patients and controls, but for regions in which
the FA values correlate with the magnitude of the BOLD response in
MT+/LO during visual tracking.

A significant correlationwas found in an area near the left optic radi-
ation/radiation of corpus callosum/forceps major (we will abbreviate
this region as the left optic radiation (OR), Fig. 4A). A scatterplot is
shown in Fig. 4B. The correlation was positive, indicating that higher
FA values near the left OR were associated with higher BOLD magni-
tudes in left MT+/LO ROI (Spearman's rho = 0.67, p = 0.003;
Fig. 4B). One interpretation of this result is that higher FA values near
the left optic radiation resulted in hyperactivity of MT+/LO and higher
sensitivity to light. Correspondingly, mTBI patients with light sensitivity
demonstrated higher FA values in the ROI near the left OR (U test p =
0.01; Fig. 4C). However, correlations of FA values in the ROI near the
left OR with the HISQ 1-20, PCL_C, and CES-D were not significant, al-
though there was a trend for a positive correlation of FA values and
HISQ 1-20 scores (Fig. 4C; Spearman's rho = .42, p = 0.068).

The conjunction of high FA values near the left optic radiation, abnor-
mal BOLDmagnitudes inMT+/LO, and light sensitivity indicate that some
mTBI symptoms may be related to abnormalities in visual cortex.

4. Discussion

In this paperwe report the results of amultimodal imaging study in-
volving behavioral assessment, evoked and resting-state BOLD, and DTI
in chronic mTBI subjects.We found that larger task-evoked BOLD activity

Fig. 3. Analysis of evoked BOLD responses in visual cortex fromMT+/LO ROI. (A) The time courses of the BOLD signal from theMT+/LOregion (see Fig. 1D). Red lines indicate the BOLD
signal inmTBI patients, blue lines in thematched control subjects. Solid lines indicate the BOLD signal during the TA task, dotted lines during the TD task. (B): BOLDmagnitudes averaged
across all 3 tasks from the sameMT+/LO ROI (X axis) vs. the number of reportedmTBI symptoms (measured by HISQ 1-20 questionnaire) in mTBI patients. mTBI patients with reported
light sensitivity in HISQ 1-20 questionnaire are marked by open symbols. “Complex”mTBI patients are marked by green diamonds. (C) BOLDmagnitudes averaged across all 3 tasks from
the sameMT+/LO ROI (X axis) vs. PCL_C scores (Y axis) inmTBI patients. (D) BOLDmagnitudes averaged across all 3 tasks from the sameMT+/LO ROI (X axis) vs. CES-D scores inmTBI
patients. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in the MT+/LO region correlated with mTBI and PTSD symptoms, espe-
cially light sensitivity. Moreover, higher FA values near the left optic radi-
ation (OR) were associated with both light sensitivity and higher BOLD
activity in the MT+/LO region, the same region whose activity was asso-
ciatedwithmTBI symptoms. These converging resultsmay identify struc-
tural and physiological correlates of important symptoms followingmTBI.
We suggest that some PTSD andmTBI symptoms are the result of plastic-
ity following damage to centralwhitematter and reduced top-down con-
trol, and/or vulnerability factors that were present before the mTBI
trauma, as suggested by recent studies (Davenport et al., 2014).

4.1. Abnormal visual cortex activity and connectivity in mTBI patients

Unfortunately, there is no accepted theory on the origin of symp-
toms after mTBI. Themost widely accepted theory is that diffuse axonal

injury causes white matter damage and disconnection of different brain
regions (Hulkower et al., 2013; Mac Donald et al., 2011; Shenton et al.,
2012). Some studies emphasize a deficit of top-down visual attention
(Corbetta and Shulman, 2002) in mTBI patients (Halterman et al.,
2006; Mayer et al., 2012).

The most important finding of this study was the correlation be-
tween task-evoked BOLD signals during visual eye tracking in MT+/
LO, which are extra-striate visual regions involved in motion and object
processing, and mTBI/PTSD symptoms. The higher activity in MT+/LO
also correlated with higher FA near the left OR. Notably, subjects with
light sensitivity (photophobia) and accompanying headache also
showed stronger BOLD responses in MT+/LO and higher FA values in
the underlying white matter. Finally, mTBI patients relative to controls
showed more activity in MT+/LO during the tracking task in which
unexpected distracter stimuli were presented on the screen, and less ac-
tivity in the tracking alone task. Although purely speculative, the differ-
ence in the sign of the BOLD changes for Tracking Along and Tracking
with Distracters could reflect a loss of top-down input to MT+/LO.
Lack of top-down signals might reduce the overall activity of MT+/LO
(Corbetta and Shulman, 2002; Serences and Boynton, 2007), leading
to a lower BOLD magnitude in the Tracking Alone Task, while at the
same time increasing the sensory effects of distracters on MT+/LO ac-
tivity, raising the BOLD magnitude in the Tracking with Distracters
Task. Although the larger BOLD activity in the distracter task could
potentially relate to the distractibility of mTBI patients, we did not
find a correlation with the ‘distractibility’ item of the HISQ.

This specific set of physiological and anatomical observations relate
to the frequent clinical observation that headache is a most common
physical symptom after TBI, thatmigraine and probablemigraine usual-
ly describes the majority of headaches after TBI at one year post-injury
(Lucas et al., 2014; Lucas et al., 2012), and that headaches and light sen-
sitivity are strongly correlated. Some researchers have proposed that
cortical spreading depression (CSD) and depolarization waves, starting
from visual cortex in the case of migraine, may represent a common
mechanism in other brain disorders (stroke, subarachnoid hemorrhage,
traumatic brain injury (Lauritzen et al., 2011)). Hence spreadingdepres-
sionmay represent a common pathogenetic link betweenmigraine and
TBI. It is important to note that some types of headache (i.e. a tension-
type headache) do not involve sensitivity to light and noise and may
be linked to muscle tension and altered pain sensitivity, therefore
being unrelated to visual cortex activity and CSD (Ashina et al., 2005).

However, many headaches in mTBI and migraine are triggered by
sensory stimuli. Interestingly, the BOLD response to visual stimulation
in primary visual cortex (V1) is greater in migraine with aura as com-
pare to controls (Datta et al., 2013). Extrastriate visual cortex (MT+,
V3A) also demonstrates higher BOLD response in migraine (Martin
et al., 2011). Moreover, cortical thickness is larger bilaterally in areas in-
volved in motion processing (V3A and MT+) in migraineurs compared
with controls, in parallel with abnormal BOLD signal increases in these
areas (Granziera et al., 2006). Finally, TMS studies have shown that mi-
graine patients have a lower phosphene threshold than controls when
TMS is delivered over V1 and MT+ (Aurora et al., 2003).

Based on these relationships and our results, a plausible hypothesis
is that light sensitivity with accompanying headache (probably mi-
graine) inmTBI is due to an abnormal sensitivity of motion/onset sensi-
tive neurons in motion processing areas, which leads to an abnormally
high response in MT+/LO neurons, especially to transient stimuli. In
chronic patients, this sensitivity is consolidated by structural changes
involving the underlying white matter. The abnormal sensitivity in
motion processing regions like MT+may be due to white matter dam-
age in mTBI that disconnects these sensory regions from their normal
top-down modulation (Corbetta and Shulman, 2002; Serences and
Boynton, 2007). In fact, extra-striate visual regions are normally regu-
lated by feedback signals that come from prefrontal and posterior pari-
etal regions (the so called Dorsal Attention Network, DAN (Bressler
et al., 2008; Corbetta and Shulman, 2002; Serences and Boynton,

Fig. 4. (A) Selected brain slice displaying the results of a voxel-wise correlation (corrected
for multiple comparisons) of BOLDmagnitudes averaged across all 3 tasks from theMT+/
LO ROI (see Fig. 1D) vs. FA values. Color scale represents z-scores. (B) FA values inside the
ROI in Fig. 3A (x-axis) vs. BOLD magnitudes averaged across all 3 tasks (y-axis) from the
MT+/LO ROI. mTBI patients with reported light sensitivity in the HISQ 1-20
questionnaire are marked by open symbols. (C) FA values inside the ROI in Fig. 3A (x-
axis) vs. the number of reported mTBI symptoms as measured by the HISQ 1-20
questionnaire in mTBI patients. mTBI patients with reported light sensitivity in the HISQ
1-20 questionnaire are marked by open symbols. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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2007)), either directly or through the pulvinar. Loss of normal feedback
from prefrontal and posterior parietal regions is supported in our data
by the location of BOLD signal abnormalities in the dorsal white matter.
These abnormalities occurred in regions corresponding to the superior
longitudinal fasciculus (SLF), which connects dorsal occipital and poste-
rior parietal to prefrontal regions, as recently reported (Astafiev et al.,
2015). Our hypothesis is consistent with prior work showing that top-
down attention deficits, as measured with the executive component of
the Attention Network Test (ANT), persist throughout the first month
post-injury (Halterman et al., 2006). Deficits of top-down visual atten-
tion have been reported to accompany abnormal activation of left visual
cortex near optic radiation (Mayer et al., 2012). Alternatively, as sug-
gested by a reviewer, the MT+/LO region might be sensitive to mTBI
damage due to its heavy myelination, reflecting the importance of
white matter abnormalities in mTBI (Armstrong et al., Epub ahead of
print).

Our control analysis revealed that different parts of theWMhave re-
duced FC with theMT+/LO ROI in mTBI patients. This fact is surprising,
but is partially supported by a previous study (Boes et al., 2015), which
demonstrated that distributed lesions in subcortical structures and
white matter may involve abnormal FC in regions close to the MT+/
LO ROI. It is widely accepted that signal changes in WM and CSF repre-
sent primarily non-neuronal fluctuations (i.e. scanner instabilities, sub-
jectmotion and physiological artifacts including respiration and cardiac
effects (Dagli et al., 1999; Windischberger et al., 2002)). On the other
hand, some researchers report that the power of temporal variations
of low frequency BOLD oscillations inWM is about 80% of BOLD oscilla-
tions in gray matter (Ding et al., 2013). Also, despite the fact that blood
flow in WM is about 25% of that in gray matter, the oxygen extraction
rates are similar (Raichle et al., 2001). Moreover, as we demonstrated
before (Astafiev et al., 2015), the shape of the evoked BOLD response
is similar in white and gray matter for healthy control subjects (see
also Supplementary Figs. 1A and 3A).

Our control analysis suggests that FC based on BOLD oscillations in
WM can be a useful tool for studying mTBI related abnormalities. But
our results should be validated in an independent study of FC in white
matter (Ding et al., 2013).

4.2. Brain correlates of mTBI symptoms

Both PTSD and mTBI symptoms were associated with higher BOLD
magnitudes in the MT+/LO region, but little relationship was seen
with depression symptoms. Some studies have reported larger BOLD
signals in visual cortex, including an area near LO, in veterans with
PTSD (Hendler et al., 2003) and/or mTBI (Scheibel et al., 2012), in line
with our findings. PTSD and mTBI are widely thought to be closely
linked. mTBI is more frequently associated with PTSD than any other
type of injury (Hoge et al., 2008), and PTSD is the strongest predictor
of post-concussion syndrome after mTBI (Schneiderman et al., 2008).

Future longitudinal multimodal imaging studies will be necessary to
fully understand the link between BOLD activity, DTI parameters and
mTBI/PTSD symptoms in mTBI patients.

5. Study limitations

The main limitation of this study is the relatively small sample size.
Our sample was comparable to that of many studies in the literature.
Also, the level of significance in the voxel-wise statistical maps was
corrected for multiple comparisons at the whole brain level following
a random effect statistical model that allowed for generalization at the
population level. Nevertheless, this study will require replication and
validation in a separate and larger independent sample. Because the
MT+/LO region was originally identified from a functional connectivity
analysis, the subsequent analysis of evoked BOLD differences between
mTBI patients and controls was conducted regionally. However, we ac-
knowledge that these group differences in evoked BOLD activity did not

survive a whole-brain correction for multiple comparisons (Astafiev
et al., 2015), highlighting the importance of replicating this result in
an independent and larger sample.

The sample contained three patients with PTA longer than 24 h, and
three patients with radiological abnormalities, of whom 2 possessed
both characteristics, resulting in a total of four ‘more severe’ patients.
These patients are defined today as ‘complex mTBI’ (Dempsey et al.,
2009; Lewine et al., 2007). Their enrollmentwas due to the use of inclu-
sion criteria that were more liberal than current standards when the
Brain Trauma Foundation, UCSD, and Washington University joined in
2009 in a consortium under whose auspices this research was per-
formed. However, even though all 4 complexmTBI subjects participated
in psychometric/visual tracking testing and FC/DTI session, only two of
these patients (indicated by green diamonds in Fig. 3B) underwent
task fMRI. Therefore it is unlikely that the correlation of BOLD magni-
tudes with symptoms was related to this factor.

However, to further address this issue, we recomputed all of the
regional analyses after eliminating the 4 complex mTBI subjects. All
results remained significant, except for the correlation of BOLD activity
in the MT+/LO region with PCL_C total (the correlation was marginal,
Spearman's rho = 0.48; p = 0.068).

Another limitation is the use of a multifocal ROI as a seed region in
the functional connectivity analyses, since the resulting connectivity
valueswere not localized to pairs of regions. However, our control anal-
ysis demonstrated that the major WM foci within this ROI in fact
showed functional connectivity with the MT+/LO region that was the
focus of the paper.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.01.004.
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