77 research outputs found

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Adaptive space-time processing for digital mobile radio communication systems

    Get PDF
    The performance of digital mobile radio communication systems is primarily limited by cochannel interference and multipath fading. Antenna arrays, with optimum combining (OC), have been shown to combat multipath fading of the desired signal and are capable of reducing the power of interfering signals at the receiver through spatial filtering. With OC, the signals received by several antenna elements are weighted and combined to maximize the output signal-to-interference-plus-noise ratio (SLNR). We derive new closed-form expressions for (1) the probability density function (PDF) of the SINR at the output of the optimum combiner, (2) the average probability of bit error rate (BER) and its upper bound, and (3) the outage probability in a Rayleigh fading environment with multiple cochannel interferers. The study covers both the case when the number of antenna elements exceeds the number of interferers and vice versa. We consider independent fading at each antenna element, as well as the effect of fading correlation. The analysis is also extended to processing using maximal ratio combining (MRC). The performance of the optimum combiner is compared to that of the maximal ratio combiner and results show that OC performs significantly better than MRC. We investigate the performance of OC in a microcellular environment where the desired signal and the cochannel interference can have different statistical characteristics. The desired signal is assumed to have Rician statistics implying that a dominant multipath reflection or a line-of-sight (LOS) propagation exists within-cell transmission. Interfering signals from cochannel cells are assumed to be subject to Rayleigh fading due to the absence of LOS propagation. This is the so called Rician/Rayleigh model. We also study OC for a special case of the Rician/Rayleigh model, the Nonfading/Rayleigh model. We derive expressions for the PDF of the SJNR, the BER and the outage probability for both Rician/Rayleigh and Nonfading/Rayleigh models. Similar expressions are derived with MRC. Another area in which space-time processing may provide significant benefits is when wideband signals (such as code division multiple access (CDMA) signals) are overlaid on existing narrowband user signals. The conventional approach of rejecting narrowband interference in direct-sequence (DS) CDMA systems has been to sample the received signal at the chip interval, and to exploit the high correlation between the interference samples prior to spread spectrum demodulation. A different approach is space-time processing. We study two space-time receiver architectures, referred to as cascade and joint, respectively, and evaluate the performance of a DS-CDMA signal overlaying a narrowband signal for personal communication systems (PCS). We define aild evaluate the asymptotic efficiency of each configuration. We develop new closed-form expressions for the PDF of the SINR at the array output, the BER and its upper bound, for both cascade and joint configurations. We also analyze the performance of this system in the presence of multiple access interference (MAJ)

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity

    Design and analysis of wireless diversity system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Probability of Error of Linearly Modulated Signals with Gaussian Cochannel Interference in Maximally Correlated Rayleigh Fading Channels

    Get PDF
    We evaluate the probability of error of linearly modulated signals, such as phase-shift keying (PSK) and quadrature amplitude modulation (QAM), in the presence of Gaussian cochannel interference (CCI) and Rayleigh fading channels. Specifically, we assume that the fading channel of the CCI is maximally correlated with the fading channel of the signal of interest (SOI). In practical applications, the maximal correlation of the CCI channel with the SOI channel occurs when the CCI is generated at the transmitter, such as the multiuser interference in downlink systems, or when a transparent repeater relays some thermal noise together with the SOI. We analytically evaluate the error probability by using a series expansion of generalized hypergeometric functions. A convenient truncation criterion is also discussed. The proposed theoretical approach favorably compares with alternative approaches, such as numerical integration and Monte Carlo estimation. Among the various applications of the proposed analysis, we illustrate the effect of nonlinear amplifiers in orthogonal frequency-division multiplexing (OFDM) systems, the downlink reception of code-division multiple-access (CDMA) signals, and the outdoor-to-indoor relaying of Global Positioning System (GPS) signals

    Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel

    Get PDF
    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods

    Adaptive DS-CDMA multiuser detection for time variant frequency selective Rayleigh fading channel

    Get PDF
    The current digital wireless mobile system such as IS-95, which is based on direct sequence Code Division Multiple Access (DS-CDMA) technology, will not be able to meet the growing demands for multimedia service due to low information exchanging rate. Its capacity is also limited by multiple accessed interference (MAI) signals. This work focuses on the development of adaptive algorithms for multiuser detection (MUD) and interference suppression for wideband direct sequence code division multiple access (DS-CDMA) systems over time-variant frequency selective fading channels. In addition, channel acquisition and delay estimation techniques are developed to combat the uncertainty introduced by the wireless propagation channel. This work emphasizes fast and simple techniques that can meet practical needs for high data rate signal detection. Most existing literature is not suitable for the large delay spread in wideband systems due to high computational/ hardware complexity. A de-biasing decorrelator is developed whose computational complexity is greatly reduced without sacrificing performance. An adaptive bootstrap symbolbased signal separator is also proposed for a time-variant channel. These detectors achieve MUD for asynchronous, large delay spread, fading channels without training sequences. To achieve high data rate communication, a finite impulse response (FIR) filter based detector is presented for M-ary QAM modulated signals in a multipath Rayleigh fading channel. It is shown that the proposed detector provides a stable performance for QAM signal detection with unknown fading and phase shift. It is also shown that this detector can be easily extended to the reception of any M-ary quadrature modulated signal. A minimum variance decorrelating (MVD) receiver with adaptive channel estimator is presented in this dissertation. It provides comparable performance to a linear MMSE receiver even in a deep fading environment and can be implemented blindly. Using the MVD receiver as a building-block, an adaptive multistage parallel interference cancellation (PIC) scheme and a successive interference cancellation (SIC) scheme were developed. The total number of stages is kept at a minimum as a result of the accurate estimating of the interfering users at the earliest stages, which reduces the implementation complexity, as well as the processing delay. Jointly with the MVD receiver, a new transmit diversity (TD) scheme, called TD-MVD, is proposed. This scheme improves the performance without increasing the bandwidth. Unlike other TD techniques, this TDMVD scheme has the inherent advantage to overcome asynchronous multipath transmission. It brings flexibility in the design of TD antenna systems without restrict signal coordination among those multiple transmissions, and applicable for both existing and next generation of CDMA systems. A maximum likelihood based delay and channel estimation algorithm with reduced computational complexity is proposed. This algorithm uses a diagonal simplicity technique as well as the asymptotically uncorrelated property of the received signal in the frequency domain. In combination with oversampling, this scheme does not suffer from a singularity problem and the performance quickly approaches the Cramer-Rao lower bound (CRLB) while maintaining a computational complexity that is as low as the order of the signal dimension

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore