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Integrated Cellular and Device-to-Device Networks
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Device-to-device (D2D) networking enables direct discovery and com-

munication between cellular subscribers that are in proximity, thus bypassing

the base stations (BSs). In principle, exploiting direct communication between

nearby mobile devices will improve spectrum utilization, overall throughput,

and energy consumption, while enabling new peer-to-peer and location-based

applications and services. D2D-enabled broadband communication technology

is also required by public safety networks that must function when cellular net-

works are not available. Integrating D2D into cellular networks, however, poses

many challenges and risks to the long-standing cellular architecture, which is

centered around the BSs. This dissertation identifies outstanding technical

challenges in D2D-enabled cellular networks and addresses them with novel

models and fundamental analysis.

First, this dissertation develops a baseline hybrid network model con-

sisting of both ad hoc nodes and cellular infrastructure. This model uses Pois-

son point processes to model the random and unpredictable locations of mobile

viii



users. It also captures key features of multicast D2D including multicast re-

ceiver heterogeneity and retransmissions while being tractable for analytical

purpose. Several important multicast D2D metrics including coverage proba-

bility, mean number of covered receivers per multicast session, and multicast

throughput are analytically characterized under the proposed model.

Second, D2D mode selection which means that a potential D2D pair

can switch between direct and cellular modes is incorporated into the hybrid

network model. The extended model is applied to study spectrum sharing

between cellular and D2D communications. Two spectrum sharing models,

overlay and underlay, are investigated under a unified analytical framework.

Analytical rate expressions are derived and applied to optimize the design of

spectrum sharing. It is found that, from an overall mean-rate perspective, both

overlay and underlay bring performance improvements (vs. pure cellular).

Third, the single-antenna hybrid network model is extended to multi-

antenna transmission to study the interplay between massive MIMO (multi-

input multiple-output) and underlaid D2D networking. The spectral efficiency

of such multi-antenna hybrid networks is investigated under both perfect and

imperfect channel state information (CSI) assumptions. Compared to the case

without D2D, there is a loss in cellular spectral efficiency due to D2D under-

lay. With perfect CSI, the loss can be completely overcome if the number of

canceled D2D interfering signals is scaled appropriately. With imperfect CSI,

in addition to pilot contamination, a new asymptotic underlay contamination

effect arises.
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Finally, motivated by the fact that transmissions in D2D discovery are

usually not or imperfectly synchronized, this dissertation studies the effect

of asynchronous multicarrier transmission and proposes a tractable signal-to-

interference-plus-noise ratio (SINR) model. The proposed model is used to

analytically characterize system-level performance of asynchronous wireless

networks. The loss from lack of synchronization is quantified, and several

solutions are proposed and compared to mitigate the loss.

x
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Chapter 1

Introduction

Device-to-device (D2D) networking enables direct discovery and com-

munication between cellular subscribers that are in proximity. Historically,

the idea of integrating D2D networking into cellular networks, or more gen-

erally, the concept of hybrid networks consisting of both infrastructure-based

and ad hoc networks has long been a topic of considerable interest. It has been

shown in earlier studies [92, 143] that cellular coverage and throughput per-

formance can be improved by allowing radio signals to be relayed by mobiles.

Researchers also studied ad hoc networks enhanced by infrastructure, particu-

larly from the perspective of transport capacity [50]. It has been demonstrated

that better scaling laws of transport capacity can be achieved in a hybrid net-

work than in a purely ad hoc network [81,93,148].

This introductory chapter starts with describing the socio-technological

trends that have led to the recent surge of interest in D2D networking in Sec-

tion 1.1. Section 1.2 argues that enabling D2D networking in cellular networks

is challenging and requires a rethinking of many of the working assumptions

and models used to date for cellular systems, which is the motivation behind

this dissertation. It then highlights three fundamental design principles that

1



will guide the study of D2D networking throughout this dissertation. Section

1.3 provides an overview of the contributions of this dissertation and a brief

description of dissertation organization.

1.1 Background

Over the past decade, we have witnessed a mobile revolution, which is

driven largely by the invention of smartphones. This revolution is dramatically

changing many aspects of our life including learning, playing, shopping and

dating. It also gives rise to the popularity of proximity-based services like

location-based mobile advertising, local information sharing and mobile social

networking. These proximity-based services help discover people and things

of interest around us. Existing technologies enabling proximity-based services

may be broadly classified into two types: peer-to-peer (P2P) and cloud-based

solutions [33].

WiFi Direct [141] and Bluetooth Low Energy [46] are the two most

popular P2P technologies being used today. The main limitation of them is

that they operate in unlicensed spectrum and thus their transmit powers are

low and their communications suffer from uncontrolled interference generated

by other devices like microwave ovens and cordless telephones sharing the spec-

trum. As a result, the range of WiFi Direct is typically limited within tens of

meters, while the range of Bluetooth Low Energy is even smaller. The limited

ranges of these two technologies make them unsuitable for median-to-long-

range proximity-based services. Further, WiFi Direct is not energy efficient;

2



its energy consumption increases exponentially as the number of devices in-

creases [33].

Cloud-based proximity-aware solutions (e.g. Foursquare and Facebook

Places) usually work as follows. Users first register their location informa-

tion in a central server once launching the application; the central server then

distributes the registered location information to other users using the appli-

cation. Alternatively, the server constantly tracks the user locations using the

Global Positioning System (GPS), updates proximity data, and feeds the in-

formation back to users. As a result, a device’s battery may drain very quickly

due to the GPS power consumption and frequent communication session set-up

with the network. In addition to battery drain, cloud-based proximity-aware

solutions also create privacy concerns as users need to reveal their identities

and/or locations to the network.

In view of the limitations of existing proximity-aware technologies, an

ideal proximity-aware technology should have the following characteristics.

First, it should be scalable. Further advancement of proximity-based services

hinges on device discovery capability in terms of discovery range and the num-

ber of discoverable devices. An ideal proximity-aware technology should pro-

vide a much more powerful discovery capability than existing P2P technologies

and further be scalable to expand use cases. Second, it should be energy ef-

ficient. Always-on proximal discovery is highly desirable in proximity-based

services [111]. But always-on proximal discovery poses a big challenge to de-

vice battery and obviously cannot be met using the power-hungry GPS-based

3



solutions. An ideal proximity-aware technology should minimize its impact on

device battery while providing always-on proximal discovery. Third, it should

be privacy sensitive. One way to minimizing privacy barriers for consumers is

to restrict user identity, location information and any other sensitive private

data in local devices rather than revealing them to the cloud.

The need for a better proximity-aware technology has led to a recent

surge of interest in enabling D2D networking in licensed cellular spectrum.

Efforts have been taken by wireless engineers to meet the socio-technological

trend: Qualcomm has built a mobile communication system known as Flash-

LinQ wherein “wireless sense” is implemented to enable proximity-aware com-

munication among devices [29, 144]. Now the Third Generation Partnership

Project (3GPP) is targeting the availability of D2D networking in Long-Term

Evolution (LTE) Release 12 and beyond [2].

Another major drive of D2D networking is to enable LTE to become a

competitive broadband communication technology for public safety networks

[35], used by first responders. Due to the legacy issues and budget constraints,

current public safety networks are still mainly based on obsolete 2G technolo-

gies like Project 25 (P25) and Terrestrial Trunked Radio (TETRA) while com-

mercial networks are rapidly migrating to LTE. This evolution gap and the

desire for enhanced services have led to global attempts to upgrade existing

public safety networks. For example, the USA has decided to build an LTE-

based public safety network in the 700 MHz band. Compared to commercial

networks, public safety networks have much more stringent service require-
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Figure 1.1: Illustration of possible D2D use cases and potential benefits.

ments (e.g. reliability and security) and also require direct communication

among mobiles, especially when cellular coverage fails or is not available. This

essential direct mode feature is currently missing in LTE.

From a technical perspective, exploiting the natural proximity of com-

municating devices may provide multiple performance benefits. First, D2D

user equipment (UE) may enjoy high data rate and low end-to-end delay due

to the short-range direct communication. Second, it is more resource-efficient

for proximate UEs to communicate directly with each other, versus routing

through base stations (BSs) and possibly the core network. In particular,

compared to normal downlink/uplink cellular communication, direct commu-

nication saves energy and improves radio resource utilization. Third, switching

from an infrastructure path to a direct path offloads cellular traffic, alleviating

congestion, and thus benefiting other non-D2D UEs as well. Other benefits

may be envisioned such as range extension via UE-to-UE relaying. Figure 1.1

gives an illustration of possible D2D use cases and the potential benefits.
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1.2 Motivation

Integrating D2D features into current cellular networks poses many

challenges and risks. Cellular networks have existed for several decades. Net-

work operators are likely to resist a technology that dramatically changes the

long-standing cellular architecture, which is centered around BSs, unless sig-

nificant engineering gains and/or big commercial opportunities can be proven.

Further, all existing cellular technologies including LTE are mainly designed

and optimized for BS-UE links, while the D2D design involves UE-UE links.

Also, one has to take into account the impact of D2D on the wide area net-

work (WAN) as a whole. D2D fundamentally alters the cellular architecture,

reducing the primacy of BSs and enabling UE devices to transmit directly to

nearby UE devices. Such a shift requires a rethinking of many of the working

assumptions, models, and analysis used to date for cellular systems.

The goal of this dissertation is to introduce novel models and fundamen-

tal analysis to address the challenging engineering aspects of D2D networking

in cellular networks. To this end, in the sequel we highlight three design prin-

ciples that distinguish the engineering of D2D networking from the design of

either cellular or ad hoc networking. These fundamental principles will guide

our study of D2D networking throughout this dissertation.

The first and foremost design principle is to ensure harmo-

nious coexistence of cellular and D2D networking. A D2D-enabled

cellular network, as illustrated in Figure 1.2, is a highly complicated hybrid

system. The design of this kind of hybrid systems requires a careful handling of
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Figure 1.2: A hybrid network consisting of both cellular and D2D links. Solid
triangles denote BSs. Blue solid and red solid lines respectively denote cellular
and D2D links. The cellular UE-BS association is formed based on maximum
received power with pathloss and shadowing considered.

the interaction between cellular and D2D services. D2D networking in licensed

cellular spectrum consumes radio resources that may otherwise be utilized for

cellular services. This inevitably affects to some extent operators’ capability

of serving existing cellular customers, and thus careful resource management

is essential for the coexistence of cellular and D2D networking. Further, how

network resources are managed has a direct impact on the interference envi-

ronment in a D2D-enabled cellular network. If the underlying cellular network

adopts a frequency-division duplexing (FDD) deployment and D2D network-

ing utilizes downlink resources, a transmitting D2D device may cause high

interference to nearby cochannel cellular UEs receiving downlink traffic. In

contrast, when D2D networking utilizes uplink resources, a receiving D2D de-
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vice may experience strong interference from nearby cochannel cellular UEs

transmitting uplink traffic. To simplify the interference management, a less

efficient approach may be to assign orthogonal radio resources to cellular and

D2D links. However, mutual interference between cellular and D2D may per-

sist due to possible adjacent channel power leakage and/or a lack of perfect

network synchronization.

Second, D2D networking should leverage infrastructure as-

sistance as much as possible. Mobile ad hoc networks (MANETs) have

been studied and developed extensively over about three decades with very

limited success [14]. The notoriously difficult design of MANETs is mainly

due to lack of infrastructure support. In contrast, D2D networking can typi-

cally rely on the assistance from network infrastructure (i.e., BSs) for control

functions like synchronization, session setup, resource allocation, routing, and

other overhead-consuming functions that are extremely costly in a MANET.

The main challenges here are (i) to have a design of network assisted D2D

compatible with existing already very complicated cellular control, and (ii)

to optimize the design given limited network resources. In the public safety

context, D2D must function even when cellular coverage is not available, so

it is more like a MANET. D2D in the out-of-cellular-coverage mode however

is only required to be rudimentary, and hence is more like a walkie-talkie

than a full MANET, which may require streaming video. Further, the wisdom

of cellular engineering may facilitate the design of D2D networking even in

the out-of-cellular-coverage case. In particular, out-of-cellular-coverage public
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safety UEs are often clustered (usually on the order of at most tens of nodes),

so a clusterhead may be elected and acts as a de facto BS.

Third, energy efficient D2D networking is critical. Battery

drain has already been a primary concern for today’s mobile devices, espe-

cially smartphones. For proximal discovery, D2D networking is targeting at

always-on proximal discovery with very long discovery range (≥500 m) and

large discovery capacity (1000s devices) [111]. Despite that D2D communi-

cation may save UE power by exploiting direct short-range communication,

there is a major concern about the UE power consumption involved in the

device discovery process, in which a UE may have to periodically broadcast

discovery signal and listen to the discovery signals from other UEs. There-

fore, it is important to minimize the impact of proximity-aware services on

UE battery and optimize the design to save UE power. Equivalently, with a

given tolerable level of drain of device battery, D2D networking should be op-

timized with appropriate PHY techniques (e.g. modulation, coding and power

control), MAC design (e.g. scheduling, automatic repeat request (ARQ) and

retransmissions), and other upper layers protocols.

1.3 Contributions and Organization

Our main thesis is that integrating D2D into cellular networks poses

many challenges to the long-standing cellular architecture. As indicated pre-

viously, D2D networking requires a rethinking of models and analysis used to

date for cellular networks. This dissertation identifies four outstanding tech-
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nical challenges in D2D-enabled cellular networks and addresses them with

novel models and fundamental analysis. The technical contributions of this

dissertation are covered in Chapters 2 to 5.

Multicast D2D transmissions. Chapter 2 studies multicast D2D

transmissions. In D2D-enabled cellular networks, direct multicast transmis-

sion, where the same packets from a UE are sent to multiple receivers at the

same time, is important for device discovery and applications like location

based advertising in commercial networks. Compared to communicating with

each receiver separately, one direct multicast transmission reduces overhead

and saves resources. Due to the heterogeneous locations of receivers and com-

plicated radio environment, however, link quality may vary significantly over

receivers in each multicast cluster; thus retransmissions are often required to

cover more or all the receivers. The retransmissions introduce significant corre-

lation among the signals and interference over the multicast processes, making

the analysis of multicast performance very challenging.

Chapter 2 proposes a novel hybrid network model consisting of both ad

hoc nodes and cellular infrastructure. This model further captures key features

of multicast D2D including multicast receiver heterogeneity and retransmis-

sions. The model is applied to analytically characterize several important

multicast metrics including:

• the coverage probability;

• the mean number of covered receivers per multicast session;

• the multicast throughput.
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The derived expressions allow for efficient numerical evaluation; some of them

are even in closed-form. The results indicate that retransmissions may in-

crease the coverage probability and the mean number of covered receivers but

may hurt the throughput. Chapter 2 also examines how the multicast per-

formance would be affected by certain factors like network dynamics (due to

e.g., UE mobility) and infrastructure assistance (i.e., allowing the network to

relay multicast signals). The results show that both may help improve the

multicast performance significantly. Chapter 2 further explores how to opti-

mize multicasting by choosing the optimal multicast rate, optimal number of

retransmission times, and optimal strategy for the infrastructure assistance.

Spectrum Sharing between Cellular and D2D Communica-

tions. Chapter 3 investigates how to share the spectrum resources between

cellular and D2D communications, which is a fundamental issue in D2D de-

sign. Based on the spectrum sharing manner, D2D can be classified into two

types.

• In-band: D2D uses the cellular spectrum.

• Out-of-band: D2D utilizes different bands (e.g., 2.4 GHz ISM band)

other than the cellular band.

In-band D2D can be further classified into two categories: overlay and un-

derlay. Overlay means that cellular and D2D transmitters use orthogonal

time/frequency cellular resources, while underlay means that D2D transmit-

ters opportunistically access the time/frequency resources occupied by cellular

users. Note that a potential D2D pair can switch between direct and con-
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ventional cellular communications. This flexible D2D mode selection feature

further complicates the spectrum sharing design.

Chapter 3 develops a unified model and an analytical framework for

D2D spectrum sharing. Specifically, Chapter 3 adapts the hybrid network

model proposed in Chapter 2 to encompass the above diverse spectrum sharing

scenarios and D2D mode selection. Analytical rate expressions are derived for

each spectrum sharing scenario. Based on the rate expressions, the design

parameters of spectrum sharing and D2D mode selection are optimized. The

results indicate that, from an overall mean-rate perspective, both overlay and

underlay bring performance improvements (vs. pure cellular).

Massive MIMO Systems with D2D Underlay. In Chapter 4, the

focus is shifted from single-antenna transmission to studying multi-antenna

transmission, i.e., multi-input multiple-output (MIMO). D2D networking will

coexist with MIMO, which has become an indispensable component of current

cellular networks. In a D2D underlaid cellular network, the uplink spectrum

is reused by the D2D transmissions, causing mutual interference with the on-

going cellular transmissions. Massive MIMO is appealing in such a context as

the BS’s large antenna array can nearly null the D2D-to-BS interference. The

multi-user transmission in massive MIMO, however, may lead to increased

cellular-to-D2D interference. Further, if cochannel D2D signals are present

when estimating massive MIMO channels, the estimated channel state infor-

mation (CSI) would become less accurate, which may hurt massive MIMO

performance.
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Chapter 4 extends the baseline single-antenna hybrid network model

to multi-antenna transmission and studies the interesting interplay between

massive MIMO and underlaid D2D networking in a multi-cell setting. Chapter

4 investigates cellular and D2D spectral efficiency under both perfect and

imperfect CSI at the receivers that employ partial zero-forcing. Compared

to the case without D2D, there is a loss in cellular spectral efficiency due to

D2D underlay. With perfect CSI, the loss can be completely overcome if the

number of canceled D2D interfering signals is scaled with the number of BS

antennas at an arbitrarily slow rate. With imperfect CSI, in addition to pilot

contamination, a new asymptotic effect termed underlay contamination arises.

In the non-asymptotic regime, simple analytical lower bounds are derived for

both the cellular and D2D spectral efficiency.

Asynchronous Multicarrier Wireless Networks. An implicit as-

sumption made in Chapters 2 to 4 is that the networks are synchronized.

In D2D discovery, a UE seeks to identify other UEs in its proximity via pe-

riodically broadcasting/receiving discovery signals. In this process, devices

are usually not or imperfectly synchronized and thus different devices have

different notions of timing. From the viewpoint of a typical receiver, the re-

ceived signals from different transmitters are asynchronous, leading to a loss

of orthogonality between subcarriers when an orthogonal frequency-division

multiplex (OFDM) waveform is used.

Chapter 5 develops a novel analytical framework for asynchronous wire-

less networks deploying multicarrier transmission. Based on a detailed link-

13



level analysis, Chapter 5 proposes a tractable system-level signal-to-interference-

plus-noise ratio (SINR) model for asynchronous OFDM networks. The pro-

posed model is used to analytically characterize several important statistics

in asynchronous networks with spatially distributed transmitters, including

(i) the number of decodable transmitters, (ii) the decoding probability of the

nearest transmitter, and (iii) the system throughput. The system-level loss

from lack of synchronization is quantified, and to mitigate the loss, Chapter 5

compares and discusses four possible solutions including:

• extended cyclic prefix;

• advanced receiver timing;

• dynamic receiver timing positioning;

• semi-static receiver timing positioning with multiple timing hypotheses.

The model and results are general, and apply not only to D2D networking but

also to general ad hoc networks and cellular systems.

Finally, Chapter 6 concludes this dissertation by summarizing key con-

tributions and discussing promising future research directions of D2D network-

ing.
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Chapter 2

Multicast D2D Transmissions

In D2D-enabled cellular networks, direct multicast transmission, where

the same packets from a UE are sent to multiple receivers, is important for

scenarios such as the following.

(i) Local file transfer/video streaming : Local UEs may have common

packets for nearby receivers; for example, local marketers may send the same

advertising messages to people who happen to be in the neighborhood.

(ii) Device discovery, referring to the process of discovering surrounding

devices, is a basic function for many D2D use cases [18,42]. During device dis-

covery, each device periodically broadcasts beacons to announce its existence,

while other devices periodically scan and each may respond to the message

once it receives the beacon.

(iii) Clusterhead selection/coordination: For out-of-coverage D2D, it is

being discussed in 3GPP to have one UE act as a clusterhead within a group

of UEs. The clusterhead can help achieve local synchronization, manage radio

resources and schedule transmissions. Clusterhead selection normally involves

multicast when potential clusterheads send out beacons to announce their

roles.
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(iv) Group/broadcast communications : In public safety networks pro-

viding services like police, fire and ambulance, D2D group/broadcast commu-

nications are required features [2].

In the aforementioned scenarios, compared to communicating with each

receiver separately, one direct multicast transmission reduces overhead and

saves resources. However, unlike unicast D2D (see e.g. [89, 147] and refer-

ences therein), multicast D2D has its own challenges. For example, due to the

heterogeneous locations of receivers and complicated radio environment, link

quality may vary significantly over receivers in each multicast cluster; thus

retransmissions are often required to cover more or all the receivers, which

degrades the whole point of multicast vs. unicast. In addition to receiver

heterogeneity, it is the UEs rather than BSs that perform multicast; this in-

troduces additional challenge due to the limited capability of UEs. Despite

these challenges, compared to multicast in ad hoc networks, multicast D2D has

certain conveniences; for example, it may be assisted by the cellular network

infrastructure which is not available to ad hoc networks.

It is the significance and distinctive traits of multicast D2D described

above that motivate our study in this chapter.

2.1 Related Work

Multicast in cellular networks can be broadly classified into two classes:

Single-rate and multi-rate [7]. In single-rate multicast, the transmitter sends

the packets to all the receivers at a common rate [47,95,142,145]. For example,
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in [47] multicast throughput-delay tradeoff is studied in a single cell system

by selecting the median throughput as the multicast rate. In [95], dynamic

power and subcarrier allocation is performed to adapt to the receiver with

the weakest link. In contrast, receiver heterogeneity is exploited in multi-rate

multicast, where different receivers in the same multicast cluster may receive

packets at different rates based on e.g. the link qualities [32, 59, 63, 119, 123].

Though being more efficient, multi-rate multicast is much more complex than

single-rate multicast in terms of both analysis and implementation.

In parallel with the academic studies, standardization effort in ad-

dressing multicast services has been/is being undertaken and mainly focuses

on single-rate multicast. For example, multicast services were addressed in

GSM/WCDMA and are being addressed in LTE by 3GPP; the 3GPP work

item is known as multimedia broadcast and multicast service (MBMS) [3].

Similarly, 3GPP2 addressed multicast services in CDMA2000 with the work

item known as broadcast and multicast service (BCMCS) [6].

There also exists much work on multicast in ad hoc networks [26, 85,

94, 118]. For example, in [26] the tradeoff between throughput, stability, and

packet loss is studied and a transmission policy is proposed to maximize

throughput subject to stability and packet loss constraints. While [85, 118]

respectively study transport capacity for single hop and multihop wireless net-

works, [94] tackles ad hoc multicast from the transmission capacity perspective

[139].

Unlike the aforementioned studies, there exists a small set of work on

17



multicast in hybrid networks consisting of both ad hoc nodes and cellular

infrastructure [73,98,107]. Though receivers with good channel qualities may

relay the multicast traffic to receivers with poor link qualities using ad hoc

mode in [107], the multicast transmitter is still the BS. In contrast, [98] studies

the multicast transport capacity of a hybrid network, and sheds light on its

asymptotic growth rate in the number of network nodes. The more recent

work [73] jointly considers coding in caching and multicast delivery in a D2D

wireless network, leading to benefits of so-called “coded multicast gain” and

spatial reuse. In addition to theoretical analysis, there exist works like [36,117]

which rely more on simulations to understand the performance of multicast

D2D.

2.2 Contributions and Main Outcomes

The main contributions and outcomes of this chapter are summarized

as follows.

A tractable hybrid network model. We introduce a tractable hy-

brid network model, which consists of both ad hoc nodes and cellular infras-

tructure and captures the multicast receiver heterogeneity and retransmissions.

Specifically, we use independent PPPs to model the spatial positions of the

BSs and D2D transmitters. While such a random PPP model is well motivated

by the random and unpredictable mobile user locations, using a PPP to model

BS locations has been validated in the literature (see e.g. [10,24,34,83,90]).

Multicast performance analysis. Unlike in one-shot transmission,
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there exists significant correlation among the signals and interference over the

multicast retransmissions. By tackling this time correlation, we characterize

the coverage probability at a particular receiver. Building on the coverage anal-

ysis, we derive expressions for the mean number of covered receivers in each

multicast cluster. The expressions allow for efficient numerical evaluation;

some of them are even in closed-form. Further, we explore multicast through-

put and use it as a metric for selecting the optimal multicast rate. These

studies reveal a fundamental tradeoff between efficiency (multicast through-

put) and reliability (mean number of covered receivers).

Impact of dynamics. Though in our default model multicast trans-

mitters are static, we also explore the impact of dynamics (due to e.g. mobility

or bursty transmissions) and analytically show that dynamics hurt the per-

formance if one would like to support a target SINR for multiple successive

transmissions. In contrast, interestingly, we find that dynamics improve the

multicast performance in terms of either coverage probability or mean number

of covered receivers or multicast throughput.

Network-assisted multicast D2D. We analyze the multicast per-

formance by incorporating network assistance, i.e., allowing the network to

relay the multicast signals. It is shown that network assistance can signifi-

cantly enhance the multicast performance compared to the case of no network

assistance. In addition, we formulate a network-assisted multicast D2D opti-

mization problem which minimizes the number of retransmission times subject

to a resource constraint at the BSs and a multicast reliability constraint. An
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efficient algorithm is also proposed.

2.3 System Model

In this section, we propose a tractable baseline model for studying

multicast D2D transmissions.

2.3.1 Distributions of Network Nodes

We consider a hybrid network consisting of both cellular and D2D links.

The positions of BSs form an independent Poisson point process (PPP) Φb =∑
i δzi with intensity λb; here δz denotes the Dirac measure at position z ∈ R2,

i.e., for any measurable set A ⊂ R2, εz(A) = 1 if z ∈ A, and 0 otherwise.

With a slight abuse of notation, we will also use the position z to indicate

the node located at z. Similarly, the positions of multicast D2D transmitters

form an independent PPP Φm =
∑

i δxi with intensity λm. We further assume

that for each D2D transmitter xi, the positions of its intended receivers form a

point process Φm,xi =
∑

i δyi with intensity measure Λxi(·) = λrν(·∩B(xi, R)),

where ν(·) is Lebesgue measure in R2 and B(x,R) denotes the ball centered

at x with radius R. Note that we do not assume any specific distribution for

the receiver point process Φm,xi except the first-order intensity measure; in

particular, Φm,xi does not have to be Poisson distributed.

Conditioning on Φm, {Φm,xi} are assumed to be independent. Those

familiar with stochastic geometry will immediately recognize that {Φm,xi},

which are in the space of point processes on R2, are independent marks of the
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Figure 2.1: A sample realization of the network nodes: Blue solid triangles,
red solid squares and green dots denote BSs, multicast D2D transmitters and
receivers, respectively.

PPP Φm [16]. Figure 2.1 illustrates a snapshot of the spatial distribution of

network nodes under the above assumptions. Throughout this chapter, the

parameters used in plotting numerical results or simulations are summarized

in Table 2.1 unless otherwise specified.

2.3.2 Multicast Transmission

Each D2D transmitter xi has a common message for all the intended

receivers in Φm,xi ; the message can be sent for τm ∈ N times, where τm is a pre-

configured system parameter. Compared to one shot transmission, sending the

message τm > 1 times enables more intended receivers to successfully decode
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BS Density λb (π5002)−1 m−2

D2D Tx Density λm 5× (π5002)−1 m−2

D2D Rx Density λ 500× (π5002)−1 m−2

Path loss Exponent α 3.5
Detection Threshold T −3 dB
BS Tx Power Pc 40 W
D2D Tx Power Pm 200 mW
Noise PSD −174 dBm
Noise Figure 9 dB
Channel Bandwidth 10 MHz

Table 2.1: Simulation/Numerical Parameters for Multicast D2D

the message. Further, we assume that multicast transmitters are static during

the τm transmissions. This fixed-rate repetition multicast scheme will be the

focus of this work. The study of the performance of this simple baseline

multicast strategy can serve as a benchmark for future work on more efficient

D2D multicast schemes, e.g., using advanced coding or adaptive multi-rate

multicast.

When D2D UEs are in coverage, the ground cellular network can assist

D2D communications. Specifically, each in-coverage multicast D2D transmit-

ter has a serving BS; normally the serving BS is the BS providing the strongest

reference signal receiving power (RSRP). In the current set-up, this is equiva-

lent to choosing the nearest BS as the serving BS. We use zx ∈ Φb to indicate

the nearest BS of D2D transmitter x. Formally, define the Voronoi cell Czi(Φb)

of point zi with respect to Φb as

Czi(Φb) = {x ∈ R2 : ‖ x− zi ‖ ≤ ‖ x− zj ‖, ∀zj ∈ Φb}.
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Then each BS z can help D2D transmitters located in its Voronoi cell Czi(Φb)

by broadcasting the common messages. Considering the limited time/frequency

resource at the BSs, the message of each D2D transmitter x is broadcast by

BS zx at most once.

We assume that D2D is overlaid with cellular networks, i.e., D2D trans-

mitters and BSs use orthogonal transmission resources, and thus there is no

mutual interference between cellular and D2D transmissions. In addition,

we assume the multicast message of each D2D transmitter is known by its

serving BS. Note that when cellular network coverage is available, D2D trans-

missions are under relatively tight network control [88]. So the coordination

between cellular and D2D transmissions can be easily achieved by commu-

nication through the BS control channels. How the specific coordination is

achieved is beyond the scope of this work. One simple coordination strategy

may be to multiplex network assistance and D2D multicast transmissions in

the time domain: D2D multicast transmissions are scheduled in the first τm

time slots and the associated BS helps broadcast the message in the (τm+1)-th

time slot.

2.3.3 Channel Model

Constant transmit powers Pb and Pm are assumed for the BSs and

D2D transmitters, respectively. Denote the path loss function as `(r) : R+ 7→

R+, where r denotes the distance; `(r) is assumed to be continuous and non-

decreasing. When concrete results are desired, we will assume a specific path
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loss function `(r) = Arα where A > 0 is a constant and α > 2 is the path loss

exponent.

Focusing on the signal emitted by the typical transmitter x0 located at

the origin, i.e., x0 = o, the received signal Yy(n) at the receiver y ∈ Φm,o at

time n can be written as

Yy(n) = `−1(‖y‖)
√
PmHy,o(n)Xo + Iy(n) + Zy(n),

where Xx denotes the signal sent by the D2D transmitter x and E[‖Xx‖2] = 1,

Hy,x(n) denotes the fading of the link from x to y at time n and is indepen-

dently distributed as CN(0, 1), Zy(n) denotes the additive noise at receiver y

at time n and is independently distributed as CN(0, σ2), and Iy(n) denotes the

aggregate interference at receiver y at time n and is given by

Iy(n) ,
∑
x 6=o

`−1(‖y − x‖)
√
PmHy,xXx.

Then the SINR of the link from the typical D2D transmitter x0 = o to D2D

receiver y at time n equals

SINRy,x0(n) =
Fy,x0(n)/`(‖y‖)

SNR−1 +
∑

j 6=0 Fy,xj(n)/`(‖xj − y‖)
, (2.1)

where Fy,x = |Hy,x|2 ∼ Exp(1), and SNR−1 = σ2/Pm.

Similarly, the received downlink signal Y
(c)
y at the receiver y ∈ Φm,o can

be written as

Y (c)
y = `−1(‖zo‖)

√
PbHy,zoXo + I(c)

y + Zy,
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where the aggregate downlink interference

I(c)
y (n) ,

∑
x 6=o

`−1(‖y − zx‖)
√
PbHy,zxXx.

The SINR of the link from the nearest BS zo of the typical D2D transmitter

x0 to D2D receiver y equals

SINR(c)
y,zo =

Fy,zo/`(‖zo − y‖)
SNR−1

c +
∑

x6=o Fy,zx/`(‖zx − y‖)
, (2.2)

where SNR−1
c = σ2/Pb.

2.3.4 Performance Metrics

From the perspective of analysis, it suffices to consider the typical mul-

ticast cluster with x0 = o since, as justified by Palm theory [19], its per-

formance indicates the spatially averaged performance over all the clusters.

Focusing on the typical cluster, we are first interested in the probability that

an arbitrary receiver y ∈ Φm,o can decode the multicast message of the typi-

cal D2D transmitter x0; we term this coverage probability. Without network

assistance, we say the receiver y ∈ Φm,o is covered if ∃n ∈ {1, 2, ..., τm} such

that SINRy,x0(n) ≥ T, where T is the detection threshold of the fixed rate

multicast transmission and is normally greater than −6 dB in LTE. Formally,

denoting En(y) = {SINRy,xo(n) ≥ T}, the coverage probability at y without

network assistance equals

p(y) , Po (∪τmn=1En(y)) , (2.3)
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where Po(·) is the Palm probability associated with the multicast transmitter

process Φm. For later use, we define pn(y) , Po (∩nm=1Em(y)).

Similarly, with network assistance, we say the receiver y ∈ Φm,o is

covered if either ∃n ∈ {1, 2, ..., τm} such that SINRy,x0(n) ≥ T or SINR(c)
y,zo ≥ T .

Formally, denoting E(c)(y) = SINR(c)
y,zo ≥ T , the coverage probability at y with

network assistance equals

p̃(y) , Po
(
∪τmn=1En(y) ∪ E(c)(y)

)
. (2.4)

While coverage probability characterizes the performance of an indi-

vidual receiver in the typical cluster, it is also desirable to have a metric to

measure the performance of the typical cluster as a whole. Thus, another met-

ric studied in this work is the mean number of covered receivers in the typical

cluster. When network assistance is not available, it equals

Eo[N ] , Eo
 ∑
y∈Φm,o

I({y is covered})

 , (2.5)

where I(E) is the indicator function which equals 1 if the event E is true and

0 otherwise. We use Eo[Ñ ] to denote the counterpart of Eo[N ] in the case of

network assistance.

2.4 Multicast without Network Assistance

In this section we focus on analyzing the multicast performance without

network assistance.

26



2.4.1 Coverage Probability

By the definition of Palm probability, the coverage probability at y

without network assistance equals

p(y) = Eo
[
I({ max

n=1,...,τm
SINRy,x0(n) ≥ T})

]
=

1

λm|B|
E
[∫

x∈B
I({ max

n=1,...,τm
SINRy+x,x(n) ≥ T})Φm(dx)

]
,

where B is an arbitrarily bounded subset of R2 and |B| denotes its Lebesgue

measure. The last relation clearly demonstrates that the coverage performance

of the typical cluster indicates the average coverage performance over the clus-

ters. The coverage probability p(y) is explicitly given in Theorem 2.1.

Theorem 2.1. The probability that the receiver y ∈ Φm,0 is covered by the

typical multicast transmitter x0 ∈ Φm with τm repetitive transmissions is given

by

p(y) =
τm∑
n=1

(−1)n+1

(
τm
n

)
e−n`(‖y‖)T ·SNR−1−2πλm

∫∞
0 (1−(1+T`(‖y‖)/`(r))−n)r dr. (2.6)

Proof. See Appendix 2.8.1.

Note that, when τm is large, exact calculation of p(y) based on (2.6)

may be cumbersome. Instead, one may consider the following bounds of p(y)

which follow from Bonferroni inequalities [38]:

p(k+1)(y) ≤ p(y) ≤ p(k)(y),
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where k is any odd number in {1, ..., τm} and p(k)(y) equals the first k sum-

mands of the τm summands in (2.6). By definition, p(y) = p(τm)(y). In general,

one gets tighter bounds by making k larger; pk(y) reduces to the union bound

when k = 1.

Based on Theorem 2.1, more specific results can be obtained by plug-

ging explicit path loss functions `(r) in (2.6). For example, for the commonly

used path loss function `(r) = Arα, the following result immediately follows

from Theorem 2.1.

Corollary 2.1. With `(r) = Arα,

p(y) =
τm∑
n=1

(−1)n+1

(
τm
n

)
e−nT ·SNR−1A‖y‖αe−λmK(α,n)T

2
α ‖y‖2 , (2.7)

where

K(α, n) =
2π

α

∫ ∞
0

t−
2
α
−1

(
1− 1

(1 + t)n

)
dt. (2.8)

Figure 2.2 shows the coverage probability as a function of detection

threshold. As expected, the farther the potential receiver away from the mul-

ticast transmitter, the smaller the coverage probability is. Further, repetitive

transmissions are instrumental in improving the coverage probability, espe-

cially for far away receivers. But the gain diminishes as τm increases.

2.4.2 Spatial Correlation in Multicast D2D Transmissions

Theorem 2.1 and Corollary 2.1 characterize the coverage probability at

a particular receiver, which can be treated as first order coverage performance.

28



−10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection Threshold (dB)

C
o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

 

 

τ
m

 = 1

τ
m

 = 2

τ
m

 = 4

τ
m

 = 8

50 m

150 m

250 m

Figure 2.2: Coverage probability versus detection threshold without network
assistance: The numbers, 50 m, 150 m, 250 m, indicate three different D2D
Tx-Rx distances.

As highlighted in [44, 86], there exist temporal and spatial correlations in the

performance at different nodes in a wireless network. Thus, it is of interest to

study how the coverage probabilities of different receivers interact, i.e., higher

order coverage performance. Intuitively, if some receiver is covered, we may

infer that other receivers close to the receiver are also likely to be covered.

Towards a formal understanding of the spatial correlation in D2D mul-

ticast transmissions, we define the typical covered receiver process

Φ̃m,o =
∑

y∈Φm,o

eyI({y is covered}).

Obviously, Φ̃m,o is a thinning process “thinned” from the PPP Φm,o. How-

ever, the thinning operations are not independent across the points in Φm,o
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because they are correlated through the multicast transmitter process Φm,

i.e., due to the presence of common randomness in the locations of the multi-

cast transmitters. This dependent thinning makes the thinning process Φm,o

no longer a PPP. More specifically, let us examine the conditional proba-

bility of the event {mink=1,...,n SINRy1,x0(k) ≥ T} conditional on the event

{mink=1,...,n SINRy2,x0(k) ≥ T}, i.e.,

pn(y1|y2) , Po(∩nm=1Em(y1)| ∩nm=1 Em(y2)). (2.9)

Note that this is not the conditional coverage probability p(y1|y2) which de-

notes the probability that y1 is covered conditional on that y2 is covered. Once

we evaluate pn(y1|y2), p(y1|y2) can be readily obtained using the inclusion-

exclusion principle, as in the proof of Theorem 2.1.

We calculate pn(y1, y2) in two steps: first evaluate pn(y1, y2|Φm) con-

ditioned on Φm, and then de-condition on Φm to obtain pn(y1, y2). Following

similar arguments in the proof of Theorem 2.1, the conditional pn(y1, y2|Φm)

can be calculated as

pn(y1, y2|Φm) = e−n(`(‖y1‖)+`(‖y2‖))T ·SNR−1
2∏
i=1

∏
j

1

(1 + `(‖yi‖)T/`(‖xj − yi‖))n
.

Now de-conditioning on Φm yields

pn(y1, y2) =EΦm [pn(y1, y2|Φm)] = e−n(`(‖y1‖)+`(‖y2‖))T ·SNR−1

× exp

(
−λm

∫
R2

1−
2∏
i=1

1

(1 + `(‖yi‖)T/`(‖x− yi‖))n
dx

)
.

Using pn(y1, y2), the conditional probability pn(y1|y2) can be calculated by

pn(y1|y2) = pn(y1,y2)
pn(y2)

.
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To obtain some insight, let us examine the following expression:

pn(y1|y2)

pn(y1)
= eλm

∫∞
0

∏2
i=1(1−(1+`(‖yi‖)T/`(‖x−yi‖))−n) dx > 1,

which agrees with intuition: Given the event {mink=1,...,n SINRy2,x0(k) ≥ T},

there is a higher probability that the event {mink=1,...,n SINRy1,x0(k) ≥ T}

would happen. The following more specific remarks are in order:

• The correlation becomes weaker as λm decreases; in particular, when λm

is asymptotically small, the correlation may be ignored.

• The correlation becomes weaker as n decreases (which leads to reduced

temporal correlation).

• The correlation becomes stronger when ‖y1−y2‖ decreases. In particular,

limy2→y1

pn(y1|y2)
pn(y1)

= 1
pn(y1)

.

• The correlation becomes stronger as T increases. This is intuitive be-

cause with higher T a larger number of interfering nodes come into play.

In contrast, when T is small, the outage events at y1 and y2 are re-

spectively dominated by a few nearby interferers around them, and the

intersection of the two sets of the nearby interferers can be quite small,

leading to weak spatial correlation.

2.4.3 Mean Number of Covered Receivers

In this subsection we study the mean number of covered receivers in the

typical cluster. For concreteness, we focus on the path loss function `(r) = Arα

in the sequel.
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Proposition 2.1. With `(r) = Arα, the mean number of covered receivers in

the typical cluster is given by

Eo[N ] =2πλr

τm∑
n=1

(−1)n+1

(
τm
n

)∫ R

0

re−nT ·SNR−1Arαe−λmK(α,n)T
2
α r2

dr. (2.10)

Proof. See Appendix 2.8.2.

To gain insight from Prop. 2.1, we next focus on a few special cases

and/or asymptotic results which have simpler expressions.

No noise. In this case we assume that interference is a dominant issue

and thus noise is ignored, i.e., σ2 ≡ 0. Then the following corollary follows

from Prop. 2.1.

Corollary 2.2. With σ2 ≡ 0 and `(r) = Arα, the mean number of covered

receivers in the typical multicast cluster is given by

Eo[N ] =
πλr

T
2
αλm

τm∑
n=1

(−1)n+1

(
τm
n

)
1

K(α, n)

(
1− e−λmK(α,n)T

2
αR2
)
.

In particular, as λm →∞, Eo[N ] ∼ πK̃(α,τm)λr

T
2
α λm

, where

K̃(α, τm) =
τm∑
n=1

(−1)n+1

(
τm
n

)
1

K(α, n)
.

It follows from Corollary 2.2 that, when decoding threshold T or cluster

size R is small,1

Eo[N ] ∼ λrπR
2

τm∑
n=1

(−1)n+1

(
τm
n

)
= λrπR

2,

1Here we do not consider the case that λm is small; small λm makes the assumption that
the network is interference-limited invalid.
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i.e., all the receivers in the typical cluster can be covered in an expectation

sense, agreeing with intuition. Further, Eo[N ] is independent of λm and τm.

The last fact implies that a single multicast transmission is optimal when T

or R is small enough.

In the extreme case with λm → ∞, Eo[N ] is inversely proportional to

the multicast transmitter density λm. Note that the number of repetitions τm

does not change the scaling law of Eo[N ] (with respect to λm); instead, τm

affects Eo[N ] only up to the multiplicative factor K̃(α, n).

Pathloss exponent α = 4. In this case Eo[N ] in (2.10) reduces to the

following:

π
3
2λr√
C1

e
C2

2
4C1

τm∑
n=1

(−1)n+1

(
τm
n

)(
Q

(
C2√
2C1

)
−Q

(√
2C1R

2 +
C2√
2C1

))
where Q(x) = 1√

2π

∫∞
x
e−t

2/2 dt, C1 = AT · SNR−1 and C2 = λmK(α, n)T
2
α .

This gives a quasi-closed form expression for Eo[N ] as Q(x) can be numerically

evaluated quite easily.

λm is asymptotically small. In this case, using bounded convergence

theorem and binomial theorem,

lim
λm→0

Eo[N ] =πλr

∫ R2

0

(
1− (1− e−T ·SNR−1At

α
2 )τm

)
dt.

As τm increases, the above integrand converges to 1 at a geometric rate and

thus the mean number of covered receivers approaches to λrπR
2 very quickly.

This fact implies that a very small number of repetition transmissions suffices

in sparse networks.
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Figure 2.3: Normalized mean number of covered receivers versus multicast
times without network assistance.

Figure 2.3 shows the mean number of covered receivers (normalized by

all the potential receivers) as a function of multicast times. Again, repetitive

transmissions are instrumental but the gain quickly diminishes as τm increases.

This implies that if a D2D transmitter would like to cover far away receivers,

other approaches rather than simple repetitive transmissions are expected;

such approaches may include increasing transmit power and interference can-

cellation.

Thus far we have characterized the mean number of covered receivers in

the typical cluster. Other properties may be studied with further assumption

on the receiver point processes {Φm,xi}. For concreteness, assume {Φm,xi}

are Poisson distributed. Then, due to randomness, all the receivers in some
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clusters may be far away from the multicast transmitter; in an extreme case,

there may be no receiver at all in some clusters. We term them null receiver

clusters. It is of interest to quantify the fraction of null receiver clusters. To

this end, we first formalize the concept of null receiver cluster.

Definition 2.1. A multicast cluster is called null receiver cluster if all the

receivers have a distance farther than a pre-defined threshold distance Rth to

the transmitter.

A possible criterion for threshold distance Rth may be as follows.

Pm`(r)

σ2
≥ T, ∀r ≤ Rth.

This criterion implies that, without considering interference and fading, a re-

ceiver cannot be covered if its distance from the transmitter is farther than

Rth due to the weak signal. It follows that Rth = `(−1)(SNR−1T ) where `(−1)(·)

denotes the inverse function of `(·).

Proposition 2.2. The fraction of null receiver clusters is e−λrπ(min(Rth,R))2
.

Proof. See Appendix 2.8.3.

Note that, conditioning on Φm, if {Φm,xi} are i.i.d sampled over time,

the fraction of null receiver clusters can also be interpreted as the fraction of

time that an arbitrary cluster is a null receiver cluster.
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2.4.4 Multicast Throughput

Repetition transmission helps improve multicast reliability with in-

creased coverage probability and number of covered receivers. However, rep-

etition consumes more degrees of freedom and thus hurts the throughput. In

other words, there exists a fundamental tradeoff between efficiency and relia-

bility. In this section, we explore multicast efficiency. To this end, we define

multicast throughput (denoted by ξ) as follows.

Definition 2.2. Multicast throughput is defined as the mean of the sum rate

of all the receivers in the typical multicast cluster. Mathematically,

ξ = Eo[N ] · 1

τm
log(1 + T ). (2.11)

Multicast throughput may serve as a sensible objective for choosing

appropriate multicast rate, i.e., T . On the one hand, with higher T , more

sophisticated modulation and coding scheme can be supported and thus higher

rate may be achieved. On the other hand, higher T reduces the number of

receivers that can be covered by the multicast transmitter. The definition of

multicast throughput takes both factors into account by combining log(1 +T )

and Eo[N ]. So we may optimize multicast rate by maximizing the multicast

throughput:

maximizeT>0 Eo[N ] · 1

τm
log(1 + T ), (2.12)

where Eo[N ] is explicitly given in Prop. 2.1. The above optimization is of

single variable and thus can be solved efficiently. More explicit results may be

36



obtained under special cases; for example, the following proposition considers

the case with noise ignored and λm →∞.

Proposition 2.3. With σ2 ≡ 0 and λm → ∞, multicast rate optimization

(2.12) reduces to

maximizeT>0 T−
2
α log(1 + T ). (2.13)

Further, it has a unique optimal point T ? > α
2
− 1 that equals the unique

solution of the equation: x
1+x

= 2
α

log(1 + x).

Proof. See Appendix 2.8.4.

To gain some intuition, we show multicast throughput as a function of

T in Figure 2.4. It is shown that the optimal rate T ? is relatively robust to

τm; for example, with α = 3.5, optimal T ? is around 7 dB for either τm = 1

or τm = 4. It is also shown that higher multicast throughput is obtained with

median path loss exponent, agreeing with intuition: High path loss exponent

provides better spatial separation in terms of interference but also leads to high

loss of signal power; whereas the converse is true with low path loss exponent.

In (2.11), as τm increases, Eo[N ] increases but 1
τm

log(1 + T ) decreases.

As the latter typically dominates the former, the defined multicast throughput

ξ decreases with τm. We illustrate the tradeoff between efficiency – multicast

throughput ξ – and reliability – mean number of covered receivers Eo[N ] in Fig-

ure 2.5. How to strike a balance between efficiency and reliability depends on

the application scenarios. Nevertheless, the bottom line may be that reliability
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Figure 2.4: Multicast throughput versus detection threshold: R = 150 m.

should not be stressed to an extent such that multicast loses its superiority

over unicast. For example, ignoring overhead issues, reasonable choice of τm

should satisfy the follow relation:

ξ ≥ Eo
 τm
|Φm,x0 |

∑
y∈Φm,x0

p(y) log(1 + T )

 ,
where the right hand side denotes the achievable sum rate if the typical trans-

mitter unicasts to each receiver separately.

2.4.5 Impact of Dynamics

Recall that in our default model multicast transmitters are static, i.e.

their positions are fixed and they keep active. Correspondingly, in the previous

analysis on coverage probability and mean number of covered receivers, we
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first perform time average by fixing the spatial realization of Φm; then we de-

condition on Φm to average out the spatial randomness. A natural question

arises: What is the impact of dynamics? To answer this question, we assume

in this section that the multicast transmitter process Φm is independently re-

sampled at each time slot during the multicast transmissions, i.e., {Φm(n)}

are independent PPPs. This assumption may model the following scenarios:

(i) transmissions are bursty and each transmitter is randomly on/off in each

time time slot; (ii) transmitters are of high mobility.

Surprisingly, based on the results for static scenario, the characteriza-

tion of the performance of dynamic case is quite clean, as given in the following

Prop. 2.4.
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Proposition 2.4. With dynamics and path loss function `(r) = Arα, the

coverage probability p(y) and mean number of covered receivers Eo[N ] are re-

spectively given by (2.7) and (2.10) but with K(α, n) replaced by nK(α, 1).

Proof. See Appendix 2.8.5.

To get some insight about how dynamics affect multicast efficiency,

let us recall in the static case log 1/pn(y) is proportional to K(α, n); in the

dynamic case log 1/pn(y) is proportional to nK(α, 1). The following Lemma

2.1 shows that nK(α, 1) is greater than K(α, n) except the trivial case n = 1.

It follows that pn(y), n > 1, in the static case is larger than its counterpart

in the dynamic case. In other words, dynamics hurt the performance if one

would like to support a target SINR for n successive transmissions, agreeing

with intuition: Dynamics bring in extra randomness to the received SINR and

thus make it harder to successively meet the target SINR.

Lemma 2.1. For any integer n > 1, nK(α, 1)−K(α, n) > 0.

Proof. See Appendix 2.8.6.

The impact of dynamics on p(y) or Eo[N ] is subtler. Figure 2.6 com-

pares the mean number of covered receivers in static network (i.e., our default

model) to that of dynamic network. Interestingly, it shows that dynamics can

increase the mean number of covered receivers. Further, the loss due to the

static environment can be hardly overcome by increasing the number of re-

transmissions (at least at the time scale of τm). This is because the signal and
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Figure 2.6: Dynamics increase the mean number of covered receivers.

interference powers largely depend on the node locations; multiple transmis-

sions may exploit the fast fading but cannot fundamentally change the signal

and interference powers.

The static and dynamic cases considered in this section represent two

extremes. The static and high mobility cases represent two extreme mobility

patterns; the real mobility pattern lies somewhere in between [90]. The perfor-

mance of intermediate cases may be obtained by an appropriate combination

of the performances of the two extremes. Specifically, we may assume each

multicast transmitter is in static status with probability p; otherwise, it is in

dynamic status. The statuses are independent across multicast transmitters.

Then the performance of a typical static multicast cluster is determined by

two independent PPPs: static PPP (with intensity pλm) and dynamic PPP
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(with intensity (1 − p)λm). The performance of the typical static multicast

cluster can be straightforwardly analyzed following our previous analysis on

the extreme cases. So is the performance of a typical dynamic multicast clus-

ter. The overall performance then can be obtained by a linear combination of

the performances of the typical static and dynamic clusters.

2.5 Multicast with Network Assistance

In this section we analyze the multicast performance by incorporating

network assistance, i.e., allowing the network to relay the multicast signals.

Recall that zx0 = zo denotes the BS that is closest to the typical multicast

transmitter. We first study the probability that the receiver located at y ∈

Φm,x0 is covered by the BS zo in the following Lemma 2.2.

Lemma 2.2. The probability that the receiver located at y ∈ Φm,x0 is covered

by the BS zo is given by

pc(y) =

∫
R2

pc(y|x) · λbe−λbπ‖x‖
2

dx, (2.14)

where

pc(y|x) =e−T`(‖x−y‖)SNR−1
c ×

exp

(
−
∫
Bc(0,‖x‖)

(1− 1

1 + T`(‖x− y‖)/`(‖z − y‖)
)λb dz

)
. (2.15)

The proof of Lemma 2.2 follows from [10] and is omitted for brevity. It is

noticed that the domains of integrations in Lemma 2.2 are hard to manipulate
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to get more explicit results. To overcome this inconvenience, we shall adopt

the following approximation:

‖z − y‖ ≈ ‖z − x0‖,∀z ∈ Φb. (2.16)

The above approximation may be justified when the multicast regions are small

compared to the coverage area of each BS. With the above approximation, the

following Corollary 2.3 can be obtained.

Corollary 2.3. With the approximation (2.16) and `(r) = Arα, pc(y) ≈

pc,∀y ∈ Φm,x0, where

pc , 2πλb

∫ ∞
0

e−T ·SNR−1
c Arαe−2πλbH(T,α)r2

e−λbπr
2

r dr, (2.17)

and H(T, α) =
∫∞

1
x

1+xα/T
dx. In particular, when α = 4,

pc =
π

3
2λb

2
√
C3

e
C2

4
4C3Q

(
C4√
2C3

)
, (2.18)

where C3 = AT ·SNR−1
c and C4 = 2πλbH(T, α) +πλb; when there is no noise,

pc = 1
1+2H(T,α)

.

For simplicity we will use equality instead of an approximation in the

sequel. With network assistance, the probability that the receiver y ∈ Φm,x0

is covered as long as either the BS zo or the multicast transmitter x0 covers

it. Further, these two events are independent. It follows that the coverage

probability at y ∈ Φm,x0 with network assistance equals

p̃0(y) = 1− (1− pc)(1− p0(y)).

Rearranging the above equality yields the following result.
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Proposition 2.5. With network assistance, the coverage probability of the

receiver y ∈ Φm,0 equals

p̃(y) = p(y) + pc(1− p(y)), (2.19)

where p(y) and pc are given in Theorem 2.1 and Corollary 2.3, respectively.

Accordingly, the mean number of covered receivers equals

Eo[Ñ ] = Eo[N ] + pc(λrπR
2 − Eo[N ]). (2.20)

Prop. 2.5 shows that the network assistance is most useful when

λrπR
2 − Eo[N ] ≥ 0 is large. In particular, with moderate to large detection

threshold T and cluster range R, network assistance can significantly reduce

the number τm of transmissions to achieve the same mean number of covered

receivers in the absence of network assistance. Figure 2.7 shows the mean

number of covered receivers with network assistance as a function of multicast

times. As expected, network assistance is very useful; the gain is particularly

pronounced in the case of large multicast radius. In addition, Figure 2.7 shows

that the analytical results match the empirical results fairly well; in particular,

the approximation (2.16) used in the case of network assistance analysis does

not lead to noticeable loss of accuracy, at least from the perspective of mean

number of covered receivers.

Note that conditioned on ‖zo‖ = r, Eo[Ñ |‖z0‖ = r] equals

Eo[N ] + e−T ·SNR−1
c Arα−2πλbH(T,α)r2

(λrπR
2 − Eo[N ]),
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Figure 2.7: Network assistance helps increase the mean number of covered
receivers.

from which it is clear that the network assistance is most useful when the

distance from the multicast transmitter to its nearest BS is not large. How to

optimize this network assistance is the subject of the next section.

Thus far we have seen that both dynamics and network assistance help

increase the mean number of covered receivers. Figure 2.8 demonstrates the

combined effects of dynamics and network assistance; not surprisingly, their

gains accumulate when both dynamics and network assistance are available.

An interesting observation from Figure 2.8 is that as τm increases, the gain

from dynamics can achieve or even exceed the gain from network assistance.
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Figure 2.8: Impact of network assistance vs. dynamics: R = 250 m.

2.6 Optimizing Multicast Transmissions

In this section we aim to optimize the network assisted multicast trans-

missions. The overall objective is to seek for optimum network assistance rule

to minimize retransmission times while certain network constraints can be

satisfied.

For each BS z, let gz : R+ → {0, 1} be a mapping such that gz(‖x −

z‖) = 1 if BS z helps D2D transmitter x located in its cell, i.e., x ∈ Cz(Φb).

As the transmission resources of BSs are limited, we assume each BS z can

help at most B multicast sessions in its cell. Mathematically, for ∀z ∈ Φb,∑
x∈Φm∩Cz(Φb)

gz(‖x− z‖) ≤ B. (2.21)

From the spatial average perspective, the following constraint is imposed at

46



the typical cell.

Eo
 ∑
x∈Φm∩Co(Φb)

go(‖x‖)

 ≤ B. (2.22)

In this section the Palm probability is defined with respect to the BS point

process Φb instead of D2D transmitter point process Φm; the two Palm distri-

butions may be connected with Neveu exchange formula [16]. By definition,

go(·) ∈ {0, 1}. However, under the Palm measure, the performance seen by the

typical BS is a spatial average; thus with a slight abuse of notation, we allow

go(·) ∈ [0, 1]. In the sequel, we shall refer to (2.21) (resp. (2.22)) as resource

constraint.

Further, we require that a certain fraction η of the intended receivers

associated with the D2D transmitters in each cell should be covered. Mathe-

matically, using Corollary 2.3 and Prop. 2.5, we have the following constraint:

∀z ∈ Φb, ∑
x∈Φm∩Cz(Φb)

E[
∑

y∈Φm,x
I({y is covered})]∑

x∈Φm∩Cz(Φb)
E [|Φm,x|]

≥ η, (2.23)

where the numerator implicitly depends on gz(·). From the spatial average

perspective, the following constraint is required for the typical cell with the

BS located at the origin.

Eo
[∑

x∈Φm∩Co(Φb)
∑

y∈Φm,x
I({y is covered})

]
Eo
[∑

x∈Φm∩Cz(Φb)
|Φm,x|

] ≥ η. (2.24)

In the sequel, we shall refer to (2.23) (resp. (2.24)) as reliability constraint.

The following Prop. 2.6 gives more explicit expressions for the expectation

terms involved in (2.22) and (2.24).
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Proposition 2.6. The three expectation terms in (2.22) and (2.24) are re-

spectively given as follows.

Eo[
∑

x∈Φm∩C0(Φb)

go(‖x‖)] =
λm
λb

ED [go(D)]

Eo[
∑

x∈Φm∩Cz(Φb)

|Φm,x|] =
λm
λb
N̄max

Eo[
∑

x∈Φm∩Co(Φb)

∑
y∈Φm,x

I({y is covered})] =
λm
λb

ED [h(D; τm, go(D))] ,

where D is a Rayleigh distributed random variable with pdf

fD(r) = 2πλbre
−λbπr2

, r ≥ 0;

N̄max = λrπR
2; and h : R+ 7→ R+ is given by

h(r; τm, go(r)) = N̄(τm) + go(r) · q(r)(N̄max − N̄(τm)),

where N̄(τm) = Eo[N(τm)] is given in Prop. 2.1, q : R+ 7→ [0, 1] is defined as

q(r) = e−TSNR−1
c Arα−2πλbH(T,α)r2

.

Proof. See Appendix 2.8.7.

Using Prop. 2.6, we can cast the spatial averaged multicast optimiza-

tion problem as follows.

minimize τm (2.25)

subject to ED [go(D)] ≤ λb
λm

B

ED [h(D; τm, go(D))] ≥ ηN̄max

0 ≤ go(r) ≤ 1,∀r ≥ 0.
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This is a mixed integer nonlinear programming which is in general notoriously

hard to solve. Worse still, the design space go(·) is of infinite dimension;

it is not a priori clear at all what kind of mapping go(·) we ought to pursue.

Furthermore, as go(·) represents the optimum network assistance rule averaged

across the space, it does not lead to readily implementable solution for the

network. For these reasons, we are more interested in the following “online”

problem: Given a realization of Φb and Φm, how should each BS z help the D2D

transmitters in its cell while satisfying its resource and reliability constraints?

Mathematically, each BS z aims to solve the following problem.

minimize τm (2.26)

subject to
∑

x∈Φm∩Cz(Φb)

gz(‖x− z‖) ≤ B∑
x∈Φm∩Cz(Φb)

h (‖x− z‖; τm, gz(‖x− z‖))
|Φm ∩ Cz(Φb)| · N̄max

≥ η

gz(‖x− z‖) ∈ {0, 1}, ∀x ∈ Φm ∩ Cz(Φb).

Though the above problem is still an integer programming, the design

space gz(·) is of finite dimension. In particular, we only need to determine

finite number of binary variables, gz(‖xi − z‖), i = 1, ...,Mz, where Mz =

|Φm ∩ Cz(Φb)|. However, with an exhaustive search the complexity is still

exponential in Mz. We next analyze the optimality structure of the problem

to design an efficient algorithm. To this end, we first note that there always

exists a feasible solution; for example, the solution with gz(‖x − z‖) ≡ 0 but

large enough τm is a feasible one.
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For ease of exposition, relabel the D2D transmitters (located in the cell

of BS z) in the order of increasing distance to BS z, i.e., r1 ≤ ... ≤ rMz where

ri = ‖xi − z‖, and let τ ?m denote the minimum value that can be obtained in

the above problem. Then the following result holds.

Proposition 2.7. There exists an optimal solution such that g?z(‖x1 − z‖) ≥

.... ≥ g?z(‖xMz − z‖).

Proof. See Appendix 2.8.8.

For each possible τm, Prop. 2.7 implies that BS z can focus on the

min(Mz, B) nearest D2D transmitters and assists as few of them as possible

to save resources. Further, as the mapping h(·) is moronically increasing with

τm, we then can use a binary search for the minimum τ ?m over {1, 2, ..., τmax},

where τmax is a large enough integer such that 1
Mz

∑Mz

i=1 h (ri; τmax, 0) ≥ ηN̄max.

The pseudocode of the proposed algorithm can be found in Algorithm 1. The

running time of this algorithm is O(Mz log τmax); thus for given Mz and τmax,

the proposed algorithm is efficient. However, we need to find a valid but

a priori unknown τmax for initialization purpose. With reasonable η, τmax’s

are usually not large and we can find one quite efficiently. We simulate the

proposed algorithm and present the network assistance statistics in Figure

2.9. The abscissa in Figure 2.9 denotes the distance between D2D transmitter

and its nearest BS; given the distance, the associated ordinate value gives the

corresponding probability that the D2D transmitter is scheduled by the BS
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for assistance. As expected, D2D transmitters that are closer to their nearest

BSs have higher chance to get network assistance.

Algorithm 1 Multicast D2D with Network Assistance

The following procedure runs on each BS independently. We focus on a
particular BS z.

Require: r1 ≤ ... ≤ rMz

Choose τmax such that 1
Mz

∑Mz

i=1 h (ri; τmax, 0) ≥ ηN̄max

τmin = 1
while τmin < τmax do

for i = 1 to Mz do
gz(ri)⇐ 0

end for
τm ⇐ b1

2
(τmin + τmax)c

j ⇐ 1
while 1

Mz

∑Mz

i=1 h (ri; τm, gz(ri)) < ηN̄max and j ≤ min(B,Mz) do
gz(ri)⇐ 1
j++

end while
if j > min(B,Mz) then

τmin ⇐ τm
else

τmax ⇐ τm
end if

end while

Finally, we comment how to construct a reasonably good solution to

the original prohibitively difficult network-wise optimization problem (2.25) by

collecting and appropriately averaging the network assistance statistics {gz(r)}

across the space as follows. We first simulate a large enough network with

area e.g. B(0, Rn) where each BS assists the D2D transmitters in its cell using

the proposed algorithm. Then, partition R+ into I non-overlapping intervals

[ri, ri+1), i = 0, 1, ..., I − 1 with r0 = 0, rI = ∞, and |ri+1 − ri| = ∆ for
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Figure 2.9: Network assistance statistics in the case of optimized multicast
transmissions: η = 95%, B = 2.

i = 0, 1, ..., I − 2; and collect the statistics as follows: for ∀r ∈ [ri, ri+1),

ḡ0(r) =

∑
z∈B(0,Rn)

∑
x∈Φm∩Cz(Φb)

1‖x−z‖∈[ri,ri+1) · gz(‖x− z‖)∑
z∈B(0,Rn)

∑
x∈Φm∩Cz(Φb)

1‖x−z‖∈[ri,ri+1)

.

In this way, we arrive at a piece-wise constant solution ḡ0(·) to the problem

(2.25). With ḡ0(·), we can use binary search for the corresponding minimum

objective value τ̄m, which is expected to be approximately equal to the spatial

average obtained from simulation, i.e.,

τ̄m ≈
1

|Φb(B(0, Rn))|
∑

z∈B(0,Rn)

τ ?m(gz).

The above approach leverages the ergodicity of the underlying random pro-

cesses to relate the statistical average to the spatial average of a sample real-

ization.
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2.7 Summary

In this chapter, we propose a tractable analytical model for the analysis

and design of multicast D2D. The model has been used to analyze important

multicast metrics including the coverage probability, the mean number of cov-

ered receivers, and the multicast throughput. We find that retransmissions

may increase the coverage probability and mean number of covered receivers

but may hurt the throughput. We have also studied how the multicast perfor-

mance would be affected by certain factors like dynamics and infrastructure

assistance. It is found that both may help improve multicast performance sig-

nificantly. The model and analytical results have been further used to optimize

multicasting, i.e., selecting the optimal multicast rate and optimal number of

retransmission times. The baseline model developed in this chapter will be

adapted or generalized to address other design issues of D2D networking in

the following chapters.

2.8 Appendix

2.8.1 Proof of Theorem 2.1

The proof consists of two steps. We first perform time average over

fading by fixing the spatial realization of Φm; then we de-condition on Φm to

average out the spatial randomness. This two-step argument used to deal with

the temporal correlation of multicast process is motivated by [53] which deals

with spatial correlation over multiple receive antennas.

Let EI(y) =
⋂
n∈I En, I ⊂ {1, ..., τm}, where we drop the argument of
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En(y) for notational simplicity. Then conditioned on Φm, the probability that

y ∈ B(0, R) is covered by the typical multicast transmitter is given by

p(y|Φm) = Po
( ⋃
n=1,...,τm

En|Φm

)

=
τm∑
n=1

(−1)n+1
∑

I⊂{1,...,τm}:|I|=n

Po (EI |Φm) ,

where the second equality follows from inclusion-exclusion principle. Note that

conditioned on Φm, the events En, n = 1, ..., τm, are independent, because the

fading fields are assumed to be independent across both space and time. It

follows that Po (EI |Φm) only depends on the cardinality of I, i.e., Po (EI |Φm) ≡

Po
(
E{1,...,n}|Φm

)
,∀I ⊂ {1, ..., τm} with |I| = n. Thus, denoting pn(y|Φm) =

Po
(
E{1,...,n}|Φm

)
, p(y|Φm) can be further written as

p(y|Φm) =
τm∑
n=1

(−1)n+1

(
τm
n

)
pn(y|Φm).

Next we focus on computing pn(y|Φm). Due to the independence of the fading

fields across time,

pn(y|Φm) = Po(SINRy,0(k) ≥ T,∀k ∈ {1, ..., n}|Φm)

=
n∏
k=1

Po(SINRy,0(k) ≥ T |Φm),

where Po(SINRy,0(k) ≥ T |Φm) equals

Po
(

Fy,x0(k)/`(‖y‖)
SNR−1 +

∑
j 6=i Fy,xj(k)/`(‖xj − y‖)

≥ T

∣∣∣∣Φm

)

= Po
(
Fy,x0(k) ≥ `(‖y‖)T (SNR−1 +

∑
j 6=0

Fy,xj(k)/`(‖xj − y‖))
∣∣∣∣Φm

)
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= e−`(‖y‖)T ·SNR−1EoF
[
e−`(‖y‖)T

∑
j 6=0 Fy,xj (k)/`(‖xj−y‖)|Φm

]
,

where the last equality is due to Fy,x0(k) ∼ Exp(1). Further, by Slyvnyak’s

theorem [16], the independence of the fading fields across space and the Laplace

transform of F ∼ Exp(1) (which is LF (s) = 1
1+s

),

pn(y|Φm) =e−n`(‖y‖)T ·SNR−1
n∏
k=1

EF
[
e−n`(‖y‖)T

∑
j Fy,xj (k)/`(‖xj−y‖)|Φm

]
=e−n`(‖y‖)T ·SNR−1

∏
j

n∏
k=1

EF
[
e−`(‖y‖)TFy,xj (k)/`(‖xj−y‖)|Φm

]
=e−n`(‖y‖)T ·SNR−1

∏
j

1

(1 + `(‖y‖)T/`(‖xj − y‖))n
.

Now de-conditioning with respect to Φm yields

pn(y) = EΦm [p
(n)
0 (y|Φm)]

= e−n`(‖y‖)T ·SNR−1EΦm

[∏
j

1

(1 + `(‖y‖)T/`(‖xj − y‖))n

]

= e−n`(‖y‖)T ·SNR−1EΦm

[
exp

(∑
j

log
1

(1 + `(‖y‖)T/`(‖xj − y‖))n

)]

= e−n`(‖y‖)T ·SNR−1

exp

(
−λm

∫
R2

1− 1

(1 + `(‖y‖)T/`(‖x− y‖))n
dx

)
,

where the last equality follows from the Laplace functional of the PPP Φm :

LΦm(f) = exp(−λm
∫
R2(1 − e−f(x)) dx) where f : R2 → R+ [16]. Further, by

the staionarity of the PPP Φm and changing Cartesian coordinates to Polar

coordinates,

pn(y) = e−n`(‖y‖)T ·SNR−1

exp

(
−2πλm

∫ ∞
0

(1− (1 + T`(‖y‖)/`(r))−n)r dr

)
.

(2.27)
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To sum up,

p(y) = E[p(y|Φm)] =
τm∑
n=1

(−1)n+1

(
τm
n

)
E[pn(y|Φm)]

=
τm∑
n=1

(−1)n+1

(
τm
n

)
pn(y).

Plugging the explicit expression (2.27) for pn(y) into the above equality com-

pletes the proof.

2.8.2 Proof of Proposition 2.1

Define the typical coverage cell Ao of the multicast transmitter xo ∈ Φm

as

Ao = {y ∈ B(xi, R) : ∃n s.t. SINRy,o(n) ≥ T} .

We next establish the relation between Eo[N ] and the mean cell volume Eo[|Ao|]:

Eo[N ] = λrEo[|Ao|]. To this end,

Eo[N ] = Eo
 ∑
y∈Φm,o

I({y is covered})


= Eo

[
λr

∫
R2

I({y is covered}) dy

]
= λr

∫
R2

Eo [I({y is covered})] dy

= λr

∫
R2

p(y) dy,

where the second and third equalities follow from Campbell’s theorem [16] and

Fubini’s theorem, respectively. Similarly, we have

Eo[|Ao|] = Eo
[∫

R2

I({y ∈ C0}) dy

]
=

∫
B(0,R)

p0(y) dy.
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It follows that Eo[N ] = λrEo[|Ao|]. The proof will be complete once we com-

pute Eo[|A0|]. To this end, using Corollary 2.1, we obtain that

Eo[|A0|] =2π

∫ R

0

τm∑
n=1

(−1)n+1

(
τm
n

)
e−nT ·SNR−1Arα−λmK(α,n)T

2
α r2

rdr.

By Fubini’s theorem we can exchange the above summation and integration.

Then invoking the established relation Eo[N ] = λrEo[|Ao|] completes the proof.

2.8.3 Proof of Proposition 2.2

By definition, the fraction of null receiver clusters equals the probability

that the typical cluster is null. Denoting this event by Enull, we consider the

following two cases.

If R < Rth, then Enull is equivalent to the event there exists no point in

the typical cluster Φm,x0 . By Poisson assumption, we have Φm,x0(B(o,R)) ∼

Poisson(λrπR
2). Then,

Po(Enull) = Po(Φm,x0(B(o,R)) = 0) = e−λrπR
2

.

If R ≥ Rth, denoting by An = {Φm,x0(B(o,R)) = n},

Po(Enull) =
∞∑
n=0

Po(An)Po(Enull|An)

=
∞∑
n=0

(λrπR
2)ne−λrπR

2

n!

(
λrπR

2 − λrπR2
th

λrπR2

)n
= e−λrπR

2
th ,

where the second equality follows from that conditioning on Φm,x0(B(o,R)) =

n these n points are i.i.d. uniformly distributed in B(o,R). To sum up, we

have Po(Enull) = e−λrπ(min(Rth,R))2
.
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2.8.4 Proof of Proposition 2.3

When σ2 ≡ 0 and λm →∞, by Corollary 2.2

ξ =
πK̃(α, τm)λr

T
2
αλm

· 1

τm
log(1 + T ).

It follows that maximizeT>0ξ is equivalent to maximizeT>0T
− 2
α log(1 +T ). Let

f(x) = x−
2
α log(1 + x). Direct calculation yields

df

dx
=

1

x
2
α

+1

(
x

1 + x
− 2

α
log(1 + x)

)
.

Denote by g(x) the term inside the above parentheses. Direct calculation yields

dg
dx

= 1
1+x

(
1

1+x
− 2

α

)
. It follows that dg

dx
> 0 when x ∈ (0, α

2
− 1) and dg

dx
< 0

when x ∈ (α
2
−1,∞). Correspondingly, g(x) first monotonically increases from

0 to g(α
2
− 1) = 1 − 2

α
(1 + log(α

2
)) (which is positive when α > 2), and then

monotonically decreases from g(α
2
− 1) to −∞. Thus, there exists a unique

point x? > α
2
− 1 such that g(x? = 0), and f(x) monotonically increases when

x ∈ (0, x?) and then decreases when x ∈ (x?,∞). The last fact implies that

x? is the unique optimal point and this completes the proof.

2.8.5 Proof of Proposition 2.4

The proof is similar to that of Theorem 2.1 except the following argu-

ments:

pn(y) = Po (SINRy,0(k) ≥ T,∀k ∈ {1, ..., n})

=
n∏
k=1

Po (SINRy,0(k) ≥ T ) ,
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where the last equality follows from the fact that an independent PPP Φm(k)

is drawn at each time slot, and Po(SINRy,0(k) ≥ T ) equals

Po
(

Fy,x0(k)/`(‖y‖)
SNR−1 +

∑
xj∈Φm(k):j 6=0 Fy,xj(k)/`(‖xj − y‖)

≥ T

)

= e−`(‖y‖)T ·SNR−1EoΦm(k),F

exp

−`(‖y‖)T ∑
j∈Φm(k)

Fy,xj(k)/`(‖xj − y‖)


= e−n`(‖y‖)T ·SNR−1

n∏
k=1

exp

(
−λm

∫
R2

1− 1

(1 + `(‖y‖)T/`(‖x− y‖))
dx

)
= e−nT ·SNR−1A‖y‖αe−λmnK(α,1)T

2
α ‖y‖2 .

Then p0(y) can be readily obtained by plugging pn(y) into the equality p0(y) =∑τm
n=1(−1)n+1

(
τm
n

)
pn(y). Also, the mean number of covered receivers can be

evaluated using the equality Eo[N ] = λr
∫
B(0,R)

p0(y) dy, which has been es-

tablished in the proof of Prop. 2.2.

2.8.6 Proof of Lemma 2.1

By definition, we have

nK(α, 1)−K(α, n)

= n
2π

α

∫ ∞
0

t−
2
α
−1

(
1− 1

1 + t

)
dt− 2π

α

∫ ∞
0

t−
2
α
−1

(
1− 1

(1 + t)n

)
dt

=
2π

α

∫ ∞
0

t−
2
α
−1

(
n− 1− n

1 + t
+

1

(1 + t)n

)
dt.

Denote by f(t) = n−1− n
1+t

+ 1
(1+t)n

, t ≥ 0. Note f ′(t) = (1+t)n−1−1
(1+t)n+1 ≥ 0,∀t ≥ 0.

It follows that f(t) is monotonically increasing on [0,∞] and f(t) ≥ f(0) = 0.

Thus nK(α, 1) −K(α, n) = 2π
α

∫∞
0
t−

2
α
−1f(t) dt ≥ 0 as the integrand is non-

negative.
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2.8.7 Proof of Proposition 2.6

Under the Palm measure (with respect to Φb),

Eo
 ∑
x∈Φm∩Co(Φb)

∑
y∈Φm,x

I({y is covered})


= Eo

 ∑
x∈Φm∩Co(Φb)

E[
∑

y∈Φm,x

I({y is covered})]

 . (2.28)

For x ∈ Co(Φb) ∩ Φm, using Corollary 2.3 and Prop. 2.5, we have

E

 ∑
y∈Φm,x

I({y is covered})

 = h(‖x‖; τm, go(‖x‖)).

It follows that (2.28) equals

Eo
 ∑
x∈Φm∩Co(Φb)

h(‖x‖; τm, go(‖x‖))


= Eo

[
λm

∫
R2

I(x ∈ Co(Φb)) · h(‖x‖; τm, go(‖x‖)) dx

]
= λm

∫
R2

Eo [I(x ∈ Co(Φb))] · h(‖x‖; τm, go(‖x‖)) dx

= λm

∫
R2

Po(x ∈ Co(Φb)) · h(‖x‖; τm, go(‖x‖)) dx

= λm

∫
R2

Po(Φb(B
0(x, ‖x‖)) = 0) · h(‖x‖; τm, go(‖x‖)) dx

= λm

∫
R2

e−λbπ‖x‖
2 · h(‖x‖; τm, go(‖x‖)) dx

= 2πλm

∫
R+

e−λbπr
2 · h(r; τm, go(r))r dr

=
λm
λb

ED [h(D; τm, go(D))] ,

60



where we use Campbell’s theorem in the first equality and Fubini’s theorem in

the second equality; the fourth equality follows since x ∈ Co(Φb) if and only if o

is the nearest BS in Φb, i.e., Φb(B
0(x, ‖x‖)) = 0; the fifth equality follows from

the fact Φb(B
0(x, ‖x‖)) ∼ Poisson(λmπ‖x‖2); and we convert from Cartesian

to polar coordinates in the penultimate equality. Using similar arguments, we

can derive the other two expectation terms; we omit them for brevity.

2.8.8 Proof of Proposition 2.7

Suppose O = (τ ?m, {g†z(‖xi − z‖)}) is an optimal solution but does not

satisfy g†z(‖x1− z‖) ≥ .... ≥ g†z(‖xMz − z‖). Then O has at least one pair (i, j)

such that 1 ≤ i < j ≤ Mz and 0 = g†z(‖xi − z‖) < g†z(‖xj − z‖) = 1. We will

decrease the number of such pairs in O by swapping the values of the binary

decision variables: g†z(‖xi − z‖) = 1 and g†z(‖xj − z‖) = 0. We denote by

Õ = (τ ?m, {g̃z(‖xi − z‖)}) the solution after the swapping. First, we claim Õ

is feasible; indeed, g̃z(rk) ∈ {0, 1},
∑Mz

k=1 g̃z(rk) =
∑Mz

k=1 g
†
z(rk) ≤ B, and using

the fact that q(r) is strictly decreasing with r,

1

Mz

Mz∑
k=1

h (rk; τ
?
m, g̃z(rk))−

1

Mz

Mz∑
k=1

h
(
rk; τ

?
m, g

†
z(gk)

)
=

1

Mz

(q(ri)− q(rj))(N̄max − N̄(τm)) > 0,

which shows that Õ meets all the constraints. Further, Õ gives the optimal

objective value τ ?m; and thus Õ is also an optimal solution. Repeating iter-

atively the above exchange arguments, we can construct an optimal solution

such that g?z(r1) ≥ .... ≥ g?z(rz). This completes the proof.
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Chapter 3

Spectrum Sharing between Cellular and D2D

Communications

As introduced in Chapter 1, D2D can be classified into two types: in-

band and out-of-band; and in-band D2D can be further classified into two

categories: overlay and underlay. In this chapter, we extend the hybrid net-

work model proposed in Chapter 2 and develop a unified analytical framework

to study spectrum sharing between cellular and D2D communications. We fo-

cus on the uplink of cellular networks and study two spectrum sharing models,

which are illustrated in Figure 3.1 and described as follows.

Overlay in-band D2D. The uplink spectrum is divided into two or-

thogonal portions. A fraction η is assigned to D2D communication while the

other 1− η is used for cellular communication. We term η spectrum partition

factor in the overlay.

Underlay in-band D2D. We assume that each D2D transmitter uses

frequency hopping to randomize its interference to other links. Specifically,

we divide the uplink channel into B subchannels. Each D2D transmitter may

randomly and independently access βB of them, where the factor β ∈ [0, 1]

measures the aggressiveness of D2D spectrum access. We term β spectrum
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(a). Overlay in band D2D (b). Underlay in band D2D

D2D
D2DD2D:

Cellular Cellular

Licensed Band Licensed Band

(c) Out of band D2D(c). Out of band D2D

D2D
Cellular

Unlicensed Band

D2D

Licensed Band

Figure 3.1: Different D2D spectrum sharing scenarios

access factor in the underlay.

How the network performance will be affected by different choices of

the spectrum partition factor in the overlay and the spectrum access factor in

the underlay? We address this question in this chapter.

3.1 Related Work

Existing research relevant to this work includes spectrum sharing in

cognitive radio networks, where secondary cognitive transmitters may access

primary spectrum if primary transmitters are not active or they do not cause

unacceptable interference [8]. For example, to protect the primary users, sec-

ondary transmissions in [77,120] are regulated by sensing the activities of pri-

mary transmissions, while [67] imposes stringent secondary access constraints

on e.g. collision probability. Multi-antenna techniques are used in [55,150,151]
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to minimize secondary interference to primary networks. Auction mechanisms

are used in [60, 138] to control the spectrum access of secondary networks.

More recently, the economic aspects of spectrum sharing in cognitive radio

networks have gained much interest. For example, [104] adopts a dynamical

game approach to study the spectrum sharing among a primary user and mul-

tiple secondary users. Similarly, a three-stage dynamic game is formulated

in [37] to study spectrum leasing and pricing strategies, while [76] designs

incentive schemes for spectrum sharing with cooperative communication.

Unlike spectrum sharing in cognitive radio networks, D2D spectrum

sharing is controlled by cellular networks. How D2D should access the spec-

trum is a largely open question, though some initial results exist (see e.g.

[65,78,146,147]). D2D spectrum sharing is further complicated by D2D mode

selection which means that a potential D2D pair can switch between direct

and conventional cellular communications [42, 88]. Determining an optimum

D2D mode selection threshold – which we define as the Tx-Rx distance under

which D2D communication should occur – is another objective of this chapter.

Note that, as highlighted in Chapter 1, D2D is different from ad hoc net-

works whose analysis and design are notoriously difficult (see e.g. [45,50,139]).

A key difference is that D2D networking can be assisted by the cellular net-

work infrastructure which is not available to a typical ad hoc network [88,91].

Nevertheless, D2D networking introduces its own challenges. For example, the

interference situation in the underlay in-band D2D is more complicated than

in a purely ad hoc network. Further, enabling D2D communication requires
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a lot of new functionalities [2, 4, 88] and significantly complicates the cellu-

lar network design. To sum up, spectrum sharing in cellular networks with

D2D can be quite different from those of either ad hoc networks or traditional

cellular networks.

3.2 Contributions and Main Outcomes

The main contributions and outcomes of this chapter are summarized

as follows.

A refined tractable hybrid network model. We refine the hy-

brid network model previously proposed in Chapter 2 by further incorporat-

ing many important characteristics of D2D-enabled cellular networks including

D2D mode selection, transmit power control and orthogonal scheduling of cel-

lular users within a cell.

A unified performance analysis approach. We present a general

analytical framework and conduct a unified performance analysis of two D2D

spectrum sharing scenarios: overlay and underlay in-band D2D. In particular,

we derive analytical rate expressions and apply them to optimize spectrum

sharing parameters.

Design insights. The following observations are made from the de-

rived analytical and/or numerical results under the model studied in this chap-

ter and may be informative for system design.

Overlay vs. underlay. We evaluate the rate performance in both over-
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lay and underlay scenarios. We observe that D2D mobiles can enjoy much

higher data rate than regular cellular mobiles in both scenarios. As for cel-

lular mobiles in the overlay, their rate performance also improves due to the

offloading capability of D2D communication. In contrast, the rate performance

of cellular mobiles in the underlay does not improve or even slightly degrades

with D2D communication.1 This is because cellular mobiles suffer from in-

terference caused by the underlaid D2D transmissions, which offsets the D2D

offloading gain. From an overall mean-rate (averaged across both cellular and

D2D mobiles) perspective, both overlay and underlay provide performance

improvements (vs. pure cellular).

D2D mode selection. We derive the optimal D2D mode selection thresh-

old that minimizes the transmit power of a potential D2D transmitter. We find

that the optimal threshold is inversely proportional to the square root of BS

density and monotonically increases with the pathloss exponent. Moreover, it

is invariant with the distance distribution of potential D2D pairs. D2D mode

selection and spectrum sharing may be jointly optimized from e.g. the rate

perspective. From a coverage perspective, we reveal a tradeoff between the

D2D spectrum access and mode selection threshold in the underlay: as more

D2D links are allowed (due to a more relaxed mode selection threshold), the

network should actually make less spectrum available to them to limit their

interference.

1Note that the underlay study in this chapter assumes that D2D randomly accesses the
cellular spectrum. With carefully designed dynamic scheduling in the underlay, the rate of
cellular mobiles may also increase, and the rate of D2D mobiles may further increase.
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3.3 System Model

3.3.1 Network Model

As shown in Figure 3.2, we consider a hybrid network consisting of both

cellular and D2D links and focus on the uplink. The BSs are regularly placed

according to a hexagonal grid. Denoting by 1/λb the area of a hexagonal cell,

λb can be regarded as the average number of BSs per unit area. The transmit

UEs are randomly distributed and modeled by an independently marked PPP

denoted as

Φ̃ = {(Xi, δi, Li, Pi)}. (3.1)

Here {Xi} denote the spatial locations of the UEs. Denote by Φ ∈ R2 the

unmarked PPP {Xi} with λ being its intensity. {δi} denote the types of the

UEs and are assumed to be i.i.d. Bernoulli random variables with P(δi = 1) =

q ∈ [0, 1]. In particular, UE i is called a potential D2D UE2 if δi = 1; otherwise,

it is called a cellular UE. So, q is a simple indicator of the load of potential

D2D traffic. {Li} denote the lengths of radio links. For notational simplicity,

denote by Lc (resp. Ld) the generic random variable for the link length of a

typical cellular UE (resp. potential D2D UE). {Pi} denote the transmit powers

of UEs. In this work we use channel inversion for power control, i.e., Pi = Lαi ,

where α > 2 denotes the pathloss exponent; extension to distance-proportional

fractional power control (i.e., Pi = Lαεi where ε ∈ [0, 1]) is straightforward.

2It is called potential D2D UE as a UE with D2D traffic can use either cellular or D2D
mode.
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Figure 3.2: A hybrid network consisting of both cellular and D2D links. Solid
triangles, solid squares and dots denote BSs, uplink cellular transmitters and
D2D transmitters, respectively. For clarity we omit plotting D2D receivers,
each of which is randomly located on the circle centered at the associated D2D
transmitter.

Similarly, we use Pc and Pd to denote the generic random variables for the

transmit powers of cellular and potential D2D UEs, respectively.

Remark on channel inversion. Note that channel inversion in this

work only compensates for the large-scale pathloss. In particular, it does not

compensate for the small-scale fading. This channel inversion scheme has

two advantages: 1) it does not lead to excessively large transmit power when

the link is poor (due to the small-scale fading), and 2) the transmitter only

needs a long-term statistic (i.e. pathloss) to decide its transmit power, i.e.,

instantaneous channel state information is not required to be available at the

transmitter as small-scale fading is not compensated for. Note that for ease of
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exposition, we assume in the analysis that the average received power is 1 due

to channel inversion, i.e., Pi = Lαi . In other words, Pi should be considered as

virtual transmit power, and should be scaled appropriately to map to the actual

transmit power P̃i, say, P̃i = ρPi, where ρ is the coefficient of proportionality.

Normally, ρ � 1 since the practical transmit power of wireless devices is far

less than the pathloss.

Next, let us introduce the notation SNRm to denote the average received

signal power normalized by noise power, i.e.,

SNRm =
P̃L−α

Ñ0Bw

=
ρPL−α

Ñ0Bw

=
1

ρ−1Ñ0Bw

, (3.2)

where Ñ0 denotes the one-sided power spectral density of the additive white

Gaussian noise, and Bw denotes the channel bandwidth. In the rest of this

chapter, if the average received power is normalized to 1, we use N0 to denote

the equivalent noise power ρ−1Ñ0Bw. By choosing the operating regime SNRm

(or equivalently, the coefficient ρ) appropriately, we can make sure that the

UE power constraints are satisfied and thus there is no need to truncate UE

transmit power to meet the peak power constraint. We will give more detailed

results in Section 3.4.2 to illustrate the above argument.

The potential of D2D will largely depend on the amount of local traf-

fic that may be routed through local direct paths, instead of infrastructure

paths. One possible approach to model “data localization” would be based

on current user traffic statistics. However, it appears very challenging to ac-

quire such traffic data, which is typically owned by operators and contains
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sensitive and proprietary information. Even if the current traffic data could

be obtained from the operators, it might not be too useful, since presumably

D2D’s availability could change future traffic patterns. For example, once

users realize high D2D speeds are possible, more local sharing is likely to oc-

cur. So far, no commonly agreed upon D2D distance distribution has appeared

in the literature. In the absence of such an accepted model, we assume that

each potential D2D receiver is randomly and independently placed around its

associated potential D2D transmitter with isotropic direction and Rayleigh

distributed distance D with probability density function (PDF) given by

fD(x) = 2πξxe−ξπx
2

, x ≥ 0. (3.3)

In other words, the potential D2D receiver is randomly placed around its

associated potential D2D transmitter according to a two-dimensional Gaussian

distribution, which results in (3.3). A similar Gaussian assumption has also

been used in [20] to analyze the performance of FlashLinQ. The analysis and

calculations in this work can be used to study other D2D distance distributions

as well.

In this work, we consider distance-based D2D mode selection: cellular

mode is used if D ≥ µ; otherwise, D2D mode is selected. If we assume that the

received signal power (averaged over fast fading) is only a function of distance

and pathloss exponent, distance-based D2D mode selection is equivalent to

the average received-signal-power or SNR-based mode selection, to which the

results in this work can be directly applied.
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3.3.2 Transmission Scheduling

Cellular transmitters including cellular UEs and potential D2D UEs in

cellular mode form a PPP Φc with intensity λc = (1 − q)λ + qλP(D ≥ µ).

We assume an orthogonal multiple access technique and that uplink transmit-

ters are scheduled in a round-robin fashion. It follows that only one uplink

transmitter in each macrocell can be active at a time. Generally speaking,

scheduling cellular transmitters in an orthogonal manner leads to dependent

thinning of PPP Φc. This makes the analysis intractable and some simplified

assumptions are needed (see e.g. [105]). In this chapter, denoting by A the

coverage region of a hexagonal macrocell, we approximate A by a disk that

has the same area as the hexagonal cell, i.e., A = B(0, R) where B(x, r) de-

notes the ball centered at x with radius r and R =
√

1
πλb

. To avoid triviality,

we assume λc ≥ λb, which is reasonable as the uplink transmitter density is

usually larger than the BS density. Further, we assume that the typical active

cellular transmitter is uniformly distributed in the coverage region A, and that

the locations of cellular interferers form a PPP Φc,a with intensity λb. For the

typical uplink transmission, cellular interferers are located outside the region

A. Figure 3.3 illustrates the proposed approximate interference analysis for a

typical uplink transmission. Due to the use of this approximation, the analyti-

cal results about cellular performance derived in this work are approximations;

for notation simplicity, we will present the results as equalities instead of the

more cumbersome approximations in the sequel. The approximation will be

numerically validated later.
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DiskA

Cellular UE Typical cellular signal link

Potential D2D UE in cellular mode Cellular interfering link

Figure 3.3: An approximate uplink interference analysis. The typical cellular
transmitter is uniformly distributed in A, while cellular interferers form a PPP
with density λb outside the disk A.

As for potential D2D UEs in D2D mode, they form a PPP Φd with

intensity λd = qλP(D < µ). For D2D medium access control, we consider

a simple spatial Aloha access scheme: in each time slot each potential D2D

UE in D2D mode transmits with probability κ and is silent with probability

1 − κ; the activity decisions are independently made over different time slots

and different transmitters. The study of this simple baseline medium access

scheme can serve as a benchmark for future work on more sophisticated D2D

scheduling schemes, e.g., carrier sense multiple access (CSMA) or centralized

scheduling.

3.3.3 Performance Metrics

We will analyze the average rates of cellular and potential D2D UEs,

Tc and Td. Recall that potential D2D UEs can use either cellular or D2D
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mode. Denote by T̂d the average rate of potential D2D UEs in D2D mode.

Conditioning on using cellular mode, the rate Td of potential D2D UEs equals

the rate Tc of cellular UEs; conditioning on using D2D mode, the rate Td

of potential D2D UEs equals T̂d by definition. Under the assumed distance-

based D2D mode selection, a typical potential D2D UE uses cellular mode

with probability P(D ≥ µ) and D2D mode with probability P(D < µ). To

sum up, the average rate of potential D2D UEs can be written as

Td = P(D ≥ µ) · Tc + P(D < µ) · T̂d. (3.4)

3.4 Preliminary Analysis

In this section we present preliminary analytical results, which lay the

foundation for the study of overlay and underlay in-band D2D in the next two

sections.

3.4.1 A Unified Analytical Approach

Consider a typical transmitter and receiver pair interfered by K types

of heterogeneous interferers. The set of the k-th type of interferers is de-

noted as Mk. In this work, we focus on frequency-flat narrowband channels;

the results can be readily extended to OFDM-based frequency-selective wide-

band channels, each of which can conceptually be regarded as a set of parallel

frequency-flat narrowband channels.

The baseband received signal Y0[n] at the typical receiver located at
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the origin can be written as

Y0[n] =
√
P0L

−α
0 G0S0[n] +

K∑
k=1

∑
i∈Mk

√
Pi‖Xi‖−αGiSi[n] + Z[n], (3.5)

where P0, L0, G0 and S0[n] are associated with the typical link and denote

the typical link’s transmit power, length, channel fading and unit-variance

signal, respectively; Pi, ‖Xi‖, Gi and Si[n] are associated with the interfering

link from transmitter i to the typical receiver and denote the interfering link’s

transmit power, length, channel fading and unit-variance signal, respectively;

Z[n] is additive white Gaussian noise with constant PSD Ñ0 Watts/Hz. It

follows that the received SINR is given by SINR = W
I+Ñ0Bw

, where signal power

W = P0L
−α
0 G0, and interference power I =

∑K
k=1

∑
i∈Mk

Pi‖Xi‖−αGi.

In this chapter, recall we assume channel inversion, i.e., P0L
−α
0 = 1, and

thus W = G0. For simplicity we consider Rayleigh fading, i.e., G0 ∼ Exp(1),

and assume independent fading over space. Then the following corollary will

be particularly useful.

Corollary 3.1. Suppose SINR = W
I+N0

, where W ∼ Exp(1) and I respec-

tively denote the (random) signal and interference powers, and N0 denotes the

equivalent noise power. If W and I are independent,

E [log(1 + SINR)] =

∫ ∞
0

e−N0x

1 + x
LI(x) dx, (3.6)

where LI(s) = E[e−sI ] denotes the Laplace transform of I.

Corollary 3.1 follows from a more general result given in [87] and its

proof may also be directly found in [16]. Note that in this work, interference
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is not Gaussian but may be considered as conditionally Gaussian. Specifi-

cally, assuming all the transmitters use Gaussian signaling, the interference is

Gaussian conditioned on the fading and node locations in the network. Then

treating the interference as noise, we may invoke Shannon’s formula to de-

termine the maximum achievable spectral efficiency of a typical link. If the

random fading and node locations are furthered averaged out, we arrive at

the expression (3.6). Though not optimal in an information-theoretical sense,

(3.6) serves as a good performance metric and has been widely adopted in

literature [16].

Next we define the ergodic link spectral efficiency R, which combines

modulation and coding schemes in the physical layer and multiple access pro-

tocols in the medium access control layer, as follows.

R = E [∆ · log(1 + SINR)] , (3.7)

where ∆ denotes the time and/or frequency resources accessed by the typical

link. For example, in the overlay with spectrum partition factor η, a typical

D2D link with random Aloha access probability κ can effectively access κη

time-frequency resources. We will analyze ergodic link spectral efficiency R in

detail in Sections 3.5 and 3.6.

3.4.2 Transmit Power Analysis

In this subsection, we analyze the transmit power distributions, partic-

ularly E[Pc] and E[Pd], the average transmit powers of cellular and potential

75



D2D UEs. The derived results are not only interesting in its own right but

also are extensively used in the analysis of rate performance later. To this end,

denote by P̂d the generic random variable for the transmit power of potential

D2D UEs in D2D mode.

Lemma 3.1. The average transmit powers of a typical cellular UE, a potential

D2D UE and, a D2D-mode potential D2D UE are respectively given by

E[Pc] =
1

(1 + α
2
)π

α
2 λ

α
2
b

(3.8)

E[Pd] = e−ξπµ
2E[Pc] + (ξπ)−

α
2 γ(

α

2
+ 1, ξπµ2) (3.9)

E[P̂d] =
(ξπ)−

α
2

1− e−ξπµ2 γ(
α

2
+ 1, ξπµ2), (3.10)

where γ(s, x) =
∫ x

0
zs−1e−z dz is the lower incomplete Gamma function.

Proof. See Appendix 3.9.1.

Note that both E[Pc] and E[Pd] increase as pathloss exponent α in-

creases and are inversely proportional to the square root of BS density. Next

we examine how to choose D2D mode selection threshold µ to minimize the

average transmit power E[Pd] of potential D2D UEs.

Proposition 3.1. For any distribution function fD(x) of the nonnegative ran-

dom distance D, E[Pd] is minimized when

µ? = (E[Pc])
1
α =

(
1

1 + α
2

) 1
α
√

1

πλb
. (3.11)

Proof. See Appendix 3.9.2.
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Prop. 3.1 shows that µ? is only a function of the average transmit

power E[Pc] of cellular UEs and is independent of the distribution of D; in

particular, the Rayleigh assumption made in (3.3) is not needed here. Specif-

ically, µ? is inversely proportional to the square root of BS density λb, which

is intuitive: cellular mode becomes more favorable when more BSs are avail-

able. In addition, ( 1
1+α

2
)

1
α monotonically increases as α increases. This implies

that µ? increases in α, agreeing with intuition: local transmission with D2D

mode is more favorable for saving transmit power when the pathloss exponent

increases.

Before ending this section, we give a numerical example in Figure 3.4

showing that UE power constraint can be satisfied by choosing the right oper-

ating regime SNRm. Throughout this chapter, the parameters used in plotting

numerical or simulation results are summarized in Table 3.1 unless otherwise

specified. In Figure 3.4, the cellular peak power Pc,max is defined as the mini-

mum transmit power used by a cell-edge cellular transmitter to meet the target

SNRm, i.e., Pc,max is determined by SNRm = Pc,maxR−α

Ñ0Bw
. Similar, the D2D peak

power Pd,max is determined by SNRm =
Pd,maxµ

−α

Ñ0Bw
. The average power of a

cellular (resp. D2D) transmitter can be obtained by multiplying (3.8) (resp.

(3.10)) with the scaling factor Ñ0Bw ·SNRm. As shown in Figure 3.4, the typ-

ical UE power constraint 23 dBm (i.e. 200 mW) is well respected even when

SNRm=10 dB, a relatively high average received SNR in the uplink. Besides,

Figure 3.4 also shows that compared to cellular transmitters, D2D transmit-

ters can save about 15 dB transmit power in achieving the same SNRm target,
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Density of macrocells λb (π5002)−1 m−2

Density of UEs λ 10× (π5002)−1 m−2

D2D distance parameter ξ 10× (π5002)−1 m−2

Proportion of potential D2D UEs q 0.2
Pathloss exponent α 3.5
SNRm 10 dB
D2D mode selection threshold µ 200 m
D2D Aloha access probability κ 1
Spectrum partition factor η 0.2
UE weights (wc, wd) (0.6, 0.4)
Spectrum access factor β 1
Number of subchannels B 1

Table 3.1: Simulation/Numerical Parameters for Spectrum Sharing between
Cellular and D2D

demonstrating the energy efficiency of D2D communication. In other words,

with the same power budget, the D2D links can enjoy about 15 dB higher

SNRm than the cellular links.

3.5 Analysis of Overlay In-Band D2D

3.5.1 Link Spectral Efficiency

Let us consider a typical D2D link. As the underlying PPP is stationary,

without loss of generality we assume that the typical receiver is located at the

origin. Note that the analysis carried out for a typical link indicates the

spatially averaged performance of the network by Slivnyak’s theorem [122].

Henceforth, we focus on characterizing the performance of a typical link, which

may be either a D2D or cellular link depending on the context.

With overlay in-band D2D, the interferers are cochannel D2D trans-
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mitters. Due to the random Aloha access, the effective interferers constitute

a homogeneous PPP with density κλd, a PPP thinned from Φd with thinning

probability κ. Denoting this thinned PPP by κΦd, the interference at the

typical D2D receiver is given by

Id =
∑

Xi∈κΦd\{o}

P̂d,iGi‖Xi‖−α. (3.12)

Proposition 3.2. With overlay in-band D2D, the complementary cumulative

distribution function (CCDF) of the SINR of D2D links is given by

P(SINR ≥ x) = exp
(
−N0x− cx

2
α

)
, x ≥ 0, (3.13)

where c is a non-negative constant given by

c =
κq(λ

ξ
− (λ

ξ
+ λπµ2)e−ξπµ

2
)

sinc( 2
α

)
. (3.14)
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Further, the spectral efficiency Rd of D2D links is given by

Rd = κ

∫ ∞
0

e−N0x

1 + x
e−cx

2
α dx. (3.15)

Proof. This proposition follows by evaluating the Laplace transform of Id and

using (3.6). See Appendix 3.9.3 for details.

Note that in Prop. 3.2, as µ increases, c monotonically increases, which

in turn results in monotonically decreasing Rd. This agrees with intuition: the

spectral efficiency of D2D links decreases when more potential D2D UEs choose

D2D mode (leading to increased interference). In particular,

Rd,min = lim
µ→∞

Rd = κ

∫ ∞
0

e−N0x

1 + x
e−κq

λ
ξ

(sinc( 2
α

))−1x
2
α

dx. (3.16)

The typical D2D link experiences the most severe interference in this case and

thus has the minimum spectral efficiency. On the contrary,

Rd,max = lim
µ→0

Rd = κ

∫ ∞
0

1

1 + x
e−N0x dx = κeN0E1(N0), (3.17)

where E1(z) =
∫∞
z

e−x

x
dx is the exponential integral. The typical D2D link is

free of interference in this case and thus has the maximum spectral efficiency.

Now let us consider a typical uplink. With overlay in-band D2D, the

interferers are cellular transmitters in the other cells. The interference at the

typical BS is given by

Ic =
∑

Xi∈Φc,a∩Ac
Pc,iGi‖Xi‖−α.
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Proposition 3.3. With overlay in-band D2D, the CCDF of the SINR of cel-

lular links is given by

P(SINR ≥ x) = exp(−N0x)

× exp

(
−2πλb

∫ ∞
R

(1− 2F1(1,
2

α
; 1 +

2

α
;− x

(R/r)α
))r dr

)
, x ≥ 0, (3.18)

where 2F1(a, b; c;x) denotes the hypergeometric function, and R =
√

1
πλb

. Fur-

ther, the spectral efficiency Rc of cellular links is given by

Rc =
λb
λc

(1− e−
λc
λb )

∫ ∞
0

e−N0x

1 + x

× exp

(
−2πλb

∫ ∞
R

(1− 2F1(1,
2

α
; 1 +

2

α
;− x

(R/r)α
))r dr

)
dx, (3.19)

where λc = (1− q)λ+ qλe−ξπµ
2
.

Proof. See Appendix 3.9.4.

Unlike the closed form expression (3.13) for the CCDF of the SINR of

D2D links, the expression (3.18) for the CCDF of the uplink SINR involves

an integration. To have some insights, we consider sparse (i.e. λb → 0) and

dense (i.e. λb →∞) networks in the following corollary.

Corollary 3.2. In a sparse network with λb → 0, the CCDF of the SINR of

cellular links is given by

P(SINR ≥ x) = exp

(
−
(
N0 +

4

α2 − 4

)
x

)
, x ≥ 0, (3.20)
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In a dense network with λb → ∞, the CCDF of the SINR of cellular links is

given by

P(SINR ≥ x) = exp

(
−N0x−

1

2sinc( 2
α

)
x

2
α

)
, x ≥ 0. (3.21)

Proof. See Appendix 3.9.5.

In a sparse network, Corollary 3.2 implies that interference and noise

have the same impact on the SINR coverage performance (in the order sense).

From this perspective, we may simply consider interference as an extra source

of noise. Thus, the sparse network is noise-limited. In contrast, in a dense

network, the impact of interference behaves differently for UEs with different

SINR targets. For users with low SINR target (i.e. x → 0), interference has

a more pronounced impact on the SINR coverage performance than the noise.

The converse is true for users with high SINR target (i.e. x→∞).

If we denote by θc the SINR threshold for successful uplink transmis-

sions and consider the outage probability P(SINR < θc), Corollary 3.2 implies

that, as θc → 0, the outage probability of a sparse network scales as Θ(θc).

In this case, the outage performance is noise-limited. In contrast, the out-

age probability of a dense network scales as Θ(θ
2
α
c ). In this case, the outage

performance is interference-limited.

Before ending this section, we validate the analytical results, particu-

larly the CCDF of the uplink SINR (since we adopt an approximate approach

for the analysis on the uplink SINR). As all the major analytical results pre-

sented in this work are functions of SINR, it suffices to validate the analytical
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SINR distributions by simulation rather than repetitively validating each an-

alytical expression which in turn is a function of SINR. In Figure 3.5, we

compare the analytical uplink SINR CCDF (given in Prop. 3.3) to the corre-

sponding empirical distribution obtained from simulation using the hexagonal

model. The simulation steps are described as follows. (1) Place the BSs ac-

cording to a hexagonal grid in a large area C; the area of a hexagon equals

1/λb. (2 ) Generate a random number N such that N ∼ Poisson(λc|C|). (3)

Generate N points that are uniformly distributed in C; these N points repre-

sent the cellular transmitters. (4) For each BS, it randomly schedules a cellular

transmitter if there is at least one in its coverage region. (5) Determine the

transmit power of each scheduled transmitter. (6) Generate independently the

fading gains from each scheduled cellular transmitter to each BS. (7) Collect

the SINR statistics of the cellular links located in the central hexagonal cells

(to avoid boundary effect). (8) Repeat the above steps 10, 000 times.

Figure 3.5 shows that the analytical results match the empirical results

fairly well; the small gaps arise as we approximate the hexagonal model using

a PPP model with a guard radius. Recall that in Figure 3.5, λb = (π5002)−1

m−2, and thus the network is sparse. In the sparse regime, as established

in Corollary 2, SNRm (or equivalently, N0) has a considerable impact on the

uplink SINR CCDF; Figure 3.5 confirms the analytical result.

We next compare the SINR distribution of a typical D2D link (given in

Prop. 3.2) to the corresponding empirical distribution obtained from Monte

Carlo simulation. The results are shown in Figure 3.6, from which we can see
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that the analytical results closely match the empirical results as in this case

no approximation is made in the analysis.

3.5.2 Optimizing Spectrum Partition

In this section we study how to choose the optimal spectrum partition

factor η? such that

η? = arg max
η∈[0,1]

u(Tc, Td), (3.22)

where u(Tc, Td) is a utility function that can take different forms under different

design metrics. In this work we use the popular weighted proportional fair

function: wc log Tc + wd log Td, where wc, wd > 0 are weight factors such that

wc + wd = 1.
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To optimize the spectrum partition, we first need the rate expres-

sions for Tc and Td. For a given spectrum partition η, the (normalized) rate

(bit/s/Hz) Tc of cellular UEs equals Rc multiplied by the available spectrum

resource 1− η. In contrast, the rate Td of potential D2D UEs equals (1− η)Rc

if cellular mode is used; otherwise, i.e., D2D mode is used, it equals ηRd. To

summarize,

Tc = (1− η)Rc, Td = (1− η)e−ξπµ
2

Rc + η(1− e−ξπµ2

)Rd. (3.23)

Figure 3.7 shows the average rates of cellular and potential D2D UEs

as a function of D2D mode selection threshold µ.3 As expected, the average

3Note that for fair comparison, we normalize the transmit powers of cellular and D2D
transmitters by taking into account their transmission bandwidths when plotting numerical
results in this chapter. For example, in Figure 3.7 with η = 0.2, when SNRm = 10 dB, the
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rate of cellular UEs increases as µ increases. This is because with increasing

µ, less potential D2D UEs choose cellular mode and correspondingly cellular

UEs can be scheduled more often. In contrast, the average rate of potential

D2D UEs first increases and then decreases as µ increases. This is because

the average rate of potential D2D UEs is co-determined by its cellular-mode

rate and D2D-mode rate: cellular-mode rate increases with µ while D2D-mode

rate decreases with µ (due to the increased intra-tier interference). Figure 3.7

also shows that with appropriate choice of µ, potentials D2D UEs can enjoy

much higher rate than cellular UEs. Meanwhile, cellular UEs also benefit from

offloading the traffic by D2D communication.

We are now in a position to derive the optimal weighted proportional

fair spectrum partition, which reads as follows.

Proposition 3.4. The optimal weighted proportional fair spectrum partition

η? is given by

η? = 1− wc
wc + wd

· 1

1− (eξπµ2 − 1)−1Rc

Rd

(3.24)

if Rd >
wc+wd
wd

1

eξπµ2−1
Rc; otherwise, η? = 0. In particular, limµ→∞ η

? = wd.

Proof. See Appendix 3.9.6.

From Prop. 3.4, we can see that if µ → ∞, i.e., potential D2D UEs

are restricted to use D2D mode, the optimal partition η? converges to wd. So

average received SNR of cellular links and of D2D links are given by SNRm+10 log10
1

1−η =

10.97 dB, SNRm + 10 log10
1
η = 16.99 dB, respectively.
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Figure 3.7: Average rates of cellular and potential D2D UEs in the case of
overlay in-band D2D.

the optimal partition η? simply equals the weight we assign to the potential

D2D UEs. In Figure 3.8, we plot the utility value vs. η under different values

of q, the proportion of potential D2D UEs. It can be seen that the optimal

η? = 0.4 = wd, which is independent of q. This plot validates Prop. 3.4.

3.6 Analysis of Underlay In-Band D2D

3.6.1 Link Spectral Efficiency

Considering the random access of D2D in both frequency and time

domains, the effective D2D interferers constitute a homogeneous PPP with

density κβλd, a PPP thinned from Φd with thinning probability κβ. Denote

this thinned PPP by κβΦd. Considering further the interference from cellular

transmitters Φc,a with density λb, the interference at the typical D2D receiver
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is given by

Id =
∑

Xi∈κβΦd\{o}

P̂d,iGi‖Xi‖−α +
∑

Xi∈Φc,a

Pc,iGi‖Xi‖−α. (3.25)

Proposition 3.5. With underlay in-band D2D, the CCDF of the SINR of

D2D links is given by

P(SINR ≥ x) = exp

(
−N0x− cβx

2
α − 1

2sinc( 2
α

)
(βx)

2
α

)
, x ≥ 0. (3.26)

Further, the spectral efficiency Rd of D2D links is given by

Rd = κ

∫ ∞
0

e−N0x

1 + x
exp

(
−cβx

2
α − 1

2sinc( 2
α

)
(βx)

2
α

)
dx. (3.27)

Proof. See Appendix 3.9.7.
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Now let us consider a typical uplink. With underlay in-band D2D, the

interferers are out-of-cell cellular transmitters Φc,a ∩Ac and D2D transmitters

in κβΦd. The interference at the typical BS is given by

Ic =
∑

Xi∈Φc,a∩Ac
Pc,iGi‖Xi‖−α +

∑
Xi∈κβΦd

P̂d,iGi‖Xi‖−α.

Proposition 3.6. With underlay in-band D2D, the CCDF of the SINR of

cellular links is given by

P(SINR ≥ x) = exp
(
−N0x− cβ1− 2

αx
2
α

)
× exp

(
−2πλb

∫ ∞
R

(1− 2F1(1,
2

α
; 1 +

2

α
;− x

(R/r)α
))r dr

)
, x ≥ 0. (3.28)

Further, the spectral efficiency Rc of cellular links is given by

Rc =
λb
λc

(1− e−
λc
λb )

∫ ∞
0

e−N0x

1 + x
· e−cβ

1− 2
α x

2
α ·

× exp

(
−2πλb

∫ ∞
R

(1− 2F1(1,
2

α
; 1 +

2

α
;− x

(R/r)α
))r dr

)
dx. (3.29)

Proof. See Appendix 3.9.8.

Prop. 3.5 (resp. Prop. 3.6) implies that the spectral efficiency Rd of

D2D links (resp. Rc of cellular links) decreases as β increases. In other words,

with larger β, the increased D2D interferer density in each subchannel has a

more significant impact than the decreased transmit power per subchannel of

D2D interferers. To sum up, from the perspective of maximizing the spectral

efficiency of either D2D or cellular links, the design insight here is that underlay
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in-band D2D should access small bandwidth with high power density rather

than spreading the power over large bandwidth. However, small β limits the

spectrum resource available to the D2D transmissions, which in turn limits

the D2D throughput or rate.

3.6.2 Optimizing Spectrum Access

As in the case of overlay, we choose an optimal spectrum access factor

β? in underlay case such that

β? = arg max
β∈[0,1]

wc log Tc + wd log Td. (3.30)

To this end, we first need the rate expressions for Tc and Td. By definition, it

is easy to see that

Tc = Rc, Td = e−ξπµ
2

Rc + β(1− e−ξπµ2

)Rd, (3.31)

where Rc and Rd are given in (3.29) and (3.27), respectively.

Figure 3.9 shows the average rates of cellular and potential D2D UEs

as a function of µ in the underlay scenario. Recall in the overlay case, the rate

of cellular UEs increases with µ due to D2D offloading gain. In contrast, here

the rate of cellular UEs stays almost constant or even slightly decreases with

µ. This is because cellular UEs now suffer from the interference caused by the

underlaid D2D transmissions; this offsets the offloading gain. Figure 3.9 also

shows that larger β leads to higher rate of potential D2D UEs but lower rate

of cellular UEs, which is pretty intuitive.
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Figure 3.9: Average rates of cellular and potential D2D UEs in the case of
underlay in-band D2D.

Next we optimize the spectrum access. From (3.31), we can see that the

spectrum access factor β in the underlay scenario has a much more complicated

impact on Tc and Td than η does in the overlay scenario. As a result, a closed-

form solution for β? is hard to obtain. Nevertheless, the optimization problem

is of single variable and can be numerically solved. In Figure 3.10, we plot the

utility value vs. β under different values of q, the proportion of potential D2D

UEs. It can be seen that the optimal η? decreases as q increases.

Thus far, spectrum sharing is optimized from the rate perspective. In

practice, D2D spectrum sharing may have to take into account other factors.

Take the underlay scenario for example. In order to protect the cellular trans-

missions, we may have to limit the proportion of the spectrum that can be

accessed by D2D. Specifically, assume that D2D transmissions have a target
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Figure 3.10: Utility value vs. D2D spectrum access factor β under different
values of q, the proportion of potential D2D UEs.

outage probability εd. Then D2D coverage probability must satisfy

P(
W

Id +N0

≥ θd) = E[e−βBθd(Id+N0)] ≥ 1− εd

⇒
(
N0Bθd + θ

2
α
d c(µ)

)
β +

θ
2
α
d

2sinc( 2
α

)
β

2
α ≤ log(

1

1− εd
), (3.32)

where θd is the SINR threshold for successful D2D transmissions, and c(µ) = c

(given in Prop. 3.2) monotonically increases as µ increases. Inequality (3.32)

reveals the tradeoff between β and µ. In particular, if each D2D transmission

has access to more spectrum, i.e. larger β, the signal power is spread over

wider channel bandwidth and thus the effective SINR gets “thinner” in each

subchannel. This in turn implies that given link reliability requirement on

θd and εd, less cochannel D2D transmissions can be supported, i.e., µ has to
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be decreased to make more potential D2D UEs use cellular mode rather than

D2D mode.

Similarly, if cellular transmissions have a target outage probability εc,

the cellular coverage probability must satisfy

P(
W

Ic +N0

≥ θc) =E[e−θc(Ic+N0)] ≥ 1− εc

⇒ θ
2
α
c c(µ)β1− 2

α ≤ log(
1

1− εc
)−N0Bθc

− 2πλb

∫ ∞
R

(1− 2F1(1,
2

α
; 1 +

2

α
;− θc

(R/r)α
))r dr. (3.33)

As in (3.32), a joint constraint on β and µ is imposed by (3.33); a tradeoff

between β and µ exists. Incorporating the constraints (3.32) and (3.33) into

the D2D underlay spectrum access optimization problem is an interesting topic

for future work.

3.7 Overlay vs. Underlay: A Case Study

In this section we provide a case study to compare the rate perfor-

mance of overlay with that of underlay. The results are shown in Figure 3.11

and Figure 3.12, in which the label “Overall” indicates the rate performance

averaged across both cellular UEs and potential D2D UEs. In this case study,

the percentage of D2D links equals q(1−e−ξπµ2
) = 0.2(1−e−

10
π5002 π2002

) = 16%.

Even with only 16% of the links being D2D links, the overall rate increases

remarkably in both overlay and underlay due to the high rates of D2D links.

Figure 3.11 and Figure 3.12 further show that a small η (say, 0.3) in overlay

leads to as good rate performance of potential D2D UEs as its counterpart
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Figure 3.11: A case study on the rate performance of overlay.

in underlay with a large β (say, 0.9) because D2D UEs in overlay are free of

cellular interference.

It can be observed from Figure 3.11 that the rate of potential D2D

UEs in overlay increases almost linearly as η increases. In contrast, Figure

3.12 shows that, as β increases, the rate of potential D2D UEs in underlay

increases in a diminishing way. This is because as β increases, the interference

from cellular transmissions and the mutual interference of D2D links increase

and thus the received SINR degrades. Meanwhile, as η (resp. β) increases, the

rate of cellular UEs decreases due to the less spectrum resource (resp. more

D2D interference). Further, the rate performance of cellular UEs is relatively

sensitive to η in overlay but is robust to β in the underlay.

Recall that the higher the SNRm, the higher the transmit powers. As
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Figure 3.12: A case study on the rate performance of underlay.

SNRm increases from −4 dB to 10 dB, the rate of cellular UEs in both overlay

and underlay and the rate of potential D2D UEs in overlay increase linearly,

implying that the transmit powers are not high enough to make the perfor-

mance interference-limited. In contrast, the rate of potential D2D UEs in

underlay increases in a diminishing way, especially when SNRm exceeds 4 dB,

implying that the performance is gradually limited by the interference caused

by the increased transmit powers.

We summarize the main lessons drawn from the above discussion as

follows. In underlay, the rate of potential D2D UEs is more resource-limited;

a linear increase in the spectrum resource can generally lead to a linear rate

increase. In contrast, the rate of potential D2D UEs is more interference-

limited, mainly due to the cochannel cellular interference. As for the rate of
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cellular UEs, it is sensitive to the reduction of spectrum in overlay but is more

robust to the cochannel D2D interference in underlay.

3.8 Summary

In this chapter we have jointly studied D2D spectrum sharing and mode

selection using a hybrid network model and a unified analytical approach. Two

scenarios, overlay and underlay, have been investigated. Though spectrum

sharing has been mainly studied from a rate perspective, we also show in the

underlay case how to apply the derived results to study spectrum sharing from

a coverage perspective, leading to the discovery of the tradeoff between the

underlay D2D spectrum access and mode selection.

Note that, though we examine D2D spectrum sharing from a frequency

domain perspective, it is straightforward to interpret the derived results in this

chapter from a two-dimensional time-frequency perspective. Take the overlay

for example: the equivalent interpretation is that a proportion η of OFDMA

resource blocks is assigned to D2D while the remaining resource blocks are

used by cellular.

3.9 Appendix

3.9.1 Proof of Lemma 3.1

Recall that we adopt an approximate approach on the uplink analysis.

In particular, we approximate the coverage region of a hexagonal macrocell

as a ball with radius R =
√

1
πλb

and assume that the typical active cellular
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transmitter is uniformly distributed in A. Thus, P(Lc ≤ x) = x2/R2, 0 ≤ x ≤

R. Taking the derivative and using R =
√

1
πλb

, we obtain that the PDF of

the length of a typical cellular link is fLc(x) = 2πλbx · Ix∈[0, 1√
πλb

]. Then the

average transmit power of a cellular transmitter equals

E[Pc] = E[Lαc ] =

∫ 1/
√
πλb

0

2πλbx
α+1 dx =

1

(1 + α
2
)π

α
2 λ

α
2
b

. (3.34)

The PDF of the length of a typical D2D link is

fLd|D<µ(x) =

 fD(x)

P(D < µ)
=

2πξxe−ξπx
2

1− e−ξπµ2 if x ∈ [0, µ);

0 otherwise.

Correspondingly, its α-th moment can be computed as follows:

E[Lαd |D < µ] =
1

P(D < µ)

∫ µ

0

2πξxα+1e−ξπx
2

dx

=
(ξπ)−

α
2

1− e−ξπµ2 γ(
α

2
+ 1, ξπµ2), (3.35)

where we have used P(D < µ) = 1− e−ξπµ2
in the last equality. By definition,

E[Pd] = P(D ≥ µ)E[Lαc ] + (1− P(D ≥ µ))E[Lαd |D < µ]. (3.36)

Substituting E[Lαc ] and E[Lαd |D < µ] into the above equation completes the

proof.

3.9.2 Proof of Proposition 3.1

As in the proof of Lemma 3.1, the average transmit power of a potential

D2D UE equals E[Pc] conditioned on cellular mode is used; otherwise, i.e.,

conditioned on D2D mode is used, it equals E[P̂d]. Conditioning on D2D
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mode, the D2D link length Ld is distributed as 1
P(D<µ)

fD(x), 0 ≤ Ld < µ. It

follows that E[P̂d] = E[Lαd |D < µ] =
∫ µ

0
xα fD(x)

P(D<µ)
dx and thus

E[Pd] = (1−
∫ µ

0

fD(x) dx) · E[Pc] +

∫ µ

0

fD(x) dx ·
∫ µ

0

xα
fD(x)

P(D < µ)
dx

= (1−
∫ µ

0

fD(x) dx) · E[Pc] +

∫ µ

0

xαfD(x) dx. (3.37)

Taking the derivative of E[Pd] with respect to µ, d
dµ
E[Pd] = fD(µ)(µα−E[Pc]).

Setting the derivative to zero, we obtain the stationary point (E[Pc])
1/α. It is

easy to see that E[Pd] is decreasing when µ ∈ [0, (E[Pc])
1/α) and is increasing

when µ ∈ [(E[Pc])
1/α,∞). Hence, E[Pd] is minimized at µ? = (E[Pc])

1/α. The

proof is complete by plugging the explicit expression for E[Pc] (given in (3.8)).

3.9.3 Proof of Proposition 3.2

Consider the conditional Laplace transform

LId(s) = E[exp(−s
∑

Xi∈Φd\{o}

P̂d,iGi‖Xi‖−α)|o ∈ Φd]

= E!o[exp(−s
∑
Xi∈Φd

P̂d,iGi‖Xi‖−α)]

= E[exp(−s
∑
Xi∈Φd

P̂d,iGi‖Xi‖−α)]

= exp

(
−2πκλd

∫ ∞
0

(1− E[exp(−sP̂dGr
−α)])r dr

)
= exp

(
− πκλd

sinc( 2
α

)
E[P̂

2
α

d ]s
2
α

)
, (3.38)

where E!o[·] denotes the expectation with respect to the reduced Palm distri-

bution, the third equality follows from Slivnyak’s theorem [122], the fourth
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equality is due to the probability generating functional of PPP [16], and we

have used G ∼ Exp(1) in the last equality. Note that λd = qλ(1−e−ξπµ2
), and

from the proof of Lemma 3.1,

E[P̂
2
α

d ] = E[L2
d] =

1

ξπ
− µ2e−ξπµ

2

1− e−ξπµ2 . (3.39)

Plugging λd and E[P̂
2
α

d ] into LId(s) yields LId(s) = e−cs
2
α , where c is given in

Prop. 3.2. Invoking (3.6) yields the spectral efficiency Rd = κE[log(1+SINR)]

of D2D links.

The CCDF of the SINR of D2D links can be obtained as follows:

P(SINR ≥ x) = P (Go ≥ x(Id +N0)) = E[e−x(Id+N0)] = e−xN0LId(x). (3.40)

Plugging LId(x) into (3.40) completes the proof.

3.9.4 Proof of Proposition 3.3

The spectral efficiency Rc of cellular links is given by

Rc = Eo[
1

N
log(1 + SINR)] = Eo[

1

N
] · E[log(1 + SINR)], (3.41)

where N is the random number of potential uplink transmitters located in the

cell. Due to the PPP assumption, N is a Poisson random variable with param-

eter λc/λb. Denoting by Ñ the number of other potential uplink transmitters

located in the cell except the one under consideration, i.e., N = 1 + Ñ . Thus,

Eo[
1

N
] =

∞∑
n=1

1

n
· Po(N = n) =

∞∑
n=1

1

n
· Po(Ñ = n− 1)
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=
∞∑
n=1

1

n
·

( λc

λb
)n−1

(n− 1)!
e
− λc
λb =

λb

λc

∞∑
n=1

( λc

λb
)n

n!
e
− λc
λb =

λb

λc

(1− e−
λc
λb ), (3.42)

where the third equality is due to Slivnyak’s theorem [122]: conditioning on the

transmitter under consideration, the other potential uplink transmitters are

still PPP distributed and thus Ñ ∼ Poisson(λc/λb) under the Palm probability

Po.

Next we calculate E[log(1 + SINR)]. To this end, we first calculate the

Laplace transform

LIc(s) = E[exp(−s
∑

Xi∈Φc,a∩Ac
Pc,iGi‖Xi‖−α)]

= E[exp(−s
∑

Xi∈Φc,a

Pc,iGi‖Xi‖−αI{‖Xi‖≥R})]

= E[
∏

Xi∈Φc,a

exp(−sPc,iGi‖Xi‖−αI{‖Xi‖≥R})]

= exp(−
∫ 2π

0

∫ ∞
0

1− E[e−sPcGr−αI{r≥R} ]λbr dr dθ)

= exp(−2πλb

∫ ∞
R

(1− E[e−sPcGr−α ])r dr)

= exp(−2πλb

∫ ∞
R

(1− E[e−sL
α
c Gr

−α
])r dr), (3.43)

where we have used the probability generating functional of PPP in the fourth

equality, and Pc = Lαc in the last equality. Using that Lc is distributed as

fLc(x) = 2πλbxI(x ∈ [0, 1/
√
πλb]), and G ∼ Exp(1),

EG,Lc [e
−xLαc Gr−α ] = ELc

[
1

1 + xLαc r
−α

]
= 2πλb

∫ √
1

πλb

0

t

1 + xr−αtα
dt

= 2F1(1,
2

α
; 1 +

2

α
;− x

(r
√
πλb)α

).

100



Plugging LIc(s) into (3.6) yields

E[log(1 + SINR)] =

∫ ∞
0

e−N0x

1 + x
×

exp(−2πλb

∫ ∞
R

(1− 2F1(1,
2

α
; 1 +

2

α
;− x

(r
√
πλb)α

))r dr) dx. (3.44)

Plugging (3.42) and (3.44) into (3.41) gives the spectral efficiency Rc of cellular

links. The CCDF of the SINR of cellular links can be similarly obtained as in

(3.40).

3.9.5 Proof of Corollary 3.2

For a sparse cellular network with small λb, R is large and thus for

r ∈ [R,∞),

1− E[e−xGL
α
c r
−α

] ≈ xr−αE[GLαc ] = xr−αE[G]E[Pc] =
xr−α

(α
2

+ 1)(πλb)
α
2

, (3.45)

where we have used the approximation 1 − e−y ≈ y for small value y, the

independence of fading G and link length Lc and E[Pc] = E[Lαc ] in the first

equality, and have plugged in E[G] = 1 and E[Lαc ] = 1

(α
2

+1)(πλb)
α
2

(c.f. Lemma

3.1) in the last equality. Accordingly, the Laplace transform of the uplink

interference is given by

LIc(s) = exp(−2πλb

∫ ∞
R

(1− E[e−sGL
α
c r
−α

])r dr)

≈ exp(−2πλbs

∫ ∞
R

r−α+1

(α
2

+ 1)(πλb)
α
2

dr) = exp(− 4

α2 − 4
s). (3.46)

For a dense network with large λb, R is small and thus

LIc(s) ≈ exp(−2πλb

∫ ∞
0

(1− E[e−sGL
α
c r
−α

])r dr)
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= exp(− πλb

sinc( 2
α

)
E[P

2
α

c ]s
2
α ) = exp(− 1

2sinc( 2
α

)
s

2
α ), (3.47)

where we have plugged in E[P
2
α

c ] = E[L2
c] = 1

2πλb
(c.f. (3.34)) in the last

equality. Combining the above asymptotic results with Prop. 3.3 completes

the proof.

3.9.6 Proof of Proposition 3.4

Note that

arg max
η∈[0,1]

wc log Tc + wd log Td = arg max
η∈[0,1]

log Twcc · T
wd
d

= arg max
η∈[0,1]

g(η), (3.48)

where g(η) = log(1 − η)wc((1 − η)e−ξπµ
2
Rc + η(1 − e−ξπµ2

)Rd)
wd . For ease of

notation we let Qc = e−ξπµ
2
Rc and Qd = (1− e−ξπµ2

)Rd. Taking derivative of

g(η) with respect to η,

d

dη
g(η) =

(1− η)wc−1(1− η)Qc + ηQd)
wd−1

(1− η)wc((1− η)Qc + ηQd)wd

× (wc + wd)

(
(Qc −Qd)η − (Qc −

wd
wc + wd

Qd)

)
. (3.49)

If Qc −Qd > 0, the stationary point η† =
Qc−

wd
wc+wd

Qd

Qc−Qd
= 1− wc

wc+wd

Qd
Qd−Qc

≥ 1,

and g(η) monotonically decreases on η ≤ η† and monotonically increases on

η > η†. Hence, η? = 0. If Qc − Qd = 0, d
dη
g(η) < 0 and g(η) monotonically

decreases. Thus, η? = 0. If Qc − Qd < 0, g(η) monotonically increases on

η ≤ η† and monotonically decreases on η > η†. Note the stationary point

η† = 1− wc
wc+wd

Qd
Qd−Qc

< 1. Hence, η? = max(0, η†). Also, η† ≤ 0 if and only if
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(wc +wd)Qc ≥ wdQd, which implies η? = 0 if and only if (wc +wd)Qc ≥ wdQd.

To sum up,

η? =

{
1− wc

wc+wd

Qd
Qd−Qc

if Qc <
wd

wc+wd
Qd;

0 otherwise.

Plugging the explicit expressions of Qc and Qd complete the proof.

3.9.7 Proof of Proposition 3.5

Note that the average D2D transmit power E[P̂d] here is only 1/βB of

the one given in Lemma 3.1 as each D2D transmitter accesses βB subchannels

and needs to split its power accordingly, i.e., P̂d = 1
βB
Lαd . Hence, E[P̂

2
α

d ] =

( 1
βB

)
2
αE[L2

d]. The corresponding spectral efficiency (normalized by bandwidth

B) is given by

Rd =κE[log(1 + SINR)] = κ

∫ ∞
0

e−N0x

1 + x
· LId(βBx) dx

=κ

∫ ∞
0

e−N0x

1 + x
e
− πκλd

sinc( 2
α )

E[P̂
2
α

d ](βBx)
2
α

e
− πλb

sinc( 2
α )

E[P
2
α

c ](βBx)
2
α

dx. (3.50)

Here λd = β · qλ(1 − e−ξπµ2
), the density of D2D transmitters that is “seen”

from each subchannel, and from the proof in Appendix 3.9.1,

E[P̂
2
α

d ] = (
1

βB
)

2
αE[L2

d] = (
1

βB
)

2
α

(
1

ξπ
− µ2e−ξπµ

2

1− e−ξπµ2

)
E[P

2
α

c ] = (
1

B
)

2
αE[L2

c] = (
1

B
)

2
α

1

2πλb

.

Plugging λd, E[P̂
2
α

d ] and E[P
2
α

c ] into (3.50) establishes the expression for the

D2D link spectral efficiency. The CCDF of the SINR of D2D links can be

similarly obtained as in (3.40).
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3.9.8 Proof of Proposition 3.6

As in the proof of Prop. 3.5, the Laplace transform of the interference

can be calculated as follows.

LIc(s) = e
− πκλd

sinc( 2
α )

E[P̂
2
α

d ]s
2
α−2πλb

∫∞
R (1−2F1(1, 2

α
;1+ 2

α
;− s/B

(r
√
πλb)α

))r dr
. (3.51)

Then as in the proof of Prop. 3.3, the spectral efficiency Rc of cellular links is

given by

Rc = Eo[
1

N
log(1 + SINR)] =

λb

λc

(1− e−
λc
λb )

∫ ∞
0

e−N0x

1 + x
LIc(Bx) dx. (3.52)

Plugging LIc(s) (3.51) into the above equation establishes the expression for

the cellular link spectral efficiency. The CCDF of the SINR of D2D links can

be similarly obtained as in (3.40).
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Chapter 4

Massive MIMO Systems with D2D Underlay

Recently, there has been a surge of interest in massive MIMO, mostly

due to the work [99]. In a massive MIMO system, each BS uses a very large

antenna array to serve multiple users in each time-frequency resource block

[99]. If the number of antennas at the BS is significantly larger than the

number of served users, the channel of each user to/from the BS is nearly

orthogonal to that of any other user. This allows for very simple transmit or

receive processing techniques like matched filtering to be nearly optimal with

enough antennas even in the presence of interference.

In this chapter, we study the interplay between massive MIMO and

underlaid D2D networking. In a D2D underlaid cellular network, the uplink

spectrum is reused by the D2D transmissions, causing mutual interference

with the ongoing cellular transmissions. Massive MIMO is appealing in such a

context as the BS’s large antenna array can nearly null the D2D-to-BS inter-

ference. The multi-user transmission in massive MIMO, however, may lead to

increased cellular-to-D2D interference. To protect D2D links, the number of

simultaneously active uplink users might have to be limited, eating into mas-

sive MIMO gain. It is not a priori clear to what extent the D2D signals would
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be affected by the multiuser transmission and the tradeoff between supporting

D2D communication and scaling up the uplink capacity in a massive MIMO

system. Further, if cochannel D2D signals are present when estimating mas-

sive MIMO channels, the estimated CSI would become less accurate, which

may hurt massive MIMO performance. It is not a priori clear however to what

extent the D2D signals would affect the channel estimation and consequently

the performance of the massive MIMO system.

4.1 Related Work

Extensive investigation on MIMO has been carried out since the point-

to-point MIMO channel capacity was analyzed in [43, 125]. A natural shift

from the point-to-point MIMO channel is to study the role of MIMO in multi-

user channels. Much progress has been made, especially in multiple access

channel and broadcast channel whose information theoretical capacities have

been characterized [25,135,136,140]. In the context of ad hoc networks, early

work like [27, 113] mainly used simulation to study the performance gains of

MIMO and drew implications accordingly, while analytical studies explicitly

considering random node distribution may be found in [9,48]. Notably, based

on the assumption that nodes are distributed according to a PPP, stochastic

geometry has been widely used to characterize the transmission capacity of ad

hoc networks under different MIMO techniques: Single stream transmission

[66, 69, 74], multi-stream transmission [96, 131] and space division multiple

access (SDMA) [80].
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In the context of cellular networks, many MIMO techniques have been

proposed and investigated. These include antenna selection [62], interference

cancellation [11], mulituser detection [30, 133], networked MIMO [132, 149],

distributed antenna architectures [28, 61], and massive MIMO [99]. Massive

MIMO, the focus of this chapter, is not a brand new concept. Historically,

there has been much academic interest in applying random matrix theory

to investigate the asymptotic MIMO performance [43, 128] or the isomorphic

multi-user detection problem in code division multiple access (CDMA) systems

with random spreading sequences [127, 134]. The recent widespread interest

in massive MIMO is mostly due to [99], where several practically important

system aspects such as pilot contamination have been identified. The work

[99] has stimulated a surge of interest in massive MIMO (see [21,23,64,68,75,

97,103,115] and references therein).

In the context of cellular networks with D2D networking, existing re-

search is mainly focused on single-antenna networks (see e.g. [20, 73, 78, 89,

91, 146, 147]) while research on the use of antenna arrays has just begun

[71,72,84,101,124]. To mitigate or avoid mutual interference between cellular

and D2D transmissions, [71, 124] considered precoding while [72, 84] studied

various relaying strategies. In contrast, [101] proposed not to schedule uplink

users that may generate excessive interference to D2D users. How D2D MIMO

and cellular MIMO interact, especially in the massive MIMO context, is still

largely open.
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4.2 Contributions and Main Outcomes

The main contributions and outcomes of this chapter are summarized

as follows.

A tractable multi-antenna hybrid network model. We extend

our previous single-antenna hybrid network model used in Chapters 2 and

3 to multi-antenna transmission. We consider a multi-cell setting and focus

on the uplink. The spatial positions of the underlaid D2D transmitters are

modeled by a PPP. All the transmissions (both cellular and D2D) in this

model are SIMO (i.e., single-input multiple-output) with each BS having a very

large antenna array. For the receive processing, we extend the partial zero-

forcing (PZF) receiver studied in ad hoc networks [74] to the hybrid network in

question. Spectral efficiency is used as the sole metric throughout this chapter.

Spectral efficiency with perfect CSI. In the asymptotic regime

where the number of BS antennas M →∞ and with perfect CSI, we find that

the received signal-to-interference-plus-noise ratio (SINR) of any cellular user

increases unboundedly and the effects of noise, fast fading, and the interfering

signals from the other co-channel cellular users and the infinite D2D transmit-

ters vanish completely. Equivalently, it is possible to reduce cellular transmit

power as Θ(1/M) but still achieve a non-vanishing cellular spectral efficiency,

as in the case without D2D underlay [103]. Compared to the case without

D2D, with scaled cellular transmit power Θ(1/M), there is a loss in cellular

spectral efficiency if a constant number of D2D interfering signals is canceled.

The loss can be overcome if the number of canceled D2D interfering signals is
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scaled appropriately (e.g., Θ(
√
M)). In the non-asymptotic regime, we derive

simple analytical lower bounds for both cellular and D2D spectral efficiency;

the derived bounds allow for very efficient numerical evaluation.

Spectral efficiency with imperfect CSI. We study pilot-based CSI

estimation in which known training sequences are transmitted and the receivers

use minimum mean squared error (MMSE) estimators for channel estimation.

In the asymptotic regime with the estimated CSI, it is known that the received

SINR of any cellular user is bounded due to pilot contamination [99]. With

D2D underlay, the bounded SINR is further degraded due to a new asymptotic

effect which we term underlay contamination. Due to the underlay contami-

nation, we find that scaling down cellular transmit power results in vanishing

cellular spectral efficiency, no matter how slow the scaling rate is. This is

dramatically different from the case without D2D underlay, for which [103]

shows that cellular transmit power can be scaled down as Θ(1/
√
M). To re-

cover the power scaling law Θ(1/
√
M), one possible approach is to deactivate

the D2D links in the training phase of massive MIMO; however, compared

to the case without D2D, there is a loss in cellular spectral efficiency due to

D2D-to-cellular interference in the data transmission phase. Instead, if the

cellular transmit power is not scaled down and D2D links are deactivated

in the training phase, massive MIMO automatically eliminates the effect of

D2D-to-cellular interference in the data transmission phase.
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4.3 Mathematical Models

4.3.1 Network Model

Consider a multi-cell D2D underlaid massive MIMO system shown in

Fig. 4.1. In this system, there are B + 1 cells; in each cell b, b = 0, 1, ..., B,

K cellular user equipments (UEs) transmit to the BS b. We assume that the

K cellular UEs are uniformly distributed in each cell; this assumption is not

essential in the analysis but will be used in the simulation. We denote by Kb

the set of the K cellular UEs in the cell b, and Cb the coverage area of the cell

b. We assume that Cb ∩ Cb′ = ∅,∀b 6= b′.

The cellular system is underlaid with D2D UEs. The locations of D2D

transmitters are distributed as a homogeneous PPP Φ with density λ. We

partition Φ into B + 2 disjoint PPPs Φ0, ...,ΦB+1, where Φb = Φ ∪ Cb,∀b =

0, ..., B, and ΦB+1 = Φ\ ∪Bi=0 Φi. Each D2D receiver is located at a random

distance of D meters from its associated D2D transmitter with uniformly dis-

tributed direction.

We focus on SIMO in this chapter, i.e., a transmitter (either cellular

or D2D) uses one antenna for transmission, while a BS and a D2D receiver

respectively use M and N antennas for receiving. Note that we are interested

in the performance regime where M is large and thus the assumption M � K

is made throughout this chapter.

In this system, all the transmitters use the same time-frequency re-

source block, leading to cochannel interference. We assume that cellular and

D2D UEs transmit at constant powers Pc and Pd respectively.
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Figure 4.1: A D2D underlaid massive MIMO system consisting of both cellular
and D2D links. For clarity, only the central cell is shown. D2D pairs located
outside of the cells are out of cellular coverage but still contribute to the total
aggregate D2D interference.

4.3.2 Baseband Channel Models

Without loss of generality, we focus on the central cell, whose BS is

indexed by b = 0 and located at the origin. This helps simplify the notation.

The M × 1 dimensional baseband received signal at the central BS is

y
(c)
0 =

B∑
b=0

∑
k∈Kb

√
PcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2 h
(c)
bk u

(c)
bk

+
∑
i∈Φ

√
PdΞ

(d)
i ‖x

(d)
i ‖−

αc
2 h

(d)
i u

(d)
i + v

(c)
0 , (4.1)

where Ξ
(c)
bk denotes the shadowing from cellular transmitter k in the cell b

to the BS 0, x
(c)
bk denotes the position of cellular transmitter k in the cell b,

αc > 2 denotes the pathloss exponent of UE-BS links, h
(c)
bk ∈ CM×1 is the vector

channel from cellular transmitter k in the cell b to the BS 0, u
(c)
bk denotes the

zero-mean unit-variance transmit symbol of cellular transmitter k in the cell

b, Ξ
(d)
i , x

(d)
i ,h

(d)
i ∈ CM×1 and u

(d)
i are similarly defined for D2D transmitter i,
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and v
(c)
0 ∈ CM×1 is complex Gaussian noise with covariance N0IM at the BS 0

with IM denoting the M dimensional identity matrix.

Similarly, the N × 1 dimensional baseband received signal at the D2D

receiver r is

y(d)
r =

B∑
b=0

∑
k∈Kb

√
PcΞ

(c)
rbk(d

(c)
rbk)

−αd
2 g

(c)
rbku

(c)
bk

+
∑
i∈Φ

√
PdΞ

(d)
ri (d

(d)
ri )−

αd
2 g

(d)
ri u

(d)
i + v(d)

r , (4.2)

where Ξ
(c)
rbk,Ξ

(d)
ri are the shadowing from cellular transmitter k in the cell b to

D2D receiver r and from D2D transmitter i to D2D receiver r respectively,

d
(c)
rbk = ‖x(c)

bk − z
(d)
r ‖ and d

(d)
ri = ‖x(d)

i − z
(d)
r ‖ with z

(d)
r denoting the position

of D2D receiver r, αd > 2 denotes the pathloss exponent of UE-UE links,

g
(c)
rbk,g

(d)
ri ∈ CN×1 are the vector channels from cellular transmitter k in the cell

b to D2D receiver r and from D2D transmitter i to D2D receiver r respectively,

and v
(d)
r ∈ CN×1 is complex Gaussian noise with covariance N0IN .

Note that we have used different pathloss exponents αc and αd for UE-

BS and UE-UE links (cf. (4.1) and (4.2)) due to their different propagation

characteristics. Specifically, the antenna height of a macro BS is tens of me-

ters, while the typical antenna height at a UE is under 2 m. As a result,

both terminals of a UE-UE link are low and see similar near street scattering

environment, which is different from the radio environment around a macro

BS [88].

In this chapter, we assume Gaussian signaling, i.e., {u(c)
bk }, {u

(d)
i } are
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i.i.d. complex Gaussian CN(0, 1), and i.i.d. shadowing with mean Ξ̄. We also

assume that all the vector channels have i.i.d. CN(0, 1) elements, independent

across transmitters. It follows that the favorable propagation condition [115]

desired in massive MIMO systems holds in our model:

1

M
h

(s)∗
br h

(s′)
b′`

a.s.−−→
{

1 if s = s′, b = b′ and r = `;
0 otherwise,

where s ∈ {c, d}, a.s.−−→ denotes the almost sure convergence as M → ∞, and

when s = d the first subindex b in h
(s)
br should be understood as null. Recent

measurement campaigns have given evidence to validate favorable propagation

for massive MIMO in practice [82].

4.3.3 Receive Filters

Denote by w
(c)
k the filter used by the central BS for receiving the signal

of cellular transmitter k in the central cell, i.e., the central BS detects the

symbol u
(c)
0k based on w

(c)∗
k y

(c)
0 . Similarly, D2D receiver r detects the symbol

u
(d)
r based on w

(d)∗
r y

(d)
r , where w

(d)
r denotes the filter used by D2D receiver r.

The performance of the D2D underlaid massive MIMO system depends on the

receive filters. In general, either the receive filters can be designed to boost

desired signal power or they can be used to cancel undesired interference. In

this chapter, we focus on a particular type of linear filters: the PZF receiver,

which uses a subset of the degrees of freedom for boosting received signal power

and the remainder for interference cancellation.

The central BS uses mc and md degrees of freedom to cancel the in-

terference from the nearest mc cellular interferers and the nearest md D2D
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interferers. A feasible choice of (mc,md) needs to be in the following set:

Zc = {(mc,md) ∈ N× N : mc ≤ (B + 1)K − 1,mc +md ≤M − 1}. (4.3)

The PZF filter w
(c)
k is the projection of the channel vector h

(c)
0k onto the sub-

space orthogonal to the one spanned by the channel vectors of canceled inter-

ferers. For ease of reference, we denote by K
(c)
bk the set of uncanceled cellular

interferers in the cell b and Φ
(c)
k the set of uncanceled D2D interferers when

detecting the symbol u
(c)
0k of cellular transmitter k in the central cell.

Similarly, each D2D receiver uses nc and nd degrees of freedom to cancel

the interference from the nearest nc cellular interferers and the nearest nd D2D

interferers, and (nc, nd) needs to be in the following set:

Zd = {(nc, nd) ∈ N× N : nc ≤ (B + 1)K,nc + nd ≤ N − 1}. (4.4)

The PZF filter w
(d)
r of D2D receiver r is the projection of the channel vector

g
(d)
rr onto the subspace orthogonal to the one spanned by the channel vectors

of canceled interferers. For ease of reference, we denote by K
(d)
br the set of

uncanceled cellular interferers in the cell b and Φ
(d)
r the set of uncanceled D2D

interferers at D2D receiver r.

Remark on PZF receiver. Although suboptimal, PZF receivers have

several advantages that motivate us to focus on them in this chapter. On the

one hand, PZF receivers are relatively general: they reduce to maximum ratio

combining (MRC) receivers when mc + md = 0 and nc + nd = 0 and to

conventional fully ZF receivers when mc +md = M − 1 and nc + nd = N − 1.
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It has been shown that PZF receivers can achieve the same scaling law in terms

of transmission capacity as MMSE receivers [74], which is not true for either

MRC or fully ZF receivers. On the other hand, PZF receivers are analytically

more tractable than other more sophisticated receivers like MMSE receivers

from a system point of view. This analytical tractability allows us to develop

an explicit characterization on the performance of the massive MIMO system

with D2D underlay. Nevertheless, we would like to point out that, as noted in

[74], MMSE fitlers should be used in practice because they have less stringent

CSI requirement while being the best linear filters.

4.4 Spectral Efficiency with Perfect Channel State In-
formation

In this section, we derive the spectral efficiency of cellular and D2D

links under the assumption of perfect CSI; the case of imperfect CSI will be

treated in the next section.

4.4.1 Asymptotic Cellular Spectral Efficiency

For cellular UE k in the central cell, the post-processing SINR with the

PZF filter w
(c)
k is

SINR
(c)
k =

S
(c)
k

I
(c→c)
k + I

(d→c)
k + ‖w(c)

k ‖2N0

, (4.5)

where S
(c)
k = PcΞ

(c)
0k ‖x

(c)
0k ‖−αc‖w(c)∗

k h
(c)
0k ‖2 denotes the desired signal power of

cellular UE k, I
(c→c)
k and I

(d→c)
k respectively denote the cochannel cellular and
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D2D interference powers experienced by cellular UE k and are given by

I
(c→c)
k =

B∑
b=0

∑
`∈K(c)

bk

PcΞ
(c)
b` ‖x

(c)
b` ‖
−αc |w(c)∗

k h
(c)
b` |

2 (4.6)

I
(d→c)
k =

∑
i∈Φ

(c)
k

PdΞ
(d)
i ‖x

(d)
i ‖−αc |w(c)∗

k h
(d)
i |2. (4.7)

The spectral efficiency of cellular UE k in the central cell is defined as

R
(c)
k = E

[
log(1 + SINR

(c)
k )
]
, (4.8)

where the expectation is taken with respect to the fast fading, shadowing and

random locations of UEs.

Proposition 4.1. With perfect CSI, as M →∞, the desired signal power S
(c)
k

when normalized by M2 and conditioned on Ξ
(c)
0k and x

(c)
0k converges to

lim
M→∞

1

M2
S

(c)
k

a.s.−−→ PcΞ
(c)
0k ‖x

(c)
0k ‖

−αc , (4.9)

and the cellular interference power I
(c→c)
k , the D2D interference power I

(d→c)
k ,

and the noise power ‖w(c)
k ‖2N0 when normalized by M2 converge as follows.

lim
M→∞

1

M2
I

(c→c)
k

a.s.−−→ 0, lim
M→∞

1

M2
I

(d→c)
k

p.−→ 0, lim
M→∞

1

M2
‖w(c)

k ‖
2N0

a.s.−−→ 0,

(4.10)

where
p.−→ denotes the convergence in probability.

Proof. See Appendix 4.8.1.

Prop. 4.1 shows that with perfect CSI, as M →∞, the post-processing

SINR
(c)
k increases unboundedly in probability (as almost sure convergence im-

plies convergence in probability). More specifically, a deterministic received
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power of the desired signal from cellular UE k (conditioned on its pathloss

and shadowing) can be achieved and the effects of noise, fast fading, and the

interfering signals from the other K − 1 cellular UEs and the infinite D2D

transmitters vanish completely. Therefore, Prop. 4.1 validates the intuition

that with perfect CSI, D2D-to-cellular interference can be made arbitrarily

small with a large enough antenna array at the BS. Perhaps the most inter-

esting observation from Prop. 4.1 is that the D2D-to-cellular interference can

be completely nulled out, though (1) the number of the PPP distributed D2D

interferers is infinite and (2) the mean of the aggregate D2D interference is

infinite. Further, the proof of Prop. 4.1 shows that a simple MRC filter with

mc = md = 0 suffices.

Though Prop. 4.1 shows that arbitrarily large received SINR and thus

arbitrarily large rate (at least in theory) can be achieved with massive MIMO,

it is not possible to fully exploit a very high SINR due to practical constraints

such as the highest order of modulation and coding schemes. Nevertheless,

the large array gains may be translated into power savings for cellular UEs:

with a given SNR target we can lower the transmit powers of cellular UEs and

thus improve their energy efficiency, as shown in the following proposition.

Proposition 4.2. With perfect CSI, fixed PZF parameters (mc,md), scaled

cellular transmit power Pc/M , and conditioned on Ξ
(c)
0k and x

(c)
0k , as M → ∞,

the spectral efficiency R
(c)
k of cellular UE k in the central cell converges to

R
(c)
k → EΦ,η

log

1 +
SNR

(c)
0k∑

i∈Φ
(c)
k

Pd

N0
‖x(d)

i ‖−αcηi + 1

 , (4.11)
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where SNR
(c)
bk = PcΞ

(c)
bk ‖x

(c)
bk ‖−αc/N0, {ηi} are i.i.d. random variables dis-

tributed as ηi ∼ Exp(1). Further, if md + 1 > αc

2
,

lim
M→∞

R
(c)
k ≥ log

(
1 +

SNR
(c)
0k

ρ(md, αc) + 1

)
, (4.12)

where

ρ(m,α) =
2(πλ)

α
2 PdΞ̄Γ(m+ 1− α

2
)

(α− 2)N0Γ(m)
, (4.13)

where the Gamma function Γ(x) =
∫∞

0
tx−1e−t dt.

Proof. See Appendix 4.8.2.

Note that in Prop. 4.2, if the underlaid D2D transmitters did not ex-

ist, the spectral efficiency R
(c)
k of cellular UE k (conditioned on its pathloss

and shadowing) in the central cell would converge to log
(

1 + SNR
(c)
0k

)
, the

maximum achievable spectral efficiency of a point-to-point SISO (single-input

single-output) Gaussian channel. It is as if massive MIMO could simultane-

ously support K interference-free SISO links while reducing the power of each

cellular UE by 10 log10M dB. This result is consistent with Prop. 1 in [103]

without D2D underlay.

With D2D underlay, the asymptotic result (4.11) shows that there is a

loss in cellular spectral efficiency due to the uncanceled interfering signals from

the D2D transmitters in Φ
(c)
k , i.e., D2D transmitters in Φ except the nearest

md ones whose signals are canceled by the PZF filter. Though it is possible to

derive an exact analytical expression (involving integrals) for (4.11), we give a
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more intuitive lower bound (4.12), which succinctly characterizes the loss due

to the D2D underlay through a single term ρ(md, αc). Several remarks are in

order.

Remark 1. The term ρ(md, αc) corresponding to the uncanceled D2D

interference increases with Pd and λ and decreases with md, agreeing with

intuition: larger transmit power or larger density of D2D interferers or smaller

number of canceled D2D interferers leads to higher D2D-to-cellular interfer-

ence, thus lowering the cellular spectral efficiency. Further, ρ(md, αc) ∼ λ
αc
2

because a linear increase in λ implies that the distances of the PPP distributed

D2D transmitters to the BS decrease as λ
1
2 and thus the D2D-to-cellular in-

terference power increases as λ
αc
2 .

Remark 2. Note that the lower bound (4.12) is meaningful only if

md + 1 > αc

2
. As md → αc

2
− 1, Γ(md + 1− αc

2
)→∞ and thus ρ(md, αc)→∞.

In fact, from the proof of Prop. 4.2, we can see that if this condition is violated,

the expected D2D-to-cellular interference would be infinite.

Next we show that the loss of cellular spectral efficiency due to D2D

underlay can be recovered if we scale the number md of canceled D2D interfer-

ers to infinity as M → ∞. Further, the growth rate of md can be arbitrarily

slow.

Proposition 4.3. With perfect CSI, arbitrary but fixed mc, scaled cellular

transmit power Pc/M , and conditioned on Ξ
(c)
0k and x

(c)
0k , if md increases to

infinity at a rate slower than Θ(M), the spectral efficiency R
(c)
k of cellular UE
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k in the central cell converges as follows.

R
(c)
k → log

(
1 + SNR

(c)
0k

)
, as M →∞. (4.14)

Proof. According to Stirling’s formula, Γ(t+ 1) ∼
√

2πt( t
e
)t when t is large. It

follows that

Γ(md + 1− αc

2
)

Γ(md)
∼
√

2π(md − αc

2
)(
md−αc

2

e
)md−αc

2√
2π(md − 1)(md−1

e
)md−1

=

(
e

md − αc

2

)αc
2
−1(md − αc

2

md − 1

)md− 1
2

∼
(

e

md − αc

2

)αc
2
−1

. (4.15)

Therefore, as md →∞, ρ(md, αc)→ 0 and thus

log
(

1 + SNR
(c)
0k

)
≥ lim

M→∞
R

(c)
k

≥ log

(
1 +

SNR
(c)
0k

ρ(md, αc) + 1

)
→ log

(
1 + SNR

(c)
0k

)
. (4.16)

This completes the proof.

Prop. 4.3 implies that massive MIMO can asymptotically null out all

the interfering signals from the infinite D2D transmitters but still maintain a

linear scaling in the desired signal power, i.e., we can reduce cellular transmit

power as Θ(1/M) but still achieve the spectral efficiency of an interference-free

cellular link.

4.4.2 Non-asymptotic Cellular Spectral Efficiency

Next we analyze the cellular spectral efficiency in the non-asymptotic

regime to generate more insights into the impact of the various system param-
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eters. To this end, using Jensen’s inequality we derive a lower bound for R
(c)
k

in the following proposition.

Proposition 4.4. With perfect CSI, M ≥ mc +md + 1 and md >
αc

2
− 1, and

conditioned on {Ξ(c)
bk } and {x(c)

bk }, the spectral efficiency R
(c)
k of cellular UE k

in the central cell is lower bounded as

R
(c)
k ≥ R

(c,lb)
k = log

1 +
(M −mc −md − 1)SNR

(c)
0k∑B

b=0

∑
`∈K(c)

bk
SNR

(c)
b` + ρ(md, αc) + 1

 , (4.17)

where ρ(m,α) is defined in (4.13).

Proof. See Appendix 4.8.3.

Note that the first term in the denominator of (4.17) corresponds to

the uncanceled cellular interference; it decreases as mc increases. Similarly,

the second term in the denominator of (4.17) corresponds to the uncanceled

D2D interference; it decreases as md increases. In contrast, the numerator

of (4.17) corresponds to the desired signal power; it decreases as mc and/or

md increase. The lower bound (4.17) demonstrates the various tradeoffs when

choosing the PZF parameters mc and md. Note that such tradeoffs disappear

in the asymptotic regime (cf. Prop. 4.2 and 4.3). If the PZF parameter

mc = (B + 1)K − 1, then all the cochannel cellular interference will be nulled

out, leading to the following specialized lower bound.

R
(c,lb)
k = log

(
1 +

(M − (B + 1)K −md)SNR
(c)
0k

ρ(md, αc) + 1

)
. (4.18)
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We point out that the received signal power gain is only proportional

to M −mc −md − 1 in the lower bound (4.17). One might think the power

gain should be proportional to M−mc−md, the number of degrees of freedom

left for power boosting after using mc +md degrees of freedom for interference

cancellation. The fallacy of the above argument is that it ignores the effect of

fading, which makes a power gain proportional to M −mc−md unachievable.

4.4.3 D2D Spectral Efficiency

For D2D receiver r, the post-processing SINR with PZF filter is

SINR(d)
r =

S
(d)
r

I
(c→d)
r + I

(d→d)
r + ‖w(d)

r ‖2N0

, (4.19)

where S
(d)
r = PdΞ

(d)
rr (d

(d)
rr )−αd‖w(d)∗

r g
(d)
rr ‖2 denotes the desired signal power of

D2D Tx-Rx pair r, I
(c→d)
r and I

(d→d)
r respectively denote the cochannel cellular

and D2D interference powers experienced by D2D receiver r and are given by

I(c→d)
r =

B∑
b=0

∑
k∈K(d)

br

PcΞ
(c)
rbk(d

(c)
rbk)

−αd|w(d)∗
r g

(c)
rbk|

2

I(d→d)
r =

∑
i∈Φ

(d)
r

PdΞ
(d)
ri (d

(d)
ri )−αd |w(d)∗

r g
(d)
ri |2. (4.20)

The spectral efficiency of the D2D Tx-Rx pair r is defined as

R(d)
r = E

[
log(1 + SINR(d)

r )
]
, (4.21)

where the expectation is taken with respect to the fast fading, shadowing and

random locations of UEs.
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As the numberN of antennas at the UE is often limited due to hardware

constraints, it is not very meaningful to study the asymptotic performance with

N → ∞. Instead, as in the case of cellular spectral efficiency, we provide a

lower bound for R
(d)
r in the non-asymptotic regime, which characterizes the

impact of the various system parameters on the D2D spectral efficiency.

Proposition 4.5. With perfect CSI, N ≥ nc + nd + 1 and nd >
αd

2
− 1, and

conditioned on Ξ
(d)
rr , d

(d)
rr , {Ξ(c)

bk } and {x(c)
bk }, the spectral efficiency R

(d)
r of D2D

Tx-Rx pair r is lower bounded as

R(d)
r ≥ R(d,lb)

r = log

1 +
(N − nc − nd − 1)SNR(d)

r∑B
b=0

∑
k∈K(d)

br

Pc

N0
Ξ

(c)
rbk(d

(c)
rbk)

−αd + ρ(nd, αd) + 1

 ,

(4.22)

where SNR(d)
r = PdΞ

(d)
rr (d

(d)
rr )−αd/N0, and ρ(m,α) is defined in (4.13).

Proof. The proof is similar to that of Prop. 4.4 and is omitted for brevity.

Many of the remarks on Prop. 4.4 apply to Prop. 4.5 as well and are not

repeated here. One additional remark is that the cellular-to-D2D interference

is not homogeneous: the D2D receivers located in the boundary of the cellular

network experience less cellular interference than the D2D receivers located in

the central cell. But if we focus on the D2D performance in the central cell

and choose the number of cellular cells large enough, this heterogeneity can

be made negligible.
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4.5 Spectral Efficiency with Imperfect Channel State
Information

4.5.1 Estimating UE-BS Channels

We consider pilot-based CSI estimation in which known training se-

quences are transmitted and used for estimation purpose. To alleviate the

training overhead and coordination complexity, we assume that each BS b

does not estimate the channels from other-cell transmitters (either cellular or

D2D). Note that as the number |Φb| of D2D transmitters in the cell b is Pois-

son distributed, there may be less than md D2D transmitters in the cell b.

Therefore, during the training phase, each BS b requires the K cellular UEs

and the md,b , min(md, |Φb|) nearest D2D transmitters (w.r.t. the BS b) in its

cell to simultaneously transmit orthogonal training sequences. The BSs do not

coordinate the other D2D transmitters, which can send independent symbols

during the training phase.

Unlike the perfect CSI case, other-cell transmissions (both cellular and

D2D) now have a more delicate impact on the performance of the central cell.

To accommodate this, in this subsection we extend the previous notation as

follows. We add an additional subscript b to x
(d)
i ,Ξ

(d)
i and h

(d)
i , and obtain

x
(d)
bi ,Ξ

(d)
bi and h

(d)
bi , indicating that they are associated with D2D transmitter

i in the cell b. Similarly, we use Φ
(c)
bk to denote the set of uncanceled D2D

interferers in the cell b, b = 0, ..., B + 1. Note that the coverage of the “cell”

B + 1 is simply the complement (w.r.t. R2) of the coverage areas of the cells

0, ..., B, and the “cell” B + 1 does not contain a BS.
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Denoting by Tc ≥ K + md the length of a training sequence, we can

represent the training sequences as a Tc × (K + md) dimensional matrix
√
TcQ

(c) =
√
Tc(q

(c)
1 , ...,q

(c)
K+md

) satisfying Q(c)∗Q(c) = IK+md
. These pilots

are reused over different cells. In the training phase, the M × Tc dimensional

baseband received signal Y
(c)
0 at the central BS is

Y
(c)
0 =

B∑
b=0

∑
k∈Kb

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2 h
(c)
bk q

(c)∗
k

+
B∑
b=0

md,b∑
i=1

√
TcPcΞ

(d)
bi ‖x

(d)
bi ‖

−αc
2 h

(d)
bi q

(c)∗
K+i

+
B+1∑
b=0

∑
r∈Φ

(c)
bk

√
PdΞ

(d)
br ‖x

(d)
br ‖

−αc
2 h

(d)
br u

(d)∗
br + V

(c)
0 , (4.23)

where the Tc×1 dimensional vector u
(d)
br contains the data symbols sent by D2D

interferer r in the cell b, and the M×Tc dimensional noise matrix V
(c)
0 consists

of i.i.d. CN(0, N0) elements. Note that the coordinated D2D transmitters

also use power Pc during the training phase since they now transmit to their

associated BSs.

We assume that the central BS uses linear MMSE estimator for the

channel estimation. To this end, we first project the received signal Y
(c)
0 in

the direction of q
(c)

k̃
and normalize it to obtain

ỹ
(s)
k =

1√
TcPcΞ

(s)
0k ‖x

(s)
0k ‖−

αc
2

Y
(c)
0 q

(c)

k̃

= h
(s)
0k +

B∑
b=1

√
β

(s)
bk h

(s)
bk + ṽ

(s)
k , (s, k̃) ∈ {(c, k), (d, K + k)}, (4.24)
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where

β
(s)
bk ,

{
0 if s = d and k > md,b ;
Ξ

(s)
bk ‖x

(s)
bk ‖
−αc

Ξ
(s)
0k ‖x

(s)
0k ‖−αc

otherwise,

and ṽ
(s)
k denotes the equivalent channel estimation “noise” and is given by

ṽ
(s)
k =

1√
TcPcΞ

(s)
0k ‖x

(s)
0k ‖−

αc
2

B+1∑
b=0

∑
r∈Φ

(c)
bk

√
PdΞ

(d)
br ‖x

(d)
br ‖

−αc
2 h

(d)
br ū

(d)
br + v̄

(c)
k

 .

(4.25)

where ū
(d)
br = u

(d)∗
br q

(c)

k̃
and v̄

(c)
k = V

(c)
0 q

(c)

k̃
.

Lemma 4.1. The linear MMSE estimate of h
(s)
0k , s ∈ {c, d}, is given by ĥ

(s)
0k =

ξ
(s)
k ỹ

(s)
k , where

ξ
(s)
k =

1 +
B∑
b=1

β
(s)
bk +

∑B+1
b=0

∑
r∈Φ

(c)
bk
PdΞ

(d)
br ‖x

(d)
br ‖−αc +N0

TcPcΞ
(s)
0k ‖x

(s)
0k ‖−αc

−1

. (4.26)

Further, E[ĥ
(s)
0k ] = 0 and E[ĥ

(s)
0k ĥ

(s)∗
0k ] = ξ

(s)
k IM . As for the estimation error

ε
(s)
k = h

(s)
0k − ĥ

(s)
0k , E[ε

(s)
k ] = 0 and E[ε

(s)
k ε

(s)∗
k ] = (1− ξ(s)

k )IM .

Proof. See Appendix 4.8.4.

Lemma 4.1 shows that the longer the length Tc of a training sequence,

the smaller the covariance of the estimation error ε
(s)
k and thus the more ac-

curate the channel estimation ĥ
(s)
0k , agreeing with intuition. In particular,

E[ε
(s)
k ε

(s)∗
k ] →

∑B
b=1 β

(s)
bk

1+
∑B
b=1 β

(s)
bk

IM , as Tc → ∞. This shows that even with infinitely

long training sequences, the channel estimation cannot be perfect due to pilot

contamination.
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4.5.2 Asymptotic Cellular Spectral Efficiency

In this subsection, we examine the asymptotic performance of the cel-

lular links as M → ∞. For simplicity, we focus on mc = md = 0. Then

w
(c)
k = ĥ

(c)
0k is the MRC filter. Since multiplying the filter by a constant does

not affect the post-processing SINR, we may choose w
(c)
k = Y

(c)
0 q

(c)
k . It follows

that limM→∞
1
M

w
(c)∗
k y

(c)
0 equals

lim
M→∞

1

M

( B∑
b=0

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2 h
(c)
bk +

(∑
i∈Φ

√
PdΞ

(d)
i ‖x

(d)
i ‖−

αc
2 h

(d)
i ū

(d)
i +

v̄
(c)
0

))∗
y

(c)
0 =

B∑
b=0

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αcu

(c)
bk +

∑
i∈Φ

PdΞ
(d)
i ‖x

(d)
i ‖−αcū

(d)∗
i u

(d)
i .

(4.27)

The first term in (4.27) is the usual phenomenon appearing in mas-

sive MIMO [99]. In particular, it indicates that asymptotically the effects of

uncorrelated receiver noise and fast fading vanish, and there is no intra-cell

interference. The remaining effect is the residual other-cell interference due to

pilot reuse across the cells [99]. With D2D underlay, we observe that a new

effect (i.e., the last term in (4.27)) indicating the residual D2D-to-cellular in-

terference arises. The reason why the effect of D2D underlay does not vanish

can be explained as follows. The interfering signal of D2D transmitter i in

the training phase correlates with the interfering signal of D2D transmitter

i in the data transmission phase through the common channel vector h
(d)
i .

Therefore, unlike the uncorrelated receiver noises in the estimation phase and

in the data transmission phase, when multiplying the estimated channel ĥ
(c)
0k
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with the received signal y
(c)
0 , the effect of D2D underlay cannot be eliminated

even with infinitely many antennas at the BS. We term this effect underlay

contamination.

Note that the D2D underlay contamination term in (4.27) involves the

products of complex Gaussian random variables ū
(d)∗
i u

(d)
i , the D2D interfering

signals are not Gaussian distributed. It has been proven, however, that given a

covariance constraint Gaussian noise is the worst-case noise for additive noise

channels. Therefore, treating the D2D interfering signals as Gaussian noises,

we obtain the following Lemma 4.2.

Lemma 4.2. With imperfect CSI at the central BS and mc = md = 0, i.e., the

MRC receiver w
(c)
k = ĥ

(c)
0k , the following spectral efficiency R̂

(c)
k can be achieved

for cellular UE k in the central cell.

R̂
(c)
k = E

[
log

(
1 +

Ŝ
(c)
k

Î
(c→c)
k + Î

(d→c)
k

)]
, (4.28)

where Ŝ
(c)
k = TcP

2
c |Ξ

(c)
0k |2‖x

(c)
0k ‖−2αc, and

Î
(c→c)
k =

B∑
b=1

TcP
2
c |Ξ

(c)
bk |

2‖x(c)
bk ‖

−2αc , Î
(d→c)
k =

∑
i∈Φ

P 2
d |Ξ

(d)
i |2‖x

(d)
i ‖−2αc . (4.29)

Unlike the perfect CSI case in which the SINR of a cellular link can be

made arbitrarily large (c.f. Prop. 4.1), Lemma 4.2 shows that with imperfect

CSI there is a limit on the received SINR in massive MIMO due to the pilot

contamination and D2D underlay contamination. With D2D underlay, condi-

tioned on UE positions and shadowing, the loss of SINR (in dB) of cellular
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UE k in the central cell is 10 log10

(
1 + Î

(d→c)
k /Î

(c→c)
k

)
. There are four possi-

ble approaches to mitigate the loss. First, we can decrease the D2D transmit

power. This approach reduces the link budgets of D2D links, limiting the

range of D2D communication. Second, we can increase the cellular transmit

power. This approach increases the energy consumption of cellular UEs and

also results in more cellular-to-D2D interference. Third, we can increase the

length of training sequence. But longer training sequence consumes more cel-

lular transmission resources in terms of both power and bandwidth. Fourth,

we can deactivate the D2D links in the training phase of massive MIMO. Then

we retain the usual asymptotic cellular spectral efficiency in massive MIMO:

R̂
(c)
k = E

[
log

(
1 +

|Ξ(c)
0k |2‖x

(c)
0k ‖−2αc∑B

b=1 |Ξ
(c)
bk |2‖x

(c)
bk ‖−2αc

)]
. (4.30)

Certainly, the last approach reduces time resources for D2D communication.

The following Corollary 4.1 shows that with D2D underlay contami-

nation it is impossible to scale down cellular transmit powers, and thus D2D

underlay hurts the energy efficiency of cellular UEs in massive MIMO.

Corollary 4.1. Scaling down cellular transmit powers results in vanishing

cellular spectral efficiency, i.e., R̂
(c)
k → 0, as Pc → 0.

To achieve a non-vanishing cellular spectral efficiency while scaling

down cellular transmit powers, one approach would be to schedule two in-

dependent sets of active D2D transmitters in the estimation phase and in the

data transmission phase of massive MIMO. This solves underlay contamina-

tion. The disadvantage is that the BSs cannot use the estimated D2D UE-BS
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channels in the estimation phase to cancel the interference from the other set of

D2D transmitters in the data transmission phase. Therefore, its performance

is not clear in a non-asymptotic regime. Another simpler approach would be

to deactivate the D2D links in the training phase of massive MIMO. Then we

can scale down cellular transmit powers as in the following Prop. 4.6.

Proposition 4.6. With D2D links deactivated in the training phase of massive

MIMO and scaled cellular transmit power Pc/
√
M , as M →∞, the achievable

spectral efficiency R̂
(c)
k of cellular UE k in the central cell converges as follows.

R̂
(c)
k → E

[
log

(
1 +

Tc(SNR
(c)
0k )2∑B

b=1 Tc(SNR
(c)
bk )2 +

∑
i∈Φ

Pd

N0
Ξ

(d)
i ‖x

(d)
i ‖−αc + 1

)]
.

(4.31)

Proof. See Appendix 4.8.5.

Finally, we give a more explicit expression for the asymptotic cellular

spectral efficiency to allow for efficient numerical evaluation.

Proposition 4.7. The achievable spectral efficiency R̂
(c)
k of cellular UE k in

the central cell equals

R̂
(c)
k =

∫ ∞
0

1

z
(1− E[e−zŜ

(c)
k ])E[e−zÎ

(c→c)
k ]E[e−zÎ

(d→c)
k )] dz, (4.32)

where

E[e−zŜ
(c)
k ] = E[e−zTcP

2
c |Ξ

(c)
0k |

2‖x(c)
0k ‖
−2αc

] (4.33)

E[e−zÎ
(c→c)
k ] =

B∏
b=1

E[e−zTcP
2
c |Ξ

(c)
bk |

2‖x(c)
bk ‖
−2αc

] (4.34)

E[e−zÎ
(d→c)
k )] = exp

(
−πλΓ(1− 1/αc)P

2/αc

d E[Ξ2/αc ]z1/αc

)
. (4.35)
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Proof. For any x > 0, log(1 + x) =
∫∞

0
1
z
(1− e−xz)e−z dz [56]. Therefore,

E
[
log

(
1 +

X

Y

)]
= E

[∫ ∞
0

1

z
(1− e−z

X
Y )e−z dz

]
= E

[∫ ∞
0

1

z
(1− e−zX)e−zY dz

]
. (4.36)

Using the above equality, the linearity of expectation, and the independence

of Ŝ
(c)
k , Î

(c→c)
k and Î

(d→c)
k ,

R̂
(c)
k = E

[∫ ∞
0

1

z
(1− e−zŜ

(c)
k )e−z(Î

(c→c)
k +Î

(d→c)
k ) dz

]
=

∫ ∞
0

1

z
(1− E[e−zŜ

(c)
k ])E[e−zÎ

(c→c)
k ]E[e−zÎ

(d→c)
k )] dz. (4.37)

The expressions for E[e−zŜ
(c)
k ] and E[e−zÎ

(c→c)
k ] follow by definitions. Using the

Laplace functional of the PPP Φ [19], we have

E[e−zÎ
(d→c)
k )] = exp

(
−2πλ

∫ ∞
0

(
1− E[exp(−zP 2

d Ξ2r−2αc)]
)
r dr

)
, (4.38)

which equals (4.35).

4.6 Simulation and Numerical Results

In this section, we provide simulation and numerical results to demon-

strate the analytical results and obtain insights into how the various system

parameters affect the cellular and D2D spectral efficiency. The specific pa-

rameters used are summarized in Table 5.1 unless otherwise specified. The

cellular network consists of 19 hexagonal cells; the side length of each cell is

Rc. There are K uniformly distributed cellular UEs in each cell, while D2D

UEs are distributed as a PPP. The shadowing is lognormal with deviation

131



BS coverage radius Rc 500 m
# cellular UEs K 4
Density of D2D UEs λ 12

πR2
c

m−2

# BS antennas M 100
# UE Rx antennas N 4
UE-BS PL exponent αc 3.76
UE-UE PL exponent αd 4.37
UE-BS PL reference Cc,0 15.3 dB
UE-UE PL reference Cd,0 38.5 dB
Cellular Tx power Pc 23 dBm
D2D Tx power Pd 13 dBm
Channel bandwidth 10 MHz
Noise PSD −174 dBm/Hz
BS noise figure 6 dB
UE noise figure 9 dB
Lognormal shadowing σ 7 dB

Table 4.1: Simulation/Numerical Parameters for Massive MIMO with D2D
Underlay

σ (dB). The pathloss parameters given in Table 5.1 correspond to a carrier

frequency of 2 GHz. Specifically, we use the 3GPP macrocell propagation

model (urban area) for UE-BS channels [1] and the revised Winner + B1

model (non-light-of-sight with −5 dB offset) for UE-UE channels [5]. Note

that different pathloss reference values Cc,0 and Cd,0 are used in the UE-BS

and UE-UE channels. Therefore, when evaluating the analytical expressions

using the parameters in Table 5.1, Pc = 23 − Cc,0 (dBm) and Pd = 13 − Cc,0

(dBm) for the UE-BS channels while Pc = 23−Cd,0 (dBm) and Pd = 13−Cd,0

(dBm) for the UE-UE channels.

We first compare the simulated cellular spectral efficiency to the corre-
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sponding analytical lower bound (4.17) under various PZF parameters (mc,md)

in Fig. 4.2. The conditioned random variables in (4.17) are averaged out in

Fig. 4.2. We can see that the analytical lower bound (4.17) closely matches

the simulation results. The larger md, the better match between the simula-

tion and the analytical lower bound (4.17). This is because larger md implies

less D2D-to-cellular interferers and thus smaller interference variance. As a

result, the lower bound based on Jensen’s inequality becomes more accurate

with larger md. Note that, with K = 4, mc = 0 and mc = 3 correspond

to MRC and ZF (w.r.t. intra-cell cellular UEs), respectively. Comparing the

spectral efficiency with (mc,md) = (0, 2) to that of (mc,md) = (3, 2), we can

see that ZF has better performance and the spectral efficiency gain is about 1.6

bps/Hz. This observation implies that although asymptotically ZF and MRC

have similar performance, it is still quite beneficial to appropriately suppress

the co-channel cellular interference in practical non-asymptotic regime.

Since the lower bound (4.17) is accurate, next we use it to demon-

strate the cellular spectral efficiency with scaled cellular transmit power (i.e.,

Pc → Pc/M) in Fig. 4.3. We consider two PZF choices: PZF with constant

md and PZF with scaled md = Θ(
√
M). As a benchmark, we also include the

curves corresponding the scenarios without D2D underlay. Also, D2D transmit

power is decreased by 10 times to accelerate the convergence. Several observa-

tions from Fig. 4.3 are in order. First, unlike the case with unscaled cellular

transmit power, Fig. 4.3 shows that ZF and MRC have similar performance.

Second, adopting a constant md results in a fixed loss in the cellular spectral
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Figure 4.2: Simulated cellular spectral efficiency vs. analytical lower bound
(4.17) with perfect CSI.

efficiency due to the underlaid D2D interference; this loss cannot be overcome

by increasing the number of BS antennas when the cellular transmit power is

also scaled down as Θ(1/M). This observation confirms the analytical results

in Prop. 4.2. Third, the loss in the cellular spectral efficiency due to D2D

underlay can be overcome by scaling md as Θ(
√
M), validating the theoretical

finding in Prop. 4.3. But the convergence rate is relatively slow.

Fig. 4.4 compares the simulated D2D spectral efficiency to the cor-

responding analytical lower bound (4.22) under different D2D distances and

(nc, nd) = (0, 2). The conditioned random variables in (4.22) are averaged out

in Fig. 4.4. We can see that the analytical lower bound (4.22) closely matches

the simulation results when N ≥ 6 while being a bit loose when N < 6. The

accuracy of the lower bound obtained from Jensen’s inequality implies that

after canceling 2 nearest D2D interferers, the variance of the residual D2D-to-
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Figure 4.3: Cellular spectral efficiency with scaled cellular transmit power and
perfect CSI.

cellular interference is relatively small. Fig. 4.4 also shows that D2D spectral

efficiency is quite sensitive to its communication range: there is a loss of about

3 bps/Hz in spectral efficiency if D2D range is increased from 20 m to 35 m.

Next we evaluate the effect of multi-user cellular transmission on D2D

spectral efficiency. Fig. 4.5 shows the D2D spectral efficiency as a function

of the number K of co-channel cellular UEs per cell. Not surprisingly, as K

increases, D2D spectral efficiency decreases due to the increased cellular-to-

D2D interference. The interesting observation from Fig. 4.5 is that even with

(nc, nd) = (0, 0) (i.e., the MRC receiver) the average D2D spectral efficiency is

not severely affected by scaling up the number of cellular UEs. For example,

when K increases from 10 to 20, the loss in D2D spectral efficiency is less than

0.5 bps/Hz. This implies that we can scale up the uplink capacity in a massive

MIMO system without much loss in the average D2D spectral efficiency.
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Figure 4.6: Effect of D2D underlay contamination on asymptotic cellular spec-
tral efficiency of massive MIMO with (mc,md) = (0, 0) and Tc = 4.

Fig. 4.6 illustrates the effect of D2D underlay contamination on the

asymptotic cellular spectral efficiency of massive MIMO. Compared to the case

without D2D, where only pilot contamination exists, D2D underlay contami-

nation degrades the achievable asymptotic massive MIMO spectral efficiency.

For example, with shadowing deviation σ = 7 dB and πR2
cλ = 4, the spectral

efficiency is reduced from 6 bps/Hz to about 3.8 bps/Hz. Further, the more

the underlaid D2D UEs, the smaller the asymptotic cellular spectral efficiency.

Fig. 4.6 shows that when πR2
cλ ≥ 22 the effect of D2D underlay contamination

dominates in the overall effect of pilot and underlay contamination.
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4.7 Summary

In this chapter, we have studied the spectral efficiency of a D2D under-

laid massive MIMO system under perfect and imperfect CSI. We have found

that massive MIMO can efficiently handle the D2D-to-cellular interference.

Meanwhile, from an average perspective, D2D links are relatively robust to

the cellular-to-D2D interference even if there are quite many cochannel cellu-

lar users. D2D interference does make the estimated CSI in massive MIMO

less accurate and thus in turn hurts the cellular spectral efficiency. One simple

approach to alleviating this effect is to deactivate D2D links in the cellular

training phase. Overall, our study suggests that D2D may be much simpler in

massive MIMO cellular systems than in current cellular systems.

4.8 Appendix

4.8.1 Proof of Proposition 4.1

We show that a PZF receiver with mc = md = 0, i.e., the MRC receiver,

at the BS suffices. With mc = md = 0, the PZF receiver w
(c)
k = h

(c)
0k . By the

law of large numbers, 1
M
‖h(c)

0k ‖2 a.s.−−→ 1, 1
M

h
(c)∗
0k h

(c)
b`

a.s.−−→ 0, ` 6= k or b 6= 0. It

follows that when conditioned on Ξ
(c)
0k and x

(c)
0k ,

1

M2
PcΞ

(c)
0k ‖x

(c)
0k ‖
−αc‖h(c)

0k ‖
4 a.s.−−→ PcΞ

(c)
0k ‖x

(c)
0k ‖
−αc . (4.39)

Also, the noise term normalized by M2 converges as 1
M2N0‖h(c)

0k ‖2 a.s.−−→ 0.

Further, interchanging the order of the limit and the finite sum, the cellular
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interference normalized by M2 converges as

lim
M→∞

1

M2

B∑
b=0

∑
`∈K(c)

bk

PcΞ
(c)
b` ‖x

(c)
b` ‖
−αc |h(c)∗

0k h
(c)
b` |

2

=
B∑
b=0

∑
`∈K(c)

bk

PcΞ
(c)
b` ‖x

(c)
b` ‖
−αc

(
lim
M→∞

1

M2
|h(c)∗

0k h
(c)
b` |

2

)
a.s.−−→ 0. (4.40)

Next we show that the D2D interference normalized by M2 converges

to 0 as M → ∞. Note that in this case we cannot directly interchange the

order of the limit and the infinite sum to conclude that it converges to 0 almost

surely. Instead, we can prove its convergence in probability, i.e., for any ε > 0,

lim
M→∞

P

(
1

M2

∑
i∈Φ

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 < ε

)
= 1. (4.41)

To this end, we partition the D2D transmitters into two groups: one group

is composed of those transmitters located within distance ro from the BS and

the other group is composed of those transmitters located with distance grater

than ro from the BS. Then using the inequalities

P(X + Y ≥ ε) ≤ P
(
X ≥ ε

2
or Y ≥ ε

2

)
≤ P

(
X ≥ ε

2

)
+ P

(
Y ≥ ε

2

)
,

where X and Y are two arbitrary random variables, we have

P

(
1

M2

∑
i∈Φ

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥ ε

)

≤ P

 1

M2

∑
i∈Φ∩Bc(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2


+ P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc|h(c)∗

0k h
(d)
i |2 ≥

ε

2

 . (4.42)
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Next we show in two steps that the two terms on the right hand side of (4.42)

can be made arbitrarily small by choosing M large enough.

Step 1. For the first term on the right hand side of (4.42), we have

P

 1

M2

∑
i∈Φ∩Bc(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc|h(c)∗

0k h
(d)
i |2 ≥

ε

2


≤ 2

ε
E

 1

M2

∑
i∈Φ∩Bc(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2

 (4.43)

=
2PdΞ̄

εM
E[

∑
i∈Φ∩Bc(o,ro)

‖x(d)
i ‖−αc ] (4.44)

=
4πλPdΞ̄

εM

∫ ∞
ro

r1−αc dr (4.45)

=
4πλPdΞ̄

εM

1

(αc − 2)rαc−2
o

, (4.46)

where (4.43) is due to the Markov inequality, (4.44) is due to E[Ξ
(d)
i ] = Ξ̄ and

E[|h(c)∗
0k h

(d)
i |2] = M , and (4.45) is due to Campbell’s formula [19], and we use

the assumption that αc > 2 in (4.46). It follows that that there exists M1

large enough such that for all M ≥M1,

P

 1

M2

∑
i∈Φ∩Bc(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc|h(c)∗

0k h
(d)
i |2 ≥

ε

2

 <
δ

2
, (4.47)

where δ is an arbitrary small positive constant.

Step 2. For the second term on the right hand side of (4.42),

P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2


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= P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2

∣∣E
P (E)

+ P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2

∣∣Ec

P (Ec) .

where E = {|Φ ∩B(o, ro)| ≤ C} and Ec is the complement of E.

Step 2(a). Note that the number of D2D transmitters in B(o, ro), de-

noted as |Φ∩B(o, ro)|, is Poisson distributed with mean λπr2
o. We can choose

C large enough such that

P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2

∣∣Ec

P (Ec)

≤ P (Ec) = 1−
C∑
n=0

(λπr2
o)
n

n!
e−λπr

2
o <

δ

4
. (4.48)

Note that the choice of C depends on δ.

Step 2(b). Since 1
M

h
(c)∗
0k h

(d)
i

a.s.−−→ 0, conditioning on |Φ ∩ B(o, ro)| ≤ C,

we have

1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2

a.s.−−→ 0.

It follows that there exists M2 large enough such that for all M ≥M2,

P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2

∣∣E
P (E)

≤ P

 1

M2

∑
i∈Φ∩B(o,ro)

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥

ε

2

∣∣E
 <

δ

4
. (4.49)
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Combining (4.47), (4.48) and (4.49) obtained in Steps 1, 2(a) and 2(b)

respectively, we have for all M ≥ max{M1,M2},

P

(
1

M2

∑
i∈Φ

PdΞ
(d)
i ‖x

(d)
i ‖−αc |h(c)∗

0k h
(d)
i |2 ≥ ε

)
≤ δ

2
+
δ

4
+
δ

4
= δ.

As δ is an arbitrary positive constant, we conclude that (4.41) holds. This

completes the proof.

4.8.2 Proof of Proposition 4.2

When the transmit powers of cellular UEs scale as Pc/M , as in the proof

of Prop. 4.1, we can show that as M →∞, the desired signal power S
(c)
k , the

cellular interference power I
(c→c)
k , and the noise power ‖w(c)

k ‖2N0 normalized

by M converge as follows.

lim
M→∞

1

M
S

(c)
k

a.s.−−→ PcΞ
(c)
0k ‖x

(c)
0k ‖
−αc

lim
M→∞

1

M
I

(c→c)
k

a.s.−−→ 0

lim
M→∞

1

M
‖w(c)

k ‖
2N0

a.s.−−→ N0. (4.50)

For any D2D interferer i ∈ Φ
(c)
k , it generates interference

PdΞ
(d)
i ‖x

(d)
i ‖−αc |w(c)∗

k h
(d)
i |2.

By Central Limit Theorem, 1√
M

w
(c)∗
k h

(d)
i

d.−→ CN(0, 1), where
d.−→ denotes the

convergence in distribution. It follows that 1
M
|w(c)∗

k h
(d)
i |2

d.−→ ηi ∼ Exp(1).

Therefore, D2D interferer i’s interference power normalized by M converges
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to PdΞ
(d)
i ‖x

(d)
i ‖−αcηi in distribution. Summing over all the D2D interferers, we

have

lim
M→∞

1

M
I

(d→c)
k

d.−→
∑
i∈Φ

(c)
k

PdΞ
(d)
i ‖x

(d)
i ‖−αcηi. (4.51)

Therefore, the spectral efficiency of cellular UE k converges as in (4.11).

With a slight abuse of notation, we also denote by I
(d→c)
k the asymptotic

interference power
∑

i∈Φ
(c)
k
PdΞ

(d)
i ‖x

(d)
i ‖−αcηi. The lower bound (4.12) is due

to Jensen’s inequality:

E

[
log

(
1 +

PcΞ
(c)
0k ‖x

(c)
0k ‖−αc

I
(d→c)
k +N0

)]
≥ log

(
1 +

PcΞ
(c)
0k ‖x

(c)
0k ‖−αc

E[I
(d→c)
k ] +N0

)
. (4.52)

As the BS uses md degrees of freedom to cancel the interference from the

md nearest D2D transmitters when detecting the signal of cellular UE k, Φ
(c)
k

consists of the points from the original PPP Φ except the nearest md points

to the origin. Let us order the points in Φ based on their distances to the BS

in an ascending manner, i.e., ‖x(d)
1 ‖ ≤ ‖x

(d)
2 ‖ ≤ .... Then

E[I
(d→c)
k ] = EΦ[

∑
i∈Φ

(c)
k

PdE[Ξ
(d)
i ]‖x(d)

i ‖−αcE[ηi]] = PdΞ̄EΦ[
∑
i∈Φ

(c)
k

‖x(d)
i ‖−αc ]

= PdΞ̄EΦ[
∞∑

i=md+1

‖x(d)
i ‖−αc ]. (4.53)

Conditioning on the location x
(d)
md = (r, θ) of the md-th nearest point in Φ,

E[I
(d→c)
k |x(d)

md
= (r, θ)] = PdΞ̄EΦ

[
∞∑

i=md+1

‖x(d)
i ‖−αc

∣∣x(d)
md

= (r, θ)

]

= PdΞ̄2πλ

∫ ∞
r

t1−αc dt =
PdΞ̄2πλ

αc − 2
r2−αc , (4.54)
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where the second equality is due to Campbell formula [19]. To decondition on

x
(d)
md = (r, θ), we need the PDF of ‖x(d)

md‖ derived in [52]:

f‖x(d)
md
‖(r) =

2(λπr2)md

r(md − 1)!
e−λπr

2

, r ≥ 0. (4.55)

Using the fact that x
(d)
md is uniform in direction and f‖x(d)

md
‖(r), we de-

condition on x
(d)
md in (4.54) and obtain

E[I
(d→c)
k ] =

PdΞ̄2πλ

αc − 2

∫ ∞
0

r2−αcf‖x(d)
md
‖(r) dr

=
PdΞ̄2πλ

αc − 2
· 1

(md − 1)!
(λπ)

αc
2
−1

∫ ∞
0

tmd−αc
2 e−t dt, (4.56)

where we have changed variable t = λπr2 in (4.56). By the definition of the

Gamma function,

E[I
(d→c)
k ] =

2PdΞ̄

αc − 2
(πλ)

αc
2

Γ(md + 1− αc

2
)

Γ(md)
, (4.57)

Plugging (4.57) into (4.52) yields the desired lower bound (4.12).

4.8.3 Proof of Proposition 4.4

Using the convexity of the function log(1 + 1
x
) and applying Jensen’s

inequality [103],

R
(c)
k ≥ R

(c,lb)
k = log

1 +

(
E

[
1

SINR
(c)
k

])−1


= log

1 +

(
E

[
1

S
(c)
k

]
· (E[I

(c→c)
k ] + E[I

(d→c)
k ] +N0)

)−1
 . (4.58)
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In the following three steps, we calculate E
[

1

S
(c)
k

]
, E[I

(c→c)
k ], and E[I

(d→c)
k ],

respectively. Without loss of generality, we assume that w
(c)
k is normalized,

i.e., ‖w(c)
k ‖ = 1.

Step 1: calculating E
[

1

S
(c)
k

]
. By definition ‖w(c)∗

k h
(c)
0k ‖2 is the squared

norm of the projection of the vector h
(c)
0k onto the subspace orthogonal to

the one spanned by the channel vectors of canceled interferers. The space

is of M − mc − md dimensions and is independent of h
(c)
0k . It follows that

‖w(c)∗
k h

(c)
0k ‖2 ∼ χ2

2(M−mc−md), i.e., ‖w(c)∗
k h

(c)
0k ‖2 ∼ Γ(M−mc−md, 1). Therefore,

conditioned on Ξ
(c)
0k and x

(c)
0k , 1

S
(c)
k

is inverse-Gamma distributed and its mean

equals

E

[
1

S
(c)
k

]
=

1

PcΞ
(c)
0k ‖x

(c)
0k ‖−αc(M −mc −md − 1)

. (4.59)

Step 2: calculating E[I
(c→c)
k ]. Since ‖w(c)

k ‖ = 1 and w
(c)
k is indepen-

dent of h
(c)
b` ,∀` ∈ K

(c)
bk ,∀b, w

(c)∗
k h

(c)
b` is a linear combination of complex Gaus-

sian random variables and thus is distributed as CN(0, 1). It follows that

|w(c)∗
k h

(c)
b` |2 ∼ Exp(1) and

E[I
(c→c)
k ] = E[

B∑
b=0

∑
`∈K(c)

bk

PcΞ
(c)
b` ‖x

(c)
b` ‖
−αc |w(c)∗

k h
(c)
b` |

2]

=
B∑
b=0

∑
`∈K(c)

bk

PcΞ̄‖x(c)
b` ‖
−αc . (4.60)

Step 3: calculating E[I
(d→c)
k ]. With a similar argument as in Step 2, we
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have |w(c)∗
k h

(d)
i |2 ∼ Exp(1) and

E[I
(d→c)
k ] = EΦ[

∑
i∈Φ

(c)
k

PdΞ
(d)
i ‖x

(d)
i ‖−αcEh[|w(c)∗

k h
(d)
i |2]]

= PdΞ̄EΦ[
∑
i∈Φ

(c)
k

‖x(d)
i ‖−αc ]. (4.61)

The remaining steps for calculating E[I
(d→c)
k ] follow the same steps in the proof

of Prop. 4.2, i.e., the steps after (4.53), and E[I
(d→c)
k ] is given in (4.57).

Finally, plugging (4.59), (4.60) and (4.57) into (4.58) completes the

proof.

4.8.4 Proof of Lemma 4.1

Since theM×Tc dimensional noise matrix V
(c)
0 consists of i.i.d. CN(0, N0)

elements and q
(c)

k̃
is an orthonomal vector, V

(c)
0 q

(c)

k̃
also consists of i.i.d. CN(0, N0)

elements. Similarly, u
(d)∗
br q

(c)

k̃
∼ CN(0, 1). Using the independence of h

(d)
br ,u

(d)∗
br q

(c)
k

and V
(c)
0 q

(c)

k̃
, we have E[ṽ

(s)
k ] = 0, and

E[ṽ
(s)
k ṽ

(s)∗
k ] =

1

TcPcΞ
(s)
0k ‖x

(s)
0k ‖−αc

( B+1∑
b=0

∑
r∈Φ

(c)
bk

PdΞ
(d)
br ‖x

(d)
br ‖

−αc×

E[h
(d)
br u

(d)∗
br q

(c)

k̃
q

(c)∗
k̃

u
(d)
br h

(d)∗
br ] + E[V(c)q

(c)

k̃
q

(c)∗
k̃

V(c)∗]

)

=
1

TcPcΞ
(s)
0k ‖x

(s)
0k ‖−αc

B+1∑
b=0

∑
r∈Φ

(c)
bk

PdΞ
(d)
br ‖x

(d)
br ‖

−αcE[h
(d)
br h

(d)∗
br ] +N0IM


=

∑B+1
b=0

∑
r∈Φ

(c)
bk
PdΞ

(d)
br ‖x

(d)
br ‖−αc +N0

TcPcΞ
(s)
0k ‖x

(s)
0k ‖−αc

IM . (4.62)
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Further, using that h
(s)
bk consists of i.i.d. CN(0, 1) elements and the

independence of h
(s)
bk and ṽ

(s)
k ,

E[h
(s)
0k ỹ

(s)∗
k ] = E[h

(s)
0k h

(s)∗
0k +

B∑
b=1

√
β

(s)
bk h

(s)
0k h

(s)∗
bk + h

(s)
0k ṽ

(s)∗
k ] = IM . (4.63)

Similarly, we have

E[ỹ
(s)
k ỹ

(s)∗
k ] = E[h

(s)
0k h

(s)∗
0k +

B∑
b=1

β
(s)
bk h

(s)
bk h

(s)∗
bk + ṽ

(s)
k ṽ

(s)∗
k ]

=

1 +
B∑
b=1

β
(s)
bk +

∑B+1
b=0

∑
r∈Φ

(c)
bk
PdΞ

(d)
br ‖x

(d)
br ‖−αc +N0

TcPcΞ
(s)
0k ‖x

(s)
0k ‖−αc

 IM

=
1

ξ
(s)
k

IM . (4.64)

Therefore, the MMSE estimate of h
(s)
0k is

ĥ
(s)
0k = E[h

(s)
0k ỹ

(s)∗
k ](E[ỹ

(s)
k ỹ

(s)∗
k ])−1ỹ

(s)
k = ξ

(s)
k ỹ

(s)
k . (4.65)

Clearly, ĥ
(s)
0k is zero mean and its covariance is E[ĥ

(s)
0k ĥ

(s)∗
0k ] = ξ

(s)
k IM . As for the

estimation error ε
(s)
k = h

(s)
0k − ĥ

(s)
0k , it is clearly zero mean and its covariance is

E[ε
(s)
k ε

(s)∗
k ] = E[h

(s)
0k h

(s)∗
0k ]− E[ĥ

(s)
0k ĥ

(s)∗
0k ] = (1− ξ(s)

k )IM . (4.66)

4.8.5 Proof of Proposition 4.6

With D2D links deactivated in the training phase, we have

lim
M→∞

1√
M

(
1

M1/4

B∑
b=0

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2 h
(c)
bk + v̄

(c)
0

)∗
y

(c)
0

=
B∑
b=0

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αcu

(c)
bk
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+ lim
M→∞

1

M3/4

B∑
b=0

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2

∑
i∈Φ

√
PdΞ

(d)
i ‖x

(d)
i ‖−

αc
2 h

(c)∗
bk h

(d)
i u

(d)
i

+ lim
M→∞

1

M3/4

B∑
b=0

√
TcPcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2 h
(c)∗
bk v

(c)
0

+ lim
M→∞

1

M3/4

B∑
b=0

√
PcΞ

(c)
bk ‖x

(c)
bk ‖
−αc

2 v̄
(c)∗
0 h

(c)
bk u

(c)
bk

+ lim
M→∞

1√
M

∑
i∈Φ

√
PdΞ

(d)
i ‖x

(d)
i ‖−

αc
2 v̄

(c)∗
0 h

(d)
i u

(d)
i + lim

M→∞

1√
M

v̄
(c)∗
0 v

(c)
0 . (4.67)

For the second term on the right hand side of (4.67), we can show that it

converges to 0 in probability by following the same arguments of the proof of

Prop. 4.1. For the third and fourth terms on the right hand side of (4.67),

it is clear that they converge to 0 almost surely. The last term on the right

hand side of (4.67) converges in distribution to a zero-mean complex Gaussian

random variable of variance N2
0 . The fifth term is zero mean and has vari-

ance
∑

i∈Φ PdΞ
(d)
i ‖x

(d)
i ‖−αcN0 but not Gaussian. Using the worst-case noise

argument, we conclude (4.31) is achievable.
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Chapter 5

Asynchronous Multicarrier Wireless Networks

An implicit assumption made in Chapters 2 to 4 is that the networks

are synchronized. In D2D discovery, a UE seeks to identify other UEs in its

proximity via periodically broadcasting/receiving discovery signals. A listen-

ing UE can decode the discovery signal broadcast by a transmitting UE if the

SINR exceeds some detection threshold, which depends on the used modula-

tion and coding scheme. The number of transmitting UEs that can be decoded

is an important metric of discovery effectiveness. In the discovery process, de-

vices are usually not or imperfectly synchronized and thus different devices

have different notions of timing. Therefore, this chapter investigates the fol-

lowing question: if we take a snapshot of the network at a randomly selected

time-frequency slot and randomly select a receiving UE, then how many (if

any) transmitting UEs can be discovered or decoded by the selected receiving

UE given that the UEs each have different notions of timing?

The question posed above is of interest not only in D2D discovery but

also in general cellular systems and ad hoc networks. For example, in the

downlink of a cellular network, how many BSs can be decoded by a typical
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UE at a given SINR? This is a key consideration for soft handover or multiple-

BS coverage or offloading in dense heterogeneous networks [79]. A similar

metric can be used for neighbor discovery in wireless ad hoc networks [130].

5.1 Background and Related Work

The answer to the posed question obviously depends on how the trans-

mitting nodes are spatially distributed. We assume that the transmitting

nodes are distributed according to a PPP, which has been recently shown to

accurately model (with small modifications or shifts) a very large class of wire-

less networks, including even regular grids (with sufficient shadowing) [22] and

most random spatial distributions with a small and constant SINR shift [49].

It is therefore reasonable to assume that the conclusions in this chapter also

will hold for most plausible network topologies. Because of its excellent ana-

lytical properties, the PPP has found numerous applications in various types

of wireless networks [10,17,40,54].

Despite this encouraging progress in applying the PPP to wireless net-

working, existing works nearly universally assume that the networks are per-

fectly synchronized. In cellular networks, BSs in different cells may not be

synchronized in a Frequency Division Duplex (FDD) deployment, or have syn-

chronization errors in a Time Division Duplex (TDD) deployment. These facts

also lead to synchronization issues in D2D discovery. In particular, UEs partic-

ipating in the discovery are synchronized with their associated BSs and thus

may not be synchronized or at best imperfectly synchronized among them-
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selves even when other factors like propagation delays are not considered, let

alone the UEs that are out of cellular coverage [88]. The synchronous assump-

tion becomes even more questionable when it comes to an ad hoc network in

which network-wide synchronization is almost impossible. In such contexts,

different transmitters have different notions of timing. From the viewpoint

of a typical receiver, which also has its own notion of timing, the multicar-

rier OFDM signals from the transmitters are asynchronous and also do not

align with the receiver’s timing, leading to a loss of orthogonality between

subcarriers.

The impact of synchronization errors on single-user OFDM has been

extensively investigated in the literature (see e.g. [102, 110, 116, 121, 137]).

Extension of the analysis in single-user OFDM to multiuser OFDM, however, is

not straightforward as the latter involves a much larger set of random variables.

Analysis of asynchronous OFDM in the uplink of cellular systems includes

[39,108,112,126], while the downlink counterpart may be found in [58,100] and

ad hoc networks in [57]. The works [39, 108, 112, 126] are focused on a single-

cell setting and do not consider other-cell interference that plays a key role

in system-level performance. In contrast, cochannel interference is modeled

and studied in [57, 58, 100]. But [57, 58, 100] do not consider or leverage the

randomness inherent in the positions of network nodes, and the system-level

studies therein are mainly based on Monte Carlo simulations.
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5.2 Contributions and Main Outcomes

The main goal of this chapter is to incorporate the effect of asyn-

chronous OFDM transmissions in the system-level study of wireless networks

in which the positions of transmitting nodes are modeled by a PPP. The main

contributions and outcomes of this chapter are summarized as follows.

A tractable SINR model for asynchronous OFDM networks.

We carry out a detailed link-level analysis on the impact of timing misalign-

ment in OFDM transmission. Based on the link-level analysis, we propose a

tractable first-order SINR model, which can be conveniently used in system-

level studies.

System-level analysis of asynchronous PPP networks. We ap-

ply the proposed SINR model to study the system-level performance of asyn-

chronous networks where the locations of transmitting nodes are modeled by

a PPP and an OFDM waveform is used. Taking from a typical receiver’s

point of view, we derive analytical results for the average number of decod-

able transmitters, the decoding probability of the nearest transmitter, and

system throughput. Further, we derive an upper bound on the distribution of

the number of decodable transmitters. Note that, according to Palm theory

[16], the statistical performance experienced by a typical receiver is equiva-

lently the spatially averaged performance over all receivers. The analysis of

perfectly synchronized networks can be treated as a special case of this work.

For example, the result on the decoding probability of the nearest transmitter

reduces to [10] that studies a perfectly synchronized cellular network.
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Solutions for mitigating the impact of asynchronous transmis-

sions. We compare and discuss four possible solutions including extended

cyclic prefix, advanced receiver timing, dynamic receiver timing positioning,

and semi-static receiver timing positioning with multiple timing hypotheses.

These solutions, detailed in Section 5.6, differ in complexity and may be appli-

cable in different scenarios for mitigating the loss due to asynchronous trans-

missions.

5.3 System Model

We consider a network in which transmitters use an OFDM waveform.

The baseband equivalent time-domain signal si(t) emitted by transmitter i

can be written as

si(t) =
√
Ei

∞∑
m=−∞

1

N

∑
k

Si[k;m]ej2π
k
T

(t−mTs)I[−Tcp,Td)(t−mTs), (5.1)

where Ei denotes the transmit energy per sample of transmitter i, m is the

OFDM symbol index, N denotes the total number of subcarriers, k is the

subcarrier index, Si[k;m] denotes transmitter i’s data symbol on the k-th

subcarrier during the m-th OFDM symbol, Ts = Td+Tcp denotes the duration

of an OFDM symbol with Td denoting the duration of the data part and Tcp

the duration of the cyclic prefix, and IA(t) is an indicator function: it equals

1 if t ∈ A and zero otherwise.. The data symbols {Si[k;m]} are complex and

assumed to be independent and identically distributed (i.i.d.) with zero mean

and unit variance.
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We are interested in asynchronous scenarios where different transmit-

ters have different notions of timing and so do the receivers. The more com-

monly studied synchronous scenarios where all the nodes are synchronized is

a special case of this model. In an asynchronous network, we are interested

in what a typical receiver “sees” at a random time-frequency resource unit.

Note that the spectral width can be arbitrary. It can be a complete OFDM

channel or a subband of an OFDM channel. In the latter case, transmitter i

simply puts zero-valued data symbols Si[k;m] on the unused subcarriers, as

in OFDMA.

The active transmitters at the time-frequency resource unit in question

are assumed to be randomly distributed according to a PPP Φ with density λ.

The location of transmitter i ∈ Φ is denoted by Xi. Note that our model does

not preclude the possibility that there may be other transmitters active at some

other time-frequency resource units. For example, we may consider a super

PPP Φ′ ⊇ Φ, where Φ′ denotes the set of all the nodes in the network, and

a time-frequency grid composed of orthogonal time-frequency resource units.1

Each node randomly selects a time-frequency resource unit and transmits an

OFDM waveform. Then the active transmitters at a randomly selected time-

frequency resource unit constitute a PPP Φ, thinned from the super PPP Φ′.

This described random access scheme is in fact part of the D2D discovery

design used in LTE Direct [5].

1We ignore possible leakages from other time-frequency resource units when considering
a particular time-frequency resource unit.
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In this asynchronous network, we will study system-level questions such

as the number of transmitting nodes that can be decoded by a typical receiver.

To this end, since the transmitter process is stationary, we may assume with-

out loss of generality that the typical receiver is located at the origin. Further,

we consider flat-fading OFDM channels, i.e., the multipath spreads are small

(w.r.t. sampling period). The last assumption holds for example in the follow-

ing three scenarios: (1) there are not many obstacles in the radio environment

and the arrival times of the multipaths are not resolvable at the receiver; (2)

the received signal power is dominated by a single path, e.g. the line-of-sight

path if it exists; and (3) the transmit signal is restricted to a flat-fading sub-

band of a frequency-selective channel, as in OFDMA. We leave the important

extension to frequency-selective OFDM channels as future work.

More specific modeling assumptions related to the system-level study

will be given in Section 5.5.

5.4 Tractable SINR Model for Asynchronous Networks

5.4.1 Link-Level Timing Misalignment Analysis

In this subsection, we analyze the impact of timing misalignment from

a link-level perspective. Though similar analysis may be found in the rich

OFDM literature (see e.g. [121]), we briefly revisit this analysis to motivate our

proposed SINR model that captures the impact of asynchronous transmissions.

To this end, we shall focus on the link between transmitter i and the typical

receiver and ignore the signals from the other transmitters for now.
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Note that the n-th time-domain sample of the m-th OFDM symbol

from the signal si(t) is given by

si[n;m] = si

(
mTs + n

Td
N

)
=

√
Ei
N

∑
k

Si[k;m]ej2π
k
N
n, n = −Ncp, ..., N − 1, (5.2)

where Ncp = NTcp/Td is the number of cyclic prefix samples. Denote by Di the

timing misalignment between transmitter i and the typical receiver. Without

loss of generality, we assume Di ∈ D , [−(N +Ncp), N +Ncp).
2

In each OFDM symbol m, the typical receiver would like to decode the

m-th OFDM symbol sent by transmitter i. To this end, it discards the first

Ncp samples falling in the current receiving window and performs a fast Fourier

transform (FFT) on the remaining N samples. We consider the following four

cases, in which for notational simplicity we drop the additive noise term and

assume that the channel gain is 1 unless otherwise noted.

Case 1: −(N + Ncp) ≤ Di < −N . The N samples used for the FFT

of the m-th OFDM symbol are

y[n;m] = si[n−Di −N −Ncp;m+ 1], n = 0, ..., N − 1. (5.3)

The received signal on the `-th subcarrier during the m-th OFDM symbol is

given by

Y [`;m] =
√
Eie

j2π `
N

(−Di−Ncp)Si[`;m+ 1], (5.4)

2This assumption can be easily relaxed by using different notations m and m′ to re-
spectively index OFDM symbols at the transmitter and at the receiver in the following
analysis.
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which is derived in Appendix 5.8.1. Thus, the received symbol on the `-th

subcarrier during OFDM symbol time m is just a phase rotated version of the

transmitted symbol on the `-th subcarrier during OFDM symbol time m+ 1.

If Si[`;m] is desired, the useful signal power is 0. Otherwise, transmitter i’s

signal appears as interference and its interference power (energy/symbol) on

the `-th subcarrier during the m-th OFDM symbol equals

Pi[`;m] = E[|Y [`;m]|2] = Gi[m]Ei, (5.5)

where we have included the effect of channel gain Gi[m] from transmitter i

to the typical receiver during OFDM symbol time m. Note that Gi[m] is

independent of subcarrier ` as we assume that the channel is flat-fading.

Case 2: −N ≤ Di < 0. The N samples used for the FFT of the m-th

OFDM symbol are

y[n;m] =

{
si[−Di + n;m], 0 ≤ n ≤ N − 1 +Di;

si[n− (N +Di)−Ncp;m+ 1], N +Di ≤ n ≤ N − 1.
(5.6)

The received signal on the `-th subcarrier during the m-th OFDM symbol is

given by

Y [`;m] =
√
Ei
N +Di

N
Si[`;m]e−j2π

`
N
Di −

√
Ei
Di

N
Si[`;m+ 1]ej2π

`
N

(−Di−Ncp)

+
√
Ei

1

N

∑
k 6=`

(
1− ej2π k−`N (N+Di)

1− ej2π k−`N

)
×
(
Si[k;m]e−j2π

k
N
Di − Si[k;m+ 1]ej2π

k
N

(−Di−Ncp)
)
, (5.7)

which is derived in Appendix 5.8.1. Thus, the total received power on the `-th
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subcarrier during the m-th OFDM symbol from transmitter i is

Pi[`;m] = Gi[m]Ei

(
1

N2

(
(N +Di)

2 +D2
i

)
+

2

N2

∑
k 6=`

sin2
(
πN+Di

N
(k − `)

)
sin2

(
π 1
N

(k − `)
) )

,

(5.8)

where we have used the assumption that {Si[k;m]} are i.i.d. and have zero

mean and unit variance. If Si[`;m] is desired, the useful signal power is

(N+Di)
2

N2 Gi[m]Ei; the remaining terms in (5.8) contribute to self-interference

including both inter-carrier interference (ICI) and inter-symbol interference

(ISI). Otherwise, transmitter i’s signal appears as interference whose power is

characterized by (5.8).

Case 3: 0 ≤ Di < Ncp. The N samples used for the FFT of the m-th

OFDM symbol are

y[n;m] = si[n−Di;m], 0 ≤ n ≤ N − 1. (5.9)

As in Case 1, we can show that the received signal on the `-th subcarrier

during the m-th OFDM symbol is given by

Y [`;m] =
√
EiSi[`;m]e−j2π

`
N
Di . (5.10)

If Si[`;m] is desired, the useful signal power is Gi[m]Ei, and there is no self-

interference. Otherwise, transmitter i’s signal appears as interference with

power Gi[m]Ei.

Case 4: Ncp ≤ Di < N + Ncp. The N samples used for the FFT of

the m-th OFDM symbol are

y[n;m] =

{
si[n+N +Ncp −Di;m− 1], 0 ≤ n ≤ Di −Ncp − 1;

si[n−Di;m], Di −Ncp ≤ n ≤ N − 1.
(5.11)
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As in Case 2, we can show that the received signal on the `-th subcarrier

during the m-th OFDM symbol is given by

Y [`;m] =
√
Ei
N −Di +Ncp

N
Si[`;m]e−j2π

`
N
Di +

√
Ei
Di −Ncp

N
Si[`;m− 1]

× e−j2π
`
N

(Di−Ncp) +
√
Ei

1

N

∑
k 6=`

(
1− ej2π k−`N (Di−Ncp)

1− ej2π k−`N

)
×
(
−Si[k;m]e−j2π

k
N
Di + Si[k;m− 1]e−j2π

k
N

(Di−Ncp)
)
. (5.12)

Thus, the total received power on the `-th subcarrier during the m-th OFDM

symbol from transmitter i is

Pi[`;m] =Gi[m]Ei

(
1

N2

(
(N −Di +Ncp)

2 + (Di −Ncp)
2
)

+
2

N2

∑
k 6=`

sin2
(
πDi−Ncp

N
(k − `)

)
sin2

(
π 1
N

(k − `)
) )

. (5.13)

If Si[`;m] is desired, the useful signal power is (N−Di+Ncp)2

N2 Gi[m]Ei; the re-

maining terms in (5.13) contribute to self-interference including both ICI and

ISI. Otherwise, transmitter i’s signal appears as interference whose power is

characterized by (5.13).

5.4.2 From Link-Level to System-Level Studies

In this subsection, we discuss how to apply the previous link-level anal-

ysis on the impact of timing misalignment to OFDM transmission in system-

level studies. In an OFDM system without adaptive modulation and coding

per subcarrier, a transmitter simultaneously sends a block of coded bits on

the used subcarriers. The probability that the receiver can decode the block
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sent by transmitter i depends on all the SINR values of the used subcarriers.

Transmitter i’s SINR of subcarrier ` is given by

SINRi[`] =
g(Di)GiEi

Pi[`]− g(Di)GiEi +
∑

j 6=i Pj[`] +N0

, (5.14)

where we have dropped the OFDM symbol index m, N0 denotes the noise

power, and

g(d) =


0 −(N +Ncp) ≤ d < −N ;
(N+d)2

N2 −N ≤ d < 0;
1 0 ≤ d < Ncp;
(N+Ncp−d)2

N2 Ncp ≤ d < N +Ncp.

(5.15)

In a system-level study, the subcarrier SINR values are usually mapped

to a unique SINR, based on which the decision on whether the block is decod-

able is made. For example, the exponential effective SINR mapping (EESM)

is a popular mapping method [129]. In an asynchronous network with timing

misalignment, the calculation of SINRi[`] can be difficult because the detailed

modeling of timing errors in a system-level study can be cumbersome. Fur-

ther, the received power Pi[`] depends on timing misalignment in a delicate way

(c.f. (5.8) and (5.13)), which makes the analytical evaluation of system-level

performance even more challenging.

To solve the above mentioned difficulties, we propose a simple first-

order model, which can be conveniently used in system-level studies.

System-Level Abstraction. In a system-level study of the asyn-

chronous network with timing misalignment, the subcarrier SINRi[`] may be

approximately calculated as follows.
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1. Model and calculate the timing misalignment Di between transmitter i and

the typical receiver.

2. Calculate the useful signal power as g(Di)GiEi, where g(d) is defined in

(5.15).

3. Approximate the total received signal power from transmitter j as Pj[`] =

GjEj, j = 1, 2, ....

4. Calculate SINRi[`] according to (5.14).

The proposed system-level abstraction has two main advantages: (1)

when evaluating SINRi[`] it only needs to consider the timing misalignment of

the receiver with respect to transmitters i; and (2) compared to the original

complicated expressions (c.f. (5.8) and (5.13)), the total received signal power

from transmitter j is simply approximated as Pj[`] = GjEj. These two facts

greatly simplify system-level studies.

The validness of the proposed system-level abstraction hinges on the

condition that the total received signal power from transmitter j can be well

approximately as Pj[`] = GjEj, regardless of the timing misalignment Dj. As

shown in a numerical example in Fig. 5.1, this approximation is quite accurate:

the received powers are almost uniform on the used subcarriers except a few

edge subcarriers under various timing misalignment cases. Fig. 5.2 further

shows how the timing misalignment in OFDM transmission affects the power

of useful signal as well as the power of self-interference. For example, the

received SNR of the central subcarrier would be limited to less than 20 dB

when the receiving window is later than the actual timing of the received
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Figure 5.1: Received power of an OFDM signal with timing misalignment.
N = 1024;Ncp = 72; the used subcarriers are {−299, ..., 0, ...300}.

signal by 6 samples (mainly due to the self-interference).

5.5 On the Decodable Transmitters of a Typical Re-
ceiver

In this section, we apply the proposed system-level abstraction to study

several important statistics about the transmitters whose packets can be de-

coded by the typical receiver in the asynchronous network. Such statistics

include the average number of decodable transmitters, the decoding proba-

bility of the nearest transmitter, the distribution of the number of decodable

transmitters, and system throughput.

To this end, we first notice that with the proposed system-level ab-
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Figure 5.2: Signal and self-interference powers of an OFDM signal received
on the central subcarrier with timing misalignment. N = 1024;Ncp = 72; the
used subcarriers are {−300, ..., 0, ...299}.

straction, the subcarrier SINRi[`] now can be written as

SINRi[`] =
g(Di)GiEi

(1− g(Di))GiEi +
∑

j 6=iGjEj +N0

. (5.16)

Noting that the right hand side of (5.16) is independent of `, we can simply

use the subcarrier SINRi[`] as the block SINRi, based on which the decision

on whether a packet is decodable can be made. Therefore, in the sequel we

drop the subcarrier index ` in (5.16) and treat it as a block SINR.

In the following system-level study we assume that (i) transmitters use

constant transmit power E, (ii) the timing mismatches {Di} are i.i.d. with

cumulative distribution function (CDF) FD(·), and (iii) the channel gain Gi is

modeled as

Gi = ‖Xi‖−αFi, (5.17)
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where α > 2 is the pathloss exponent, and Fi denotes the fading of the link

from transmitter i to the typical receiver. For simplicity, we consider indepen-

dent Rayleigh fading, i.e., Fi ∼ Exp(1); more general fading and/or the effect

of shadowing may be treated by further applying Displacement theorem for

the PPP [22], which is not the focus of this chapter. With these assumptions,

the SINRi now can be written as

SINRi =
g(Di)‖Xi‖−αFi

(1− g(Di))‖Xi‖−αFi +
∑

j 6=i ‖Xj‖−αFj +N0/E
. (5.18)

We let Ei be the event that a packet from transmitter i is decodable.

Then the event Ei occurs if and only if the received SINRi is above some

detection threshold T , which is a function of the used modulation and coding

scheme. Mathematically, the number Υ of decodable transmitters is given by

Υ =
∑
i

I(Ei) =
∑
i

I(SINRi ≥ T ), (5.19)

where I(E) is an indicator function which equals 1 if the event E is true and

0 otherwise. Clearly, Υ is a random variable and will be the central object

studied in the sequel.

5.5.1 Mean Number of Decodable Transmitters

We first consider the average number of decodable transmitters E[Υ].

Proposition 5.1. The mean number of decodable transmitters is given by

E[Υ] = πλ

∫
D

∫ ∞
0

I
(
g(τ) >

T

1 + T

)
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× e−h(τ,T )SNR−1v
α
2 e−λπsinc

−1( 2
α)(h(τ,T ))

2
α v dvFD( dτ), (5.20)

where h(τ, T ) = T
(1+T )g(τ)−T , SNR = E/N0, and sinc(x) = sin(πx)

πx
.

Proof. See Appendix 5.8.2.

To gain some insights from Prop. 5.1, we next focus on the special case

that the network is interference-limited, i.e., N0 → 0.

Corollary 5.1. In the interference-limited case with N0 → 0, (5.20) reduces

to a simpler form:

E[Υ] = ED

[
I
(
g(D) > T

1+T

)
sinc

(
2
α

)
(h(D,T ))

2
α

]
, (5.21)

which can be upper bounded as

E[Υ] ≤
sinc

(
2
α

)
T

2
α

. (5.22)

The upper bound (5.22) follows because by definition g(τ) ≤ 1 (c.f.

(5.15)) and thus h(τ, T ) ≥ T for all τ ∈ D satisfying g(τ) > T/(1 + T ).

The upper bound is attained when timing misalignment D is restricted within

the range of cyclic prefix. This simple upper bound only depends on two

network parameters: α and T . In particular, the upper bound decreases as

the detection threshold T increases, agreeing with intuition: the mean number

of decodable transmitters decreases when the modulation and coding rate are

chosen such that T is higher.
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Figure 5.3: The upper bound on the mean number of decodable transmitters
(c.f. (5.22)) versus pathloss exponent.

The dependency of the upper bound on the pathloss exponent α is more

complicated and is illustrated in Fig. 5.3. Note that sinc
(

2
α

)
is increasing with

α ∈ (2,∞). In contrast, when 0 < T < 1, T
2
α is increasing with α ∈ (2,∞),

but when T ≥ 1, T
2
α is decreasing with α ∈ (2,∞). Therefore, when T ≥ 1,

the upper bound increases with α ∈ (2,∞). The intuition is that in order

to decode packets from more transmitters in the median-to-high modulation

and coding rate regime, it is important to reduce the interference power in

the interference-limited scenario and thus high pathloss exponent is favorable.

When 0 < T < 1, it is possible that the upper bound first increases and

then decreases as the pathloss exponent increases. This is because in the

low modulation and coding rate regime, it is also important to preserve the

useful signal power while reducing the interference power. In particular, for

very low T , as α increases beyond some point, the loss of the useful signal
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power will outweigh the gain of interference reduction and thus the mean

number of decodable transmitters will eventually decrease. Another interesting

observation from Fig. 5.3 is that the mean number of decodable transmitters

is very small: it is less than 2 even when T is as low as −9 dB. We will explore

this fact more in later sections.

Though the above discussion is carried out in the interference-limited

case, the overall insights still hold when noise is taken into account. For

example, Fig. 5.4 considers noise (whose power is given in Table 5.1) and

shows the performance under two two transmitter densities. The dense case

with λ = 1/202 m−2 is interference-limited; in this case, we can see that the

upper bound shown in Fig. 5.3 is quite close to the true values shown in Fig.

5.4. In the sparse case with λ = 1/4002 m−2 where the noise has a more

pronounced effect, Fig. 5.4 shows that a moderate pathloss exponent (around

3.3) is preferred as it strikes a balance between interference reduction and

preserving the useful signal power.

Next let us turn to the impact of timing misalignment. As expected and

shown in (5.22), there is a loss in the mean number of decodable transmitters

due to the timing misalignment. However, if the timing misalignment is re-

stricted within the range of cyclic prefix, i.e., D ∈ [0, Ncp), then g(D) ≡ 1 and

thus the upper bound in (5.22) is attained. In this case, there is no loss due to

the timing misalignment. Otherwise, the loss exists and depends on the distri-

bution of the timing misalignment. Note that the integrand in (5.20) is zero if

g(τ) ≤ T/(1 +T ). The physical interpretation is that when g(τ) ≤ T/(1 +T ),
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Figure 5.4: Mean number of decodable transmitters versus pathloss exponent
in synchronized networks.

the self interference caused by timing misalignment is already large enough to

cause the decoding failure.

To obtain a more concrete understanding of the impact of timing mis-

alignment, we show some numerical results in the sequel. As a null hypoth-

esis, we assume that the distribution of the timing misalignment is Gaus-

sian with mean 0 and standard deviation σ but is truncated within the range

[−(N +Ncp), N +Ncp). The specific parameters used in plotting numerical or

simulation results in this chapter are summarized in Table 5.1 unless other-

wise specified. Note that, with the OFDM sampling period normalized to 1,

N denotes the duration of the data part of an OFDM symbol. Accordingly, we

normalize timing error deviation σ and measure it in terms of N , as indicated

in Table 5.1.

Fig. 5.5 shows the mean number of decodable transmitters versus the
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Tx density λ 1/4002 m−2

PL exponent α 3.8
Tx power 23 dBm
Channel bandwidth 10 MHz
Noise PSD −174 dBm
Rx noise figure 9 dB
Detection threshold T −12 dB
(N,Ncp) (1024, 72)
Timing error deviation σ 0.2N

Table 5.1: Simulation/Numerical Parameters for Asynchronous OFDM Net-
works

detection threshold. From Fig. 5.5, we can see that asynchronous transmis-

sions have a remarkable effect on the performance; for example, when aiming

at decoding one transmitter on average and λ = 1/202 m−2, the loss in the

supported detection threshold is about 2 dB (resp. 4 dB) with σ = 0.2N (resp.

σ = 0.4N). Similarly, with the detection threshold T = −4 dB, the loss in the

mean number of decodable transmitters is 21% (resp. 44%) when σ = 0.2N

(resp. σ = 0.4N). Fig. 5.5 also shows that the relative loss in the mean num-

ber of decodable transmitters due to asynchronous transmissions increases as

the detection threshold increases, implying that asynchronous transmissions

have a more significant impact on high-rate communication. Similar obser-

vations hold when λ = 1/4002 m−2. Note that the simulation results clearly

match the analysis in Fig. 5.5; this provides a sanity check for the derived

analytical results.
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Figure 5.5: Mean number of decodable transmitters versus detection threshold.

5.5.2 An Upper Bound on the Distribution of the Number of De-
codable Transmitters

In the previous subsection, we studied the first order statistic of the

number Υ of decodable transmitters. In this subsection, we take a broader view

and study the distribution of the number Υ of decodable transmitters. Though

an exact characterization is possible, the resulting expressions involve very high

dimensional integrals even in the case of perfectly synchronized networks [79].

Instead, we provide a simple upper bound on the distribution of Υ in the

following proposition.

Proposition 5.2. The number Υ of decodable transmitters is (first order)

stochastically dominated by a truncated Poisson random variable Υ(u), i.e.,

P(Υ(u) ≥ n) ≥ P(Υ ≥ n), n = 0, 1, .... The distribution of Υ(u) is given as
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follows: P(Υ(u) = n) = 1
C
λ̃n

n!
, n = 0, ..., b1+T

T
c, where

λ̃ = πλ

∫ ∞
0

ED
[
I
(
g(D) >

T

1 + T

)
e−

Tvα/2

g(D)SNR

]
dv, (5.23)

and C is a normalization constant such that
∑b 1+T

T
c

n=0 P(Υ(u) = n) = 1.

Proof. See Appendix 5.8.3.

To gain some insights from Prop. 5.2, we next focus on the special

case with T > 1. Then Prop. 5.1 implies that Υ(u) is a Bernoulli random

variable: it equals 1 with probability λ̃/(1 + λ̃) and 0 otherwise. The mean

of Υ(u) is λ̃/(1 + λ̃). If the network is very sparse such that λ ∼ o(1), then

λ̃/(1 + λ̃) ∼ λ̃ = Θ(λ). When the transmit power is fixed, the performance

of sparse networks is noise-limited. This indicates that in the noise-limited

case the probability that the receiver can decode a packet from some trans-

mitter is O(λ). So is the mean number of decodable transmitters. In the next

subsection, we will show that the probability is Ω(λ) as λ → 0, and thus the

probability actually scales as Θ(λ).

If the network is very dense, i.e., λ→∞, then λ̃/(1 + λ̃) ∼ 1. Clearly,

the performance of dense networks is interference-limited. As a result, one

might think that in the interference-limited case the probability that the re-

ceiver can decode a packet from some transmitter is close to 1. The fallacy of

the above argument is that λ̃/(1 + λ̃) is an upper bound and may not be tight

as λ→∞. In fact, the right intuition should be that the received SINR from

any transmitter in the interference-limited case would not be large and thus
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the probability that no transmitter can be decoded can be relatively high if

the detection threshold T is large. The last intuition can be further confirmed

by examining Fig. 5.3. For example, Fig. 5.3 shows that the mean number of

decodable transmitters is less than 0.5 at α = 4 and T = 3 dB, implying that

the probability that no transmitter can be decoded is greater than 0.5.

Note that the parameter λ̃ may take more explicit form in some special

cases. For example, when α = 4,

λ̃ =
π

3
2λ

2

√
SNR

T
ED
[
I
(
g(D) >

T

1 + T

)√
g(D)

]
. (5.24)

Therefore, if T > 1 and α = 4, the probability that the receiver can decode

a packet from some transmitter is proportional to the square root of SNR

in the noise-limited case, agreeing with intuition: the radio link length is

proportional to SNR1/4 when α = 4 and thus the decoding probability should

be proportional to SNR1/2 in R2. Similar intuition may be used to explain why

the probability is inversely proportional to the square root of the detection

threshold T .

Figs. 5.6 and 5.7 compare the analytical upper bound on the distri-

bution of the number Υ of decodable transmitters to the corresponding true

distribution obtained from simulation under two different transmitter densi-

ties. It can be seen that the analytical upper bound is more accurate when

the network is sparser (i.e. less interference-limited).

172



0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# decodable TXs

C
D

F

Simulation

Analytical upper bound

Figure 5.6: Analytical upper bound vs. simulation on the distribution of the
number of decodable transmitters: λ = 1/4002 m−2.
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5.5.3 On Decoding the Nearest Transmitter

According to Prop. 5.2, the receiver can decode the packet from at most

one transmitter if T > 1. The decodable transmitter is typically the nearest

one, though fading and timing misalignment may affect the result. Further,

the probability of decoding the nearest transmitter indicates the coverage per-

formance of cellular networks where the positions of BSs are modeled by a

PPP [10]. Therefore, it is of particularly interest to study the probability that

the receiver can decode a packet sent by the nearest transmitter. We answer

this question in the following Proposition 5.3.

Proposition 5.3. The probability that the receiver can decode a packet sent

by the nearest transmitter X0 is given by

P(SINR0 ≥ T ) =πλ

∫
D

∫ ∞
0

I
(
g(τ) >

T

1 + T

)
× e−h(τ,T )SNR−1v

α
2 e−πλ(1+ρ(h(τ,T ),α))v dvFD( dτ), (5.25)

where ρ(x, α) = x
2
α

∫∞
x−

2
α

1

1+v
α
2

dv, and h(τ, T ) is defined in Prop. 5.1.

Proof. See Appendix 5.8.4.

From Prop. 5.3, it is easy to see the probability that the receiver can

decode a packet sent by the nearest transmitter is Θ(λ) as λ → 0. Thus,

the probability that the receiver can decode a packet sent by at least one

transmitter is Ω(λ) as λ → 0. The last fact has been used in the previous

section when stating that with T > 1 the probability that the receiver can

decode a packet sent by some transmitter scales as Θ(λ).
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When the network is interference-limited, i.e., N0 → 0, (5.25) reduces

to

P(SINR0 ≥ T ) = ED

[
I
(
g(D) > T

1+T

)
1 + ρ(h(D,T ), α)

]
≤ 1

1 + ρ(T, α)
, (5.26)

where we have used the fact that h(τ, T ) ≥ T , for all τ ∈ D satisfying g(τ) >

T/(1 + T ), in the last inequality. The above upper bound is attained when

D ≡ 0, i.e., the network is perfectly synchronized, which has been studied in

[10]. In fact, as long as the timing misalignment D is restricted within the

range of cyclic prefix, the upper bound can be attained. As in the case of the

mean number of decodable transmitters, there is a loss in the probability of

decoding the nearest transmitter due to the timing misalignment, and the loss

depends on the distribution of the timing misalignment.

Fig. 5.8 shows the decoding probability of the nearest transmitter ver-

sus the detection threshold. From Fig. 5.8, we can see that, when aiming at

decoding probability 0.5 and λ = 1/202 m−2, the loss in the supported detec-

tion threshold is about 3 dB (resp. 6 dB) with σ = 0.2N (resp. σ = 0.4N).

Fig. 5.8 also shows that the impact of asynchronous transmissions becomes

more significant as the detection threshold increases. Similar observations hold

when λ = 1/4002 m−2.

5.5.4 Optimizing System Throughput

The average number of decodable transmitters characterized in Prop.

5.1 is monotonically increasing as the detection threshold T decreases. How-

175



−12 −10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Detection threshold: T (dB)

P
ro

b
a

b
ili

ty
 o

f 
d

e
c
o

d
in

g
 t

h
e

 n
e

a
re

s
t 

T
X

 

 

Simulation: σ =       0

Simulation: σ = 0.2N

Simulation: σ = 0.4N

Analysis:    σ =        0

Analysis:    σ = 0.2N

Analysis:    σ = 0.4N

λ = 1/20
2

λ = 1/400
2

Figure 5.8: Impact of timing misalignment on the decoding probability of the
nearest transmitter.

ever, reducing the detection threshold T implies that we adopt lower modu-

lation order and/or coding rate. This may be undesirable from a throughput

point of view. In order to take into account this tradeoff, we define system

throughput ξ as the mean of the sum rate of all the transmitters to the typical

receiver. Mathematically,

ξ = E

[∑
i

I(SINRi ≥ T ) log(1 + T )

]
. (5.27)

With this definition, the following result follows immediately.

Corollary 5.2. The system throughput equals ξ = log(1 + T )E[Υ] with E[Υ]

given in Prop. 5.1.

Now we may optimize the detection threshold T by maximizing the

system throughput ξ. This optimization is of single variable and thus can

be solved efficiently. To gain some intuition, we show the system throughput
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Figure 5.9: System throughput versus detection threshold.

as a function of T in Fig. 5.9. From Fig. 5.9, we can see that the optimal

detection thresholds are respectively 5 dB, −1 dB and −3 dB when σ = 0,

0.2N and 0.4N . This implies that we have to be more conservative in setting

the detection threshold when the networks are asynchronous (vs. synchronized

networks). Another interesting observation from Fig. 5.9 is that the optimal

detection thresholds are nearly unaffected by the transmitter density.

5.6 Solutions for Mitigating the Loss of Asynchronous
Transmissions

In the previous section, we have seen that asynchronous transmissions

may have a remarkable effect on the system-level performance. In this sec-

tion we discuss four possible solutions, which differ in complexity and may

be applicable in different scenarios, to mitigate the loss due to asynchronous

transmissions.
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Extended cyclic prefix. If the timing mismatches are concentrated

in the range [0, Nx) where Nx > Ncp, we can solve the timing misalignment

problem by simply extending the length of the cyclic prefix beyond Nx. How-

ever, using cyclic prefix of extended length comes at the cost of more power

and time spent in sending the cyclic prefix instead of being used to communi-

cate data. This is a tradeoff, the characterization of which is beyond the scope

of this chapter. The general conclusion is that this approach is applicable to

the scenarios where Nx is not too large.

Advanced receiver timing. If the timing mismatches are concen-

trated in the range [−Nx, Ny) where Nx, Ny > 0 and Nx + Ny ≤ Ncp, we

can solve the timing misalignment problem by simply advancing the receiver

timing by Nx. Then the timing mismatches will be concentrated in the range

[0, Nx + Ny). As Nx + Ny ≤ Ncp, there will be no loss due to the timing

misalignment after shifting the receiver’s timing earlier. This approach is very

simple but is only applicable to the scenarios where Nx + Ny ≤ Ncp, and it

also requires knowledge of Nx.

Dynamic receiver timing positioning. The receiver may estimate

the timings used by each transmitter through either pilot-based or non pilot-

based synchronization methods. Once a transmitter’s timing is obtained, the

receiver can adaptively adjust its receiving window to decode the transmitter’s

packet. Compared to the previous two approaches, dynamic receiver timing

positioning is applicable to many more scenarios but at the cost of higher com-

plexity. In particular, as the transmitters have i.i.d. timing mismatches, the
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typical receiver needs to estimate every transmitter’s timing and accordingly

positions its receiving window to decode a transmitter’s packet.

Semi-static receiver timing positioning with multiple timing

hypotheses. Instead of estimating each transmitter’s timing, the receiver

may simply adopt multiple timing hypotheses: −n1∆, ..., 0, ..., n2∆, where n∆

denotes the timing difference between the hypothesis n and the receiver’s tim-

ing. For every timing hypothesis, the receiver accordingly adjusts its receiving

window and performs decoding; the packets from the transmitters whose tim-

ings happen to be around the current timing hypothesis may be decoded. This

semi-static receiver timing positioning approach reduces the complexity of dy-

namic receiver timing positioning but still requires the receiver to use multiple

timing windows. Further, a careful choice of n1, n2 and ∆ is important for the

design. In general, the more the used timing hypotheses, the smaller the loss

due to timing misalignment but the higher the complexity.

The above proposed solutions may be combined depending on the ap-

plication scenarios. For example, advanced receiver timing may be jointly used

with extended cyclic prefix to make the condition Nx + Ny ≤ Ncp hold. In

practice, the design decision on which solution should be used or how they

should be combined is best made based on the specific scenario under con-

sideration. Note that if our target is not to decode as many transmitters as

possible but for example is to decode the nearest transmitter, synchronizing

directly with the nearest transmitter is of reasonable complexity and recovers

the loss.
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Let us consider the solution of semi-static receiver timing positioning

with multiple timing hypotheses since it can be applied to many scenarios

while having reasonable complexity. We take the mean number of decodable

transmitters as the metric to evaluate its effectiveness. The following corollary

immediately follows from Prop. 5.1.

Corollary 5.3. Denote by H = {−n1∆, ..., 0, ..., n2∆} the set of timing hy-

potheses. The mean number of decodable transmitters is given by (5.20) but

with g(x) substituted by g̃(x) , maxτ∈H g(x− τ).

The rationale of Corollary 5.3 is straightforward: a transmitter is de-

codable as long as it is decodable under any of the used timing hypotheses.

Fig. 5.10 shows the effectiveness of using multiple timing hypotheses. As ex-

pected, the more the used timing hypotheses, the more the mean number of

decodable transmitters. Also, we can see from Fig. 5.10 that using 3 timing

hypotheses helps recover the majority of the loss.

5.7 Summary

In view of the lack of network-wide synchronization in many wireless

networks, this chapter has presented a baseline SINR model for asynchronous

OFDM networks, which can be conveniently used in system-level studies. The

model is then applied to characterize several important statistics in asyn-

chronous PPP networks including the number of decodable transmitters, the

decoding probability of the nearest transmitter, and system throughput. The
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Figure 5.10: Using semi-static receiver timing positioning with multiple timing
hypotheses to mitigate the loss of asynchronous transmissions.

derived results complement existing analysis of synchronized networks using

stochastic geometry. Further, this chapter has compared and discussed four

possible solutions for mitigating the loss of asynchronous transmissions. The

model and results are general, and apply to ad hoc networks, cellular systems,

and neighbor discovery in D2D networks.

5.8 Appendix

5.8.1 Derivation of Equations (5.4) and (5.7)

We first derive (5.4). By the definition of discrete-time Fourier trans-

form,

Y [`;m] =
N−1∑
n=0

y[n;m]e−j2π
`
N
n
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=
N−1∑
n=0

si[n−Di −N −Ncp;m+ 1]e−j2π
`
N
n

=
N−1∑
n=0

√
Ei

1

N

∑
k

Si[k;m+ 1]ej2π
k
N

(n−Di−N−Ncp)e−j2π
`
N
n

=
√
Ei
∑
k

Si[k;m+ 1]ej2π
k
N

(−Di−Ncp) 1

N

N−1∑
n=0

ej2π
k−`
N
n

=
√
Eie

j2π `
N

(−Di−Ncp)Si[`;m+ 1], (5.28)

where we have plugged (5.3) in the second equality and used (5.2) in the third

equality, and the last equality follows from the fact that 1
N

∑N−1
n=0 e

j2π k−`
N
n =

δ[k − `].

We next derive (5.7). Using the definition of discrete-time Fourier trans-

form, (5.6) and (5.2) yields

Y [`;m] =
N−1∑
n=0

y[n;m]e−j2π
`
N
n =

N−1+Di∑
n=0

s[−Di + n;m]e−j2π
`
N
n

+
N−1∑

n=N+Di

s[n− (N +Di)−Ncp;m+ 1]e−j2π
`
N
n

=

N−1+Di∑
n=0

√
Ei ·

1

N

∑
k

Si[k;m]ej2π
k
N

(−Di+n)e−j2π
`
N
n+

N−1∑
n=N+Di

√
Ei ·

1

N

∑
k

Si[k;m+ 1]ej2π
k
N

(n−(N+Di)−Ncp)e−j2π
`
N
n. (5.29)

The first sum in (5.29) equals√
Ei
N +Di

N
Si[`;m]e−j2π

`
N
Di +

√
Ei

1

N

∑
k 6=`

Si[k;m]e−j2π
k
N
Di

N−1+Di∑
n=0

ej2π
k−`
N
n,

and the second sum in (5.29) equals

−
√
Ei
Di

N
Si[`;m+ 1]ej2π

`
N

(−Di−Ncp)
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+
√
Ei

1

N

∑
k 6=`

Si[k;m+ 1]ej2π
k
N

(−Di−Ncp)

N−1∑
n=N+Di

ej2π
k−`
N
n.

Combining the above two results, and plugging in the following two equations

N−1+Di∑
n=0

ej2π
k−`
N
n =

1− ej2π k−`N (N+Di)

1− ej2π k−`N
N−1∑

n=N+Di

ej2π
k−`
N
n =

ej2π
k−`
N

(N+Di)(1− ej2π `−kN Di)

1− ej2π k−`N
, (5.30)

we obtain (5.7).

5.8.2 Proof of Proposition 5.1

For notational simplicity, denote by IΦ =
∑

Xj∈Φ ‖Xj‖−αFj. Then by

definition,

E[Υ] = E

[∑
Xi∈Φ

I

(
g(Di)‖Xi‖−αFi

(1− g(Di))‖Xi‖−αFi + IΦ−δXi +N0/E
≥ T

)]

=

∫
R2

∫
D

∫
R
E
[
I
(

g(τ)‖x‖−αf
(1− g(τ))‖x‖−αf + IΦ +N0/E

≥ T

)]
FF ( df)FD( dτ)M( dx), (5.31)

where M(·) is the mean measure of the PPP Φ, i.e., M(A) = E[Φ(A)] for any

measurable set A ⊂ R2, and we have used the reduced Campbell formula for

the PPP [16] in the last equality. Noting that Fi’s are i.i.d. Rayleigh fading,

FF ( df) = e−f df, f ≥ 0. For the homogeneous PPP Φ, M( dx) = λ dx.

Using these two facts and changing the integral with respect to x ∈ R2 into

polar coordinates, we have

E[Υ] = 2πλ

∫ ∞
0

∫
D

∫ ∞
0

E
[
I
(

g(τ)r−αf

(1− g(τ))r−αf + IΦ +N0/E
≥ T

)]
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× e−f dfFD( dτ)r dr

= 2πλ

∫ ∞
0

∫
D

∫ ∞
0

E
[
I
(
g(τ) >

T

1 + T

)
I (f ≥ rαh(τ, T )(IΦ +N0/E))

]
× e−f dfFD( dτ)r dr

= 2πλ

∫ ∞
0

∫
D
I
(
g(τ) >

T

1 + T

)
e−r

αh(τ,T )N0/EE
[
e−r

αh(τ,T )IΦ
]
FD( dτ)r dr

= 2πλ

∫
D

∫ ∞
0

I
(
g(τ) >

T

1 + T

)
e−r

αh(τ,T )N0/Ee−λπsinc−1( 2
α)(h(τ,T ))

2
α r2

× r drFD( dτ), (5.32)

where we have used the shorthand function h(τ, T ) in the second equality and

applied in the last equality the Laplace transform of the interference generated

by a Poisson field of interferers with Rayleigh fading [51]:

LIΦ(s) , E[e−sIΦ ] = exp

(
− λπs

2
α

sinc
(

2
α

)) . (5.33)

With a change of variables r2 → v in (5.32), we obtain (5.20) and complete

the proof.

5.8.3 Proof of Proposition 5.2

The set of transmitters in Φ whose packets can be decoded can be upper

bounded as

Φ̃ =
∑
Xi∈Φ

δXiI(SINRi ≥ T )

≤
∑
Xi∈Φ

δXiI
(
g(Di)Fi‖Xi‖−α

N0/E
≥ T

)
I
(
g(Di) >

T

1 + T

)
, Φ̃(u). (5.34)

Note that given Φ the Bernoulli random variables

I
(
g(Di)Fi‖Xi‖−α

N0/E
≥ T

)
I
(
g(Di) >

T

1 + T

)
, i = 1, 2, ...,
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are independent. It follows that Φ̃(u) is an independent thinning of Φ with

thinning probability

p(x) = E
[
I
(
g(Di)Fi‖Xi‖−α

N0/E
≥ T

)
I
(
g(Di) >

T

1 + T

)]
= ED

[
I
(
g(D) >

T

1 + T

)
exp

(
− T‖x‖α

g(D)SNR

)]
, (5.35)

where we have used the independence of D and F , and F ∼ exp(1). Therefore,

Φ̃(u) is a PPP with intensity measure Λ(A) =
∫
A
p(x)λ dx. Further, Υ(u) =

Φ̃(u)(R2) is Poisson with parameter

Λ(R2) =

∫
R2

p(x)λ dx

=

∫
R2

ED
[
I
(
g(D) >

T

1 + T

)
exp

(
− T‖x‖α

g(D)SNR

)]
λ dx

= πλ

∫ ∞
0

ED
[
I
(
g(D) >

T

1 + T

)
exp

(
− Tv

α
2

g(D)SNR

)]
dv. (5.36)

Next we show that Υ(u) can be truncated at b1+T
T
c, following a similar

argument as in [16]. To this end, suppose there are n decodable transmitters,

without loss of generality assumed to be X0, ..., Xn−1. Then we have

g(Di)‖Xi‖−αFi
−g(Di)‖Xi‖−αFi +

∑n−1
j=0 ‖Xj‖−αFj + IΦ−∪n−1

j=0 δXj
+N0/E

≥ T, (5.37)

for i = 0, ..., n− 1, which implies that

‖Xi‖−αFi∑n−1
j=0,j 6=i ‖Xj‖−αFj + IΦ−∪n−1

j=0 δXj
+N0/E

≥ T, i = 0, ..., n− 1. (5.38)

With some algebraic manipulations, we have the following set of inequalities:

(1 + T )‖Xi‖−αFi ≥ T (
n−1∑
j=0

‖Xj‖−αFj + IΦ−∪n−1
j=0 δXj

+N0/E), i = 0, ..., n− 1.
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Summing the above set of inequalities,

(1 + T )
n−1∑
j=0

‖Xj‖−αFj ≥ nT (
n−1∑
j=0

‖Xj‖−αFj + IΦ−∪n−1
j=0 δXj

+N0/E)

> nT
n−1∑
j=0

‖Xj‖−αFj. (5.39)

It follows that n ≤ b1+T
T
c, and thus the proposition has been proven.

5.8.4 Proof of Proposition 5.3

To begin with, we condition on the location of the nearest transmitter

X0 = x = (r, θ) and its associated fading F0 = f and timing misalignment

D0 = τ . Then

P(SINR0 ≥ T |X0 = x, F0 = f,D0 = τ)

= P
(

g(τ)‖x‖−αf
(1− g(τ))‖x‖−αf + IΦ−δx +N0/E

≥ T
∣∣X0 = x, F0 = f,D0 = τ

)
= P(f ≥ rαh(τ, T )(IΦ−δx +N0/E)

∣∣X0 = x, F0 = f,D0 = τ)I
(
g(τ) >

T

1 + T

)
= Px,f,τ (f ≥ rαh(τ, T )(IΦ−δx +N0/E)

∣∣Φ(B(o, r)) = 0)I
(
g(τ) >

T

1 + T

)
,

(5.40)

where Px,f,τ (·) denotes the Palm distribution with respect to Φ, i.e., the prob-

ability law conditioned on that there exists a point at location x with the

marks f and τ . Note that, conditioned on that the nearest point is located

in x, there are no other points in Φ located in the ball B(o, r) centered at o

with radius r, i.e., Φ(B(o, r)) = 0. This condition has been made explicitly in

(5.40). Further, the first term in (5.40) equals

Px,f,τ (f ≥ rαh(τ, T )(IΦ∩Bc(o,r)−δx +N0/E)
∣∣Φ(B(o, r)) = 0)
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= Px,f,τ (f ≥ rαh(τ, T )(IΦ∩Bc(o,r)−δx +N0/E))

= P(f ≥ rαh(τ, T )(IΦ∩Bc(o,r) +N0/E)). (5.41)

The first equality in (5.41) is due to the independence of IΦ∩Bc(o,r)−δx and

Φ(B(o, r)) = 0, which follows from the complete independence property of

PPP. The second equality in (5.41) is due to Slivnyak-Mecke Theorem [16].

Following a similar derivation as in [10], we can uncondition on F0 = f

and X0 = x to obtain

P(SINR0 ≥ T |D0 = τ) = πλI
(
g(τ) >

T

1 + T

)
×
∫ ∞

0

e−v
α
2 h(τ,T )N0/Ee−πλv(1+ρ(h(τ,T ),α)) dv, (5.42)

where ρ(t, α) is defined in Prop. 5.3. Unconditioning further on D = τ yields

(5.25). This completes the proof.
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Chapter 6

Conclusions

6.1 Summary

D2D is an exciting and innovative feature that will be present in forth-

coming cellular networks. A scalable, energy efficient, and privacy sensitive

D2D design will create big opportunities for mobile industry, while facilitating

the inter-operability between critical public safety networks and ubiquitous

commercial networks. D2D fundamentally alters the cellular architecture, re-

ducing the primacy of BSs and enabling UEs to discover and directly com-

municate with proximate UEs. Unlike mobile ad hoc networks, D2D can usu-

ally rely on the assistance from network infrastructure for control functions

like synchronization, session setup, resource allocation, routing, and other

overhead-consuming functions that are extremely costly in a mobile ad hoc

network.

Although simpler than a mobile ad hoc network, adding D2D features

to cellular networks poses many challenges. A D2D-enabled cellular network is

a highly complicated hybrid system. The design of this kind of hybrid systems

requires a careful handling of the interaction between cellular and D2D services

including resource management and interference control. As Chapter 1 dis-
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cussed in detail, D2D networking requires a rethinking of many of the working

assumptions and models used to date for cellular systems. This dissertation

has identified four outstanding technical challenges in D2D-enabled cellular

networks and addressed them with novel models and fundamental analysis.

In Chapter 2, we proposed a novel hybrid network model consisting of

both ad hoc nodes and cellular infrastructure. This model captures key fea-

tures of multicast D2D including multicast receiver heterogeneity and retrans-

missions, while being tractable for analytical purpose. Under the proposed

model, we carried out a comprehensive analysis and optimization of multi-

cast D2D. In Chapter 3, we adapted the hybrid network model and further

incorporated D2D mode selection to study spectrum sharing between cellular

and D2D communications. We derived analytical rate expressions and applied

them to optimize the design of spectrum sharing. In Chapter 4, we extended

the baseline single-antenna hybrid network model to multi-antenna transmis-

sion and focused on the interplay between massive MIMO and underlaid D2D

networking. We investigated the spectral efficiency of such multi-antenna hy-

brid networks under both perfect CSI and imperfect CSI assumptions, and

derived novel asymptotic and non-asymptotic results. Unlike Chapters 2 to 4

that assume the networks are synchronized, Chapter 5 is focused on the effect

of asynchronous multicarrier transmission. Based on a detailed link-level anal-

ysis, we proposed a tractable SINR model and applied it to study system-level

performance of asynchronous wireless networks.
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6.2 Future Directions

The models and analysis in this dissertation can be used as a step-

stone for a wide range of interesting topics including hybrid scheduling (i.e., a

combination of centralized and distributed scheduling), feedback design, multi-

hop and cooperative D2D communications. Please refer to [88] for a detailed

discussion. Here we propose two more forward-looking extensions, which are

interesting in the context of the 5th generation mobile networks (5G). The

first is to enable D2D in millimeter wave (mmWave) bands, and the second is

to study the interplay between D2D and small cells.

6.2.1 Millimeter Wave D2D

The focus of this dissertation is on enabling D2D networking in mi-

crowave frequencies that are below 5 GHz. To support multi-Gbps data rates

in 5G, it is important to leverage the huge chunks of contiguous spectrum avail-

able at high frequencies, particularly mmWave bands [13, 23, 41, 106]. There

exist many challenges regarding the use of mmWave bands in cellular networks

due to their different propagation characteristics (vs. microwave frequency

bands like the 900 MHz band). Specifically, with much smaller wavelength

mmWave signals suffer from high pathloss. To overcome the high pathloss as

well as other losses due to rain and oxygen absorption and higher noise floor

associated with larger bandwidth, mmWave transmission requires a large array

gain provided by appropriate beamforming techniques [70]. Further, mmWave

signals cannot penetrate most solid materials and have very limited diffraction
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ability [109, 114]. Therefore, signal paths may be easily blocked by obstacles,

and only a few of them may arrive at the receiver. As a result, direct mmWave

transmission appears restricted to short-range communication (say within 200

m).

Since mmWave transmission and D2D will likely to coexist in 5G, it

is of interest to explore the opportunities of mmWave D2D transmission. To

this end, the first step would be to develop appropriate channel models for

mmWave D2D. Note that existing channel measurement results on asymmetric

BS-UE radio access channels [114] may not be directly applicable to symmetric

UE-UE channels [88], and thus additional measurement campaigns may be

required. Once the channel models are established, the network models in this

dissertation can be adapted to incorporate the distinctive traits of mmWave

D2D transmission. Then specific design questions on mmWave D2D can be

addressed; for example, system-level performance analysis and optimization

may be carried out along the lines of this dissertation.

It is also of interest to explore how D2D may help mmWave cellular

networks. One possibility is to employ D2D relaying to extend mmWave cel-

lular coverage and network connectivity. For example, suppose a BS would

like to communicate to a UE using mmWave transmission. The communica-

tion would be unsuccessful if the mmWave signal arriving at the UE is not

strong enough due to the various blockages in the environment. Instead, D2D

relaying may help the mmWave signal turn around obstacles and set up the

connection provided there exists a feasible path from the BS to the UE.
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6.2.2 D2D in Heterogeneous Networks

The focus of this dissertation is on enabling D2D networking in cellular

networks that consist of only tower-mounted macro BSs. Network densification

via deploying small cells has greatly increased area spectral efficiency due to

the reduced lengths of radio access links, increased spatial spectrum reuse, and

lightened load per cell. Networks having both macro and small cells are known

as heterogeneous networks (HetNets) [12, 31]. Small cells bring BSs closer to

UEs, resulting in shorter Tx-Rx distances. This idea is somewhat similar

to that of D2D; the difference is that D2D exploits the natural proximity of

nearby devices while small cells create the proximity.

Since small cells will be a key aspect of 5G, it is interesting to extend the

work in this dissertation to HetNets and study the interplay between D2D and

small cells. To this end, the first step would be to model the various types of

BSs in HetNets. Random PPP models, used throughout this dissertation, can

capture the randomness in the deployments of small cells and can be applied to

model HetNets [34]. Then specific design issues on D2D networking in HetNets

can be addressed; for example, all the design questions of D2D networking

studied in this dissertation can be re-examined in a HetNet setting. Further,

one can study how D2D networking affects the performance and design of

HetNets.

One particularly interesting interplay between D2D and small cells is

in load balancing. A major concern about deploying small cells is that they

have very small coverage areas due to their low transmit powers. As a result,
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small cells are often lightly loaded and do not accomplish as much as desired,

while macrocells are still heavily loaded. To alleviate this issue, biasing allows

small cells to expand their coverage areas, enabling more UEs to connect to

small cells and thus helping to balance the load distribution [15]. Aggressive

biasing, however, can lead to low SNR for the UEs located in the cell edges of

small cells due to the limited power budgets of small cells. This problem can

be solved by D2D relaying, which breaks a long link into two or more short

links so that each link can have a sufficient power budget. Theoretically, the

coverage of small cells can be unlimited with dense enough relaying devices.

Therefore, in addition to offloading local traffic from cellular networks, D2D

can help small cells accomplish more by extending their coverage to achieve

more balanced load distribution in cellular networks. The design challenge

here are (i) to dynamically discover and set up the optimal routing paths

between BSs and end UEs, and (ii) to effectively and efficiently schedule the

radio links including both D2D links and BS-UE links.
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