thesis

Integrated cellular and device-to-device networks

Abstract

textDevice-to-device (D2D) networking enables direct discovery and communication between cellular subscribers that are in proximity, thus bypassing the base stations (BSs). In principle, exploiting direct communication between nearby mobile devices will improve spectrum utilization, overall throughput, and energy consumption, while enabling new peer-to-peer and location-based applications and services. D2D-enabled broadband communication technology is also required by public safety networks that must function when cellular networks are not available. Integrating D2D into cellular networks, however, poses many challenges and risks to the long-standing cellular architecture, which is centered around the BSs. This dissertation identifies outstanding technical challenges in D2D-enabled cellular networks and addresses them with novel models and fundamental analysis. First, this dissertation develops a baseline hybrid network model consisting of both ad hoc nodes and cellular infrastructure. This model uses Poisson point processes to model the random and unpredictable locations of mobile users. It also captures key features of multicast D2D including multicast receiver heterogeneity and retransmissions while being tractable for analytical purpose. Several important multicast D2D metrics including coverage probability, mean number of covered receivers per multicast session, and multicast throughput are analytically characterized under the proposed model. Second, D2D mode selection which means that a potential D2D pair can switch between direct and cellular modes is incorporated into the hybrid network model. The extended model is applied to study spectrum sharing between cellular and D2D communications. Two spectrum sharing models, overlay and underlay, are investigated under a unified analytical framework. Analytical rate expressions are derived and applied to optimize the design of spectrum sharing. It is found that, from an overall mean-rate perspective, both overlay and underlay bring performance improvements (vs. pure cellular). Third, the single-antenna hybrid network model is extended to multi-antenna transmission to study the interplay between massive MIMO (multi-input multiple-output) and underlaid D2D networking. The spectral efficiency of such multi-antenna hybrid networks is investigated under both perfect and imperfect channel state information (CSI) assumptions. Compared to the case without D2D, there is a loss in cellular spectral efficiency due to D2D underlay. With perfect CSI, the loss can be completely overcome if the number of canceled D2D interfering signals is scaled appropriately. With imperfect CSI, in addition to pilot contamination, a new asymptotic underlay contamination effect arises. Finally, motivated by the fact that transmissions in D2D discovery are usually not or imperfectly synchronized, this dissertation studies the effect of asynchronous multicarrier transmission and proposes a tractable signal-to-interference-plus-noise ratio (SINR) model. The proposed model is used to analytically characterize system-level performance of asynchronous wireless networks. The loss from lack of synchronization is quantified, and several solutions are proposed and compared to mitigate the loss.Electrical and Computer Engineerin

    Similar works