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Summary 

 

 It has been recognized that spatial diversity using multiple antennas is an 

efficient technique to combat the severe destructive effects of fading and interference 

on the performance of mobile wireless communication system. Previous works on 

cochannel interference normally assume that the interfering signals are synchronized 

with the desired signal. In the first half of this thesis we examine the more general and 

realistic scenario where the cochannel interference is asynchronous with the desired 

signal. In Chapter 2 and Chapter 3, we investigate the performance of coherent phase-

shift-keying and differentially encoded and decoded phase-shift-keying with 

maximum-ratio-combining in nonselective Rayleigh fading channels with multiple 

asynchronous cochannel interferers. Through the analytical study of the effect of the 

timing offsets between the interferer’s signal and the desired user’s signal on the error 

performance, it is found that for system using rectangular pulse shaping, the 

synchronized model actually gives the worst error performance, while the best error 

performance is achieved when all the interferers’ signals are half-symbol-duration 

delayed with respect to the desired user’s signal. The second half of this thesis 

examines the performance of transmit diversity system with practical channel 

estimation schemes. Two types of the transmit diversity are considered in this thesis. 

In Chapter 4 we develop a pilot-symbol-assisted-modulation scheme for a maximum-

ratio-transmission based transmit diversity system. Optimum transmit and receive 

strategies are derived and error performance are examined. In Chapter 5 we consider 

space-time block codes with orthogonal M-ary frequency-shift-keying. The error 

performance is examined and compared with that of differential space-time codes. 
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Chapter 1 

 

Introduction 

 

1. 1  Background 

 During the past few decades, the development of modern mobile 

communication systems has experienced a blooming era [1-3]. Many new technologies 

are developed and implemented to improve the quality of personal wireless 

communications. Stepping into the new century, mobile communication has already 

become an indispensable element in our fast paced modern life. New wireless mobile 

communication systems are expected to support more users and provide better quality 

of service for both voice and data applications. 

 A primary design objective for any commercial or military mobile 

communication system is to conserve the available spectrum by reusing allocated 

frequency channels. For this purpose, cellular systems are widely used in wireless 

communication networks which divide a geographical area into small cells and allow 

each cell to utilize specific allocated frequency channels. The same frequency channel 

could then be reused in other cells that are far away from a given cell so that the signal 

from the cochannel cells to the cell concerned would be weak enough to avoid any 

destructive interference. However, as the number of subscribers increases, either the 

size of the cell needs to be reduced or the number of the assigned frequency channels 

in each cell needs to be increased in order to keep up with the increased subscriber 

density. Therefore, with the number of the total available channels fixed, the 
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interference from cochannel cells could increase to a level that may cause destructive 

effects on communication in the concerned cell. 

 Another important issue in wireless mobile communication is to efficiently 

detect the signal that has been corrupted from channel fading. Unlike the conventional 

wired communication system where the received signal normally only suffers from 

additive white Gaussian noise (AWGN), in a wireless environment the received signal 

is typically a combination of many reflected replicas of the original transmitted signal 

with different power, delay and direction of arrival. Consequently, on top of the 

AWGN, wireless communication system suffers from multiplicative random amplitude 

attenuation and phase distortion, a phenomenon known as channel fading. Thus, 

developing new techniques that could reduce the severe impairment caused by channel 

fading is always of great importance for any practical design of high quality wireless 

communication system. 

 Among the numerous innovative wireless communication techniques, spatial 

diversity reception using multiple antennas is always a significant research area that 

has been shown to lead to tremendous improvements in system performance. In a 

system where multiple antennas are deployed sufficiently far from one another 

spatially, the received signal from these antennas can be viewed as undergoing 

independent channel fading process. Since deep fades seldom occur simultaneously 

during the same time intervals on these independent diversity branches, the effect of 

fading can be reduced by properly weighting and combining the received signal from 

these branches.  

 Various diversity combining schemes have been proposed in the past, varying 

in performance and complexity. For a system suffering only from fading and AWGN, 

maximum ratio combining (MRC) has been known as the optimum combining scheme 
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which gives the received signals from different diversity branches a weight 

proportional to the instantaneous channel gain of that particular branch, therefore the 

instantaneous signal-to-noise ratio (SNR) is maximized and the probability of error is 

minimized.  In another case, selection combining (SC) only chooses the branch that 

has the largest instantaneous SNR and detects the signal based on observation from 

this one branch only. Although worse in performance when compared with MRC, SC 

only processes one diversity branch at a time and therefore the receiver structure is 

simpler. Besides combating fading, diversity technique can also suppress interference. 

For example, for systems suffering from fading, AWGN as well as cochannel 

interference (CCI), optimum combining (OC) is proposed to mitigate the effects of 

both the fading and the CCI. 

 In addition to diversity reception, diversity transmission has also been 

considered as an effective technique to improve the system performance. According to 

the required channel information at the transmitter, transmit diversity can be 

categorized into two forms – schemes that require feedback and those do not require 

feedback. For the first type of transmit diversity, the transmitter requires the 

knowledge of instantaneous channel gain so it can pre-weight the signal to compensate 

for the fading in the same way as a conventional diversity receiver. For the second type 

of the transmit diversity, channel information is only available at the receiver, and the 

transmitter use linear processing to spread the information across the antennas, which 

could also be viewed as a form of coding. One of the most-pursued form of the second 

type transmit diversity is space-time coding.  

 In general, spatial diversity is an efficient method to improve the performance 

of wireless mobile communication.  
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1. 2  Motivation  

 As mentioned earlier, current and future generation wireless communication 

are expected to support more subscribers and offer higher transmission data rate, or, in 

other word, higher system capacity. Therefore, cochannel interference has become an 

important issue that must be considered in the design of practical communication 

systems. Diversity systems have been shown to be an efficient method to mitigate the 

destructive effect of fading and interference. However, the efficiency of a practical 

diversity system to suppress the interference depends on the available amount of 

information regarding the interferers’ channel information. Optimum combining has 

been proposed and proven to be efficient in suppressing cochannel interference, but it 

follows a simplified and somewhat an unrealistic assumption that the system has full 

channel knowledge for all the users and the signals of different users are symbol 

synchronized. For a more general and practical situation where the different users are 

asynchronous, optimum combining is no longer implementable. For other types of 

diversity combining schemes such as MRC, little has been done on the performance 

analysis for the case with asynchronous CCI. Therefore it is necessary to fully 

understand the effects of asynchronous CCI on performance of these systems. 

 More recently, much research efforts have been given to the design and 

analysis of new diversity schemes that offer lower error probability and higher 

capacity, one of which is the use of multiple antennas at the transmitter side in addition 

to conventional diversity at the receiver side. One potential of a combined transmit and 

receive (Tx-Rx) diversity system is that with the same number of antennas utilized by 

the system, a Tx-Rx diversity structure generally provides more transmission links 

than a conventional receive diversity. As mentioned earlier, there are generally two 

form of transmit diversity. One way is to provide the transmitter with prior-
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transmission channel information, so that the transmitter could use different weights on 

different transmit antennas to pre-compensate for the channel fading. The optimal 

scheme of this type of Tx-Rx diversity is known as maximum ratio transmission plus 

maximum ratio combining (MRT-MRC) diversity. In most of the previous works on 

the performance analysis of such Tx-Rx diversity systems, a basic assumption is that 

the system has complete knowledge of the instantaneous channel gain. Consequently, 

the error performance results obtained in these works can only be viewed as lower 

bounds. To provide designers with more realistic results, it is important to consider 

more practical channel estimation strategies for Tx-Rx diversity systems, and examine 

their performance in the presence of channel estimation errors. Also with imperfect 

channel estimation, the optimum structure of this type of the transmit-receive diversity 

may also assume a different form other than MRT-MRC. This is an optimum design 

problem that worth investigating. 

 Another form of Tx-Rx diversity is to use space-time (ST) codes. Space-time 

trellis coding is a recent proposal that combines signal processing at the receiver with 

coding techniques appropriate to multiple transmit antennas. It has been shown that 

specific space-time trellis codes perform extremely well in slow-fading environment. 

However, the decoding complexity of space-time trellis codes increases exponentially 

with transmission rate. Recently, Alamouti discovered a remarkable scheme for 

transmission using two transmit antennas which requires much less decoding 

complexity. Following Alamouti’s work, orthogonal space-time block codes are 

developed which utilize signal processing and coding technology to achieve diversity 

gain from both the spatially separated antennas and orthogonal codes transmitted on 

these antennas. Comparing with MRT-MRC diversity, space-time codes do not need 

any prior-transmission channel information at the transmitter. Thus, no feed back is 
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required for this system. However, the channel estimation at the receiver end still 

needs to be carefully examined. 

 For any communication systems undergoing fading, in order to detect the 

transmitted signal from the multiplicative fading corruption, certain channel estimation 

schemes must be employed. One popular channel estimation method is to insert pilot 

symbols periodically into the data symbol to continuously sample the channel and 

produce channel estimation for data symbol detection. Alternatively, the system can 

also employ a non-coherent modulation scheme such as differential encoded and 

decoded PSK, where the information is embedded in the phase difference of the 

adjacent symbols and the detection is accomplished by using the channel’s memory. 

Although a differential system provides a simple and robust solution for data detection 

in fading channels, when the channel fading fluctuates fast, or, in other words, when 

the channel memory is short, its performance degrades fast as well. On the other hand, 

orthogonal signaling – another commonly considered “non-coherent” signal - has been 

shown [4] as a modulation scheme that possess a channel measurement component. In 

light of this fact, the channel estimation can be refined by exploiting the fading 

autocorrelation through a sequence of received symbols. This encourage us to use 

orthogonal signaling in transmit diversity system and compare its performance with 

coherent signaling and also differential system. 

 

1. 3  Literature Review 

 The concept and fundamental performance analysis of diversity system are well 

documented in papers and books such as [2], [3,] [5,] [6]. It has been shown that in 

general MRC receiver provides the optimum performance by maximizing the 
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instantaneous SNR. However, most of these fundamental analyses concern only 

independent diversity systems with quasi-static fading and without CCI.  

 For fluctuating fading channels, the performance of coherent PSK signal 

remains the same as that of quasi-static fading channels because perfect channel 

estimation is assumed. However, for differentially encoded and detected PSK signals, 

the fading fluctuation plays an important role in the error performance as the 

differential detector relies solely on the channel autocorrelation to recover from the 

fading distortion. Although the performance of DPSK suffers from channel fading 

fluctuation, it requires no channel estimation mechanism, and thus the receiver 

structure can be very simple, whereas for coherent PSK, certain channel estimation 

scheme such as PSAM must be utilized to provide channel reference for coherent 

detection. The performance of DPSK signal in fluctuating fading channels is evaluated 

in [7] with selection combining. In [8], [9], the BEP of MDPSK is studied for 

fluctuating nonselective Rayleigh fading channels with MRC reception. For the Rician 

fading case, the exact BEP of MDPSK and NCFSK is given in [10], where an MGF 

based method is adopted. In [11], the same modulation schemes are considered and 

closed-form expressions for the SEP are obtained with post-detection equal gain 

combining. A simplified tight bound for the similar case can be found in [12]. In [13], 

[14], generalization of diversity combining scheme and optimization of the receiver 

structure for DPSK signaling are discussed when the fading statistics are known at the 

receiver, and the BEP performances are given correspondingly. More recently, with 

the work in [15] on calculating the error probability for two-dimensional signal 

constellations, new mathematical tools involving the Gaussian probability integral and 

Marcum Q-function are developed [16], [17]. These advancements in mathematical 

analysis tools and techniques make it possible to evaluate the error performance of 
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linearly modulated signals over generalized fading channels under a unified analytical 

framework [18]. However, most of the results from this approach are in complicated 

forms involving numerical integrals, where the effects of individual system parameters 

are difficult to examine.  

 For a cellular system with CCI, MRC no longer provides the optimum 

performance because only the fading of the desired user is taken into consideration and 

compensated for by MRC. Therefore, more research interests have been given to OC 

which exploits the CSI of the CCI component as well. Compared to MRC, OC has 

been shown to be more effective in suppressing interference [19]-[23]. Although 

excellent in performance, the practicality of OC is somehow questionable, as in reality 

it is very difficult to obtain the required CSI for both the desired user and the CCI. In 

most cases, MRC remains a more practical choice even for systems with CCI [24]. 

Most of the previous works model CCI as a signal synchronized with the desired signal 

[24]-[28], which is mathematically simpler in derivation and analysis, but practically 

hard to realize on the other hand. Among the work that considers asynchronous CCI, 

the characterization of asynchronous CCI can be found in [29], and its application to 

the performance analysis can be found in [30], [31] for coherent PSK and DPSK, 

respectively. The error performance of BPSK communication links with multiple 

asynchronous interferers is studied in [32] and its counterpart of DPSK system is given 

in [33], in which exact error probabilities are derived for single channel system, i.e., 

either non-diversity or diversity with selection combining. More recently, results for 

the performance of BPSK in Nakagami fading channels with asynchronous CCI is 

reported in [34]. Again, the approach in this work is currently limited to single channel 

systems, and the form of the BEP results is very complicated. For selection combining 

diversity system, BEP expressions of both CPSK and DPSK are given in [35]. In [36], 
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performance of MPSK with dual-diversity system using equal gain combining (EGC) 

and selection combining (SC) is studied. However, the extension of the approach to 

higher order diversity combining is not addressed. In [37] a general methodology for 

performance analysis of a system with asynchronous CCI is provided. Some new 

methods for evaluating the outage probability are proposed. However, the BEP 

analysis in their work could only be carried out using a semianalytical method which 

requires the help of adaptive algorithm simulation. Another interesting perspective to 

the CCI related research is its similarity with multiuser detection where the data 

detection is performed for all the cochannel users [38]. By applying the concept of 

multiuser detection in the CCI scenario, the work in [39], [40] has shown that a great 

performance improvement can be achieved over the popular OC. However, exact error 

performance analysis for multiuser detection remains rare. More recently, research 

interest has been drawn to the exact performance analysis of optimum detection for 

signals in the presence of cochannel interference [41]-[43], where the exact BEP for a 

two-user system is studied using joint-optimum (JO) (one-shot) detection. The analysis 

for individually-optimum (IO) (minimum error probability) remains unsolved in these 

works but the performance difference has been shown to be very slim for most of the 

commonly considered system conditions. 

 For transmit diversity systems assuming channel information at the transmitter 

side, the concept of MRT has been summarized and studied in [44]. The optimization 

of transmit and receive weight vectors is carried out so as to maximize the 

instantaneous SNR, assuming equal energies for all the entries of the receive weight 

vector but different phase. An approximate expression for the bit error probability 

(BEP) of binary phase-shift-keying (BPSK) is also obtained for the high SNR scenario. 

In [45], [46], improved weighting schemes are suggested which remove the 
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performance degradation due to the equal-energy assumption in [44]. The joint optimal 

weighting scheme at both the transmitter and the receiver is derived in [47], which 

relates the error performance analysis with the distribution of the eigenvalues of a 

complex Wishart matrix. The exact error performance of this optimal transmit-receive 

diversity system in Rayleigh fading has been studied in [48], assuming perfect CSI. In 

[49], the distribution of the eigenvalues of a non-central complex Wishart matrix is 

analyzed and the outage probability for the optimal transmit-receive diversity system is 

studied. This enables the performance analysis of Tx-Rx diversity systems in a Rician 

fading environment to be studied. Among these previous works regarding Tx-Rx 

diversity system, one important assumption is that perfect CSI must be available at 

both the transmitter and the receiver. Thus the performance analysis results obtained so 

far are only lower bound benchmarks which could not be achieved in a reality. 

Therefore, to make Tx-Rx diversity a more realizable communication technique, it is 

important to design a practical channel estimation scheme with the optimal 

transmitter/receiver structure, and study the effect of channel estimation error on the 

system performance. 

 Another form of transmit diversity as introduced earlier is space-time codes. 

The systematic design procedure together with performance analysis regarding Space-

Time block coding can be found in [50], [51]. The performance of specific Space-Time 

trellis codes has been shown to perform extremely well in slow-fading environment 

[50]. However, the decoding complexity of this type of codes increases exponentially 

with transmission rate. A simple scheme using two transmit antennas is proposed in 

[52]. Despite a certain performance loss compared to the trellis codes in [50], this 

scheme offers fairly good performance and simple decoding at the same time. Later 

this simple scheme is extended to multiple transmit antennas in [53] using the theory 
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of orthogonal designs. Although excellent in performance, practical implement of 

these codes requires certain channel estimation scheme such as PSAM [51], or 

noncoherent detection such as differential detection [54], [67], [68].  

 

1. 4  Contributions of the Thesis 

 This thesis provides error performance analysis for diversity systems and also 

develop optimum system structure for transmit diversity system with practical channel 

estimation schemes.  

 For the conventional Rx-diversity receiver, we study its error performance 

when asynchronous cochannel interference is presented. We consider two extreme 

conditions regarding the knowledge of channel information of the desired user’s signal 

at the receiver, i.e., perfect channel estimation for coherent PSK, and no channel 

estimation for differential PSK. By conditioning on the timing offsets of the interferers, 

we derive error performance results that enable us to examine the effect of 

asynchronous CCI on the performance of the desired signal. Study reveals that the 

synchronous system is actually the worst case as far as error performance is concerned, 

while the best case for the detection of the desired signal is that all the interfering 

signals are half symbol-duration delayed. Therefore, for scientists and engineers who 

need to design a communication system based on the worst case design, our results 

provide a quick performance assessment to spare them from having to average the 

error probability over all the interfering signals’ timing offsets. 

 For a MRT-MRC type diversity system, we develop a practical channel 

estimation scheme using pilot-symbols-assisted-modulation (PSAM). Based on this 

particular PSAM scheme, we derive the optimum transmit and receive weighting 

strategy and study its performance. The optimization of various parameters related to 
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PSAM is also demonstrated. We then extend the proposed PSAM Tx-Rx diversity 

system to binary orthogonal signaling, and discuss the feasibility of using the sequence 

observation to refine the channel estimation from the unmodulated component. We 

also compare our proposed PSAM Tx-Rx diversity with ideal MRT-MRC diversity 

where the cause of the performance difference is carefully examined. These results 

give practical system designers a good reference when considering employing MRT-

MRC diversity in reality. 

 For transmit diversity using space-time codes, we develop an orthogonal FSK 

modulation-based Alamouti-type code. Channel estimation is done by the unmodulated 

component of the orthogonal signals. The performance of this ST-FSK system is then 

analytically examined and compared with that of differential ST codes. It shows that 

by exploiting the channel measurements from adjacent symbols, FSK signals provide 

much better performance than their differential counterparts when the channel fading 

fluctuation is “fast”. 

 In summary, this work provides a comprehensive performance analysis for 

digital modulations in diversity systems by considering the effects of various practical 

issues in wireless mobile communications on error performance, namely, channel 

fading fluctuation, asynchronous CCI and imperfect channel estimation. Also it 

discusses the optimization problem for transmit diversity systems with practical 

channel estimation schemes. 
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Figure 1.1 Thesis structure 

 

1. 5  Thesis Outline 

 Chapter 2 presents the performance analysis of CPSK in nonselective Rayleigh 

fading channels with MRC reception and multiple asynchronous CCI. The effect of the 

CCI timing offset is also examined. Three Nyquist pulses are considered, namely, the 

rectangular pulse, conventional RC pulse and the newly proposed BTRC pulse. 

 Chapter 3 presents the performance analysis of DPSK in nonselective Rayleigh 

fading channels with MRC reception and multiple asynchronous CCI. Although the 

approach in Chapter2 is applicable for this case, we adopt a different mathematical 

method for this case which demonstrates the effect of diversity branch correlation. The 

effects of the CCI timing offset are also examined. Similar as CPSK case, we also 

compare the performance of three different Nyquist pulses. 

 Chapter 4 describes a practical PSAM channel estimation scheme for Tx-Rx 

diversity system and derives the optimum transmitter/receiver structure for this 

particular system. Performance analysis is then given based on the optimum design. 
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Both PSK and binary orthogonal signaling are considered. By applying the ML 

detection principle, we find that the optimum transceiver structure for PSAM based 

PSK system remains similar to that derived for ideal coherent PSK system. However, 

for binary orthogonal signaling, the transceiver utilizes both the estimated CSI from 

PSAM and that from its own unmodulated component, which is different from what 

has been obtained by other previous work. An attempt of combing the proposed PSAM 

scheme with the generalized quadratic receiver (GQR) is given, where only sub-

optimal solution is obtainable currently. 

 Chapter 5 develops another type of transmit diversity using space-time coding 

with orthogonal signaling. It is shown this new modulation scheme enables channel 

reference without pilot symbols, thus no transmission rate is sacrificed. And the 

detection complexity is no more than that of differential ST coding, while the 

performance of this proposed system does not suffer severely from “fast” fading as a 

differential system does. 

 Chapter 6 gives some conclusions for the results obtained and suggests some 

possible future extension from the current research. 
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Chapter 2 

 

BEP of Coherent Phase-Shift-Keying in Nonselective 

Rayleigh Fading Channels with Multiple 

Asynchronous Cochannel Interference 

 

In this chapter we investigate the error performance of BPSK and QPSK in 

nonselective Rayleigh fading channels with MRC diversity reception and with multiple 

asynchronous cochannel interferers. An introduction is given in Section 2.1. The 

system model is described in Section 2.2 together with the detector structure. In 

Section 2.3 we carry out the performance analysis. In Section 2.4 we study the effect 

of the asynchronous interferers’ timing offset on the BEP of the desired signal. 

Numerical results and discussion are given in Section 2.5, and Section 2.6 summarizes 

this chapter. 

 

2. 1  Introduction 

 In cellular mobile communications, frequency reuse is necessary to increase 

spectral efficiency so as to accommodate more subscribers. In such a system, the 

detection of one user’s data is often corrupted by signals from users in other nearby 

cells using the same frequency. This will result in cochannel interference, which 

inevitably leads to degradation in the performance of wireless communications. In 

addition to interference, fading is also a major source of performance impairment in a 
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mobile wireless environment. The channel fading process introduces both random 

amplitude and random phase distortion to the transmitted signal. Therefore, channel 

estimation has to be carried out in order to implement coherent detection for 

modulation schemes for which accurate phase tracking is crucial, such as PSK. 

 

2. 2  System Model 

 We consider a system in which the MPSK signal received from the desired user 

over L independent, identical diversity branches is corrupted by K asynchronous 

cochannel users’ signal and AWGN. The complex baseband transmitted signal of the 

desired user is 

�
∞=

−∞=
−=

p

p
TD

pj
SDD pTtgeEts D )()(~ )(φ     (2.1) 

where T/1  is the symbol transmission rate and )(tgTD  denotes the impulse response 

of the transmitter pulse shaping filter of the desired user. The average energy per 

symbol for the desired user is SDE . The phase )(kDφ  of the transmitted signal contains 

the kth transmitted symbol information. A reasonable assumption is that all interfering 

signals have the same modulation format as the desired user’s signal. Thus the 

baseband transmitted signal of the lth interfering user has the similar form 

�
∞=

−∞=
−=

p

p
Tl

pj
Sll pTtgeEts l )()(~ )(φ     (2.2) 

where SlE  is the average energy per symbol for the lth interfering user signal. We 

further assume that all the users use the same transmit pulse shaping filter. 

Consequently, we have )()( tgtg TTl =  for KDl ,,2,1, �= . 
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 We assume that both the desired user’s signal and the interfering users’ signal 

undergo slow nonselective Rayleigh fading. At the receiver, the received signal from 

the ith diversity branch is 

)(~)(~)(~)(~)(~)(~
1

,, tntstctstctr i

K

l
lllilDiDi ++++= �

=
ττ    (2.3) 

where )(~
, tc iD  and )(~

, tc il  are the channel fading process of the ith diversity channel for 

the desired user and the lth interfering user respectively. The AWGN term )(~ tni  has 

zero mean and a double side PSD of 0N . At the receiver, the received signals are 

matched filtered and sampled at the symbol time of the desired user signal, assuming 

perfect symbol synchronization with the desired user’s symbol time. As we assume in 

general an asynchronous system, the lth interfering user’s signal may come after an 

arbitrary delay lτ  which is uniformly distributed within ),0[ T . After matched filtering 

and sampling, the discrete received signal at the input of the detector over the ith 

diversity channel, i=1,…,L, for the kth symbol interval [kT,(k+1)T] can be represented 

by a decision statistic )(~ kri  as [3, Sec9.2] 
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ττττ

φ

φ

.(2.4) 

Here )(tg R  is the receive filter matched to the transmit filter such that the overall 

cascaded impulse response )()()( tgtgtg TR ∗=  without fading would be a pulse shape 

that fulfils the Nyquist criterion. Since )(tgT  is a unit-energy pulse, the peak 

amplitude of )(tgT  is 1. The received signal in a form like (2.4) is generally difficult 

to manage because of the integral terms. Therefore, we make a commonly adopted 

assumption that the fading processes affecting the desired and interfering signals 
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change slowly enough so that they can be considered as constant during the effective 

length of the impulse response )(tg R  and )(tgT . Thus the fading process inside the 

integrand of (2.4) could be approximated by its instantaneous value at the sampling 

time and could be factored out of the integral. The received signal at the detector input 

can now be written as, 

)(~)()(~)(~)(~
1

)(
,,

)( knpTgekcEkceEkr i

K

l

Pp

Pp
l

pkj
ilSliD

pkj
SDi

lD +−−+= � �
=

=

−=

−− τφφ  (2.5) 

where )(~
, kc iD  and )(~

, kc il are the piecewise-constant approximations to the ith channel 

fading process during the kth symbol interval [kT, (k+1)T] for the desired user and the 

lth interfering user, respectively. It is obvious that in the presence of a non-zero 

symbol timing offset lτ , the effective interfering component comes from a sequence of 

transmitted symbols in a similar form as ISI. Since in general the Nyquist pulse 

shaping used in practical communication system has a fast decaying waveform, we 

could assume that the effective ISI components are composed of the nearest 12 +P  

symbols. For the case of nonselective Rayleigh fading channels with even power 

density spectrum, )(~
, kc iD and )(~

, kc il  are both complex Gaussian random variables 

whose quadrature components are iid Gaussian RVs, with mean zero, variances 

22
,2

1 ]|)(~[| cDiD kcE σ=   and 22
,2

1 ]|)(~[| clil kcE σ= , respectively. The noise term )(~ kni  is 

the sampled output of the AWGN process after matched filtering from the ith diversity 

branch, which is a complex Gaussian random variable with mean zero and 

variance 2/])(~[ 0
2

2
1 NknE i = . 

We consider an independent diversity system where the received signals from 

the same user at different diversity branches have iid channel fading gains, i.e., for 

arbitrary ji ≠ , )(~
, kc il  and )(~

, kc jl  are iid, for KDl ,,1, �= . Also, the channel fading 
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gains for different users are assumed to be independent, either at the same diversity 

branch or different ones, i.e., ( )ilc k� is independent of )(~ kc jh  for arbitrary hl ≠ . The 

noise components )(~ kni  from different diversity branches are assumed to be 

independent and identically distributed, and they are independent from channel fading 

gains of all the users from all diversity branches. 

  The overall pulse shape )(tg we consider in this work includes the following 

three types. The first one is the triangular pulse which corresponds to the response of a 

matched filter to a rectangular pulse [30], [32]. Its corresponding time function and 

frequency spectrum of the rectangular pulse shaping are given by 
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� <−=

otherwise
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      0
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With REC, the received signal in (2.5) could be simplified to 
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where the effective interference comes from the adjacent two symbols only. The 

second pulse we considered is the popular RC pulse that has been widely used in 

modern digital communication systems. The RC pulse’s time function and the 

corresponding frequency spectrum are given by 

   222 /41
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where 10 ≤≤ α  is the roll-off factor and it represents the percentage excess bandwidth. 

It is worth noting that through out this work, we do not consider a band-limited system, 

thus the value of the roll-off factor affect the performance through the shape of the 

pulses when using different value of α , not through the percentage of the lost 

bandwidth it represents, i.e., the shape of the received signal is not distorted by loss of 

side-band frequency components. 

 

Figure 2.1 A comparison of the time waveform of the three pulses 

The third pulse considered in this study is the BTRC pulse that has been 

proposed recently [55]. Its time function and frequency spectrum are given by, 
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where 2 ln 2 /Tβ α= ⋅ and α  is the roll-off factor. This new pulse has been shown to 

have a better eye diagram and a better error performance than RC pulse in the presence 

of ISI in a baseband system [55]. A comparison of these three pulses is illustrated in 

Fig. 2.1, where for the RC and BTRC pulses we use a roll-off factor 5.0=α , where for 

RC pulse and BTRC pulse with the same roll-off factor, we found that BTRC pulse has 

smaller sidelobes than RC, thus a better performance at the presence of symbol timing 

error can be anticipated. 

In (2.5), the first term represents the desired signal component. The second 

term represents the CCI components from interfering users and each of these 

components contains ISI terms due to the imperfect symbol synchronism between the 

desired user and the interfering users. The third term represents the AWGN noise in 

each diversity branch. 

 As mentioned earlier, at the receiver, it is assumed that only the channel fading 

gains for the desired user is estimated perfectly in each diversity branches. Therefore, a 

coherent detector is implemented. The received signals from each diversity branch are 

weighted by the complex conjugate fading gain of the desired user to remove the phase 

distortion. With equiprobable transmitted symbols, the MRC receiver generates the 

decision statistics 
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based on ML detection principle, and chooses ( ) 2k l Mφ π=  as the detected symbol 

if )}({)( kqMaxkq ml = . The pre-detection MRC receiver is sketched in Fig. 2.2. 

 

Figure 2.2 Receiver structure for CPSK 

 

2. 3  Performance Analysis 

 The BEP of BPSK and QPSK, conditioned on the set I of known transmitted 

symbols of all users and known timing offsets of every interfering user can be obtained 

from the following probability 
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where α  is one-to-one mapped to the information phase )(kDφ  in determining the 

BEP and its specific value will be given later. Note that given the set I, the received 

signal in each diversity branch is a summation of multiple independent complex 

Gaussian random variables. Therefore, the received signal Ikri )(~ is also a complex 

Gaussian random variable with conditional mean 
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 (2.8a) 

conditional variance 
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and conditional covariance with )(~
, kc iD  
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where ρ  is the cross correlation coefficient between the channel fading gain of the 

desired user’s signal and the total received signal. As we assume identical diversity 

branches, this correlation coefficient holds identical for all i. 

 For two jointly distributed complex Gaussian random variables x~  and y~ , with 

mean zero, variance ]|~[| 2
2
12 xEx =σ  and ]|~[| 2

2
12 yEy =σ , and covariance 

yxxy yxE σρσσ == ]~~[ *
2
12  where ρ  denotes the cross-correlation coefficient between 

x~  and y~ , we have the relations [56] that when conditioned on y~ , x~  is a conditional 

Gaussian random variable with conditional mean [ ] ( )x yE x y yρ σ σ=� � �  and 

conditional variance 222
2
1 )||1(]~|~[| xyxE σρ−= . If we apply these properties to 
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Therefore we could rewrite the kth received signal as: 
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where ie  represents the uncertainty about )(~ kri  when conditioned on ix . It is a 

complex Gaussian random variable with mean zero and a variance equals to the 

conditional variance in (2.9b). Substituting this alternative representation of )(~ kri  into 

the decision statistic (2.7), we have 
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where  ]Re[
1

*� =
= L

i ii xeE . As we assume circular symmetry for all the channel fading 

gains and AWGN components, and independence of the channel fading gains between 

different diversity branches, it is straightforward to show that E is a real Gaussian 

random variable with mean zero and variance � =
− L

i icDSDr xE
1

222 ||)( σσ . Since a 

Gaussian random variable is completely described by its mean and variance, the 

probability in (2.7) could now be written as 
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where �
∞
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 is the Gaussian Q-function. 

 To remove the condition on L
iix 1}{ = , we average the above probability over the 

distribution of random variable � =
= L

i ixv
1

2
. Since αj

iDi ekcx −= )(~
,  is a complex 

Gaussian random variable with mean zero and variance 2
cDσ , it is easy to show that v  

has a chi-square distribution [3] with a pdf given by 
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Averaging the conditional probability (2.12) over the p.d.f. of v  in (2.13), we get [3, 

eqn14.4-15] 
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Here we can write Eqn. (2.14) in one expression from the two results in (2.12) by 

using the relation 
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 To calculate the average bit error probability using the result in (2.14), first we 

need to average over all the possible interfering users’ symbol patterns. As we assume 

that the dominant cross-term ISI contribution from the lth interfering signal is limited 

to some 2P+1 terms, we have 
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 Finally, averaging the result over the distribution of every interfering user’s 

timing offset gives us 
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 For a system using the rectangular pulse, an alternative approach to derive the 
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average BEP is possible by directly studying the distribution of the combination of the 

transmitted symbol and the random timing offset. Substituting (2.6) into (2.8) then 

(2.14), we have, for REC pulse shaping system, 
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To calculate the average BEP, one needs to average (2.14) with (2.17) over the 

distribution of ly  only. Using the total probability theorem, the cdf of ly  can be 

calculated from the distribution of the timing offset lτ  together with the assumption of 

equiprobable symbols as the following 
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The corresponding pdf of ly  could then be obtained as 
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where )(Yδ  is the Dirac delta function. As we assume independent CCI, i.e., the 

transmitted symbols are independent and the delays of the interferers are independent, 

the distribution of the summation 2
1

K

Sl cl li
E yσ

=�  can be easily calculated from the CF 

of each ly . From (2.19), the CF can be derived as 
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where 
2

0

2
[ ]

x terf x e dt
π

−= �  denotes the error function. The CF of the summation term 

2
1

K

Sl cl li
S E yσ

=
=�  in (2.17) can now be calculated as 2

1
( ) ( )

K

S Sl cl yll
Eω σ ω

=
Φ = Φ∏ . 

Finally by taking the inverse transform we can get the pdf of S which lead to another 

form for the average probability of (2.7) as 
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K j S
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Figure 2.3 Signal constellation and decision region 

 The signal constellation and decision region are sketched in Fig. 2.3. The 

probability ( )( )DF kφ α+  obtained in (2.16) or (2.21) actually denotes the probability 

that the received signal vector after weighting and combining, *
1

( ) ( )
L

i ii
r k c k

=� � � , falls 

into the grey zone above which is actually the left half of the complex plane that has 

been clockwise rotated by an angle α . Using QPSK as an example here, as we assume 

Gray encoding of the transmitted symbol, when ‘00’ is transmitted, the receiver will 

make a wrong decision ‘01’ if the vector falls into region B, or ‘11’ if region C, or ‘10’ 

if region D. The average BEP for this case is then 
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Similarly it could be shown that 
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Therefore, the average BEP for QPSK is given by 
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 (2.22) 

For BPSK system, following a similar derivation, the average BEP is given by 
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α φ
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= + =
.   (2.23) 

 Equations (2.22), (2.23), together with (2.14), (2.16) and (2.21), summarize the 

procedure of calculating the average BEP for BPSK and QPSK in nonselective 

Rayleigh fading channels with multiple asynchronous CCI using MRC diversity 

reception. It is worth noting that the average BEP is independent of the transmitted 

symbols of the desired signal. This is due to the symmetry of the signal constellation 

and the circular symmetry of the fading and the AWGN component we assumed in our 

system model. 

 

2. 4  Effects of Symbol Timing Offsets 

 The expression of the average BEP obtained in Section 2.3 involves numerical 

integrals thus the calculation could be very time consuming for the case of large 

number of interferers. Similar computational complexity is also encountered in 

previous research works concerning multiple asynchronous CCI, e.g., [32], [34], [57]. 
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The computational complexity is increased for the asynchronous CCI model mainly 

because of the fact that with random timing offset, the CCI component becomes non-

Gaussian after matched filtered by the pulse shaping waveform synchronized to the 

desired signal. Another remark on the average BEP is that in a practical 

communication scenario, the timing offsets between the desired signal and the 

interfering signals normally remain constant during the transmission of a sequence of 

symbols. Therefore the average BEP obtained above represents more like the overall 

performance assessment of the whole communication process during a long period of 

operation. In many cases, it is actually more important and helpful to investigate the 

effect of symbol timing offsets between the desired signal and the interfering signals 

on the error performance. In this section, we consider a system employing REC pulse 

shaping, and study the behavior on the BEP conditioned on known values of the timing 

offset. More specifically, we try to find the particular value of the interfering signals’ 

delay that give the best and the worst BEP performance. After that, we also will 

consider more general case where more practical Nyquist pulses, e.g., the RC and 

BTRC pulse, are employed. 

 In order to locate the delay instant of the lth interfering user that results in 

maximum or minimum BEP result, we differentiate the BEP expression with respect to 

the timing offset lτ . Since the average BEP expression is the summation of the 

probability given by (2.14), we perform the differentiation of (2.14) first as 
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where µ  is a function of lτ  given by (2.17). Its sign is positive as guaranteed by (2.22) 

and (2.23). Consequently, it is obvious that the sign of the summation term in (2.24) is 

always negative, and thus the sign of (2.24) is solely determined by the sign of the 

derivative of µ . Defining the normalized timing offset as l lb Tτ= , we rewrite µ  as 
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Carrying out the differentiation of µ  with respect to lτ  , we get 
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Here we define 
2

0

SD cD
SNR

E
N
σ

Γ =  and 
2

,
0

Sl cl
INR l

E
N
σ

Γ =  as the average SNR and INR.  

 From (2.22) to (2.25) we can see that the sign of the derivative of the 

conditional BEP with respect to the lth interferer’s timing offset lτ  is independent of 

the specific transmitted symbol, and independent of all the rest of the interferers’ 

symbols and timing offsets. When 5.0=lb , i.e. the timing offset is half of the symbol 

duration, the derivative in (2.25) is zero, and so is that in (2.24), thus we have an 
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extremum for the BEP when 2/Tl =τ . When 2/0 Tl << τ , the right-hand side of 

(2.25) is always positive, thus the sign of the right-hand side of (2.24) is always 

negative, which indicates the BEP will decrease as lτ  increases in this range. 

Similarly, when TT l << τ2/ , the BEP will increase as lτ  increases. From this sign 

change behavior of the BEP, we can conclude that the BEP for BPSK and QPSK have 

the maximum value when all CCI are synchronous with the desired user’s signal, and 

the minimum value when all CCI are half-symbol-duration delayed with respect to the 

desired user’s signal. Similar observations are given in the numerical results in [35] for 

the one-interferer case using selection combining. In our analysis we have proven that 

this result holds for multiple interferers and multiple combining diversity systems. 

 One direct application of the above finding is the upper and lower bounds of 

the BEP for BPSK and QPSK in nonselective Rayleigh fading channels with multiple 

asynchronous CCI using MRC diversity reception. By assigning the timing offsets of 

all the interfering signals to zero, i.e., assuming a synchronous CCI model, we obtain 

the upper bound on the BEP in the following simple closed-form 
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where for BPSK 1=a  and for QPSK 2/1=a . This result has the same form as the 

result in [3, 14.4.15] for BEP of binary PSK in Rayleigh fading channel with MRC 

diversity reception, except that in (2.26) the effective noise power is the combination 

of AWGN and CCI. This can be easily validated because for the synchronous CCI 

model, the interfering signals with the unknown fading gains can be viewed as a 

Gaussian noise source and thus combined with the AWGN in the receiver. The lower 

BEP bound for BPSK and QPSK is obtained when we assign all the interfering 
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signal’s timing offsets to half of the symbol duration, i.e., for one particular data 

sequence we have the conditional BEP  
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Using these results in (2.22) and (2.23), we obtain the lower bound on the BEP. 

 For systems using RC pulse and BTRC pulse, the analysis of the effect of 

timing offset on the BEP using the above procedure is rather complicated due to the 

cross-term ISI components involved from adjacent symbols. If we simplify the system 

model such that only the mainlobe of the pulse is considered as they contain most of 

the interfering signal’s energy, the analysis shown above for REC pulse shaping could 

be applied and we should expect to see the same results. However, such an assumption 

is only valid for large roll-off factors scenarios. For small or medium values of the roll-

off factors, the first pair of sidelobes, which takes the opposite sign of the mainlobe, 

could have an opposite effect on the BEP as the timing offsets between the CCI and 

the desired user varies, i.e., the BEP of the synchronous case could actually be the best 

while the half-symbol-duration delayed case is the worst. As the number of effective 

ISI symbols that has to be taken into consideration in a system using RC or BTRC 

pulse shaping increases, the analytical examination of the relation between the BEP 

and the timing offsets of the interfering signals becomes even more complicated, if not 

totally impossible. Therefore we turn to the numerical results calculated from (2.14) to 

(2.16) and (2.22) to (2.23) to examine this issue. 



 

 

34 

2. 5  Numerical Results and Discussion 

 We present here some numerical results. In Fig. 2.4 we plot the BEP as a 

function of the average SNR for BPSK signal with dual diversity reception using 

rectangular pulse shaping. One asynchronous interferer with 10 dB of interference-to-

noise-ratio (INR) has been assumed in this system and BEP curves associated with 

different timing offsets between the interferer and the desired signal are compared, 

where a noticeable difference can be observed. In Fig. 2.5 we plot the BEP as a 

function of the average SNR for QPSK signal with different INR levels. In both Fig. 

2.4 and Fig. 2.5, we present both analytical results and simulated results to verify the 

correctness of our derivation where good match can be observed.  

 In Fig. 2.6, we demonstrate the effect of higher order diversity, where 

substantial performance improvement is obtained. As we use an INR level of 15dB, 

the performance improvement is quite slim for SNR levels under 15dB as the CCI still 

has a power level comparable to that of the desired user. 

 In Fig. 2.7, we compare the BEP of the three pulses we considered in this work. 

It is obvious that the three pulses have the same BEP when the system is synchronized. 

This could be anticipated as the mathematical models for the three pulses reduce to the 

same if we set the relative delays of the interferers to zero in (2.5). However, with non-

zero timing offset between the interfering signal and the desired signal, the ISI in RC 

and BTRC pulse system degrades the performance when compared with REC pulse 

system. More specifically, RC pulse based system suffers more from ISI than BTRC 

pulse based system. An interesting phenomenon in this figure is that for higher order 

diversity systems, the performance of a synchronized system could be better than an 

asynchronous system for RC and BTRC pulse systems, which is in contrast with the 

conclusion we obtained for REC pulse based system. This result has also been 
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observed in the numerical result of [35]. For REC pulse, as our analytical derivation 

proves, the synchronous case always provides the worst error performance. 

 In Fig. 2.8 and Fig. 2.9, we plot the BEP as a function of the individual timing 

offsets for a two-interferer system. As we assume independent interfering signals, the 

overall minimum BEP is obtained when both interfering signals are half-symbol 

duration delayed from the desired signal. Again, it shows that the performance of the 

BTRC pulse is better than that of the RC pulse when the interfering signals are 

asynchronous with the desired signal.  

 In Fig. 2.10 and Fig. 2.11, we demonstrate the effect of the number of 

interferers on error performance for two scenarios – fixed INR level and fixed SIR 

level. In Fig. 2.10, it is not difficult to understand that when the INR level is fixed, 

increasing the number of interferers surely degrades the performance as it introduces 

more interference to the system. However, in Fig. 2.11, we find that when the total 

power of the interfering signals is fixed, splitting it among more interferers will 

slightly improve the error performance and this is true, of course only for the 

asynchronous system, as for synchronous system the CCI components are Gaussian, 

and thus, only the total CCI energy matters in the error performance.  

 Finally in Fig. 2.12, we plot the BEP as a function of the normalized timing 

offset for systems using RC and BTRC pulses with different roll-off factors. The 

results confirm our discussion at the end of the last section. For smaller roll-off factors, 

the behavior of the BEP when varying the timing offsets is the same as that of a 

rectangular pulse system. But for larger roll-off factors, the effect of the timing offsets 

is the opposite. 
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Figure 2.4 BEP vs. average SNR for different timing offset 

 

 

Figure 2.5 BEP vs. average SNR for different INR level 
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Figure 2.6 BEP vs. average SNR for different diversity orders 

 

 

Figure 2.7 BEP vs. normalized timing offset for different pulses with different 
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Figure 2.8 BEP vs. normalized timing offsets of a system using RC pulse 

 

 

Figure 2.9 BEP vs. normalized timing offsets of a system using BTRC pulse 
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Figure 2.10 BEP vs. number of interferers for different INR levels 

 

 

Figure 2.11 BEP vs. number of interferers for different SIR levels 
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Figure 2.12 BEP vs. normalized timing offset for different roll-off factors 
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2. 6  Summary 

 In this chapter, we derived exact results to evaluate the BEP of BPSK and 

QPSK with multiple asynchronous cochannel interferers in MRC diversity system. By 

looking into the effect of the CCI timing offsets, we find that for REC pulse based 

system the synchronous scenario is always the worst case as far as error performance is 

concerned, while the best performance is obtained when all the interfering signals are 

half-symbol-duration delayed with respect to the desired user. This enabled us to 

obtain the upper and lower bounds for the performance of an asynchronous CCI 

system in exact and explicit closed-form, which are new and easy to evaluate. Our 

analysis also confirms that with non-zero timing offset between the interfering signals 

and the desired signal, the performance of the BTRC pulse is better than that of RC 

pulse.  
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Chapter 3 

 

BEP of Differentially Detected DPSK in Nonselective 

Rayleigh Fading Channels with Multiple 

Asynchronous Cochannel Interferers 

 

In this chapter we investigate the BEP of binary and quaternary DPSK in 

nonselective Rayleigh fading channels with post-detection MRC diversity reception 

and with multiple cochannel interferers. After the introduction is given in Section 3.1, 

the system model is established in Section 3.2 together with the receiver/detector 

structure. In Section 3.3 we carry out the performance analysis. In Section 3.4 we 

study the effect of the asynchronous interferers’ timing offset on the BEP of the 

desired user. Numerical results and discussion are given in Section 3.5, and Section 3.6 

summarizes this chapter. 

 

3. 1  Introduction 

 The study in the previous chapter analyzes the performance of coherent PSK 

modulation in fading channels with cochannel interference. One of the assumptions 

made in the analysis is the availability of perfect CSI for the desired user’s signal. 

However, this is an impractical assumption because in reality certain channel 

estimation schemes must be adopted and estimation error is almost inevitable. The 

performance analysis results based on this assumption could only serve as a lower 
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bound for a communication system employing certain practical channel estimation 

schemes. In order to perform coherent detection in a practical system, certain channel 

estimation schemes must be adopted such as PSAM [58]. This would surely increase 

the complexity of the system. On the other extreme, the non-coherent detection scheme 

such as differentially encoded and detected PSK has been known for its simplicity and 

fair performance, and its performance could be considered as an upper bound where no 

channel information is needed at the detector. Therefore we are also interested to 

investigate the performance of DPSK modulation in fading channels with cochannel 

interference. 

 

3. 2  System Model 

 As in the previous chapter, we consider a system in which the DPSK signal 

received from the desired user over L independent, identical diversity branches is 

corrupted by K asynchronous CCI and AWGN. The complex baseband transmitted 

signal of the desired user is 

�
∞=

−∞=
−=

p

p
TD

pj
SDD pTtgeEts D )()(~ )(φ       

where T/1  is the symbol transmission rate and )(tgTD  denotes the impulse response 

of the transmitter pulse shaping filter of the desired user. The average energy per 

symbol for the desired user is SDE . The information symbol is now embedded in the 

phase difference between the two adjacent transmitted symbols 

as ( ) ( ) ( 1)D D Dk k kθ φ φ= − − . A reasonable assumption is that all interfering signals 

have the same modulation format as the desired user’s signal. Thus the baseband 

transmitted signal of the lth interfering user has the similar form 
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where SlE  is the average energy per symbol for the lth interfering user signal. We 

further assume that all the users use the same transmit pulse shaping filter. 

Consequently, we have )()( tgtg TTl =  for KDl ,,2,1, �= . 

 We assume that both the desired user’s signal and the interfering users’ signal 

undergo slow nonselective Rayleigh fading. At the receiver, the received signal from 

the ith diversity branch is 

)(~)(~)(~)(~)(~)(~
1

,, tntstctstctr i

K

l
lllilDiDi ++++= �

=
ττ     

where )(~
, tc iD  and )(~

, tc il  are the channel fading process of the ith diversity channel for 

the desired user and the lth interfering user respectively. The AWGN term )(~ tni  has 

zero mean and a double side PSD of 0N . At the receiver, the received signals are 

matched filtered and sampled at the symbol time of the desired user signal, assuming 

perfect symbol synchronization with the desired user’s symbol time. As we assume in 

general an asynchronous system, the lth interfering user’s signal may come after an 

arbitrary delay lτ  which is uniformly distributed within ),0[ T . After matched filtering 

and sampling, the discrete received signal at the input of the detector over the ith 

diversity channel, i=1,…,L, for the kth symbol interval [kT,(k+1)T] can be represented 

by a decision statistic )(~ kri  as [3 Sec9.2] 
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Here )(tg R  is the receive filter matched to the transmit filter such that the overall 

cascaded impulse response )()()( tgtgtg TR ∗=  without fading would be a pulse shape 

that fulfils the Nyquist criterion. Since )(tgT  is a unit-energy pulse, the peak 

amplitude of )(tgT  is 1. The received signal shown in (3.1a) is generally difficult to 

manage because of the integral terms. Therefore, we make a commonly adopted 

assumption that the fading processes affecting the desired and interfering signals 

change slowly enough so that they can be considered as constant during the effective 

length of the impulse response )(tg R  and )(tgT . Thus the fading process inside the 

integrand of (3.1a) could be approximated by its instantaneous value at the sampling 

time and could be factored out of the integral. The received signal at the detector input 

can now be written as, 

)(~)()(~)(~)(~
1

)(
,,

)( knpTgekcEkceEkr i

K

l

Pp

Pp
l

pkj
ilSliD

pkj
SDi

ld +−−+= � �
=

=

−=

−− τφφ     (3.1b) 

where )(~
, kc iD  and )(~

, kc il are the piecewise-constant approximations to the ith channel 

fading process during the kth symbol interval [kT, (k+1)T] for the desired user and the 

lth interfering user, respectively. It is obvious that in the presence of a non-zero 

symbol timing offset lτ , the effective interfering component comes from a sequence of 

transmitted symbols in a similar form as ISI. Since in general the Nyquist pulse 

shaping used in practical communication system has a fast decaying waveform, we 

could assume that the effective ISI components are composed of the nearest 12 +P  

symbols. For the case of nonselective Rayleigh fading channels with even power 

density spectrum, )(~
, kc iD and )(~

, kc il  are both complex Gaussian random variables 

whose quadrature components are iid Gaussian RVs, with mean zero, variances 

22
,2

1 ]|)(~[| cDiD kcE σ=   and 22
,2

1 ]|)(~[| clil kcE σ= , respectively, and autocorrelation 
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coefficients * 21
2( ) [ ( ) ( )] /D Di Di cDR q E c k c k q σ= −� �  and * 21

2( ) [ ( ) ( )] /l li li clR q E c k c k q σ= −� �  

respectively. We assume in general different power and different fade rates for 

different users because the interferers could be located in different distance from the 

desired user and they could travel at different velocity. The noise term )(~ kni  is the 

sampled output of the AWGN process after matched filtering from the ith diversity 

branch, which is a complex Gaussian random variable with mean zero and 

variance 2/])(~[ 0
2

2
1 NknE i = . 

We consider an independent diversity system where the received signals from 

the same user at different diversity branches have iid channel fading gains, i.e., for 

arbitrary ji ≠ , )(~ kcil  and )(~ kc jl  are iid, for KDl ,,1, �= . Also, the channel fading 

gains for different users are assumed to be independent, either at the same diversity 

branch or different ones, i.e., ( )ilc k� is independent of )(~ kc jh  for arbitrary hl ≠ . The 

noise components )(~ kni  from different diversity branches are assumed to be 

independent and identically distributed, and they are independent from channel fading 

gains of all the users from all diversity branches. 

The overall pulse shape )(tg we consider in this work are the three types 

considered in chapter 2, namely, triangular pulse, Raised-Cosine pulse and better-than-

Raised-Cosine pulse. 

 To detect the information symbol, a post-detection MRC receiver is utilized as 

shown in Figure 3.1. With equiprobable transmitted symbols, the differential detector 

computes the decision statistics  

L * 2 /
1

( )  Re[ ( ) ( 1) ]j m M
m i ii

q k r k r k e π−
=

= −� � � ,     
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and decides that the kth transmitted symbol is ( ) 2 /D k l Mθ π=  if 

{ } 1

0
( ) max ( )

M

l m m
q k q k

−

=
= . 

 

Figure 3.1 Receiver structure for DPSK 

 

3. 3  Performance Analysis 

 Based on the receiver structure in Figure 3.1, the BEP of binary and quaternary 

DPSK signal, conditioned on a set I of known transmitted symbols of all users and 

known timing offsets of all interfering users can be obtained from the probability 
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where α  is related to the information phase ( )D kθ  in determining the BEP and its 

specific value will be given later. Note that conditioned on the given set I, the received 

signal in each diversity branch is a summation of multiple independent CGRVs. 

Therefore, the received signals Ikri )(~  and ( 1)ir k I−�  are two correlated complex 

Gaussian random variables, each with conditional mean  
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[ ( ) | ] [ ( ) | ] 0i iE r k I E r k I= =� � ,     (3.3a) 

and conditional variance 
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 (3.3c) 

 Applying the same property for two correlated Gaussian random variables that 

leads to (2.9), we find that when conditioned on ( 1) j
i ix r k e α−= −� , )(~ kri  is 

conditionally Gaussian with conditional mean [56] 

,

, 1

[ ( ) ] (1) r k j
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E r k x R e xασ
σ −

=�      (3.4a) 

and conditional variance 

2 2 2
,

1
[ ( ) | ] (1 (1) )

2 i i r r kE r k x R σ= −�     (3.4b) 

where the one-symbol conditional autocorrelation coefficient of the received signal is 

defined as 

*
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Therefore we could rewrite the kth received signal as: 

,
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where ie  represents the uncertainty about )(~ kri  conditioned on ix . It is a complex 

Gaussian random variable with mean zero and variance equal to the conditional 

variance in (3.4b). Substituting this alternative representation of )(~ kri  into the decision 

statistic (3.2), we have 

,* 2

1 1, 1
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L L
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i ir k

r k r k e R e x Eα ασ
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 �
� �� �   (3.7) 

where  ]Re[
1

*� =
= L

i ii xeE . Following a similar derivation as that in chapter 2, it is 

straightforward to show that E is a real Gaussian random variable with mean zero and 

variance 2 2 2
, 1

(1 | (1) | ) | |
L

r r k ii
R xσ

=
− � . Since a Gaussian random variable is completely 

described by its mean and variance, the probability in (3.2) could now be written as 
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Defining � =
= L

i ixv
1

2
, it follows from [3] that v has a chi-square distribution with pdf 

given by 
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1
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, 1, 1

1
( ) exp[ ]

22 ( )

L
v L
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v
f v v

L σσ
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= −
Γ

.    (3.9) 

Averaging the conditional probability (3.8) over the p.d.f. of v  in (3.9), we get [3, 

eqn14.4-15] 
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 (3.10) 

 To calculate the bit error probability conditioned on a certain bit of the desired 

user’s data using the result in (3.10), we first need to average over all the possible 

patterns of the interfering users’ data. In doing this averaging, a reasonable assumption 

is that the dominant cross-term ISI contributions from the lth interfering signals are 

limited to some 2P+1 terms. Thus we have 

( ) (2 1)
 pattern

1
, ( ), ( , , ).D P KF k F

M φ
α θ τ α φ τ+

∀

= �     (3.11) 

 Finally, averaging the result over the distribution of every interfering user’s 

timing offset gives us the average BEP conditioned on a certain bit of the desired 

user’s data as 

( ) 1 2 1 2
0 0

, ( ) ( , , ) ( ) ( ) ( ) .
T T

D D K KF k F f f f d d dτ τ τα θ α φ τ τ τ τ τ τ τ= ⋅ ⋅ ⋅ ⋅� �� � �  (3.12) 

 From (3.10), it is obvious that the calculation of the BEP requires only the 

calculation of the key quantity (1)rR  which is defined through (3.5). When 

conditioned on the data sequence and timing offsets of the CCI, and assuming a 

rectangular pulse system, (1)rR  has the form 
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are three different functions of the symbol sequence and the timing offsets, 

0/S SDE NΓ = , 0/l SlE NΓ =  and ( ) ( ) ( 1)l l lk k kθ φ φ= − −  are the average SNR, 

average INR and the kth information symbol of the lth interfering signal, respectively. 

The structure of (1)rR  suggests that in general, for different combinations of α  

and ( )D kθ , the values of (1)rR  will be the different. With Gray encoding, the average 

BEP expressions for BDPSK and QDPSK can be obtained from (3.12) in a similar 

manner as in section 2.3. Thus we have 
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 (3.18) 

respectively. Comparing (3.17) and (3.18) with the result in [8], we see that the 

difference is that due to the existence of CCI, the error performance of the desired user 

becomes dependent on its transmitted symbol. 

 

3. 4  Effects of Symbol Timing Offsets 

3. 4. 1 Dependence of BEP on interfering signals’ timing offsets 

 Similar to the coherent PSK case in Chapter 2, we found that the calculation of 

the average BEP through (3.10)-(3.18) could be a timing consuming process for large 

numbers of interferers, due to the multiple integral in (3.12). Therefore we here study 

the effects of the interferers’ timing offsets on the BEP of the desired user. 

 We first consider the binary case and try to investigate how the error 

performance changes as the timing offsets between the desired and the interfering 

signals vary. For this purpose, we differentiate, without loss of generality, the 

conditional BEP ( , , )F α φ τ  in (3.10) with respect to an arbitrary interfering signal’s 

timing offset, say 1τ , while holding the rest of the K  interfering signals’ timing offsets 

fixed at arbitrary values, which have no effect on the behavior of 1τ  as we assume that 

they are all independent. By setting the derivative to zero, we can locate the timing 

offset that yields the largest/smallest BEP, while the sign of this derivative would 

indicate how the BEP would change when 1τ  varies within a symbol duration. For 
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BDPSK signal, the transmitted signal ( )D kθ  is either 0 or π , so (3.10) can be reduced 

to  
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The derivative of (3.19) is then 
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In order to simplify the analysis, we assume that the desired signal energy is greater 

than that of all the interfering signals combined, i.e., 
1

K

S ll=
Γ > Γ� , an assumption 

which is valid for most of the practical systems. This assumption, together with the 

relationship between α  and Dθ  in (3.17), ensures that (1)cos( ) 0rR α > . Thus in (3.20), 

the second term multiplying 1(1) cos( )rR α τ∂ ∂  is always negative, independent of the 

value of 1τ . Consequently, the sign of the derivative in (3.20) is given by the sign 

of ( )1(1) cos( )rR α τ−∂ ∂ . Using (3.13-3.16), for BDPSK we have 
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Now from (3.17) we know that in order to calculate the average BEP, we need to 

combine the case ( )0, ( ) 0D kα θ= =  and the case ( ), ( )D kα π θ π= = . Since 1 1( )T τ  and 

2 1( )T τ  are independent of α  and ( )D kθ , we find that upon substituting 

( )( ) 0D kα θ= =  and ( )( )D kα θ π= =  into (3.21) and combining, 1 1( )T τ  all the related 
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components will cancel out. Thus, the sign of the derivative (3.21) of the combined 

average BEP (3.17) is only dependent on the sign of  
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which is determined by the sign of { }2
1 1 1

( )m m
B τ τ

=
∂ ∂  as the rest are all positive 

components. From (3.15) and (3.16), it is easy to show that for 

{ }1 [0, / 2), / 2, ( / 2, )T T T Tτ ∈ , the signs of the term { }2
1 1 1

( )m m
B τ τ

=
∂ ∂  are either 

{ }0,0,0  or { },0,− + , for different data symbol sequences of the interfering signals. 

This allow us to conclude that the average BEP in (3.17) will decrease as 1τ  increases 

from 0, reach the minimum when 1 / 2Tτ = , and then increase as 1τ  increases till 

1 Tτ =  which is equivalent to 1 0τ = .  

 For QDPSK, the application of the above derivation is rather complicated 

because of the complex signal constellation involved. Thus numerical results are used 

to explore the relationship between the BEP and the timing offsets of the interfering 

signals, and it will be seen that the same behavior is observed as that of BDPSK. 

 For systems using RC pulse and BTRC pulse, the discussion follows the one 

given in Chapter 2 for coherent PSK systems. When the roll-off factor is large, the 

sidelobes are small and can be neglected, and therefore the above discussion (3.19-

3.22) should hold. 

 Based on the above discussion, the value of the coefficient (1)rR  that gives the 

maximum BEP for a system using the REC pulse is given by 

( )

1

1

(1) (1)
(1)

1

lD
K j kj

S D l ll
r K

S ll

e R e R
R

θθ
=

=

Γ + Γ
=

Γ + Γ +
�
�

    (3.23) 

and the value of (1)rR  that gives the minimum BEP is given by 
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 (3.24) 

Substituting these two values of the coefficient into (3.10), (3.11), (3.17) and (3.18), 

simple, explicit closed-form expressions for the upper and lower bounds on the BEP of 

DPSK signals in Rayleigh fading channels with asynchronous CCI and diversity 

reception are obtained. 

3. 4. 2 Dependence of BEP on transmitted symbols 

 As pointed out at the end of Section 3.3, due to the existence of CCI, the BEPs 

for different desired user’s transmitted symbols are different in general. This unequal 

error probability can be seen by comparing the expression of (1) cos( )rR α  for the 

synchronous case in (3.23) with the one for the general asynchronous case in (3.13-

3.16) or (3.24). Considering the BDPSK case, from (3.10), (3.17) and (3.23), when 

( )D kθ π=  is transmitted, the corresponding coefficient (1) cos( )rR α  will be identical 

to that obtained when ( ) 0D kθ =  is transmitted if a phase shift of π  is added to each of 

the interfering symbols. Since we assume that the desired signal and CCI use the same 

modulation scheme with equiprobable transmitted symbols, for an arbitrary sequence 

of symbols for the interfering signal, there is always another sequence of symbols with 

π  phase difference. As the average BEP is obtained by summing over all possible 

transmitted symbol sequences, the final BEP results for these two cases will be the 

same. However, when non-zero symbol timing offset exists, the numerator and 

denominator in (3.13) will have different values for the two cases of ( )D kθ π=  

and ( ) 0D kθ = . Such a phenomenon has only been observed for differentially detected 

DPSK. The reason is that the differential detector makes decision based on the phase 
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shift between the two successive symbols. With the presence of asynchronous CCI, 

each symbol of an interfering signal overlaps partially with two successive received 

symbols of the desired signal, helping to provide a coherent reference. Thus, the 

asynchronous CCI is sort of beneficial for the detection of the desired user’s symbol 

that is transmitted with no phase shift, but destructive for the detection of a symbol that 

has a large phase shift. The same behavior of symbol dependent BEP for DPSK with 

additive interference has also been observed in [59], [60]. 

 

3. 5  Numerical Results and Discussion 

 In this section we present numerical results to demonstrate the effects of timing 

offsets between the desired signal and the interfering signals, the SNR, the number of 

interferers, the number of diversity branches and the temporal fading fluctuation on the 

system BEP performance. In all the figures, we use the Jakes’ Doppler spectrum for 

the fading process, thus 0(1)  (2 )dR J f Tπ= , where 0 ( )J ⋅  is the zeroth order Bessel 

function of the first kind, and df T  is the normalized Doppler frequency. For simplicity, 

we assume that all interfering signals have equal powers and the same fade rate unless 

otherwise specified. For the case when the RC pulse or the BTRC pulse is used, we use 

a roll-off factor of 0.5α = , unless otherwise specified. 

 In Fig. 3.2 we plot the BEP as a function of average SNR for BDPSK with 

different timing offsets between the one interfering signal and the desired signal. The 

normalized Doppler frequency is set to be 0.03 which is equivalent of a fading 

autocorrelation coefficient of 0.99. This “fast” fading introduces an error floor in the 

BEP curves for the differential detector. Also demonstrated in this figure is that the 

interfering signal’s delay substantially affects the performance in high SNR scenario 

when the interference is the major source of detection error. 
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 In Fig. 3.3, we compare the performances of the three pulses with the same 

system parameters. Similar to the coherent detection case in Chapter 2, the 

performance of the three pulses are the same when the system is synchronized. When 

delay is introduced to the interferers, the RC pulse has the highest BEP while REC 

pulse has the smallest. However, unlike the odd behavior of the RC and BTRC pulses 

in Fig. 2.7 for coherent PSK, we found that the synchronous system always has the 

worst performance for all the three pulses through our extensive studies with different 

parameters. In Fig. 3.4 and Fig. 3.5, we present numerical results for the BEP as a 

function of timing offsets for a two-interferer system. The concave BEP surface proves 

that the minimum BEP is achieved when all interfering signals are half-symbol 

duration delayed. In Fig. 3.4, simulation results are given which agree well with our 

analytical results. In Fig 3.5, we demonstrate once again that the BTRC pulse has 

better performance than the RC pulse when the system is asynchronous.  

 Fig. 3.6 compares the BEP of systems using RC and BTRC pulses with 

different roll-off factors. Unlike what we observed in Fig 2.12, we found that the 

synchronous system always has the worst performance. 

 In Fig. 3.7 we compare two systems with the same total interfering power but 

different numbers of interferers. The result is similar to what has been observed in Fig. 

2.11, i.e., by splitting the same amount of energy into more interferers, the BEP of the 

desired user will slightly improve. Furthermore, unlike the coherent system, this 

behavior is also observed even when the system is synchronized. 

 In Fig. 3.8 and 3.9, we plot the BEP for different transmitted symbols. In Fig. 

3.8, where a QDPSK system is studied, we found that the BEP for transmitting symbol 

‘00’ which involves a zero phase shift is the smallest, while the BEP for transmitting 

symbol ‘11’ which involves a π  phase shift is the largest. In Fig. 3.9, similar results 
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are obtained for a two-interferer system. Also in this figure, we assume the two 

interferers have different energy (INR). It can be seen that the interferer with the larger 

INR affects the BEP of the desired signal more severely when its delay varies. 

 In the last two figures, we compare the effect of the fade rate of the desired 

signal with that of the interfering signal on the BEP of the desired signal. It is well-

known that a smaller fade rate, i.e., a larger fading autocorrelation, means a smaller 

BEP for the desired user, as demonstrated in Fig 3.10. However, Fig. 3.11 shows that 

when the interfering signals’ fading autocorrelation is larger, it actually slightly 

degrades the performance of the desired signal. 
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Figure 3.2 BEP vs. average SNR for different timing offset 

 

 

Figure 3.3 BEP vs. normalized timing offset for different pulse shape and 

different diversity orders 

0 3 6 9 12 15 18 21 24 27 30
10

-4

10
-3

10
-2

10
-1

2DPSK SIR=15dB L=3 K=2 fdT=0.03

average SNR  (dB)

B
E

P

τ=0, 0.1, 0.3, 0.4, 0.5

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

2DPSK SNR20 INR10 fdT=0.03

τ

B
E

P

L=1 

L=2 

L=3 RC, BTRC, REC

 



 

 

61 

 

Figure 3.4 BEP vs. normalized timing offset for two-user system with rectangular 

pulse shaping, both analytical and simulated 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

τ1

analytical L=3 SNR=20dB INR=10dB fdT=0.03

τ
2

B
E

P

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-3

10
-2

10
-1

τ1

simulation L=3 SNR=20dB INR=10dB fdT=0.03

τ
2

B
E

P

 



 

 

62 

 

Figure 3.5 BEP vs. normalized timing offset for two-user system with RC pulse 

and BTRC pulse 
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Figure 3.6 BEP vs. normalized timing offset for different roll-off factors 

 

 

Figure 3.7 BEP vs. normalized timing offset for different pulses with different 

number of interferers but the same total interfering power 
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Figure 3.8 BEP vs. normalized timing offset for different pulses with different 

transmitted data symbols 

 

Figure 3.9 BEP vs. normalized timing offset with different transmitted data 

symbols 
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Figure 3.10 BEP vs. fading autocorrelation of the desired signal 

 

 

Figure 3.11 BEP vs. fading autocorrelation of the interfering signal 
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3. 6  Summary 

 In this chapter, we derived the exact BEP results for BDPSK and QDPSK with 

multiple asynchronous cochannel interferers in a post-detection MRC diversity system. 

By examining the effect of CCI synchronism, we find that for the REC pulse based 

system the synchronous scenario is always the worst case as far as error performance is 

concerned, while the best performance is obtained when all the interfering signals are 

half-symbol-duration delayed with respect to the desired user. This enabled us to 

obtain the upper and the lower bound on the error performance of the asynchronous 

CCI system in exact and explicit closed-form, which are new and easy to evaluate. Our 

analysis also confirms that with non-zero timing offset between the interfering signal 

and the desired signal, the performance of BTRC pulse is better than that of RC pulse. 

Although not analytically proven, we find from the numerical results that unlike the 

coherent PSK case, for systems using RC and BTRC pulses, the effect of the 

interfering signal’s timing offset is similar to that of a system using REC pulses. 
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Chapter 4 

 

Transmit-Receive Diversity System with PSAM 

 

 In this chapter we study a Transmit-Receive (Tx-Rx) diversity system for PSK 

and binary orthogonal signaling with a practical channel estimation strategy, and 

examine the error performance. An introduction of the current research progress in this 

area and the motivation of our work are given in Section 4.1. In Section 4.2 we 

describe the multi-input-multi-output (MIMO) channel model and the pilot-symbol-

assisted-modulation (PSAM) scheme for our work. In Section 4.3 we derive the system 

structure for PSK modulation and analyze its performance. In Section 4.4 we modify 

the channel estimation strategy for binary orthogonal signaling and analyze its 

performance. The difference between the two modulation schemes is addressed. The 

impact of this difference on the design of the transmission and detection strategy for 

binary orthogonal signal is also discussed. In Section 4.5 numerical results for the 

performance of the two modulations are presented, and discussions regarding system 

optimization are given. Section 4.6 summarizes the chapter. 

 

4. 1  Introduction 

 Recently, it has been recognized that the use of diversity at the transmitter in 

addition to conventional diversity at the receiver can further reduce the severe effects 

of fading and improve the system performance. Analogous to Maximum Ratio 

Combining (MRC) for receive diversity, the concept of Maximum Ratio Transmission 
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(MRT) for transmit diversity is summarized in [44]. The performance analysis of the 

Tx-Rx diversity system based on the MRT-MRC structure can be found in [45]-[49]. 

However, one of the crucial requirements that have been assumed in all these works is 

the availability of ideal channel state information (CSI) at the receiver for every 

transmitter-to-receiver link. In a practical system the CSI can only be measured with a 

certain channel estimation scheme which inevitably will suffer from estimation errors. 

Therefore, it is important to consider a more realistic system in which the CSI is 

obtained through a practical channel estimation scheme, and the system should be 

optimized according to this particular channel estimation scheme, instead of 

optimizing the structure based on theoretical error-free channel estimation. 

 In next section we start our development of a practical channel estimation 

scheme for transmit-receive diversity by considering PSK modulation first. 

 

4. 2  System Model 

4. 2. 1 Channel Model 

 

Figure 4.1 Transmitted frame structure 

 We consider a diversity system with TL  transmit and RL  receive antennas. To 

estimate the CSI for all the transmitter-to-diversity links, a PSAM scheme is proposed 

and the corresponding frame structure is shown in Fig. 4.1. Without loss of generality, 

we consider the frame starting from the first symbol at time k=1. During the pilot 

    D 
1P  2P  … 

LTP  D D … D 
1P  1P       

 

k=1 k= TL +1 

One frame 

FL  
D: data 

iP : ith pilot 



 

 

69 

session of each frame, each transmit antenna transmits a pilot symbol at its own 

designated time slot, e.g., the jth transmit antenna will transmit the pilot PSK-type 

symbol during the jth transmission time slot, while the rest of the transmit antennas 

remain silent until their turns come. At the receiver, based on the known pilot symbol, 

the ith receive antenna will produce, from the received noisy signal, an estimate of the 

channel gain , ( )i jc j�  which represents the transmission link between the jth transmit 

antenna and the ith receive antenna. After the pilot session, the kth data symbol ( )s k�  is 

weighted by a complex weight ( )jw k�  at the jth transmit antenna and sent to the 

receiver. The objective of this weight is to pre-compensate for channel fading at the 

transmitter in such a way that the receiver’s performance is enhanced. After matched 

filtering and sampling at the ith receive antenna, we obtain the received signal sample 

for the kth symbol transmitted, and this is given by 

1

( ) ( ) ( ) ( ) ( )
TL

i ij j i
j

r k c k w k s k n k
=

= +�� � � � � .      (4.1) 

The kth transmitted data symbol is )()(~ kj
S eEks φ= ,  where SE  is  the average data-

symbol energy, and phase { }( ) 2 / ; 0,1,..., 1k m M m Mφ π∈ = − is the information 

bearing phase. The AWGN term )(~ kni  from the ith receive antenna is a complex 

Gaussian random variable (CGRV) with mean zero and variance 0N . We assume all 

the channels undergo slow nonselective Rayleigh fading. Therefore the channel fading 

gains are CGRVs with mean zero and autocorrelation * 21
, ,2 [ ( ) ( )] ( )i j i j c cE c k c k q R qσ− =� �  

where 1)0( =cR . In this work we assume a Jake’s model where )2()( 0 TqfJqR dc π=  

with )(0 xJ  being the zeroth order Bessel function of the first kind and df  being the 

maximum Doppler shift. However, we like to emphasize that the analysis is also 

applicable to other fading autocorrelation models. The channel fading processes in 
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different links are assumed iid, i.e., 0)](~)(~[ *
,, =kckcE tsji if si ≠ or tj ≠ , and the 

AWGN are independent of all the channel fading processes. Such a channel model is 

also widely used for MIMO system where different transmit antennas transmit 

different symbols of one user or transmit multiple users’ data. It is convenient to 

express the received signals from all the receive antennas in vector/matrix form as 

( ) ( ) ( ) ( ) ( )k k k s k k= +r C w n�       (4.2a) 

where 

1 2( ) [ ( ), ( ), , ( )]T
LRk r k r k r k=r � � ��      (4.2b) 

is the received signal vector,  

1 2( ) [ ( ), ( ), , ( )]T
LTk w k w k w k=w � � ��      (4.2c) 

is the transmit weight vector,  

11 12 1,

21

,1 ,

( ) ( ) ( )
( )

( )

( ) ( )

LT

LR LR LT

c k c k c k

c k
k

c k c k

� �
� �
� �=
� �
� �
� �

C

� � ��

� �

� �

� ��

    (4.2d) 

is the channel fading matrix and  

1 2( ) [ ( ), ( ), , ( )]T
LRk n k n k n k=n � � ��      (4.2e) 

is the noise vector.  

4. 2. 2 Channel Estimation 

 With the PSAM channel estimation scheme described earlier in this section, the 

receiver produces 

( )*
,

1

ˆ ( ) ( , ) ( )
P

i j ij i F
l

c k h l k r l P L j
=

= ⋅ − ⋅ +� � � ,    (4.3) 

as the estimated version of the channel gain )(~
, kc ji  from the P nearest pilot symbols 

using the Wiener filter based interpolator 
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( ) (1, ), (2, ), , ( , )
T

ij ij ij ijk h k h k h P k� �= � �h � � ��     (4.4) 

where ),(
~

, klh ji , 0,1,...,1l P= −  are the filter coefficients. Letting 

[ ][ (1 ) ], [ (2 ) ], , [ ( ) ]
T

pij i F i F i Fr L P j r L P j r L P P j= − + − + − +r � � �� , (4.5) 

be the received pilot samples, then the estimated channel fading gain is 

,ˆ ( ) ( )H
i j ij pijc k k= h r .       (4.6) 

Based on Wiener filter theory, the optimum filter that minimizes the mean square error 

(MSE) is [58] 

1( ) ( )ij ijk k−=h G v        (4.7) 

where 
1
2

H
pij pijE � �= ⋅� �G r r  is the P P×  autocorrelation matrix of the pilot vector whose 

(s,t)th entry is 

2

2
0

[| | ]
( , )

            
P c c F

P c

E R s t L s t
g s t

E N s t

σ
σ

� − ≠
= 	 + =


     (4.8) 

and *
,

1
( ) ( )

2ij i j pijk E c k� �= ⋅� �v r� is the 1P ×  covariance vector whose sth entry is 

2( , ) [ ( ) ]ij P c c Fv k s E R k s P L jσ= − − − .    (4.9) 

The estimated channel gain in (4.3) can now be rewritten as 

1
,ˆ ( ) ( )( )H H

i j ij pijc k k −= v G r       (4.10) 

It is a complex Gaussian random variable with mean zero and variance  

2 2 1
ˆ

1 ˆ( ) | ( ) | ( ) ( )
2

H
cij ij ij ijk E c k k kσ −� �= =� � v G v .      

The resultant estimation error, , , ,ˆ( ) ( ) ( )i j i j i je k c k c k= −� � , is also a zero mean complex 

Gaussian random variable, and it has the smallest possible variance of  
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2 2
, ,

2 1

1 ˆ( ) | ( ) ( ) |
2

( )( ) ( )

eij i j i j

H H
c ij ij

k E c k c k

k k

σ

σ −

� �= −� �

= − v G v

�
     (4.11) 

 It is important to point out that in our proposed PSAM scheme, only pilot 

symbols received before the data session of the current frame are utilized to estimate 

the channel, or more precisely, to predict the channel; see (4.5). This is because the 

receiver needs to feed back either the estimated channel gains or the optimized 

transmit weights so that the transmitter can pre-compensate for the fading effects 

during the data transmission phase in each frame. For this reason, “future” pilot 

symbols cannot be utilized in our system for CSI feedback. However, during the data 

detection phase, the receiver can utilize future pilot symbols to further suppress the 

residual fading effect in the pre-compensated signal, just like in a conventional PSAM 

receiver.  

 It is also worth noting that although we index the variance of the estimated 

channel gain and that of the corresponding estimation error with both i  and j, their 

values for different indices i and j are determined by the value of ( )ij kv  which only 

depends on the j index. Therefore both 2
ˆ ( )cij kσ  and 2 ( )eij kσ  shown above also depend 

on the index j only. More specifically, the variance of the estimation error varies across 

the transmit array direction with )()( 22 kk eileij σσ >  if l j> , but remains the same across 

the receive array, i.e., )()( 22 kk eljeij σσ = . This is because in our proposed PSAM system 

the pilot from different transmit antennas are transmitted at different time during the 

pilot session while the observation of pilot symbols at the receiver is simultaneously 

made at all receive antennas. 

 

 



 

 

73 

4. 3  PSK System 

 Having described the MIMO channel model and the channel estimation 

strategy, in the following, we derive the optimum receiver structure which exploits the 

characteristics of the PSAM scheme proposed in last section. Unlike those previous 

works on Tx-Rx diversity system design where a MRC receiver structure is presumed 

and the transmitter structure is obtained in order to maximize the instantaneous signal-

to-noise ratio (SNR), we derive the optimum receiver structure based on the ML 

detection principle, and derive the optimum transmit strategy that minimizes the 

instantaneous error probability. In this way, our approach may lead to different 

transmit and receive weighting schemes other than the standard results obtained earlier 

in related works. 

4. 3. 1 Receiver Design 

 Based on the estimated channel matrix 
,

1, 1
ˆ ˆ( ) ( ) R TL L

ij i j
k c k

= =
� �= � �C , and assuming that 

the transmit weighting vector is known for the moment, the received signal during the 

kth symbol interval could be written as 

( ) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

effective signal effective noise

k k k s k k

k k s k k k s k k

= +

= + +

r C w n

C w E w n

�

� �
������� ���������

   (4.12) 

where 
,

1, 1
ˆ ( ) ( ) R TL L

ij i j
k e k

= =
� �= � �E �  is the channel estimation error matrix. The optimum 

combiner first calculates the likelihood of the received signal, conditioned on the 

estimated channel matrix and the transmit weight vector, for all possible value of the 

transmitted symbol Mlj
Sl eEks /2)(~ π= , 1,,1,0 −= Ml � , according to  
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where ,1
ˆ( ) ( ) ( )TL

i i j jj
H k c k w k

=
=�� �  is the effective channel fading gain seen by the ith 

receive antenna, and 
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   (4.14) 

is the variance of the effective noise in the ith receive antenna which is identical for 

different indices i. The ML detector chooses )(~ ksq  as the detected symbol if it has the 

largest likelihood. Since the first factor in (4.13) is irrelevant to the hypothesis )(~ ksq , 

the maximization of (4.13) is equivalent to the maximization of the term 

*ˆRe ( ) ( ) ( ) ( )H H
lk k k s k� �

� �w C r � . At this point, it becomes obvious that the optimum 

receive weight vector is 

ˆ( ) ( ) ( )H Hk k k=f w C        (4.15) 

In other word, our receiver is identical to a conventional MRC receiver except that the 

channel fading matrix is replaced by the estimated channel matrix.  
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 With the optimum receiver structure determined above, our next step is to 

study the error performance for a given transmit weight vector ( )kw , and derive the 

optimum transmit weighting strategy. 

4. 3. 2 Performance Analysis 

 Conditioned on the channel estimation matrix ˆ ( )kC  and the transmit weight 

vector ( )kw , we can derive the BEP expression of the optimum receiver derived in the 

last section with BPSK and QPSK signaling. Using an approach similar to that in 

Chapter 2 for coherent PSK, we found that the conditional BEP is related to the 

conditional probability  

( )
(

)
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ˆ ( ), ( )

1 2
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 (4.16) 

where ˆ ˆ( ) ( ) ( ) ( ) ( ) cos( )H HD k k k w k s k α= w C C �  is a constant when conditioned on ˆ ( )kC  

and ( )kw . The effective noise due to AWGN and the channel estimation error are 

defined as 1
ˆ( ) ( ) ( ) ( )H H jk k k n k e αη = w C  and 2

ˆ ˆ( ) ( ) ( ) ( ) ( )H H jk k k k s k e αη = w C E w � , 

which are two independent circular symmetric complex Gaussian random variables 

with mean zero and variances 
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Based on these statistics, (4.16) can be calculated as 
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  (4.17) 

where ˆ ˆ( ) ( ) ( )Hk k k=A C C  is a Hermitian matrix, and { }2
0( ) ( )S eijk diag E k Nσ= +B , 

1, 2, , Tj L= �  is a real diagonal matrix. In arriving at (4.17), we make use of the 

constraint 1|)(~| 2 =� TL

i i kw  on the total transmitted power.  

 From (4.17), it is obvious that in the presence of channel estimation errors, 

which have non-identical variances along the transmit array, the optimum transmit 

weight vector that minimizes the BEP is the one that maximizes the argument of the 

Q-function, which is the ratio of two quadratic forms. According to [61, Theorem 

2.4.7], this ratio is bounded by the largest and the smallest eigenvalues of 1 ( ) ( )k k−B A  

and the maximum value is attained when ( )kw  is chosen to point in the same 

direction as the principal eigenvector1 of 1 ( ) ( )k k−B A . This result gives us the 

optimum transmit weighting strategy that minimizes the error probability of the 

                                                
1 The principal eigenvector is the eigenvector corresponds to the largest eigenvalue of the matrix.  
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system. It is worth noting that in order to allow the transmitter to transmit the data 

symbols using the optimum transmit weights, either the channel estimates or the 

weights themselves have to be fed back to the transmitter instantaneously and correctly, 

which is quite an idealistic assumption. In general, the quality and frequency of the 

feedback information will definitely affect the overall performance of the Tx-Rx 

diversity system. However, this issue is not the focus of this investigation. For 

references on the impact of imperfect feedback, one can refer to, for instance, [62]. 

Another note is that as indicated at the end of Section 4.2, the data detector should 

utilize pilot symbols before and after the data symbol under detection to “remove” the 

residual fading effects in the pre-compensated signal. In such a system, the optimum 

transmit weights derived above is, strictly speaking, no longer optimal. We will 

demonstrate later that using “future” pilot symbols during the data detection phase can 

substantially improve the performance of the proposed system. Next, we examine the 

performance of our proposed PSAM Tx-Rx diversity system. 

 From matrix theory, we know that the eigenvalues of the product of two 

matrices X  and Y  are actually the roots of the determinantal equation 

| | 0λ− =XY I ,         

or equivalently the roots of 

1 1 1 1
2 2 2 2| | | | | | | | 0λ λ− −⋅ − ⋅ = − =X XY I X X YX I ,     

if 
1
2| | 0− ≠X and

1
2| | 0≠X . Applying this relation to our case, it follows that the 

eigenvalues of 1( ) ( )k k−B A  will coincide with the eigenvalues of 

1 1 1 1
2 2 2 2ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )Hk k k k k k k− − − −=B A B B C C B      

for every realization of ˆ ( )kC . Since ( )kB  is deterministic, we can conclude that the 

statistical distributions of the eigenvalues of 
1 1
2 2ˆ ˆ( ) ( ) ( ) ( )Hk k k k− −B C C B and 1 ( ) ( )k k−B A  
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are identical. Here, we assume all these eigenvalues are nonzero which is valid when 

the square matrix 
1 1
2 2ˆ ˆ( ) ( ) ( ) ( )Hk k k k− −B C C B  has full rank. Thus our following analysis 

is valid for the case when RT LL ≤ . However, this assumption is made only for the 

purpose of performance analysis. The optimum transmit weighting strategy discussed 

above is valid for arbitrary values of TL  and RL . We will have more to say about this 

later after we have finished the performance analysis. Since ( )kB  is a real diagonal 

matrix, we can rewrite the matrix of interest as 

1 1
2 2ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )H Hk k k k k k k− − = =B C C B Z Z W      

where 
1
2ˆ( ) ( ) ( )k k k −=Z C B  is the weighted version of the channel estimation matrix. 

Thus, )(~
, kz ji , the ( ,  )i j th entry of ( )kZ , is a complex Gaussian random variable with 

zero mean and a variance 

( )
2

2
, 2

0

ˆ ( )
( )

( )
cij

zi j

S eij

k
k

E k N

σ
σ

σ
=

+
.     (4.18) 

For our proposed PSAM scheme, both 2
ˆ ( )cij kσ  and )(2 keijσ  vary along the transmit 

array index, but remain identical along the receive array index. Thus ( )HkZ  satisfies 

the description of eqn.78 of [63] whose columns can be viewed as samples of 

correlated complex Gaussian random variables with covariance matrix 

{ }2
, 1, ,( )

Ti zi j j Ldiag σ == =� � � . Consequently, the joint pdf of the ordered eigenvalues 

1[ , , ]
TLλ λ=� �  of ( )kW with 

TLλλλ ≥≥≥ �21  is given by 
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where 1[ , , ]
TLx x=x �  is a dummy variable vector, ),(

~
00 baF  is the hypergeometric 

function with matrix arguments, and 1( )xV  is the Vandermonde matrix [64, p.29].  

 As mentioned earlier, we only concentrate on the case where the diversity order 

at the receiver side is equal to or greater than that at the transmitter side T RL L≤ . This 

is because only for this case the square matrix ( )kW  has full rank and consequently its 

eigenvalues will all be non-zero. In another case when T RL L> , the square matrix 

( )kW  is not full-ranked and contains T RL L−  zeros eigenvalues. Unfortunately, the 

distribution of the eigenvalues of ( )kW is unknown for this case. Thus our 

performance can only be done for the first case at the moment.  

 Using the alternative form of the hypergeometric function with matrix 

arguments as in [65], we have 
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  (4.19) 

where 

2 2 2
, ,2 ,1( ) [ ( ), , ( ), ( )]

Tz zi L zi zik k k kσ σ σ=� � ,      

( ) 2 2 2
2 1 , ,2 ,1( ) ( [ ( ), , ( ), ( )])

Tz zi L zi zik k k kσ σ σ− − −≡ −V � V � ,     

)(kT  is the part that does not depend on x , and 
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. Consequently we can calculate the pdf 

of the largest eigenvalue by averaging (4.19) over all the other eigenvalues as 
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where the integration range is 1 2 1{ 0 }
T TL Lx x x xλ +Ξ = = ≥ ≥ ≥ ≥ =	 . Using the 

definition of matrix determinants in [65, eqn.37] and following a similar procedure that 

leads to Corollary 2 of [65], we find the integral above can be calculated as  
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which gives us 
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= ⋅� G       (4.20a) 

where ( , )q k λG  is a matrix with its (s, t)th element given by 
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�

. (4.20b) 

 From (4.17), we see that with the optimum transmit weight vector, the 

conditional BEP attains the minimum value of ( )2( , ) cos ( )SF k Q Eλα λ α= . The 

average BEP could now be calculated by averaging ( )2( , ) cos ( )SF k Q Eλα λ α=  

over the pdf of λ in (4.20) as 

( ) max

2

0

( , ) cos ( ) ( )SF k Q E p dλα λ α λ λ
∞

= � .    (4.21) 

 In principle, we can use (4.20) and (4.21) to express the average BEP in closed 

form for an arbitrary number of the transmit antennas. However, the determinants of 

the matrices in (4.20) are difficult to manipulate in general, except for the case where 

the square matrix ( , )q k λG  has a dimension of 2 2× , which corresponds to the case 

when 2TL = . Therefore, we will use symbolic mathematical tools to calculate the 

BEP for higher order transmit diversity systems. For the simple case of a dual-transmit 

( 2TL = ) and RL -receive diversity system ( 2RL ≥ ), the derivation of the closed form 

BEP result is summarized below, starting with the distribution of the largest 

eigenvalue in (4.20): 
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 (4.22) 

Substituting this distribution into (4.21) and using the result in (2.14), we have 
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where for notation simplicity we have defined 
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 (4.23b) 

where 2cos ( )Sa E α≡ . Similar to the case of Coherent PSK and Differential PSK, the 

average BEP can be calculated from (4.23) as 2 ( ) ( 0, )DPSKP k F kα= =  and 

4 ( ) ,
4DPSKP k F k
πα� �= = �

� �
. As it is well-known that the quality of the estimated 

channel gain for a given data symbol using pilot-symbol based channel estimation 

scheme is dependent on the time distance between the concerned data symbol and the 
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pilot symbols, the average BEP should be obtained by averaging the above BEP over 

the whole data session in one frame as 
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e e
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p p k
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α α
= +

=
− � .    (4.24) 

 

4. 4  Binary Orthogonal Signaling 

 Throughout the limited available results on performance analysis for Tx-Rx 

diversity system, PSK seems to be the only modulation scheme considered so far. 

When perfect channel estimation is available, orthogonal signaling is known to have 

inferior performance compared with PSK. However, in a practical communication 

system, a certain channel estimation strategy such as PSAM must be adopted in order 

to coherently detect PSK signals, which would reduce the data rate and the SNR and 

also introduce some performance loss in “fast” fading environment. On the other hand 

for orthogonal signals, the detection could be done “non-coherently” without any 

additional channel estimation strategy, so no data rate reduction would be incurred. In 

this section we apply the proposed PSAM channel estimation scheme to binary 

orthogonal signaling, and discuss its feasibility and performance. 

4. 4. 1 Implicit PSAM Scheme 

 For a system using binary orthogonal signaling, the transmitted signal in 10 ss -

space is given in vector notation as 
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where SE  is the energy per bit, and 0s  and 1s  are the orthonormal basis vectors. An 

alternative interpretation of the orthogonal signal constellation in a rotated coordinates 

is demonstrated in [4, Fig.1] which we include in Fig. 4.2 for completeness. In the 

rotated coordinates, the orthogonal signal can be seen as an antipodal signal plus an 

unmodulated component that exists in both basis signals. This unmodulated 

component actually provides channel reference in a conventional quadratic receiver 

which leads to a coherent detection interpretation for conventional “non-coherent 

detection”. Therefore, no additional pilot symbols are needed for orthogonal signals to 

provide channel estimation. With this feature of orthogonal signals, we set up the 

following PSAM scheme for a Tx-Rx diversity system. 

 

Figure 4.2 Binary orthogonal signals in rotated coordinates 

 The implicit PSAM (IPSAM) frame structure is similar as for PSK which is 

shown in Fig. 4.1. The major difference here is that the “pilot” session is composed of 

data symbols instead of known training symbols. The channel estimation is achieved 

by the unmodulated component of orthogonal signals, therefore the pilot-symbols we 

are referring here is not actually pilot symbols and we denote this scheme “implicit” 
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PSAM scheme to distinguish it from the conventional PSAM (CPSAM) scheme. These 

estimated channel state information are then used to predict the channel gain for the 

data session, which is then used to optimize the transmit weights to pre-compensate for 

the fading. Here one should be reminded that although this IPSAM scheme provides 

full transmission rate, its estimated channel gain is less accurate than that of PSAM-

PSK with the same SNR level, because the unmodulated component has only half of 

the symbol energy. 

 Now consider a system employing TL  transmit and RL  receive antennas. 

Without loss of generality, we consider the frame starting from time instance 1k = . 

During the pilot session of each frame, each transmit antenna transmits a pilot symbol, 

which is also an information bearing data symbol, at its own designated time slot, e.g., 

the jth transmit antenna will transmit symbol lSPp Ej ss =)( , 0 or 1l = , during the jth 

transmission time slot, while all the rest of the transmit antennas remain silent. At the 

receiver, based on the received symbols and using the interpretation from [4], the ith 

receive antenna will produce an estimate of the channel gain )(~
, jc ji  from the 

unmodulated component, for the transmission link between the jth transmit antenna 

and the ith receive antenna. After the pilot session, the kth data symbols are weighted 

by complex weights )(~ kw j  at the jth transmit antenna and sent to the receiver where 

the weights should be optimized, as will be shown later, to minimize the error 

probability. After correlating with the basis signal, the received signal from the ith 

receive antenna during the kth symbol duration can be written as 

0
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1
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where SPE  and SDE  denote, respectively, the energy of the transmitted symbol during 

the pilot session and the data session, and T
iii knknk )](~),(~[)(~
10=n is the AWGN vector 

with mean zero and covariance matrix 1
02 [ ( ) ( )]H

i iE k k N=n n I� � . As we assume 

independent and identically distributed nonselective Rayleigh fading channels for all 

the transmission links, the channel fading gains are therefore, iid CGRVs with mean 

zero and autocorrelation * 21
2 [ ( ) ( )] ( )ij st c c is jtE c k c k q R qσ δ δ− =� �  where 2

cσ  is the power 

of the channel fading process, abδ denotes the Kronecker delta function and )(qRc is the 

channel autocorrelation coefficient.  

 The channel estimation process for the data session is based on the CSI 

extracted from pilot symbols using a Wiener filter as in Section 4.2. From the 

interpretation demonstrated in Fig. 4.2, we form the pilot symbol vector as 

  { }0 1 1
( ( ) ) ( ( ) )

P

pij i F i F s
r L s P j r L s P j

=
� �= − + + − +
� �

r � � .  

The channel estimate )(ˆ kcij  is then generated as 

  ˆ ( ) ( )H
ij ij pijc k k= ⋅h r        

  

where the optimum filter coefficient vector that minimizes the MSE is given by 

1 ( )ij ij k−= ⋅h R v .       (4.27) 

The pilot sequence covariance matrix R and the cross correlation vector )(kijv  are 

defined in a similar manner as in the case of PSAM-PSK scheme. Thus the (s, t)th 

entry of R is given by 
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R � �

� �    (4.28) 

and the sth entry of )(kijv  is 

*
0 1

1
( , ) [ ( ) { ( ( ) ) ( ( ) )}]

2
[ ( ) ]

ij ij i F i F

c F SP

k s E c k r L s P j r L s P j

R k L s P j E

= ⋅ − + + − +

= − − −

v � � �
.  (4.29) 

Comparing (4.28) with (4.8), we find that the channel estimate provided by binary 

orthogonal signals has twice the amount of noise compared to that of PSK pilot 

symbols. Therefore, the estimation quality of using the unmodulated component of 

orthogonal signal is worse than using a known pilot symbol. The channel estimation 

error from the above scheme is  

)(ˆ)(~)(~ kckcke ijijij −=        (4.30) 

which is a complex Gaussian random variable with mean zero and variance 

2 2 2 11
( ) [| ( ) | ] ( ) ( )

2
H

eij ij c ij ijk E e k k kσ σ −= = − v R v� .   (4.31) 

Now we can rewrite the received signal during the data session as 

������ ������� ������ ����� ��
Noise Effective

)(~)(~)(~)(

Signal Effective

)(~)(ˆ)()(~
11

kkwkekEkwkckEk i

L

j
jijlSD

L

j
jijlSDi

TT

nssr ++= ��
==

. (4.32) 

The effective noise vector is a complex Gaussian vector with independent but non-

identical components. It is trivial to show that for all i, the effective noise vector 

conditioned on hypothesis l has zero mean, and a covariance matrix given by 
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2 2
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where 

2 2
00 11 01

( ) ( ) | ( ) | ( )TL

N N SD j eijj
k k E w k k Nφ φ σ

=
= = +� �    (4.33b) 

and 

01 10 0( ) ( )N Nk k Nφ φ= = .      (4.33c) 

 Having specified the IPSAM scheme in detail and obtained all the necessary 

parameters, next we discuss the receiver structure.  

4. 4. 2 Feasibility of Generalized Quadratic Receiver  

 In the previous part of our proposed Tx-Rx diversity system with PSAM for 

PSK, the detection is based on channel estimation from the pilot symbols. For 

orthogonal signaling, as we have discussed earlier, the received signal itself contains a 

hidden unmodulated component that could be considered as a “virtual pilot”. Inspired 

by this idea, in [66], it has been shown that the implementable version of the optimum 

symbol-by-symbol detector for orthogonal signaling in fading channel is actually a 

generalized quadratic receiver (GQR) that utilizes the unmodulated components of the 

adjacent received symbols as well for channel estimation. By exploiting the fact that 

the fading process is temporally correlated while the noise is temporally white, this 

GQR can refine the channel estimation from the unmodulated component in the same 

way a conventional PSAM channel estimator does. The performance of the GQR is 

then very close to that of a coherent detector with ideal channel estimation. Therefore, 

it is interesting to examine the feasibility of GQR to our proposed PSAM Tx-Rx 

diversity system. 
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 With the received signal given in (4.26), in order to detect the kth transmitted 

symbol, first the receiver need to form a virtual pilot sequence for the ith diversity 

branch using the unmodulated components of the 2 1L +  nearest received symbols, 

with the kth symbol in the middle. This virtual pilot sequence is given by 

{ }0 1( ) ( ) ( )
L

pi i i q L
k r k q r k q

=−
� �= + + +
� �

r � � .      

Then similar to (4.3-4.10), channel estimation filters that exploit the channel fading 

autocorrelation property are utilized to estimate the channel gain for the kth symbol 

duration. In a conventional receive diversity system, the channel fading autocorrelation 

function could be assumed time invariant and known to the receiver, for example, a 

Jakes’ fading power spectrum is assumed in Section 4.3 for PSK signal. Now in a Tx-

Rx diversity system, the effective channel fading observed by each receive antenna is 

sum of the weighted version of the true channel fading from all the transmit antenna. 

Thus when the GQR exploits the received signal’s fading autocorrelation property to 

jointly produce optimum channel estimation, it also needs to take the weights 

{ }( )
L

q L
k q

=−
+w  into consideration. Supposing now we need to estimate the 0th 

symbol’s channel gain seen by the ith receive branch
1

(0) (0) (0)TL

i ij jj
H c w

=
=� , the 

optimum wiener filter is then given by 

1(0) (0) (0)−= ⋅h R v        (4.34) 

where (0)R  is the covariance matrix of (0)pir  with its (s, t) th element given by 
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and (0)v  is the covariance vector between (0)iH  and (0)pir  with its sth element 

given by  

*

1
* * *

1 0

1

1 0

1
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2
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 (4.36) 

In general, the transmit weights { }( )
L

q L
k q

=−
+w  are optimized according to the 

instantaneous value of the channel fading gains or their estimates. Therefore, the 

calculation of (4.35) and (4.36) should include the statistics of { }( )
L

q L
k q

=−
+w  as well. 

Unfortunately, these weights are normally related to the fading gains through the 

eigenvector of the instantaneous channel matrix. Thus their distribution is currently 

unknown. Consequently the GQR is difficult to implement for Tx-Rx diversity system. 

4. 4. 3 PSAM channel estimation based ML detector   

 In this sub-section we consider a detector that utilizes the channel estimation 

from pilot symbols and that from the unmodulated component of the current data 

symbols. Using the received signal model in (4.32), the likelihood of the received 

signal on hypothesis l when conditioned on channel fading estimates 

,

1, 1
ˆ ˆ( ) ( ) R TL L

ij i j
k c k

= =
� �= � �C , and known transmit weights

1
( ) ( ) TL

j j
k w k

=
� �= � �w� � , can be calculated 
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Substituting the symbol value into the above conditional pdf, and using the fact that 

the determinant of the effective noise covariance matrix for the two hypothesises are 

the same, we have the following LRT (likelihood ratio test) 

01
0 0 0
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1 1 1

1 1

1
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which, after using (4.33) and some manipulation, is equivalent to 
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Applying the equality 2 2 *| | | | Re ( )( )x y x y x y� �− = − +� �� � � � � � , the above LRT gives 
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Substituting (4.33) into the above equation gives us the final LRT as 
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          (4.38) 

 Now (4.38) shows that the PSAM channel estimation based ML detector 

actually utilizes the channel estimation from pilot symbols and also that from the 

unmodulated component of the current received signal. For the ideal case when the 

channel estimation from pilot symbols is perfect, the estimation error vanishes, thus 

the detector reduces to an ideal coherent detector. In the other extreme, when no pilot 
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symbols are used to provide the predicted channel estimates, the receiver reduces to a 

conventional QR.  

 Next, we analyze the BEP of this PSAM channel estimation based ML detector 

conditioned on known transmit weights and channel estimates. Then we try to derive 

the optimal weighting strategy that provides the minimum error probability for this 

case. Without loss of generality, we assume 0s  is transmitted. The conditional BEP in 

this case can be calculated as 
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Now further define  

0 1( ) ( ) ( ) ( )i i i ia k k n k n kη= + −�� � �       (4.40) 

and 
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It is trivial to show that they both are complex Gaussian random variables with means 

zero, variances 02EN N+  and 2
0( 2 )E EN N N+ , respectively, and a cross correlation 

* 21
02 [ ( ) ( )] ( 2 )i i E EE a k b k N N N= +�� . Therefore, conditioning on )(

~
kbi  and following the 

same approach which leads to (2.9)-(2.12), we could write 
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where )(
~

kiξ  represents the uncertain component of )(~ kai  when conditioned on )(
~

kbi , 

which is a complex Gaussian random variable with mean zero and a variance 

2
0 0 0(4 4 ) ( 2 )E EN N N N N+ + . With these changes of variables, the conditional BEP 

conditioned on both RL
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  (4.43) 

where )(kx  and )(kb  are vector forms of RL
ii kx 1)}(~{ =  and RL

ii kb 1)}(
~

{ = . The conditional 

error probability shown above suggests a similar form as that for an MRC receiver in 
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Rician channels with known specular component, where γ  is noncentral chi-square 

distributed as 
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  (4.44a) 

with 

2
02EN Nγσ = +        (4.44b) 

and 

2 ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )H H Hm k k k k k k= =x x w C C w .    (4.44c) 

Here ( )NI ⋅  is the N-order modified Bessel function of the first kind. Averaging (4.43) 

over (4.44) gives us the conditional BEP as 
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Using the alternative formula for Gaussian Q-function [16] 
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we arrive at the following results after some manipulation 
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(4.45) 

 Unfortunately, this conditional error probability cannot be further simplified at 

the moment. As the transmit weights ( )kw affect the conditional BEP through EN  

(4.39d), which exists in both the binomial term and the exponential term, the 

optimization of ( )kw  to minimize the BEP seems unattainable at the moment. 

Therefore, as a sub-optimal solution, we will use the optimum transmit weights that 

maximize only the term 0
ˆ ˆ( ) ( ) ( ) ( ) ( 2 )H H

Ek k k k N N+w C C w  instead, which is the 

optimum weights when the receiver uses only the channel estimation generated from 

the pilot symbols, similar to the result for PSK signals in Section 4.3. With this choice 

of the transmit weights, for a detector using the channel estimation generated by our 

proposed IPSAM scheme, the error performance follows the same derivation as for 

PSK signals., except the AWGN component is doubled, and thus at least 3dB more 

SNR to achieve the same BEP level is expected. For the detector shown in (4.38), the 

error probability is given by (4.45) where we now have 

0
ˆ ˆ( ) ( ) ( ) ( ) ( 2 )H H

Ek k k k N Nλ = +w C C w  with a pdf in the same form as (4.20) or (4.22) 

for dual-transmit system. However, in this case EN  is also a random variable as it 

depends on the transmit weights, and its distribution is currently impossible to 

calculate. Therefore, the BEP result can only be obtained by simulation.  
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4. 5  Numerical Results and Discussion 

 Fig. 4.3 to Fig. 4.5 demonstrate the BEP of BPSK and QPSK signal in a Tx-Rx 

diversity system with our proposed PSAM scheme at different fade rates. It is clear 

that our analytical results agree well with the simulation results. Fig 4.3 and Fig 4.4 

show substantial performance loss with increasing fade rates. However, this does not 

mean the proposed PSAM scheme is inefficient, as the frame length in this figure is 

fixed and is not optimized for individual fading rates. It is obvious that when the 

fading process is less correlated in time due to a higher fade rate, a smaller frame 

length should be used to keep up with the fading fluctuations. In Fig 4.5, we optimize 

the frame length for different fade rates and the improvement is quite substantial even 

with smaller receive diversity order. Comparing the result in Fig 4.5 with that of a 

conventional diversity receiver with PSAM [58], our result seems inferior even with 

optimized frame length. This is anticipated as our PSAM scheme uses only the pilot 

before the current frame. However, this restriction is only required for channel 

estimation for the purpose of optimizing the transmit weight. For data detection, a 

conventional PSAM scheme can be implemented that uses both the pilot symbols 

before and after the current frame. In Fig 4.6 we compare the performance of our 

PSAM scheme with conventional PSAM (CPSAM). It shows that for faster fading 

channels, exploiting the information from future pilot symbols could improve the 

system performance substantially, though this improvement is not so significant for 

slower fading rates. 

 In Fig 4.7, we present the average BEP as a function of the frame length for 

different fade rates. In a fast fading environment where the channel fading is not 

strongly correlated temporally, pilot symbols needed to be inserted more frequently in 

order to estimate the changing channel gain accurately at the receiver. With fixed total 
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transmitted energy, too many pilot symbols will decrease the transmitted energy 

allocated to the data symbols, resulting in a drop in the effective SNR available for 

data detection. These two contradicting phenomena result in an optimum frame length 

as far as the BEP is concerned. Fig 4.7 clearly demonstrates this conjecture and it 

shows that the optimum frame length is shorter for faster fade rates, e.g., 5 for 

0.03df T =  but 12 for 0.001df T = , at an SNR level of 20dB. However, to achieve 

these minimum error probabilities, it also means that the data rate has to be reduced 

tremendously for the fast fading scenario. 

 In Fig 4.7 we have assumed that the pilot symbols and the data symbols have 

same energy, thus the pilot to data energy ratio (PDR) can simply be expressed in 

terms of the frame length, or, the frequency of pilot symbol insertion. Another way to 

adjust this ratio is to assign different amounts of energies to pilot symbols and data 

symbols. In Fig 4.8 we plot the BEP as a function of PDR. When the average symbol 

energy is fixed, increasing the pilot symbol’s leads to more accurate channel estimates 

while decreasing the energy of the data symbol at the same time. Thus again, there 

exists an optimum PDR that balances these two effects, providing a minimum error 

probability. From Fig 4.8, we found that this optimum PDR is larger in a faster fading 

environment than in a slower fading environment. Fig 4.7 and Fig 4.8 jointly imply 

that as far as the error probability is concerned, a faster fading channel requires larger 

pilot symbol energy, either through more frequent pilot symbol insertion, or by 

assigning a higher power level to the pilot symbols. 

 It is well-known that the accuracy of the channel estimates depends on the 

length of the Wiener filter used. Theoretically speaking, a longer filter provides a 

higher accuracy and hence better performance. However, the detector complexity also 

increases with a longer filter, not to mention the increased detection delay (if the 
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detection is based on a conventional PSAM scheme). Therefore, a practical system 

must compromise between these two conflicting requirements. Fig 4.9 shows that for 

most of the fade rates considered, the improvement in the error probability is very 

insignificant after the filter length is increased beyond 10 symbols.  

 Up to here, the results we present are all based on a Wiener estimation filter, 

i.e., the system knows exactly the channel fading autocorrelation function and fade rate. 

In a practical wireless mobile communication system, the fade rate could change from 

time to time when the mobile terminal travels at different speeds or in different 

directions. Thus there could be situations when the estimation filter is not optimized to 

the true fade rate. The result of using a mismatched channel estimation filter is shown 

in Fig 4.10 and Fig 4.11, where we found that a receiver operating in a slower fading 

channel with a mismatched filter actually performs worse than a receiver in a faster 

fading channel but with a perfectly matched estimation filter. This suggests that in 

practice, an adaptive filter that tracks the channel’s fade rate should be employed to 

continuously adjust the estimation filter to the changing channel condition.  

 In Fig 4.12, we compare the BEP for different transmit diversity orders. Unlike 

conventional receive diversity where higher order diversity always provides better 

performance, we found that for transmit diversity, a higher diversity order provides 

diminishing performance improvement. For instance, when increasing the diversity 

order from 4 to 6 at the transmitter, the improvement is rather limited when compared 

to that achieved when increasing the diversity order from 2 to 4. The reason could be 

that for higher diversity orders at the transmitter side, more pilot symbols need to be 

inserted into each frame to estimate the individual fading channel. 

 In Fig 4.13, we compare the performance of systems with different 

combinations of transmit and receive antennas when the total number of antennas is 
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fixed at 6. As mentioned in the introduction, splitting the total number of antennas 

equally between the transmitter and the receiver maximizes the total number of 

transmission links, and therefore should provide the best performance. However we 

found with the PSAM scheme we proposed, such results may not hold. When 

comparing the 4-transmit-2-receive antennal system, 3-transmit-3-receive case with 

the 2-transmit-4-receive case, we found the best performance is actually achieved by 

the last configuration. The reason is that with more transmit antennas, our PSAM 

scheme requires more pilot symbols in a frame, thus reducing the energy that can be 

allocated to the data symbol, which in turn reduces the effective SNR during data 

detection. 

 In Fig. 4.14, we present the BEP for binary orthogonal signaling with our 

proposed PSAM Tx-Rx diversity scheme. In the figure we compare the performance of 

the detector given by (4.38) and that of a conventional PSAM based detector that uses 

both the past and future pilot symbols. It shows that for small fade rates, utilizing the 

future pilot symbols during detection can only slightly improve the performance while 

for moderate fade rates, the improvement is more noticeable. However, comparing 

with the case of ideal coherent detection, the performance of both these two detectors 

seems not satisfactory at all. In order to examine the cause of this substantial 

performance loss, we present in Fig. 4.15 the performance of a hypothetical system in 

which we assume the transmit weighting strategy is based on the channel estimation 

from our proposed PSAM scheme, while during the data detection the detector has 

ideal channel information. Thus the performance difference between this hypothetical 

system and an ideal coherent system is solely due to imperfect transmit weighting. 

From Fig 4.15, we found that imperfect transmit weighting is obviously the main cause 

of the performance loss between our proposed PSAM Tx-Rx diversity system and an 
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ideal coherent system, especially for small fade rates. These results also indicate that 

the performance of MRT-MRC type transmit diversity is very sensitive to the weights 

at the transmitter. To further demonstrate the effect of imperfect transmit weighting on 

the error performance, we compare in Fig. 4.16 the performance of BPSK signal in a 

dual-transmit-dual-receive diversity system with and without optimum transmit 

weights. It is obvious that substantial performance improvement can be obtained by 

optimizing the transmit weights, even with channel estimation error. 

 Finally in Fig. 4.17, we plot the BEP of binary orthogonal signaling as a 

function of the frame length for our proposed PSAM Tx-Rx diversity system. Two 

effects come along when the frame length is reduced – improved quality of channel 

estimation and less transmit-weight optimized data symbols in a whole frame. 

Therefore, the system should choose the right frame length to compromise between 

these two effects and produce the minimum BEP. From Fig. 4.17, we find that for 

large a fade rate of 0.03, the optimum frame length is 5, while for a moderate fade rate 

of 0.01, the optimum frame length is 8. 
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Figure 4.3 BEP vs. average SNR for different fade rate 

 

 

Figure 4.4 BEP vs. average SNR for different fade rate 
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Figure 4.5 BEP vs. average SNR for different fade rate with optimized frame 

length 

 

Figure 4.6 BEP vs. average SNR for different fade rate with our PSAM compare 

to that with conventional PSAM (detection only) 
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Figure 4.7 BEP vs. frame length for different fade rate 

 

 

Figure 4.8 BEP vs. PDR for different fade rate 
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Figure 4.9 BEP vs. channel estimation filter length for different fade rate 

 

 

Figure 4.10 BEP vs. average SNR for different mismatched fade rate 
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Figure 4.11 BEP vs. average SNR for different mismatched fade rate 

 

 

Figure 4.12 BEP vs. average SNR for different number of transmit antennas 
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Figure 4.13 BEP vs. average SNR for different Tx-Rx antenna numbers with the 

total number of antennas fixed 

 

Figure 4.14 BEP vs. average SNR for different fade rate with our PSAM compare 

to that with conventional PSAM (detection only), binary orthogonal signaling 
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Figure 4.15 BEP vs. average SNR, cause of performance loss 

 

Figure 4.16 BEP vs. average SNR, with and without transmit weighting 
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Figure 4.17 BEP vs. Frame Length for BFSK 
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4. 6  Summary 

 In this chapter we developed a PSAM channel estimation scheme for MRT-

MRC type diversity system. For systems using PSK modulation, we derived the 

optimum receiver structure based on ML detection principle, and the optimum transmit 

weighting scheme that minimizes the BEP conditioned on available channel 

information. The performance of the resultant system is then studied, and its 

optimization with respect to the various parameters of PSAM system is discussed 

through numerical results. For a system using binary orthogonal signaling, we develop 

a PSAM channel estimation scheme based on the alternative interpretation of the 

signal constellation. By exploiting the channel measurement component embedded in 

orthogonal signals, our proposed PSAM scheme for orthogonal signaling does not 

suffer from data rate loss, but this is at the expense of less accurate channel estimation 

when compared to PSK modulation based system. We also examined the cause of the 

performance loss of a practical Tx-Rx diversity system compared to an ideal MRT-

MRC diversity system, and found that imperfect transmit weights substantially 

degrade the performance from the ideal case. 
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Chapter 5  

 

Space-time block codes with Orthogonal MFSK 

 

 In this chapter we develop an Alamouti-type Space-Time block code with 

orthogonal MFSK. The idea of using orthogonal FSK in Space-Time codes originates 

from the alternative interpretation of orthogonal signaling in [66]. A brief introduction 

of this work will be given in Section 5.1. In Section 5.2, we study the case where 

binary orthogonal FSK is used. The system model, detection procedure and resultant 

error performance will be given. In Section 5.3, we extend the analysis to M-ary 

orthogonal FSK. Diversity reception of the proposed ST-MFSK block codes is 

discussed in Section 5.4. Numerical results and discussion are given in Section 5.5. 

Section 5.6 summarizes the chapter. 

 

5.1  Introduction 

 Space-Time (ST) block codes, as a means of transmit diversity that requires no 

prior-transmission channel information, is known for its good performance and high 

capacity. In order to coherently detect the transmitted symbol from channel fading in a 

practical Space-Time coded system, certain channel estimation scheme must be used to 

provide channel reference. Just as in a single channel system, differential encoding and 

detection can also be performed on a Space-Time coded signal, as demonstrated in 

[54]. In light of the idea discussed in chapter 4 that orthogonal signaling contains an 

implicit channel sounding component, we found it could be another choice of 
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modulation scheme for Space-Time codes. The advantage of using orthogonal 

signaling is that the channel memory can be used to refine the channel estimation, thus 

making it less vulnerable to fast fading than a differentially detected system. To the 

best of the author’s knowledge, the idea of using orthogonal signaling, specifically 

orthogonal binary and M-ary frequency shift keying, has not been considered in the 

literature. In the following, we will first establish the basic transmitter and receiver 

structure for the binary FSK case, and then generalizes it to MFSK. Performance 

comparison with differential ST codes with the same alphabet sizes will be made. 

 

5.2  Binary Orthogonal FSK 

5. 2. 1  System Model 

 Assuming binary orthogonal FSK signal transmission through a two-transmit-

antenna system and a space-time coded interval of 2ST T= ,  the basic FSK waveforms 

are: 

1

1
( ) exp( )

j t
w t

TT

π= − ,      (5.1) 

and 

2

1
( ) exp( )

j t
w t

TT

π= + .      (5.2) 

An implicit property of the waveforms in (1)-(2) is that they are phase-synchronized. 

An alternative view is that (1) and (2) constitutes a continuous phase FSK (CPFSK) 

scheme with a modulation index of unity [3].  

With Alamouti-type [52] ST coding of dual-transmission-single-reception, the 

received signal waveform in the first sub-interval of the k-th interval, i.e., 

when 2 (2 1)kT t k T< < + , is 
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1 1 2 2( ) [ ] ( ) [ ] ( ) ( )r t c k s t c k s t n t= + + ,     (5.3) 

and in the second subinterval, i.e., when (2 1) (2 2)k T t k T+ < < + , is 

* *
1 2 2 1( ) [ ] ( ) [ ] ( ) ( )r t c k s t c k s t n t= − + + ,     (5.4) 

where 1( )s t  and 2 ( )s t  are data waveforms chosen randomly and independently from 

the set { })(),( 21 twtw  to represent information bit ‘0’ or ‘1’, 1[ ]c k  and 2[ ]c k  are the 

piece-wise constant approximation of the fading gains in the two transmission links.  

These fading gains are independent and identically distributed (iid) complex Gaussian 

random variables (CGRV) with mean zero, variance 2 21
2 [| ( ) | ]c iE c kσ = , and 

autocorrelation function  

( )* 21
02[ ] [ ] [ ] 2 [2 ]c i i c dn E c k c k n J nf Tφ σ π� �= + =� �    (5.5) 

where df  is the maximum Doppler frequency, and 0( )J �  is the zeroth order Bessel 

function of the first kind. The AWGN component ( )n t  has a power spectral density of 

0N  and thus the average signal-to-noise ratio (SNR) per bit is  

2
2

0 0

1
[ ] ( )

2

kT T

ikT c
b

E c k s t dt

N N
σγ

+� �
� �� �= =
�

   (BFSK)  (5.6) 

We will plot the bit-error probability (BEP) of the proposed signaling and detection 

scheme against this parameter.  

5. 2. 2  Channel Estimation 

Now, inspired by the alternative interpretation of orthogonal signaling in [4], we 

found that the sum of the orthonormal basis 1 2( ) ( )w t w t+  and the difference of the 

orthonormal basis 1 2( ) ( )w t w t−  are orthogonal. Therefore, if we correlate ( )r t  in the 

first subinterval with the sum waveform  

* *
1 2

2
( ) ( ) ( ) cos( )

t
u t w t w t

TT

π= + =      (5.7) 
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the result will always be 

(2 1)

2

1 2 1 2

[2 ] ( ) ( )

( [ ] [ ]) [2 ] [2 ]

k T

kT
a k r t u t dt

c k c k n k n k

+
=

= + + +
� ,    (5.8) 

independent of what 1 ( )s t  and 2 ( )s t  are. Similarly, if we correlate ( )r t  in the second 

subinterval with the summed waveform ( )u t , we get 

(2 2)

(2 1)

2 1 1 2

[2 1] ( ) ( )

( [ ] [ ]) [2 1] [2 1]

k T

k T
a k r t u t dt

c k c k n k n k

+

+
+ =

= − + + + +
� .   (5.9) 

Note that { }(2 1) *

(2 )
[2 ] ( ) ( )

k i T

m mk i T
n k i n t w t dt

+ +

+
+ = � , 1, 2;  0,1m i= =  are the filtered AWGN 

terms with a variance of 2
0n Nσ =  and are independent of each other. At this point, it 

becomes clear that  

( )

( )

1

1 0 1 0 1

1 1

1
[ ] [2 ] [2 1]

2
1

[ ] [2 ] [2 ] [2 1] [2 1]
2

[ ] [ ]

x k a k a k

c k n k n k n k n k

c k v k

= − +

= + + − + − +

= +

  (5.10) 

provides a noisy observation of 1[ ]c k , and  

( )

( )

2

2 0 1 0 1

2 2

1
[ ] [2 ] [2 1]

2
1

[ ] [2 ] [2 ] [2 1] [2 1]
2

[ ] [ ]

x k a k a k

c k n k n k n k n k

c k v k

= + +

= + + + + + +

= +

  (5.11) 

provides a noisy observation of 2[ ]c k . The noise components 1[ ]v k  and 2[ ]v k are both 

complex Gaussian random variables with mean zero and variance 

2 21
02 [| [ ] | ]v iE v k Nσ = = , and they are independent of one another. Equations (5.10) and 

(5.11) suggest that, just like in the case of a single-input-single-output (SISO) system 

[4], a ST-BFSK receiver is also capable of deriving channel estimates from the 

received signal without explicit pilot symbols. Put simply, every transmitted ST-BFSK 
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symbol has an implicit pilot component, and the existence of these implicit pilot 

component agrees with the observation that the power spectrum of the proposed BFSK 

scheme has discrete spectral lines at ( )1 2f T= ± . These spectral lines can be 

considered as pilot-tones and the sum filter in (5.7) attempts to extract these faded 

tones from the received composite signal and use them as local references.   

 The noisy observation of the channel fading in (5.10) and (5.11) can be refined 

by passing them to two identical Wiener filters in the same manner as what we would 

do in a PSAM system. Without loss of generality, assume that we want to estimate the 

fading gains at time zero, i.e. [0],  {0,1}jc j ∈ , from the observations  

[ ] [ ] [ ]
[ 1] [ 1] [ 1]

[0]

[ ] [ ] [ ]

j j j

j j j
j

j j j

x P c P v P

x P c P v P

x P c P v P

− − −� � � � � �
� � � � � �− + − + − +� � � � � �= = +
� � � � � �
� � � � � �
� � � � � �� � � � � �

X
� � �

   (5.12) 

in the neighboring 2 1P +  code intervals. The optimal filter weight vector is [58] 

1

c

−

= X XXf � � ,        (5.13) 

where 

[ ]1
[0] [0] [ ] [ 1] [ 1] [ ]

2
H

c j j c c c cE c P P P Pφ φ φ φ� �= = − − + −� �X� X �  (5.14) 

is the correlation between [0]ic  and [0]iX ,  

[ ] 0 2 1,

1
[0] [0] [ ]

2
PH

j j c Pn m P
E n m Nφ +=−
� �= = − +� �XX� X X I    (5.15) 

is the covariance matrix of [0]jX , [ ]c nφ  is the autocorrelation function of the fading 

process in (5.5), and 2 1P+I  is an identity matrix of size 2 1P + . Note that f is 

independent of the time index.  

Based on the Wiener filter design we have adopted above, the MMSE estimate 

of [0]jc  is ˆ [0] [0]j jc = fX , or in general, the estimate of [ ]jc k  is  
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ˆ [ ] [ ]j jc k k= fX      (5.16) 

where [ ] [ ], [ 1],..., [ ]
T

j j j jk x k P x k P x k P� �= − − + +� �X . The corresponding mean-

square estimation error ˆ[ ] [ ] [ ]j j je k c k c k= −  is therefore a complex Gaussian random 

variable with mean zero and variance 

122 21 ˆ[ ] [ ]
2

H
e j j c c cE c k c kσ σ

−� �= − = −� �� � X XX X� � � .   (5.17) 

We will later express the BEP in terms of 2
eσ . Note that the correlation between [ ]jc k  

and ˆ [ ]jc k  is  

12*
ˆ

1 ˆ[ ] [ ]
2

H
cc j j c cE c k c kρ

−� �= =� �� � X XX X� � �      (5.18a) 

and the variance of  ˆ [ ]jc k  is 

122 2 2
ˆ

1 ˆ [ ]
2

H
c j c c c eE c kσ σ σ

−� �= = = −� �� � X XX X� � �      (5.18b) 

Following the orthogonality principle of wiener filter design, the estimation error and 

the channel estimate are statistically independent. 

5. 2. 3  Data Detection  

Let the received signal in (5.3) and (5.4) be denoted by 2 ( )kr t  and 2 1( )kr t+ , 

respectively. Similarly, let the channel’s AWGN ( )n t  in these intervals be denoted by 

2 ( )kn t  and 2 1( )kn t+ . The column concatenation of 2 ( )kr t  and *
2 1( )kr t+  is the vector 

2 21 2 1
* ** *

2 1 2 12 1 2

( ) ( )[ ] [ ] ( )
( )

( ) ( )[ ] [ ] ( )
k k

k
k k

r t n tc k c k s t
t

r t n tc k c k s t+ +

� � � �� � � �= = +� � � �� �� �−� �� �� � � �
R   (5.19) 

If we correlate ( )k tR  with the difference waveform 

* *
1 2

2
( ) ( ) ( ) sin( )

t
d t w t w t j

TT

π= − = ,     (5.20) 

the result is  
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[ ] [ ] [ ] [ ]k k k k= +r C s z ,      (5.21) 

where  

1 2
* *
2 1

[ ] [ ]
[ ]

[ ] [ ]

c k c k
k

c k c k
� �

= � �−� �
C       (5.22) 

is the channel gain matrix,  

1

2

[ ] 1 1 1 1
[ ] , , ,

[ ] 1 1 1 1

s k
k

s k

− − + +� 	� � � � � � � � � �= ∈
 �� � � � � � � � � �− + − +� � � � � � � �� � � 
s     (5.23)    

is the effective data vector, where [ ]is k  equals +1 and 1−  if  ( )is t  equals 1 ( )w t  and 

2 ( )w t  respectively, and  

1

2

2

2

2( 1) *

2

1 2
* *
1 2

[ ]
[ ]

[ ]

( ) ( )

( ) ( )

[2 ] [2 ]
[2 1] [2 1]

kT T

kT

k T

kT T

z k
k

z k

n t d t dt

n t d t dt

n k n k

n k n k

+

+

+

� �
= � �
� �

� �
� �= � �
� �� �

−� �
= � �+ − +� �

�

�

z

     (5.24) 

is the noise vector due to AWGN. Note that 1[ ]z k  and 2[ ]z k  are independent zero 

mean complex Gaussian random variables with a variance of 2
02z Nσ = . Furthermore, it 

is important to realize that  

*1
[ ] [ ] 0,  1,2;  1, 2

2 i jE z k v k i j� � = = =� � ,     (5.25) 

which follows directly from the fact that the sum of the orthonormal basis 

1 2( ) ( )w t w t+  and the difference of the orthonormal basis 1 2( ) ( )w t w t−  are orthogonal. 

 Conditioned on the channel estimates 1̂[ ]c k  and 2ˆ [ ]c k , the gains 1[ ]c k  and 

2[ ]c k  complex Gaussian random variables with conditional means 1̂[ ]c k  and 2ˆ [ ]c k , 
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and identical conditional variance of  2
eσ  (5.17). In other word, we can express 1[ ]c k  

and 2[ ]c k  as 

1 1 1

2 2 2

ˆ[ ] [ ] [ ]
ˆ[ ] [ ] [ ]

c k c k e k

c k c k e k

= +
= +

,        (5.26) 

 where 1[ ]e k  and 2[ ]e k  are the estimation errors. This means (5.21) becomes 

ˆ[ ] [ ] [ ] [ ] [ ] [ ]k k k k k k= + +r C s E s z       (5.27) 

where 

1 2
* *
2 1

ˆ ˆ[ ] [ ]ˆ [ ]
ˆ ˆ[ ] [ ]

c k c k
k

c k c k
� �

= � �−� �
C ,       (5.28) 

and 

1 2
* *
2 1

[ ] [ ]
[ ]

[ ] [ ]

e k e k
k

e k e k
� �

= � �−� �
E .       (5.29) 

It should be clear that E[k]s[k] is a zero-mean complex Gaussian vector. Moreover, it 

can be shown that 21
22 [ ] [ ] [ ] [ ] 2H H

eE k k k k σ� � =� �E s s E I , independent of the value of the 

data vector s[k]. This means E[k]s[k] and z[k] can be lumped together to form the 

effective noise term  

1

2

[ ]
[ ] [ ] [ ] [ ]

[ ]

k
k k k k

k

α
α
� �

= + = � �
� �

� E s z ,      (5.30) 

where 1[ ]kα  and  2[ ]kα  are independent CGRVs with zero mean and variance 

( )2 2
02 eNασ σ= + .   

 Now from the detector structure in Alamouti’s original work, it is intuitive to 

extend it such that the data detector first obtains the decision statistic  ( )ky  from the 

received signal ( )kr  as 
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[ ]

( )

1 2

* *
1 2 1 11 2 1 2
* ** *
2 1 2 22 1 2 1

2 2 1 1
1 2

2 2

[ ] [ ] [ ]

ˆ [ ] [ ]

ˆ ˆ[ ] [ ] [ ] [ ]ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
ˆ ˆ[ ] [ ] [ ] [ ]ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]

[ ] [ ]
ˆ ˆ[ ] [ ]

[ ]

T

H

k y k y k

k k

c k c k s k kc k c k c k c k
c k c k s k kc k c k c k c k

s k k
c k c k

s k

α
α

β
β

=

=

� � � �� � � � � �
= +� � � �� �� � � �−− −� �� � � �� � � �

� �
= + +� �

� �

y

C r

[ ]k
� �
� �
� �

 (5.31) 

where *
1 1 1 2 2ˆ ˆ[ ] [ ] [ ] [ ] [ ]k c k k c k kβ α α= +  and *

2 2 1 1 2ˆ ˆ[ ] [ ] [ ] [ ] [ ]k c k k c k kβ α α= −  are 

independent CGRVs with mean zero and variance ( )( )2 22 2
0 1 2ˆ ˆ2 [ ] [ ]eN c k c kβσ σ= + + . 

The corresponding decision rule is 

( ){ }ˆ[ ] sgn Re [ ]k k=s y .       (5.32) 

where sgn( )⋅  is the sign function.  

5. 2. 4  Error Performance Analysis 

 We define the instantaneous signal to noise ratio as 

( )
( )

22 2 2 2
1 2 1 2

2 2
0

ˆ ˆ[ ] [ ] ˆ ˆ[ ] [ ]

2 4 e

c k c k c k c k

Nβ

γ
σ σ

+ +
= =

+
.    (5.33) 

Then the BEP conditioned on γ  of (each of) the antipodal signal in (5.32) is 

( ) ( )2bP Qγ γ= ,       (5.34) 

where ( )Q ⋅  is the Gaussian Q-function. Since γ  is a sum of two independent 

exponential random variables with an identical mean value of  

( ) ( ) ( )
2 2 2 2

ˆ

2 2 2
0 0 0

ˆ [ ]

4 2 2
i c c e

e e e

c k
E

N N N

σ σ σλ
σ σ σ

� � −
� �= = =

+ + +� �� �

,   (5.35) 

so the probability density function (pdf) of  γ  is 

( ) ( )/
2

p e Uγ λ
γ

γγ γ
λ

−= ,      (5.36) 

where ( )U γ  is the unit step function. Consequently, the average error probability is [3]  
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( ) ( )
0

2

1 1

2

1 1 1
        1 2

2 1 1

bP Q p dγγ γ γ

λ λ

∞

− −

=

� �� � � �
= − +� �� � � �� �+ +� �� � � �� �

�
.     (5.37a) 

In contrast, the BEP of ST-BPSK (as well as ST-QPSK) with perfect channel state 

information (CSI) is 

2

1 1

1 1 1
1 2 .

2 1 1b
b b

P
γ γ− −

� �� � � �
= − +� �� � � �+ +� �� � � �� �

  (ideal BPSK/QPSK)  (5.37b) 

where bγ  is the bit SNR defined in (5.6). 

When there is no estimation error, i.e. when 2 0eσ = , then the BEP of the 

proposed coherent ST-BFSK scheme has an asymptotic value of ( ) 23 2 bγ − , Compared 

to ( ) 23 4 bγ −
, the asymptotic BEP of the ideal coherent ST-BPSK detector, we can see 

that BFSK experiences a 3 dB degradation in power efficiency, as expected. When 

compared to differential ST-BPSK2 [54], [67], [68], which is also 3 dB less power 

efficient than coherent ST-BPSK, one is tempted to conclude that ST-BFSK performs 

at the same level as differential ST-BPSK, at best. While this is true when fading is 

slow, we shall see in Section 5.5 that ST-FSK can actually perform much better than 

differential ST-BPSK in a fast fading channel. Further more, in order to estimate the 

channel for coherent ST-BPSK detection, normally decision-directed channel 

estimation and / or pilot symbol aided channel estimation is needed to provide the 

channel estimates. However, for our proposed ST-BFSK system, the channel 

estimation is carried out using the implicit PSAM scheme, which is very stable even in 

fast fading environment and does not suffer from data rate loss. 

                                                
2 For the completeness of presentation, we include in appendix C an introduction on differential ST-PSK 
with some code examples.  
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 Another interesting comparison between ST-FSK and differential ST-PSK is 

the receiver complexity. On the surface, the proposed ST-FSK receiver appears to be 

more complex than a differential ST detector, as it requires channel estimation. The 

channel estimator comprises an integrate-and-dump (I/D) filter (5.8)-(5.9) followed by 

an estimation filter (5.16). However the I/D filter is no different from the sampler 

required in a differential ST-PSK receiver. In addition, the computational complexity 

and delay of the estimation filter are similar to those of the digital matched filter 

required in the differential ST-PSK receiver, as both filters span only a few 

consecutive symbol intervals. In short, the proposed coherent ST-BFSK provides 

robustness against fast fading with a complexity and delay similar to that of 

differential ST-BPSK. Furthermore, if we are willing to sacrifice bandwidth efficiency 

for power efficiency by increasing M (the size of the modulation alphabet), then the 

error performance of ST-MFSK can actually surpass that of its differential ST-MPSK 

counterpart even in a static fading channel. In the following section, we generalize the 

proposed ST-BFSK scheme to MFSK. 

 

5.3   M-ary Orthogonal FSK 

5. 3. 1  System Model 

 Again, we assume here Alamouti-type ST block code with a code interval of 

2ST T= . However, the waveforms we use now to transport the information are drawn 

from the M-ary orthogonal FSK signal set; 2KM = , 1, 2,K = � . The basic FSK 

waveforms are 

1
( ) exp (2 1)   1, ,m

j t
w t m M m M

TT

π� �= − − =� �
� �

� .   (5.38) 
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The received waveforms during the two sub intervals of a code interval have the same 

form as (5.3) and (5.4), except that 1 ( )s t  and 2 ( )s t  are data waveforms chosen 

randomly and independently from the set{ } 1

0
( )

M
m m

w t
−

=
. Now if we correlate (5.3) and 

(5.4) with the sum waveform 

2
*

1 1

2
( ) ( ) cos (2 1)

M
M

m
m m

t
u t w t m

TT

π
= =

� �= = −� �
� �

� � ,    (5.39) 

we have  

(2 1)

2

1 2
1

[2 ] ( ) ( )

( [ ] [ ]) [2 ]

k T

kT

M

m
m

a k r t u t dt

c k c k n k

+

=

=

= + +

�

�
,     (5.40a) 

and 

(2 2)

(2 1)

2 1
1

[2 1] ( ) ( )

( [ ] [ ]) [2 1]

k T

k T

M

m
m

a k r t u t dt

c k c k n k

+

+

=

+ =

= − + +

�

�
,    (5.40b) 

where 
(2 1) *

(2 )
[2 ] ( ) ( )

k i T

m mk i T
n k i n t w t dt

+ +

+
+ = �  as in (5.8) and (5.9). The channel estimation 

process is then the same as that for BFSK described in (5.10-5.18), except that 

{ }1 1
[ ] [2 ] ( 1) [2 1]  1, 2

M Mi
i m mm m

v k n k n k i
= =

= + − + =� �  now has a variance of 2
02

M
n Nσ =  

and therefore (5.15) is now given by 

[ ] 0 2 1,

1
[0] [0] [ ]

2 2
PH

j j c Pn m P

M
E n m Nφ +=−
� �= = − +� �XX� X X I .    

This change in noise variance will in general degrade the estimator’s accuracy.   

Fortunately though, the effect of increasing noise variance is partially or wholly 

compensated for by an increase in the symbol energy (which directly affects the [ ]c nφ s 

in (5.15)). Specifically for MFSK, the mean received SNR per bit is given by 
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2

2 0

1
log

c
b M N

σγ � �
= � �

� �
    (MFSK)    (5.40c) 

This means the effective SNR in the [ ]ix k s in (5.10) and (5.11) is bγ  for 4FSK and 

3 / 4bγ  for 8FSK. Compared to the effective SNR of bγ  for BFSK, we can conclude 

that there is no loss in channel estimation accuracy when we go from M=2 to M=4 but 

there is a degradation of 1.25 dB in going from M=2 to M=8.  

5. 3. 2  Data Detection 

 Write the received signal as in (5.19), now if we correlate the received signal 

with the basis waveform vector  

*

1
( ) ( )

M

m m
t w t

=
� �= � �w ,       (5.41) 

the result will be 

[ ] [ ] [ ] [ ]k k k k= +R C S Z       (5.42) 

where [ ]kC  is given by (5.22),  

1,1 1, 1,

2,1 2, 2,

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]
m M

m M

s k s k s k
k

s k s k s k
� �

= � �
� �

S
� �

� �
    (5.43a) 

is the effective data matrix, with , [ ]i ms k  equals +1 if ( )is t  equals ( )mw t  and zero 

otherwise. In other word, there is one and only one non-zero element in each row of 

S[k]. The AWGN matrix is 

1,1 1, 1,

2,1 2, 2,

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]
m M

m M

z k z k z k
k

z k z k z k
� �

= � �
� �

Z
� �

� �
    (5.43b) 

with  

(2 1) *
1, 2

[ ] ( ) ( )

[2 ]

k T

m mkT

m

z k n t w t dt

n k

+
=

=
�       (5.43c) 

and 
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(2 2) * *
2, (2 1)

*

[ ] ( ) ( )

[2 1]

k T

m mk T

m

z k n t w t dt

n k

+

+
=

= +

�       (5.43d) 

be independent zero mean complex Gaussian random variable with a variance of 

2
0z Nσ = . Rewriting (5.41) in the same way as (5.27), we have 

ˆ[ ] [ ] [ ] [ ] [ ] [ ]k k k k k k= + +R C S E S Z      (5.44) 

where ˆ [ ]kC  and [ ]kE  are given by (5.28) and (5.29).  

 Now it is intuitive from Alamouti’s detector that the data detector in our 

proposed ST-MFSK system first compensates for fading by multiplying the received 

vector in (5.44) by the conjugate of the estimated channel gain matrix according to 

( )

1,1 1, 1,

2,1 2, 2,

1,1 1, 1,2 2
1 2

2,1 2, 2,

[ ] [ ] [ ]
[ ]

[ ] [ ] [ ]

ˆ [ ] [ ]

[ ] [ ] [ ]
ˆ ˆ| [ ] | | [ ] | [ ]

[ ] [ ] [ ]

m M

m M

H

m M

m M

y k y k y k
k

y k y k y k

k k

k k k
c k c k k

k k k

β β β
β β β

� �
= � �
� �

=

� �
= + + � �

� �

Y

C R

S

� �

� �

� �

� �

 (5.45a) 

where 

1, 1, 1,

2, 2, 2,

[ ] [ ] [ ]ˆ ˆ[ ] [ ] [ ]
[ ] [ ] [ ]

l l lH H

l l l

k s k z k
k k k

k s k z k

β
β
� � � � � �

= +� � � � � �
� � � � � �

C E C    (5.45b) 

is the effective noise comprising of channel estimation error and AWGN. In order to 

detect the transmitted signal ( )is t , the detector simply chooses , [ ]i hy k  among 

, 1{ [ ]}M
i m my k = , if ( ) ( ){ }( ), , 1

Re [ ] max Re [ ]
M

i h i m m
y k y k

=
= , and decides that ( )hw t is the 

transmitted signal. It’s worth noting that when M=2, this Max-Real detector in (5.45b) 

reduces to the sign detector in (5.32) 

 It is worth pointing out that the optimum detector should be the one that 

directly follows the maximum likelihood principle. In appendix A we will discuss this 
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issue in detail. In the mean time, the detector in (5.45) is actually an easy-to-implement 

suboptimum detector that performs very close to the optimum detector. 

5. 3. 3  Error Performance Analysis 

 Since the signal waveforms are orthogonal, without loss of generality, we could 

assume 1 1( ) ( )s t w t=  and 2 ( ) ( )qs t w t=  in error performance analysis. When 1q = , we 

have the scenario of transmitting identical tones in the two transmit antennas in the 

first subinterval of a code-interval.  

Conditioned on ˆ [ ]kC , we have 

( )2 2
1,1 1 2 1,1ˆ ˆ[ ] | [ ] | | [ ] | [ ]y k c k c k kβ= + +     (5.46) 

where 1,1 1,1, 1,1,[ ] [ ] [ ]c sk k j kβ β β= +  is a complex Gaussian random variable with mean 

zero and a variance that will be determined later for easy of presentation here, and 

1, 1,[ ] [ ]m my k kβ=  ,            2, ,m M= �     (5.47) 

where 1, 1, , 1, ,[ ] [ ] [ ]m m c m sk k j kβ β β= +  is another zero mean complex Gaussian random 

variable having a variance different from that of 1,1[ ]kβ . Note that  

2,

1
[ ]

0 otherwisem

m q
s k

=�
= 

�

.      (5.48) 

Unfortunately, unlike the case for BFSK detection, the noise samples , [ ]i mz k  (5.43b) 

in the data detector are correlated with the noise samples in the channel estimator. 

Consequently it is also correlated with the estimated channel gain ˆ [ ]kC  and the 

estimation error [ ]kE . In appendix B, we show that conditioned on 1̂[ ]c k , 2ˆ [ ]c k , 1[ ]e k  

and 2[ ]e k , the pair 1, [ ]mz k  and 2, [ ]mz k  are conditional complex Gaussian random 

variables and could be written as  

0 01 2 1 2
1, 1,2 2

ˆ

ˆ ˆ[ ] [ ] [ ] [ ]
[ ] ' [ ]

2m m
c e

f Nc k c k e k e k
z k z k

σ σ
� �+ +

= − +� �
� �

   (5.49a) 
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and 

* * * *
0 02 1 1 2

2, 2,2 2
ˆ

ˆ ˆ[ ] [ ] [ ] [ ]
[ ] ' [ ]

2m m
c e

f Nc k c k e k e k
z k z k

σ σ
� �− −

= + +� �
� �

  (5.49b) 

where 0f  is the middle coefficient of the channel estimation filter given in (5.13), 

'
1, [ ]mz k  and '

2, [ ]mz k  are both conditional complex Gaussian random variables with 

mean zero and variance 

( ) ( )2 2

0 0 0 02
' 0 2 2

ˆ2 2z
c e

f N f N
Nσ

σ σ
= − − .      (5.49c) 

The pair '
1, [ ]mz k  and '

2, [ ]mz k  are uncorrelated with 1̂[ ]c k , 2ˆ [ ]c k , 1[ ]e k  and 2[ ]e k . 

Furthermore,  

*
1, 2,

1
'[ ] ' [ ] 0

2 l lE z k z k� � =� � ,       (5.49d) 

that is, '
1, [ ]mz k  and '

2, [ ]mz k  are uncorrelated. This stems from the fact that  

( )( )

( )( )

*
1, 2,

2

0 0
1 2 2 12

ˆ

2

*0 0
1 2 2 1 1, 2,2

*
1, 2,

1
[ ] [ ]

2

1 ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]
22

1 1
    [ ] [ ] [ ] [ ] ' [ ] ' [ ]

2 22

1
0 0 ' [ ] ' [ ] 0.

2

m m

c

m m
e

m m

E z k z k

f N
E c k c k c k c k

f N
E e k e k e k e k E z k z k

E z k z k

σ

σ

� �� �

� �
� �= + −� � � �

� �

� �
� �� �+ + − +� � � � � �

� �

� �= + + =� �

, 

On the other hand,  

( ) ( )2 2

0 0 0 0*
, , '2 2

ˆ

1
' [ ] ' [ ]

2 2 2i m i q z
c e

f N f N
E z k z k R

σ σ
� � = − − =� � , m q≠ ,   (5.50) 

i.e., when conditioned on 1̂[ ]c k , 2ˆ [ ]c k , 1[ ]e k  and 2[ ]e k , the noise samples in different 

filter outputs are correlated with a correlation coefficient 2
' ' 'z z zRρ σ= . We arrive at 

this conclusion from the analysis 
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( ) ( )

*
, ,

2 2

2 20 0 0 0
1 2 1 22 2

ˆ

*
, ,

2 2

0 0 0 0 *
, ,2 2

ˆ

1
[ ] [ ]

2

1 1ˆ ˆ| [ ] [ ] | | [ ] [ ] |
2 22 2

1
    ' [ ] ' [ ]

2

1
' [ ] ' [ ] 0.

22 2

i m i q l q

c e

i m i q

i m i q
c e

E z k z k

f N f N
E c k c k E e k e k

E z k z k

f N f N
E z k z k

σ σ

σ σ

≠
� �� �

� � � �
� � � �= ± + ±� � � �� � � �

� � � �

� �+ � �

� �= + + =� �

  

�   

( ) ( )2 2

0 0 0 0*
, , 2 2

ˆ

1
' [ ] ' [ ]

2 2 2i m i q
c e

f N f N
E z k z k

σ σ
� � = − −� �   

Now consider the case 1q = , i.e. transmitting identical tones in the two 

transmit antennas, both equal to 1 ( )w t . The data matrix S[k] now possesses the 

properties 1,1 2,1[ ] [ ] 1s k s k= =  and 1, 2,[ ] [ ] 0m ms k s k= =  for 2, ,m M= � . From (5.45b) 

we have 

1,1 1,1

2,1 2,1

* * * * *
1 1 2 2 1 2 2 1 1 1,1 2 2,1
* * * *
2 1 1 2 2 2 1 1

[ ] [ ]1ˆ ˆ[ ] [ ] [ ]
[ ] [ ]1

ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

H Hk z k
k k k

k z k

c k e k c k e k c k e k c k e k c k z k c k z k

c k e k c k e k c k e k c k e k

β
β
� � � �� �

= +� � � ���
��� � � �

+ + − + +
=

− + + +

C E C

*
2 1,1 1 2,1ˆ[ ] [ ] [ ] [ ]c k z k c k z k

� �
� �−� �

  (5.51a) 

and 

*
1, 1, 1 1, 2 2,

*
2, 2, 2 1, 1 2,

[ ] [ ] ˆ ˆ[ ] [ ] [ ] [ ]ˆ [ ]
[ ] [ ] ˆ ˆ[ ] [ ] [ ] [ ]

m m m mH

m m m m

k z k c k z k c k z k
k

k z k c k z k c k z k

β
β

� �+� � � �
= = � �� � � � −� � � � � �

C ,   2, ,m M= � .       (5.51b) 

To correctly detect 1 ( )s t , the real part of (5.46) has to be greater than the real part of 

(5.47) for all indices m  from 2 to M.  Define 
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( )

( )

2 2
1,1 1 2 1,1

2 20 0
1 2 1,1 1,12

ˆ

0 0
1,12

ˆ

ˆ ˆ[ ] Re | [ ] | | [ ] | [ ]

ˆ ˆ1 | [ ] | | [ ] |
2

1
2

a b
c

c

k c k c k k

f N
c k c k

f N

µ β

η η
σ

λ η
σ

= + +

� �
= + + + +� �
� �

� �
= + +� �
� �

  (5.52a) 

and 
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1, 1,
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ˆ

0 0
1,2

ˆ

[ ] Re [ ]

ˆ ˆ| [ ] | | [ ] |
2

,  2, ,
2

m m

ma mb
c

m
c
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f N
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η η
σ

λ η
σ

=

= + + +

= + = �

   (5.52b) 

where ( )2 2
1 2ˆ ˆ| [ ] | | [ ] |c k c kγ = + ,  

*
1,1 1 1,1 2 2,1ˆ ˆRe [ ] '[ ] [ ] ' [ ]a c k z k c k z kη � �= +� �,    (5.52c) 

* * *0 0
1,1 1 1 2 2 2 12

ˆ ˆ1 Re [ ]( [ ] [ ]) [ ]( [ ] [ ])
2b

e

f N
c k e k e k c k e k e kη

σ
� �

� �= − + + −� � � �
� �

, (5.52d) 

*
1, 1 1, 2 2,ˆ ˆRe [ ] ' [ ] [ ] ' [ ]ma m mc k z k c k z kη � �= +� �,    (5.52e) 

and 

* * *0 0
1, 1 1 2 2 1 22

1,

ˆ ˆRe [ ]( [ ] [ ]) [ ]( [ ] [ ])
2mb

e

b

f N
c k e k e k c k e k e kη

σ
η

� �= − + + −� �

=
 (5.52f) 

are four real Gaussian RVs. It is trivial to show that 1,1aη  and 1,maη  have means zero, 

variances 

2 2 2 2
1,1 1, ' 1,a ma z aη η ησ σ γσ σ= = =       (5.52g) 

and covariance  

( ) ( )2 2

0 0 0 0
1, 1, 1, 2 2

ˆ

[ ]
2 2a ma pa

c e

f N f N
R Eη η η γ

σ σ

� �
� �= = − −
� �
� �

,   m p≠ .  (5.52h) 
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Similarly it is easy to show that 1,1bη  and 1,lbη  have means zero, variances 

2

2 20 0
1,1 21 2

2b e
e

f N
ησ γ σ

σ
� �

= −� �
� �

      (5.52i) 

and 

2

2 20 0
1, 2

2
2mb e

e

f N
ησ γ σ

σ
� �

= � �
� �

, 2, ,m M= �     (5.52j) 

respectively, and covariance 

20 0 0 0
1, 1 1,1 1, 2 2[ ] 1 2

2 2b m b mb e
e e

f N f N
R Eη η η γ σ

σ σ
� �� �

= = − −� �� �
� �� �

, 2, ,m M= � . (5.52k) 

Consequently, 1,1η  and 1,mη  are correlated real Gaussian random variables with mean 

zero, variance 2 2 2
11 1, 1,1a bη η ησ σ σ= +  and 2 2 2

1 1, 1,m a mbη η ησ σ σ= +  respectively, and 

covariance  

,1 1,1 1, 1, 1, 1[ ]m m a b mR E R Rη η ηη η= = +      (5.52l) 

and 

2
, 1, 1, 1, 1,[ ]mp m p a mbR E Rη η ηη η σ= = + , m p≠ .    (5.52m) 

 Based on discussion in (5.52a-m), the probability of a correct detection for the 

scenario 1 2 1( ) ( ) ( )s t s t w t= =  (equal tones), when conditioned on 

( )2 2
1 2ˆ ˆ| [ ] | | [ ] |c k c kγ = + , can be calculated as 

1,1 1,1

,1 1, 1,1
2

1, 1,1
2

[ ] [ ]
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m
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d d d f
η γ η γ

γ µ µ

η η γ

η η η

=

=

+ +∞

−∞ −∞ −∞

� 	= <
 �
� 

� 	= < +
 �
� 

= � � � �
��

�

�    (5.53a) 

where  
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� �
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� � � �
�

    (5.53b) 

is the joint pdf of the M real Gaussian random variables 1,1 1,2 1,[ , , , ]T
Mη η η=� � , and 

2
11 ,1 ,1 ,1

2
,1 1 , ,

2
, 1

,1 ,
2
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l l l

l l lq lq
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   (5.53c) 

is the corresponding covariance matrix. The average correct decision probability can 

now be obtained by averaging (5.53) over the pdf of γ  as follows 

,1 ,1
0

,1 2 2 2
ˆ ˆ0

( ) ( )

( ) exp .
(2 ) 2

c c

c
c c

P P p d

P d

γγ γ γ

λ λγ γ
σ σ

∞

∞

=

� �
= −� �

� �

�

�

    (5.54) 

Using the same approach, we can calculate the average probability of a correct 

decision, ,2cP , for the scenario 1 1( ) ( )s t w t=  and 2( ) ( )qs t w t= , 1q ≠ . The average 

symbol error probability (SEP) is thus ,1 ,2

1 1
1s c c

M
P P P

M M
−� �= − +� �

� �
. From (5.53) it is 

clear that the determination of the conditional correct decision probability requires the 

calculation of a multi-dimension joint Gaussian probability integral. Unfortunately 

there is no simple form for this pdf except for the case of two jointly Gaussian random 

variables [17].  Therefore for 2KM = , 2K ≥ , the M-fold integral (5.53) and (5.54) 

can only be evaluated numerically, and the final average SEP requires another integral 

over the pdf of γ  which makes the total numerical integral increases to M+1 fold, all 

with infinite integral range. 
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 Since the exact error performance for the proposed ST-MFSK scheme 

described above requires multiple-dimensional integration, we choose to evaluate its 

performance by deriving simple and yet tight upper bounds for the BEP of its receiver.  

5. 3. 4  Predictor Upper Bound  

 From (5.49), we realize that the correlation between the noise samples , [ ]i lz k  

(5.43b) in the data detector and the noise samples in the channel estimator is 

introduced through the middle entry of the channel estimation filter 0f . One intuitive 

idea to make this correlation vanish is to set 0 0f = , in which case the channel 

estimation quality would degrade, but when the channel estimation filter is sufficiently 

long, the performance loss would be minimal, especially for slow or moderate fade 

rate. Thus by constructing a channel estimation filter that does not make use of [ ]jx k  

in estimating [ ]jc k , we obtain a sub-optimum receiver whose BEP  gives us a tight 

upper bound on the BEP of the optimum receiver. We call this bound the Predictor 

Bound, as nulling 0f  is equivalent to using a forward linear predictor and a backward 

predictor simultaneously. In the following, we show how to optimize the two 

predictors jointly.  

 With simultaneous forward-backward prediction, the channel estimation filter 

is  

1

' ' 'c

−

= X XXf � � ,        (5.55) 

where 

[ ] ( )0 22

1
' '[0] '[0]

2
[ ] ,        , , , 1,1, ,

H
j j

M
c P

E

n m N n m P Pφ

� �= � �

= − + = − −

XX� X X

I � �

  (5.56) 

is the covariance matrix of the observation vector 
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'[ ] [ ], , [ 1], [ 1],..., [ ]
T

j j j j jk x k P x k x k x k P� �= − − + +� �X � , 1,2j =   (5.57) 

[ ]1
' [ ] '[ ] [ ], , [ 1], [1], , [ ]

2
H

c j j c c c cE c k k P Pφ φ φ φ� �= = − −� �X� X �     (5.58) 

is the correlation between [ ]jc k  and '[ ]j kX , and 

ˆ '[ ] ' '[ ]j jc k k= f X ,        (5.59) 

is the estimate of [ ]jc k . The channel estimate ˆ '[ ]ic k  and the estimation error 

ˆ'[ ] [ ] '[ ]i i ie k c k c k= −  are independent CGRV with mean zero and variance 

122
ˆ '

1 ˆ '[ ] ' ' '
2

H
c j c cE c kσ

−� �= =� �� � X XX X� � �       (5.60a) 

and 

122 2
'

1 ˆ[ ] '[ ] ' ' '
2

H
e j j c c cE c k c kσ σ

−� �= − = −� �� � X XX X� � �     (5.60b) 

respectively. The detection procedure is the same as optimum receiver. 

To assess the error performance of this linear predictive ST-MFSK receiver, we 

first consider the case of identical transmitted tones, i.e. 1 2 1( ) ( ) ( )s t s t w t= = . 

Following the approach outlined in (5.41-5.46), we define  

( ) ( )2 2
1,1 1 2 1,1,ˆ ˆRe [ ] | [ ] | | [ ] | [ ]cy k c k c k kµ β= = + +      

and 

( )1, 1, ,Re [ ] [ ]m m m cy k kµ β= = ,  2, ,m M= �      

where 1,1, [ ]c kβ  and 1, , [ ]l c kβ  are independent real Gaussian RVs with mean zeros and 

variances  

2 2 2
1,1, ' 0 1[ ] 2 2c eE k N ββ σ γ σ� � � �= + =� � � �   1 2(when ( ) ( ) ),s t s t=   (5.61a) 

and 

2 2
1, , 0 1[ ] 2m c mE k N ββ γ σ� � = =� � ,   1m >   1 2(when ( ) ( ) )s t s t=   (5.61b) 
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respectively, where 2 2
1 2ˆ ˆ| '[ ] | | '[ ] |c k c kγ = + . Given µ , the probability that the detector 

makes a correct decision is then 

( ),1
2

1
2

22
11

( ) Pr

1
exp

22

M

c m
m

M

mm
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t
dt
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µ µ µ
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−∞
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∏

�

.     (5.62) 

Now averaging this conditional correct decision probability over the distribution of 

1,1, [ ]c kβ  we get the correct decision probability conditioned on γ as 
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� �
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� �
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.    (5.63) 

Similarly, for the case of different tones in the two transmit antennas, i.e. 1 1( ) ( )s t w t=  

and 2( ) ( )qs t w t= , where 1q ≠ , we have the following counterparts of  (5.56) : 

2 2 2
1,1, ' 0 2[ ] 2 ,c eE k N ββ σ γ σ� � � �= + =� � � �   1 2(when ( ) ( ) )s t s t≠   (5.64a) 

and 
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Now the counterpart of (5.63) becomes 
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and the counterpart of (5.58) becomes 
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 (5.67) 

Finally, the average SEP can be calculated from (5.63) and (5.67) as  

,1 ,2
0 0

1 1
1 ( ) ( ) 1 ( ) ( )s c c

M
P P p d P p d

M Mγ γγ γ γ γ γ γ
∞ ∞−
� � � �= − + −� � � �� �   (5.68a) 

where γ  has a pdf as 

( )2 2 2
ˆ ˆ' '

( ) exp
(2 ) 2c c

p Uγ
γ γγ γ

σ σ
� �

= −� �
� �

.    (5.68b) 

Since for orthogonal MFSK, the Euclidian distances between any two symbols are 

independent of the alphabet size M, the BEP can be easily obtained from the SEP as [3, 

5-4.48] 

2( 1)b s

M
P P

M
=

−
.      (5.69) 

Equations (5.58) and (5.61) show that the evaluation of the average SEP of M-ary 

orthogonal FSK involves calculation of the integer powers of the Q-function. This 

translates into the evaluation of a multiple integral in (5.62).  
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 To perform the averaging in (5.62), we first consider a system using 4FSK 

signaling. Substituting M=4 into (5.62) we have 

,1 ,2
0 0

,1 ,2
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1 3
1 ( ) ( ) 1 ( ) ( )

4 4
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.  (5.70) 

By using the single finite integral representation of the integer powers of the Q-

function [69],  
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, we could calculate (5.63) as 
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Similarly we can calculate (5.67) as 
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Since 2 2 2 2
1, 2 1 2, ,m mβ β β βσ σ σ σ  all containγ , the integrand in (5.65) and (5.66) are actually 

functions of the form [ ]exp bγ− . The average SEP is then calculated by substituting 

(5.65), (5.66) and (5.62b) into (5.64). After applying the identity 2

0

ae d aγγ γ
∞ − −=� , the 

final average SEP for 4FSK can be obtained by performing a triple-fold numerical 

integration with finite range. 

 Since simple form for power of the Q-function exists only up to 4( )Q x  [69], 

the SEP calculation for M>4 FSK will involve numerical (double) integration over 

infinite range. This is quite computational intensive.  

5. 3. 5  Union Bound  

 The simplest bound we can derive for the proposed coherent ST-MFSK 

receiver is the union bound: 

1, 1,
22

1
log

M

b m m
m

P I P
M =

≤ �       (5.73) 

where  

( ) ( )1, 1,1 1,Pr Re [ ] Re [ ] 0m mP y k y k� �= − <� �    (5.74) 

is the pairwise error probability (PEP) between 1 ( )w t  and ( )mw t , 1,mI  is the 

corresponding bit error count, and 2log M  is the number of information bits per 

MFSK symbol. Because of mutual orthogonality in the ( )mw t s, the PEP 1,mP  is 

actually independent of the index m. Consequently, both the union bound and the PEP 

can be rewritten as 

1, 2 2
22

1
log 2

M

b m
m

M
P I P P

M =

� �
≤ =� �
� �

� ,                                         (5.75) 

where 

( )2 1,1 1,2Pr Re [ ] [ ] 0P y k y k� �= − <� �                                       (5.76) 
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is the PEP between 1 ( )w t  and 2 ( )w t . Compared to the exact BEP calculation in 

Section 5.3.3 and the Predictor Bound in Section 5.3.4, the determination of this PEP 

is relatively straight forward because the noise term in 1,1 1,2[ ] [ ]y k y k−  is independent 

of the estimation error and that there is no need to distinguish between identical or 

non-identical tones. As a matter of fact, the determination of the PEP 2P  is similar to 

the exact BEP analysis for ST-BFSK in Section 5.2. 

 To determine the PEP in (5.75), we first subtract the second column of Y[k] 

from the first column. This generates the vector  

( ) ( )2 2
1 2 2 2

ˆˆ ˆ[ ] | [ ] | | [ ] | [ ] [ ] [ ]k c k c k k k k= + + ⋅ +d 1 C E 1 q ,                (5.77a) 

where 21  is an all-one column vector of size 2,  

2

1,1 1,2 21

2( 1) *2,1 2,22
2

( ) ( )[ ]
[ ]

[ ] ( ) ( )

kT T

kT

k T

kT T

n t d t dtz zq k
k

z zq k n t d t dt

+

+

+

� �−� �� � � �= = =� �� � � �−� � � � � �� �

�

�
q     (5.77b) 

and 

* *
1 2( ) ( ) ( )d t w t w t= −         (5.77c) 

is a difference waveform that is analogous to the one in (5.20). As in the binary FSK 

case in (5.24), 1[ ]q k  and 2[ ]q k  are independent zero mean CGRVs with a variance 

of 2
02z Nσ = . Furthermore, (5.25) continues to hold. So once again, the channel 

estimation errors are independent of the difference noise terms 1[ ]q k  and 2[ ]q k . At 

this point, it becomes evident that the analytical model in (5.27)-(5.37) applies to 

MFSK too. The only changes to these equations are the relationships between 2
cσ  and 

bγ  which is  

2

2 0

1
log

c
b M N

σγ � �
= � �

� �
.         
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5. 4   Diversity Reception 

 Now we consider a ST-FSK system with L  receive antennas. Assuming non-

selective Rayleigh fading in the 2L  links, the received waveform at the ith receive 

antenna during the first and second sub-intervals of the k-th code interval are 

1 1 2 2( ) [ ] ( ) [ ] ( ) ( )i i i ir t c k s t c k s t n t= + + , 2 (2 1)kT t k T< < + ,            (5.78) 

and 

* *
1 2 2 1( ) [ ] ( ) [ ] ( ) ( )i i i ir t c k s t c k s t n t= − + + , (2 1) (2 2)k T t k T+ < < + ,    (5.79) 

where the [ ]ijc k s, 2,1,,,2,1 == jLi � , are iid zero mean CGRVs with variance 2
cσ . 

Since there are now L receivers, the channel estimation has to be performed at each 

receiver using the same procedure outlined in (5.5-5.18). The channel estimate 

obtained at a receiver will then be used to compensate for the fading effect in that 

receiver according to (5.45). The L resultant observations 1 2[ ], [ ],..., [ ]Lk k kY Y Y  are 

combined (added) together to form the final observation. At this point, data detection 

can be carried out in exactly the same manner as in a single receiver system.  

 Due to the complexity we encountered during the performance analysis of M-

FSK, we only use the binary case for demonstration purpose. With BFSK, the decision 

rule is 

( )
1

ˆ[ ] sgn Re [ ]
L

i
i

k k
=

� 	= 
 �
� 
�s y       (5.80a) 
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and { }[ ]ij kβ  for 1, ,i L= � , 1, 2j =   are independent CGRVs with mean zero and 

variance ( )( )2 22 2
0 1 2ˆ ˆ2 [ ] [ ]i e i iN c k c kβσ σ= + + . The BEP conditioned on 

( )2 2
1 2ˆ ˆ| [ ] | | [ ] |i i ic k c kγ = +  is then given by 

( )( ) 2eP Qγ γ=        (5.81) 

where 1
2

04( )

L

ii

e N

γ
γ

σ
==
+

�
 is the sum of 2L  independent exponential random variables 

with an identical mean value as (5.35). The probability density function (pdf) of γ  is 

therefore 

( ) ( )
2 1

/
2( 1)!

L

Lp e U
L

γ λγγ γ
λ

−
−=

−
.     (5.82) 

The average BEP then follows [3, 14.4-15] 
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 (5.83) 

 

5. 5   Numerical Results and Discussion 

 In Fig. 5.1 and 5.2, we compare the performance of our proposed ST-BFSK 

receiver with different interpolator size, and also with that of an ideal coherent detector. 

It is well-known that the detection of orthogonal FSK based on one symbol interval 

observation has 3dB loss in SNR when compared with ideal coherent detection. Here 

we demonstrate by jointly estimate the channel using adjacent received symbols can 

gain back most of the 3dB SNR loss, even in the case of “fast fading”. On the other 
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hand, for differential ST codes, as the fade rate becomes faster and faster, the error 

performance will degrade substantially.  

 In Fig. 5.3, we compare the performance of ST-BFSK and differential ST-

BPSK with a small fade rate of 0.01df T = , where the error probability is at the same 

level. In Fig. 5.4, as we increase the fade rate to a relatively higher level of 0.05df T =  

we find that the performance of differential ST-BPSK is much worse than that of ST-

BFSK at higher SNR levels, where channel estimation error due to channel fluctuation 

becomes the major source of detection error. In Fig. 5.5, we compare the performance 

of ST-4FSK and that of differential ST-QPSK at different fade rates. It is evident that 

as the fading becomes faster and faster, the performance of differential ST codes 

becomes worse and worse, while for ST-MFSK, the performance is quite stable with 

only slightly degradation. 

 In Fig. 5.6, the symbol-error-probability (SEP) for different alphabet sizes are 

compared. As the noise power in the channel estimator is proportional to the alphabet 

size M, the larger the alphabet size has higher SEP. While this is true when we 

measure the error performance against the symbol SNR, the picture is changed when 

we use the bit SNR (i.e. 2
0 2/ / logc N Mσ ) instead. This is because when the bit SNR is 

fixed, then the symbol SNR increases at a rate of 2log M , meaning a better detector 

SNR (partially offset by a drop in estimator accuracy as M increases). In Fig. 5.7, we 

present the BEPs for different alphabet sizes as functions of the average SNR per bit. 

As M increases, the BEP is actually decreasing. However, as just mentioned, due to the 

drop in estimator accuracy as M increases, such improvement in a practical system is 

not as prominent as in an ideal coherent system.  

 In Fig. 5.8 – Fig. 5.10, we compare the exact BEP performance from 

simulation with the upper bound we derived in Section 5.4 for M-FSK with M>2. It 
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shows that the union bound becomes looser and looser as the alphabet size increases. 

However, given its extremely simple form, it still can be used as a good reference for 

performance assessment. 

 In Fig. 5.11 and 5.12, we examine the performance improvement by increasing 

the interpolator size for ST-MFSK. It is easy to understand that for ideal coherent 

detection of MFSK signals, when the average SNR per bit is fixed, the larger the 

modulation alphabet M means lower BEP. However, with the channel estimation 

scheme we adopted in our analysis, the amount of noise entering the channel estimator 

is proportional to the modulation alphabet M. Consequently, when the channel 

estimation is not accurate enough, the BEP of a larger modulation alphabet may be 

worse than that of a smaller modulation alphabet. This is demonstrated in Fig. 5.11 

where in a relatively slow fading environment with 0.001df T = , only when the 

channel interpolator size P is greater than 5, the BEP of 16FSK is smaller than that of 

4FSK. In Fig. 5.12, it shows that for a system with a relatively fast fade rate 

of 0.03df T = , the channel interpolator need to be as large as 16 for 16FSK to give 

better BEP than 4FSK. 
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Figure 5.1 BEP vs. average SNR of BFSK with different interpolator size at 

moderate fade rate 

 

Figure 5.2 BEP vs. average SNR of BFSK with different interpolator size at large 

fade rate 
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Figure 5.3 BEP vs. average SNR for BFSK and BDPSK at small fade rate 

 

 

Figure 5.4 BEP vs. average SNR for BFSK and BDPSK at large fade rate 
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Figure 5.5 BEP vs. average SNR for 4FSK and QDPSK at various fade rates 

 

 

Figure 5.6 SEP vs. average SNR of MFSK  
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Figure 5.7 BEP vs. average SNR of MFSK  

 

 

Figure 5.8 BEP vs. average SNR of 4FSK  
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Figure 5.9 BEP vs. average SNR of 8FSK  

 

 

Figure 5.10 BEP vs. average SNR of 16FSK  
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Figure 5.11 BEP vs. Interpolator size for small fade rate  

 

 

Figure 5.12 BEP vs. Interpolator size for large fade rate  
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5. 6   Summary 

 In this chapter, we extend the Alamouti type space-time codes to orthogonal 

FSK modulation. By making use of the unmodulated component of the orthogonal 

signal, we can actually form a “virtual pilot” sequence that jointly produces channel 

estimation with quite good quality. We’ve shown that this channel estimation scheme 

leads to a detector that is capable of gain back most of the 3dB loss of conventional 

quadratic receiver over ideal coherent detector. Exact error performance for binary 

orthogonal FSK is derived in very simple form, while for MFSK with M>2, two upper 

bounds are derived. The extension of this ST-MFSK system to diversity reception is 

also addressed. 
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Chapter 6 

 

Conclusion and Suggestion for Future Work 

 

6. 1  Conclusion 

 In this thesis, we designed and analyzed wireless diversity systems. More 

specifically, we examined the performance of diversity systems with practical channel 

estimation schemes. 

 For conventional single-transmit-multiple-receiver diversity receiver, we 

examined the performance of ideal coherent PSK and differentially encoded and 

detected PSK in nonselective Rayleigh fading channels with maximum ratio 

combining and multiple asynchronous cochannel interferers. Exact average error 

probability expressions were derived in terms of numerical integrals with finite 

integration range. By studying the effects of the timing offsets between the interferers’ 

signal and the desired user’s signal, we found that a symbol-synchronized system 

actually has the worst error performance, while the best performance for detection of 

the desired user’s signal is achieved when all the interferers’ signals are half-symbol-

duration delayed with respect to the desired users’ signal. This result holds true for 

systems using the rectangular pulse shaping at the transmitter and receiver. For 

systems using the raised-cosine pulse and the better-than-raised-cosine pulse as the 

overall pulse, the same conclusions are expected when the roll-off factor is large. We 

also compared the performances of systems using these two pulses. It was found that 

when the system is unsynchronized, the system using better-than-raised-cosine pulse 
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outperforms the system using raised-cosine pulse. Nevertheless they both perform 

worse than the system using rectangular pulse. For synchronized system, the three 

pulses have the same performance as far as error performance is concerned. 

 For transmit-receive diversity using PSK modulation, we developed a practical 

channel estimation scheme using pilot-symbol-assisted-modulation. An optimum 

receive weighting scheme was derived based on maximum-likelihood detection 

principle, and an optimum transmit weighting scheme was derived in order to 

minimize the instantaneous error probability. We also studied the error performance of 

this optimized transmit-receive diversity system. By examining the numerical results, 

we found that in order to achieve the best performance, for system undergoing faster 

fading, more energy should be distributed to the pilot symbols, either by increasing the 

power of the pilot symbols, or by increasing the frequency of pilot symbol insertion. In 

recognition of the fact that pilot-symbol based channel estimation scheme actually 

reduces the data rate, we then considered using binary orthogonal signaling, which had 

been shown to contain a hidden channel measurement component with each symbol. 

However, we found that due to the complex transmit weights involved, a generalized 

quadratic receiver is not implementable at the moment for our proposed transmit-

receive diversity system. A transmitter-receiver structure that is similar to the one we 

used for the PSK case was then employed. The performance of this orthogonal 

signaling based system was then examined through simulation. We found that for this 

system, the main cause of the performance loss when compared to the ideal coherent 

case is the imperfect transmit weighting scheme, or, in other words, the performance of 

the proposed system is rather sensitive to the transmit weighting strategy.  

 Lastly, we developed an Alamouti-type space-time block code using 

orthogonal MFSK. The channel estimation was done by the unmodulated components 
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of the orthogonal signals. The performance of the proposed ST-MFSK system was 

then compared with that of a differential ST-PSK system. It was found that the 

performance of the latter degrades faster as the fade rate increases, while the 

performance of our proposed ST-MFSK is quite stable in both fast and slow fading 

environments. On the other hand, when the alphabet size M is increased, the error 

probability of ST-MFSK would not change much because the Euclidean distance 

between any two symbols remain unchanged in this case, while for linear modulation 

scheme such as PSK or QAM, the Euclidean distance would decrease if we increase 

the constellation size M. Therefore, the performance would degrade unless the symbol 

energy is increased as well. Of course, this advantage of ST-MFSK is achieved at the 

expense of consuming more bandwidth. 

 

6. 2  Suggestion for Future Work 

 In this thesis, the average error probability of diversity receiver with multiple 

asynchronous cochannel interferers is obtained through multiple numerical integrals in 

this thesis. The computational complexity increases as the number of interferers 

increases. This surely brings inconvenience to system designers when they want to 

assess the performance of a system with asynchronous cochannel interferers. Therefore, 

further research could be carried out with the aim of at deriving more concise error 

probability expression or simple closed form approximations. 

 Another possible research area related to the asynchronous cochannel 

interference issue is to develop optimum combining schemes or detection schemes to 

suppress the interference, as has been done for synchronous cochannel interference. 

For example, joint detection of both the desired user’s signal and the interferers’ 

signals from a multiuser detection perspective has been shown to be a promising 
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method to suppress the destructive effect of cochannel interference, which offers even 

better performance than optimum combining. However, both of these two techniques 

are currently developed for synchronous cochannel interferers only [19] [39]. From our 

results it shows that synchronous case actually provides the worst error performance. 

Therefore, it would be interesting to consider extending the interference suppression 

techniques in [19] and [39] above to the asynchronous cochannel interference case. 

 In the design and analysis of our proposed PSAM transmit-receive diversity 

system, we have assumed an error-free and instantaneous feedback link between the 

receiver and the transmitter so that the optimized transmit weights can be sent to the 

transmitter to improve the performance of data symbol detection. This is certainly not 

an easy task in reality. Therefore, more practical means of feedback link should be 

developed, and the transmit weights and receive weights should be optimized based on 

both a practical channel estimation scheme and a practical feedback strategy. For 

example, instead of feeding back all the exact optimum transmit weights from the 

receiver to the transmitter, one can consider first a simple on-off control strategy, 

where among the total TL  transmit antennas, only a subset of it with the largest 

weights amplitude are selected and all the rest of the transmit antennas with smaller 

weights amplitude are turned off. Although inferior in performance when compared to 

optimum weighting scheme, this strategy only need to send binary information back to 

the receiver and it could reduce the complexity of the feedback link design 

substantially. 

 In our proposed orthogonal MFSK based space-time block code, we only 

considered Alamouti-type transmission scheme with two transmit antennas. After 

Alamouti’s initial work, space-time block codes from generalized orthogonal design 
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have been developed to use more transmit antennas. Therefore, it will be useful to 

extend out ST-MFSK codes to larger code sizes as well.  

 Another interesting observation we found in our proposed ST-MFSK codes is 

that for the symbols to be transmitted during the first half and the second half of a code 

interval, no specific symbol constraint is needed as in ST-PSK codes or differential 

ST-PSK codes, while at the same time the channel estimation strategy still works. If 

we transmit different data symbols during the first and second half of a code interval, 

the detection of each pair of data symbols in each symbol interval actually becomes a 

multiuser detection problem. The advantage would be the increased data rate while the 

disadvantage is that no diversity gain is obtained. In other words, technically, our ST-

MFSK code can support flexible transmission rate at the expense of diversity gains. 

 Although our proposed ST-MFSK code has been shown to provide better 

performance in fast fading environment than differential ST codes, its performance is 

still not comparable with that of a coherent ST code such as ST-PSK. On the other 

hand, it is known that minimum-shift-keying (MSK) offers performance that is close to 

ideal coherent PSK by using sequence detection. Therefore, it is interesting to develop 

space-time codes using MSK, and compare its performance with that of ST-PSK. 
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Appendix A 

 

Maximum Likelihood Detection of ST-MFSK 

 

 In this appendix we discuss the optimum detection procedure for our proposed 

ST-MFSK block code. 

 First we cascade the two rows of the received signal in (5.42) to form a 2 1M ×  

column vector as 
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    (A.1) 

where 1[ ] [ [ ],..., [ ]]T
i i iMk s k s k=s  is the signal vector and 1[ ] [ [ ],..., [ ]]T

i i iMk n k n k=n   

represents the AWGN vector. Now conditioned on the channel estimates produced by 

the adjacent 2P  received signal blocks, which is given by (5.59) as 

ˆ ' [ ] ' ' [ ]j jc k k= f X , 1,2j = ,       (A.2) 

(A.1) can be written as 
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2 2 1 2 2 2 2 1 2 2 2

1 1

2 2

ˆ ˆ' [ ] ' [ ] [ ] ' [ ] ' [ ] [ ] [ ]
[ ]

ˆ ˆ' [ ] ' [ ] [ ] ' [ ] ' [ ] [ ] [ ]

[ ] [ ]ˆ '[ ] '[ ]
[ ] [ ]

effective signal

c k c k k e k e k k k
k

c k c k k e k e k k k

k k
k k

k k

� � � � � � � � � �
= + +� �� � � �� � � �− −� �� � � �� � � �

� � �
= +� �

� �

I I s I I s n
r

I I s I I s n

s s
C E

s s
� �� � � ��

1

2

[ ]
[ ]

effective noise

k

k
� � �

+� � � �
� � � �

n
n

� � � �� � � � � ��

.  (A.3) 
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The likelihood of the received signal [ ]kr on hypothesis 1 2[ ] [ ], [ ] [ ]m qk k k k= =s h s h  

and conditioned on (A.2) is given by 

1 2

1

ˆ( [ ] ' [ ], [ ] [ ], [ ] [ ])

[ ] [ ]1 ˆ ˆexp [ ] '[ ] [ ] [ ] '[ ]
[ ] [ ]2

2 [ ]

j m q

H

m m
mq

q q

mq

P k c k k k k k

k k
k k k k k

k k

kπ

−

= =

� �	 
 	 
� � � �� �− − −�  � � �� � � ��  � 
� � � �� �� � � �� �=

r s h s h

h h
r C � r C

h h

�

  (A.4) 

where [ ]mq k�  is the covariance matrix of the effective noise component in (A.3) 

defined by 

2 2
, ' , '

2 2
, ' , '

0 22 2
, ' , '

2 2
, ' , '

[ ]mq

m m e m M q e

q q e q M m e
M

M m q e M m M m e

M q m e M q M q e

k

N

φ σ φ σ
φ σ φ σ

φ σ φ σ
φ σ φ σ

+

+

+ + +

+ + +

� �= = −
� �= =� �= +
� �= =
� �

= − =� �� �

�

I
 (A.5) 

for the case when m q≠ . For notational simplicity, in (A.5) we use ,s tφ  to represent 

the (s, t)-th element of a matrix. All the elements in (A.5) are zero except those being 

specified. For the case when m q= , (A.5) reduces to 

2
, '

0 22
, '

[ ]

2
2

mq

m m e
M

M m M m e

k

N
φ σ

φ σ+ +

� �=
= +� �=� �

�

I
.    (A.6) 

Now the optimum detection strategy based on maximizing the likelihood function in 

(A.4) suggests a multiuser detection problem for two users. Unfortunately, since the 

effective noise vector’s covariance matrix shown in (A.5) and (A.6) takes different 

forms on different hypothesis, simplifying this ML detector seems difficult at the 

moment, although not totally impossible. Also exact error probability solutions for the 

error performance analysis of multiuser detection remain rare in literature, even for the 

simplest case of binary signals [41] – [43], [70]. On the other hand, if we consider the 
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ideal case where the channel estimation is perfect, then this ML detector coincides 

with the one we used in section 5.3.2. From the numerical result in section 5.5, we find 

that the detection scheme we used in section 5.3.2 actually provides near ideal error 

performance, given that the channel interpolator is sufficiently long. Therefore, the 

detector we use is in fact a sub-optimum solution at the presence of channel estimation 

error which offers near optimum performance. 
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Appendix B 

 

Derivation for the conditional representation of (5.49) 

 

 Here we derive the representation of a complex Gaussian random variables 

conditioned on correlated multiple complex Gaussian random variables that lead to 

(5.49). 

 Assume x�  is a circular symmetric complex Gaussian random variable with 

mean zero and variance 2 21
2 [| | ]x E xσ = � , and { } 1

L

i i
y

=
�  are L circular symmetric 

independent complex Gaussian random variables with mean zero and variance 

2 21
2 [| | ]yi iE yσ = �  respectively. We assume x�  is correlated with { } 1

L
i i

y
=

� with covariance 

2 *1
2 [ ]xyi i xyi x yiE xyσ ρ σ σ= =��  where xyiρ  is the correlation coefficient between x�  and iy� . 

Now conditioned on 1y� , similar as (2.8)-(2.10), x�  can be rewritten as 

2
1

1 1 1 1 12
1 1

xyx
xy

y y

x y e y e
σσρ

σ σ
= + = +� � �      (B.1) 

where 1e  represents the uncertainty of x�  when given 1y� , which is a circular symmetric 

complex Gaussian random variable with mean zero and variance 

( )22 2
1 11e xy xσ ρ σ= − .        (B.2) 

As we assume { } 1

L

i i
y

=
�  are independent with each other, we have 
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2 *
2 2 2 2

2
1 * *

1 1 2 1 2 1 2 1 22
1

1
2

1 1
 .

2 2

xy xy x y

xy
e y e y

y

E xy

E y e y E e y

σ ρ σ σ

σ
ρ σ σ

σ

� �= =� �

� �� �
� �= + = =� �	 
 � �	 
� �� �� �

��

� � �

  (B.3) 

Therefore, we could rewrite 1e  in terms of 2y�  as 

2
21

1 1 2 2 2 2 2 2 2 22
2 2 2

xye x
e y xy

y y y

e y e y e y e
σσ σρ ρ

σ σ σ
= + = + = +� � �   (B.4) 

where 2e  represents the uncertainty of 1e  when given 2y� , which is a circular 

symmetric complex Gaussian random variable with mean zero and variance 

( )

( )

22 2
2 1 2 1

2

2 2
1

1

22
1 2

2 2 2
1 2

1

1

1  .

e e y e

xy x
e

e

e xy x

xy xy x

σ ρ σ

ρ σ
σ

σ

σ ρ σ

ρ ρ σ

= −

� �
	 
= −
	 

� �

= −

= − −

      (B.5) 

Since 1e  is independent of 1y� , and { } 1

L
i i

y
=

�  are independent with each other, from (B.4) 

it is obvious that 2e  is independent of 1y�  as well. Now cascade (B.1) and (B.4), we 

have 

2 2
1 2

1 2 22 2
1 2

xy xy

y y

x y y e
σ σ
σ σ

= + +� � � .      (B.6) 

Repeat the process in (B.4) – (B.6), it is simple to generalize the above derivation to all 

{ } 1

L
i i

y
=

� , and finally we can rewrite x�  as 

2

2
1

L
xyi

i L
i yi

x y e
σ
σ=

= +� �        (B.7) 

with Le  be a circular symmetric complex Gaussian random variable uncorrelated with 

{ } 1

L
i i

y
=

� , with mean zero and variance 
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22 2

1

1  .
L

eL xyi x
i

σ ρ σ
=

� �= −	 

� �
       (B.8) 

From (5.43) we have 1, [ ] [2 ]m mz k n k=  and *
2, [ ] [2 1]m mz k n k= + . They are related to the 

channel estimation 1̂[ ]c k  and 2ˆ [ ]c k  through { }2

1
ˆ [ ] [ ]j j j
c k k

=
= fX   where  

[ ] [ ], [ 1],..., [ ]
T

j j j jk x k P x k P x k P� �= − − + +� �X     

with  

1 1
1 1

1
[ ] [ ] [2 ] [2 1]

2

M M

m m
m m

x k c k n k n k
= =

� �= + − +	 

� �
       

and 

2 2
1 1

1
[ ] [ ] [2 ] [2 1]

2

M M

m m
m m

x k c k n k n k
= =

� �= + + +	 

� �
  .    

Now it is easy to show that 

* 0 0
1,

1 ˆ[ ] [ ]  , 1, 2
2 2m i

f N
E z k c k i� � = =� �     (B.9) 

and 

0 0
2,

1 ˆ[ ] [ ] ( 1)  , 1, 2
2 2

i
m i

f N
E z k c k i� � = − =� � .   (B.10) 

Similarly, { }2

, 1
[ ]i m i

z k
=

 is correlated with { }2

1
ˆ[ ] [ ] [ ]i i i i

e k c k c k
=

= −�  as 

* 0 0
1,

1
[ ] [ ]  , 1, 2

2 2m i

f N
E z k e k i� � = − =� �     (B.11) 

and 

1 0 0
2,

1
[ ] [ ] ( 1)  , 1, 2

2 2
i

m i

f N
E z k e k i−� � = − =� � .   (B.12) 

Substituting (B.9) - (B.12) into (B.7) and (B.8), we obtain the relation in (5.49). (Note 

that for circular symmetric Rayleigh fading channels, the coefficients of the channel 

estimation filter are all real, thus we have 0f  instead of *
0f  in (B.10) and (B.12).) 
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Appendix C 

 

Differential Space Time Block Code3 

 

 Here we describe the system model of an Alamouti-type differential space-time 

modulation with code examples. This differential ST code is used to compare with our 

proposed ST-MFSK. 

 

C.1  Signal Model 

We assume Alamouti-type space-time modulation with a code-symbol period 

of 2sT T= . The k-th coded-interval is divided into the subintervals [ ]2 ,2kT kT T+  and 

[ ]2 ,2( 1)kT T k T+ + . The transmitted signals at the two antennas are  

( )( ) [ ] ;                    1, 2i i
n

s t s n p t nT i
∞

=−∞
= − =� ,    (C.1) 

where [ ]is n  denotes the n-th symbol transmitted by the i-th antenna, and ( )p t  is a 

unit-energy square root raised cosine (SQRC) pulse. The transmitted symbols have the 

constraints 

[ ] [ ] [ ]
[ ] [ ] [ ]

* *
1 2 2

* *
2 1 1

2 1 2

2 1 2

s k s k a k

s k s k a k

+ = − = −

+ = + = +
,      (C.2) 

where [ ] [2 ]i ia k s k= . The received signal is  

1 1 2 2( ) ( ) ( ) ( ) ( ) ( )r t c t s t c t s t n t= + + ,     (C.3) 

                                                           
3 The material in this appendix is part of the content of [71], quoted here in agreement with the original 
authors. 
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where ( )n t , 1( )c t  and 2 ( )c t are all zero-mean complex Gaussian processes and they 

represent receiver noise and fading in the two links respectively.  The fading processes 

1( )c t  and 2 ( )c t  are independent and identically distributed (iid) with an autocorrelation 

function 

( ) ( )* 2
0

1
( ) ( ) 2

2c i i c dE c t c t J fφ τ τ σ π τ� �= + =� � ,    (C.4) 

where df  is the maximum Doppler frequency and 2
cσ  is the variance. The noise term 

( )n t  is white and has a power spectral density of 0N .  

 The received signal in (C.3) is passed to a matched filter and sampled 

periodically at a rate of 1/T , with the sample at t nT=  denoted by [ ]r n . Assuming 

quasi-static fading within one coded-interval, then the received samples [2 ]r k  and 

[2 1]r k +  can be written as 

[ ] [2 ]
[ ] [ ] [ ]

[2 1]

r k
k k k k

r k
� �

= = +� �+� �
r a c n ,     (C.5) 

where 

1 2
* *
2 1

[ ] [ ]
[ ]

[ ] [ ]
a k a k

k
a k a k

� �
= � �−� �

a        (C.6) 

is the k-th transmitted space-time (ST) symbol,  

1

2

[ ]
[ ]

[ ]
g k

k
g k
� �

= � �
� �

g        (C.7) 

is the channel’s gain vector, with ( )[ ] 2i ig k c kT= , and  

1

2

[ ]
[ ]

[ ]
n k

k
n k
� �

= � �
� �

n         (C.8) 

is the filtered noise vector. We impose the (energy) constraint 2 2
1 2[ ] [ ] 2a k a k+ = . 

Consequently 
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2[ ] [ ] 2Hk k =a a I ,       (C.9) 

where nI  denotes an identity matrix of size n. From (C.4), we can deduced that the 

discrete-time fading processes 1[ ]g k  and 2[ ]g k  have identical autocorrelation function 

of  

( )*1
[ ] [ ] [ ] 2

2g i i cn E g k n g k nTφ φ� �= + =� �  .    (C.10) 

The noise terms 1[ ]n k  and 2[ ]n k , on the other hand, are independent and white. Both 

have a variance of 2
0n Nσ = . The bit signal-to-noise ratio (SNR) is defined as 

2

0

1 c
b

bn N
σ� 	

Γ = 
 �
� 

,       (C.11) 

where bn  is the number of information bits per T second. The bit-error probability 

(BEP) will be plot against this parameter in the paper. 

 

C. 2  Differential Space-Time Encoding and Detection  

C. 2. 1  Differential Encoding Rule 

 For differential space-time MPSK modulation, the ST data symbol, b[k], is 

chosen randomly from a set of matrix symbols 

{ }1 2, ,...,b JS = B B B ,        (C.12) 

where  

22 bnJ =          (C.13) 

and every iB  has the structure  

,1 ,2
* *
,2 ,1

i i
i

i i

b b

b b
� �

= � �−� �
B ,       (C.14) 

with   
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2 2

,1 ,2 1i ib b+ =        (C.15) 

and ,i kb , 1, 2,...,i J= , 1, 2k = , is either zero or from a MPSK constellation. From 

(C.14) and (C.15), it is easy to show that 

2
H

i i =B B I ,        (C.16) 

and 

{ },1 22ReH
i i ib+ =B B I       (C.17) 

Furthermore, if A is a matrix that satisfies 2
H C=AA I , then the product ( )( )H

i iB A B A  

also equals 2CI . In other word, the symbol energy remains unchanged when we 

multiply a unitary symbol by any of the iB s, as in the case of differential ST encoding. 

In such a system, the data symbol a[k] is obtained from the data symbol b[k] according 

to 

[ ] [ ] [ 1]k k k= −a b a .       (C.18) 

The symbol set for a[k] is denoted by 

{ }1 2, ,...,a KS = A A A ,       (C.19) 

where K is at least as large as J, and 22H
i i =A A I  (as defined in (C.9)).  If the 

individual entries in the iA s are not restricted to a MPSK constellation, it means there 

is a constellation expansion. Such an expansion usually occurs when we attempt to 

send 2logbn M=  bits per T second.  

C. 2. 2  Differential Detection 

 With differential ST encoding, the received vectors for the (k-1)-th and the k-th 

coded intervals are  

     [ ] [ ] [ 1] [ ] [ ]
[ 1] [ 1] [ 1] [ 1]

k k k k k

k k k k

= − +
− = − − + −
r b a c n

r a c n
     (C.20) 
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The optimal detector computes the metrics  

{ }2 Re [ ] [ 1] ,           1, 2,..., ,H H
i i ik k i Jδ = − = =r B r R Q R    (C.21) 

where 

2

2

[ ] [ 1][ ] [ ] [ ]
[ 1][ 1] [ 1] [ 1]

k kk k k
kk k k

−� �� � � � � �
= = +� �� � � � � �−− − −� � � � � �� �

b a 0r c n
R

0 ar c n
, (C.22) 

2

2

i
i H

i

� �
= � �
� �

0 B
Q

B 0
,       (C.23) 

and n0  denotes an all-zero square matrix of size n. If jδ  is the largest, then the 

differential ST detector decision on the data symbol b[k] is ˆ[ ] jk =b B .  

C. 2. 3  BEP Analysis 

 When [ ] ik =b B , then a symbol error occurs when ij i jD δ δ= −  is less than 

zero. The probability that 0ijD <  is called is a pair-wise error probability (PEP) and is 

denoted by ijP . The union bound on the bit-error probability (BEP) is 

1 1

1 1
2

J J

b ij ij
i jb

j i

P n P
n J = =

≠

< × ��       (C.24) 

where ijn  is the bit error count when jB  is chosen by the detector instead of the 

correct symbol iB , 2 bn  is the number of information bits per coded interval,  and 1/J is 

the probability that  [ ] ik =b B . We show in the following how to compute the ijP s.  

 The random variable ij i jD δ δ= −   is a quadratic form of complex Gaussian 

vector R and it can be written as 

H
ij ijD = R F R         (C.25) 

where 
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2

2

ij
Hij i j
ij

� �
= − = � �

� �

0 �
F Q Q

� 0
,       (C.26) 

and 

ij i j= −� B B         (C.27) 

It can be easily shown that ij� has the properties 

2
2

H
ij ij ijd=� � I         (C.28) 

and 

2
2

H H
ij i i ij ijd+ =� B B � I ,       (C.29) 

where 2 0ijd >  is the square distance between ST code symbols jB  and iB . This 

diagonal nature of H
ij ij� �  and  H H

ij i i ij+� B B �  is used in the Appendix to simplify the 

error analysis substantially.  

The characteristic function of the random variable ijD  is  

4

1
( )

2
ij

RR ij

s
s

Φ =
+I � F

      (C.30) 

where 

2

2

i
RR H

i

α β
β α
� �

= � �
� �

I B
�

B I
,       (C.31) 

is the covariance matrix of the vector R in (C.22) conditioned on [ ] ik =b B , and  

( )

2
0

2

0

2

2

4

c

c

d

N

J f T

α σ
β σ ρ
ρ π

= +

=
=

        (C.32) 

As shown in the Appendix C-1,  

( )( )

2

1, 2,

1, 2,

( ) ij ij
ij

ij ij

p p
s

s p s p

� �
Φ = � �

− −� �� �
     (C.33) 
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where 

( )
( )

2 2 2
2

1,

2 2
2,

4

4
ijij

ij

dp

p

β β α β

α β

+ −
� �

=� � −� �

�

     (C.34) 

are the left-plane and right-plane poles. The PEP can be expressed in terms of these 

poles as 

2
2

1, 2,

1 1
1, 2, 2, 1,

1 1 1
1 2 1 2 ,

2 1 1
ij ij

ij
ij ij ij ij ij ij

p p
P

p p p p − −

� �� 	 � �� � � �
� �
 � � �= + = − +� � � �
� �− − 
 � � �+ Λ + Λ� � � �� � � � �  � �� �

 (C.31)                              

where 

( )
( )

( ) ( )

2
2

2 2

2

0 2

0 0

4

(4 )
     

2 1 (4 ) 1 2 1 (4 ) 1

ij ij

b b d
ij

b b d b b d

d

n J f T
d

n J f T n J f T

β
α β

π

π π

Λ =
−

Γ
=
� �� �Γ + + Γ − +� �� �

  (C.32) 

is the effective SNR and bΓ  is the bit SNR defined in (11). The form of this equation 

is appealing as it separates the effect of the channel from that of the modulation. It 

indicates that the larger the square distance 2
ijd , the larger the effective SNR and hence 

the smaller the PEP.  

 When 1bΓ �  and 0df = , ijΛ  can be approximated as 

  
2

4
b ij

ij b

n d� 	
Λ ≈ Γ
 �
 �

� 
 ( 1bΓ � , 0df = )    (C.33) 

and the PEP as 

( )22

3
ij

b ij b

P
n d

≈
Γ

. ( 1bΓ � , 0df = )    (C.34) 

On the other hand, when 1bΓ �  and 0df ≠ , then 
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22
0

2
0

(4 )
1 (4 ) 4

ijd
ij

d

dJ f T
J f T

π
π

� 	
Λ ≈ 
 �
 �− � 

 ( 1bΓ � , 0df ≠ )   (C.35) 

and the irreducible error probability can be calculated accordingly.  

Because of the property in (16), the set of square distances is independent of 

the transmitted pattern iB . With proper bit assignment, we may be able to make the 

pairing ( ),ij ijn P  independent of iB  too. In this case, the union bound of the BEP can be 

obtained by considering any transmitted pattern. 

 

C. 3  Code Examples 

C. 3. 1 BPSK, 1/ 2bn =  

 The transmitted symbol set and the data symbol set of this code are  

1 2

1 1 1 1
,

1 1 1 1aS
� + + − − �� � � �

= = =� �� � � �− + + −� � � �� �
A A     (C.36) 

and 

1 2

1 0 1 0
,

0 1 0 1bS
� + − �� � � �

= = =� �� � � �+ −� � � �� �
B B     (C.37) 

respectively. It is obvious that i j bS∈B B  and i j aS∈B A . Furthermore, 2
12 4d =  and 

12 1n = . Consequently the BEP of this simple code is  

( )
( ) ( )

12

2

0
12

0 0

                                          ,

(4 )
,

1 (4 ) 1 1 (4 ) 1

b

b d

b d b d

P P

J f T

J f T J f T

π

π π

=

Γ
Λ =

� �� �Γ + + Γ − +� �� �

 (BPSK, 1/ 2bn = )

 (C.38) 
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where 12Λ  is the effective SNR that appears in 12P . With static fading and a large 

channel SNR , 12Λ  is approximately / 2bΓ , which is half that seen in a ST-BPSK 

system with perfect channel state information (CSI). The BEP of this ideal system is 

2

1 1

1 1 1
1 2

2 1 1b
b b

P − −

� �� 	 � �
= − +� �
 � � �+ Γ + Γ� ��  � �� �

, (BPSK, perfect CSI)  (C.39) 

C. 3. 2  BPSK 1bn =  

 The data symbols of this code is chosen from the set 

1 2 3 4

1 0 1 0 0 1 0 1
, , ,

0 1 0 1 1 0 1 0bS
� + − − + �� � � � � � � �

= = = = =� �� � � � � � � �+ − + −� � � � � � � �� �
B B B B  (C.40) 

while the transmitted symbols  are from the set  

1 2 3 4

1 1 1 1 1 1 1 1
, , ,

1 1 1 1 1 1 1 1aS
� + + − − + − − + �� � � � � � � �

= = = = =� �� � � � � � � �− + + − + + − −� � � � � � � �� �
A A A A . (C.41) 

The detail encoding rule, with bit-assignment, is given in the table below 

Previous Output / Current Output Input 
(bit assignment) 1A  2A  3A  4A  

1B  (0,0) 1A  2A  3A  4A  

2B (1,1) 2A  1A  4A  3A  

3B  (1,0) 3A  4A  2A  1A  

4B (0,1) 4A  3A  1A  2A  

Table C.1: Differential encoding rule for ST-BPSK, 1bn = .  

As in the case of the 1/ 2bn =  BPSK code, the iB s forms a group under multiplication. 

Furthermore, the sizes of aS  and bS  are identical. 

 It can be verified that for any given data symbol, there is always 1 error event 

of square distance 2
12 4d =  with 12 2n =  erroneous bits, and 2 events of square distance 

2
13 2d =  with  12 1n = erroneous bit. Consequently, the BEP is upper-bounded by  



 170 

( )
( ) ( )

12 13

2

0 2
1 1

0 0

                                       ,

(4 )
,

2 1 (4 ) 1 2 1 (4 ) 1

b

b d
j j

b d b d

P P P

J f T
d

J f T J f T

π

π π

= +

Γ
Λ =

� �� �Γ + + Γ − +� �� �

(BPSK, 1bn = )     (C.42) 

The dominant error event has an effective SNR of 13 / 2bΛ = Γ  in the static fading 

channel. So this BPSK code is also approximately 3 dB worse than BPSK with ideal 

CSI. 

C. 3. 3 QPSK, 3/ 2bn =  

The transmitted symbol set and the data symbol set are respectively 

1 2 3 4

5 6 7 8

1 0 1 0 0 1 0 1
, , ,

0 1 0 1 1 0 1 0

0 0 0 0
, , ,

0 0 0 0

bS
j j j j

j j j j

+ − − +� �� � � � � � � �= = = =� �� � � � � � � �+ − + −� � � � � � � � � �
� �

+ − − +� � � � � � � �� �= = = =� � � � � � � �� �− + − +� � � � � � � �� �

B B B B

B B B B
�  (C.43) 

The transmitted symbol, [ ] [ ] [ 1]k k k= −a b a , is from the set 

1 2 3 4

5 6 7 8

9 10 11

1 1 1 1 1 1
, , ,

1 1 1 1 1 1

1 1
, , ,

1 1

1 1 1 1 1
, ,

1 1 1 1 1

a

j j

j j

j j j j j j
j j j j j j

S
j

j

+ + + + + − + −� � � � � � � �= = = =� � � � � � � �− + + + + + − +� � � � � � � �

+ + + + + − + −� � � � � � � �= = = =� � � � � � � �− − + − + − − −� � � � � � � �

− + − + − −� � � � � �= = =� � � � � �− − + − + −� � � � � �

A A A A

A A A A

A A A
�

12

13 14 15 16

1
,

1

1 1
, , ,

1 1

j

j

j j j j j j

j j j j j j

� �
� �
� �
� �
� �
� �
� �

− −� �� �= � �� �− −� �� �
− + − + − − − −� �� � � � � � � �= = = =� �� � � � � � � �− + + + + + − +� � � � � � � �� �

A

A A A A

(C.44) 

The differential encoding rule and bit assignments are shown in Table C.2 on the next 

page.  

 It is observed from the Table that the iB s forms a group under multiplication. 

However, the sizes of aS  and bS  are NOT identical. There is no signal expansion 

though, as all the entries in the jA s are from a QPSK constellation. 
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Previous Output / Index of Current Output  
Input 

1A  2A  3A  4A
 

5A
 

6A
 

7A
 

8A
 

9A
 

10A
 

11A
 

12A
 

13A
 

14A
 

15A
 

16A
 

1B  (000) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2B  (111) 11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6 

3B  (001) 3 15 11 7 2 14 10 6 1 13 9 5 4 16 12 8 

4B  (110) 9 5 1 13 12 8 4 16 11 7 3 15 10 6 2 14 

5B  (011) 6 7 8 5 10 11 12 9 14 15 16 13 2 3 4 1 

6B  (100) 16 13 14 15 4 1 2 3 8 5 6 7 12 9 10 11 

7B  (010) 8 4 16 12 7 3 15 11 6 2 14 10 5 1 13 9 

8B  (101) 14 10 6 2 13 9 5 1 16 12 8 4 15 11 7 3 

Table C.2: Differential encoding rule for ST-QPSK, 3 / 2bn = . 

 It can be shown that no matter which data symbol is sent, there is always 1 

error event of square distance 2
12 4d =  with 12 2n =  erroneous bits, 3 events of square 

distance 2
13 2d =  with  13 1n =  erroneous bit, and  3 events of square distance 2

14 2d =  

with  14 2n =  erroneous bits.  Consequently, the BEP is upper-bounded by  

( )
( ) ( )

12 13

2

0 2
1 1

0 0

                                       ,

3 (4 )
,

4 3 1 (4 ) 1 3 1 (4 ) 1

b

b d
j j

b d b d

P P P

J f T
d

J f T J f T

π

π π

= +

Γ
Λ =

� �� �Γ + + Γ − +� �� �

(QPSK, 3 / 2bn = ) 

(C.45) 

The dominant error event has an effective SNR of 13 3 / 4bΛ = Γ  in the static fading 

channel. So this BPSK code is also approximately 1.25 dB worse the BPSK with ideal 

CSI. Since ideal QPSK has the same BEP as ideal BPSK, so this particular differential 

ST-QPSK scheme is also 1.25 dB worse than its ideal counterpart.  

C. 3. 4 QPSK, 2bn =   

The random data symbols are from the set  
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

, , , ,
, , , ,
, , , ,
, , , ,

1 1 1 1 1 1 1 11 1 1 1
, , ,

1 1 1 1 1 1 1 12 2 2 2

1 1 1 11 1
,

1 1 1 12 2
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1 11
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j j
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(C.46) 

The bit-assignments are: 

1 2 3 4

5 6 7 6

9 10 10 12

13 14 15 16

[0,0,0,0] [0,0,0,1] [0,0,1,1] [0,0,1,0]
[0,1,0,0] [0,1,0,1] [0,1,1,1] [0,1,1,0]
[1,1,0,0] [1,1,0,1] [1,1,1,1] [1,1,1,0]
[1,0,0,0] [1,0,0,1] [1,0,1,1] [1,0,1,0]

= = = =
= = = =
= = = =
= = = =

d d d d
d d d d
d d d d
d d d d

 

It can be verified that there are 4, 6,4, and 1 error events of square distances 2
1,2 1d = , 

2
1,3 2d = , 2

1,7 3d = , 2
1,10 4d = , and error counts 1,2 1n = , 1,3 2n = , 1,7 3n = , 1,10 4n =  

respectively. This means the BEP has the upper-bound: 

( ) ( )

( )
( ) ( )

3 1
1,2 1,3 1,7 1,102 4

2

0 2
1 1

0 0

                                       ,

4 (4 )
,

4 1 (4 ) 1 4 1 (4 ) 1

b

b d
j j

b d b d

P P P P P

J f T
d

J f T J f T

π

π π

= + + +

Γ
Λ =

� �� �Γ + + Γ − +� �� �

(QPSK, 2bn = )        

(C.47) 

The worse case effective SNR (with static fading) is / 2bΓ . So again, this scheme is 3 

dB worse than ideal BPSK and ideal QPSK. 

 



 173 

Appendix C-1 

 

Derivation of (C.33) 

 

 We show in this Appendix the characteristic function ( )ij sΦ  takes the form 

shown in (C.33) and (C.34). To begin, we note that  

( )4 4
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2 22
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2 2
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But  
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 (C.49) 

and 

2 2 22 2 2 2 4

2 2 22 2 2 2

=ij ij ij
H H H ij
ij ij ij

d
� 	 � 	 � 	� 	 � 	= =
 � 
 � 
 �
 � 
 �

�  � �  �  � 

0 � 0 � � 00 I 0 I
� 0 � 0 0 �I 0 I 0

   (C.50) 

Substituting (C.49) and (C.50) into (C.48) yields 
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( ){ }2
2 2 2 2 2

4 2 4 2 1RR ij ij ijs d s d sα β β+ = − − −I � F .      

Consequently,  

( )

( ) ( )
( )( )

2

22 2 2
1, 2,

2 1, 2,
2 2 2 2 2

4
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1
2 4

ij ij ij
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� �
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  (C.51) 

as shown in (C.33) and (C.34). 
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