15 research outputs found

    MRAI Optimization for BGP Convergence Time Reduction without Increasing the Number of Advertisement Messages

    Get PDF
    AbstractThe primary cause for the slowness of the Border Gateway Protocol (BGP) convergence delay is the Minimum Route Advertisement Interval (MRAI). The MRAI is a timer with a default value of 30seconds, which forces the BGP routers to wait for at least that amount of time before sending an advertisement for the same prefix. This process can delay important BGP advertisements. To date, there has been no specific value used by all the networks around the Internet. This paper aims to find the optimum value for the MRAI timer that maximally reduces the convergence time without increasing the number of advertisement messages. The optimal MRAI value founded by this paper reduced the convergence time by minimum 45%

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet

    Issues in Routing Mechanism for Packets Forwarding: A Survey

    Get PDF

    Performance Evaluation of Distributed Security Protocols Using Discrete Event Simulation

    Get PDF
    The Border Gateway Protocol (BGP) that manages inter-domain routing on the Internet lacks security. Protective measures using public key cryptography introduce complexities and costs. To support authentication and other security functionality in large networks, we need public key infrastructures (PKIs). Protocols that distribute and validate certificates introduce additional complexities and costs. The certification path building algorithm that helps users establish trust on certificates in the distributed network environment is particularly complicated. Neither routing security nor PKI come for free. Prior to this work, the research study on performance issues of these large-scale distributed security systems was minimal. In this thesis, we evaluate the performance of BGP security protocols and PKI systems. We answer the questions about how the performance affects protocol behaviors and how we can improve the efficiency of these distributed protocols to bring them one step closer to reality. The complexity of the Internet makes an analytical approach difficult; and the scale of Internet makes empirical approaches also unworkable. Consequently, we take the approach of simulation. We have built the simulation frameworks to model a number of BGP security protocols and the PKI system. We have identified performance problems of Secure BGP (S-BGP), a primary BGP security protocol, and proposed and evaluated Signature Amortization (S-A) and Aggregated Path Authentication (APA) schemes that significantly improve efficiency of S-BGP without compromising security. We have also built a simulation framework for general PKI systems and evaluated certification path building algorithms, a critical part of establishing trust in Internet-scale PKI, and used this framework to improve algorithm performance

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    CHASING THE UNKNOWN: A PREDICTIVE MODEL TO DEMYSTIFY BGP COMMUNITY SEMANTICS

    Get PDF
    The Border Gateway Protocol (BGP) specifies an optional communities attribute for traffic engineering, route manipulation, remotely-triggered blackholing, and other services. However, communities have neither unifying semantics nor cryptographic protections and often propagate much farther than intended. Consequently, Autonomous System (AS) operators are free to define their own community values. This research is a proof-of-concept for a machine learning approach to prediction of community semantics; it attempts a quantitative measurement of semantic predictability between different AS semantic schemata. Ground-truth community semantics data were collated and manually labeled according to a unified taxonomy of community services. Various classification algorithms, including a feed-forward Multi-Layer Perceptron and a Random Forest, were used as the estimator for a One-vs-All multi-class model and trained according to a feature set engineered from this data. The best model's performance on the test set indicates as much as 89.15% of these semantics can be accurately predicted according to a proposed standard taxonomy of community services. This model was additionally applied to historical BGP data from various route collectors to estimate the taxonomic distribution of communities transiting the control plane.http://archive.org/details/chasingtheunknow1094566047Outstanding ThesisCivilian, CyberCorps - Scholarship For ServiceApproved for public release. distribution is unlimite

    Multipath inter-domain policy routing

    Get PDF
    Dissertação submetida para a obtenção do grau de Doutor em Engenharia Electrotécnica e de ComputadoresRouting can be abstracted to be a path nding problem in a graph that models the network. The problem can be modelled using an algebraic approach that describes the way routes are calculated and ranked. The shortest path problem is the most common form and consists in nding the path with the smallest cost. The inter-domain scenario introduces some new challenges to the routing problem: the routing is performed between independently con gured and managed networks; the ranking of the paths is not based on measurable metrics but on policies; and the forwarding is destination based hop-by-hop. In this thesis we departed from the Border gateway Protocol (BGP) identifying its main problems and elaborating on some ideal characteristics for a routing protocol suited for the inter-domain reality. The main areas and contributions of this work are the following: The current state of the art in algebraic modeling of routing problems is used to provide a list of possible alternative conditions for the correct operation of such protocols. For each condition the consequences in terms of optimality and network restrictions are presented. A routing architecture for the inter-domain scenario is presented. It is proven that it achieves a multipath routing solution in nite time without causing forwarding loops. We discuss its advantages and weaknesses. A tra c-engineering scheme is designed to take advantage of the proposed architecture. It works using only local information and cooperation of remote ASes to minimize congestion in the network with minimal signalling. Finally a general model of a routing protocol based on hierarchical policies is used to study how e cient is the protocol operation when the correctness conditions are met. This results in some conclusions on how the policies should be chosen and applied in order to achieve speci c goals.Portuguese Science and Technology Foundation -(FCT/MCTES)grant SFRH/BD/44476/2008; CTS multi-annual funding project PEst OE/EEI/UI0066/2011; MPSat project PTDC/EEA TEL/099074/2008; OPPORTUNISTICCR project PTDC/EEA-TEL/115981/2009; Fentocells project PTDC/EEA TEL/120666/201

    Contents

    Get PDF

    Virtualization and Distribution of the BGP Control Plane

    Get PDF
    L'Internet est organisé sous la forme d'une multitude de réseaux appelés Systèmes Autonomes (AS). Le Border Gateway Protocol (BGP) est le langage commun qui permet à ces domaines administratifs de s'interconnecter. Grâce à BGP, deux utilisateurs situés n'importe où dans le monde peuvent communiquer, car ce protocole est responsable de la propagation des messages de routage entre tous les réseaux voisins. Afin de répondre aux nouvelles exigences, BGP a dû s'améliorer et évoluer à travers des extensions fréquentes et de nouvelles architectures. Dans la version d'origine, il était indispensable que chaque routeur maintienne une session avec tous les autres routeurs du réseau. Cette contrainte a soulevé des problèmes de scalabilité, puisque le maillage complet des sessions BGP internes (iBGP) était devenu difficile à réaliser dans les grands réseaux. Pour couvrir ce besoin de connectivité, les opérateurs de réseaux font appel à la réflection de routes (RR) et aux confédérations. Mais si elles résolvent un problème de scalabilité, ces deux solutions ont soulevé des nouveaux défis car elles sont accompagnées de multiples défauts; la perte de diversité des routes candidates au processus de sélection BGP ou des anomalies comme par exemple des oscillations de routage, des déflections et des boucles en font partie. Les travaux menés dans cette thèse se concentrent sur oBGP, une nouvelle architecture pour redistribuer les routes externes à l'intérieur d'un AS. `A la place des classiques sessions iBGP, un réseau de type overlay est responsable (I) de l'´echange d'informations de routage avec les autres AS, (II) du stockage distribué des routes internes et externes, (III) de l'application de la politique de routage au niveau de l'AS et (IV) du calcul et de la redistribution des meilleures routes vers les destinations de l'Internet pour tous les routeurs clients présents dans l'AS. ABSTRACT : The Internet is organized as a collection of networks called Autonomous Systems (ASes). The Border Gateway Protocol (BGP) is the glue that connects these administrative domains. Communication is thus possible between users worldwide and each network is responsible of sharing reachability information to peers through BGP. Protocol extensions are periodically added because the intended use and design of BGP no longer fit the current demands. Scalability concerns make the required internal BGP (iBGP) full mesh difficult to achieve in today's large networks and therefore network operators resort to confederations or Route Reflectors (RRs) to achieve full connectivity. These two options come with a set of flaws of their own such as route diversity loss, persistent routing oscillations, deflections, forwarding loops etc. In this dissertation we present oBGP, a new architecture for the redistribution of external routes inside an AS. Instead of relying on the usual statically configured set of iBGP sessions, we propose to use an overlay of routing instances that are collectively responsible for (I) the exchange of routes with other ASes, (II) the storage of internal and external routes, (III) the storage of the entire routing policy configuration of the AS and (IV) the computation and redistribution of the best routes towards Internet destinations to each client router in the AS

    Virtualization and Distribution of the BGP Control Plane

    Get PDF
    The Internet is organized as a collection of networks called Autonomous Systems (ASes). The Border Gateway Protocol (BGP) is the glue that connects these administrative domains. Communication is thus possible between users worldwide and each network is responsible of sharing reachability information to peers through BGP. Protocol extensions are periodically added because the intended use and design of BGP no longer fit the current demands. Scalability concerns make the required internal BGP (iBGP) full mesh difficult to achieve in today's large networks and therefore network operators resort to confederations or Route Reflectors (RRs) to achieve full connectivity. These two options come with a set of flaws of their own such as route diversity loss, persistent routing oscillations, deflections, forwarding loops etc. In this dissertation we present oBGP, a new architecture for the redistribution of external routes inside an AS. Instead of relying on the usual statically configured set of iBGP sessions, we propose to use an overlay of routing instances that are collectively responsible for (I) the exchange of routes with other ASes, (II) the storage of internal and external routes, (III) the storage of the entire routing policy configuration of the AS and (IV) the computation and redistribution of the best routes towards Internet destinations to each client router in the AS
    corecore