7 research outputs found

    Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions:an iliac angioplasty exemplar case study

    Get PDF
    Purpose A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Methods Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages’ durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Results Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. Conclusions This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education

    Low-dose intra-arterial contrast-enhanced MR aortography in patients based on a theoretically derived injection protocol

    Get PDF
    Multiple intra-arterial contrast agent injections are necessary during MR-guided endovascular interventions. In respect to the approved limits of maximum daily gadolinium dose, a low-dose injection protocol is mandatory. The objective of this study was to derive and apply a low-dose injection protocol for intra-arterial 3D contrast-enhanced MR aortography in patients. Injection rate (Qinj), concentration of injected gadolinium [Gd]inj and aortal blood flow rate (Qblood) were included for the theoretical evaluation of signal intensity (SI) of the arterial lumen. SI simulations were carried out at Qinj=2 versus 4ml/s in the [Gd]inj range between 0-500mM. Qinj and [Gd]inj with SI above the 75% threshold of the maximal SI were regarded as optimal injection parameters. [Gd]inj=50mM and Qinj=4ml/s were considered as optimal and were administered in five patients for 3D MR aortography. All images revealed clear delineation of the abdominal aorta and its major branches. Mean±SD of contrast-to-noise ratios of the abdominal aorta, common iliac and renal artery were 70.2±15.2, 58.6±12.3 and 67.4±12.3. Approximately seven intra-aortal injections would be permissible in patients during MR-guided interventions without exceeding the maximal dose of gadoliniu

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness
    corecore