353 research outputs found

    Optimisation des Systèmes Partiellement Observables dans les Réseaux Sans-fil (Théorie des jeux, Auto-adaptation et Apprentissage)

    Get PDF
    La dernière décennie a vu l'émergence d'Internet et l'apparition des applications multimédia qui requièrent de plus en plus de bande passante, ainsi que des utilisateurs qui exigent une meilleure qualité de service. Dans cette perspective, beaucoup de travaux ont été effectués pour améliorer l'utilisation du spectre sans fil.Le sujet de ma thèse de doctorat porte sur l'application de la théorie des jeux, la théorie des files d'attente et l'apprentissage dans les réseaux sans fil,en particulier dans des environnements partiellement observables. Nous considérons différentes couches du modèle OSI. En effet, nous étudions l'accès opportuniste au spectre sans fil à la couche MAC en utilisant la technologie des radios cognitifs (CR). Par la suite, nous nous concentrons sur le contrôle de congestion à la couche transport, et nous développons des mécanismes de contrôle de congestion pour le protocole TCP.Since delay-sensitive and bandwidth-intense multimedia applications have emerged in the Internet, the demand for network resources has seen a steady increase during the last decade. Specifically, wireless networks have become pervasive and highly populated.These motivations are behind the problems considered in this dissertation.The topic of my PhD is about the application of game theory, queueing theory and learning techniques in wireless networks under some QoS constraints, especially in partially observable environments.We consider different layers of the protocol stack. In fact, we study the Opportunistic Spectrum Access (OSA) at the Medium Access Control (MAC) layer through Cognitive Radio (CR) approaches.Thereafter, we focus on the congestion control at the transport layer, and we develop some congestion control mechanisms under the TCP protocol.The roadmap of the research is as follows. Firstly, we focus on the MAC layer, and we seek for optimal OSA strategies in CR networks. We consider that Secondary Users (SUs) take advantage of opportunities in licensed channels while ensuring a minimum level of QoS. In fact, SUs have the possibility to sense and access licensed channels, or to transmit their packets using a dedicated access (like 3G). Therefore, a SU has two conflicting goals: seeking for opportunities in licensed channels, but spending energy for sensing those channels, or transmitting over the dedicated channel without sensing, but with higher transmission delay. We model the slotted and the non-slotted systems using a queueing framework. Thereafter, we analyze the non-cooperative behavior of SUs, and we prove the existence of a Nash equilibrium (NE) strategy. Moreover, we measure the gap of performance between the centralized and the decentralized systems using the Price of Anarchy (PoA).Even if the OSA at the MAC layer was deeply investigated in the last decade, the performance of SUs, such as energy consumption or Quality of Service (QoS) guarantee, was somehow ignored. Therefore, we study the OSA taking into account energy consumption and delay. We consider, first, one SU that access opportunistically licensed channels, or transmit its packets through a dedicated channel. Due to the partial spectrum sensing, the state of the spectrum is partially observable. Therefore, we use the Partially Observable Markov Decision Process (POMDP) framework to design an optimal OSA policy for SUs. Specifically, we derive some structural properties of the value function, and we prove that the optimal OSA policy has a threshold structure.Thereafter, we extend the model to the context of multiple SUs. We study the non-cooperative behavior of SUs and we prove the existence of a NE. Moreover, we highlight a paradox in this situation: more opportunities in the licensed spectrum may lead to worst performances for SUs. Thereafter, we focus on the study of spectrum management issues. In fact, we introduce a spectrum manager to the model, and we analyze the hierarchical game between the network manager and SUs.Finally, we focus on the transport layer and we study the congestion control for wireless networks under some QoS and Quality of Experience (QoE) constraints. Firstly, we propose a congestion control algorithm that takes into account applications' parameters and multimedia quality. In fact, we consider that network users maximize their expected multimedia quality by choosing the congestion control strategy. Since users ignore the congestion status at bottleneck links, we use a POMDP framework to determine the optimal congestion control strategy.Thereafter, we consider a subjective measure of the multimedia quality, and we propose a QoE-based congestion control algorithm. This algorithm bases on QoE feedbacks from receivers in order to adapt the congestion window size. Note that the proposed algorithms are designed based on some learning methods in order to face the complexity of solving POMDP problems.AVIGNON-Bib. numérique (840079901) / SudocSudocFranceF

    An Analysis of the MOS under Conditions of Delay, Jitter and Packet Loss and an Analysis of the Impact of Introducing Piggybacking and Reed Solomon FEC for VOIP

    Get PDF
    Voice over IP (VoIP) is a real time application that allows transmitting voice through the Internet network. Recently there has been amazing progress in this field, mainly due to the development of voice codecs that react appropriately under conditions of packet loss, and the improvement of intelligent jitter buffers that perform better under conditions of variable inter packet delay. In addition, there are other factors that indirectly benefited VoIP. Today, computer networks are faster due to the advances in hardware and breakthrough algorithms. As a result, the quality of VoIP calls has improved considerably. However, the quality of VoIP calls under extreme conditions of packet loss still remains a major problem that needs to be addressed for the next generation of VoIP services. This thesis concentrates in making an analysis of the effects that network impairments, such as: delay, jitter, and packet loss have in the quality of VoIP calls and approaches to solve this problem. Finally, we analyze the impact of introducing forward error correction (FEC) Piggybacking and Reed Solomon codes for VoIP. To measure the mean opinion score of VoIP calls we develop an application based on the E-Model, and utilize perceptual evaluation of speech quality (PESQ)

    Enhancement of perceived quality of service for voice over internet protocol systems

    Get PDF
    Voice over Internet Protocol (WIP) applications are becoming more and more popular in the telecommunication market. Packet switched V61P systems have many technical advantages over conventional Public Switched Telephone Network (PSTN), including its efficient and flexible use of the bandwidth, lower cost and enhanced security. However, due to the IP network's "Best Effort" nature, voice quality are not naturally guaranteed in the VoIP services. In fact, most current Vol]P services can not provide as good a voice quality as PSTN. IP Network impairments such as packet loss, delay and jitter affect perceived speech quality as do application layer impairment factors, such as codec rate and audio features. Current perceived Quality of Service (QoS) methods are mainly designed to be used in a PSTN/TDM environment and their performance in V6IP environment is unknown. It is a challenge to measure perceived speech quality correctly in V61P system and to enhance user perceived speech quality for VoIP system. The main goal of this project is to evaluate the accuracy of the existing ITU-T speech quality measurement method (Perceptual Evaluation of Speech Quality - PESQ) in mobile wireless systems in the context of V61P, and to develop novel and efficient methods to enhance the user perceived speech quality for emerging V61P services especially in mobile V61P environment. The main contributions of the thesis are threefold: (1) A new discovery of PESQ errors in mobile VoIP environment. A detailed investigation of PESQ performance in mobile VoIP environment was undertaken and included setting up a PESQ performance evaluation platform and testing over 1800 mobile-to-mobile and mobileto- PSTN calls over a period of three months. The accuracy issues of PESQ algorithm was investigated and main problems causing inaccurate PESQ score (improper time-alignment in the PESQ algorithm) were discovered . Calibration issues for a safe and proper PESQ testing in mobile environment were also discussed in the thesis. (2) A new, simple-to-use, V611Pjit ter buffer algorithm. This was developed and implemented in a commercial mobile handset. The algorithm, called "Play Late Algorithm", adaptively alters the playout delay inside a speech talkspurt without introducing unnecessary extra end-to-end delay. It can be used as a front-end to conventional static or adaptive jitter buffer algorithms to provide improved performance. Results show that the proposed algorithm can increase user perceived quality without consuming too much processing power when tested in live wireless VbIP networks. (3) A new QoS enhancement scheme. The new scheme combines the strengths of adaptive codec bit rate (i. e. AMR 8-modes bit rate) and speech priority marking (i. e. giving high priority for the beginning of a voiced segment). The results gathered on a simulation and emulation test platform shows that the combined method provides a better user perceived speech quality than separate adaptive sender bit rate or packet priority marking methods

    Speech quality prediction for voice over Internet protocol networks

    Get PDF
    Merged with duplicate record 10026.1/878 on 03.01.2017 by CS (TIS). Merged with duplicate record 10026.1/1657 on 15.03.2017 by CS (TIS)This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin ([email protected]) to discuss options.IP networks are on a steep slope of innovation that will make them the long-term carrier of all types of traffic, including voice. However, such networks are not designed to support real-time voice communication because their variable characteristics (e.g. due to delay, delay variation and packet loss) lead to a deterioration in voice quality. A major challenge in such networks is how to measure or predict voice quality accurately and efficiently for QoS monitoring and/or control purposes to ensure that technical and commercial requirements are met. Voice quality can be measured using either subjective or objective methods. Subjective measurement (e.g. MOS) is the benchmark for objective methods, but it is slow, time consuming and expensive. Objective measurement can be intrusive or non-intrusive. Intrusive methods (e.g. ITU PESQ) are more accurate, but normally are unsuitable for monitoring live traffic because of the need for a reference data and to utilise the network. This makes non-intrusive methods(e.g. ITU E-model) more attractive for monitoring voice quality from IP network impairments. However, current non-intrusive methods rely on subjective tests to derive model parameters and as a result are limited and do not meet new and emerging applications. The main goal of the project is to develop novel and efficient models for non-intrusive speech quality prediction to overcome the disadvantages of current subjective-based methods and to demonstrate their usefulness in new and emerging VoIP applications. The main contributions of the thesis are fourfold: (1) a detailed understanding of the relationships between voice quality, IP network impairments (e.g. packet loss, jitter and delay) and relevant parameters associated with speech (e.g. codec type, gender and language) is provided. An understanding of the perceptual effects of these key parameters on voice quality is important as it provides a basis for the development of non-intrusive voice quality prediction models. A fundamental investigation of the impact of the parameters on perceived voice quality was carried out using the latest ITU algorithm for perceptual evaluation of speech quality, PESQ, and by exploiting the ITU E-model to obtain an objective measure of voice quality. (2) a new methodology to predict voice quality non-intrusively was developed. The method exploits the intrusive algorithm, PESQ, and a combined PESQ/E-model structure to provide a perceptually accurate prediction of both listening and conversational voice quality non-intrusively. This avoids time-consuming subjective tests and so removes one of the major obstacles in the development of models for voice quality prediction. The method is generic and as such has wide applicability in multimedia applications. Efficient regression-based models and robust artificial neural network-based learning models were developed for predicting voice quality non-intrusively for VoIP applications. (3) three applications of the new models were investigated: voice quality monitoring/prediction for real Internet VoIP traces, perceived quality driven playout buffer optimization and perceived quality driven QoS control. The neural network and regression models were both used to predict voice quality for real Internet VoIP traces based on international links. A new adaptive playout buffer and a perceptual optimization playout buffer algorithms are presented. A QoS control scheme that combines the strengths of rate-adaptive and priority marking control schemes to provide a superior QoS control in terms of measured perceived voice quality is also provided. (4) a new methodology for Internet-based subjective speech quality measurement which allows rapid assessment of voice quality for VoIP applications is proposed and assessed using both objective and traditional MOS test methods

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance

    A Survey on Modeling of Human States in Communication Behavior

    Get PDF
    The Technical Committee on Communication BehaviorEngineering addresses the research question How do we construct a com-munication network system that includes users?. The growth in highlyfunctional networks and terminals has brought about greater diversity inusers\u27 lifestyles and freed people from the restrictions of time and place.Under this situation, the similarities of human behavior cause traffic aggre-gation and generate new problems in terms of the stabilization of networkservice quality. This paper summarizes previous studies relevant to com-munication behavior from a multidisciplinary perspective and discusses theresearch approach adopted by the Technical Committee on CommunicationBehavior Engineering

    VoIP Packet Delay Techniques: A Survey

    Get PDF
    The continuous development in the field of communication have paved the way for Voice over Internet Protocol (VoIP). VoIP is a group of hardware and software that facilitates people to utilize the Internet as the transmission medium for telephone calls by transmitting voice data in packets using IP instead of using conventional circuit transmissions of the Public Switched Telephone Network (PSTN). At present, VoIP is becoming an important tool for quick communication across the world. There are several Internet telephony applications existing at present. The major disadvantage in VoIP is that the packet delay. In VoIP, the terminology jitter is used to refer the type of packet delay where the delay has a huge setback in the quality of the voice conversation. Several packet delay techniques were proposed in recent years. Some of the important packet delay techniques are discussed in the literature. This survey would definitely help the researchers to carry out their research for providing better communication in VoIP without any delay
    corecore