
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

5-4-2007

An Analysis of the MOS under Conditions of
Delay, Jitter and Packet Loss and an Analysis of the
Impact of Introducing Piggybacking and Reed
Solomon FEC for VOIP
Alexander F. Ribadeneira

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Ribadeneira, Alexander F., "An Analysis of the MOS under Conditions of Delay, Jitter and Packet Loss and an Analysis of the Impact of
Introducing Piggybacking and Reed Solomon FEC for VOIP." Thesis, Georgia State University, 2007.
https://scholarworks.gsu.edu/cs_theses/44

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

AN ANALYSIS OF THE MOS UNDER CONDITIONS OF DELAY, JIITTER AND

PACKET LOSS AND AN ANALYSIS OF THE IMPACT OF INTRODUCING

PIGGYBACKING AND REED SOLOMON FEC FOR VOIP

by

ALEXANDER F. RIBADENEIRA

Under the direction of Anu G. Bourgeois

ABSTRACT

Voice over IP (VoIP) is a real time application that allows transmitting voice

through the Internet network. Recently there has been amazing progress in this field,

mainly due to the development of voice codecs that react appropriately under conditions

of packet loss, and the improvement of intelligent jitter buffers that perform better under

conditions of variable inter packet delay. In addition, there are other factors that

indirectly benefited VoIP. Today, computer networks are faster due to the advances in

hardware and breakthrough algorithms. As a result, the quality of VoIP calls has

improved considerably. However, the quality of VoIP calls under extreme conditions of

packet loss still remains a major problem that needs to be addressed for the next

generation of VoIP services. This thesis concentrates in making an analysis of the effects

that network impairments, such as: delay, jitter, and packet loss have in the quality of

VoIP calls and approaches to solve this problem. Finally, we analyze the impact of

introducing forward error correction (FEC) Piggybacking and Reed Solomon codes for

VoIP. To measure the mean opinion score of VoIP calls we develop an application based

on the E-Model, and utilize perceptual evaluation of speech quality (PESQ).

INDEX WORDS: VoIP, FEC, SIP, MOS, E-Model, PESQ, RTP, RTCP.

 AN ANALYSIS OF THE MOS UNDER CONDITIONS OF DELAY, JIITTER AND

PACKET LOSS AND AN ANALYSIS OF THE IMPACT OF INTRODUCING

PIGGYBACKING AND REED SOLOMON FEC FOR VOIP

by

ALEXANDER F. RIBADENEIRA

A thesis Submitted in the Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2007

Copyright by

Alexander F Ribadeneira

2007

AN ANALYSIS OF THE MOS UNDER CONDITIONS OF DELAY, JIITTER AND

PACKET LOSS AND AN ANALYSIS OF THE IMPACT OF INTRODUCING

PIGGYBACKING AND REED SOLOMON FEC FOR VOIP

by

ALEXANDER F. RIBADENEIRA

Major Professor: Anu G. Bourgeois

Committee: Raheem A. Beyah

Yingshu Li

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2007

iv

DEDICATION

To all the people who believe in social justice and peace.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Anu Bourgeois for her guidance and support during this

research. I also would like to thank to the members of the committee, Dr. Raheem A.

Beyah and Dr. Yingshu Li for their helpful comments and suggestions.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

LIST OF ABBREVATIONS .. x

CHAPTER 1 – INTRODUCTION ... 1

CHAPTER 2 – BACKGROUND ... 4

2.1 Codecs... 4

2.2 Voice activity detection and silence suppression ... 6

2.3 Real time protocol... 8

2.4 Real time control protocol .. 14

2.5 Jitter and jitter buffers... 15

2.6 Mean opinion score... 19

2.7 Signaling ... 23

2.8 Session Initiation protocol .. 24

2.9 Constructing VoIP packets and throughput of one call with G.711 codec............. 27

2.10 A ratio of payload vs. packet length for codecs operating at 20 msec intervals... 29

2.11 Payload size per packet for G.711 and G.729 at different packet intervals.......... 32

2.12 Bandwidth consumption of G.711 and G.729 at different packet intervals. 33

2.13 VoIP over wireless networks .. 36

2.14 Security considerations for VoIP.. 39

2.15 Recommendations for improving the quality of VoIP calls 42

vii

CHAPTER 3 – PROBLEM DEFINITION... 44

3.1 Factors that affect the quality of a VoIP call. ... 44

3.2 MOS under conditions of packet loss. .. 46

CHAPTER 4 – ANALYSIS OF INTRODUCING FEC FOR VOIP 49

4.1 How to recover lost information in the event of packet loss. 49

4.2 Forward error correction... 50

4.3 Forward error correction with a piggybacking scheme .. 51

4.4 Forward Error correction with Reed Solomon codes ... 57

CHAPTER 5 – EXPERIMENTS AND RESULTS.. 67

5.1 Degradation due to loss of consecutive audio. ... 67

5.2 Call degradation on Cisco ATA 188 in the event of distinct forms of delay 68

5.3 Call degradation on Grand Stream ATA in the event of distinct forms of delay ... 71

5.4 Call quality degradation with a fixed jitter buffer. ... 74

5.5 Call quality degradation with an adaptive jitter buffer. .. 77

5.6 MOS under the event of periodic and random lost (non-intrusive technique). 80

CHAPTER 6 – CONCLUSION.. 82

BIBLIOGRAPHY... 87

APPENDIX... 91

APPENDIX A. RTP stream generator.. 91

APPENDIX B. Mean opinion score calculator .. 101

viii

LIST OF TABLES

Table 2.1. [2]. Properties of Audio Encoding... 5
Table 2.2. VoIP common codecs .. 6
Table 2.3. [2]. Payload types for audio encoding ... 11
Table 2.4 [23]. Mean Opinion Score .. 20
Table 2.5. A ratio of payload vs. packet length .. 31
Table 2.6. Payload size per packet for G.711 and G.729 at different packet intervals..... 32
Table 2.7. Bandwidth consumption of the G.711 at different transmission cycles 34
Table 2.8. Bandwidth consumption of the G.729 at different transmission cycles 34
Table 4.1. Bandwidth consumption of FEC piggybacking scheme at 10 msec intervals. 53
Table 4.2. Bandwidth consumption of FEC piggybacking scheme at 20 msec intervals. 53
Table 4.3. Additional delay of FEC piggybacking scheme .. 54
Table 4.4. Bandwidth consumption of FEC Reed Solomon code, T=10msec 62
Table 4.5. Bandwidth consumption of FEC Reed Solomon code, T=20msec 63
Table 5.1. Mean opinion score and discards for a fixed jitter buffer................................ 76
Table 5.2. Mean opinion score and discards for an adaptive jitter buffer 79
Table 5.3. MOS of G.711 under conditions of periodic and random loss 81

ix

LIST OF FIGURES

Figure 2.1. Speech characteristic of a call between two participants 7
Figure 2.2. Headers of the user datagram protocol... 9
Figure 2.3. [1]. Headers of the real time protocol... 9
Figure 2.4. Real time protocol in the TCP/IP protocol stack.. 13
Figure 2.5. Comparative analysis of fixed vs. adaptive jitter buffer................................. 19
Figure 2.6. SIP Registration process... 25
Figure 2.7. SIP call setup process ... 27
Figure 2.8. Proportion of payload and headers in G.711 at 20 msec packet intervals...... 29
Figure 2.9. A ratio of payload vs. packet length... 31
Figure 2.10. Bandwidth consumption of G.711 and G.729 at different packet intervals . 35
Figure 3.1. MOS under conditions of random packet loss, based on the E-Model 47
Figure 3.2. Impairment due to packet loss, JavaScript application snapshot 47
Figure 4.1. [21]. FEC piggybacking scheme with a redundancy level of two.................. 51
Figure 4.2. Bandwidth consumption of forward error correction piggybacking scheme . 55
Figure 4.3. Reed Solomon codeword.. 58
Figure 4.4. Reed Solomon codes, all parity sent in a block.. 60
Figure 4.5. Reed Solomon codes, parity sent at T intervals. .. 61
Figure 4.6. Impairment due to delay, based on the E-Model.. 63
Figure 4.7. Impairment due to delay, JavaScript application snapshot 64
Figure 5.1. Call quality degradation ... 68
Figure 5.2. SIP setup for Cisco ATA 188 phones with an impairment generator 69
Figure 5.3. Jitter without re-ordering for a Gaussian delay between 0 and 550 msec...... 71
Figure 5.4. SIP setup for Grand stream phones with an impairment generator................ 72
Figure 5.5. Jitter without re-ordering for a Gaussian delay between 0 and 100 msec...... 73
Figure 5.6. Setup to measure call quality degradation in the event of Gaussian delay. ... 75
Figure 5.7. Fixed jitter buffer impaired waveforms.. 75
Figure 5.8. Mean Opinion Score with a fixed jitter buffer. .. 77
Figure 5.9. Adaptive jitter buffer impaired waveforms. ... 78
Figure 5.10. Mean Opinion Score for an adaptive jitter buffer. 80
Figure 5.11. MOS of G.711 under conditions of periodic and random loss..................... 81

x

LIST OF ABBREVATIONS

ACELP Algebraic code excited linear prediction.

ADPCM Adaptive differential pulse code modulation.

ATA Analog telephone adaptor.

CBQ Class base queuing.

CBR Constant bit rate.

CELP Code exited linear prediction.

CQ Conversational quality.

CS-ACELP Conjugate structure algebraic code exited linear prediction.

CSMA/CA Carries sense multiple access with collision avoidance.

CSRC Contributing source.

DVI4 Digital visual interface.

EDCA Enhanced distribution channel access.

FEC Forward error correction.

FIFO First in first out.

GSM Global system for mobile communications.

H.323 A signaling protocol defined by the International telecom union.

HCF Hybrid coordinated function.

IEEE Institute of Electrical and Electronics Engineer.

IETF Internet engineering task force.

IFG Inter frame gap.

IPG Inter packet gap.

xi

LD-CELP Low delay code exited linear prediction.

LQ Listening quality.

LPC Linear predictive coding.

MGCP Media gateway control protocol.

MOS Mean opinion score.

MP-MLQ Multi-pulse maximum likelihood quantization

MPC-MLQ Multi-pulse linear predicting code with maximum likelihood quantization.

MPLS Multi protocol label switching.

MAPDV Mean absolute packet delay variation.

MPPDV Mean packet to packet delay variation.

NPLC No packet loss concealment.

PCMA Pulse code modulation aLaw.

PCMU Pulse code modulation uLaw.

PESQ Perceptual evaluation of speech quality.

PLC Packet loss concealment.

POTS Plain old telephone service.

PSQM Perceptual speech quality measurement.

PSTN Public switch telephone network.

QOS Quality of service.

RTCP Real time control protocol.

RTCP-XR Real time control protocol extended report.

RTP Real time protocol.

RTT Round trip time.

xii

RUDP Reliable user datagram protocol.

SCCP Skinny client control protocol.

SIP Session initiation protocol.

SSRC Synchronization source.

TCP Transmission control protocol.

UDP User datagram protocol.

VAD Voice activity detection.

VoIP Voice over IP.

1

CHAPTER 1 – INTRODUCTION

Voice over IP (VoIP), the transmission of voice over the Internet, particularly the

IP protocol, has gained popularity over the recent years. Businesses and institutions are

transforming their current phone infrastructure from Plain Old Telephone Service (POTS)

to VoIP. There is a notorious advantage of transmitting voice using the IP protocol and

that is IP networks are low in cost. In fact, when a long distance call is placed over IP

networks, it eliminates access charges to voice carriers.

VoIP also allows the integration of voice and data over the same channel. This

translates to a new generation of applications. Voice mail can now easily be integrated

into email, virtual conference rooms are being placed around the world, and services,

such as caller ID and call forwarding, can be easily implemented in a packet switched

network instead of the traditional circuit switched network. In the near future, we will see

an overhaul of new services, such as wireless VoIP. In fact, VoIP is shaping the future of

communications.

Over the last few years there has been remarkable progress in the field of VoIP.

The Telecom industry has concentrated on developing new voice codecs that perform

better under conditions of packet loss, and consequently increase the quality of VoIP calls

to a certain extent. VoIP has also benefited from improvements in digital signal

processing. Chips are being specifically designed to run certain type of voice codec

algorithms. At the same time, there have been other efforts to provide a better QoS to

VoIP, such as class based queuing (CBQ) that differentiate traffic based on IP source

addresses, and multi protocol layer switching (MPLS) that provides fast forwarding of

2

packets at the router level. In addition, switches transmit at speeds of 1 and 10 Gbps.

However, the quality of VoIP calls under impairment conditions such as delay, jitter, and

packet loss still remains a major problem that needs to be address for next generation of

VoIP services.

Through this research we are particularly interested in analyzing the effects that

these impairments have in the quality of VoIP calls and different approaches to solve this

problem. To measure the mean opinion score (MOS) of VoIP calls in the event of long

absolute delays and packet loss we develop an application in JavaScript based on the E-

Model [4]. On the other hand, to measure the MOS in the event of jitter buffer discards

due to high variable inter-packet delays we utilize an intrusive technique, such as

perceptual evaluation of speech quality (PESQ) [6]. Our contribution is to make a

comparative analysis of the MOS for a VoIP call when the receiver implements a fixed

and an adaptive jitter buffers respectively. We also analyze the performance of IP phones

from different vendors under the event of constant delay, random delay, Gaussian delay

with packet reordering, and Gaussian delay without packet reordering.

Finally, we analyze the limitations of introducing forward error correction (FEC)

Piggybacking and Reed Solomon codes in VoIP mainly because these two techniques

have been proposed over the past years to provide a better quality to VoIP calls under the

event of packet loss [5][39].

The rest of this thesis is organized as follows. Chapter 2 presents background

information in the field of VoIP. Chapter 3 is dedicated to analyze the factors that affect

the quality of VoIP calls. Chapter 4 analyzes the impact and feasibility of introducing

forward error correction (FEC) piggybacking and Reed Solomon codes in VoIP. Chapter

3

5 describes in detail the experiments set up during this research and a minor analysis of

the results. Finally, in Chapter 6 we conclude that the effectiveness of forward error

correction for VoIP depends on the one-way delay, nominal jitter buffer size, codec

implemented, transmission cycle of the RTP stream, and congestion in a computer

network.

4

CHAPTER 2 – BACKGROUND

This chapter presents fundamental knowledge in the field of voice over IP (VoIP)

necessary to understand the coding, protocols, and innovative techniques used to transmit

real time audio. We also present methods to measure the quality of VoIP calls and

limitations of transmitting VoIP calls over a packet switch network such as the Internet.

2.1 Codecs

Codecs are an integral part in the development of VoIP, because they are

responsible for the conversion of audio speech signal into encoded digital data. A codec

is a software program that is able to encode a waveform generated at the sender side into

a string of bits that when decoded at the remote end would be as similar as the original

waveform.

Voice codecs break the original waveform into small chunks of data, and then

every chunk is compressed using a specialized algorithm. Some codecs operate at rates of

64 kbps, while others operate at lower rates. Codecs that operate at high data rates tend to

consume more bandwidth. However, they are able to better reassemble the original

waveform at the remote end. On the other hand, codes that operate at lower data rates

tend to consume less bandwidth, but the reassembled waveform generated at the remote

end is not as similar as the original waveform. Therefore, the quality of a VoIP call is

degraded just for the fact of using a low data rate codec. According to Cherry, the

characteristics on the voice quality are significantly affected by the voice codec [11].

5

It is not always convenient to implement VoIP with codecs that operate at high

data rates, because in the event of network congestion, it would make more sense to

implement a low data rate codec. Table 2.1 describes the audio encoding sampling rates

and bits per sample of most common encoding techniques, where N/A stands for not

applicable, and var stands for variable [2].

Table 2.1. [2]. Properties of Audio Encoding

Encoding
name

Sample/frame Bits/sample Sampling
rate

Default
Ms/frame

Default
Ms/packet

DVI4 Sample 4 Var. 20
G722 Sample 8 16,000 20
G723 Frame N/A 8,000 30 30
G726-40 Sample 5 8,000 20
G726-32 Sample 4 8,000 20
G726-24 Sample 3 8,000 20
G726-16 Sample 2 8,000 20
G728 Frame N/A 8,000 2.5 20
G729 Frame N/A 8,000 10 20
G729D Frame N/A 8,000 10 20
G729E Frame N/A 8,000 10 20
GSM Frame N/A 8,000 20 20
GSM-EFR Frame N/A 8,000 20 20
L8 Sample 8 Var. 20
L16 Sample 16 Var. 20
LPC Frame N/A 8,000 20 20
MPA Frame N/A Var. Var.
PCMA Sample 8 Var. 20
PCMU Sample 8 Var. 20
QCELP Frame N/A 8,000 20 20
VDVI Sample Var. Var. 20

The most common codecs for VoIP are described in Table 2.2. Some codecs use

advanced algorithms and techniques to model human vocal tracks. So, in the event of

packet loss, the lost information can be reassembled based on information contained in

6

neighboring real time protocol (RTP) packets. To clearly explain this idea, assume that

user A sends 5 RTP packets with modeled vocal track payload to user B. Also assume

that only the first 3 packets and the 5th packet arrived to user B. Then user B can infer

how packet number 4 might look like based on payload information from packets 1 to 3

and 5. Therefore, the loss of one packet in a stream of packets is almost imperceptible to

the recipient, if the codec implemented has some sort of intelligence.

Table 2.2. VoIP common codecs

Codec Coding Method Bit rate (kbps) MOS-ITU
G.711A (no PLC) PCMA 64 4.40
G.711A PLC PCMA 64 4.40
G.711U (no PLC) PCMU 64 4.40
G.711U PLC PCMU 64 4.40
G.721 ADPCM 32 4.23
G.723.1 MP-MLQ 6.3 3.95
G.723.1 ACELP 5.3 3.78
G.726 ADPCM 16 2.95
G.726 ADPCM 24 3.51
G.726 ADPCM 32 4.23
G.726 ADPCM 40 4.36
G.727 ADPCM 16 2.84
G.727 ADPCM 24 3.83
G.729 LD-CELP 8 3.92
G.729A CS-ACELP 8 3.7

2.2 Voice activity detection and silence suppression

It is well known that human conversations over the phone consist of long periods

of silence. Figure 2.1 presents this phenomenon in more detail. This graph was obtained

during a VoIP call between two parties, a caller and a callee.

7

From Figure 2.1, it can be inferred that human conversations over the phone are

composed of talk spurt and silent periods. A codec can benefit from this property and

does not need to send packets into the network representing periods of silence. Thus,

saving network bandwidth.

Figure 2.1. Speech characteristic of a call between two participants

Silence suppression implements a voice activity detection (VAD) mechanism that

only generates RTP packets when the sender produces a voice signal. Therefore, no RTP

packets are generated when the sender remains in silence or the surrounding environment

noise is under an acceptable margin level.

Some codecs, such as G.711A with the voice activity detection feature turned-off,

do not save bandwidth over periods of silence, because even the silence is sampled,

packetized, and sent into the network.

An analysis made on the speech data rate of VoIP calls in the Thai language,

found that the mean distribution of data rate conversational speech is 27 packets per

second [12]. The codec utilized was G.729A in silence suppression mode, which operates

at data rate of 8 kbps, with a transmission cycle of 20 msec and payload size of 20 bytes.

8

The same analysis found that for other languages, such as English, the mean distribution

of data rate conversational speech is 19 packets per second [12]. This reinforces the

theory that the conversational data rate depends on the language spoken.

Silence suppression saves network bandwidth because a non-silence suppression

codec operating at a transmission cycle of 20 msec will be sending 50 packets per second

into the network all the time. Therefore, silence suppression reduces congestion.

Notice that a comfort noise silence is generated at remote ends to simulate the low

level noise that is similar as the one we are used to hear from the Plain Old Telephony

Service (POTS). According to Chong and Matthews, VoIP handles all the features and

enhances those previously supported in POTS [13].

2.3 Real time protocol

Real time protocol (RTP) was defined to provide an appropriate distribution of

real time streaming of voice and video in computer networks. The TCP protocol is not

appropriate for VoIP because there is too much delay associated with retransmissions. In

turn, the UDP protocol is used at the transport layer. However, UDP has some

weaknesses in that it does not ensure that packets will be delivered in the proper order.

Figure 2.2 describes the header of the user datagram protocol (UDP). Note that

UDP consists of 4 fields only, and none of these fields contains a sequence number as in

TCP. This can lead to problems when transmitting audio packets, because, if packets

arrive at the destination out of order, there is no mechanism to re-order packets. The lack

of a sequence number can also lead to other major problems because a receiver is not be

able to determine if an audio packet got lost in the network

9

Figure 2.2. Headers of the user datagram protocol

The RTP protocol was designed to work in conjunction with UDP at the transport

layer to ensure a proper delivery of packets with real time characteristics.

Figure 2.3. [1]. Headers of the real time protocol

Figure 2.3 describes the headers of the RTP protocol according to RFC 3550 [1].

Note that with RTP, every packet has now a sequence number and a timestamp. The

10

sequence number allows the receiver to order packets. The timestamp assists the receiver

to identify the time at which voice packets were generated at the sender side. The headers

of the RTP protocol are described below.

V - Refers to the version of the RTP protocol, currently version two.

P - Padding. If this flag is set to 1 then the RTP header contains one or more octet

headers that do not belong to the payload. Some encryption algorithms need padding [1].

X - Extension. If this flag is set to 1 then the header must be follow by exactly 1 header

extension.

CC - This field contains the number of CSRC identifiers that will be shown in the CSRC

field. Since this field contains only 4 bits, the maximum number of participants that can

be handled by a mixer is 15. Note that in the case that a mixer is not utilized then this

value is equal to 0.

M - Marker. According to Schulzrinne, The marker is intended to allow significant

events, such as frame boundaries to be marked in a packet stream [1].

PT - Payload type identification. It represents the format of payload data. Table 2.3

describes a set of mappings from most common voice codecs to payload types. It was

extract from RFC 3551 and it represents the mappings established at the time the

specification was written, where dyn stands for dynamic [2].

One interesting feature of VoIP is that participants can change codecs during an

ongoing session by altering the payload type (PT). This was specifically designed to

switch codecs in the event of a low bandwidth or congestion in a computer network [1].

Note that the PT field is only 7 bits long. Therefore, it is only possible to define up to 127

mappings from codecs to payload types. Moreover, it is predictable that soon this field

11

will run out of bits to map new codecs. So, additional payload types can be defined

dynamically through non-RTP means, such as signaling [1].

Table 2.3. [2]. Payload types for audio encoding

PT Encoding name Media type Clock rate (Hz) Channels
0 PCMU A 8,000 1
1 Reserved A
2 Reserved A
3 GSM A 8,000 1
4 G723 A 8,000 1
5 DVI4 A 8,000 1
6 DVI4 A 16,000 1
7 LPC A 8,000 1
8 PCMA A 8,000 1
9 G722 A 8,000 1
10 L16 A 44,100 2
11 L16 A 44,100 1
12 QCELP A 8,000 1
13 CN A 8,000 1
14 MPA A 90,000 (see text)
15 G728 A 8,000 1
16 DVI4 A 11,025 1
17 DVI4 A 22,050 1
18 G729 A 8,000 1
19 Reserved A 8,000 1
20 Unassigned A
21 Unassigned A
22 Unassigned A
23 Unassigned A
Dyn G726-40 A 8,000 1
Dyn G726-32 A 8,000 1
Dyn G726-24 A 8,000 1
Dyn G726-16 A 8,000 1
Dyn G729D A 8,000 1
Dyn G729E A 8,000 1
Dyn GSM-EFR A 8,000 1

Sequence number - Refers to the sequence number of each RTP packet and it increases

at increments of one. The sequence number is initially randomly generated to avoid a

12

plaintext attack in the event that encryption is needed. The sequence number helps the

receiver to reorder out of order packets. It also allows detecting loss of packets. Note that

the receiver can notify to the sender the rate of packet loss via a real time control protocol

(RTCP) message. So, the sender can adjust the rate of the codec to a lower value, because

it is assume that congestion is the main cause of the problem. This is known as adaptive

encoding [1].

Timestamp - Refers to the time at which the first field of the RTP packet was generated.

This time is not related to the system clock reading. This time depends on the sampling

rate of the codec. For example, G.711 PCMA samples the medium 8000 times per

second, and every sample contains 8 bits. For a transmission cycle of 20 msec only 50

packets can be sent into the network per second. Therefore, 8000 samples have to be

distributed in 50 packets per second. This means that every RTP packet contains data

worth of 160 samples. In conclusion, the timestamp field of every RTP packet for this

particular example increases at increments of 160. The initial RTP timestamp value is

randomly generated to avoid a plain-text attack in the event that encryption is needed [1].

Synchronization Source (SSRC) - It is a 32 bit numeric value and it represents a unique

id that identifies all the RTP packets that belong to the same session. The receiver at the

remote end reads this field to identify all the packets that belong to the same time and

sequence number space [1]. This value is randomly generated. However, the algorithm

that generates this value prevents duplication of SSRC between participants that want to

initiate a new RTP session.

Contributing source (CSRC) - It represents a list of the SSRC identifiers from sources

that contributed to a new flow of RTP packets produce by a mixer [1]. The CC field

13

supplies the number of SSRC identifiers in the list. A mixer is an intermediate system

that combines the received RTP packets from various participants and produces a new

RTP packet, possibly with a different voice codec, and a new timestamp. The CSRC field

only appears in the header of a RTP packet in the presence of a mixer [1].

Note that with a timestamp and sequence number a receiver is able to reconstruct

the timing necessary for playback. The RTP protocol specification is suitable for audio

and video. As a matter of fact, for video streaming, two RTP sessions are established

independently with different SSRC identifiers, one is used for video and another for

audio. One of the main reasons of separating audio and video is because in a conference

participants have the ability to control which medium they would like to receive [1]. In

fact, The RTP protocol is suitable for unicast and multicast sessions. Moreover, RTP does

not guarantee delivery of packets or quality of service [1].

Figure 2.4. Real time protocol in the TCP/IP protocol stack

Physical Physical

802.11 Ethernet Data link Data link

IP IP Network Network

RTP
UDP

RTP
UDP

Transport Transport

 Session

Voice Codec Voice Codec PresentationApplication

 Application

OSI modelTCP/IP VoIP over Ethernet VoIP over 802.11

14

2.4 Real time control protocol

The real time control protocol (RTCP) was specifically design to provide

reception quality feedback of RTP data distribution to all the participants in a session.

Note that RTCP packets do not carry payload audio.

The feedback is performed by the sender (SR) and receiver reports (RR), which

look similar. As a matter of fact, the sender report is only use to provide transmission and

reception statistics from participants that are active senders. On the other hand, the

receiver report is used to provide reception statistics from participants that are not active

senders [1].

 This feedback is useful to the sender because once interpreting this report

decisions can be made, such as transmit data at lower rates using a high compression

codec in order to compensate for congestion or another algorithm if it provides a better

performance. Note that not always reducing to a low bit rate codec improves the quality

of a call because in the event of transient packets lost, it makes more sense to implement

other mechanism such as forward error correction (FEC). Moreover, these feedbacks can

be use by network managers to determine if the network problems are local or regional

[1].

One of the most important fields in the RTCP protocol are fraction lost,

cumulative number of packet loss, and interarrival jitter. Fraction lost refers to the

fraction of RTP packets from source SSRC lost since the previous SR or RR packet was

sent. It is defined by the number of packet lost divided by the number of packets

expected. If the loss is negative due to duplicate packets then fraction lost is

automatically set to 0 [1]. Cumulative number of packet loss refers to the total number of

15

RTP packets from source SSRC lost since the beginning of the session. It is defined by

the number of packet expected less the number of packet received. Note that packets

received include the ones that are duplicate or late [1].

RTCP packets are sent at periodic intervals. Note that a good implementation of

RTCP should not saturate the network with packets. As a matter of fact, participants

sends only one RTCP packet per report interval. Moreover, the recommended value for a

minimum fixed interval for sending RTCP packets is 5 seconds [1]. In addition, the

RTCP packet interval also depends on the number of participants present in the session.

The RTCP protocol has a weakness in that it reports packets arrived even in the

event of late packets. An enhanced version of RTCP is real time control protocol

extended reports (RTCP-XR) that reports to the sender the lost of packets due to jitter

buffer discards [9].

2.5 Jitter and jitter buffers

Jitter is defined as the variation in interpacket delay. To explain this idea in more

detail we will calculate the jitter between two RTP packets. Assume that a sender

generates the first RTP packet and stamps it with the time at which the packet was

generated. This value will be written in the timestamp field of the RTP packet defined in

Figure 2.3. Additionally, we will assume that the codec samples the medium 8000 times

per second, and that the transmission cycle is 20 msec. Therefore, the timestamp

increases at increments of 160. We will also assume that the timestamp field of the first

packet is equal to 0. Therefore, after 20 msec, the sender will generate the next RTP

packet. The timestamp field of this packet is of course equal to 160.

16

At the remote end the receiver collects the first RTP packet and establishes this

time as a reference for the next incoming packets. Since the receiver knows that the

sampling rate of the codec negotiated is 8000 samples per second, and that the difference

of consecutive RTP packets timestamp fields is 160. It can be inferred that every packet

should arrived at the receiver at 20 msec interval of the receiver’s clock.

For this particular example it will be assume that the first packet arrives at 0 msec

of receiver’s clock and that the second packet arrives at 25 msec of the receiver’s clock

due to a queuing delay at intermediate routers. Therefore, we can estimate that the jitter

is equal to 5 msec. This value is obtained as follows. Jitter of consecutive packets is equal

to the difference of arrival time and timestamp for consecutive RTP packets. Note that

the arrival time of RTP packets is measured by the receiver’s clock.

msec5msec)0msec(20msec)0msec(25packetseconsecutivofJitter =−−−=

We can generalize this idea and write the following formula to calculate the jitter

between any pair of adjacent RTP packets [1]. If Si refers to the time at which a packet

was time stamped and Ri refers to the time at which a packet arrived, we can state.

)()()()(1111 −−−− −−−=−−−= iiiiiiii SRSRSSRRpacketseconsecutivofJitter

The interarrival jitter is calculated from RTP packets with the same

synchronization source (SSRC) identifier. Recall that the SSRC is the unique identifier

that classifies RTP packets from a particular session.

17

It is known that there are two kinds of jitter. The first one is known as constant

jitter, it happens when consecutive samples of jitter are relatively similar. The second one

is known as transient jitter, it happens when there is a high variance in the jitter value

between consecutive RTP packets. In fact, transient jitter is more detrimental to VoIP

than constant jitter.

There are many statistical methods to measure the overall jitter of a VoIP call.

MPPDV is defined as the mean of packet-to-packet delay variation. Assume that Db and

Da is the delay between two consecutive RTP packets. Then the variation is defined as

abs (Db – Da). Therefore, MPPDV = mean (abs (Di – Di-1). Note that when the standard

deviation of the mean distribution is small it can be inferred the network is introducing a

constant jitter. On the other hand, if the standard deviation is large then the network is

introducing high transient jitters.

A jitter buffer is an essential component in VoIP. Its goal is to cancel the effect of

variable interpacket delay that is always induced in computer networks. To properly

describe the behavior of a jitter buffer, we will examine the following case.

A VoIP call is established between a sender and a receiver with a G.711 codec

operating at a transmission cycle of 20 msec. Therefore, only 50 packets can be sent into

the network per second, and every packet can only contain 20 msec of payload data. If

these RTP packets are sent on a computer network with a optimal round trip time “RTT

less than 1 msec”, even in the best conditions we can not deliver the information

immediately to the receiver because while the last 20 msec of audio from the first packet

is being rendered to the receiver, the next incoming packet might not be at the receiver

yet. In fact, this packet can still be in the queue of a router. Consequently the receiver

18

might not see every packet arriving at a constant interval of 20 msec. Therefore, this can

lead to starvation.

The jitter buffer, which is implemented at the receiver side, has to avoid the

starvation state, so it holds the first packet in its buffers for a small amount of time until

the next packet arrives and it is safe to start delivering the first packet [36]. This is known

as nominal jitter buffer. Jitter buffers introduce an additional delay in the communication

process. In this thesis we only perform experiments on nominal jitter buffer sizes of 40

and 60 msec.

An adaptive jitter buffer is an intelligent process, because it implements several

strategies to render voice to the receiver. When network conditions are optimal, meaning

that the variation in inter-packet delay is proximal to 0 msec, it adjusts itself to a

minimum value to reduce latency. On the other hand, when network conditions are far

from optimal, meaning that there is high transient jitter and packet loss, it adjusts itself to

a higher value. This of course is necessary to deliver a better signal but the trade-off is

more latency.

If the jitter buffer size is too small this can lead to two kinds of problems. First, if

packets arrive too late to the receiver the effect will be packet discard by the jitter buffer.

Secondly, if a burst of packets that arrive at the receiver is greater than the jitter buffer

size then the effect is again packet discards. Notice that packet discard is equivalent to

packet loss. On the other hand, if the jitter buffer size is too large this introduces an

unnecessary delay that can lead to conversational degradation [9][36].

Without the implementation of a jitter buffer, a VoIP call will be only a broken

audio signal. Moreover, the jitter buffer ensures that packets are delivered in correct

19

order. To conclude, default values for the maximum jitter buffer size are 80 to 120 msec

with nominal jitter buffer sizes of 40 to 60 msec.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 10 20 30 40 50 60 70 80 90 100 110

Standard deviations

M
O

S fixed
adaptive

Figure 2.5. Comparative analysis of fixed vs. adaptive jitter buffer

Figure 2.5 represents a comparative analysis of the mean opinion score for a VoIP

call when the receiver utilizes a fixed and an adaptive jitter buffer respectively. The mean

opinion score was measured with perceptual evaluation of speech quality (PESQ). Refer

to Section 5.4 and 5.5 for a detail explanation of the experiments setup to obtain these

results.

2.6 Mean opinion score

The mean opinion score (MOS) is an average mark that is given by a panel of

auditors to recorded samples. As a base line for this comparison, toll calls have a value of

20

4.2. The MOS is a value that can differ from auditor to auditor and has the interpretations

as described in Table 2.4.

Table 2.4 [23]. Mean Opinion Score

Rating Speech Description
5 Excellent Imperceptible level of distortion
4 Good Just perceptible level of distortion
3 Fair Slightly annoying
2 Poor Annoying but not objectionable
1 Unsatisfactory Very annoying

According to Miglani [23], Table 2.4 represents the mean opinion score. The

MOS ranges from one to five. One means unsatisfactory, and five means excellent. There

are three methods to measure the MOS.

Audit panel - Humans listen to a set of pre-recorded samples and assign a score to each

sample. This score can be in the range from one to five. Note that the value submitted by

every auditor might be different, because this is a subjective value. In fact, the MOS

depends on test conditions and participants [32].

Intrusive techniques - A pre-recorded audio file is sent over the network using the RTP

protocol with some voice codec. The received audio file is compared against the original,

and an estimation of the MOS is given. It is known that perceptual evaluation of speech

quality (PESQ) has a high degree of accuracy and the evaluated MOS is proximal to a

human perception [35]. Moreover, PESQ implements a fast Fourier algorithm in order to

compare audio signals [31]. According to Clark and Holthaus, PESQ is inefficient when

calculating the MOS for hundreds of calls traversing a network segment because of the

21

complexity of signal comparison that involves the fast Fourier algorithm. In fact, the Fast

Fourier algorithm is a high computing process [32][33].

There are some disadvantages of using PESQ because in the event of constant

delay in a computer network, 500 msec for example, the value reported by PESQ is

optimal. The PESQ value should not be optimal under this condition because

communications that have a delay greater than 150 msec are considered a one-way

communication only [32][35]. In addition, intrusive tests generate additional network

traffic that should be used for real calls. Moreover, PESQ misses the effect of

determining quality metrics in the event of minimum packet loss because if the codec can

efficiently recover data under this event, the value of PESQ is optimal. Note that this

value should not be optimal because in real time streaming of audio, there should not be

packet loss in the first place [32]. Therefore, PESQ should be used under certain

circumstances only.

Non-intrusive techniques - Non-intrusive techniques came into the scene of VoIP call

quality monitoring because of the inconvenience of the subjective tests, and the waste of

resources consumed by intrusive techniques [32]. Non-intrusive techniques are able to

determine the quality of VoIP calls based on methods such as the E-Model which is a

transmission rating model define by the ITU [4]. The main output of the E-Model is a

scalar rating of transmission quality known as “Rating Factor” R, which can be map into

an estimate of the mean opinion score [4].

The E-Model takes in considerations impairment factors generated by today’s

digital processing devices. Moreover, the E-Model has been enhanced through many

revisions that better take in considerations effects, such as: room noise at the sender side,

22

random packet loss, low talker sidetone levels, and other parameters that affect

conversational quality [4].

The rating factor R is calculated according to the following formula.

AeffIeIIRR dSO +−−−= −

R0 represents a basic signal-to-noise ratio, including noise sources, such as circuit

noise and room noise. IS represents a combination of all impairments which occur

simultaneously with voice signal, such as objective loudness rating and distortion. Factor

Id represents the impairments caused by delay, such as, talker echo, listener echo, and

long absolute delays. The equipment impairment factor Ie represents impairments caused

by low bit rate codecs. The advantage factor A allows for compensation of impairment

factors when there are other advantages to the user [4]. Therefore, it is possible to map

the R factor into the estimate conversational MOS according to the following formulas.

1:0 =< CQEMOSRFor

6107)100)(60(035.01:1000 −∗−−++=<< RRRRMOSRFor CQE

5.4:100 => CQEMOSRFor

Note that the output of E-Model has not been completely verified because of the

large number of possible combinations of input parameters that affect the overall quality

of calls. Therefore, modifications to the E-Model are currently under study [4]. Appendix

B presents a JavaScript implementation of the E-Model.

23

Non-intrusive techniques can be implemented in the form of “embedded passive

monitor agents” in a variety of probes, gateways and IP phones [32]. They implement

novel solutions to obtain call quality metrics. One is a jitter buffer emulator that predicts

the behavior of remote jitter buffers. Therefore, it is possible to predict if a packet is

discarded due to excessive inter-packet delay. Note that jitter buffer discards are similar

to packet loss [9].

2.7 Signaling

Signaling protocols play an important role in the process of setting up,

maintaining and terminating a call. There are several signaling protocols for VoIP that

range from media gateway control protocol (MGCP), session initiation protocol (SIP) the

IETF standard, H.323 the ITU standard, and skinny client control protocol (SCCP)

defined by Cisco. Currently SIP and H.323 are the two most common signaling protocols

for VoIP. In fact, SIP is slightly more popular than H.323, because it is scalable and

simple. However, it is known that for video applications, H.323 is preferred over SIP.

Note that an unreliable service, such as UDP is useful to carry signaling data,

because it reduces the overhead of persistent TCP connections. Nonetheless, end-users

can communicate with their respective gateways using either UDP or TCP messages for

signaling and control messaging.

According to et al. [29], the H.323 standard is complex and incomplete, and there

is no guarantee that devices will interoperate properly even if all of them are H.323

compliant. H.323 uses many ports in the call setup process. As time has passed, H.323

24

and SIP have learned from each other. Therefore, new versions of these signaling

protocols are optimized.

According to the IETF, MGCP is suitable for the Master-slave architecture, and

the SIP protocol that was develop later is suitable for the Peer-to-Peer architecture. SIP is

an application layer control protocol for establishing and terminating sessions with one or

more participants. In fact, SIP can invite parties to either unicast or multicast sessions

[22].

2.8 Session Initiation protocol

Session Initiation protocol (SIP) is a signaling protocol for VoIP and it was

designed by Dr. Henning Schulzrinne at Columbia University. SIP is a text-based

lightweight protocol that remains simple and scalable. It can be used to create, modify,

and terminate sessions with one or more participants. SIP can be used with any transport

layer protocol TCP or UDP typically using port 5060 [10]. In this Section we describe the

SIP registration, and call setup process between Cisco ATAs 188 and Ondo SIP proxy

server. Note that calls can also be placed between SIP endpoints without the need of a

SIP proxy server.

SIP registration - SIP is a lightweight protocol that has been optimized in order to

facilitate the registration process in a fast and reliable manner with the least amount of

packets exchanged between SIP clients and the SIP registrar.

1. The SIP client starts the registration process, by sending a register request to

the IP address and port number of the SIP registrar server, this is known as SIP request

method "REGISTER". This packet contains information, such as: IP address and port

25

number of the SIP client, phone number assigned to the SIP client, and registration

expiration time.

2. If the SIP registrar server is available and listening in a predefined port, it will

reply back as soon as possible to the SIP client with a SIP response method "100 Trying".

The main purpose of this packet is to tell the SIP client that its registration request is in

process. Notice that if the SIP client does not receive this message, it will try to resend a

register request after a certain amount of time.

3. If the SIP registrar server successfully registers the SIP client, then a new

message is sent back to the SIP client. This is known as a SIP response method "200

OK". Note that this method resembles in some way the responses of the HTTP protocol.

Figure 2.6 represents a flow graph of the SIP registration process between a SIP client

(192.168.10.2) and a SIP proxy server (192.168.10.20).

Figure 2.6. SIP Registration process

SIP call setup – To explain this process in more detail we will describe the scenario of

Figure 2.7.

1. The caller (192.168.10.3) starts the call setup process by dialing the callee

phone number. Therefore, the caller uses the SIP request method “INVITE” that has the

following format destination_number@SIP_proxy_server_IP_address, and forwards this

26

packet to the SIP proxy server. Note that it is responsibility of the SIP proxy server to

map the destination phone number into the callee IP address. Moreover, this packet also

carries the phone number and IP address of the caller, and media attributes of the RTP

session, such as prefer codecs.

2. If the SIP registrar server is available and listening in a predefined port, it will

reply back immediately to the caller with a SIP response method "100 Trying". The main

purpose of this packet is to tell the caller that it is processing the call setup request.

3. The SIP proxy server then tries to contact the callee that was already registered

to the SIP proxy server. Therefore, mapping of phone number to an IP address is known

in advance. The proxy server uses a SIP request method “INVITE” with the following

format destination_number@callee IP_address, and forwards this packet to the callee.

Moreover, this packet also carries the phone number and IP address of the caller, and

media attributes of the RTP session, such as prefer codec type.

4. If the callee is available and listening in a predefined port, it will reply back

immediately to the SIP proxy server with a SIP response method "100 Trying". The main

purpose of this packet is to tell the SIP proxy server that it is processing the call setup

request.

5. If the callee accepts the call setup request, it sends to the proxy server a SIP

response method known as "180 Ringing". Consequently, the callee starts ringing.

Moreover, the SIP proxy acknowledges this message and forwards it to the caller.

6. The caller acknowledges this message and sends to the SIP proxy server a SIP

request method known as provisional acknowledgement (PRACK). Moreover, the SIP

proxy forwards the PRACK to the callee.

27

7. The callee acknowledges the PRACK message and responds to the SIP proxy a

SIP response method known as “200 OK”. Moreover, the SIP proxy forwards this packet

to the caller.

Once this is accomplished both phones will keep on a stationary state until the

callee picks up the phone. If the callee answers then a RTP session will be activated in

both directions. Note that SIP does not carry any voice data because it is responsibility of

RTP. Therefore, the quality of a call does not depend on the signaling protocol. However,

it has a direct effect in the call setup time. It can be clearly seen in Figure 2.7 that the call

setup time is 251 msec.

Figure 2.7. SIP call setup process

2.9 Constructing VoIP packets and throughput of one call with G.711 codec.

To clarify the process of constructing a sample VoIP packet, the codec G.711 will

be used. The G.711 codec samples the medium 8000 times per second, and every sample t

4/

28

contains 8 bits of data. If we make a simple calculation we can infer that the data rate at

which this protocol operates is 64,000 bps or 64 kbps.

The G.711 codec as well as other standard codecs can transmit data at different

transmission cycles or intervals of time. For this particular example, we will use a

transmission cycle of 20 msec. This means that in one second we can only transmit 50

VoIP packets. Consequently, if the data rate of the codec is 64 kbps or 8000 bytes/sec,

then every packet can contain only 8000 bytes / 50 = 160 bytes of payload data.

To construct a VoIP packet we need to add the proper headers from all the layers

of the TCP/IP stack. To the 160 bytes of codec payload data per packet we need to add

the 12 bytes of RTP header [1]. We also need to aggregate the 8 bytes of UDP header and

20 bytes of IP header. Assuming that the packets will be sent over a wired connection, the

Ethernet specification will add an overhead of 26 bytes including the preamble, headers,

and trailers added at this layer. We also need to add the overhead introduced by the

interframe gap. The interframe gap (IFG) or interpacket gap (IPG) is 12 bytes for the

Ethernet specification at 100 Mbps, 1 Gbps and 10 Gbps. The IFG also consumes

bandwidth and must be considered in our analysis. These headers sum up to a total of 78

bytes.

Consequently, for this particular example, every VoIP packet introduced into the

network is composed of 160 bytes (payload) + 78 bytes (headers) = 238 bytes. This is

only true when implementing the G.711 codec operating at 20 msec intervals over

Ethernet networks. Therefore, since we transmit 50 packets per second, the actual

throughput of a VoIP call using the G.711 codec without silence suppression operating at

29

20 msec packet interval is 238 bytes/packet * 50 packets/sec = 11900 bytes/sec or 95.2

kbps.

Figure 2.8. Proportion of payload and headers in G.711 at 20 msec packet intervals

2.10 A ratio of payload vs. packet length for codecs operating at 20 msec intervals.

From the analysis performed in Section 2.9, we can generalize and write the

following equation to calculate the data payload per packet for all type of codecs

operating at different transmission cycles. Notice that various codecs send voice at

different data rates.

30

msec1000
(msec)cycleontransmissi

*
k1

1000*
bits8
byte1

*(kbps)ratecodec(bytes)packetperpayloadData =

Replacing the transmission cycle for 20 msec in the equation shown above, we obtain.

msec1000
msec20

*
k1

1000*
bits8
byte1

*(kbps)ratecodec(bytes)packetperpayloadData =

From Section 2.9, we know that the header size of VoIP packets on Ethernet networks is

equal to 78 bytes. Therefore, we can infer.

bytes78(bytes)packetperpayloadData(bytes)lengthPacket +=

(bytes)lengthPacket
(bytes)packetperpayloadDatalengthpacketvs.packetperpayloadofRatio =

Table 2.5 can be constructed to calculate the ratio of payload vs. packet length in

VoIP packets operating at different data rates with a transmission cycle of 20 msec. Note

that this is only valid for packets sent over Ethernet networks.

The results obtained in Figure 2.9 have been published by OOUCHI,

TAKENAGA, and SUGAWARA [3]. Our analysis confirms their result and presents a

formulation in how to obtain the data. It can be clearly observed in Figure 2.9 that there is

a disadvantage of transmitting at lower data rates because every packet that is sent into

the network contains more headers than actual payload data. This overhead can be as

high as 79.59% for codecs that transmit 20 bytes of payload per packet. For other codecs

31

that transmit 80 bytes of payload per packet, there is balance between the overhead and

payload data per packet sent into the network. These results are only valid at 20 msec

intervals.

Table 2.5. A ratio of payload vs. packet length

Codec rate
(kbps)

Payload per packet
(bytes)

Packet length
(bytes)

Ratio payload vs. packet length

8 20 98 20.41
16 40 118 33.90
24 60 138 43.48
32 80 158 50.63
40 100 178 56.18
48 120 198 60.61
56 140 218 64.22
64 160 238 67.23

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

0 20 40 60 80 100 120 140 160 180
Payload per packet (bytes)

R
at

io
 p

ay
lo

ad
 v

s.
 p

ac
ke

t
le

ng
th

 (%
)

Figure 2.9. A ratio of payload vs. packet length.

32

2.11 Payload size per packet for G.711 and G.729 at different packet intervals.

The G.711 and G.729 codec transmit voice at data rates of 64 kbps and 8 kbps

respectively. The payload size per VoIP packet varies drastically depending on the

transmission cycle implemented. From the equations presented in Section 2.10, Table 2.6

can be constructed.

Table 2.6. Payload size per packet for G.711 and G.729 at different packet intervals

Transmission cycle (msec) G.711 (64 kbps) G.729 (8 kbps)
1 8 1
2 16 2
3 24 3
4 32 4
5 40 5
10 80 10
20 160 20
30 240 30
40 320 40
50 400 50
60 480 60
70 560 70
80 640 80
90 720 90
100 800 100
110 880 110

From the results presented in Table 2.6, we can infer that in the event of packet

loss, it is convenient to send data at low transmission cycles, because the smaller the

transmission cycle the smaller the amount of payload data that may get lost in the

network. However, transmitting at low transmission cycles means that more packets have

to be sent into the network, and that itself increases the probability to lose too many

consecutive packets in the event of transient network problems. Moreover, in the analysis

performed in Section 2.12, we observe that transmitting at low transmission cycles leads

33

to a huge waste in bandwidth resources. So, an optimal value for the transmission cycle is

determined.

2.12 Bandwidth consumption of G.711 and G.729 at different packet intervals.

From the data acquired in Section 2.9 and 2.10, we can generalize and obtain the

following equation to calculate the bandwidth consumption of a VoIP call using the

G.711 and G.729 codecs operating at different transmission cycles over Ethernet

networks. Note that for this analysis we are assuming no silence suppression for both

codecs.

(msec)cycleontransmissi
msec1000

*
1000

k1
*

byte1
bits8

*78bytes]es)packet(bytperpayload[Datakbps)Bandwidth(+=

Substituting transmission cycles with values in the range from 1 to 110 in the

equation shown above, Table 2.7 can be constructed to find the actual bandwidth

consumption of the G.711 codec operating at different transmission cycles.

Substituting the transmission cycles with values that range from 1 to 110, we can

construct Table 2.8 to find the actual bandwidth consumption of the G.729 (8 kbps) codec

operating at different transmission cycles. For this analysis we are assuming a constant

bit rate for the G.729 codec. Note that G.729 codec may consume less bandwidth than

what is stated in Table 2.8 because no packets are sent in the network if voice activity

detection is implemented.

34

Table 2.7. Bandwidth consumption of the G.711 at different transmission cycles

Transmission cycle
(msec)

Payload size per packet
(bytes)

Bandwidth consumption
(kbps)

1 8 688.0
2 16 376.0
3 24 272.0
4 32 220.0
5 40 188.80
10 80 126.40
20 160 95.20
30 240 84.80
40 320 79.60
50 400 76.48
60 480 74.40
70 560 72.91
80 640 71.80
90 720 70.93
100 800 70.24
110 880 69.67

Table 2.8. Bandwidth consumption of the G.729 at different transmission cycles

Transmission cycle
(msec)

Payload size per packet
(bytes)

Bandwidth consumption
(kbps)

1 1 632.0
2 2 320.0
3 3 216.0
4 4 164.0
5 5 132.80
10 10 70.40
20 20 39.20
30 30 28.80
40 40 23.60
50 50 20.48
60 60 18.40
70 70 16.91
80 80 15.80
90 90 14.93
100 100 14.24
110 110 13.67

35

Combining the results from Tables 2.7 and 2.8, we obtain Figure 2.10.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 10 20 30 40 50 60 70 80 90 100 110 120

Transmission cycle (msec)

B
an

dw
id

th
 (k

bp
s)

G.711
G.729

Figure 2.10. Bandwidth consumption of G.711 and G.729 at different packet intervals

The results obtained in Figure 2.10 have been published by OOUCHI,

TAKENAGA, and SUGAWARA in [3]. Our analysis confirms their result and presents a

formulation in how to obtain the data. It can be clearly seen in Figure 2.10 that the

bandwidth consumption varies drastically depending on the transmission cycle. We can

observe that both codecs G.711 and G.729 have great inefficiencies in bandwidth

consumption operating at transmission cycles from 1 to 5 msec. However, at 20 msec

interval the bandwidth consumption is not as worse as 5 or 10 msec and not much better

than 30 or 40 msec. In fact, 20 msec is an industry standard for VoIP packet interval.

36

We can also notice in Figure 2.10 that the bandwidth consumed by a call using the

G.729 codec with a transmission cycle of 20 msec is 39.20 kbps. However, the actual

throughput of a call using G.729 is much less than 39.20 kbps, because G.729 in silence

suppression mode does not send packets into the network over periods of silence.

According to the observations made in Section 2.2, we can adjust this result, and state

that the average throughput of a call using the G.729 codec operating at a transmission

cycle of 20 msec in the English language is approximately 14.8 kbps. The calculation is

described below.

Throughput = 98 (bytes/packet) * 19 (packets/sec) = 1862 bytes/sec

Throughput= 1862 (bytes/sec) * 8 (bits/byte)= 14896 bps

Throughput= 14,8 kbps

2.13 VoIP over wireless networks

From previous knowledge we know that communication channels over wireless

networks are more susceptible to errors than their wired counterparts. Let us examine

why sending voice packets over 802.11 wireless networks has many difficulties. For this

particular example, assume a call using the G.711 codec operating at a transmission cycle

of 20 msec.

First of all, RTP packets are generated and added the appropriate UDP headers at

the transport layer. Then the proper IP headers are added at the network layer. The

problem starts at the data link layer. Note that 802.11 is susceptible to packet loss due to

the path fading effect, high collisions due to retransmissions, and interference from

wireless devices operating at the same frequency. As a matter of fact, it has been reported

37

that 802.11b wireless devices are susceptible to interference in the presence of bluetooth

devices. Moreover, when many devices were activated in proximity of the 802.11b cell,

the quality of the call dropped to useless. An extensive analysis on the speech quality of

VoIP in these environments is conducted for McKay and Masuda in [31].

If VoIP traffic is sent into the wireless medium in conjunction with other services

that use the TCP protocol, the retransmission of lost packets of the TCP established

connection could make it difficult for the RTP packet to fight for the medium every 20

msec. In fact when there is a collision, the RTP packet has to wait an exponential back

off time before it tries to compete for the medium again. As a result, the RTP packets

cannot be sent at a constant interval of 20 msec. This has a tremendous effect in the Mean

opinion score of a VoIP call and even a jitter buffer working at its maximum size will

suffer from starvation.

According to Garg and Kappes in [25], the maximum number of crystal clear calls

in 802.11(a/b) networks is much lower than in Ethernet networks. In their analysis it was

found out that 802.11b wireless networks can support a maximum of 3 to 12 calls when

the G.711 codec is used operating at a transmission cycle of 20 msec. They also state that

the execution of an additional call on the cell degrades the quality of all the calls. This

number depends on the rate at which the 802.11b cell is operating: 1 Mbps, 2 Mbps, 5.5

Mbps or 11 Mbps. Moreover, an analysis on the limitations of the 802.11(a/b) distributed

coordination function to support VoIP on wireless links as well as the upper bound

number of simultaneous calls that can be placed on 802.11(a/b) networks with optimum

performance is provided in [25].

38

Furthermore, according to Garg and Kappes, the maximum number of VoIP calls

that can be handle by the IEEE 802.11b wireless specification is equal to 6 when the

G.711a-Law codec is used operating at a transmission cycle of 10 msec [34]. Notice that

RTP streams consume more bandwidth at 10 msec intervals rather than at 20 msec

intervals.

The main problem of transmitting numerous calls in 802.11b wireless networks is

directly related to the nature of 802.11 medium access protocols. Specifically, carrier

sense multiple access with collision avoidance (CSMA/CA) mechanism, and the

distributed coordination function (DCF) [34]. Note that in wireless networks collisions

cannot be detected. So the MAC protocol was design to prevent collisions from taking

place. Therefore, it was necessary to design a new protocol to overcome this problem,

and as a result the protocol 802.11e was defined. With this protocol, RTP packets will not

wait an exponential back off time to compete for the medium in a wireless environment.

In addition, RTP/UDP packets are treated with priority over any TCP packet.

The MAC sub layer of 802.11e supports QoS. The MAC protocol is called Hybrid

Coordination Function (HCF). The HCF is called hybrid because it combines a

contention channel access mechanism, referred to as enhanced distributed channel access

(EDCA). With EDCA a single MAC can have 4 queues that work independently, in

parallel, and every queue has its own priority. A study on the advantages and limitations

of IEEE 802.11e is given in [24].

There are other techniques that have been proposed to improve the number of

simultaneous calls over 802.11 wireless networks, such as a multiplex multicast scheme.

This technique has proven to be efficient to increase the VoIP capacity on wireless links

39

and decrease the probability of blocking. However, this idea does not have many

supporters in the industry. In fact, the main disadvantage in using a multiplex multicast

scheme is security, because all stations will receive packets with payload information

from other active participants [26].

2.14 Security considerations for VoIP

VoIP is an application that offers low costs and great flexibility. However, it is

vulnerable to high risks and threats. One of the most well known issues in securing VoIP

is eavesdropping, which means that non-intended parties can listen to a call. Moreover,

VoIP calls are also susceptible to denial of service attacks. In this Section we will

describe these attacks and other complex cases as well.

VoIP eavesdropping can be easily implemented, using a network sniffer program,

such as Ethereal [14]. In promiscuous mode, this software will capture all the RTP

packets flowing in both directions. A script program that manipulates strings can be

easily implemented to extract the payload of all sequential RTP packets. Note that the

result of this operation will be one payload that contains all the information flowing in

one direction. In addition, the information about the codec implemented in the call also

travels in the RTP packets. According to RFC 3550, the payload type (PT) is a 7-bit value

that identifies the RTP payload format [1]. Refer to the PT field in Figure 2.3. We can

compare the PT field value from the RTP packet with the encoding at Table 2.3, and

utilize a software application that decodes the payload to a .wav file. Moreover, this

procedure can also be implemented over 802.11b wireless networks, due to the security

weakness of the protocol [15].

40

VoIP calls are also susceptible to denial of service (DoS) attacks. As a matter of

fact, VoIP has introduced new DoS attack in the world of computer networks. If a

malicious procedure introduces a delay in the RTP flow that is a fraction of a second,

then this can be considered as a successful attack [15].

The target of a VoIP attack is the information exchanged between two parties, the

caller and the callee. It is known that a hacker can introduce speech in the voice line,

without the sender and receiver even noticing, therefore, altering the information sent

between the two parties in real time [16]. If there is an encryption mechanism in the

communication, a hacker can find a key and implement a “Man in the middle attack”

[18]. Moreover, the hacker can introduce data in the line at the same tone and pitch as the

original sender.

Modem Hijacking is another example of VoIP attack. Estacion mentions in [17],

“Users who have an standard dial up connection, once a malicious software is installed

on their computers, a modem closes the internet connection when the user has been away

of the computer for a considerable time, then the modem dials a long distance call. So the

users have to pay for high phone bills. In the US and Canada people has filed complaints

against FCC (Federal Communications Commission) and CRTC (Canadian Radio-

Television Commission) respectively”.

VoIP like other applications on the Internet is susceptible due to the operating

system’s vulnerability. It does not matter which operating system is being used

(Windows, Linux, Mac or Solaris) [18]. It is known that there are complex attacks that

target VoIP application servers, thus crashing or altering user’s database information

[16].

41

There are many ways to provide security to VoIP calls. One of the most important

techniques is to encrypt the payload of RTP packets, in which the sender and the receiver

exchange a key. However, there is a drawback added to the communication, and that is an

additional delay has to be added to encrypt the data, and additional extra time to decrypt

it. Therefore, encryption introduces jitter to a VoIP call.

IPSEC is a good technique to secure a VoIP call, because headers and payload of

every RTP packet are encrypted. Additionally, IPSEC adds a new IP header so packets

can be routed across the Internet. Note that with this process every packet increases in

size. It is known that Skype provides a level of security to its customers because all its

VoIP calls are encrypted with a 256 bit AES (Advance Encryption Standard) [19]. In the

near future VoIP service providers will start to encrypt calls using this or another

advanced algorithm. Moreover, the network appliances that we use to protect data like

firewalls or VPN gateways introduce additional delay in the communication process, so

security has to be addressed carefully [15][20].

Notice that even the SIP call setup delay that is the time between one of the

participants creates a SIP INVITE message and receives a SIP ACK from the remote

participant is incremented by and average of 0.7 sec when the call is send across a VPN

tunnel running advance encryption standard (AES) or 3DES algorithm. This can be

attributed to the key setup and authentication schemes in virtual private networks [20]. A

comparative analysis of the effects of firewall and VPN techniques on the quality of a

single call using the SIP signaling is conducted by Aire, Maharaj, and Linde in [20].

 Quality of service is of fundamental importance to VoIP; this application is

susceptible to high delays on a computer network. Note that a 150 msec delay can turn a

42

good voice call into a confused non-understandable sound [15]. Finally, the maximum

permissible delay to fall within ITU recommendations is 150 msec [20].

2.15 Recommendations for improving the quality of VoIP calls

There are numerous techniques available to provide a better QoS to VoIP calls.

1. Ensure that the RTT from the sender to the receiver is less than 150 msec and has a

stable pattern.

2. Minimize the latency or jitter induced by appliances, such as: router, firewall or VPN

gateways. Also consider measuring the performance of these equipments under extreme

conditions, where huge amount of data is crossing the network.

3. Use a hardphone rather than a softphone. Softphones tend to introduce high transient

jitters when a user runs multiple programs in the same computer. Moreover, hardphones

use specialized DSP chips to encode and decode certain type of VoIP codecs.

4. Ensure that the CPU utilization and network interfaces in a router are not over

saturated, because under these conditions, routers are forced to drop packets, generate

random inter-packet delays, and burst of packets.

5. Differentiate VoIP traffic from other kinds of traffic, and enforce on routers a queuing

strategy different than first in first out (FIFO). It is known that class based queuing

(CBQ) mechanism that differentiates traffic based on IP address, has great performance

when VoIP traffic from known IP addresses is send across the network. Priority queuing

is another good discipline to handle VoIP traffic.

6. Consider separate voice and data traffic using different IP address blocks.

43

7. Implement multi protocol label switching (MPLS) at the router level to provide fast

forwarding of packets. This has a great impact in the QoS of VoIP because packets

coming into one of the router interfaces do not have to wait to be processed at the router

fabric. In fact, packets are fast forwarded to the next network segment as if they were

generated in the same local area network.

8. Perform sanity interoperability tests to ensure compatibility between SIP, H.323 and

public switch telephone network (PSTN) system. Notice that VoIP is a transition

technology that needs to be backward compatible with the PSTN. Interoperability is

known as one of the major problems to ensure reliability of the service. According to a

study conducted by the Gartner Group in 2004 [29], 50% to 70% of all major projects fail

due to software and interoperability problems. Interoperability problems are not only seen

across VoIP equipments form different manufactures, but from H.323 and SIP devices

from the same vendor as well. Furthermore, it is known that the most difficult task in

VOIP is to provide interconnectivity to the POTS.

9. Disable unnecessary ports and services in SIP and H.323 gateways to decreased the

possibility of unauthorized access and remote code execution [15].

Notice that even tough we mention all these aspects. There is yet another aspect

that we cannot control and that is VoIP relies on the public Internet to send packets.

According to a study conducted in 2004 by Chong and Mathews [28], the reliability of

the POTS is 99.999%, this translates to five minutes of downtime per year, and the

reliability of the public Internet is approximately 61%, this translates to 142 days of

downtime per year.

44

CHAPTER 3 – PROBLEM DEFINITION

This Chapter discusses the factors that affect the quality of VoIP calls. After

categorizing these factors, we will perform experiments that will further quantify their

effects.

3.1 Factors that affect the quality of a VoIP call.

There are mainly four aspects that affect the quality of a VoIP call.

1. The nodal processing delay, meaning the time to digitize, compress and

packetize voice data has to be kept the minimum as possible. The same delay is

encountered at the remote end, because packets have to be de-packetize, uncompress, and

the digital data has to be converted into audio. Some codecs introduce an additional nodal

processing delay because in order to model human vocal tracks it is necessary to utilize

more CPU cycles.

2. The accumulated delay from sender to receiver has to be less than 150 msec.

According to Chong and Mathews in [28], the delay that is imperceptible to the human

ear is 150 msec. Delays that are in the range of 150 to 250 msec are acceptable, but

delays that are greater than 400 msec are unacceptable. Furthermore, ITU recommends

that the maximum permissible delay for a real time communication is 150 msec.

3. The Jitter or variation in the delay between real time protocol (RTP) packets

has to be under tolerant values, so the jitter buffer can manage this event. Note that when

there is high jitter in a computer network, the result is packet discard by the jitter buffer,

45

which is equivalent to packet loss. In fact, even if packets arrive at the remote end, the

jitter buffer will discard the packets that are out of an acceptable time frame [28].

Sections 5.2 and 5.3 show in detail the experiments setup to reproduce

degradation of calls sent across analog telephone adaptors under the event of distinct

form of delay such as fixed, uniform, Gaussian, and jitter. The results obtained during

these experiments lets as concluded that fixed delay does not affect the listening quality

of a call. However, it affects the conversational quality. Uniform delay is more

detrimental to VoIP than Gaussian delay. Gaussian delay with packet reordering is more

detrimental to VoIP than Gaussian delay without packet reordering. In addition, the

quality of a VoIP call is different from vendor to vendor, this is mainly because vendors

use different hardware, software, and jitter buffer algorithms.

Section 5.4 presents in detail the experiments setup to measure call quality

degradation of a VoIP call sent across a generic analog telephone adaptor that uses a

fixed jitter buffer under the event of Gaussian delay with packet reordering.

Section 5.5 present in detail the experiments setup to measure call quality

degradation of a VoIP call sent across a generic analog telephone adaptor that uses an

adaptive jitter buffer under the event of Gaussian delay with packet reordering.

4. Packet loss has to be under a maximum permissible limit. VoIP relies on RTP

and UDP at the transport layer to send packets across networks and under conditions of

packet loss, there is no retransmissions. This can be easily noticed if we observed the

RTP and UDP header format. According to Walsh and Kuhn in [15], a 5% packet loss

can make a call catastrophic. Previous research also states that the maximum tolerable

packet loss is 3%. In fact, it can be clearly seen in Figure 3.1 that for 3% of random

46

packet loss probability the MOS of a call is really affected. However, some codecs have

better performance than others at 3% packet loss.

If we assume a nominal jitter buffer size of 60 msec, VoIP should only be

implemented in scenarios where the one-way delay is less than 80 msec, in order to be

compliant with the 150 msec maximum permissible delay recommended by ITU.

However, it has been demonstrated in experiments that VoIP can still be implemented in

environments where RTT/2 is greater than 200 msec. Nevertheless, it must be a constant

latency [27]. This is known as one-way communication. Refer to Sections 5.2 and 5.3 for

an extensive analysis of the listening quality of a VoIP call under conditions of constant

delay.

3.2 MOS under conditions of packet loss.

It is known that the event of packet loss in a computer network occurs in burst

behaviors, meaning that there is a high probability that this event happens within packets

being delivered around the same period of time. It has been observed through

experimental traces in wide area networks that packet loss occurs as an isolated event or

in burst patterns. Moreover, one of the main causes of packet loss in a computer network

is congestion and transient network problems.

Figure 3.1 represents the mean opinion score of a VoIP call using different codecs

for different values of random packet loss probability. In can be clearly seen that some

codecs such as G.711 packet loss concealment (PLC) performs better than G.711 no PLC.

Refer to Appendix B for the implementation of the E-Model in JavaScript. Figure 3.2

shows a snapshot of the JavaScript application implemented to calculate these results.

47

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Random packet loss probability (Ppl) %

M
O

S

G.711 no PLC
G.711 PLC
G.723.1 6.3 k
G.729A

Figure 3.1. MOS under conditions of random packet loss, based on the E-Model

Figure 3.2. Impairment due to packet loss, JavaScript application snapshot

48

To calculate the MOS of a call under conditions of periodic and random loss refer

to Figure 5.11 in Section 5.6. In this experiment the call was implemented with the G.711

codec operating at a transmission cycle of 20 msec. To generate the calls a script was

written in Tcl using the Ixia Tcl Hal API. This script controls the Ixia Chassis to produce

a RTP stream of packets. The call duration was set to one minute. The periodic and

random loss was generated using an impairment generator. To measure the MOS of the

call, we used SQprobe that in non-intrusive mode estimates the mean opinion score of

VoIP calls traversing a network segment. SQprobe is a product of Telchemy and the test

was conducted at Telchemy research labs. The code to generate the RTP stream of

packets is attached to Appendix A. It can be clearly observed in Figure 5.11 that packet

loss has a huge impact in the mean opinion score.

49

CHAPTER 4 – ANALYSIS OF INTRODUCING FEC FOR VOIP

This Chapter analyses the limitation of introducing forward error correction

(FEC) in voice over IP (VoIP). We mainly evaluate two different techniques to recover

from the lost of real time protocol (RTP) packets, piggybacking and Reed Solomon

codes.

4.1 How to recover lost information in the event of packet loss.

If we recapitulate the things that we have learned so far, VoIP does not provide a

mechanism to guarantee packet delivery because RTP and UDP do not provide error

recovery mechanisms at the transport layer.

Recovery mechanisms of lost payload data have been implemented at the codec

level. However, these mechanisms only recover lost information in the event of small

packet loss. This is mainly because advance codecs interpolate and predict how the lost

data might have look like. In addition, they implement packet loss concealment in which

the receiver plays the last portion of the waveform in the event of packet loss. Packet loss

concealment is a technique that considerably improves the quality of VoIP call. Error

recovery at the codec level is one the most interesting areas of research.

There is mainly one technique that has been discussed over the past years in order

to provide a better quality to VoIP calls, which is forward error correction (FEC)

piggybacking and Reed Solomon codes. In this Chapter we examine these techniques.

50

4.2 Forward error correction

Forward error correction (FEC) is a mechanism that allows reliable transmissions

by sending redundant data known as parity. So, the receiver is able to correct errors

without retransmissions. FEC has proven to be highly efficient in scenarios where

retransmissions are impossible. However, FEC increases delay in the communication

process because the receiver can only start the playback process after receiving parity

data. Moreover, FEC introduces the usage of additional bandwidth and in the event of

congestion in a computer network it will be detrimental to the communication process.

Therefore, the level of FEC that needs to be applied to a stream of RTP packet has to be

addressed carefully.

There are many different FEC codes for different type of applications. Through

this research we are particularly interested in systematic forward error correction codes

where the original payload of RTP packets appear in the encoded output. The maximum

fraction of RTP payload packets that can be recovered with a FEC scheme is determined

in advance by the design of the codeword [39].

Recall that the maximum permissible delay of a VoIP call needs to be less than

150 msec for a real time communication. Our contribution is to predict the delay induced

for different levels of forward correction (FEC) using piggybacking and Reed Solomon

codes. We implemented a JavaScript version of the E-Model to calculate the impairment

due to delay (Id) for different values of long absolute delays. Refer to appendix B for the

implementation of this program. Notice that we are particularly interested in the pattern

of recovery, additional bandwidth, and delay introduced when using FEC piggybacking

and Reed-Solomon codes in VoIP.

51

4.3 Forward error correction with a piggybacking scheme

To predict the behavior of forward error correction piggybacking scheme in VoIP

lets consider a RTP stream of packets at 20 msec intervals where every packets contains

20 msec of payload data. Figure 4.2 describes a piggybacking forward error correction

scheme with a level of redundancy equal to two [21]. Notice that the loss of one packet

does not affect the final stream because if packet n is lost in the network it can be

recovered by extracting information in packet n+1. Note that with this scheme the

additional bandwidth consumed is equal to 2 times the data rate of the codec plus

additional headers of the TCP/IP stack. Moreover, there is an additional delay added to

the communication process because if packet n is lost, it is necessary to wait for packet

n+1, which of course for this particular example arrives only after 20 msec. Once packet

n+1 arrives it is safe to deliver the RTP data to the nominal jitter buffer space.

Figure 4.1. [21]. FEC piggybacking scheme with a redundancy level of two

52

Since the maximum permissible delay for a real time communication has to be

less than 150 msec recommended by the ITU, our goal is to not exceed this maximum

permissible delay. Therefore, we can generalize and state the following:

msec 150 sizebuffer jitter Nominal RTT/2 T*1) - redundancy of level ing(Piggyback <++

Where the piggybacking level of redundancy is a value equal or greater than two.

However, the greater this value, the greater the bandwidth utilization. Moreover, T is the

transmission cycle of the RTP stream, and RTT/2 represents the one-way delay. For this

particular example we can completely recover the RTP stream if 1 of every 2 consecutive

packets is lost in the network. Which is equivalent to 50% packet loss but only in patterns

of 1 out of 2 consecutive packets.

If we apply FEC piggybacking scheme to a stream of RTP packets with a

transmission cycle of 10 msec, the G.711 (64 kbps) codec will utilize an additional

bandwidth of 80 bytes per redundant data per packet, and G.729 (8 kbps) an additional

bandwidth of 10 bytes per redundant data per packet. Table 4.1 shows a bandwidth

comparison on different levels of FEC piggybacking scheme for G.711 and G.729 codecs

operating at 10 msec transmission cycles.

If we apply FEC piggybacking scheme to a stream of RTP packets with a

transmission cycle of 20 msec, the G.711 (64 kbps) codec will utilize an additional

bandwidth of 160 bytes per redundant data per packet, and G.729 (8 kbps) an additional

bandwidth of 20 bytes per redundant data per packet. Table 4.2 shows a bandwidth

comparison on different levels of FEC piggybacking scheme for G.711 and G.729 codecs

operating at 20 msec transmission cycles.

53

In order to calculate the bandwidth consumption for different levels of

piggybacking redundancy we need to do the following substitution to the equation shown

in Section 2.10.

redundancyoflevelngPiggybacki*es)packet(bytperpayloadDataes)packet(bytperpayloadData =

Table 4.1. Bandwidth consumption of FEC piggybacking scheme at 10 msec intervals

Piggybacking redundancy Recovery pattern Bandwidth
consumption
G.711 (kbps)

Bandwidth
consumption
G.729 (kbps)

1 “No redundancy” N/A 126.4 70.4
2 1 out of 2 190.4 78.4
3 2 out of 3 254.4 86.4
4 3 out of 4 318.4 94.2
5 4 out of 5 382.4 102.4
6 5 out of 6 446.4 110.4
7 6 out of 7 510.2 118.4

Table 4.2. Bandwidth consumption of FEC piggybacking scheme at 20 msec intervals

Piggybacking redundancy Recovery pattern Bandwidth
consumption
G.711 (kbps)

Bandwidth
consumption
G.729 (kbps)

1 “No redundancy” N/A 95.2 39.2
2 1 out of 2 159.2 47.2
3 2 out of 3 223.2 55.2
4 3 out of 4 287.2 63.2
5 4 out of 5 351.2 71.2
6 5 out of 6 415.2 79.2
7 6 out of 7 479.2 87.2

It is possible to calculate the additional delay induced for certain level of

piggybacking redundancy. The overall delay is defined by the formula described below.

54

Where T stands for transmission cycle. Table 4.3 shows the additional delay introduced

for codecs operating at 10 msec and 20 msec transmission cycles respectively.

T ancy - 1)* of redundking level (Piggybacnal delay ng additioPiggybacki =

Table 4.3 explains in detail the additional delay added to the communication process for a

certain level of piggybacking redundancy. Notice that a good implementation of FEC

piggybacking does not need to introduce additional delay if there is no packet loss.

Therefore, the additional delay is introduced as needed. Moreover, with this scheme it is

also possible to correct the payload bits from RTP packets by looking at payloads from

neighbor packets at the expense of paying an additional delay. However, we do not

consider this case in our research. The values presented in Table 4.3 should be interpreted

as maximum additional delay under worst conditions of packet loss.

Table 4.3. Additional delay of FEC piggybacking scheme

Piggybacking redundancy Maximum additional delay
at 10 msec intervals

Maximum additional delay
at 20 msec intervals

1 “No redundancy” 0 0
2 10 20
3 20 40
4 30 60
5 40 80
6 50 100
7 60 120

55

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

Redundancy

B
an

dw
id

th
 (K

bp
s)

G.711 at 10 msec
G.729 at 10 msec
G.711 at 20 msec
G.729 at 20 msec

Figure 4.2. Bandwidth consumption of forward error correction piggybacking scheme

From Figure 4.2 it can be inferred that FEC piggybacking scheme has small

overhead for low data rate codecs and high overhead for high data rate codecs. Therefore,

in the event of network congestion it is more convenient to implement FEC piggybacking

scheme for low data rate codecs only. Moreover, according to the results presented in

Tables 4.1 and 4.2, it can be clearly seen that it makes more sense to implement FEC

piggybacking scheme at 20 msec intervals rather than at 10 msec intervals due to the high

overhead of the headers in the TCP/IP protocol stack.

Figure 4.6 represents the impairment due to delay (Id) measured with the E-

Model [4]. Moreover, Figure 4.7 shows a snapshot of the JavaScript application

implemented to calculate the results presented in Figure 4.6. Refer to Appendix B for an

implementation of the E-Model. Notice that the overall impairment due to the delay

introduced by Piggybacking scheme, plus the One-way delay, and nominal jitter buffer

56

delay has to be less than 150 msec to obtain high MOS values. The formula shown below

describes in detail this idea.

msec 150 sizebuffer jitter Nominal RTT/2 T*1) - redundancy of level ing(Piggyback <++

Due to the high overhead in bandwidth consumption of high data codecs in a

piggybacking FEC scheme, we describe its limitations in a low data rate codec only such

as G.729 (8 kbps). Moreover, we also consider a transmission cycle of 20 msec, mainly

because in the event of burst packet loss in a computer network the probability to lose

packets at 20 msec packet intervals is less than at 10 msec intervals, and there is less

bandwidth overhead at 20 msec rather than at 10 msec intervals. However, the main

drawback is that the delay is two times greater. At all times we utilize the mean opinion

score calculator implemented for this research.

Assume a VoIP call is placed with the G.729A codec at 20 msec intervals where

the one-way delay (RTT/2) is equal to 40 msec. Also assume the receiver implements a

fixed jitter buffer with a nominal value of 60 msec. So, the absolute delay in echo free

connections is equal to 100 msec. Also assume that there is a consecutive loss of three

packets in a stream of 50 packets per second. Therefore, the random packet loss

probability is equal to 6%. Replacing these values in the mean opinion score calculator

we obtain a MOS of 3.2.

Now lets examine what will be the MOS in the presence of piggybacking FEC.

Since we need to recover from the lost of at least three consecutive packets in a stream,

we need at least a scheme where the piggybacking level of redundancy is equal to four.

57

With this scheme we can recover up to three lost packets in a stream of four consecutive

packets. Notice that the additional delay is equal to 60 msec. So, the absolute delay in

echo free connections is equal to 160 msec. Also assume that the random packet loss

probability is equal to 0%. Replacing these values in the mean opinion score calculator

we obtain a MOS of 4.1.

Unfortunately, in the event of congestion the introduction of piggybacking FEC

can generate additional delay induced by the computer network. Assume that this delay is

equal to 30 msec. So, the absolute delay in echo free connections is equal to 190 msec.

Also assume that the random packet loss probability is equal to 0%. Replacing these

values in the mean opinion score calculator we obtain a MOS of 4.0.

Moreover, there is yet another issue we have to consider. Assume that the main

cause of packet loss is congestion. So, the introduction of FEC could generate more

packet loss. Assume that the delay in echo free connections is equal to 190 msec. Also

assume that the random packet loss probability is equal to 2%. Replacing these values in

the mean opinion score calculator we obtain a MOS of 3.7.

Through this theoretical analysis we conclude that the effectiveness of

piggybacking FEC scheme has its limitations. It depends on the one-way delay, nominal

jitter buffer size at the receiver, codec implemented, transmission cycle of the RTP

stream, and congestion.

4.4 Forward Error correction with Reed Solomon codes

Reed Solomon codes are systematic block based codes that take digital data and

add parity in order to recover from errors. Reed Solomon codes have been successfully

58

used in many systems, such as storage devices, satellite and wireless communications.

The maximum number of errors that can be recovered depends on the configuration of

the codeword [39].

A Reed Solomon code is specified as (n, k) with s-bit symbols. Meaning that the

code takes k data symbols of s bits each, and adds parity symbols to make an n symbol

codeword. Where, the number of parity symbols is defined by kn− , and every parity

symbol contains s bits [39]. Reed Solomon codes are highly convenient for VoIP,

because every RTP packet can be represented as one of the k data symbols of a

codeword. In fact, Reed Solomon codes can correct up to t symbols that contain errors in

a codeword, where knt −=2 . Figure 4.3 shows a Reed Solomon codeword.

Figure 4.3. Reed Solomon codeword

Reed Solomon codes are able to correct errors at the expense of higher delay and

additional bandwidth, and can only recover lost data if k out of n packets in a codeword

are received at the remote end. In the analysis performed in Section 4.3 we concluded

that there is high bandwidth consumption when FEC piggybacking scheme operates on

high data rate codecs, the same occurs for Reed Solomon. Table 4.4 analyses the

59

bandwidth consumption of introducing FEC Reed Solomon codes in VoIP for different

values of n and k.

Figure 4.4 describes the operation of Reed Solomon codes where n = 9 and k = 5.

There are many ways to send the parity data. Figure 4.4 shows one strategy of

distribution of packets and parity block data.

In Figure 4.4, T stands for transmission cycle. Notice that packet one is generated,

added the appropriate headers, and then sent into the network. The same occurs for all the

packets. Moreover, assume that packet 4 gets lost in the network. Then it is necessary to

wait for packet 5 and the parity blocks in order to recover the lost data. With this scheme

the delay generated is equal to Tk ⋅ . Notice that this strategy has a tremendous

disadvantage. If packet 5 gets lost in the network, the parity data is also lost. Therefore,

we need a strategy as the one presented by Schulzrinne and Jiang in [5], where the delay

is equal to Tn ⋅ , this of course represents a worst condition of delay.

60

1

2

3

4

5

P1

P3

P4

Sender Receiver

P2

T

One way delay

Figure 4.4. Reed Solomon codes, all parity sent in a block.

Figure 4.5, assumes a Reed Solomon strategy where the parity data is sent at the

same transmission cycle as the payload data. Therefore, the additional delay is equal to

Tn ⋅ . Finally, with this scheme there is an additional benefit, because subsequent

payload packets from the next codeword can be sent in combination with parity blocks

from the first codeword.

61

1

2

3

4

5

T

One way delay

P1

P2

P3

P4

ReceiverSender

Figure 4.5. Reed Solomon codes, parity sent at T intervals.

Lets examine the bandwidth consumption and additional delay of implementing

Reed Solomon codes with this strategy. The data rate and bandwidth consumption is

given according to the following formulas [5].

k
n*RateRate codeccodeSolomonReed =

62

T
78bytesRateBandwidth codeSolomonReedcodeSolomonReed +=

Table 4.4. Bandwidth consumption of FEC Reed Solomon code, T=10msec

FEC Reed Solomon (n, k) Bandwidth consumption
G.711 (kbps)

Bandwidth consumption
G.729 (kbps)

(4,2) 190.4 78.4
(6,2) 254.4 86.4
(5,3) 169.1 75.7
(7,3) 211.7 81.1
(9,3) 254.4 86.4
(6,4) 158.4 74.4
(8,4) 190.4 78.4
(10,4) 222.4 82.4
(12,4) 254.4 86.4
(7,5) 152.0 73.6
(9,5) 177.6 76.8
(11,5) 203.2 80.0
(13,5) 228.8 83.2
(15,5) 254.4 86.4

Tables 4.4 and 4.5 represent the additional bandwidth of introducing FEC Reed

Solomon codes in VoIP with a Transmission cycle of 10 and 20 msec respectively. Note

that we do not analyze the behavior at 30 msec or greater because the induced delay is

too high. Remember that a good implementation of Reed Solomon should not introduce a

delay greater than 150 msec.

From Tables 4.4 and 4.5 it can be inferred that FEC Reed Solomon codes has

small overhead for low data rate codecs and high overhead for high data rate codecs.

Therefore, in the event of network congestion it is more convenient to implement FEC

Reed Solomon codes for low data rate codecs only. Moreover, it can be clearly seen that

at 10 msec packet intervals the delay introduced by the FEC Reed Solomon codes is half

than at 20 msec intervals. However, there is yet another problem, the bandwidth is almost

63

two times greater due to the high overhead of the headers in the TCP/IP protocol stack.

Consequently, in the event of congestion it will be detrimental to the communication.

Table 4.5. Bandwidth consumption of FEC Reed Solomon code, T=20msec

FEC Reed Solomon (n, k) Bandwidth consumption
G.711 (kbps)

Bandwidth consumption
G.729 (kbps)

(4,2) 159.2 47.2
(6,2) 223.2 55.2
(5,3) 137.9 44.5
(7,3) 180.5 49.9
(9,3) 223.2 55.2
(6,4) 127.2 43.2
(7,5) 120.8 42.4

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 50 100 150 200 250 300 350 400 450 500 550

Absolute Delay (Ta) msec

Id

Figure 4.6. Impairment due to delay, based on the E-Model.

64

Figure 4.7. Impairment due to delay, JavaScript application snapshot

Figure 4.6 represents the impairment due to delay (Id) measured with the E-

Model [4]. Moreover, Figure 4.7 shows a snapshot of the JavaScript application

implemented to calculate the results presented in Figure 4.6. Refer to Appendix B for a

detail explanation of the E-Model. Notice that the overall impairment due to the delay

introduced by Reed Solomon codes, plus the One-way delay, and nominal jitter buffer

delay has to be less than 150 msec to obtain high MOS values. The formula shown below

describes in detail this idea.

msec 150 sizebuffer jitter Nominal RTT/2 T *n <++

65

Due to the high overhead in bandwidth consumption of high data codecs in a

Reed Solomon FEC scheme, we describe its limitations in a low data rate codec only

such as G.729 (8 kbps). Moreover, we also consider a transmission cycle of 20 msec,

mainly because in the event of burst packet loss in a computer network the probability to

lose packets at 20 msec packet intervals is less than at 10 msec intervals, and there is less

bandwidth overhead at 20 msec rather than at 10 msec intervals. However, the main

drawback is that the delay is two times greater. At all times we utilize the mean opinion

score calculator implemented for this research.

Assume a VoIP call is placed with the G.729A codec at 20 msec intervals where

the one-way delay (RTT/2) is equal to 40 msec. Also assume the receiver implements a

fixed jitter buffer with a nominal value of 60 msec. So, the absolute delay in echo free

connections is equal to 100 msec. Also assume that there is a consecutive loss of three

packets in a stream of 50 packets per second. Therefore, the random packet loss

probability is equal to 6%. Replacing these values in the mean opinion score calculator

we obtain a MOS of 3.2.

Now lets examine what will be the MOS in the presence of Reed Solomon FEC.

Since we need to recover from the loss of at least 3 consecutive packets in a stream, we

need at least a scheme where n = 9 and k =3. With this scheme we can recover up to three

lost blocks in a codeword. Notice that the additional delay Tn ⋅ is equal to 180 msec. So,

the absolute delay in echo free connections is equal to 280 msec. Also assume that the

random packet loss probability is equal to 0%. Replacing these values in the mean

opinion score calculator we obtain a MOS of 3.6.

66

Unfortunately, in the event of congestion the introduction of Reed Solomon FEC

can generate additional delay induced by the computer network. Assume that this delay is

equal to 30 msec. So, the absolute delay in echo free connections is equal to 300 msec.

Also assume that the random packet loss probability is equal to 0%. Replacing these

values in the mean opinion score calculator we obtain a MOS of 3.4.

Moreover, there is yet another issue we have to consider. Assume that main cause

of packet loss is congestion. So, the introduction of FEC could generate more packet loss.

Assume that the delay in echo free connections is equal to 300 msec. Also assume that

the random packet loss probability is equal to 2%. Replacing these values in the mean

opinion score calculator we obtain a MOS of 3.0.

Through this theoretical analysis we conclude that the effectiveness of Reed

Solomon FEC scheme has its limitations. It depends on the one-way delay, nominal jitter

buffer size at the receiver, codec implemented, transmission cycle of the RTP stream, and

congestion.

67

CHAPTER 5 – EXPERIMENTS AND RESULTS

This chapter describes the experiments set up during this research. These

experiments are necessary to have a better understanding on how the quality of VoIP

calls are affected under the event of distinct forms of impairments, such as: constant

delay, random delay, Gaussian delay with packet reordering, Gaussian delay without

packet reordering, and packet loss. In addition, we also measure the mean opinion score

(MOS) of calls when phones use a fixed and an adaptive jitter buffer respectively.

5.1 Degradation due to loss of consecutive audio.

To understand the impact that loss of consecutive audio has in the degradation of

listening quality, it was necessary to use an audio editor program, “Cool edit Pro”. We

edit an audio reference file of 5 seconds long, and generate silence of 5, 10, 20 and 40

msec respectively. Moreover, using ear human perception, we will define the threshold in

milliseconds at which click and pops are generated. The audio reference file is in PCM

format at 8 kHz, 16 bit, mono.

Figure 5.1 shows the original audio and waveforms impaired at 2.6 seconds. The

main result of this experiment is that even for an impairment silence of 5 msec, click and

pops are generated. Therefore, the loss of 5 msec of audio is an annoying event that

affects the quality of a VoIP call.

68

Figure 5.1. Call quality degradation

5.2 Call degradation on Cisco ATA 188 in the event of distinct forms of delay

To understand the impact that network impairments, such as distinct forms of

delay has in the quality of VoIP calls. It was necessary to setup the network environment

described in Figure 5.2. VoIP phones with Session Initiation Protocol (SIP) firmware will

register to a SIP proxy Server (Ondo SIP server). The Cisco ATAs 188 run a software

version 3.02.01 (050616A). An impairment emulator “Spirent IP Wave fx” will generate

fixed delay, uniform delay, Gaussian delay, and jitter to a stream of RTP packets.

 User A “the caller” will play a previously recorded audio file using the English

language. Finally, user B “the callee” at the remote end using ear human perception

determines the threshold of impairments at which the quality of the call degrades because

click and pops are introduced in the channel.

69

Figure 5.2 describes the network topology for the experiment. User A calls user B

phone number. Since both phones are registered to the SIP proxy server (Ondo SIP

server), a SIP setup call is established. Moreover, codec negotiation is forced to be G.711

PCMA with silence suppression turned-off at 20 msec transmission cycle. Once user B

answers, user A starts playing a prerecorded audio file. The RTP packets traveling across

the network from A to B will be delayed with the impairment generator.

SwitchAnalog Phone Analog PhoneImpairment Generator
IP wave FX

Cisco ATA Cisco ATA

Ondo SIP Proxy

User A User B

Figure 5.2. SIP setup for Cisco ATA 188 phones with an impairment generator

The results obtained are shown below.

Fixed delay - Listening quality is good for every value of fixed delay, even for 10.000

msec delay. However, this affects conversational quality.

Uniform delay - The impairment generator randomly applies delays between minimum

and maximum values. Uniform delay causes packets to be out of sequence due to variable

delays being applied. If the minimum value of uniform delay is set to 0 msec then the

70

maximum value of uniform delay at which clicks and pops are noticed is around 280

msec.

Gaussian delay - The impairment generator applies delays that resemble a Gaussian

distribution between a minimum and maximum values, which represent the -3 and +3

standard deviation respectively. Due to the randomly applied Gaussian delay, packets

may become out of order. If the minimum value of Gaussian delay is set to 0 msec then

the maximum value of Gaussian delay at which clicks and pops are noticed is around 320

msec.

Jitter – The impairment generator applies delays that resemble a Gaussian distribution

between a minimum and maximum values, which represent the -3 and +3 standard

deviation respectively. But, in this case packets are forced to maintain order. If the

minimum value of Gaussian delay is set to 0 msec then the maximum value of Gaussian

delay at which clicks and pops are noticed is around 550 msec. Notice that the playback

interval of packets from the impairment generator with a jitter function is most of the

times 0 msec. Therefore, this resembles a burst of packets event which also generates

jitter buffer discards. Discards are generated when there is excessive inter packet delay or

the burst size is greater than the maximum jitter buffer size. Figure 5.3 shows a 10

seconds snapshot of the jitter induced by the impairment generator for this particular

experiment. It was obtained from a one-minute call using G.711 PCMA codec at 20 msec

intervals with voice activity detection turned-off. The packet intervals of the output

stream were captured with ethereal network protocol analyzer. Finally this event can

occur when routers hold packets in its buffers due to queuing delay.

71

-200
-150
-100
-50

0
50

100
150
200

0 50 100 150 200 250 300 350 400 450 500

Packet sequence number

D
el

ay
 (m

ill
is

ec
on

ds
)

Figure 5.3. Jitter without re-ordering for a Gaussian delay between 0 and 550 msec.

5.3 Call degradation on Grand Stream ATA in the event of distinct forms of delay

To understand the impact that network impairments, such as distinct forms of

delay has in the quality of VoIP calls. It was necessary to setup the network environment

described in Figure 5.4. VoIP phones with Session Initiation Protocol (SIP) firmware will

register to a SIP proxy Server (Ondo SIP server). The Grandstream phones HT286 run a

software version 1.0.5.0. An impairment emulator “Spirent IP Wave fx” will generate

fixed delay, uniform delay, Gaussian delay, and jitter to a stream of RTP packets.

 User A “the caller” will play a previously recorded audio file using the English

language. Finally, user B “the callee” at the remote end using ear human perception

determines the threshold of impairments at which the quality of the call degrades because

click and pops introduced in the channel.

Figure 5.4 describes the network topology for the experiment. User A calls user B

phone number. Since both phones are registered to the SIP proxy server (Ondo SIP

server), a SIP setup call is established. Moreover, codec negotiation is forced to be G.711

PCMA without silence suppression at 20 msec transmission cycle. Once user B answers,

user A starts playing a prerecorded audio file. RTP packets will be sent in both directions

72

because voice activity detection is turned-off. The RTP packets traveling across the

network from A to B will be delayed with the impairment generator.

SwitchAnalog Phone Analog PhoneImpairment Generator
IP wave FX

Grand stream
ATA

Grand Stream
ATA

Ondo SIP Proxy

User A User B

Figure 5.4. SIP setup for Grand stream phones with an impairment generator

The results obtained are shown below.

Fixed delay - Listening quality is good for every value of fixed delay, even for 10.000

msec delay. However, this affects conversational quality.

Uniform delay – The impairment generator randomly applies delays between minimum

and maximum values. Uniform delay causes packets to be out of sequence due to variable

delays being applied. If the minimum value of uniform delay is set to 0 msec then the

maximum value of uniform delay at which clicks and pops are noticed is around 50 msec.

Gaussian delay – The impairment generator applies delays that resemble a Gaussian

distribution between a minimum and maximum values, which represent the -3 and +3

standard deviation. Due to the randomly applied Gaussian delay, packets may become out

of order. If the minimum value of Gaussian delay is set to 0 msec then the maximum

value of Gaussian delay at which clicks and pops are noticed is around 80 msec.

73

Jitter – The impairment generator applies delays that resemble a Gaussian distribution

between a minimum and maximum values, which represent the -3 and +3 standard

deviation respectively. But, in this case packets are forced to maintain order. If the

minimum value of Gaussian delay is set to 0 msec then the maximum value of Gaussian

delay at which clicks and pops are noticed is around 100 msec. Notice that the playback

interval of packets from the impairment generator with a jitter function is most of the

times 0 msec. Therefore, this resembles a burst of packets event which also generates

jitter buffer discards. Discards are generated when there is excessive inter packet delay or

the burst size is greater than the maximum jitter buffer size. Figure 5.3 shows a 10

seconds snapshot of the jitter induced by the impairment generator for this particular

experiment. It was obtained from a one-minute call using G.711 PCMA codec at 20 msec

intervals with voice activity detection turned-off. The packet intervals of the output

stream were captured with ethereal network protocol analyzer. Finally this event can

occur when routers hold packets in its buffers due to queuing delay.

-80

-60

-40

-20

0

20

40

0 50 100 150 200 250 300 350 400 450 500

Packet sequence number

D
el

ay
 (m

ill
is

ec
on

ds
)

Figure 5.5. Jitter without re-ordering for a Gaussian delay between 0 and 100 msec.

74

5.4 Call quality degradation with a fixed jitter buffer.

To understand the impact that a fixed jitter buffer has in the quality of a VoIP call

in the presence of impairments such as Gaussian delay, it was necessary to setup the

network environment described in Figure 5.6. Generic VoIP analog telephone adapters

were forced to operate with a fixed jitter buffer, with the following configuration, 40

msec of minimum jitter buffer size, 40 msec of nominal jitter buffer size, and 80 msec of

maximum jitter buffer size. An impairment emulator “The cloud” will generate Gaussian

delay with a mean of 100 msec and standard deviations that range from 5 to 100 msec.

The codec for the call was set to G.711a at 20 msec packet intervals without voice

activity detection. A computer will play a previously recorded audio file in the English

language. The format of the audio file is PCM at 8 kHz, 16 bits, mono. The length of the

reference audio file is 30 seconds. The reference audio file is played through the

computer sound card speaker port. Consequently, the impaired audio is received using a

computer sound card recording port. Moreover, Ethereal captures the timing of packets

traversing the network. Finally, the received audio file is compared against the original

audio file using perceptual evaluation of speech quality (PESQ) algorithm P.862 [6].

Figure 5.7 shows the original reference audio file and impaired audio files

recorded with the audio editor program, where D stands for delay in milliseconds, and SD

stands for standard deviation in milliseconds. Moreover, SD refers to the first standard

deviation of a Gaussian normal distribution. Meaning that 68% of random delay values

generated by the impairment generator fall between –1 and +1 standard deviation from

the mean of 100 msec. 95% fall between –2 and +2 standard deviations, and 99% fall

between –3 and +3 standard deviations.

75

Analog Phone Analog PhoneGeneric ATA Generic ATA

The Cloud

Impairment Generator

Audio player/recorder
Ethereal

Play audio Record audio

Hub

Figure 5.6. Setup to measure call quality degradation in the event of Gaussian delay.

Figure 5.7. Fixed jitter buffer impaired waveforms.

76

It can be clearly seen in Figure 5.7 that for large values of standard deviations

there is high degradation of the waveform. Consequently, PESQ will compute lower

mean opinion scores because the output waveform does not look like as similar as the

original waveform. Moreover, during some periods of time the output waveform suffers

from the loss of consecutive audio. Recall that according to the experiments performed in

Section 5.1, the loss of 5 msec of consecutive audio is an annoying event. The only

technique that could help prevent from this impairment is to increase the size of the

maximum and nominal jitter buffers. However, the greater the size of these buffers, the

greater the fixed delay, and that itself generates another impairment known as absolute

delay in echo-free connections (Ta). The jitter buffer discards were measured with

Telchemy’s VQmon. Note that when there are no impairments none of the 1500 RTP

packets are discarded by the jitter buffer. The results obtained during this experiment are

shown in Table 5.1 and Figure 5.8.

Table 5.1. Mean opinion score and discards for a fixed jitter buffer

Impairment MOS (ITU P.862) Discards
No impairment 4.368 0
Delay 100 msec, standard deviation 5 msec 4.363 1
Delay 100 msec, standard deviation 10 msec 4.363 3
Delay 100 msec, standard deviation 15 msec 3.607 49
Delay 100 msec, Standard deviation 20 msec 2.961 114
Delay 100 msec, Standard deviation 30 msec 2.446 285
Delay 100 msec, Standard deviation 40 msec 1.928 434
Delay 100 msec, Standard deviation 50 msec 1.644 518
Delay 100 msec, Standard deviation 60 msec 1.501 626
Delay 100 msec, Standard deviation 70 msec 1.384 652
Delay 100 msec, Standard deviation 80 msec 1.287 704
Delay 100 msec, Standard deviation 90 msec 1.225 724
Delay 100 msec, Standard deviation 100 msec 1.212 724

77

Figure 5.8. Mean Opinion Score with a fixed jitter buffer.

5.5 Call quality degradation with an adaptive jitter buffer.

To understand the impact that an adaptive jitter buffer has in the quality of a VoIP

call in the presence of impairments such as Gaussian delay, it was necessary to setup the

network environment described in Figure 5.6. Generic VoIP analog telephone adapters

were forced to operate with an adaptive jitter buffer, with the following configuration, 20

msec of minimum jitter buffer size, 60 msec of nominal jitter buffer size, and 120 msec

of maximum jitter buffer size. An impairment emulator “The cloud” will generate

Gaussian delay with a mean of 100 msec and standard deviations that range from 5 to 100

msec. The codec for the call was set to G.711A at 20 msec packet intervals without voice

activity detection. A computer will play a previously recorded audio file in the English

language. The format of the audio file is PCM at 8 kHz, 16 bits, mono. The length of the

reference audio file is 30 seconds. The reference audio file is played through the

computer sound card speaker port. Consequently, the impaired audio is received using a

computer sound card recording port. Moreover, Ethereal captures the timing of packets

78

traversing the network. Finally, the received audio file is compared against the original

audio file using perceptual evaluation of speech quality (PESQ) algorithm P.862 [6].

Figure 5.9 shows the original reference audio file and impaired audio files

recorded with the audio editor program, where D stands for delay in milliseconds, and SD

stands for standard deviation in milliseconds. Moreover, SD refers to the first standard

deviation of a Gaussian normal distribution. Meaning that 68% of random delay values

generated by the impairment generator fall between –1 and +1 standard deviation from

the mean of 100 msec. 95% fall between –2 and +2 standard deviations, and 99% fall

between –3 and +3 standard deviations.

Figure 5.9. Adaptive jitter buffer impaired waveforms.

79

It can be clearly seen in Figure 5.9 that for large values of standard deviations

there is high degradation of the waveform. Consequently, PESQ will compute lower

mean opinion scores because the output waveform does not look like as similar as the

original waveform. Moreover, during some periods of time the output waveform suffers

from the loss of consecutive audio. Recall that according to the experiments performed in

Section 5.1, the loss of 5 msec of consecutive audio is an annoying event. The only

technique that could help prevent from this impairment is to increase the size of the

maximum and nominal jitter buffers. However, the greater the size of these buffers, the

greater the fixed delay, and that itself generates another impairment known as absolute

delay in echo-free connections (Ta). The jitter buffer discards were measured with

Telchemy’s VQmon. Note that when there are no impairments none of the 1500 RTP

packets are discarded by the jitter buffer. The results obtained during this experiment are

shown in Table 5.2 and Figure 5.10.

Table 5.2. Mean opinion score and discards for an adaptive jitter buffer

Impairment MOS (ITU P.862) Discards
No impairment 4.369 0
Delay 100 msec, Standard deviation 5 msec 4.370 1
Delay 100 msec, Standard deviation 10 msec 4.362 5
Delay 100 msec, Standard deviation 15 msec 4.363 13
Delay 100 msec, Standard deviation 20 msec 4.297 15
Delay 100 msec, Standard deviation 30 msec 3.455 78
Delay 100 msec, Standard deviation 40 msec 2.872 258
Delay 100 msec, Standard deviation 50 msec 2.738 347
Delay 100 msec, Standard deviation 60 msec 2.233 425
Delay 100 msec, Standard deviation 70 msec 2.065 530
Delay 100 msec, Standard deviation 80 msec 1.861 573
Delay 100 msec, Standard deviation 90 msec 1.876 657
Delay 100 msec, Standard deviation 100 msec 1.683 722

80

Figure 5.10. Mean Opinion Score for an adaptive jitter buffer.

5.6 MOS under the event of periodic and random lost (non-intrusive technique).

To understand the impact that periodic and random loss has in the quality of a

VoIP call, a script that simulates a RTP stream of packet flowing in two directions was

created using the Ixia Tcl Hal API. This script controls the Ixia Chassis to produce a RTP

stream of packets with G.711 codec operating at a transmission cycle of 20 msec.

The call duration was set to one minute. The periodic and random loss was

generated using an impairment generator “IP Wave Fx”. The mean opinion score was

measured with SQprobe that works in non-intrusive mode. SQprobe is a product of

Telchemy and the test was conducted at Telchemy research labs. The code to generate the

RTP stream of packets is attached in Appendix A. Table 5.3 and Figure 5.11 present the

results obtained during this experiment.

81

Table 5.3. MOS of G.711 under conditions of periodic and random loss

% Packet Lost MOS-LQ Periodic Lost MOS-LQ Random Lost
0 4.2 4.2
1 4.1 4.1
2 4.1 4
3 4.1 3.8
4 4 3.9
5 4 3.8
10 3.7 3.3
15 3.4 3.1
20 3.2 2.8
25 2.9 2.6
30 2.7 2.3
35 2.5 1.8

It can be clearly seen in Figure 5.11 that packet loss has a huge impact in the

mean opinion score MOS of a VoIP call. Moreover, random loss is more detrimental to

VoIP than periodic loss.

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40

Percent packet loss

M
O

S-
LQ Periodic Loss

Random Loss

Figure 5.11. MOS of G.711 under conditions of periodic and random loss

82

CHAPTER 6 – CONCLUSION

Providing a better quality to VoIP calls under conditions of delay, jitter and

packet loss still remains a major problem that needs to be addressed for next generation

of VoIP services.

The quality of a call is not affected by the signaling protocol. However, it has a

direct impact in the call setup time. In our experiments we found that call setup time in a

network without impairments is approximately 250 msec using the SIP protocol.

Transmitting at small packet intervals leads to a huge waste of bandwidth

resources. In fact, this is due to the overhead of the headers in the TCP/IP stack, which is

78 bytes per packet on Ethernet networks. In fact, for small data rate codecs every packet

contains more headers than actual payload data. This overhead can be as high as 79.59%

for G.729 (8 kbps) codec transmitting at 20 msec intervals and 88.63% for the same

codec transmitting at 10 msec intervals. Moreover, There is more probability to lose

packets at 10 msec intervals rather than at 20 msec intervals. Therefore, in the event of

transient network problems it is more convenient sent data at 20 msec intervals. In

addition RTP streams consume more bandwidth at 10 msec intervals rather than at 20

msec intervals.

The quality of a call is degraded just for the fact of using low bit rate codecs. In

fact, for perfect network conditions, meaning that there is no packet loss or delay, G.711

and G.729A provide a MOS of 4.4 and 4.1 respectively. Furthermore, in the event of

network congestion it makes more sense to implement a low bit rate codec such as

83

G.729A (8 kbps) rather than a high bit rate codec. In addition, the voice activity detection

feature should always be used, because it reduces congestion.

The jitter buffer can only compensate for the event of variable inter-packet delay.

Moreover, we confirm the fact that adaptive jitter buffers have better performance than

fixed jitter buffers. If the nominal jitter buffer size is too high this introduces unnecessary

latency which is a considerably impairment. Moreover, the maximum jitter buffer size

also plays and important role in the quality of a call because if packets arrive too late the

effect will be discard by the jitter buffer, and if the burst of packets that arrives at the

receiver is greater than the maximum jitter buffer size, the effect is again packet discards.

Recall that packet discard is equivalent to packet loss.

Fixed delay is not detrimental to the listening quality of a call. However, for

values greater than 150 msec it has a direct impact in the conversational quality. From all

forms of delay that we generated in our experiments, random delay is the most

detrimental to VoIP. Gaussian delay without reordering packets is less detrimental to a

VoIP call than Gaussian delay with packet reordering. Moreover, the quality of a VoIP

call is different from vendor to vendor, this is mainly because vendors use different

hardware, software, and jitter buffer algorithms.

Even though there has been amazing progress in the field of codec design such as

G.711 PLC and G.729A that provide a MOS of 3.9 and 3.3 respectively when the random

packet loss probability is equal to 5%. Error recovery at the codec level has only an

acceptable performance up to a certain extent of packet loss.

With forward error correction the receiver is able to recover from packet loss

without retransmission. Therefore, VoIP calls can have a better mean opinion score.

84

However, FEC increases delay in the communication, and according to the mean opinion

score calculator based on the E-Model implemented on this research, this is a significant

impairment that affects the conversational quality of a call. Moreover, the effectiveness

of FEC depends on the one-way delay, nominal jitter buffer size at the receiver, codec

implemented, transmission cycle of the RTP stream, and congestion in a computer

network.

The introduction of forward error correction has two direct negative impacts. It

introduces an additional delay and consumes bandwidth resources. In fact, the greater the

level of redundancy, the greater the delay and bandwidth utilization, and in the event of

network congestion it will be detrimental to the communication.

FEC should only be implemented in scenarios where retransmissions are

impossible. A good implementation of FEC piggybacking does not need to introduce

delay if there is no packet loss. Therefore, the additional delay should be introduced as

needed. FEC piggybacking scheme has small overhead for low data rate codecs only and

should only be implemented in high data rate codecs in the event of transient network

problems. Moreover, FEC piggybacking introduces less overhead at 20 msec intervals

rather than at 10 msec due to the high overhead of the headers in the TCP/IP protocol

stack

Reed Solomon codes should only be implemented on low data rate codecs. At 10

msec intervals the delay introduced by the FEC Reed Solomon codes is half the time than

the delay generated at 20 msec intervals, yet there is another problem because for the

G.729 (8 kbps) codec the bandwidth utilization implementing a Reed Solomon code is

two times greater due to the high overheads of the TCP/IP stack.

85

To recover from the lost of consecutive RTP packets at 20 msec intervals, FEC

Reed Solomon codes introduce three times more delay than FEC piggybacking scheme.

Therefore, due to the nature of the application FEC piggybacking outperforms Reed

Solomon.

The delay induced by a forward error correction technique plus the one-way delay

and nominal jitter buffer delay should be smaller than 150 msec for a real time

communication. However, we found in our experiments that delays greater than 150 msec

are acceptable if the delay is constant. Constant delay does not affect the listening quality

of a call; it only affects the conversational quality. This is known as a one-way

communication.

The output of the E-Model has not been completely verified because of the large

number of possible combinations of input parameters that affect the overall quality of a

call. In fact, modifications to the E-Model are currently under study. Moreover, the

values for the input parameters that we use to develop the mean opinion score calculator

application can be subject to change in the near future. Therefore, readers should use

discretion at interpreting the results presented through this research.

In the future protocol such as RTCP-XR that provide reception quality feedbacks

of RTP will play an important role to enhance the quality of VoIP calls because

appropriate reports could provide real time feedback of the best method used for

recovery, such as: transmit data at lower rates, change to a high or low bit rate codec with

FEC, RUDP, or other technique if it provides better performance. Note that, protocols at

the transport layer that request retransmission of lost packet are highly inefficient in

86

scenarios with high RTT, but the performance of these protocols for small values of RTT

is still possible.

87

BIBLIOGRAPHY

1. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RFC 3550. RTP: A Transport

Protocol for Real-Time Applications. July 2003.

2. H. Schulzrinne, S. Casner. RFC 3551. RTP Profile for Audio and Video Conferences

with minimal control. July 2003.

3. H. OOUCHI, T. TAKENAGA, H. SUGAWARA and M. MASUGI. Study on

Appropriate Voice Data Length of IP Packets for VoIP Network adjustment. Global

Telecommunications Conference, 2002. Volume 2, on page(s): 1618-1622.

4. ITU-T Recommendation G.107. The E-model, a computational model for use in

transmission planning. March 2003.

5. W. Jiang and H. Schulzrinne. Comparison of FEC and codec robustness on VoIP quality

and bandwidth efficiency. Submitted to World Scientific. June 5, 2002.

6. ITU-T P.862. Perceptual evaluation of speech quality (PESQ): An objective method for

end-to-end speech quality assessment of narrow-band telephone networks and speech

codecs. Feb 1, 2001.

7. G. Bai, K. Long, W. Wang, S. Cheng. A new reliable signaling transport protocol RSTP

for voice over IP. Fifth Asia-Pacific Conference. 1999. Issue 1999, Volume 1, on page(s):

263 – 266.

8. ITU-T G.113. Transmission impairments due to speech processing. February 2001.

9. T. Friedman, R. Caceres, A. Clark. RFC 3611. RTP Control Protocol Extended Reports

(RTCP XR). November 2003.

10. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, E. Schooler. RFC 3261. SIP: Session Initiation Protocol. June 2002.

11. S. Cherry. Seven myths about voice over IP. Spectrum, IEEE. Volume 42, Issue 3, on

page(s): 52 – 57. March 2005.

88

12. P. Pragtong, K. Ahmed, and T. Erke. Analysis of speech data rate in voice over IP

conversation. TENCON 2004. 2004 IEEE Region 10 Conference. 2004. Volume A, on

page(s): 143 – 146.

13. H. Chong, H. Matthews. Comparative analysis of traditional telephone and voice-over-

Internet protocol (VoIP) systems. Electronics and the Environment, 2004. 2004 IEEE

International Symposium. 10 - 13 May 2004. On page(s): 106 - 111.

14. Ethereal network protocol analyzer. Website 2007, (http://www.ethereal.com)

15. T. Walsh and D. Kuhn. Challenges in securing voice over IP. Security & Privacy

Magazine, IEEE. Volume 3. Issue 3, on page(s): 44 - 49. May - June 2005.

16. B. Alfonsi. Alliance Addresses VoIP Security. Security & Privacy Magazine, IEEE.

Volume 3, Issue 4, on page(s): 8. July - Aug 2005.

17. D. Estacion. Potential Security Problem looms for users of PC-based VoIP Products.

IEEE Canadian Review. Feb 2005.

18. G. Hoglund, G. McGraw. Exploiting Software: How to break code. 2004.

19. Skype: A peer-to-peer Internet telephony network. Website 2007.

(http://www.skype.com)

20. E. Aire, B. Maharaj, L. Linde. Implementation considerations in a SIP based secure voice

over IP network. Africon 2004, 7th AFRICON Conference in Africa. 2004. Volume 1, on

page(s): 167 – 172.

21. J. Kurose, K. Ross. Computer Networking, A top-down approach featuring the Internet,

third edition. 2005.

22. C. Hung, C. Tan, L. Chuang, W. Lee. The implementation of the communication

framework of SIP and MGCP in VoIP applications. Networks, 2002. ICON 2002. 10th

IEEE International Conference. 27-30 Aug 2002. On page(s): 449 – 454.

23. N. Miglani. VoIP-An implementation and survey. 2001.

89

24. S. Shankar, J. del Prado, P. Wienert. Optimal packing of VoIP calls in an IEEE 802.111

a/e WLAN in the presence of QOS constraints and channel error. Global

Telecommunications Conference, 2004. GLOBECOM’04. IEEE. 29 Nov - 3 Dec 2004.

Volume 5, on page(s): 2974 – 2980.

25. S. Garg, M. Kappes. Can I add a VoIP call? Communications, 2003. ICC’03. IEEE

International Conference. 11 - 15 May 2003. Volume 2, on page(s): 779 – 783.

26. W. Liew, Q. Li. A multiplex-multicast scheme that improves system capacity of voice-

over-ip on wireless LAN by 100%. Computers and Communications, 2004. Proceedings.

ISCC 2004. Ninth International Symposium. 28 June - 1 July 2004. Volume 1, on

page(s): 472 - 477.

27. F. Dressler. Advantages of VoIP in the German research network. High Speed Networks

and Multimedia Communications 5th IEEE International conference. 2002. On Page(s):

56 – 60.

28. H. Chong and Mathews. Comparative analysis of traditional telephone and voice-over-

Internet protocol (VoIP) systems. Electronics and the Environment, 2004. Conference

Record. 2004 IEEE International Symposium. 10-13 May 2004. On page(s): 106 – 111.

29. R. Hao, D. Lee, R. Sinha, N. Griffeth. Integrated system interoperability testing with

applications to VoIP. Networking, IEEE/ACM Transactions. Oct 2004.Volume 12, Issue

5. On page(s): 823 – 836.

30. H. Xiao, P. Zarrella. Quality effects of wireless VoIP using security solutions. Military

communications conference, 2004. Milcom 2004. IEEE. 31 Oct – 3 Nov 2004. Volume 3,

on page(s) 1352 – 1357.

31. C. McKay and F. Masuda. Empirical Studies of wireless VoIP Speech Quality in the

presence of Bluetooth Interference. Electromagnetic Compatibility, 2003 IEEE

International Symposium. 18 - 22 Aug 2003. Volume 1, on page(s): 269 – 272.

90

32. B. Massad and S. Holthaus. Embedding call monitoring in VoIP designs. Website 2002.

(http://www.commsdesign.com/article/printableArticle.jhtml?articleID=16504616

33. Alan Clark. Improving VoIP call quality with Embedded Monitoring. Website 2001.

(http://www.commsdesign.com/showArticle.jhtml;jsessionid=UUO2KAJXYOT54QSND

LOSKH0CJUNN2JVN?articleID=16503492)

34. S. Garg, M. Kappes. An experimental study of throughput for UDP and VoIP traffic in

IEEE 802.11b networks. Wireless Communications and Networking, 2003. WCNC 2003.

2003 IEEE. 16 – 20 March 2003. Volume 3, on page(s): 1748 – 1753.

35. H. Furuya, S. Nomoto, H. Yamada, N. Fukumoto, and F. Sugaya. Experimental

investigation of the relationship between IP network performances and speech quality of

VoIP. Telecommunications, 2003. ICT 2003. 10th International conference. 23 Feb – 1

March 2003. Volume 1, on page(s): 543 – 552.

36. VoIPtroubleshooter Website 2007.

http://www.voiptroubleshooter.com/problems/jitterbuffer.html

37. C. Partridge, R. Hiden. RFC 1151. Version 2 of the Reliable Data Protocol (RDP).

38. D. Velten, R. Hinden, and J. Sax. RFC 908. Version 1 of the Reliable Data Protocol.

39. 4i2i, Website 2007. An Introduction to Reed-Solomon codes: principle, architecture and

implementation. (http://www.4i2i.com/reed_solomon_codes.htm).

91

APPENDIX

APPENDIX A. RTP stream generator

LEGAL NOTICE #

Ixia does not warrant that the functions contained in this #
Software will meet the user's requirements or that the #
Software will be without omissions or error-free. #

IN NO EVENT SHALL IXIA BE LIABLE FOR ANY DAMAGES RESULTING #
FROM OR ARISING OUT OF THE USE OF, OR THE INABILITY TO USE #
THE SOFTWARE OR ANY PART THEREOF, INCLUDING BUT NOT LIMITED #
TO ANY LOST PROFITS, LOST BUSINESS, LOST OR DAMAGED DATA OR #
SOFTWARE OR ANY INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL #
DAMAGES, EVEN IF IXIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH #
DAMAGES IN ADVANCE #

THE ORIGINAL VERSION OF THIS PROGRAM WAS MODIFIED BY #
ALEX RIBADENEIRA TO SEND RTP PACKETS AT 20 MSEC INTERVALS WITH #
G.711 CODEC #

package req IxTclHal
ixInitialize 192.168.0.10

proc makeEndPoints {portList ipList gwList prefixList}
 {
 set intf 0

 foreach port $portList
 {
 scan $port "%d %d %d" ch ca po
 interfaceTable select $ch $ca $po
 interfaceTable clearAllInterfaces
 interfaceEntry clearAllItems addressTypeIpV6
 interfaceEntry clearAllItems addressTypeIpV4
 ipAddressTable setDefault
 ipAddressTable set $ch $ca $po
 }

 foreach port $portList ip $ipList gw $gwList prefix $prefixList
 {
 scan $port "%d %d %d" ch ca po
 set mac [format "00 %02x %02x %02x 00 00" $ch $ca $po]
 set mac [join [lreplace $mac 4 5 [join [word2HexList $intf]]]]
 interfaceTable select $ch $ca $po
 ipAddressTable setDefault

 interfaceIpV4 setDefault
 interfaceIpV4 config -gatewayIpAddress $gw
 interfaceIpV4 config -maskWidth $prefix
 interfaceIpV4 config -ipAddress $ip
 interfaceEntry addItem addressTypeIpV4

92

 interfaceEntry setDefault
 interfaceEntry config -enable true
 interfaceEntry config -macAddress $mac
 interfaceTable addInterface

 ipAddressTableItem setDefault
 ipAddressTableItem config -fromIpAddress $ip
 ipAddressTableItem config -fromMacAddress $mac
 ipAddressTableItem config -numAddresses 1
 ipAddressTableItem config -mappingOption oneIpToOneMAC
 ipAddressTableItem config -overrideDefaultGateway true
 ipAddressTableItem config -enableUseNetwork true
 ipAddressTableItem config -netMask $prefix
 ipAddressTableItem config -gatewayIpAddress $gw
 ipAddressTableItem config -enableUseNetwork true
 ipAddressTable addItem
 ipAddressTable set $ch $ca $po

 protocolServer setDefault
 protocolServer config -enableArpResponse true
 protocolServer config -enablePingResponse true
 protocolServer set $ch $ca $po
 incr intf
 }

 set pl [lsort -unique $portList]
 ixWriteConfigToHardware pl
 ixTransmitArpRequest pl
 }

proc initPortList {portList}
 {
 set pl [lsort -unique $portList]
 foreach port $pl
 {
 initPort $port
 }
 ixWritePortsToHardware pl
 after 1000
 ixCheckLinkState pl
 }

proc initPort {port}
 {
 scan $port "%d %d %d" ch ca po
 port config -transmitMode portTxModeAdvancedScheduler
 port config -receiveMode portPacketGroup
 port config -autonegotiate true
 port config -advertise1000FullDuplex true
 port config -advertise100FullDuplex true
 port config -advertise100HalfDuplex true
 port config -advertise10FullDuplex true
 port config -advertise10HalfDuplex true
 port set $ch $ca $po
 packetGroup setDefault
 packetGroup config -signatureOffset 50
 packetGroup config -groupIdOffset 54
 packetGroup setRx $ch $ca $po
 interfaceTable select $ch $ca $po
 interfaceTable clearAllInterfaces
 interfaceEntry clearAllItems addressTypeIpV6

93

 interfaceEntry clearAllItems addressTypeIpV4
 arpServer setDefault
 arpServer config -retries 20
 arpServer config -mode 2
 arpServer config -rate 100
 arpServer config -requestRepeatCount 10
 arpServer set $ch $ca $po
 port reset $ch $ca $po
 initPortData $port
 }

proc initPortData {port}
 {
 global portTable
 foreach codec [getCodecs]
 {
 set idx [join [list [join $port ,] $codec] ,]
 catch {unset portTable($idx)}
 set portTable($idx) [list 0 {}]
 }
 }

proc addCallData {port codec src dst udpPort num}
 {
 global portTable
 set idx [join [list [join $port ,] $codec] ,]
 if {![info exists portTable($idx)}
 {
 return
 }
 incr portTable($idx) $num
 set data [lindex $portTable($idx) 1]
 lappend $data [list $src $dst $udpPort $num]
 }

proc makeVoipStreams {port codec srcIpList dstIpList udpPortSource udpPortList}
 {
 global codecData
 set noCalls [llength $dstIpList]
 if {[llength $srcIpList] != [llength $udpPortList]}
 {
 return 1
 }
 if {$noCalls != [llength $srcIpList]}
 {
 return 1
 }
 scan $port "%d %d %d" ch ca po
 set strm 1
 set found 0

 while {![stream get $ch $ca $po $strm]}
 {
 if {[stream cget -name] == [lindex $codecData($codec) 0]}
 {
 set found 1
 break
 }
 incr strm
 }

94

 if {$found}
 {
 udf get 1
 set tmpsrcIpList [udf cget -valueList]
 udf get 2
 set tmpdstIpList [udf cget -valueList]
 udf get 3
 set tmpudpPortList [udf cget -valueList]
 set srcIpList [ip2HexList $srcIpList]
 set dstIpList [ip2HexList $dstIpList]
 set udpPortList [word2HexList $udpPortList]

 foreach srcIp $srcIpList dstIp $dstIpList udpPort $udpPortList
 {
 lappend tmpsrcIpList $srcIp
 lappend tmpdstIpList $dstIp
 lappend tmpudpPortList $udpPort
 }

 set srcIpList $tmpsrcIpList
 set dstIpList $tmpdstIpList
 set udpPortList $tmpudpPortList
 set noCalls [llength $dstIpList]
 udp setDefault
 udp config -sourcePort $udpPortSource
 udp config -destPort 0
 udp set $ch $ca $po
 udf setDefault
 udf config -enable true
 udf config -counterMode udfValueListMode
 udf config -offset 26
 udf config -countertype c32
 udf config -valueList $srcIpList
 udf set 1
 udf setDefault
 udf config -enable true
 udf config -counterMode udfValueListMode
 udf config -offset 30
 udf config -countertype c32
 udf config -valueList $dstIpList
 udf set 2
 udf setDefault
 udf config -enable true
 udf config -counterMode udfValueListMode
 udf config -offset 36
 udf config -countertype c16
 udf config -valueList $udpPortList
 udf set 3

 } else {
 stream setDefault
 stream config -sa [format "00 AD E0 %02x %02x %02x"
$ch $ca $po]
 stream config -daRepeatCounter daArp
 stream config -fir true
 protocol setDefault
 protocol config -name ipV4
 protocol config -appName 0
 protocol config -ethernetType ethernetII
 ip setDefault
 ip config -ttl 63
 ip config -ipProtocol udp
 ip config -sourceIpAddr [lindex $srcIpList 0]

95

 ip config -destIpAddr [lindex $dstIpList 0]
 ip set $ch $ca $po
 udp setDefault
 udp config -sourcePort $udpPortSource
 udp config -destPort 0
 udp set $ch $ca $po
 udf setDefault
 udf config -enable true
 udf config -counterMode udfValueListMode
 udf config -offset 26
 udf config -countertype c32
 udf config -valueList [ip2HexList $srcIpList]
 udf set 1
 udf setDefault
 udf config -enable true
 udf config -counterMode udfValueListMode
 udf config -offset 30
 udf config -countertype c32
 udf config -valueList [ip2HexList $dstIpList]
 udf set 2
 udf setDefault
 udf config -enable true
 udf config -counterMode udfValueListMode
 udf config -offset 36
 udf config -countertype c16
 udf config -valueList [word2HexList $udpPortList]
 udf set 3
 }

 if {[setCodecData $ch $ca $po $codec $noCalls]}
 {
 return 1
 }

 stream set $ch $ca $po $strm
 packetGroup setDefault
 packetGroup config -signatureOffset 50
 packetGroup config -signature {08 71 18 05}
 packetGroup config -insertSignature true
 packetGroup config -groupIdOffset 54
 packetGroup config -groupId 0
 packetGroup setTx $ch $ca $po $strm
 stream write $ch $ca $po $strm
}

proc setCodecData {ch ca po {codec G.711u} {noCalls 1}}
 {
 global codecData

 if {![info exists codecData($codec)]}
 {
 return 1
 }

 stream config -name [lindex $codecData($codec) 0]
 stream config -framesize [lindex $codecData($codec) 1]
 stream config -pattern [lrange [lindex $codecData($codec) 4] 0 end]
 stream config -patternType nonRepeat
 stream config -dataPattern userpattern
 stream config -rateMode usePercentRate
 stream config -percentPacketRate [expr $noCalls *
[calculatePercentMaxRate 1 $ca $po [lindex $codecData($codec) 2] [lindex
$codecData($codec) 1]]]

96

 udf setDefault
 udf config -enable true
 udf config -offset 46
 udf config -countertype c32
 udf config -counterMode udfNestedCounterMode
 udf config -continuousCount true
 udf config -updown uuuu
 udf config -initval {00 00 00 00}
 udf config -repeat 1
 udf config -step [lindex $codecData($codec) 3]
 udf config -innerRepeat $noCalls
 udf config -innerStep [lindex $codecData($codec) 3]
 udf config -innerLoop $noCalls
 udf set 5
 udf setDefault
 udf config -enable true
 udf config -offset 44
 udf config -countertype c16
 udf config -counterMode udfNestedCounterMode
 udf config -continuousCount true
 udf config -updown uuuu
 udf config -initval {00 01}
 udf config -repeat 1
 udf config -step 1
 udf config -innerRepeat $noCalls
 udf config -innerStep 1
 udf config -innerLoop 1
 udf set 4
 return 0
}

proc initCodecTable {}
 {
 global codecData
 catch {unset codecData}
 set codecData(G.711a) [list {G.711a (64kbps)} 218 50 160 {

 80 08 03 9C 00 02 0C A8 7E DF F9 D0 00 02 02 60

 64 C4 CA 58 48 0B B6 D6 E0 8B 60 2E 5B 65 B1 3D

 BA C1 53 9C 0B DE E0 83 C7 92 DC 7C E9 66 F9 0A

 4C 6B E6 19 46 47 62 63 5B 12 FF 3E 1F 55 33 3B

 0A 11 2A 66 C8 1C 4B 43 32 30 E6 8B 6F D4 BF 24

 2E 84 FC 98 32 64 3A 9B 3F E0 41 84 E4 AE 6F 7E

 9E 74 73 73 F9 4F B8 EC 6B E1 C7 47 12 FD 45 5C

 2B A2 DC 7A 11 60 51 A0 79 41 B0 C8 DB 1B AF 87

 7B 18 5D 1F 4E 0E 1B A9 60 60 72 2F 71 47 95 EC

 71 09 4F 68 93 31 80 F5 F3 73 48 91 67 43 E3 AD

 55 68 32 6B BB 4B EE 8D C2 8B E1 00
 }]
 }

proc getCodecs {}

97

 {
 global codecData
 return [lsort -dictionary [array names codecData]]
 }

proc getCodecData {codec {param all}}
 {
 global codecData
 switch $param
 {
 all {return $codecData($codec)}
 name {return [lindex $codecData($codec) 0]}
 size {return [lindex $codecData($codec) 1]}
 rate {return [lindex $codecData($codec) 2]}
 tstamp {return [lindex $codecData($codec) 3]}
 data {return [lindex $codecData($codec) 4]}
 }
 return {}
 }

proc ip2HexList {addr}
 {
 set tmp {}
 foreach ip $addr
 {
 scan $ip "%d.%d.%d.%d" a b c d
 lappend tmp [format "%02x %02x %02x %02x" $a $b $c $d]
 }
 return $tmp
 }

proc word2HexList {val}
 {
 set tmp {}
 foreach item $val
 {
 lappend tmp [format "%02x %02x" [expr ($item >> 8) & 0xff] [expr $item &
0xff]]
 }
 return $tmp
 }

proc makeEndPointPairs {pl baseIp baseGw prefix numPairs}
 {
 set portList {}
 set ipList {}
 set gwList {}
 set prefixList {}

 set netInc [expr 1 << (32-$prefix)]
 set maxHosts [expr $netInc - 3]
 if {$numPairs > $maxHosts}
 {
 return 1
 }

 foreach port $pl
 {
 set ip $baseIp

98

 for {set a 0} {$a < $numPairs} {incr a}
 {
 lappend portList $port
 lappend ipList $ip
 lappend gwList $baseGw
 lappend prefixList $prefix
 set ip [bin2Ip [mpexpr 1 + [ip2Bin $ip]]]
 }

 set baseIp [bin2Ip [mpexpr [ip2Bin $baseIp] + $netInc]]
 set baseGw [bin2Ip [mpexpr [ip2Bin $baseGw] + $netInc]]
 }

 makeEndPoints $portList $ipList $gwList $prefixList
 }

proc makeVoipTraffic {port codec srcIp dstIp numPairs callsPerPair srcudpPort
udpPort}
 {
 set srcList {}
 set dstList {}
 set udpList {}
 for {set pair 0} {$pair < $numPairs} {incr pair}
 {
 set uPort $udpPort
 for {set call 0} {$call < $callsPerPair} {incr call}
 {
 lappend srcList $srcIp
 lappend dstList $dstIp
 lappend udpList $uPort
 incr uPort
 }
 set srcIp [bin2Ip [mpexpr 1 + [ip2Bin $srcIp]]]
 set dstIp [bin2Ip [mpexpr 1 + [ip2Bin $dstIp]]]
 }
 makeVoipStreams $port $codec $srcList $dstList $srcudpPort $udpList
 }

proc bin2Ip {val}
 {
 set a [mpexpr ($val & 0xff000000) >> 24]
 set b [mpexpr ($val & 0x00ff0000) >> 16]
 set c [mpexpr ($val & 0x0000ff00) >> 8]
 set d [mpexpr ($val & 0x000000ff) >> 0]
 return [format "%d.%d.%d.%d" $a $b $c $d]
 }

proc ip2Bin {addr}
 {
 scan $addr "%d.%d.%d.%d" a b c d
 return [mpexpr (($a << 24) | ($b << 16) | ($c << 8) | $d)]
 }

proc clearAllStreams {portList}
 {
 foreach port $portList
 {
 scan $port "%d %d %d" ch ca po
 port reset $ch $ca $po

99

 }
 }

proc getLatencyInfo {port buckets}
 {
 set retVal {}
 scan $port "%d %d %d" ch ca po
 packetGroupStats get $ch $ca $po 0 $buckets
 for {set group 0} {$group < $buckets} {incr group}
 {
 if {[packetGroupStats getGroup $group]}
 {
 continue;
 }
 set tot [packetGroupStats cget -totalFrames]
 set avg [packetGroupStats cget -averageLatency]
 set max [packetGroupStats cget -maxLatency]
 set min [packetGroupStats cget -minLatency]
 lappend retVal [list $tot $min $max $avg]
 }
 return $retVal
 }

proc getLat {port}
 {
 set latInfo [getLatencyInfo $port 6000]
 set idx 1
 foreach bucket $latInfo
 {
 ixPuts [format "%4d - %d" $idx [lindex $bucket 0]]
 incr idx
 }
 }

proc whatRates {port}
 {
 scan $port "%d %d %d" ch ca po
 ixPuts [format "%-25s %s" Codec "Percent Line Rate for One call"]

 foreach codec [getCodecs]
 {
 ixPuts [format "%-25s %s" [getCodecData $codec name] [expr
[calculatePercentMaxRate 1 $ca $po [getCodecData $codec rate] [getCodecData
$codec size]]]]
 }
 }

#main
set pl {{1 2 1} {1 2 2}}
set baseGw1 10.9.0.1
set baseIp1 10.9.100.1

#10.9.0.1 peer 10.9.100.1
#10.9.0.2 peer 10.9.100.2

set prefix 16
#10.9.x.x/16 belong to the same network. DUT is a switch

set numPairs 1

100

set callsPerPair 1

initCodecTable

initPortList $pl

makeEndPointPairs $pl $baseIp1 $baseGw1 $prefix $numPairs

clearAllStreams $pl

makeVoipTraffic {1 2 1} G.711a $baseIp1 $baseGw1 $numPairs $callsPerPair
1025 2000
makeVoipTraffic {1 2 2} G.711a $baseGw1 $baseIp1 $numPairs $callsPerPair
2000 1025

whatRates {1 2 1}
whatRates {1 2 2}

ixStartPacketGroups pl;after 6100;getLat {1 2 1}
ixPuts "Sending: $numPairs call"

101

APPENDIX B. Mean opinion score calculator

<html>

<head>
<title>E-model calculator</title>
</head>

<body>

<script type="text/javascript">
document.writeln("Mean opinion score calculator
");
document.writeln("Author: Alexander F. Ribadeneira
");
document.writeln("Reference: ITU-T G.107, ITU-T G.113, RFC 3550, RFC
3551");

function calculate()
{

/**
*
//Default values for the parameters of the E-model according ITU-T
G.107
var SLR = 8; //Send Loudness Rating
var RLR = 2; //Receive Loudness Rating
var STMR = 15; //Sidetone Masking Rating
var LSTR = 18; //Listener Sidetone Rating
var Ds = 3; //D-Value of Telephone, Send Side
var Dr = 3; //D-Value of Telephone Receive Side
var TELR = 65; //Talker Echo Loudness Rating
var WEPL = 110; //Weighted Echo Path Loss
var T = 0; //Mean one-way Delay of the Echo Path
var Tr = 0; //Round-trip Delay in a 4-wire Loop
var Ta = 0; //Absolute Delay in echo-free Connections
var qdu = 1; //Number of Quantization Distortion Units
var Ie = 0; //Equipment Impairment Factor
var Bpl = 1; //Packet-loss Robustness Factor
var Ppl = 0; //Random Packet-loss Probability
var Nc = -70; //Circuit Noise referred to 0 dBr-point
var Nfor = -64; //Noise Floor at the Receive Side
var Ps = 35; //Room Noise at the Send Side
var Pr = 35; //Room Noise at the Receive Side
var A = 0; //Advantage Factor

***/
var SLR = parseFloat(document.getElementById("_SLR").value);
var RLR = parseFloat(document.getElementById("_RLR").value);
var STMR = parseFloat(document.getElementById("_STMR").value);
var Ds = parseFloat(document.getElementById("_Ds").value);
var Dr = parseFloat(document.getElementById("_Dr").value);
var TELR = parseFloat(document.getElementById("_TELR").value);
var WEPL = parseFloat(document.getElementById("_WEPL").value);
var T = parseFloat(document.getElementById("_T").value);
var Tr = parseFloat(document.getElementById("_Tr").value);
var Ta = parseFloat(document.getElementById("_Ta").value);

102

var qdu = parseFloat(document.getElementById("_qdu").value);
var Ie = parseFloat(document.getElementById("_Ie").value);
var Bpl = parseFloat(document.getElementById("_Bpl").value);
var Ppl = parseFloat(document.getElementById("_Ppl").value);
var Nc = parseFloat(document.getElementById("_Nc").value);
var Nfor = parseFloat(document.getElementById("_Nfor").value);
var Ps = parseFloat(document.getElementById("_Ps").value);
var Pr = parseFloat(document.getElementById("_Pr").value);
var A = parseFloat(document.getElementById("_A").value);

//Calculate LSTR
var LSTR = STMR + Dr;
document.getElementById("_LSTR").value = LSTR;

//Calculate OLR
var OLR = SLR + RLR;

//Calculate Nfo
var Nfo = Nfor + RLR;

//Calculate Pre
var Pre = Pr + 10 * log10 (1 + Math.pow (10,(10-LSTR)/10));

//Calculate Nor
var Nor = RLR - 121 + Pre + 0.008 * (Pre - 35) * (Pre - 35);

//Calculate Nos
var Nos = Ps - SLR - Ds - 100 + 0.004 * (Ps - OLR - Ds -14) * (Ps - OLR
- Ds -14);

//Calculate No
var No = 10 * log10 (Math.pow(10,(Nc/10)) + Math.pow(10,(Nos/10)) +
Math.pow(10,(Nor/10)) + Math.pow(10,(Nfo/10)));

//Calculate Ro
var Ro = 15 - 1.5 * (SLR + No);
document.getElementById("_Ro").value = Math.round(Ro*10)/10;

//Calculate Xolr
var Xolr = OLR + 0.2 * (64 + No - RLR);

//Calculate Iolr
var Iolr = 20 * (Math.pow((1 + Math.pow((Xolr/8),8)),0.125)
- Xolr/8);

//Calculate STMRo
var STMRo = -10 * log10 (Math.pow (10,(-STMR/10)) + Math.exp(-T/4) *
Math.pow (10,(-TELR/10)));

//Calculate Ist
var Ist = 12 * Math.pow (1 + Math.pow((STMRo -13)/6 , 8)
, 0.125);
Ist -= 28 * Math.pow (1 + Math.pow((STMRo +1)/19.4 , 35)
,(1/35));
Ist += -13 * Math.pow (1 + Math.pow((STMRo -3)/33 , 13)
,(1/13)) + 29;

103

//Calculate Q
var Q = 37 - 15 * log10 (qdu);

//Calculate G
var G = 1.07 + 0.258 * Q + 0.0602 * Q * Q;

//Calculate Z
var Z = 46/30 - G/40;

//Calculate Y
var Y = (Ro - 100)/15 + 46/8.4 - G/9;

//Calculate Iq
var Iq = 15 * log10 (1 + Math.pow(10,Y) + Math.pow(10,Z));

//Calculate Is = Iolr + Ist + Iq
var Is = Iolr + Ist + Iq;
document.getElementById("_Is").value = Math.round(Is*10)/10;

//Calculate TERV
var TERV = TELR - 40 * log10 ((1 + T/10) / (1 + T/150)) + 6 *
Math.exp(-0.3 * T * T);

if (STMR < 9)
{
TERV = TERV + Ist/2;
}

//Calculate Re
var Re = 80 + 2.5 * (TERV - 14);

//Calculate Roe
var Roe = -1.5 * (No - RLR);

//Calculate Idte
var Idte = ((Roe-Re)/2 + Math.sqrt ((Roe-Re)*(Roe-Re)/4 + 100) - 1)
* (1 - Math.exp(-T));

if (STMR > 20)
{
Idte = Math.sqrt (Idte*Idte + Ist*Ist);
}

if (T < 1)
{
Idte = 0;
}

//Calculate Rle
var Rle = 10.5 * (WEPL + 7) * Math.pow((Tr + 1),(-0.25));

//Calculate Idle
var Idle = (Ro-Rle)/2 + Math.sqrt ((Ro-Rle)*(Ro-Rle)/4 + 169);

//Calculate Idd
var Idd;
if (Ta > 100)

104

{
var X = log10(Ta/100) / log10(2);
Idd = 25 * (Math.pow ((1 + Math.pow (X,6)) , (1/6)) - 3 *
Math.pow ((1 + Math.pow (X/3,6)) , (1/6)) + 2);
}

else
{
Idd = 0;
}

//Calculate Id
var Id = Idte + Idle + Idd;
document.getElementById("_Id").value = Math.round(Id*10)/10;

//Calculate Ie_eff
var Ie_eff = Ie + (95 - Ie) * Ppl / (Ppl + Bpl);
document.getElementById("_Ie_eff").value = Math.round(Ie_eff*10)/10;

//Calculate R
var R = Ro - Is - Id - Ie_eff + A;
document.getElementById("_R").value = Math.round(R*10)/10;

//Calculate MOS
var MOS;

if (R<0)
{
MOS = 1;
}

else if (R>0 && R<100)
{
MOS = 1 + 0.035 * R + R * (R - 60) * (100 - R) * 7 * Math.pow(10,-
6);
}

else if (R>100)
{
MOS = 4.5;
}

document.getElementById("_MOS").value = Math.round(MOS*10)/10;

}

function log10(x)
{
return (Math.log(x)/Math.log(10))
}

function divide_string()
{
var Ie_Bpl=document.getElementById("_Codec").value;
var Ie_Bpl_array = Ie_Bpl.split("|");
document.getElementById("_Ie").value = Ie_Bpl_array[0];

105

document.getElementById("_Bpl").value = Ie_Bpl_array[1];
}

</script>

<DIV ALIGN=CENTER>
<table border="0">
<tr>
<td><h4 align="center">R</h4></td>
<td><h4 align="center">=</h4></td>
<td><h4 align="center">Ro</h4></td>
<td><h4 align="center">-</h4></td>
<td><h4 align="center">Is</h4></td>
<td><h4 align="center">-</h4></td>
<td><h4 align="center">Id</h4></td>
<td><h4 align="center">-</h4></td>
<td><h4 align="center">Ie_eff</h4></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><h4 align="center">MOS</h4></td>
</tr>

<tr>
<td><input type="text" id="_R" maxlength="4" size="2"></td>
<td> </td>
<td><input type="text" id="_Ro" maxlength="4" size="2"></td>
<td> </td>
<td><input type="text" id="_Is" maxlength="4" size="2"></td>
<td> </td>
<td><input type="text" id="_Id" maxlength="4" size="2"></td>
<td> </td>
<td><input type="text" id="_Ie_eff" maxlength="4" size="2"></td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td><input type="text" id="_MOS" maxlength="4" size="2"></td>
</tr>
</table>
</DIV>

<DIV ALIGN=CENTER>
<table border="0">
<tr>
<td><input type="submit" value="reset" onClick="_SLR.value=8"></td>
<td><input type="text" id="_SLR" value="8" maxlength="4" size="6"></td>
<td>Sender Loudness Rating (SLR) dB</td>
<td> </td>

106

<td><input type="submit" value="reset" onClick="_T.value=0"></td>
<td><input type="text" id="_T" value="0" maxlength="4" size="6"></td>
<td>Mean one-way Delay of the echo Path (T) msec</td>
</tr>

<tr>
<td><input type="submit" value="reset" onClick="_RLR.value=2"></td>
<td><input type="text" id="_RLR" value="2" maxlength="4" size="6"></td>
<td>Receive Loudness Rating (RLR) dB</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_Tr.value=0"></td>
<td><input type="text" id="_Tr" value="0" maxlength="4" size="6"></td>
<td>Round Trip Delay in a 4-wire Loop (Tr) msec</td>
</tr>

<tr>
<td><input type="submit" value="reset" onClick="_STMR.value=15"></td>
<td><input type="text" id="_STMR" value="15" maxlength="4"
size="6"></td>
<td>Sidetone Masking Rating (STMR) dB</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_Ta.value=0"></td>
<td><input type="text" id="_Ta" value="0" maxlength="4" size="6"></td>
<td>Absolute Delay in echo-free Connections (Ta) msec</td>
</tr>

<tr>
<td></td>
<td><input type="text" id="_LSTR" value="18" maxlength="4" size="6"
disabled ></td>
<td>Listener Sidetone Rating (LSTR) dB = STMR + Dr</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_qdu.value=1"></td>
<td><input type="text" id="_qdu" value="1" maxlength="4" size="6"></td>
<td>Number of quantization Distortion Units (qdu)</td>
</tr>

<tr>
<td><input type="submit" value="reset" onClick="_Ds.value=3"></td>
<td><input type="text" id="_Ds" value="3" maxlength="4" size="6"></td>
<td>D-Value of Telephone, Send Side (Ds)</td>
<td> </td>
<td></td>
<td><input type="text" id="_Bpl" value="1" maxlength="4" size="6"
style="background-color:#9CA5F5" style="color:#000000"></td>
<td>Packet-loss Robustness Factor (Bpl)</td>
</tr>

<tr>
<td><input type="submit" value="reset" onClick="_Dr.value=3"></td>
<td><input type="text" id="_Dr" value="3" maxlength="4" size="6"></td>
<td>D-Value of Telephone, Receive Side (Dr)</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_Ppl.value=0"></td>
<td><input type="text" id="_Ppl" value="0" maxlength="4" size="6"></td>
<td>Random packet loss probability (Ppl) %</td>
</tr>

107

<tr>
<td><input type="submit" value="reset" onClick="_TELR.value=65"></td>
<td><input type="text" id="_TELR" value="65" maxlength="4"
size="6"></td>
<td>Talker Echo Loudness Rating (TELR) dB</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_Nc.value=-70"></td>
<td><input type="text" id="_Nc" value="-70" maxlength="4"
size="6"></td>
<td>Circuit Noise referred to 0 dBr-point (Nc) dBm0p</td>
</tr>

<tr>
<td><input type="submit" value="reset" onClick="_WEPL.value=110"></td>
<td><input type="text" id="_WEPL" value="110" maxlength="4"
size="6"></td>
<td>Weighted Echo Path Loss (WEPL) dB</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_Nfor.value=-64"></td>
<td><input type="text" id="_Nfor" value="-64" maxlength="4"
size="6"></td>
<td>Noise Floor at the Receive Side (Nfor) dBmp</td>
</tr>

<tr>
<td></td>
<td><input type="text" id="_Ie" value="0" maxlength="4" size="6"
style="background-color:#9CA5F5" style="color:#000000"></td>
<td>Equipment Impairment Factor (Ie)</td>
<td> </td>
<td><input type="submit" value="reset" onClick="_Ps.value=35"></td>
<td><input type="text" id="_Ps" value="35" maxlength="4" size="6"></td>
<td>Room noise at the Send Side (Ps) dB(A)</td>
</tr>

<tr>
<td></td>
<td>Codec Type</td>
<!-- For Ie|Bpl values for the codecs described below refer to ITU
G.113 -->
<td><SELECT id="_Codec" onChange="divide_string()">
<OPTION VALUE="0|1">
<OPTION VALUE="0|4.3">G.711
<OPTION VALUE="0|25.1">G.711 PLC
<OPTION VALUE="15|16.1">G.723.1 6.3k
<OPTION VALUE="11|19.0">G.729A
</SELECT></td>

<td> </td>
<td><input type="submit" value="reset" onClick="_Pr.value=35"></td>
<td><input type="text" id="_Pr" value="35" maxlength="4" size="6"></td>
<td>Room Noise at the Receive Side (Pr) dB(A)</td>
</tr>

<tr>
<td></td>

108

<td></td>
<td></td>
<td> </td>
<td><input type="submit" value="reset" onClick="_A.value=0"></td>
<td><input type="text" id="_A" value="0" maxlength="4" size="6"></td>
<td>Advantage Factor (A)</td>
</tr>

</table>

<td><input type="submit" name="Update" value="Update"
onClick="calculate()"></td>
</DIV>

</body>
</html>

	Georgia State University
	ScholarWorks @ Georgia State University
	5-4-2007

	An Analysis of the MOS under Conditions of Delay, Jitter and Packet Loss and an Analysis of the Impact of Introducing Piggybacking and Reed Solomon FEC for VOIP
	Alexander F. Ribadeneira
	Recommended Citation

	Microsoft Word - Master-thesis-alexribadeneira-voip2.doc

