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AN ANALYSIS OF THE MOS UNDER CONDITIONS OF DELAY, JIITTER AND 

PACKET LOSS AND AN ANALYSIS OF THE IMPACT OF INTRODUCING 

PIGGYBACKING AND REED SOLOMON FEC FOR VOIP 

by 

ALEXANDER F. RIBADENEIRA 

Under the direction of Anu G. Bourgeois 

ABSTRACT 

Voice over IP (VoIP) is a real time application that allows transmitting voice 

through the Internet network. Recently there has been amazing progress in this field, 

mainly due to the development of voice codecs that react appropriately under conditions 

of packet loss, and the improvement of intelligent jitter buffers that perform better under 

conditions of variable inter packet delay. In addition, there are other factors that 

indirectly benefited VoIP. Today, computer networks are faster due to the advances in 

hardware and breakthrough algorithms. As a result, the quality of VoIP calls has 

improved considerably. However, the quality of VoIP calls under extreme conditions of 

packet loss still remains a major problem that needs to be addressed for the next 

generation of VoIP services. This thesis concentrates in making an analysis of the effects 

that network impairments, such as: delay, jitter, and packet loss have in the quality of 

VoIP calls and approaches to solve this problem. Finally, we analyze the impact of 

introducing forward error correction (FEC) Piggybacking and Reed Solomon codes for 

VoIP. To measure the mean opinion score of VoIP calls we develop an application based 

on the E-Model, and utilize perceptual evaluation of speech quality (PESQ). 

INDEX WORDS: VoIP, FEC, SIP, MOS, E-Model, PESQ, RTP, RTCP.
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CHAPTER 1 – INTRODUCTION 

 

Voice over IP (VoIP), the transmission of voice over the Internet, particularly the 

IP protocol, has gained popularity over the recent years. Businesses and institutions are 

transforming their current phone infrastructure from Plain Old Telephone Service (POTS) 

to VoIP. There is a notorious advantage of transmitting voice using the IP protocol and 

that is IP networks are low in cost. In fact, when a long distance call is placed over IP 

networks, it eliminates access charges to voice carriers. 

VoIP also allows the integration of voice and data over the same channel. This 

translates to a new generation of applications. Voice mail can now easily be integrated 

into email, virtual conference rooms are being placed around the world, and services, 

such as caller ID and call forwarding, can be easily implemented in a packet switched 

network instead of the traditional circuit switched network. In the near future, we will see 

an overhaul of new services, such as wireless VoIP. In fact, VoIP is shaping the future of 

communications. 

Over the last few years there has been remarkable progress in the field of VoIP. 

The Telecom industry has concentrated on developing new voice codecs that perform 

better under conditions of packet loss, and consequently increase the quality of VoIP calls 

to a certain extent. VoIP has also benefited from improvements in digital signal 

processing. Chips are being specifically designed to run certain type of voice codec 

algorithms. At the same time, there have been other efforts to provide a better QoS to 

VoIP, such as class based queuing (CBQ) that differentiate traffic based on IP source 

addresses, and multi protocol layer switching (MPLS) that provides fast forwarding of 
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packets at the router level. In addition, switches transmit at speeds of 1 and 10 Gbps. 

However, the quality of VoIP calls under impairment conditions such as delay, jitter, and 

packet loss still remains a major problem that needs to be address for next generation of 

VoIP services. 

Through this research we are particularly interested in analyzing the effects that 

these impairments have in the quality of VoIP calls and different approaches to solve this 

problem. To measure the mean opinion score (MOS) of VoIP calls in the event of long 

absolute delays and packet loss we develop an application in JavaScript based on the E-

Model [4]. On the other hand, to measure the MOS in the event of jitter buffer discards 

due to high variable inter-packet delays we utilize an intrusive technique, such as 

perceptual evaluation of speech quality (PESQ) [6]. Our contribution is to make a 

comparative analysis of the MOS for a VoIP call when the receiver implements a fixed 

and an adaptive jitter buffers respectively. We also analyze the performance of IP phones 

from different vendors under the event of constant delay, random delay, Gaussian delay 

with packet reordering, and Gaussian delay without packet reordering. 

Finally, we analyze the limitations of introducing forward error correction (FEC) 

Piggybacking and Reed Solomon codes in VoIP mainly because these two techniques 

have been proposed over the past years to provide a better quality to VoIP calls under the 

event of packet loss [5][39]. 

The rest of this thesis is organized as follows. Chapter 2 presents background 

information in the field of VoIP. Chapter 3 is dedicated to analyze the factors that affect 

the quality of VoIP calls. Chapter 4 analyzes the impact and feasibility of introducing 

forward error correction (FEC) piggybacking and Reed Solomon codes in VoIP. Chapter 
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5 describes in detail the experiments set up during this research and a minor analysis of 

the results. Finally, in Chapter 6 we conclude that the effectiveness of forward error 

correction for VoIP depends on the one-way delay, nominal jitter buffer size, codec 

implemented, transmission cycle of the RTP stream, and congestion in a computer 

network. 
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CHAPTER 2 – BACKGROUND 

 

This chapter presents fundamental knowledge in the field of voice over IP (VoIP) 

necessary to understand the coding, protocols, and innovative techniques used to transmit 

real time audio. We also present methods to measure the quality of VoIP calls and 

limitations of transmitting VoIP calls over a packet switch network such as the Internet.   

 

2.1 Codecs 

Codecs are an integral part in the development of VoIP, because they are 

responsible for the conversion of audio speech signal into encoded digital data. A codec 

is a software program that is able to encode a waveform generated at the sender side into 

a string of bits that when decoded at the remote end would be as similar as the original 

waveform.  

Voice codecs break the original waveform into small chunks of data, and then 

every chunk is compressed using a specialized algorithm. Some codecs operate at rates of 

64 kbps, while others operate at lower rates. Codecs that operate at high data rates tend to 

consume more bandwidth. However, they are able to better reassemble the original 

waveform at the remote end. On the other hand, codes that operate at lower data rates 

tend to consume less bandwidth, but the reassembled waveform generated at the remote 

end is not as similar as the original waveform. Therefore, the quality of a VoIP call is 

degraded just for the fact of using a low data rate codec. According to Cherry, the 

characteristics on the voice quality are significantly affected by the voice codec [11]. 



5 

It is not always convenient to implement VoIP with codecs that operate at high 

data rates, because in the event of network congestion, it would make more sense to 

implement a low data rate codec. Table 2.1 describes the audio encoding sampling rates 

and bits per sample of most common encoding techniques, where N/A stands for not 

applicable, and var stands for variable [2]. 

 

Table 2.1. [2]. Properties of Audio Encoding 

Encoding 
name 

Sample/frame Bits/sample Sampling 
rate 

Default 
Ms/frame 

Default 
Ms/packet 

DVI4 Sample 4 Var. 20  
G722 Sample 8 16,000 20  
G723 Frame N/A 8,000 30 30 
G726-40 Sample 5 8,000 20  
G726-32 Sample 4 8,000 20  
G726-24 Sample 3 8,000 20  
G726-16 Sample 2 8,000 20  
G728 Frame N/A 8,000 2.5 20 
G729 Frame N/A 8,000 10 20 
G729D Frame N/A 8,000 10 20 
G729E Frame N/A 8,000 10 20 
GSM Frame N/A 8,000 20 20 
GSM-EFR Frame N/A 8,000 20 20 
L8 Sample 8 Var. 20  
L16 Sample 16 Var. 20  
LPC Frame N/A 8,000 20 20 
MPA Frame N/A Var. Var.  
PCMA Sample 8 Var. 20  
PCMU Sample 8 Var. 20  
QCELP Frame N/A 8,000 20 20 
VDVI Sample Var. Var. 20  
 

The most common codecs for VoIP are described in Table 2.2. Some codecs use 

advanced algorithms and techniques to model human vocal tracks. So, in the event of 

packet loss, the lost information can be reassembled based on information contained in 
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neighboring real time protocol (RTP) packets. To clearly explain this idea, assume that 

user A sends 5 RTP packets with modeled vocal track payload to user B. Also assume 

that only the first 3 packets and the 5th packet arrived to user B. Then user B can infer 

how packet number 4 might look like based on payload information from packets 1 to 3 

and 5. Therefore, the loss of one packet in a stream of packets is almost imperceptible to 

the recipient, if the codec implemented has some sort of intelligence. 

 

Table 2.2. VoIP common codecs 

Codec Coding Method Bit rate (kbps) MOS-ITU 
G.711A (no PLC) PCMA 64 4.40 
G.711A PLC PCMA 64 4.40 
G.711U (no PLC) PCMU 64 4.40 
G.711U PLC PCMU 64 4.40 
G.721 ADPCM 32 4.23 
G.723.1 MP-MLQ 6.3 3.95 
G.723.1 ACELP 5.3 3.78 
G.726 ADPCM 16 2.95 
G.726 ADPCM 24 3.51 
G.726 ADPCM 32 4.23 
G.726 ADPCM 40 4.36 
G.727 ADPCM 16 2.84 
G.727 ADPCM 24 3.83 
G.729 LD-CELP 8 3.92 
G.729A CS-ACELP 8 3.7 
 

 

2.2 Voice activity detection and silence suppression 

It is well known that human conversations over the phone consist of long periods 

of silence. Figure 2.1 presents this phenomenon in more detail. This graph was obtained 

during a VoIP call between two parties, a caller and a callee. 
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From Figure 2.1, it can be inferred that human conversations over the phone are 

composed of talk spurt and silent periods. A codec can benefit from this property and 

does not need to send packets into the network representing periods of silence. Thus, 

saving network bandwidth. 

 

 

Figure 2.1. Speech characteristic of a call between two participants 
 

Silence suppression implements a voice activity detection (VAD) mechanism that 

only generates RTP packets when the sender produces a voice signal. Therefore, no RTP 

packets are generated when the sender remains in silence or the surrounding environment 

noise is under an acceptable margin level.  

Some codecs, such as G.711A with the voice activity detection feature turned-off, 

do not save bandwidth over periods of silence, because even the silence is sampled, 

packetized, and sent into the network. 

An analysis made on the speech data rate of VoIP calls in the Thai language, 

found that the mean distribution of data rate conversational speech is 27 packets per 

second [12]. The codec utilized was G.729A in silence suppression mode, which operates 

at data rate of 8 kbps, with a transmission cycle of 20 msec and payload size of 20 bytes. 
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The same analysis found that for other languages, such as English, the mean distribution 

of data rate conversational speech is 19 packets per second [12]. This reinforces the 

theory that the conversational data rate depends on the language spoken.  

Silence suppression saves network bandwidth because a non-silence suppression 

codec operating at a transmission cycle of 20 msec will be sending 50 packets per second 

into the network all the time. Therefore, silence suppression reduces congestion. 

Notice that a comfort noise silence is generated at remote ends to simulate the low 

level noise that is similar as the one we are used to hear from the Plain Old Telephony 

Service (POTS). According to Chong and Matthews, VoIP handles all the features and 

enhances those previously supported in POTS [13]. 

 

2.3 Real time protocol 

Real time protocol (RTP) was defined to provide an appropriate distribution of 

real time streaming of voice and video in computer networks. The TCP protocol is not 

appropriate for VoIP because there is too much delay associated with retransmissions. In 

turn, the UDP protocol is used at the transport layer. However, UDP has some 

weaknesses in that it does not ensure that packets will be delivered in the proper order. 

Figure 2.2 describes the header of the user datagram protocol (UDP). Note that 

UDP consists of 4 fields only, and none of these fields contains a sequence number as in 

TCP. This can lead to problems when transmitting audio packets, because, if packets 

arrive at the destination out of order, there is no mechanism to re-order packets. The lack 

of a sequence number can also lead to other major problems because a receiver is not be 

able to determine if an audio packet got lost in the network  
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Figure 2.2. Headers of the user datagram protocol 

 

The RTP protocol was designed to work in conjunction with UDP at the transport 

layer to ensure a proper delivery of packets with real time characteristics. 

 

 

 

Figure 2.3. [1]. Headers of the real time protocol 

 

Figure 2.3 describes the headers of the RTP protocol according to RFC 3550 [1]. 

Note that with RTP, every packet has now a sequence number and a timestamp. The 
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sequence number allows the receiver to order packets. The timestamp assists the receiver 

to identify the time at which voice packets were generated at the sender side. The headers 

of the RTP protocol are described below. 

V - Refers to the version of the RTP protocol, currently version two. 

P - Padding. If this flag is set to 1 then the RTP header contains one or more octet 

headers that do not belong to the payload. Some encryption algorithms need padding [1].  

X - Extension. If this flag is set to 1 then the header must be follow by exactly 1 header 

extension. 

CC - This field contains the number of CSRC identifiers that will be shown in the CSRC 

field. Since this field contains only 4 bits, the maximum number of participants that can 

be handled by a mixer is 15. Note that in the case that a mixer is not utilized then this 

value is equal to 0.  

M - Marker. According to Schulzrinne, The marker is intended to allow significant 

events, such as frame boundaries to be marked in a packet stream [1]. 

PT - Payload type identification. It represents the format of payload data. Table 2.3 

describes a set of mappings from most common voice codecs to payload types. It was 

extract from RFC 3551 and it represents the mappings established at the time the 

specification was written, where dyn stands for dynamic [2]. 

One interesting feature of VoIP is that participants can change codecs during an 

ongoing session by altering the payload type (PT). This was specifically designed to 

switch codecs in the event of a low bandwidth or congestion in a computer network [1]. 

Note that the PT field is only 7 bits long. Therefore, it is only possible to define up to 127 

mappings from codecs to payload types. Moreover, it is predictable that soon this field 
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will run out of bits to map new codecs. So, additional payload types can be defined 

dynamically through non-RTP means, such as signaling [1]. 

 

Table 2.3. [2]. Payload types for audio encoding 

PT Encoding name Media type Clock rate (Hz) Channels 
0 PCMU A 8,000 1 
1 Reserved A   
2 Reserved A   
3 GSM A 8,000 1 
4 G723 A 8,000 1 
5 DVI4 A 8,000 1 
6 DVI4 A 16,000 1 
7 LPC A 8,000 1 
8 PCMA A 8,000 1 
9 G722 A 8,000 1 
10 L16 A 44,100 2 
11 L16 A 44,100 1 
12 QCELP A 8,000 1 
13 CN A 8,000 1 
14 MPA A 90,000 (see text) 
15 G728 A 8,000 1 
16 DVI4 A 11,025 1 
17 DVI4 A 22,050 1 
18 G729 A 8,000 1 
19 Reserved A 8,000 1 
20 Unassigned A   
21 Unassigned A   
22  Unassigned A   
23 Unassigned A   
Dyn G726-40 A 8,000 1 
Dyn G726-32 A 8,000 1 
Dyn G726-24 A 8,000 1 
Dyn G726-16 A 8,000 1 
Dyn G729D A 8,000 1 
Dyn G729E A 8,000 1 
Dyn GSM-EFR A 8,000 1 
 

Sequence number - Refers to the sequence number of each RTP packet and it increases 

at increments of one. The sequence number is initially randomly generated to avoid a 
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plaintext attack in the event that encryption is needed. The sequence number helps the 

receiver to reorder out of order packets. It also allows detecting loss of packets. Note that 

the receiver can notify to the sender the rate of packet loss via a real time control protocol 

(RTCP) message. So, the sender can adjust the rate of the codec to a lower value, because 

it is assume that congestion is the main cause of the problem. This is known as adaptive 

encoding [1].  

Timestamp - Refers to the time at which the first field of the RTP packet was generated. 

This time is not related to the system clock reading. This time depends on the sampling 

rate of the codec. For example, G.711 PCMA samples the medium 8000 times per 

second, and every sample contains 8 bits. For a transmission cycle of 20 msec only 50 

packets can be sent into the network per second. Therefore, 8000 samples have to be 

distributed in 50 packets per second. This means that every RTP packet contains data 

worth of 160 samples. In conclusion, the timestamp field of every RTP packet for this 

particular example increases at increments of 160. The initial RTP timestamp value is 

randomly generated to avoid a plain-text attack in the event that encryption is needed [1]. 

Synchronization Source (SSRC) - It is a 32 bit numeric value and it represents a unique 

id that identifies all the RTP packets that belong to the same session. The receiver at the 

remote end reads this field to identify all the packets that belong to the same time and 

sequence number space [1]. This value is randomly generated. However, the algorithm 

that generates this value prevents duplication of SSRC between participants that want to 

initiate a new RTP session. 

Contributing source (CSRC) - It represents a list of the SSRC identifiers from sources 

that contributed to a new flow of RTP packets produce by a mixer [1]. The CC field 
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supplies the number of SSRC identifiers in the list. A mixer is an intermediate system 

that combines the received RTP packets from various participants and produces a new 

RTP packet, possibly with a different voice codec, and a new timestamp. The CSRC field 

only appears in the header of a RTP packet in the presence of a mixer [1].  

Note that with a timestamp and sequence number a receiver is able to reconstruct 

the timing necessary for playback. The RTP protocol specification is suitable for audio 

and video. As a matter of fact, for video streaming, two RTP sessions are established 

independently with different SSRC identifiers, one is used for video and another for 

audio. One of the main reasons of separating audio and video is because in a conference 

participants have the ability to control which medium they would like to receive [1]. In 

fact, The RTP protocol is suitable for unicast and multicast sessions. Moreover, RTP does 

not guarantee delivery of packets or quality of service [1].  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.4. Real time protocol in the TCP/IP protocol stack 
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2.4 Real time control protocol 

The real time control protocol (RTCP) was specifically design to provide 

reception quality feedback of RTP data distribution to all the participants in a session. 

Note that RTCP packets do not carry payload audio. 

The feedback is performed by the sender (SR) and receiver reports (RR), which 

look similar. As a matter of fact, the sender report is only use to provide transmission and 

reception statistics from participants that are active senders. On the other hand, the 

receiver report is used to provide reception statistics from participants that are not active 

senders [1]. 

 This feedback is useful to the sender because once interpreting this report 

decisions can be made, such as transmit data at lower rates using a high compression 

codec in order to compensate for congestion or another algorithm if it provides a better 

performance. Note that not always reducing to a low bit rate codec improves the quality 

of a call because in the event of transient packets lost, it makes more sense to implement 

other mechanism such as forward error correction (FEC). Moreover, these feedbacks can 

be use by network managers to determine if the network problems are local or regional 

[1]. 

One of the most important fields in the RTCP protocol are fraction lost, 

cumulative number of packet loss, and interarrival jitter. Fraction lost refers to the 

fraction of RTP packets from source SSRC lost since the previous SR or RR packet was 

sent. It is defined by the number of packet lost divided by the number of packets 

expected. If the loss is negative due to duplicate packets then fraction lost is 

automatically set to 0 [1]. Cumulative number of packet loss refers to the total number of 
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RTP packets from source SSRC lost since the beginning of the session. It is defined by 

the number of packet expected less the number of packet received. Note that packets 

received include the ones that are duplicate or late [1]. 

RTCP packets are sent at periodic intervals. Note that a good implementation of 

RTCP should not saturate the network with packets. As a matter of fact, participants 

sends only one RTCP packet per report interval. Moreover, the recommended value for a 

minimum fixed interval for sending RTCP packets is 5 seconds [1]. In addition, the 

RTCP packet interval also depends on the number of participants present in the session. 

The RTCP protocol has a weakness in that it reports packets arrived even in the 

event of late packets. An enhanced version of RTCP is real time control protocol 

extended reports (RTCP-XR) that reports to the sender the lost of packets due to jitter 

buffer discards [9]. 

 

2.5 Jitter and jitter buffers 

Jitter is defined as the variation in interpacket delay. To explain this idea in more 

detail we will calculate the jitter between two RTP packets. Assume that a sender 

generates the first RTP packet and stamps it with the time at which the packet was 

generated. This value will be written in the timestamp field of the RTP packet defined in 

Figure 2.3. Additionally, we will assume that the codec samples the medium 8000 times 

per second, and that the transmission cycle is 20 msec. Therefore, the timestamp 

increases at increments of 160. We will also assume that the timestamp field of the first 

packet is equal to 0. Therefore, after 20 msec, the sender will generate the next RTP 

packet. The timestamp field of this packet is of course equal to 160.  
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At the remote end the receiver collects the first RTP packet and establishes this 

time as a reference for the next incoming packets. Since the receiver knows that the 

sampling rate of the codec negotiated is 8000 samples per second, and that the difference 

of consecutive RTP packets timestamp fields is 160. It can be inferred that every packet 

should arrived at the receiver at 20 msec interval of the receiver’s clock. 

For this particular example it will be assume that the first packet arrives at 0 msec 

of receiver’s clock and that the second packet arrives at 25 msec of the receiver’s clock 

due to a queuing delay at intermediate routers.  Therefore, we can estimate that the jitter 

is equal to 5 msec. This value is obtained as follows. Jitter of consecutive packets is equal 

to the difference of arrival time and timestamp for consecutive RTP packets. Note that 

the arrival time of RTP packets is measured by the receiver’s clock. 

 

msec5msec)0msec(20msec)0msec(25packetseconsecutivofJitter =−−−=  

 

We can generalize this idea and write the following formula to calculate the jitter 

between any pair of adjacent RTP packets [1]. If Si refers to the time at which a packet 

was time stamped and Ri refers to the time at which a packet arrived, we can state. 

 

)()()()( 1111 −−−− −−−=−−−= iiiiiiii SRSRSSRRpacketseconsecutivofJitter  

 

The interarrival jitter is calculated from RTP packets with the same 

synchronization source (SSRC) identifier. Recall that the SSRC is the unique identifier 

that classifies RTP packets from a particular session. 
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It is known that there are two kinds of jitter. The first one is known as constant 

jitter, it happens when consecutive samples of jitter are relatively similar. The second one 

is known as transient jitter, it happens when there is a high variance in the jitter value 

between consecutive RTP packets. In fact, transient jitter is more detrimental to VoIP 

than constant jitter.  

There are many statistical methods to measure the overall jitter of a VoIP call. 

MPPDV is defined as the mean of packet-to-packet delay variation. Assume that Db and 

Da is the delay between two consecutive RTP packets. Then the variation is defined as 

abs (Db – Da). Therefore, MPPDV = mean (abs (Di – Di-1). Note that when the standard 

deviation of the mean distribution is small it can be inferred the network is introducing a 

constant jitter. On the other hand, if the standard deviation is large then the network is 

introducing high transient jitters.  

A jitter buffer is an essential component in VoIP. Its goal is to cancel the effect of 

variable interpacket delay that is always induced in computer networks. To properly 

describe the behavior of a jitter buffer, we will examine the following case.  

A VoIP call is established between a sender and a receiver with a G.711 codec 

operating at a transmission cycle of 20 msec. Therefore, only 50 packets can be sent into 

the network per second, and every packet can only contain 20 msec of payload data. If 

these RTP packets are sent on a computer network with a optimal round trip time “RTT 

less than 1 msec”, even in the best conditions we can not deliver the information 

immediately to the receiver because while the last 20 msec of audio from the first packet 

is being rendered to the receiver, the next incoming packet might not be at the receiver 

yet. In fact, this packet can still be in the queue of a router. Consequently the receiver 
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might not see every packet arriving at a constant interval of 20 msec. Therefore, this can 

lead to starvation. 

The jitter buffer, which is implemented at the receiver side, has to avoid the 

starvation state, so it holds the first packet in its buffers for a small amount of time until 

the next packet arrives and it is safe to start delivering the first packet [36]. This is known 

as nominal jitter buffer. Jitter buffers introduce an additional delay in the communication 

process. In this thesis we only perform experiments on nominal jitter buffer sizes of 40 

and 60 msec.  

An adaptive jitter buffer is an intelligent process, because it implements several 

strategies to render voice to the receiver. When network conditions are optimal, meaning 

that the variation in inter-packet delay is proximal to 0 msec, it adjusts itself to a 

minimum value to reduce latency. On the other hand, when network conditions are far 

from optimal, meaning that there is high transient jitter and packet loss, it adjusts itself to 

a higher value. This of course is necessary to deliver a better signal but the trade-off is 

more latency.  

If the jitter buffer size is too small this can lead to two kinds of problems. First, if 

packets arrive too late to the receiver the effect will be packet discard by the jitter buffer. 

Secondly, if a burst of packets that arrive at the receiver is greater than the jitter buffer 

size then the effect is again packet discards. Notice that packet discard is equivalent to 

packet loss. On the other hand, if the jitter buffer size is too large this introduces an 

unnecessary delay that can lead to conversational degradation [9][36]. 

Without the implementation of a jitter buffer, a VoIP call will be only a broken 

audio signal. Moreover, the jitter buffer ensures that packets are delivered in correct 
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order.  To conclude, default values for the maximum jitter buffer size are 80 to 120 msec 

with nominal jitter buffer sizes of 40 to 60 msec.  
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Figure 2.5. Comparative analysis of fixed vs. adaptive jitter buffer 

 

Figure 2.5 represents a comparative analysis of the mean opinion score for a VoIP 

call when the receiver utilizes a fixed and an adaptive jitter buffer respectively. The mean 

opinion score was measured with perceptual evaluation of speech quality (PESQ). Refer 

to Section 5.4 and 5.5 for a detail explanation of the experiments setup to obtain these 

results. 

 

2.6 Mean opinion score 

The mean opinion score (MOS) is an average mark that is given by a panel of 

auditors to recorded samples. As a base line for this comparison, toll calls have a value of 
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4.2. The MOS is a value that can differ from auditor to auditor and has the interpretations 

as described in Table 2.4. 

 

Table 2.4 [23]. Mean Opinion Score 

Rating Speech Description 
5 Excellent Imperceptible level of distortion 
4 Good Just perceptible level of distortion 
3 Fair Slightly annoying 
2 Poor Annoying but not objectionable 
1 Unsatisfactory Very annoying 
 

 

According to Miglani [23], Table 2.4 represents the mean opinion score. The 

MOS ranges from one to five. One means unsatisfactory, and five means excellent. There 

are three methods to measure the MOS. 

Audit panel - Humans listen to a set of pre-recorded samples and assign a score to each 

sample. This score can be in the range from one to five. Note that the value submitted by 

every auditor might be different, because this is a subjective value. In fact, the MOS 

depends on test conditions and participants [32].  

Intrusive techniques - A pre-recorded audio file is sent over the network using the RTP 

protocol with some voice codec. The received audio file is compared against the original, 

and an estimation of the MOS is given. It is known that perceptual evaluation of speech 

quality (PESQ) has a high degree of accuracy and the evaluated MOS is proximal to a 

human perception [35]. Moreover, PESQ implements a fast Fourier algorithm in order to 

compare audio signals [31]. According to Clark and Holthaus, PESQ is inefficient when 

calculating the MOS for hundreds of calls traversing a network segment because of the 
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complexity of signal comparison that involves the fast Fourier algorithm. In fact, the Fast 

Fourier algorithm is a high computing process [32][33]. 

There are some disadvantages of using PESQ because in the event of constant 

delay in a computer network, 500 msec for example, the value reported by PESQ is 

optimal. The PESQ value should not be optimal under this condition because 

communications that have a delay greater than 150 msec are considered a one-way 

communication only [32][35]. In addition, intrusive tests generate additional network 

traffic that should be used for real calls. Moreover, PESQ misses the effect of 

determining quality metrics in the event of minimum packet loss because if the codec can 

efficiently recover data under this event, the value of PESQ is optimal. Note that this 

value should not be optimal because in real time streaming of audio, there should not be 

packet loss in the first place [32]. Therefore, PESQ should be used under certain 

circumstances only. 

Non-intrusive techniques - Non-intrusive techniques came into the scene of VoIP call 

quality monitoring because of the inconvenience of the subjective tests, and the waste of 

resources consumed by intrusive techniques [32]. Non-intrusive techniques are able to 

determine the quality of VoIP calls based on methods such as the E-Model which is a 

transmission rating model define by the ITU [4]. The main output of the E-Model is a 

scalar rating of transmission quality known as “Rating Factor” R, which can be map into 

an estimate of the mean opinion score [4].  

The E-Model takes in considerations impairment factors generated by today’s 

digital processing devices. Moreover, the E-Model has been enhanced through many 

revisions that better take in considerations effects, such as: room noise at the sender side, 
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random packet loss, low talker sidetone levels, and other parameters that affect 

conversational quality [4]. 

The rating factor R is calculated according to the following formula. 

 

AeffIeIIRR dSO +−−−= −  

 

R0 represents a basic signal-to-noise ratio, including noise sources, such as circuit 

noise and room noise. IS represents a combination of all impairments which occur 

simultaneously with voice signal, such as objective loudness rating and distortion. Factor 

Id represents the impairments caused by delay, such as, talker echo, listener echo, and 

long absolute delays. The equipment impairment factor Ie represents impairments caused 

by low bit rate codecs. The advantage factor A allows for compensation of impairment 

factors when there are other advantages to the user [4]. Therefore, it is possible to map 

the R factor into the estimate conversational MOS according to the following formulas. 

 

1:0 =< CQEMOSRFor  

6107)100)(60(035.01:1000 −∗−−++=<< RRRRMOSRFor CQE  

5.4:100 => CQEMOSRFor  

 

Note that the output of E-Model has not been completely verified because of the 

large number of possible combinations of input parameters that affect the overall quality 

of calls. Therefore, modifications to the E-Model are currently under study [4]. Appendix 

B presents a JavaScript implementation of the E-Model. 
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Non-intrusive techniques can be implemented in the form of “embedded passive 

monitor agents” in a variety of probes, gateways and IP phones [32]. They implement 

novel solutions to obtain call quality metrics. One is a jitter buffer emulator that predicts 

the behavior of remote jitter buffers. Therefore, it is possible to predict if a packet is 

discarded due to excessive inter-packet delay. Note that jitter buffer discards are similar 

to packet loss [9]. 

 

2.7 Signaling 

Signaling protocols play an important role in the process of setting up, 

maintaining and terminating a call. There are several signaling protocols for VoIP that 

range from media gateway control protocol (MGCP), session initiation protocol (SIP) the 

IETF standard, H.323 the ITU standard, and skinny client control protocol (SCCP) 

defined by Cisco. Currently SIP and H.323 are the two most common signaling protocols 

for VoIP. In fact, SIP is slightly more popular than H.323, because it is scalable and 

simple. However, it is known that for video applications, H.323 is preferred over SIP. 

Note that an unreliable service, such as UDP is useful to carry signaling data, 

because it reduces the overhead of persistent TCP connections. Nonetheless, end-users 

can communicate with their respective gateways using either UDP or TCP messages for 

signaling and control messaging.  

According to et al. [29], the H.323 standard is complex and incomplete, and there 

is no guarantee that devices will interoperate properly even if all of them are H.323 

compliant. H.323 uses many ports in the call setup process. As time has passed, H.323 
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and SIP have learned from each other. Therefore, new versions of these signaling 

protocols are optimized. 

According to the IETF, MGCP is suitable for the Master-slave architecture, and 

the SIP protocol that was develop later is suitable for the Peer-to-Peer architecture. SIP is 

an application layer control protocol for establishing and terminating sessions with one or 

more participants. In fact, SIP can invite parties to either unicast or multicast sessions 

[22]. 

 

2.8 Session Initiation protocol 

Session Initiation protocol (SIP) is a signaling protocol for VoIP and it was 

designed by Dr. Henning Schulzrinne at Columbia University. SIP is a text-based 

lightweight protocol that remains simple and scalable. It can be used to create, modify, 

and terminate sessions with one or more participants. SIP can be used with any transport 

layer protocol TCP or UDP typically using port 5060 [10]. In this Section we describe the 

SIP registration, and call setup process between Cisco ATAs 188 and Ondo SIP proxy 

server. Note that calls can also be placed between SIP endpoints without the need of a 

SIP proxy server.  

SIP registration - SIP is a lightweight protocol that has been optimized in order to 

facilitate the registration process in a fast and reliable manner with the least amount of 

packets exchanged between SIP clients and the SIP registrar. 

1. The SIP client starts the registration process, by sending a register request to 

the IP address and port number of the SIP registrar server, this is known as SIP request 

method "REGISTER". This packet contains information, such as: IP address and port 
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number of the SIP client, phone number assigned to the SIP client, and registration 

expiration time.  

2. If the SIP registrar server is available and listening in a predefined port, it will 

reply back as soon as possible to the SIP client with a SIP response method "100 Trying". 

The main purpose of this packet is to tell the SIP client that its registration request is in 

process. Notice that if the SIP client does not receive this message, it will try to resend a 

register request after a certain amount of time. 

3. If the SIP registrar server successfully registers the SIP client, then a new 

message is sent back to the SIP client. This is known as a SIP response method "200 

OK". Note that this method resembles in some way the responses of the HTTP protocol. 

Figure 2.6 represents a flow graph of the SIP registration process between a SIP client 

(192.168.10.2) and a SIP proxy server (192.168.10.20). 

 

 

Figure 2.6. SIP Registration process 

 

SIP call setup – To explain this process in more detail we will describe the scenario of 

Figure 2.7. 

1. The caller (192.168.10.3) starts the call setup process by dialing the callee 

phone number. Therefore, the caller uses the SIP request method “INVITE” that has the 

following format destination_number@SIP_proxy_server_IP_address, and forwards this 
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packet to the SIP proxy server. Note that it is responsibility of the SIP proxy server to 

map the destination phone number into the callee IP address. Moreover, this packet also 

carries the phone number and IP address of the caller, and media attributes of the RTP 

session, such as prefer codecs.  

2. If the SIP registrar server is available and listening in a predefined port, it will 

reply back immediately to the caller with a SIP response method "100 Trying". The main 

purpose of this packet is to tell the caller that it is processing the call setup request. 

3. The SIP proxy server then tries to contact the callee that was already registered 

to the SIP proxy server. Therefore, mapping of phone number to an IP address is known 

in advance. The proxy server uses a SIP request method “INVITE” with the following 

format destination_number@callee IP_address, and forwards this packet to the callee. 

Moreover, this packet also carries the phone number and IP address of the caller, and 

media attributes of the RTP session, such as prefer codec type.  

4. If the callee is available and listening in a predefined port, it will reply back 

immediately to the SIP proxy server with a SIP response method "100 Trying". The main 

purpose of this packet is to tell the SIP proxy server that it is processing the call setup 

request. 

5. If the callee accepts the call setup request, it sends to the proxy server a SIP 

response method known as "180 Ringing". Consequently, the callee starts ringing. 

Moreover, the SIP proxy acknowledges this message and forwards it to the caller. 

6. The caller acknowledges this message and sends to the SIP proxy server a SIP 

request method known as provisional acknowledgement (PRACK). Moreover, the SIP 

proxy forwards the PRACK to the callee. 
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7. The callee acknowledges the PRACK message and responds to the SIP proxy a 

SIP response method known as “200 OK”. Moreover, the SIP proxy forwards this packet 

to the caller. 

Once this is accomplished both phones will keep on a stationary state until the 

callee picks up the phone. If the callee answers then a RTP session will be activated in 

both directions. Note that SIP does not carry any voice data because it is responsibility of 

RTP. Therefore, the quality of a call does not depend on the signaling protocol. However, 

it has a direct effect in the call setup time. It can be clearly seen in Figure 2.7 that the call 

setup time is 251 msec.  

 

 

Figure 2.7. SIP call setup process 

 

2.9 Constructing VoIP packets and throughput of one call with G.711 codec. 

To clarify the process of constructing a sample VoIP packet, the codec G.711 will 

be used. The G.711 codec samples the medium 8000 times per second, and every sample t

4/
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contains 8 bits of data. If we make a simple calculation we can infer that the data rate at 

which this protocol operates is 64,000 bps or 64 kbps. 

The G.711 codec as well as other standard codecs can transmit data at different 

transmission cycles or intervals of time. For this particular example, we will use a 

transmission cycle of 20 msec. This means that in one second we can only transmit 50 

VoIP packets. Consequently, if the data rate of the codec is 64 kbps or 8000 bytes/sec, 

then every packet can contain only 8000 bytes / 50 = 160 bytes of payload data. 

To construct a VoIP packet we need to add the proper headers from all the layers 

of the TCP/IP stack. To the 160 bytes of codec payload data per packet we need to add 

the 12 bytes of RTP header [1]. We also need to aggregate the 8 bytes of UDP header and 

20 bytes of IP header. Assuming that the packets will be sent over a wired connection, the 

Ethernet specification will add an overhead of 26 bytes including the preamble, headers, 

and trailers added at this layer. We also need to add the overhead introduced by the 

interframe gap. The interframe gap (IFG) or interpacket gap (IPG) is 12 bytes for the 

Ethernet specification at 100 Mbps, 1 Gbps and 10 Gbps. The IFG also consumes 

bandwidth and must be considered in our analysis. These headers sum up to a total of 78 

bytes.  

Consequently, for this particular example, every VoIP packet introduced into the 

network is composed of 160 bytes (payload) + 78 bytes (headers) = 238 bytes. This is 

only true when implementing the G.711 codec operating at 20 msec intervals over 

Ethernet networks. Therefore, since we transmit 50 packets per second, the actual 

throughput of a VoIP call using the G.711 codec without silence suppression operating at 



29 

20 msec packet interval is 238 bytes/packet * 50 packets/sec = 11900 bytes/sec or 95.2 

kbps. 

 

 

 

Figure 2.8. Proportion of payload and headers in G.711 at 20 msec packet intervals 

 

2.10 A ratio of payload vs. packet length for codecs operating at 20 msec intervals. 

From the analysis performed in Section 2.9, we can generalize and write the 

following equation to calculate the data payload per packet for all type of codecs 

operating at different transmission cycles. Notice that various codecs send voice at 

different data rates. 
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msec1000
(msec)cycleontransmissi

*
k1

1000*
bits8
byte1

*(kbps)ratecodec(bytes)packetperpayloadData =  

 

Replacing the transmission cycle for 20 msec in the equation shown above, we obtain. 

 

msec1000
msec20

*
k1

1000*
bits8
byte1

*(kbps)ratecodec(bytes)packetperpayloadData =  

 

From Section 2.9, we know that the header size of VoIP packets on Ethernet networks is 

equal to 78 bytes. Therefore, we can infer. 

 

bytes78(bytes)packetperpayloadData(bytes)lengthPacket +=  

 

(bytes)lengthPacket
(bytes)packetperpayloadDatalengthpacketvs.packetperpayloadofRatio =  

 

Table 2.5 can be constructed to calculate the ratio of payload vs. packet length in 

VoIP packets operating at different data rates with a transmission cycle of 20 msec. Note 

that this is only valid for packets sent over Ethernet networks. 

The results obtained in Figure 2.9 have been published by OOUCHI, 

TAKENAGA, and SUGAWARA [3]. Our analysis confirms their result and presents a 

formulation in how to obtain the data. It can be clearly observed in Figure 2.9 that there is 

a disadvantage of transmitting at lower data rates because every packet that is sent into 

the network contains more headers than actual payload data. This overhead can be as 

high as 79.59% for codecs that transmit 20 bytes of payload per packet. For other codecs 
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that transmit 80 bytes of payload per packet, there is balance between the overhead and 

payload data per packet sent into the network. These results are only valid at 20 msec 

intervals. 

 

Table 2.5. A ratio of payload vs. packet length 

Codec rate 
(kbps) 

Payload per packet 
(bytes) 

Packet length 
(bytes) 

Ratio payload vs. packet length 

8 20 98 20.41 
16 40 118 33.90 
24 60 138 43.48 
32 80 158 50.63 
40 100 178 56.18 
48 120 198 60.61 
56 140 218 64.22 
64 160 238 67.23 
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Figure 2.9. A ratio of payload vs. packet length. 
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2.11 Payload size per packet for G.711 and G.729 at different packet intervals. 

The G.711 and G.729 codec transmit voice at data rates of 64 kbps and 8 kbps 

respectively. The payload size per VoIP packet varies drastically depending on the 

transmission cycle implemented. From the equations presented in Section 2.10, Table 2.6 

can be constructed. 

 

Table 2.6. Payload size per packet for G.711 and G.729 at different packet intervals 

Transmission cycle (msec) G.711 (64 kbps) G.729 (8 kbps) 
1 8 1 
2 16 2 
3 24 3 
4 32 4 
5 40 5 
10 80 10 
20 160 20 
30 240 30 
40 320 40 
50 400 50 
60 480 60 
70 560 70 
80 640 80 
90 720 90 
100 800 100 
110 880 110 
 

From the results presented in Table 2.6, we can infer that in the event of packet 

loss, it is convenient to send data at low transmission cycles, because the smaller the 

transmission cycle the smaller the amount of payload data that may get lost in the 

network. However, transmitting at low transmission cycles means that more packets have 

to be sent into the network, and that itself increases the probability to lose too many 

consecutive packets in the event of transient network problems. Moreover, in the analysis 

performed in Section 2.12, we observe that transmitting at low transmission cycles leads 
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to a huge waste in bandwidth resources. So, an optimal value for the transmission cycle is 

determined. 

 

2.12 Bandwidth consumption of G.711 and G.729 at different packet intervals. 

From the data acquired in Section 2.9 and 2.10, we can generalize and obtain the 

following equation to calculate the bandwidth consumption of a VoIP call using the 

G.711 and G.729 codecs operating at different transmission cycles over Ethernet 

networks. Note that for this analysis we are assuming no silence suppression for both 

codecs. 

 

(msec)cycleontransmissi
msec1000

*
1000

k1
*

byte1
bits8

*78bytes]es)packet(bytperpayload[Datakbps)Bandwidth( +=

 

 

Substituting transmission cycles with values in the range from 1 to 110 in the 

equation shown above, Table 2.7 can be constructed to find the actual bandwidth 

consumption of the G.711 codec operating at different transmission cycles. 

Substituting the transmission cycles with values that range from 1 to 110, we can 

construct Table 2.8 to find the actual bandwidth consumption of the G.729 (8 kbps) codec 

operating at different transmission cycles.  For this analysis we are assuming a constant 

bit rate for the G.729 codec. Note that G.729 codec may consume less bandwidth than 

what is stated in Table 2.8 because no packets are sent in the network if voice activity 

detection is implemented. 
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Table 2.7. Bandwidth consumption of the G.711 at different transmission cycles 

Transmission cycle 
(msec) 

Payload size per packet 
(bytes) 

Bandwidth consumption 
(kbps) 

1 8 688.0 
2 16 376.0 
3 24 272.0 
4 32 220.0 
5 40 188.80 
10 80 126.40 
20 160 95.20 
30 240 84.80 
40 320 79.60 
50 400 76.48 
60 480 74.40 
70 560 72.91 
80 640 71.80 
90 720 70.93 
100 800 70.24 
110 880 69.67 
 

 

Table 2.8. Bandwidth consumption of the G.729 at different transmission cycles 

Transmission cycle 
(msec) 

Payload size per packet 
(bytes) 

Bandwidth consumption 
(kbps) 

1 1 632.0 
2 2 320.0 
3 3 216.0 
4 4 164.0 
5 5 132.80 
10 10 70.40 
20 20 39.20 
30 30 28.80 
40 40 23.60 
50 50 20.48 
60 60 18.40 
70 70 16.91 
80 80 15.80 
90 90 14.93 
100 100 14.24 
110 110 13.67 
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Combining the results from Tables 2.7 and 2.8, we obtain Figure 2.10. 
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Figure 2.10. Bandwidth consumption of G.711 and G.729 at different packet intervals 

 

The results obtained in Figure 2.10 have been published by OOUCHI, 

TAKENAGA, and SUGAWARA in [3]. Our analysis confirms their result and presents a 

formulation in how to obtain the data. It can be clearly seen in Figure 2.10 that the 

bandwidth consumption varies drastically depending on the transmission cycle. We can 

observe that both codecs G.711 and G.729 have great inefficiencies in bandwidth 

consumption operating at transmission cycles from 1 to 5 msec. However, at 20 msec 

interval the bandwidth consumption is not as worse as 5 or 10 msec and not much better 

than 30 or 40 msec. In fact, 20 msec is an industry standard for VoIP packet interval. 
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We can also notice in Figure 2.10 that the bandwidth consumed by a call using the 

G.729 codec with a transmission cycle of 20 msec is 39.20 kbps. However, the actual 

throughput of a call using G.729 is much less than 39.20 kbps, because G.729 in silence 

suppression mode does not send packets into the network over periods of silence. 

According to the observations made in Section 2.2, we can adjust this result, and state 

that the average throughput of a call using the G.729 codec operating at a transmission 

cycle of 20 msec in the English language is approximately 14.8 kbps. The calculation is 

described below.  

 

Throughput = 98 (bytes/packet) * 19 (packets/sec) = 1862 bytes/sec 

Throughput= 1862 (bytes/sec) * 8 (bits/byte)= 14896 bps 

Throughput= 14,8 kbps 

 

2.13 VoIP over wireless networks 

From previous knowledge we know that communication channels over wireless 

networks are more susceptible to errors than their wired counterparts. Let us examine 

why sending voice packets over 802.11 wireless networks has many difficulties. For this 

particular example, assume a call using the G.711 codec operating at a transmission cycle 

of 20 msec. 

First of all, RTP packets are generated and added the appropriate UDP headers at 

the transport layer. Then the proper IP headers are added at the network layer. The 

problem starts at the data link layer. Note that 802.11 is susceptible to packet loss due to 

the path fading effect, high collisions due to retransmissions, and interference from 

wireless devices operating at the same frequency. As a matter of fact, it has been reported 



37 

that 802.11b wireless devices are susceptible to interference in the presence of bluetooth 

devices. Moreover, when many devices were activated in proximity of the 802.11b cell, 

the quality of the call dropped to useless. An extensive analysis on the speech quality of 

VoIP in these environments is conducted for McKay and Masuda in [31].  

If VoIP traffic is sent into the wireless medium in conjunction with other services 

that use the TCP protocol, the retransmission of lost packets of the TCP established 

connection could make it difficult for the RTP packet to fight for the medium every 20 

msec. In fact when there is a collision, the RTP packet has to wait an exponential back 

off time before it tries to compete for the medium again. As a result, the RTP packets 

cannot be sent at a constant interval of 20 msec. This has a tremendous effect in the Mean 

opinion score of a VoIP call and even a jitter buffer working at its maximum size will 

suffer from starvation. 

According to Garg and Kappes in [25], the maximum number of crystal clear calls 

in 802.11(a/b) networks is much lower than in Ethernet networks. In their analysis it was 

found out that 802.11b wireless networks can support a maximum of 3 to 12 calls when 

the G.711 codec is used operating at a transmission cycle of 20 msec. They also state that 

the execution of an additional call on the cell degrades the quality of all the calls. This 

number depends on the rate at which the 802.11b cell is operating: 1 Mbps, 2 Mbps, 5.5 

Mbps or 11 Mbps. Moreover, an analysis on the limitations of the 802.11(a/b) distributed 

coordination function to support VoIP on wireless links as well as the upper bound 

number of simultaneous calls that can be placed on 802.11(a/b) networks with optimum 

performance is provided in [25]. 
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Furthermore, according to Garg and Kappes, the maximum number of VoIP calls 

that can be handle by the IEEE 802.11b wireless specification is equal to 6 when the 

G.711a-Law codec is used operating at a transmission cycle of 10 msec [34]. Notice that 

RTP streams consume more bandwidth at 10 msec intervals rather than at 20 msec 

intervals. 

The main problem of transmitting numerous calls in 802.11b wireless networks is 

directly related to the nature of 802.11 medium access protocols. Specifically, carrier 

sense multiple access with collision avoidance (CSMA/CA) mechanism, and the 

distributed coordination function (DCF) [34]. Note that in wireless networks collisions 

cannot be detected. So the MAC protocol was design to prevent collisions from taking 

place. Therefore, it was necessary to design a new protocol to overcome this problem, 

and as a result the protocol 802.11e was defined. With this protocol, RTP packets will not 

wait an exponential back off time to compete for the medium in a wireless environment. 

In addition, RTP/UDP packets are treated with priority over any TCP packet.  

The MAC sub layer of 802.11e supports QoS. The MAC protocol is called Hybrid 

Coordination Function (HCF). The HCF is called hybrid because it combines a 

contention channel access mechanism, referred to as enhanced distributed channel access 

(EDCA). With EDCA a single MAC can have 4 queues that work independently, in 

parallel, and every queue has its own priority. A study on the advantages and limitations 

of IEEE 802.11e is given in [24]. 

There are other techniques that have been proposed to improve the number of 

simultaneous calls over 802.11 wireless networks, such as a multiplex multicast scheme. 

This technique has proven to be efficient to increase the VoIP capacity on wireless links 
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and decrease the probability of blocking. However, this idea does not have many 

supporters in the industry. In fact, the main disadvantage in using a multiplex multicast 

scheme is security, because all stations will receive packets with payload information 

from other active participants [26].  

 

2.14 Security considerations for VoIP 

VoIP is an application that offers low costs and great flexibility. However, it is 

vulnerable to high risks and threats. One of the most well known issues in securing VoIP 

is eavesdropping, which means that non-intended parties can listen to a call. Moreover, 

VoIP calls are also susceptible to denial of service attacks. In this Section we will 

describe these attacks and other complex cases as well. 

VoIP eavesdropping can be easily implemented, using a network sniffer program, 

such as Ethereal [14]. In promiscuous mode, this software will capture all the RTP 

packets flowing in both directions. A script program that manipulates strings can be 

easily implemented to extract the payload of all sequential RTP packets. Note that the 

result of this operation will be one payload that contains all the information flowing in 

one direction. In addition, the information about the codec implemented in the call also 

travels in the RTP packets. According to RFC 3550, the payload type (PT) is a 7-bit value 

that identifies the RTP payload format [1]. Refer to the PT field in Figure 2.3. We can 

compare the PT field value from the RTP packet with the encoding at Table 2.3, and 

utilize a software application that decodes the payload to a .wav file. Moreover, this 

procedure can also be implemented over 802.11b wireless networks, due to the security 

weakness of the protocol [15]. 
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VoIP calls are also susceptible to denial of service (DoS) attacks. As a matter of 

fact, VoIP has introduced new DoS attack in the world of computer networks. If a 

malicious procedure introduces a delay in the RTP flow that is a fraction of a second, 

then this can be considered as a successful attack [15]. 

The target of a VoIP attack is the information exchanged between two parties, the 

caller and the callee. It is known that a hacker can introduce speech in the voice line, 

without the sender and receiver even noticing, therefore, altering the information sent 

between the two parties in real time [16]. If there is an encryption mechanism in the 

communication, a hacker can find a key and implement a “Man in the middle attack” 

[18]. Moreover, the hacker can introduce data in the line at the same tone and pitch as the 

original sender. 

Modem Hijacking is another example of VoIP attack. Estacion mentions in [17], 

“Users who have an standard dial up connection, once a malicious software is installed 

on their computers, a modem closes the internet connection when the user has been away 

of the computer for a considerable time, then the modem dials a long distance call. So the 

users have to pay for high phone bills. In the US and Canada people has filed complaints 

against FCC (Federal Communications Commission) and CRTC (Canadian Radio-

Television Commission) respectively”.  

VoIP like other applications on the Internet is susceptible due to the operating 

system’s vulnerability. It does not matter which operating system is being used 

(Windows, Linux, Mac or Solaris) [18]. It is known that there are complex attacks that 

target VoIP application servers, thus crashing or altering user’s database information 

[16]. 
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There are many ways to provide security to VoIP calls. One of the most important 

techniques is to encrypt the payload of RTP packets, in which the sender and the receiver 

exchange a key. However, there is a drawback added to the communication, and that is an 

additional delay has to be added to encrypt the data, and additional extra time to decrypt 

it. Therefore, encryption introduces jitter to a VoIP call. 

IPSEC is a good technique to secure a VoIP call, because headers and payload of 

every RTP packet are encrypted. Additionally, IPSEC adds a new IP header so packets 

can be routed across the Internet. Note that with this process every packet increases in 

size. It is known that Skype provides a level of security to its customers because all its 

VoIP calls are encrypted with a 256 bit AES (Advance Encryption Standard) [19]. In the 

near future VoIP service providers will start to encrypt calls using this or another 

advanced algorithm. Moreover, the network appliances that we use to protect data like 

firewalls or VPN gateways introduce additional delay in the communication process, so 

security has to be addressed carefully [15][20]. 

Notice that even the SIP call setup delay that is the time between one of the 

participants creates a SIP INVITE message and receives a SIP ACK from the remote 

participant is incremented by and average of 0.7 sec when the call is send across a VPN 

tunnel running advance encryption standard (AES) or 3DES algorithm. This can be 

attributed to the key setup and authentication schemes in virtual private networks [20]. A 

comparative analysis of the effects of firewall and VPN techniques on the quality of a 

single call using the SIP signaling is conducted by Aire, Maharaj, and Linde in [20]. 

 Quality of service is of fundamental importance to VoIP; this application is 

susceptible to high delays on a computer network. Note that a 150 msec delay can turn a 
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good voice call into a confused non-understandable sound [15]. Finally, the maximum 

permissible delay to fall within ITU recommendations is 150 msec [20]. 

 

2.15 Recommendations for improving the quality of VoIP calls 

There are numerous techniques available to provide a better QoS to VoIP calls.  

1. Ensure that the RTT from the sender to the receiver is less than 150 msec and has a 

stable pattern. 

2. Minimize the latency or jitter induced by appliances, such as: router, firewall or VPN 

gateways. Also consider measuring the performance of these equipments under extreme 

conditions, where huge amount of data is crossing the network.  

3. Use a hardphone rather than a softphone. Softphones tend to introduce high transient 

jitters when a user runs multiple programs in the same computer. Moreover, hardphones 

use specialized DSP chips to encode and decode certain type of VoIP codecs.  

4. Ensure that the CPU utilization and network interfaces in a router are not over 

saturated, because under these conditions, routers are forced to drop packets, generate 

random inter-packet delays, and burst of packets. 

5. Differentiate VoIP traffic from other kinds of traffic, and enforce on routers a queuing 

strategy different than first in first out (FIFO). It is known that class based queuing 

(CBQ) mechanism that differentiates traffic based on IP address, has great performance 

when VoIP traffic from known IP addresses is send across the network. Priority queuing 

is another good discipline to handle VoIP traffic. 

6. Consider separate voice and data traffic using different IP address blocks. 
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7. Implement multi protocol label switching (MPLS) at the router level to provide fast 

forwarding of packets. This has a great impact in the QoS of VoIP because packets 

coming into one of the router interfaces do not have to wait to be processed at the router 

fabric. In fact, packets are fast forwarded to the next network segment as if they were 

generated in the same local area network.  

8. Perform sanity interoperability tests to ensure compatibility between SIP, H.323 and 

public switch telephone network (PSTN) system. Notice that VoIP is a transition 

technology that needs to be backward compatible with the PSTN. Interoperability is 

known as one of the major problems to ensure reliability of the service. According to a 

study conducted by the Gartner Group in 2004 [29], 50% to 70% of all major projects fail 

due to software and interoperability problems. Interoperability problems are not only seen 

across VoIP equipments form different manufactures, but from H.323 and SIP devices 

from the same vendor as well. Furthermore, it is known that the most difficult task in 

VOIP is to provide interconnectivity to the POTS. 

9. Disable unnecessary ports and services in SIP and H.323 gateways to decreased the 

possibility of unauthorized access and remote code execution [15]. 

Notice that even tough we mention all these aspects. There is yet another aspect 

that we cannot control and that is VoIP relies on the public Internet to send packets. 

According to a study conducted in 2004 by Chong and Mathews [28], the reliability of 

the POTS is 99.999%, this translates to five minutes of downtime per year, and the 

reliability of the public Internet is approximately 61%, this translates to 142 days of 

downtime per year. 
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CHAPTER 3 – PROBLEM DEFINITION 

 

This Chapter discusses the factors that affect the quality of VoIP calls. After 

categorizing these factors, we will perform experiments that will further quantify their 

effects.  

 

3.1 Factors that affect the quality of a VoIP call. 

There are mainly four aspects that affect the quality of a VoIP call.  

1. The nodal processing delay, meaning the time to digitize, compress and 

packetize voice data has to be kept the minimum as possible. The same delay is 

encountered at the remote end, because packets have to be de-packetize, uncompress, and 

the digital data has to be converted into audio. Some codecs introduce an additional nodal 

processing delay because in order to model human vocal tracks it is necessary to utilize 

more CPU cycles.  

2. The accumulated delay from sender to receiver has to be less than 150 msec. 

According to Chong and Mathews in [28], the delay that is imperceptible to the human 

ear is 150 msec. Delays that are in the range of 150 to 250 msec are acceptable, but 

delays that are greater than 400 msec are unacceptable. Furthermore, ITU recommends 

that the maximum permissible delay for a real time communication is 150 msec.  

3. The Jitter or variation in the delay between real time protocol (RTP) packets 

has to be under tolerant values, so the jitter buffer can manage this event. Note that when 

there is high jitter in a computer network, the result is packet discard by the jitter buffer, 
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which is equivalent to packet loss. In fact, even if packets arrive at the remote end, the 

jitter buffer will discard the packets that are out of an acceptable time frame [28].  

Sections 5.2 and 5.3 show in detail the experiments setup to reproduce 

degradation of calls sent across analog telephone adaptors under the event of distinct 

form of delay such as fixed, uniform, Gaussian, and jitter. The results obtained during 

these experiments lets as concluded that fixed delay does not affect the listening quality 

of a call. However, it affects the conversational quality. Uniform delay is more 

detrimental to VoIP than Gaussian delay. Gaussian delay with packet reordering is more 

detrimental to VoIP than Gaussian delay without packet reordering. In addition, the 

quality of a VoIP call is different from vendor to vendor, this is mainly because vendors 

use different hardware, software, and jitter buffer algorithms. 

Section 5.4 presents in detail the experiments setup to measure call quality 

degradation of a VoIP call sent across a generic analog telephone adaptor that uses a 

fixed jitter buffer under the event of Gaussian delay with packet reordering.  

Section 5.5 present in detail the experiments setup to measure call quality 

degradation of a VoIP call sent across a generic analog telephone adaptor that uses an 

adaptive jitter buffer under the event of Gaussian delay with packet reordering.  

4. Packet loss has to be under a maximum permissible limit. VoIP relies on RTP 

and UDP at the transport layer to send packets across networks and under conditions of 

packet loss, there is no retransmissions. This can be easily noticed if we observed the 

RTP and UDP header format. According to Walsh and Kuhn in [15], a 5% packet loss 

can make a call catastrophic. Previous research also states that the maximum tolerable 

packet loss is 3%. In fact, it can be clearly seen in Figure 3.1 that for 3% of random 
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packet loss probability the MOS of a call is really affected. However, some codecs have 

better performance than others at 3% packet loss. 

If we assume a nominal jitter buffer size of 60 msec, VoIP should only be 

implemented in scenarios where the one-way delay is less than 80 msec, in order to be 

compliant with the 150 msec maximum permissible delay recommended by ITU. 

However, it has been demonstrated in experiments that VoIP can still be implemented in 

environments where RTT/2 is greater than 200 msec. Nevertheless, it must be a constant 

latency [27]. This is known as one-way communication. Refer to Sections 5.2 and 5.3 for 

an extensive analysis of the listening quality of a VoIP call under conditions of constant 

delay. 

 

3.2 MOS under conditions of packet loss.  

It is known that the event of packet loss in a computer network occurs in burst 

behaviors, meaning that there is a high probability that this event happens within packets 

being delivered around the same period of time. It has been observed through 

experimental traces in wide area networks that packet loss occurs as an isolated event or 

in burst patterns. Moreover, one of the main causes of packet loss in a computer network 

is congestion and transient network problems. 

Figure 3.1 represents the mean opinion score of a VoIP call using different codecs 

for different values of random packet loss probability. In can be clearly seen that some 

codecs such as G.711 packet loss concealment (PLC) performs better than G.711 no PLC. 

Refer to Appendix B for the implementation of the E-Model in JavaScript. Figure 3.2 

shows a snapshot of the JavaScript application implemented to calculate these results. 
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Figure 3.1. MOS under conditions of random packet loss, based on the E-Model 

 

 

 

Figure 3.2. Impairment due to packet loss, JavaScript application snapshot 
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To calculate the MOS of a call under conditions of periodic and random loss refer 

to Figure 5.11 in Section 5.6. In this experiment the call was implemented with the G.711 

codec operating at a transmission cycle of 20 msec. To generate the calls a script was 

written in Tcl using the Ixia Tcl Hal API. This script controls the Ixia Chassis to produce 

a RTP stream of packets. The call duration was set to one minute. The periodic and 

random loss was generated using an impairment generator. To measure the MOS of the 

call, we used SQprobe that in non-intrusive mode estimates the mean opinion score of 

VoIP calls traversing a network segment. SQprobe is a product of Telchemy and the test 

was conducted at Telchemy research labs. The code to generate the RTP stream of 

packets is attached to Appendix A. It can be clearly observed in Figure 5.11 that packet 

loss has a huge impact in the mean opinion score. 
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CHAPTER 4 – ANALYSIS OF INTRODUCING FEC FOR VOIP 

 

This Chapter analyses the limitation of introducing forward error correction 

(FEC) in voice over IP (VoIP). We mainly evaluate two different techniques to recover 

from the lost of real time protocol (RTP) packets, piggybacking and Reed Solomon 

codes.  

 

4.1 How to recover lost information in the event of packet loss. 

If we recapitulate the things that we have learned so far, VoIP does not provide a 

mechanism to guarantee packet delivery because RTP and UDP do not provide error 

recovery mechanisms at the transport layer. 

Recovery mechanisms of lost payload data have been implemented at the codec 

level. However, these mechanisms only recover lost information in the event of small 

packet loss. This is mainly because advance codecs interpolate and predict how the lost 

data might have look like. In addition, they implement packet loss concealment in which 

the receiver plays the last portion of the waveform in the event of packet loss. Packet loss 

concealment is a technique that considerably improves the quality of VoIP call. Error 

recovery at the codec level is one the most interesting areas of research. 

There is mainly one technique that has been discussed over the past years in order 

to provide a better quality to VoIP calls, which is forward error correction (FEC) 

piggybacking and Reed Solomon codes. In this Chapter we examine these techniques. 
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4.2 Forward error correction 

Forward error correction (FEC) is a mechanism that allows reliable transmissions 

by sending redundant data known as parity. So, the receiver is able to correct errors 

without retransmissions. FEC has proven to be highly efficient in scenarios where 

retransmissions are impossible. However, FEC increases delay in the communication 

process because the receiver can only start the playback process after receiving parity 

data. Moreover, FEC introduces the usage of additional bandwidth and in the event of 

congestion in a computer network it will be detrimental to the communication process. 

Therefore, the level of FEC that needs to be applied to a stream of RTP packet has to be 

addressed carefully. 

There are many different FEC codes for different type of applications. Through 

this research we are particularly interested in systematic forward error correction codes 

where the original payload of RTP packets appear in the encoded output. The maximum 

fraction of RTP payload packets that can be recovered with a FEC scheme is determined 

in advance by the design of the codeword [39].  

Recall that the maximum permissible delay of a VoIP call needs to be less than 

150 msec for a real time communication. Our contribution is to predict the delay induced 

for different levels of forward correction (FEC) using piggybacking and Reed Solomon 

codes. We implemented a JavaScript version of the E-Model to calculate the impairment 

due to delay (Id) for different values of long absolute delays. Refer to appendix B for the 

implementation of this program. Notice that we are particularly interested in the pattern 

of recovery, additional bandwidth, and delay introduced when using FEC piggybacking 

and Reed-Solomon codes in VoIP. 
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4.3 Forward error correction with a piggybacking scheme 

To predict the behavior of forward error correction piggybacking scheme in VoIP 

lets consider a RTP stream of packets at 20 msec intervals where every packets contains 

20 msec of payload data. Figure 4.2 describes a piggybacking forward error correction 

scheme with a level of redundancy equal to two [21]. Notice that the loss of one packet 

does not affect the final stream because if packet n is lost in the network it can be 

recovered by extracting information in packet n+1. Note that with this scheme the 

additional bandwidth consumed is equal to 2 times the data rate of the codec plus 

additional headers of the TCP/IP stack. Moreover, there is an additional delay added to 

the communication process because if packet n is lost, it is necessary to wait for packet 

n+1, which of course for this particular example arrives only after 20 msec. Once packet 

n+1 arrives it is safe to deliver the RTP data to the nominal jitter buffer space. 

 

 

 

Figure 4.1. [21]. FEC piggybacking scheme with a redundancy level of two  
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Since the maximum permissible delay for a real time communication has to be 

less than 150 msec recommended by the ITU, our goal is to not exceed this maximum 

permissible delay. Therefore, we can generalize and state the following: 

 

msec 150   sizebuffer jitter  Nominal  RTT/2  T*1) - redundancy of level ing(Piggyback <++
 

Where the piggybacking level of redundancy is a value equal or greater than two. 

However, the greater this value, the greater the bandwidth utilization. Moreover, T is the 

transmission cycle of the RTP stream, and RTT/2 represents the one-way delay. For this 

particular example we can completely recover the RTP stream if 1 of every 2 consecutive 

packets is lost in the network. Which is equivalent to 50% packet loss but only in patterns 

of 1 out of 2 consecutive packets. 

If we apply FEC piggybacking scheme to a stream of RTP packets with a 

transmission cycle of 10 msec, the G.711 (64 kbps) codec will utilize an additional 

bandwidth of 80 bytes per redundant data per packet, and G.729 (8 kbps) an additional 

bandwidth of 10 bytes per redundant data per packet. Table 4.1 shows a bandwidth 

comparison on different levels of FEC piggybacking scheme for G.711 and G.729 codecs 

operating at 10 msec transmission cycles. 

If we apply FEC piggybacking scheme to a stream of RTP packets with a 

transmission cycle of 20 msec, the G.711 (64 kbps) codec will utilize an additional 

bandwidth of 160 bytes per redundant data per packet, and G.729 (8 kbps) an additional 

bandwidth of 20 bytes per redundant data per packet. Table 4.2 shows a bandwidth 

comparison on different levels of FEC piggybacking scheme for G.711 and G.729 codecs 

operating at 20 msec transmission cycles. 
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In order to calculate the bandwidth consumption for different levels of 

piggybacking redundancy we need to do the following substitution to the equation shown 

in Section 2.10. 

 

redundancyoflevelngPiggybacki*es)packet(bytperpayloadDataes)packet(bytperpayloadData =  

 

Table 4.1. Bandwidth consumption of FEC piggybacking scheme at 10 msec intervals 

Piggybacking redundancy Recovery pattern  Bandwidth 
consumption  
G.711 (kbps) 

Bandwidth 
consumption 
G.729 (kbps) 

1 “No redundancy” N/A 126.4 70.4 
2 1 out of 2  190.4 78.4 
3 2 out of 3 254.4 86.4 
4 3 out of 4 318.4 94.2 
5 4 out of 5 382.4 102.4 
6 5 out of 6 446.4 110.4 
7 6 out of 7 510.2 118.4 
 

Table 4.2. Bandwidth consumption of FEC piggybacking scheme at 20 msec intervals 

Piggybacking redundancy Recovery pattern  Bandwidth 
consumption  
G.711 (kbps) 

Bandwidth 
consumption 
G.729 (kbps) 

1 “No redundancy” N/A 95.2 39.2 
2 1 out of 2  159.2 47.2 
3 2 out of 3 223.2 55.2 
4 3 out of 4 287.2 63.2 
5 4 out of 5 351.2 71.2 
6 5 out of 6 415.2 79.2 
7 6 out of 7 479.2 87.2 
 

It is possible to calculate the additional delay induced for certain level of 

piggybacking redundancy. The overall delay is defined by the formula described below. 
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Where T stands for transmission cycle. Table 4.3 shows the additional delay introduced 

for codecs operating at 10 msec and 20 msec transmission cycles respectively. 

 

T ancy - 1)* of redundking level (Piggybacnal delay ng additioPiggybacki =  

 

Table 4.3 explains in detail the additional delay added to the communication process for a 

certain level of piggybacking redundancy. Notice that a good implementation of FEC 

piggybacking does not need to introduce additional delay if there is no packet loss. 

Therefore, the additional delay is introduced as needed. Moreover, with this scheme it is 

also possible to correct the payload bits from RTP packets by looking at payloads from 

neighbor packets at the expense of paying an additional delay. However, we do not 

consider this case in our research. The values presented in Table 4.3 should be interpreted 

as maximum additional delay under worst conditions of packet loss. 

 

Table 4.3. Additional delay of FEC piggybacking scheme 

Piggybacking redundancy Maximum additional delay 
at 10 msec intervals 

Maximum additional delay 
at 20 msec intervals 

1 “No redundancy” 0 0 
2 10 20 
3 20 40 
4 30 60 
5 40 80 
6 50 100 
7 60 120 
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Figure 4.2. Bandwidth consumption of forward error correction piggybacking scheme  
 

From Figure 4.2 it can be inferred that FEC piggybacking scheme has small 

overhead for low data rate codecs and high overhead for high data rate codecs. Therefore, 

in the event of network congestion it is more convenient to implement FEC piggybacking 

scheme for low data rate codecs only. Moreover, according to the results presented in 

Tables 4.1 and 4.2, it can be clearly seen that it makes more sense to implement FEC 

piggybacking scheme at 20 msec intervals rather than at 10 msec intervals due to the high 

overhead of the headers in the TCP/IP protocol stack. 

Figure 4.6 represents the impairment due to delay (Id) measured with the E-

Model [4]. Moreover, Figure 4.7 shows a snapshot of the JavaScript application 

implemented to calculate the results presented in Figure 4.6. Refer to Appendix B for an 

implementation of the E-Model. Notice that the overall impairment due to the delay 

introduced by Piggybacking scheme, plus the One-way delay, and nominal jitter buffer 
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delay has to be less than 150 msec to obtain high MOS values. The formula shown below 

describes in detail this idea. 

 

msec 150   sizebuffer jitter  Nominal  RTT/2  T*1) - redundancy of level ing(Piggyback <++  

 

Due to the high overhead in bandwidth consumption of high data codecs in a 

piggybacking FEC scheme, we describe its limitations in a low data rate codec only such 

as G.729 (8 kbps). Moreover, we also consider a transmission cycle of 20 msec, mainly 

because in the event of burst packet loss in a computer network the probability to lose 

packets at 20 msec packet intervals is less than at 10 msec intervals, and there is less 

bandwidth overhead at 20 msec rather than at 10 msec intervals. However, the main 

drawback is that the delay is two times greater. At all times we utilize the mean opinion 

score calculator implemented for this research. 

Assume a VoIP call is placed with the G.729A codec at 20 msec intervals where 

the one-way delay (RTT/2) is equal to 40 msec. Also assume the receiver implements a 

fixed jitter buffer with a nominal value of 60 msec. So, the absolute delay in echo free 

connections is equal to 100 msec. Also assume that there is a consecutive loss of three 

packets in a stream of 50 packets per second. Therefore, the random packet loss 

probability is equal to 6%. Replacing these values in the mean opinion score calculator 

we obtain a MOS of 3.2. 

Now lets examine what will be the MOS in the presence of piggybacking FEC. 

Since we need to recover from the lost of at least three consecutive packets in a stream, 

we need at least a scheme where the piggybacking level of redundancy is equal to four. 
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With this scheme we can recover up to three lost packets in a stream of four consecutive 

packets. Notice that the additional delay is equal to 60 msec. So, the absolute delay in 

echo free connections is equal to 160 msec. Also assume that the random packet loss 

probability is equal to 0%. Replacing these values in the mean opinion score calculator 

we obtain a MOS of 4.1. 

Unfortunately, in the event of congestion the introduction of piggybacking FEC 

can generate additional delay induced by the computer network. Assume that this delay is 

equal to 30 msec. So, the absolute delay in echo free connections is equal to 190 msec. 

Also assume that the random packet loss probability is equal to 0%. Replacing these 

values in the mean opinion score calculator we obtain a MOS of 4.0.  

Moreover, there is yet another issue we have to consider. Assume that the main 

cause of packet loss is congestion. So, the introduction of FEC could generate more 

packet loss. Assume that the delay in echo free connections is equal to 190 msec. Also 

assume that the random packet loss probability is equal to 2%. Replacing these values in 

the mean opinion score calculator we obtain a MOS of 3.7.  

Through this theoretical analysis we conclude that the effectiveness of 

piggybacking FEC scheme has its limitations. It depends on the one-way delay, nominal 

jitter buffer size at the receiver, codec implemented, transmission cycle of the RTP 

stream, and congestion. 

 

4.4 Forward Error correction with Reed Solomon codes 

Reed Solomon codes are systematic block based codes that take digital data and 

add parity in order to recover from errors. Reed Solomon codes have been successfully 
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used in many systems, such as storage devices, satellite and wireless communications. 

The maximum number of errors that can be recovered depends on the configuration of 

the codeword [39]. 

A Reed Solomon code is specified as (n, k) with s-bit symbols. Meaning that the 

code takes k data symbols of s bits each, and adds parity symbols to make an n symbol 

codeword. Where, the number of parity symbols is defined by kn− , and every parity 

symbol contains s bits [39]. Reed Solomon codes are highly convenient for VoIP, 

because every RTP packet can be represented as one of the k data symbols of a 

codeword. In fact, Reed Solomon codes can correct up to t symbols that contain errors in 

a codeword, where knt −=2 . Figure 4.3 shows a Reed Solomon codeword. 

 

 

 

 

Figure 4.3. Reed Solomon codeword 

 

Reed Solomon codes are able to correct errors at the expense of higher delay and 

additional bandwidth, and can only recover lost data if k out of n packets in a codeword 

are received at the remote end. In the analysis performed in Section 4.3 we concluded 

that there is high bandwidth consumption when FEC piggybacking scheme operates on 

high data rate codecs, the same occurs for Reed Solomon. Table 4.4 analyses the 
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bandwidth consumption of introducing FEC Reed Solomon codes in VoIP for different 

values of n and k. 

Figure 4.4 describes the operation of Reed Solomon codes where n = 9 and k = 5. 

There are many ways to send the parity data. Figure 4.4 shows one strategy of 

distribution of packets and parity block data. 

In Figure 4.4, T stands for transmission cycle. Notice that packet one is generated, 

added the appropriate headers, and then sent into the network. The same occurs for all the 

packets. Moreover, assume that packet 4 gets lost in the network. Then it is necessary to 

wait for packet 5 and the parity blocks in order to recover the lost data.  With this scheme 

the delay generated is equal to Tk ⋅ . Notice that this strategy has a tremendous 

disadvantage. If packet 5 gets lost in the network, the parity data is also lost. Therefore, 

we need a strategy as the one presented by Schulzrinne and Jiang in [5], where the delay 

is equal to Tn ⋅ , this of course represents a worst condition of delay. 
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Figure 4.4. Reed Solomon codes, all parity sent in a block. 

 

Figure 4.5, assumes a Reed Solomon strategy where the parity data is sent at the 

same transmission cycle as the payload data. Therefore, the additional delay is equal to 

Tn ⋅ . Finally, with this scheme there is an additional benefit, because subsequent 

payload packets from the next codeword can be sent in combination with parity blocks 

from the first codeword. 
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Figure 4.5. Reed Solomon codes, parity sent at T intervals. 

 

Lets examine the bandwidth consumption and additional delay of implementing 

Reed Solomon codes with this strategy. The data rate and bandwidth consumption is 

given according to the following formulas [5]. 

 

k
n*RateRate codeccodeSolomonReed =  
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T
78bytesRateBandwidth codeSolomonReedcodeSolomonReed +=  

 

Table 4.4. Bandwidth consumption of FEC Reed Solomon code, T=10msec 

FEC Reed Solomon (n, k) Bandwidth consumption  
G.711 (kbps) 

Bandwidth consumption 
G.729 (kbps) 

(4,2) 190.4 78.4 
(6,2) 254.4 86.4 
(5,3) 169.1 75.7 
(7,3) 211.7 81.1 
(9,3) 254.4 86.4 
(6,4) 158.4 74.4 
(8,4) 190.4 78.4 
(10,4) 222.4 82.4 
(12,4) 254.4 86.4 
(7,5) 152.0 73.6 
(9,5) 177.6 76.8 
(11,5) 203.2 80.0 
(13,5) 228.8 83.2 
(15,5) 254.4 86.4 
 

Tables 4.4 and 4.5 represent the additional bandwidth of introducing FEC Reed 

Solomon codes in VoIP with a Transmission cycle of 10 and 20 msec respectively. Note 

that we do not analyze the behavior at 30 msec or greater because the induced delay is 

too high. Remember that a good implementation of Reed Solomon should not introduce a 

delay greater than 150 msec. 

From Tables 4.4 and 4.5 it can be inferred that FEC Reed Solomon codes has 

small overhead for low data rate codecs and high overhead for high data rate codecs. 

Therefore, in the event of network congestion it is more convenient to implement FEC 

Reed Solomon codes for low data rate codecs only. Moreover, it can be clearly seen that 

at 10 msec packet intervals the delay introduced by the FEC Reed Solomon codes is half 

than at 20 msec intervals. However, there is yet another problem, the bandwidth is almost 
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two times greater due to the high overhead of the headers in the TCP/IP protocol stack. 

Consequently, in the event of congestion it will be detrimental to the communication. 

 

Table 4.5. Bandwidth consumption of FEC Reed Solomon code, T=20msec 

FEC Reed Solomon (n, k) Bandwidth consumption  
G.711 (kbps) 

Bandwidth consumption 
G.729 (kbps) 

(4,2) 159.2 47.2 
(6,2) 223.2 55.2 
(5,3) 137.9 44.5 
(7,3) 180.5 49.9 
(9,3) 223.2 55.2 
(6,4) 127.2 43.2 
(7,5) 120.8 42.4 
 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 50 100 150 200 250 300 350 400 450 500 550

Absolute Delay (Ta) msec

Id

 

 

Figure 4.6. Impairment due to delay, based on the E-Model. 
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Figure 4.7. Impairment due to delay, JavaScript application snapshot 

 

Figure 4.6 represents the impairment due to delay (Id) measured with the E-

Model [4]. Moreover, Figure 4.7 shows a snapshot of the JavaScript application 

implemented to calculate the results presented in Figure 4.6. Refer to Appendix B for a 

detail explanation of the E-Model. Notice that the overall impairment due to the delay 

introduced by Reed Solomon codes, plus the One-way delay, and nominal jitter buffer 

delay has to be less than 150 msec to obtain high MOS values. The formula shown below 

describes in detail this idea. 

 

msec 150   sizebuffer jitter  Nominal  RTT/2  T *n <++  
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Due to the high overhead in bandwidth consumption of high data codecs in a 

Reed Solomon FEC scheme, we describe its limitations in a low data rate codec only 

such as G.729 (8 kbps). Moreover, we also consider a transmission cycle of 20 msec, 

mainly because in the event of burst packet loss in a computer network the probability to 

lose packets at 20 msec packet intervals is less than at 10 msec intervals, and there is less 

bandwidth overhead at 20 msec rather than at 10 msec intervals. However, the main 

drawback is that the delay is two times greater. At all times we utilize the mean opinion 

score calculator implemented for this research. 

Assume a VoIP call is placed with the G.729A codec at 20 msec intervals where 

the one-way delay (RTT/2) is equal to 40 msec. Also assume the receiver implements a 

fixed jitter buffer with a nominal value of 60 msec. So, the absolute delay in echo free 

connections is equal to 100 msec. Also assume that there is a consecutive loss of three 

packets in a stream of 50 packets per second. Therefore, the random packet loss 

probability is equal to 6%. Replacing these values in the mean opinion score calculator 

we obtain a MOS of 3.2. 

Now lets examine what will be the MOS in the presence of Reed Solomon FEC. 

Since we need to recover from the loss of at least 3 consecutive packets in a stream, we 

need at least a scheme where n = 9 and k =3. With this scheme we can recover up to three 

lost blocks in a codeword. Notice that the additional delay Tn ⋅  is equal to 180 msec. So, 

the absolute delay in echo free connections is equal to 280 msec. Also assume that the 

random packet loss probability is equal to 0%. Replacing these values in the mean 

opinion score calculator we obtain a MOS of 3.6. 
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Unfortunately, in the event of congestion the introduction of Reed Solomon FEC 

can generate additional delay induced by the computer network. Assume that this delay is 

equal to 30 msec. So, the absolute delay in echo free connections is equal to 300 msec. 

Also assume that the random packet loss probability is equal to 0%. Replacing these 

values in the mean opinion score calculator we obtain a MOS of 3.4.  

Moreover, there is yet another issue we have to consider. Assume that main cause 

of packet loss is congestion. So, the introduction of FEC could generate more packet loss. 

Assume that the delay in echo free connections is equal to 300 msec. Also assume that 

the random packet loss probability is equal to 2%. Replacing these values in the mean 

opinion score calculator we obtain a MOS of 3.0. 

Through this theoretical analysis we conclude that the effectiveness of Reed 

Solomon FEC scheme has its limitations. It depends on the one-way delay, nominal jitter 

buffer size at the receiver, codec implemented, transmission cycle of the RTP stream, and 

congestion. 
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CHAPTER 5 – EXPERIMENTS AND RESULTS 

 

This chapter describes the experiments set up during this research. These 

experiments are necessary to have a better understanding on how the quality of VoIP 

calls are affected under the event of distinct forms of impairments, such as: constant 

delay, random delay, Gaussian delay with packet reordering, Gaussian delay without 

packet reordering, and packet loss. In addition, we also measure the mean opinion score 

(MOS) of calls when phones use a fixed and an adaptive jitter buffer respectively. 

 

5.1 Degradation due to loss of consecutive audio. 

To understand the impact that loss of consecutive audio has in the degradation of 

listening quality, it was necessary to use an audio editor program, “Cool edit Pro”. We 

edit an audio reference file of 5 seconds long, and generate silence of 5, 10, 20 and 40 

msec respectively. Moreover, using ear human perception, we will define the threshold in 

milliseconds at which click and pops are generated. The audio reference file is in PCM 

format at 8 kHz, 16 bit, mono. 

Figure 5.1 shows the original audio and waveforms impaired at 2.6 seconds. The 

main result of this experiment is that even for an impairment silence of 5 msec, click and 

pops are generated. Therefore, the loss of 5 msec of audio is an annoying event that 

affects the quality of a VoIP call. 
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Figure 5.1. Call quality degradation  

 

5.2 Call degradation on Cisco ATA 188 in the event of distinct forms of delay 

To understand the impact that network impairments, such as distinct forms of 

delay has in the quality of VoIP calls. It was necessary to setup the network environment 

described in Figure 5.2. VoIP phones with Session Initiation Protocol (SIP) firmware will 

register to a SIP proxy Server (Ondo SIP server). The Cisco ATAs 188 run a software 

version 3.02.01 (050616A). An impairment emulator “Spirent IP Wave fx” will generate 

fixed delay, uniform delay, Gaussian delay, and jitter to a stream of RTP packets. 

 User A “the caller” will play a previously recorded audio file using the English 

language. Finally, user B “the callee” at the remote end using ear human perception 

determines the threshold of impairments at which the quality of the call degrades because 

click and pops are introduced in the channel. 
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Figure 5.2 describes the network topology for the experiment. User A calls user B 

phone number. Since both phones are registered to the SIP proxy server (Ondo SIP 

server), a SIP setup call is established. Moreover, codec negotiation is forced to be G.711 

PCMA with silence suppression turned-off at 20 msec transmission cycle. Once user B 

answers, user A starts playing a prerecorded audio file. The RTP packets traveling across 

the network from A to B will be delayed with the impairment generator. 

 

SwitchAnalog Phone Analog PhoneImpairment Generator
IP wave FX

Cisco ATA Cisco ATA

Ondo SIP Proxy

User A User B

 

 

Figure 5.2. SIP setup for Cisco ATA 188 phones with an impairment generator  
 

The results obtained are shown below.  

Fixed delay - Listening quality is good for every value of fixed delay, even for 10.000 

msec delay. However, this affects conversational quality. 

Uniform delay - The impairment generator randomly applies delays between minimum 

and maximum values. Uniform delay causes packets to be out of sequence due to variable 

delays being applied. If the minimum value of uniform delay is set to 0 msec then the 
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maximum value of uniform delay at which clicks and pops are noticed is around 280 

msec. 

Gaussian delay - The impairment generator applies delays that resemble a Gaussian 

distribution between a minimum and maximum values, which represent the -3 and +3 

standard deviation respectively. Due to the randomly applied Gaussian delay, packets 

may become out of order. If the minimum value of Gaussian delay is set to 0 msec then 

the maximum value of Gaussian delay at which clicks and pops are noticed is around 320 

msec. 

Jitter – The impairment generator applies delays that resemble a Gaussian distribution 

between a minimum and maximum values, which represent the -3 and +3 standard 

deviation respectively. But, in this case packets are forced to maintain order. If the 

minimum value of Gaussian delay is set to 0 msec then the maximum value of Gaussian 

delay at which clicks and pops are noticed is around 550 msec. Notice that the playback 

interval of packets from the impairment generator with a jitter function is most of the 

times 0 msec. Therefore, this resembles a burst of packets event which also generates 

jitter buffer discards. Discards are generated when there is excessive inter packet delay or 

the burst size is greater than the maximum jitter buffer size. Figure 5.3 shows a 10 

seconds snapshot of the jitter induced by the impairment generator for this particular 

experiment. It was obtained from a one-minute call using G.711 PCMA codec at 20 msec 

intervals with voice activity detection turned-off. The packet intervals of the output 

stream were captured with ethereal network protocol analyzer. Finally this event can 

occur when routers hold packets in its buffers due to queuing delay. 



71 

-200
-150
-100
-50

0
50

100
150
200

0 50 100 150 200 250 300 350 400 450 500

Packet sequence number

D
el

ay
 (m

ill
is

ec
on

ds
)

 

 
Figure 5.3. Jitter without re-ordering for a Gaussian delay between 0 and 550 msec. 

 

5.3 Call degradation on Grand Stream ATA in the event of distinct forms of delay 

To understand the impact that network impairments, such as distinct forms of 

delay has in the quality of VoIP calls. It was necessary to setup the network environment 

described in Figure 5.4. VoIP phones with Session Initiation Protocol (SIP) firmware will 

register to a SIP proxy Server (Ondo SIP server). The Grandstream phones HT286 run a 

software version 1.0.5.0. An impairment emulator “Spirent IP Wave fx” will generate 

fixed delay, uniform delay, Gaussian delay, and jitter to a stream of RTP packets. 

 User A “the caller” will play a previously recorded audio file using the English 

language. Finally, user B “the callee” at the remote end using ear human perception 

determines the threshold of impairments at which the quality of the call degrades because 

click and pops introduced in the channel. 

Figure 5.4 describes the network topology for the experiment. User A calls user B 

phone number. Since both phones are registered to the SIP proxy server (Ondo SIP 

server), a SIP setup call is established. Moreover, codec negotiation is forced to be G.711 

PCMA without silence suppression at 20 msec transmission cycle. Once user B answers, 

user A starts playing a prerecorded audio file. RTP packets will be sent in both directions 
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because voice activity detection is turned-off. The RTP packets traveling across the 

network from A to B will be delayed with the impairment generator. 
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Figure 5.4. SIP setup for Grand stream phones with an impairment generator  
 

The results obtained are shown below.  

Fixed delay - Listening quality is good for every value of fixed delay, even for 10.000 

msec delay. However, this affects conversational quality. 

Uniform delay – The impairment generator randomly applies delays between minimum 

and maximum values. Uniform delay causes packets to be out of sequence due to variable 

delays being applied. If the minimum value of uniform delay is set to 0 msec then the 

maximum value of uniform delay at which clicks and pops are noticed is around 50 msec. 

Gaussian delay – The impairment generator applies delays that resemble a Gaussian 

distribution between a minimum and maximum values, which represent the -3 and +3 

standard deviation. Due to the randomly applied Gaussian delay, packets may become out 

of order. If the minimum value of Gaussian delay is set to 0 msec then the maximum 

value of Gaussian delay at which clicks and pops are noticed is around 80 msec. 
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Jitter – The impairment generator applies delays that resemble a Gaussian distribution 

between a minimum and maximum values, which represent the -3 and +3 standard 

deviation respectively. But, in this case packets are forced to maintain order. If the 

minimum value of Gaussian delay is set to 0 msec then the maximum value of Gaussian 

delay at which clicks and pops are noticed is around 100 msec. Notice that the playback 

interval of packets from the impairment generator with a jitter function is most of the 

times 0 msec. Therefore, this resembles a burst of packets event which also generates 

jitter buffer discards. Discards are generated when there is excessive inter packet delay or 

the burst size is greater than the maximum jitter buffer size. Figure 5.3 shows a 10 

seconds snapshot of the jitter induced by the impairment generator for this particular 

experiment. It was obtained from a one-minute call using G.711 PCMA codec at 20 msec 

intervals with voice activity detection turned-off. The packet intervals of the output 

stream were captured with ethereal network protocol analyzer. Finally this event can 

occur when routers hold packets in its buffers due to queuing delay. 
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Figure 5.5. Jitter without re-ordering for a Gaussian delay between 0 and 100 msec. 
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5.4 Call quality degradation with a fixed jitter buffer. 

To understand the impact that a fixed jitter buffer has in the quality of a VoIP call 

in the presence of impairments such as Gaussian delay, it was necessary to setup the 

network environment described in Figure 5.6. Generic VoIP analog telephone adapters 

were forced to operate with a fixed jitter buffer, with the following configuration, 40 

msec of minimum jitter buffer size, 40 msec of nominal jitter buffer size, and 80 msec of 

maximum jitter buffer size. An impairment emulator “The cloud” will generate Gaussian 

delay with a mean of 100 msec and standard deviations that range from 5 to 100 msec. 

The codec for the call was set to G.711a at 20 msec packet intervals without voice 

activity detection. A computer will play a previously recorded audio file in the English 

language. The format of the audio file is PCM at 8 kHz, 16 bits, mono. The length of the 

reference audio file is 30 seconds. The reference audio file is played through the 

computer sound card speaker port. Consequently, the impaired audio is received using a 

computer sound card recording port. Moreover, Ethereal captures the timing of packets 

traversing the network. Finally, the received audio file is compared against the original 

audio file using perceptual evaluation of speech quality (PESQ) algorithm P.862 [6]. 

Figure 5.7 shows the original reference audio file and impaired audio files 

recorded with the audio editor program, where D stands for delay in milliseconds, and SD 

stands for standard deviation in milliseconds. Moreover, SD refers to the first standard 

deviation of a Gaussian normal distribution. Meaning that 68% of random delay values 

generated by the impairment generator fall between –1 and +1 standard deviation from 

the mean of 100 msec. 95% fall between –2 and +2 standard deviations, and 99% fall 

between –3 and +3 standard deviations. 
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Figure 5.6. Setup to measure call quality degradation in the event of Gaussian delay. 

 

 

 

Figure 5.7. Fixed jitter buffer impaired waveforms.  
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It can be clearly seen in Figure 5.7 that for large values of standard deviations 

there is high degradation of the waveform. Consequently, PESQ will compute lower 

mean opinion scores because the output waveform does not look like as similar as the 

original waveform. Moreover, during some periods of time the output waveform suffers 

from the loss of consecutive audio. Recall that according to the experiments performed in 

Section 5.1, the loss of 5 msec of consecutive audio is an annoying event. The only 

technique that could help prevent from this impairment is to increase the size of the 

maximum and nominal jitter buffers. However, the greater the size of these buffers, the 

greater the fixed delay, and that itself generates another impairment known as absolute 

delay in echo-free connections (Ta). The jitter buffer discards were measured with 

Telchemy’s VQmon. Note that when there are no impairments none of the 1500 RTP 

packets are discarded by the jitter buffer. The results obtained during this experiment are 

shown in Table 5.1 and Figure 5.8. 

 

Table 5.1. Mean opinion score and discards for a fixed jitter buffer 

Impairment MOS (ITU P.862) Discards 
No impairment 4.368 0 
Delay 100 msec, standard deviation 5 msec 4.363 1 
Delay 100 msec, standard deviation 10 msec 4.363 3 
Delay 100 msec, standard deviation 15 msec 3.607 49 
Delay 100 msec, Standard deviation 20 msec 2.961 114 
Delay 100 msec, Standard deviation 30 msec 2.446 285 
Delay 100 msec, Standard deviation 40 msec 1.928 434 
Delay 100 msec, Standard deviation 50 msec 1.644 518 
Delay 100 msec, Standard deviation 60 msec 1.501 626 
Delay 100 msec, Standard deviation 70 msec 1.384 652 
Delay 100 msec, Standard deviation 80 msec 1.287 704 
Delay 100 msec, Standard deviation 90 msec 1.225 724 
Delay 100 msec, Standard deviation 100 msec 1.212 724 
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Figure 5.8. Mean Opinion Score with a fixed jitter buffer. 

 

5.5 Call quality degradation with an adaptive jitter buffer. 

To understand the impact that an adaptive jitter buffer has in the quality of a VoIP 

call in the presence of impairments such as Gaussian delay, it was necessary to setup the 

network environment described in Figure 5.6. Generic VoIP analog telephone adapters 

were forced to operate with an adaptive jitter buffer, with the following configuration, 20 

msec of minimum jitter buffer size, 60 msec of nominal jitter buffer size, and 120 msec 

of maximum jitter buffer size. An impairment emulator “The cloud” will generate 

Gaussian delay with a mean of 100 msec and standard deviations that range from 5 to 100 

msec. The codec for the call was set to G.711A at 20 msec packet intervals without voice 

activity detection. A computer will play a previously recorded audio file in the English 

language. The format of the audio file is PCM at 8 kHz, 16 bits, mono. The length of the 

reference audio file is 30 seconds. The reference audio file is played through the 

computer sound card speaker port. Consequently, the impaired audio is received using a 

computer sound card recording port. Moreover, Ethereal captures the timing of packets 
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traversing the network. Finally, the received audio file is compared against the original 

audio file using perceptual evaluation of speech quality (PESQ) algorithm P.862 [6]. 

Figure 5.9 shows the original reference audio file and impaired audio files 

recorded with the audio editor program, where D stands for delay in milliseconds, and SD 

stands for standard deviation in milliseconds. Moreover, SD refers to the first standard 

deviation of a Gaussian normal distribution. Meaning that 68% of random delay values 

generated by the impairment generator fall between –1 and +1 standard deviation from 

the mean of 100 msec. 95% fall between –2 and +2 standard deviations, and 99% fall 

between –3 and +3 standard deviations. 

 

 

Figure 5.9. Adaptive jitter buffer impaired waveforms.  
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It can be clearly seen in Figure 5.9 that for large values of standard deviations 

there is high degradation of the waveform. Consequently, PESQ will compute lower 

mean opinion scores because the output waveform does not look like as similar as the 

original waveform. Moreover, during some periods of time the output waveform suffers 

from the loss of consecutive audio. Recall that according to the experiments performed in 

Section 5.1, the loss of 5 msec of consecutive audio is an annoying event. The only 

technique that could help prevent from this impairment is to increase the size of the 

maximum and nominal jitter buffers. However, the greater the size of these buffers, the 

greater the fixed delay, and that itself generates another impairment known as absolute 

delay in echo-free connections (Ta). The jitter buffer discards were measured with 

Telchemy’s VQmon. Note that when there are no impairments none of the 1500 RTP 

packets are discarded by the jitter buffer. The results obtained during this experiment are 

shown in Table 5.2 and Figure 5.10.  

 

Table 5.2. Mean opinion score and discards for an adaptive jitter buffer 

Impairment MOS (ITU P.862) Discards 
No impairment 4.369 0 
Delay 100 msec, Standard deviation 5 msec 4.370 1 
Delay 100 msec, Standard deviation 10 msec 4.362 5 
Delay 100 msec, Standard deviation 15 msec 4.363 13 
Delay 100 msec, Standard deviation 20 msec 4.297 15 
Delay 100 msec, Standard deviation 30 msec 3.455 78 
Delay 100 msec, Standard deviation 40 msec 2.872 258 
Delay 100 msec, Standard deviation 50 msec 2.738 347 
Delay 100 msec, Standard deviation 60 msec 2.233 425 
Delay 100 msec, Standard deviation 70 msec 2.065 530 
Delay 100 msec, Standard deviation 80 msec 1.861 573 
Delay 100 msec, Standard deviation 90 msec 1.876 657 
Delay 100 msec, Standard deviation 100 msec 1.683 722 
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Figure 5.10. Mean Opinion Score for an adaptive jitter buffer. 

 

5.6 MOS under the event of periodic and random lost (non-intrusive technique). 

To understand the impact that periodic and random loss has in the quality of a 

VoIP call, a script that simulates a RTP stream of packet flowing in two directions was 

created using the Ixia Tcl Hal API. This script controls the Ixia Chassis to produce a RTP 

stream of packets with G.711 codec operating at a transmission cycle of 20 msec. 

The call duration was set to one minute. The periodic and random loss was 

generated using an impairment generator “IP Wave Fx”. The mean opinion score was 

measured with SQprobe that works in non-intrusive mode. SQprobe is a product of 

Telchemy and the test was conducted at Telchemy research labs. The code to generate the 

RTP stream of packets is attached in Appendix A. Table 5.3 and Figure 5.11 present the 

results obtained during this experiment. 
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Table 5.3. MOS of G.711 under conditions of periodic and random loss 

% Packet Lost MOS-LQ Periodic Lost MOS-LQ Random Lost 
0 4.2 4.2 
1 4.1 4.1 
2 4.1 4 
3 4.1 3.8 
4 4 3.9 
5 4 3.8 
10 3.7 3.3 
15 3.4 3.1 
20 3.2 2.8 
25 2.9 2.6 
30 2.7 2.3 
35 2.5 1.8 
 

 

It can be clearly seen in Figure 5.11 that packet loss has a huge impact in the 

mean opinion score MOS of a VoIP call. Moreover, random loss is more detrimental to 

VoIP than periodic loss. 
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Figure 5.11. MOS of G.711 under conditions of periodic and random loss  
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CHAPTER 6 – CONCLUSION 

 

Providing a better quality to VoIP calls under conditions of delay, jitter and 

packet loss still remains a major problem that needs to be addressed for next generation 

of VoIP services. 

The quality of a call is not affected by the signaling protocol. However, it has a 

direct impact in the call setup time. In our experiments we found that call setup time in a 

network without impairments is approximately 250 msec using the SIP protocol. 

Transmitting at small packet intervals leads to a huge waste of bandwidth 

resources. In fact, this is due to the overhead of the headers in the TCP/IP stack, which is 

78 bytes per packet on Ethernet networks. In fact, for small data rate codecs every packet 

contains more headers than actual payload data. This overhead can be as high as 79.59% 

for G.729 (8 kbps) codec transmitting at 20 msec intervals and 88.63% for the same 

codec transmitting at 10 msec intervals. Moreover, There is more probability to lose 

packets at 10 msec intervals rather than at 20 msec intervals. Therefore, in the event of 

transient network problems it is more convenient sent data at 20 msec intervals. In 

addition RTP streams consume more bandwidth at 10 msec intervals rather than at 20 

msec intervals. 

The quality of a call is degraded just for the fact of using low bit rate codecs. In 

fact, for perfect network conditions, meaning that there is no packet loss or delay, G.711 

and G.729A provide a MOS of 4.4 and 4.1 respectively. Furthermore, in the event of 

network congestion it makes more sense to implement a low bit rate codec such as 
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G.729A (8 kbps) rather than a high bit rate codec. In addition, the voice activity detection 

feature should always be used, because it reduces congestion. 

The jitter buffer can only compensate for the event of variable inter-packet delay. 

Moreover, we confirm the fact that adaptive jitter buffers have better performance than 

fixed jitter buffers. If the nominal jitter buffer size is too high this introduces unnecessary 

latency which is a considerably impairment. Moreover, the maximum jitter buffer size 

also plays and important role in the quality of a call because if packets arrive too late the 

effect will be discard by the jitter buffer, and if the burst of packets that arrives at the 

receiver is greater than the maximum jitter buffer size, the effect is again packet discards. 

Recall that packet discard is equivalent to packet loss. 

Fixed delay is not detrimental to the listening quality of a call. However, for 

values greater than 150 msec it has a direct impact in the conversational quality. From all 

forms of delay that we generated in our experiments, random delay is the most 

detrimental to VoIP. Gaussian delay without reordering packets is less detrimental to a 

VoIP call than Gaussian delay with packet reordering. Moreover, the quality of a VoIP 

call is different from vendor to vendor, this is mainly because vendors use different 

hardware, software, and jitter buffer algorithms. 

Even though there has been amazing progress in the field of codec design such as 

G.711 PLC and G.729A that provide a MOS of 3.9 and 3.3 respectively when the random 

packet loss probability is equal to 5%. Error recovery at the codec level has only an 

acceptable performance up to a certain extent of packet loss.  

With forward error correction the receiver is able to recover from packet loss 

without retransmission. Therefore, VoIP calls can have a better mean opinion score. 
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However, FEC increases delay in the communication, and according to the mean opinion 

score calculator based on the E-Model implemented on this research, this is a significant 

impairment that affects the conversational quality of a call. Moreover, the effectiveness 

of FEC depends on the one-way delay, nominal jitter buffer size at the receiver, codec 

implemented, transmission cycle of the RTP stream, and congestion in a computer 

network. 

The introduction of forward error correction has two direct negative impacts. It 

introduces an additional delay and consumes bandwidth resources. In fact, the greater the 

level of redundancy, the greater the delay and bandwidth utilization, and in the event of 

network congestion it will be detrimental to the communication. 

FEC should only be implemented in scenarios where retransmissions are 

impossible. A good implementation of FEC piggybacking does not need to introduce 

delay if there is no packet loss. Therefore, the additional delay should be introduced as 

needed. FEC piggybacking scheme has small overhead for low data rate codecs only and 

should only be implemented in high data rate codecs in the event of transient network 

problems. Moreover, FEC piggybacking introduces less overhead at 20 msec intervals 

rather than at 10 msec due to the high overhead of the headers in the TCP/IP protocol 

stack 

Reed Solomon codes should only be implemented on low data rate codecs. At 10 

msec intervals the delay introduced by the FEC Reed Solomon codes is half the time than 

the delay generated at 20 msec intervals, yet there is another problem because for the 

G.729 (8 kbps) codec the bandwidth utilization implementing a Reed Solomon code is 

two times greater due to the high overheads of the TCP/IP stack. 
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To recover from the lost of consecutive RTP packets at 20 msec intervals, FEC 

Reed Solomon codes introduce three times more delay than FEC piggybacking scheme. 

Therefore, due to the nature of the application FEC piggybacking outperforms Reed 

Solomon. 

The delay induced by a forward error correction technique plus the one-way delay 

and nominal jitter buffer delay should be smaller than 150 msec for a real time 

communication. However, we found in our experiments that delays greater than 150 msec 

are acceptable if the delay is constant. Constant delay does not affect the listening quality 

of a call; it only affects the conversational quality. This is known as a one-way 

communication. 

The output of the E-Model has not been completely verified because of the large 

number of possible combinations of input parameters that affect the overall quality of a 

call. In fact, modifications to the E-Model are currently under study.  Moreover, the 

values for the input parameters that we use to develop the mean opinion score calculator 

application can be subject to change in the near future. Therefore, readers should use 

discretion at interpreting the results presented through this research. 

In the future protocol such as RTCP-XR that provide reception quality feedbacks 

of RTP will play an important role to enhance the quality of VoIP calls because 

appropriate reports could provide real time feedback of the best method used for 

recovery, such as: transmit data at lower rates, change to a high or low bit rate codec with 

FEC, RUDP, or other technique if it provides better performance. Note that, protocols at 

the transport layer that request retransmission of lost packet are highly inefficient in 
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scenarios with high RTT, but the performance of these protocols for small values of RTT 

is still possible. 
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APPENDIX 

 

APPENDIX A. RTP stream generator 

 
##################################################################### 
#                                                                   # 
# LEGAL NOTICE                                                      # 
#                                                                   # 
# Ixia does not warrant that the functions contained in this        # 
# Software will meet the user's requirements or that the            # 
# Software will be without omissions or error-free.                 # 
#                                                                   # 
# IN NO EVENT SHALL IXIA BE LIABLE FOR ANY DAMAGES RESULTING        # 
# FROM OR ARISING OUT OF THE USE OF, OR THE INABILITY TO USE        # 
# THE SOFTWARE OR ANY PART THEREOF, INCLUDING BUT NOT LIMITED       # 
# TO ANY LOST PROFITS, LOST BUSINESS, LOST OR DAMAGED DATA OR       # 
# SOFTWARE OR ANY INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL   # 
# DAMAGES, EVEN IF IXIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH # 
# DAMAGES IN ADVANCE                                                # 
#                                                                   #  
# THE ORIGINAL VERSION OF THIS PROGRAM WAS MODIFIED BY              # 
# ALEX RIBADENEIRA TO SEND RTP PACKETS AT 20 MSEC INTERVALS WITH    # 
# G.711 CODEC                                                       # 
#                                                                   # 
##################################################################### 
 
package req IxTclHal 
ixInitialize 192.168.0.10 
 
 
proc makeEndPoints {portList ipList gwList prefixList}  
   { 
   set intf 0 
    
   foreach port $portList  
      { 
      scan $port "%d %d %d" ch ca po 
      interfaceTable select $ch $ca $po 
      interfaceTable clearAllInterfaces 
      interfaceEntry clearAllItems addressTypeIpV6 
      interfaceEntry clearAllItems addressTypeIpV4 
      ipAddressTable       setDefault 
      ipAddressTable       set $ch $ca $po 
      } 
    
   foreach port $portList ip $ipList gw $gwList prefix $prefixList 
      { 
      scan $port "%d %d %d" ch ca po 
      set mac [format "00 %02x %02x %02x 00 00" $ch $ca $po] 
      set mac [join [lreplace $mac 4 5 [join [word2HexList $intf]]]] 
      interfaceTable select $ch $ca $po 
      ipAddressTable       setDefault 
 
      interfaceIpV4  setDefault 
      interfaceIpV4  config         -gatewayIpAddress       $gw 
      interfaceIpV4  config         -maskWidth              $prefix 
      interfaceIpV4  config         -ipAddress              $ip 
      interfaceEntry addItem        addressTypeIpV4 
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      interfaceEntry setDefault 
      interfaceEntry config         -enable                 true 
      interfaceEntry config         -macAddress             $mac 
      interfaceTable addInterface 
 
      ipAddressTableItem setDefault 
      ipAddressTableItem config    -fromIpAddress           $ip 
      ipAddressTableItem config    -fromMacAddress          $mac 
      ipAddressTableItem config    -numAddresses            1 
      ipAddressTableItem config    -mappingOption           oneIpToOneMAC 
      ipAddressTableItem config    -overrideDefaultGateway  true 
      ipAddressTableItem config    -enableUseNetwork        true 
      ipAddressTableItem config    -netMask                 $prefix 
      ipAddressTableItem config    -gatewayIpAddress        $gw 
      ipAddressTableItem config    -enableUseNetwork        true 
      ipAddressTable     addItem 
      ipAddressTable     set $ch $ca $po 
 
      protocolServer setDefault 
      protocolServer config         -enableArpResponse   true 
      protocolServer config         -enablePingResponse  true 
      protocolServer set            $ch $ca $po 
      incr intf 
      } 
    
   set pl [lsort -unique $portList] 
   ixWriteConfigToHardware pl 
   ixTransmitArpRequest    pl 
   } 
 
 
proc initPortList {portList}  
   { 
   set pl [lsort -unique $portList] 
   foreach port $pl  
      { 
      initPort $port 
      } 
   ixWritePortsToHardware pl 
   after 1000 
   ixCheckLinkState     pl 
   } 
 
 
proc initPort {port}  
   { 
   scan $port "%d %d %d" ch ca po 
   port config -transmitMode            portTxModeAdvancedScheduler 
   port config -receiveMode             portPacketGroup 
   port config -autonegotiate           true 
   port config -advertise1000FullDuplex true 
   port config -advertise100FullDuplex  true 
   port config -advertise100HalfDuplex  true 
   port config -advertise10FullDuplex   true 
   port config -advertise10HalfDuplex   true 
   port set $ch $ca $po 
   packetGroup setDefault 
   packetGroup config -signatureOffset  50 
   packetGroup config -groupIdOffset    54 
   packetGroup setRx  $ch $ca $po 
   interfaceTable select $ch $ca $po 
   interfaceTable clearAllInterfaces 
   interfaceEntry clearAllItems  addressTypeIpV6 
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   interfaceEntry clearAllItems  addressTypeIpV4 
   arpServer setDefault 
   arpServer config -retries            20 
   arpServer config -mode               2 
   arpServer config -rate               100 
   arpServer config -requestRepeatCount 10 
   arpServer set    $ch $ca $po 
   port reset $ch $ca $po 
   initPortData $port 
   } 
 
proc initPortData {port}  
   { 
   global portTable 
   foreach codec [getCodecs]  
      { 
      set idx [join [list [join $port ,] $codec] ,] 
      catch {unset portTable($idx)} 
      set portTable($idx) [list 0 {}] 
      } 
   } 
 
 
proc addCallData {port codec src dst udpPort num} 
   { 
   global portTable 
   set idx [join [list [join $port ,] $codec] ,] 
   if {![info exists portTable($idx)} 
      { 
      return 
      } 
   incr portTable($idx) $num 
   set data [lindex $portTable($idx) 1] 
   lappend $data [list $src $dst $udpPort $num] 
   } 
 
 
proc makeVoipStreams {port codec srcIpList dstIpList udpPortSource udpPortList}  
   { 
   global codecData 
   set noCalls [llength $dstIpList] 
   if {[llength $srcIpList] != [llength  $udpPortList]} 
      { 
      return 1 
      } 
   if {$noCalls != [llength $srcIpList]} 
      { 
      return 1 
      } 
   scan $port "%d %d %d" ch ca po 
   set strm 1 
   set found 0 
 
   while {![stream get $ch $ca $po $strm]} 
      { 
      if {[stream cget -name] == [lindex $codecData($codec) 0]} 
         { 
         set found 1 
         break 
         } 
      incr strm 
      } 
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   if {$found} 
      { 
      udf get 1 
      set tmpsrcIpList [udf cget -valueList] 
      udf get 2 
      set tmpdstIpList [udf cget -valueList] 
      udf get 3 
      set tmpudpPortList [udf cget -valueList] 
      set  srcIpList   [ip2HexList $srcIpList] 
      set  dstIpList   [ip2HexList $dstIpList] 
      set  udpPortList [word2HexList $udpPortList] 
       
      foreach srcIp $srcIpList dstIp $dstIpList udpPort $udpPortList 
         { 
         lappend tmpsrcIpList   $srcIp 
         lappend tmpdstIpList   $dstIp 
         lappend tmpudpPortList $udpPort 
         } 
 
      set  srcIpList   $tmpsrcIpList 
      set  dstIpList   $tmpdstIpList 
      set  udpPortList $tmpudpPortList 
      set noCalls [llength $dstIpList] 
      udp      setDefault 
      udp      config      -sourcePort       $udpPortSource 
      udp      config      -destPort         0 
      udp      set         $ch $ca $po 
      udf      setDefault 
      udf      config     -enable            true 
      udf      config     -counterMode       udfValueListMode 
      udf      config     -offset            26 
      udf      config     -countertype       c32 
      udf      config     -valueList         $srcIpList 
      udf      set        1 
      udf      setDefault 
      udf      config     -enable            true 
      udf      config     -counterMode       udfValueListMode 
      udf      config     -offset            30 
      udf      config     -countertype       c32 
      udf      config     -valueList         $dstIpList 
      udf      set        2 
      udf      setDefault 
      udf      config     -enable            true 
      udf      config     -counterMode       udfValueListMode 
      udf      config     -offset            36 
      udf      config     -countertype       c16 
      udf      config     -valueList         $udpPortList 
      udf      set        3 
 
   } else { 
      stream   setDefault 
      stream   config      -sa               [format "00 AD E0 %02x %02x %02x" 
$ch $ca $po] 
      stream   config      -daRepeatCounter  daArp 
      stream   config      -fir              true 
      protocol setDefault 
      protocol config      -name             ipV4 
      protocol config      -appName          0 
      protocol config      -ethernetType     ethernetII 
      ip       setDefault 
      ip       config      -ttl              63 
      ip       config      -ipProtocol       udp 
      ip       config      -sourceIpAddr     [lindex $srcIpList 0] 
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      ip       config      -destIpAddr       [lindex $dstIpList 0] 
      ip       set         $ch $ca $po 
      udp      setDefault 
      udp      config      -sourcePort       $udpPortSource 
      udp      config      -destPort         0 
      udp      set         $ch $ca $po 
      udf      setDefault 
      udf      config     -enable            true 
      udf      config     -counterMode       udfValueListMode 
      udf      config     -offset            26 
      udf      config     -countertype       c32 
      udf      config     -valueList         [ip2HexList $srcIpList] 
      udf      set        1 
      udf      setDefault 
      udf      config     -enable            true 
      udf      config     -counterMode       udfValueListMode 
      udf      config     -offset            30 
      udf      config     -countertype       c32 
      udf      config     -valueList         [ip2HexList $dstIpList] 
      udf      set        2 
      udf      setDefault 
      udf      config     -enable            true 
      udf      config     -counterMode       udfValueListMode 
      udf      config     -offset            36 
      udf      config     -countertype       c16 
      udf      config     -valueList         [word2HexList $udpPortList] 
      udf      set        3 
   } 
    
   if {[setCodecData $ch $ca $po $codec $noCalls]} 
      { 
      return 1 
      } 
 
   stream   set         $ch $ca $po $strm 
   packetGroup setDefault 
   packetGroup config -signatureOffset 50 
   packetGroup config -signature       {08 71 18 05} 
   packetGroup config -insertSignature true 
   packetGroup config -groupIdOffset   54 
   packetGroup config -groupId         0 
   packetGroup setTx $ch $ca $po $strm 
   stream   write       $ch $ca $po $strm 
} 
 
proc setCodecData {ch ca po {codec G.711u} {noCalls 1}} 
   { 
   global codecData 
 
   if {![info exists codecData($codec)]} 
      { 
      return 1 
      } 
 
   stream config -name                    [lindex $codecData($codec) 0] 
   stream config -framesize               [lindex $codecData($codec) 1] 
   stream config -pattern        [lrange  [lindex $codecData($codec) 4] 0 end] 
   stream config -patternType             nonRepeat 
   stream config -dataPattern             userpattern 
   stream config -rateMode                usePercentRate 
   stream config -percentPacketRate       [expr $noCalls * 
[calculatePercentMaxRate 1 $ca $po [lindex $codecData($codec) 2] [lindex 
$codecData($codec) 1]]] 



96 

   udf    setDefault 
   udf    config -enable                  true 
   udf    config -offset                  46 
   udf    config -countertype             c32 
   udf    config -counterMode             udfNestedCounterMode 
   udf    config -continuousCount         true 
   udf    config -updown                  uuuu 
   udf    config -initval                 {00 00 00 00} 
   udf    config -repeat                  1 
   udf    config -step                    [lindex $codecData($codec) 3] 
   udf    config -innerRepeat             $noCalls 
   udf    config -innerStep               [lindex $codecData($codec) 3] 
   udf    config -innerLoop               $noCalls 
   udf    set               5 
   udf    setDefault 
   udf    config  -enable                 true 
   udf    config  -offset                 44 
   udf    config  -countertype            c16 
   udf    config -counterMode             udfNestedCounterMode 
   udf    config -continuousCount         true 
   udf    config -updown                  uuuu 
   udf    config -initval                 {00 01} 
   udf    config -repeat                  1 
   udf    config -step                    1 
   udf    config -innerRepeat             $noCalls 
   udf    config -innerStep               1 
   udf    config -innerLoop               1 
   udf    set               4 
   return 0 
} 
 
proc initCodecTable {}  
   { 
   global codecData 
   catch {unset codecData} 
   set codecData(G.711a) [list {G.711a (64kbps)} 218   50  160  { 
 
      80 08 03 9C 00 02 0C A8 7E DF F9 D0 00 02 02 60 
 
      64 C4 CA 58 48 0B B6 D6 E0 8B 60 2E 5B 65 B1 3D 
 
      BA C1 53 9C 0B DE E0 83 C7 92 DC 7C E9 66 F9 0A 
 
      4C 6B E6 19 46 47 62 63 5B 12 FF 3E 1F 55 33 3B 
 
      0A 11 2A 66 C8 1C 4B 43 32 30 E6 8B 6F D4 BF 24 
 
      2E 84 FC 98 32 64 3A 9B 3F E0 41 84 E4 AE 6F 7E 
 
      9E 74 73 73 F9 4F B8 EC 6B E1 C7 47 12 FD 45 5C 
 
      2B A2 DC 7A 11 60 51 A0 79 41 B0 C8 DB 1B AF 87 
 
      7B 18 5D 1F 4E 0E 1B A9 60 60 72 2F 71 47 95 EC 
 
      71 09 4F 68 93 31 80 F5 F3 73 48 91 67 43 E3 AD 
 
      55 68 32 6B BB 4B EE 8D C2 8B E1 00 
      } ] 
   } 
 
 
proc getCodecs {}  
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   { 
   global codecData 
   return [lsort -dictionary [array names codecData]] 
   } 
 
 
proc getCodecData {codec {param all}}  
   { 
   global codecData 
   switch $param  
      { 
      all      {return $codecData($codec)} 
      name     {return [lindex $codecData($codec) 0]} 
      size     {return [lindex $codecData($codec) 1]} 
      rate     {return [lindex $codecData($codec) 2]} 
      tstamp   {return [lindex $codecData($codec) 3]} 
      data     {return [lindex $codecData($codec) 4]} 
      } 
   return {} 
   } 
 
 
proc ip2HexList {addr} 
   { 
   set tmp {} 
   foreach ip $addr  
      { 
      scan $ip "%d.%d.%d.%d" a b c d 
      lappend tmp [format "%02x %02x %02x %02x" $a $b $c $d] 
      } 
   return $tmp 
   } 
 
 
proc word2HexList {val}  
   { 
   set tmp {} 
   foreach item $val 
      { 
      lappend tmp [format "%02x %02x" [expr ($item >> 8) & 0xff] [expr $item & 
0xff]] 
      } 
   return $tmp 
   } 
 
 
proc makeEndPointPairs {pl baseIp baseGw prefix numPairs}  
   { 
   set portList   {} 
   set ipList     {} 
   set gwList     {} 
   set prefixList {} 
 
   set netInc     [expr 1 << (32-$prefix)] 
   set maxHosts   [expr $netInc - 3] 
   if {$numPairs > $maxHosts}  
      { 
      return 1 
      } 
 
   foreach port $pl 
      { 
      set ip $baseIp 
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      for {set a 0} {$a < $numPairs} {incr a} 
         { 
         lappend portList     $port 
         lappend ipList       $ip 
         lappend gwList       $baseGw 
         lappend prefixList   $prefix 
         set ip [bin2Ip [mpexpr 1 + [ip2Bin $ip]]] 
         } 
      
      set baseIp [bin2Ip [mpexpr [ip2Bin $baseIp] + $netInc]] 
      set baseGw [bin2Ip [mpexpr [ip2Bin $baseGw] + $netInc]] 
      } 
    
   makeEndPoints $portList $ipList $gwList $prefixList 
   } 
 
 
proc makeVoipTraffic {port codec srcIp dstIp numPairs callsPerPair srcudpPort 
udpPort}  
   { 
   set srcList {} 
   set dstList {} 
   set udpList {} 
   for {set pair 0} {$pair < $numPairs} {incr pair} 
      { 
      set uPort $udpPort 
      for {set call 0} {$call < $callsPerPair} {incr call} 
         { 
         lappend srcList $srcIp 
         lappend dstList $dstIp 
         lappend udpList $uPort 
         incr uPort 
         } 
      set srcIp  [bin2Ip [mpexpr 1 + [ip2Bin $srcIp]]] 
      set dstIp  [bin2Ip [mpexpr 1 + [ip2Bin $dstIp]]] 
      } 
   makeVoipStreams $port $codec $srcList $dstList $srcudpPort $udpList 
   } 
 
 
proc bin2Ip {val}  
   { 
   set a [mpexpr ($val & 0xff000000) >> 24] 
   set b [mpexpr ($val & 0x00ff0000) >> 16] 
   set c [mpexpr ($val & 0x0000ff00) >>  8] 
   set d [mpexpr ($val & 0x000000ff) >>  0] 
   return [format "%d.%d.%d.%d" $a $b $c $d] 
   } 
 
 
proc ip2Bin {addr}  
   { 
   scan $addr "%d.%d.%d.%d" a b c d 
   return [mpexpr (($a << 24) | ($b << 16) | ($c << 8) | $d)] 
   } 
 
 
proc clearAllStreams {portList} 
   { 
   foreach port $portList 
      { 
      scan $port "%d %d %d" ch ca po 
      port reset $ch $ca $po 
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      } 
   } 
 
 
proc getLatencyInfo {port buckets} 
   { 
   set retVal {} 
   scan $port "%d %d %d" ch ca po 
   packetGroupStats get $ch $ca $po 0 $buckets 
   for {set group 0} {$group < $buckets} {incr group} 
      { 
      if {[packetGroupStats getGroup $group]} 
         { 
         continue; 
         } 
      set tot [packetGroupStats cget -totalFrames] 
      set avg [packetGroupStats cget -averageLatency] 
      set max [packetGroupStats cget -maxLatency] 
      set min [packetGroupStats cget -minLatency] 
      lappend retVal [list $tot $min $max $avg] 
      } 
   return $retVal 
   } 
 
 
proc getLat {port} 
   { 
   set latInfo [getLatencyInfo $port 6000] 
   set idx 1 
   foreach bucket $latInfo 
      { 
      ixPuts [format "%4d - %d" $idx [lindex $bucket 0]] 
      incr idx 
      } 
   } 
 
 
proc whatRates {port} 
   { 
   scan $port "%d %d %d" ch ca po 
   ixPuts [format "%-25s %s"  Codec "Percent Line Rate for One call"] 
   
   foreach codec [getCodecs]  
      { 
      ixPuts [format "%-25s %s" [getCodecData $codec name] [expr 
[calculatePercentMaxRate 1 $ca $po [getCodecData $codec rate] [getCodecData 
$codec size]  ]]] 
      } 
   } 
 
 
#main 
set pl            {{1 2 1} {1 2 2}} 
set baseGw1       10.9.0.1 
set baseIp1       10.9.100.1 
 
#10.9.0.1    peer 10.9.100.1 
#10.9.0.2    peer 10.9.100.2 
 
set prefix        16    
#10.9.x.x/16 belong to the same network. DUT is a switch 
 
set numPairs      1 
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set callsPerPair  1    
 
initCodecTable 
 
initPortList      $pl 
 
makeEndPointPairs $pl $baseIp1 $baseGw1 $prefix $numPairs 
 
clearAllStreams   $pl 
 
makeVoipTraffic {1 2 1}  G.711a    $baseIp1 $baseGw1   $numPairs $callsPerPair 
1025 2000 
makeVoipTraffic {1 2 2}  G.711a    $baseGw1 $baseIp1   $numPairs $callsPerPair 
2000 1025 
 
whatRates {1 2 1} 
whatRates {1 2 2} 
 
ixStartPacketGroups pl;after 6100;getLat {1 2 1} 
ixPuts "Sending: $numPairs call" 
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APPENDIX B. Mean opinion score calculator 

 
<html> 
 
<head> 
<title>E-model calculator</title> 
</head> 
 
<body> 
 
<script type="text/javascript"> 
document.writeln("<b>Mean opinion score calculator</b><br>"); 
document.writeln("Author:    Alexander F. Ribadeneira<br>"); 
document.writeln("Reference: ITU-T G.107, ITU-T G.113, RFC 3550, RFC 
3551"); 
 
function calculate() 
{ 
 
/**********************************************************************
* 
//Default values for the parameters of the E-model according ITU-T 
G.107 
var SLR  =   8;  //Send Loudness Rating 
var RLR  =   2;  //Receive Loudness Rating 
var STMR =  15;  //Sidetone Masking Rating 
var LSTR =  18;  //Listener Sidetone Rating 
var Ds   =   3;  //D-Value of Telephone, Send Side 
var Dr   =   3;  //D-Value of Telephone Receive Side 
var TELR =  65;  //Talker Echo Loudness Rating 
var WEPL = 110;   //Weighted Echo Path Loss 
var T    =   0;  //Mean one-way Delay of the Echo Path 
var Tr   =   0;  //Round-trip Delay in a 4-wire Loop 
var Ta   =   0;  //Absolute Delay in echo-free Connections 
var qdu  =   1;  //Number of Quantization Distortion Units 
var Ie   =   0;  //Equipment Impairment Factor 
var Bpl  =   1;  //Packet-loss Robustness Factor 
var Ppl  =   0;  //Random Packet-loss Probability 
var Nc   = -70;      //Circuit Noise referred to 0 dBr-point 
var Nfor = -64;  //Noise Floor at the Receive Side 
var Ps   =  35;  //Room Noise at the Send Side 
var Pr   =  35;  //Room Noise at the Receive Side 
var A    =   0;  //Advantage Factor 
***********************************************************************
***/ 
var SLR  =   parseFloat(document.getElementById("_SLR").value); 
var RLR  =   parseFloat(document.getElementById("_RLR").value); 
var STMR =   parseFloat(document.getElementById("_STMR").value); 
var Ds   =   parseFloat(document.getElementById("_Ds").value); 
var Dr   =   parseFloat(document.getElementById("_Dr").value); 
var TELR =   parseFloat(document.getElementById("_TELR").value); 
var WEPL =   parseFloat(document.getElementById("_WEPL").value); 
var T    =   parseFloat(document.getElementById("_T").value); 
var Tr   =   parseFloat(document.getElementById("_Tr").value); 
var Ta   =   parseFloat(document.getElementById("_Ta").value); 
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var qdu  =   parseFloat(document.getElementById("_qdu").value); 
var Ie   =   parseFloat(document.getElementById("_Ie").value); 
var Bpl  =   parseFloat(document.getElementById("_Bpl").value); 
var Ppl  =   parseFloat(document.getElementById("_Ppl").value); 
var Nc   =   parseFloat(document.getElementById("_Nc").value); 
var Nfor =   parseFloat(document.getElementById("_Nfor").value); 
var Ps   =   parseFloat(document.getElementById("_Ps").value); 
var Pr   =   parseFloat(document.getElementById("_Pr").value); 
var A    =   parseFloat(document.getElementById("_A").value); 
 
//Calculate LSTR 
var LSTR =   STMR + Dr; 
document.getElementById("_LSTR").value = LSTR; 
 
//Calculate OLR 
var OLR = SLR + RLR; 
 
//Calculate Nfo 
var Nfo = Nfor + RLR; 
 
//Calculate Pre 
var Pre = Pr + 10 * log10 (1 + Math.pow (10,(10-LSTR)/10)); 
 
//Calculate Nor 
var Nor = RLR - 121 + Pre + 0.008 * (Pre - 35) * (Pre - 35); 
 
//Calculate Nos 
var Nos = Ps - SLR - Ds - 100 + 0.004 * (Ps - OLR - Ds -14) * (Ps - OLR 
- Ds -14); 
 
//Calculate No 
var No  = 10 * log10 ( Math.pow(10,(Nc/10)) + Math.pow(10,(Nos/10)) + 
Math.pow(10,(Nor/10)) + Math.pow(10,(Nfo/10)) ); 
 
//Calculate Ro 
var Ro  = 15 - 1.5 * ( SLR + No); 
document.getElementById("_Ro").value = Math.round(Ro*10)/10; 
 
//Calculate Xolr 
var Xolr = OLR + 0.2 * (64 + No - RLR); 
 
//Calculate Iolr 
var Iolr = 20 * (        Math.pow((1 + Math.pow((Xolr/8),8)),0.125)    
-    Xolr/8   ); 
 
//Calculate STMRo 
var STMRo = -10 * log10 ( Math.pow (10,(-STMR/10)) + Math.exp(-T/4) * 
Math.pow (10,(-TELR/10))); 
 
//Calculate Ist 
var Ist = 12 * Math.pow (    1 + Math.pow(  (STMRo -13)/6     , 8)     
, 0.125); 
Ist -=    28 * Math.pow (    1 + Math.pow(   (STMRo +1)/19.4 , 35)     
,(1/35)); 
Ist +=   -13 * Math.pow (    1 + Math.pow(   (STMRo -3)/33   , 13)     
,(1/13)) + 29; 
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//Calculate Q 
var Q = 37 - 15 * log10 (qdu); 
 
//Calculate G 
var G = 1.07 + 0.258 * Q + 0.0602 * Q * Q; 
 
//Calculate Z 
var Z = 46/30 - G/40; 
 
//Calculate Y 
var Y = (Ro - 100)/15 + 46/8.4 - G/9; 
 
//Calculate Iq 
var Iq = 15 * log10 ( 1 + Math.pow(10,Y) + Math.pow(10,Z) ); 
 
//Calculate Is = Iolr +  Ist + Iq 
var Is = Iolr + Ist + Iq; 
document.getElementById("_Is").value = Math.round(Is*10)/10; 
 
//Calculate TERV 
var TERV = TELR - 40 * log10 ( (1 + T/10) / ( 1 + T/150 ) ) + 6 *  
Math.exp( -0.3 * T * T ); 
 
if  ( STMR < 9 ) 
{ 
TERV = TERV + Ist/2; 
} 
 
//Calculate Re 
var Re  = 80 + 2.5 * (TERV - 14); 
 
//Calculate Roe 
var Roe = -1.5 * (No - RLR); 
 
//Calculate Idte 
var Idte = (  (Roe-Re)/2 + Math.sqrt ( (Roe-Re)*(Roe-Re)/4 + 100 ) - 1)   
*   ( 1 - Math.exp(-T) ); 
 
if ( STMR > 20) 
{ 
Idte = Math.sqrt (Idte*Idte + Ist*Ist); 
} 
 
if ( T < 1 ) 
{ 
Idte = 0; 
} 
 
//Calculate  Rle 
var Rle = 10.5 * ( WEPL + 7 ) * Math.pow((Tr + 1),(-0.25)); 
 
//Calculate Idle 
var Idle = (Ro-Rle)/2 + Math.sqrt ((Ro-Rle)*(Ro-Rle)/4 + 169); 
 
//Calculate Idd 
var Idd; 
if ( Ta > 100 ) 
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{ 
var X = log10(Ta/100) / log10(2); 
Idd = 25 * (     Math.pow ( (1 + Math.pow (X,6)) , (1/6))  -  3 * 
Math.pow ( (1 + Math.pow (X/3,6)) , (1/6))     + 2 ); 
} 
 
else 
{ 
Idd = 0; 
} 
 
//Calculate Id 
var Id = Idte + Idle + Idd; 
document.getElementById("_Id").value = Math.round(Id*10)/10; 
 
 
//Calculate Ie_eff 
var Ie_eff = Ie + ( 95 - Ie) * Ppl / (Ppl + Bpl); 
document.getElementById("_Ie_eff").value = Math.round(Ie_eff*10)/10; 
 
//Calculate R 
var R = Ro - Is - Id - Ie_eff + A; 
document.getElementById("_R").value = Math.round(R*10)/10; 
 
//Calculate MOS 
var MOS; 
 
if (R<0) 
{ 
MOS = 1; 
} 
 
else if (R>0 && R<100) 
{ 
MOS = 1 + 0.035 * R + R * ( R - 60 ) * ( 100 - R ) * 7 * Math.pow(10,-
6); 
} 
 
else if (R>100) 
{ 
MOS = 4.5; 
} 
 
document.getElementById("_MOS").value = Math.round(MOS*10)/10; 
 
} 
 
function log10(x) 
{ 
return (Math.log(x)/Math.log(10)) 
} 
 
function divide_string() 
{ 
var Ie_Bpl=document.getElementById("_Codec").value; 
var Ie_Bpl_array = Ie_Bpl.split("|"); 
document.getElementById("_Ie").value = Ie_Bpl_array[0]; 
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document.getElementById("_Bpl").value = Ie_Bpl_array[1]; 
} 
 
</script> 
 
<br><br> 
 
<DIV ALIGN=CENTER> 
<table border="0"> 
<tr> 
<td><h4 align="center">R</h4></td> 
<td><h4 align="center">=</h4></td> 
<td><h4 align="center">Ro</h4></td> 
<td><h4 align="center">-</h4></td> 
<td><h4 align="center">Is</h4></td> 
<td><h4 align="center">-</h4></td> 
<td><h4 align="center">Id</h4></td> 
<td><h4 align="center">-</h4></td> 
<td><h4 align="center">Ie_eff</h4></td> 
<td></td> 
<td></td> 
<td></td> 
<td></td> 
<td></td> 
<td><h4 align="center">MOS</h4></td> 
</tr> 
 
<tr> 
<td><input type="text" id="_R"  maxlength="4" size="2"></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="text" id="_Ro" maxlength="4" size="2"></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="text" id="_Is" maxlength="4" size="2"></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="text" id="_Id" maxlength="4" size="2"></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="text" id="_Ie_eff" maxlength="4" size="2"></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="text" id="_MOS" maxlength="4" size="2"></td> 
</tr> 
</table> 
</DIV> 
 
<br><br> 
 
 
<DIV ALIGN=CENTER> 
<table border="0"> 
<tr> 
<td><input type="submit" value="reset" onClick="_SLR.value=8"></td> 
<td><input type="text" id="_SLR" value="8" maxlength="4" size="6"></td> 
<td><b>Sender Loudness Rating (SLR) dB</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
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<td><input type="submit" value="reset" onClick="_T.value=0"></td> 
<td><input type="text" id="_T" value="0" maxlength="4" size="6"></td> 
<td><b>Mean one-way Delay of the echo Path (T) msec</b></td> 
</tr> 
 
<tr> 
<td><input type="submit" value="reset" onClick="_RLR.value=2"></td> 
<td><input type="text" id="_RLR" value="2" maxlength="4" size="6"></td> 
<td><b>Receive Loudness Rating (RLR) dB</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Tr.value=0"></td> 
<td><input type="text" id="_Tr" value="0" maxlength="4" size="6"></td> 
<td><b>Round Trip Delay in a 4-wire Loop (Tr) msec</b></td> 
</tr> 
 
<tr> 
<td><input type="submit" value="reset" onClick="_STMR.value=15"></td> 
<td><input type="text" id="_STMR" value="15" maxlength="4" 
size="6"></td> 
<td><b>Sidetone Masking Rating (STMR) dB</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Ta.value=0"></td> 
<td><input type="text" id="_Ta" value="0" maxlength="4" size="6"></td> 
<td><b>Absolute Delay in echo-free Connections (Ta) msec</b></td> 
</tr> 
 
<tr> 
<td></td> 
<td><input type="text" id="_LSTR" value="18" maxlength="4" size="6" 
disabled ></td> 
<td><b>Listener Sidetone Rating (LSTR) dB = STMR + Dr</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_qdu.value=1"></td> 
<td><input type="text" id="_qdu" value="1" maxlength="4" size="6"></td> 
<td><b>Number of quantization Distortion Units (qdu)</b></td> 
</tr> 
 
<tr> 
<td><input type="submit" value="reset" onClick="_Ds.value=3"></td> 
<td><input type="text" id="_Ds" value="3" maxlength="4" size="6"></td> 
<td><b>D-Value of Telephone, Send Side (Ds)</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td></td> 
<td><input type="text" id="_Bpl" value="1" maxlength="4" size="6" 
style="background-color:#9CA5F5" style="color:#000000"></td> 
<td><b>Packet-loss Robustness Factor (Bpl)</b></td> 
</tr> 
 
<tr> 
<td><input type="submit" value="reset" onClick="_Dr.value=3"></td> 
<td><input type="text" id="_Dr" value="3" maxlength="4" size="6"></td> 
<td><b>D-Value of Telephone, Receive Side (Dr)</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Ppl.value=0"></td> 
<td><input type="text" id="_Ppl" value="0" maxlength="4" size="6"></td> 
<td><b>Random packet loss probability (Ppl) %</b></td> 
</tr> 
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<tr> 
<td><input type="submit" value="reset" onClick="_TELR.value=65"></td> 
<td><input type="text" id="_TELR" value="65" maxlength="4" 
size="6"></td> 
<td><b>Talker Echo Loudness Rating (TELR) dB</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Nc.value=-70"></td> 
<td><input type="text" id="_Nc" value="-70" maxlength="4" 
size="6"></td> 
<td><b>Circuit Noise referred to 0 dBr-point (Nc) dBm0p</b></td> 
</tr> 
 
<tr> 
<td><input type="submit" value="reset" onClick="_WEPL.value=110"></td> 
<td><input type="text" id="_WEPL" value="110" maxlength="4" 
size="6"></td> 
<td><b>Weighted Echo Path Loss (WEPL) dB</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Nfor.value=-64"></td> 
<td><input type="text" id="_Nfor" value="-64" maxlength="4" 
size="6"></td> 
<td><b>Noise Floor at the Receive Side (Nfor) dBmp</b></td> 
</tr> 
 
<tr> 
<td></td> 
<td><input type="text" id="_Ie" value="0" maxlength="4" size="6" 
style="background-color:#9CA5F5" style="color:#000000"></td> 
<td><b>Equipment Impairment Factor (Ie)</b></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Ps.value=35"></td> 
<td><input type="text" id="_Ps" value="35" maxlength="4" size="6"></td> 
<td><b>Room noise at the Send Side (Ps) dB(A)</b></td> 
</tr> 
 
<tr> 
<td></td> 
<td><b>Codec Type</b></td> 
<!-- For Ie|Bpl values for the codecs described below refer to ITU 
G.113 --> 
<td><SELECT id="_Codec" onChange="divide_string()"> 
<OPTION VALUE="0|1"> 
<OPTION VALUE="0|4.3">G.711 
<OPTION VALUE="0|25.1">G.711 PLC 
<OPTION VALUE="15|16.1">G.723.1 6.3k 
<OPTION VALUE="11|19.0">G.729A 
</SELECT></td> 
 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_Pr.value=35"></td> 
<td><input type="text" id="_Pr" value="35" maxlength="4" size="6"></td> 
<td><b>Room Noise at the Receive Side (Pr) dB(A)</b></td> 
</tr> 
 
<tr> 
<td></td> 
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<td></td> 
<td></td> 
<td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td> 
<td><input type="submit" value="reset" onClick="_A.value=0"></td> 
<td><input type="text" id="_A" value="0" maxlength="4" size="6"></td> 
<td><b>Advantage Factor (A)</b></td> 
</tr> 
 
</table> 
 
<br><br> 
 
<td><input type="submit" name="Update" value="Update" 
onClick="calculate()"></td> 
</DIV> 
 
</body> 
</html> 
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