137 research outputs found

    Sensing and visualizing spatial relations of mobile devices

    Get PDF
    Location information can be used to enhance interaction with mobile devices. While many location systems require instrumentation of the environment, we present a system that allows devices to measure their spatial relations in a true peer-to-peer fashion. The system is based on custom sensor hardware implemented as USB dongle, and computes spatial relations in real-time. In extension of this system we propose a set of spatialized widgets for incorporation of spatial relations in the user interface. The use of these widgets is illustrated in a number of applications, showing how spatial relations can be employed to support and streamline interaction with mobile devices

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    IMPERTINENT TRILATERATION: SECURE LOCALIZATION OF WIRELESS SENSOR NETWORK USING GREEDY TECHNIQUE

    Get PDF
    Wireless sensor network localization is an important area that attracts significant research interest. Current localization algorithms mainly focus to localize as many nodes as possible for a given static set of anchor nodes and distance measurement. In this paper, we discuss a new technique that aims to localize all the sensor nodes in the network using trilateration with greedy technique, and a security protocol is used for providing confidentiality and authentication between anchor nodes and sensor nodes

    Routing Protocols in Wireless Sensor Networks

    Get PDF
    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks

    An Empirical Critique of On-Demand Routing Protocols against Rushing Attack in MANET

    Get PDF
    Over the last decade, researchers had  proposed numerous  mobile ad hoc routing protocols for which are operate in an on-demand way, as standard on-demand routing protocols such as AODV, DSR and TORA, etc., have been shown to often have faster reaction time and  lower overhead than proactive protocols. However, the openness of the routing environment and the absence of centralized system and infrastructure make them exposed to security attacks in large extent.  In particular, one such kind of attacks is rushing attack, which is mostly hard to detect due to their inherited properties, that alters the network statistics radically. In this paper, we modeled a rushing attack which is a powerful attack that exploits the weaknesses of the secure routing protocols. Moreover, to know the weakness and strength of these protocols, it is necessary to test their performance in hostile environments. Subsequently, the performance is measured with the various metrics, some ot them are average throughput, packet delivery ratio, average end-to-end delay and etc., to compare and evaluate their performance

    Game theoretic approach in routing protocols for wireless mobile ad hoc networks

    Get PDF
    Mobile Ad hoc Networks (MANETs) are becoming popular as a means of providing communication among a group of people. Because of self-configuring and self-organizing characteristics, MANETs can be deployed quickly. There is no infrastructure defined in the network, therefore all of the participating nodes relay packets for other nodes and perform routing if necessary. Because of the limitations in wireless transmission range, communication links could be multi-hop. Routing protocol is the most important element of MANET. Routing protocols for MANET can broadly be classified as proactive routing protocol and reactive routing protocol. In proactive routing protocols like Destination Sequence Distance Vector (DSDV), mobile nodes periodically exchange routing information among themselves. Hence proactive routing protocols generate high overhead messages in the network. On the other hand, reactive routing protocols like Ad hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR) work on-demand. Hence reactive routing protocols generate fewer number of overhead messages in the network compared to proactive routing protocols. But reactive routing protocols use a global search mechanism called flooding during the route discovery process. By flooding mechanism a source node can discover multiple routes to a destination. Flooding generates a large number of overhead packets in the network and is the root cause of scaling problem of reactive routing protocols. Hierarchical Dynamic Source Routing (HDSR) protocol has been proposed in this dissertation to solve that scaling problem. The DSR protocol has been modified and optimized to implement HDSR protocol. HDSR protocol reduces the flooding problem of reactive routing protocols by introducing hierarchy among nodes. Two game theoretic models, Forwarding Dilemma Game (FDG) and Forwarding Game Routing Protocol (FGRP), is proposed to minimize the \u27flooding\u27 effect by restricting nodes that should participate in route discovery process based on their status. Both FDG and FGRP protocols reduce overhead packet and improve network performances in terms of delay packet delivery ratio and throughput. Both protocols were implemented in AODV and the resulting protocol outperformed AODV in our NS-2 simulations. A thorough connectivity analysis was also performed for FDG and FGRP to ensure that these protocols do not introduce disconnectivity. Surprisingly, both FDG and FGRP showed better connectivity compared to AODV in moderate to high node density networks

    Secure data aggregation in wireless sensor networks: A survey

    Get PDF
    Data aggregation is a widely used technique in wireless sensor networks. The security issues, data confidentiality and integrity, in data aggregation become vital when the sensor network is deployed in a hostile environment. There has been many related work proposed to address these security issues. In this paper we survey these work and classify them into two cases: hop-by-hop encrypted data aggregation and end-to-end encrypted data aggregation. We also propose two general frameworks for the two cases respectively. The framework for end-to-end encrypted data aggregation has higher computation cost on the sensor nodes, but achieves stronger security, in comparison with the framework for hop-by-hop encrypted data aggregation.Yingpeng Sang, Hong Shen, Yasushi Inoguchi, Yasuo Tan, Naixue Xion
    corecore