2,029 research outputs found

    A Bayesian Framework for Collaborative Multi-Source Signal Detection

    Full text link
    This paper introduces a Bayesian framework to detect multiple signals embedded in noisy observations from a sensor array. For various states of knowledge on the communication channel and the noise at the receiving sensors, a marginalization procedure based on recent tools of finite random matrix theory, in conjunction with the maximum entropy principle, is used to compute the hypothesis selection criterion. Quite remarkably, explicit expressions for the Bayesian detector are derived which enable to decide on the presence of signal sources in a noisy wireless environment. The proposed Bayesian detector is shown to outperform the classical power detector when the noise power is known and provides very good performance for limited knowledge on the noise power. Simulations corroborate the theoretical results and quantify the gain achieved using the proposed Bayesian framework.Comment: 15 pages, 9 pictures, Submitted to IEEE Trans. on Signal Processin

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Experimental analysis of dense multipath components in an industrial environment

    Get PDF
    This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC power accounted for 23% to 70% of the total channel power. A significant difference between DMC powers in line-of-sight and nonline-of-sight was observed, which can be largely attributed to the power of the line-of-sight multipath component. In agreement with room electromagnetics theory, the DMC reverberation time was found to be nearly constant. Overall, DMC in the industrial workshop is more important than in office environments: it occupies a fraction of the total channel power that is 4% to 13% larger. The industrial environment absorbs on average 29% of the electromagnetic energy compared to 45%-51% for office environments in literature: this results in a larger reverberation time in the former environment. These findings are explained by the highly cluttered and metallic nature of the workshop

    Asymptotic Analysis of SU-MIMO Channels With Transmitter Noise and Mismatched Joint Decoding

    Get PDF
    Hardware impairments in radio-frequency components of a wireless system cause unavoidable distortions to transmission that are not captured by the conventional linear channel model. In this paper, a 'binoisy' single-user multiple-input multiple-output (SU-MIMO) relation is considered where the additional distortions are modeled via an additive noise term at the transmit side. Through this extended SU-MIMO channel model, the effects of transceiver hardware impairments on the achievable rate of multi-antenna point-to-point systems are studied. Channel input distributions encompassing practical discrete modulation schemes, such as, QAM and PSK, as well as Gaussian signaling are covered. In addition, the impact of mismatched detection and decoding when the receiver has insufficient information about the non-idealities is investigated. The numerical results show that for realistic system parameters, the effects of transmit-side noise and mismatched decoding become significant only at high modulation orders.Comment: 16 pages, 7 figure

    Transmit Optimization with Improper Gaussian Signaling for Interference Channels

    Full text link
    This paper studies the achievable rates of Gaussian interference channels with additive white Gaussian noise (AWGN), when improper or circularly asymmetric complex Gaussian signaling is applied. For the Gaussian multiple-input multiple-output interference channel (MIMO-IC) with the interference treated as Gaussian noise, we show that the user's achievable rate can be expressed as a summation of the rate achievable by the conventional proper or circularly symmetric complex Gaussian signaling in terms of the users' transmit covariance matrices, and an additional term, which is a function of both the users' transmit covariance and pseudo-covariance matrices. The additional degrees of freedom in the pseudo-covariance matrix, which is conventionally set to be zero for the case of proper Gaussian signaling, provide an opportunity to further improve the achievable rates of Gaussian MIMO-ICs by employing improper Gaussian signaling. To this end, this paper proposes widely linear precoding, which efficiently maps proper information-bearing signals to improper transmitted signals at each transmitter for any given pair of transmit covariance and pseudo-covariance matrices. In particular, for the case of two-user Gaussian single-input single-output interference channel (SISO-IC), we propose a joint covariance and pseudo-covariance optimization algorithm with improper Gaussian signaling to achieve the Pareto-optimal rates. By utilizing the separable structure of the achievable rate expression, an alternative algorithm with separate covariance and pseudo-covariance optimization is also proposed, which guarantees the rate improvement over conventional proper Gaussian signaling.Comment: Accepted by IEEE Transactions on Signal Processin
    corecore