714 research outputs found

    Deep learning architectures applied to wind time series multi-step forecasting

    Get PDF
    Forecasting is a critical task for the integration of wind-generated energy into electricity grids. Numerical weather models applied to wind prediction, work with grid sizes too large to reproduce all the local features that influence wind, thus making the use of time series with past observations a necessary tool for wind forecasting. This research work is about the application of deep neural networks to multi-step forecasting using multivariate time series as an input, to forecast wind speed at 12 hours ahead. Wind time series are sequences of meteorological observations like wind speed, temperature, pressure, humidity, and direction. Wind series have two statistically relevant properties; non-linearity and non-stationarity, which makes the modelling with traditional statistical tools very inaccurate. In this thesis we design, test and validate novel deep learning models for the wind energy prediction task, applying new deep architectures to the largest open wind data repository available from the National Renewable Laboratory of the US (NREL) with 126,692 wind sites evenly distributed on the US geography. The heterogeneity of the series, obtained from several data origins, allows us to obtain conclusions about the level of fitness of each model to time series that range from highly stationary locations to variable sites from complex areas. We propose Multi-Layer, Convolutional and recurrent Networks as basic building blocks, and then combined into heterogeneous architectures with different variants, trained with optimisation strategies like drop and skip connections, early stopping, adaptive learning rates, filters and kernels of different sizes, between others. The architectures are optimised by the use of structured hyper-parameter setting strategies to obtain the best performing model across the whole dataset. The learning capabilities of the architectures applied to the various sites find relationships between the site characteristics (terrain complexity, wind variability, geographical location) and the model accuracy, establishing novel measures of site predictability relating the fit of the models with indexes from time series spectral or stationary analysis. The designed methods offer new, and superior, alternatives to traditional methods.La predicció de vent és clau per a la integració de l'energia eòlica en els sistemes elèctrics. Els models meteorològics es fan servir per predicció, però tenen unes graelles geogràfiques massa grans per a reproduir totes les característiques locals que influencien la formació de vent, fent necessària la predicció d'acord amb les sèries temporals de mesures passades d'una localització concreta. L'objectiu d'aquest treball d'investigació és l'aplicació de xarxes neuronals profundes a la predicció \textit{multi-step} utilitzant com a entrada series temporals de múltiples variables meteorològiques, per a fer prediccions de vent d'ací a 12 hores. Les sèries temporals de vent són seqüències d'observacions meteorològiques tals com, velocitat del vent, temperatura, humitat, pressió baromètrica o direcció. Les sèries temporals de vent tenen dues propietats estadístiques rellevants, que són la no linearitat i la no estacionalitat, que fan que la modelització amb eines estadístiques sigui poc precisa. En aquesta tesi es validen i proven models de deep learning per la predicció de vent, aquests models d'arquitectures d'autoaprenentatge s'apliquen al conjunt de dades de vent més gran del món, que ha produït el National Renewable Laboratory dels Estats Units (NREL) i que té 126,692 ubicacions físiques de vent distribuïdes per total la geografia de nord Amèrica. L'heterogeneïtat d'aquestes sèries de dades permet establir conclusions fermes en la precisió de cada mètode aplicat a sèries temporals generades en llocs geogràficament molt diversos. Proposem xarxes neuronals profundes de tipus multi-capa, convolucionals i recurrents com a blocs bàsics sobre els quals es fan combinacions en arquitectures heterogènies amb variants, que s'entrenen amb estratègies d'optimització com drops, connexions skip, estratègies de parada, filtres i kernels de diferents mides entre altres. Les arquitectures s'optimitzen amb algorismes de selecció de paràmetres que permeten obtenir el model amb el millor rendiment, en totes les dades. Les capacitats d'aprenentatge de les arquitectures aplicades a ubicacions heterogènies permet establir relacions entre les característiques d'un lloc (complexitat del terreny, variabilitat del vent, ubicació geogràfica) i la precisió dels models, establint mesures de predictibilitat que relacionen la capacitat dels models amb les mesures definides a partir d'anàlisi espectral o d'estacionalitat de les sèries temporals. Els mètodes desenvolupats ofereixen noves i superiors alternatives als algorismes estadístics i mètodes tradicionals.Arquitecturas de aprendizaje profundo aplicadas a la predición en múltiple escalón de series temporales de viento. La predicción de viento es clave para la integración de esta energía eólica en los sistemas eléctricos. Los modelos meteorológicos tienen una resolución geográfica demasiado amplia que no reproduce todas las características locales que influencian en la formación del viento, haciendo necesaria la predicción en base a series temporales de cada ubicación concreta. El objetivo de este trabajo de investigación es la aplicación de redes neuronales profundas a la predicción multi-step usando como entrada series temporales de múltiples variables meteorológicas, para realizar predicciones de viento a 12 horas. Las series temporales de viento son secuencias de observaciones meteorológicas tales como, velocidad de viento, temperatura, humedad, presión barométrica o dirección. Las series temporales de viento tienen dos propiedades estadísticas relevantes, que son la no linealidad y la no estacionalidad, lo que implica que su modelización con herramientas estadísticas sea poco precisa. En esta tesis se validan y verifican modelos de aprendizaje profundo para la predicción de viento, estos modelos de arquitecturas de aprendizaje automático se aplican al conjunto de datos de viento más grande del mundo, que ha sido generado por el National Renewable Laboratory de los Estados Unidos (NREL) y que tiene 126,682 ubicaciones físicas de viento distribuidas por toda la geografía de Estados Unidos. La heterogeneidad de estas series de datos permite establecer conclusiones válidas sobre la validez de cada método al ser aplicado en series temporales generadas en ubicaciones físicas muy diversas. Proponemos redes neuronales profundas de tipo multi capa, convolucionales y recurrentes como tipos básicos, sobre los que se han construido combinaciones en arquitecturas heterogéneas con variantes de entrenamiento como drops, conexiones skip, estrategias de parada, filtros y kernels de distintas medidas, entre otros. Las arquitecturas se optimizan con algoritmos de selección de parámetros que permiten obtener el mejor modelo buscando el mejor rendimiento, incluyendo todos los datos. Las capacidades de aprendizaje de las arquitecturas aplicadas a localizaciones físicas muy variadas permiten establecer relaciones entre las características de una ubicación (complejidad del terreno, variabilidad de viento, ubicación geográfica) y la precisión de los modelos, estableciendo medidas de predictibilidad que relacionan la capacidad de los algoritmos con índices que se definen a partir del análisis espectral o de estacionalidad de las series temporales. Los métodos desarrollados ofrecen nuevas alternativas a los algoritmos estadísticos tradicionales.Postprint (published version

    Convolutional Learning on Multigraphs

    Full text link
    Graph convolutional learning has led to many exciting discoveries in diverse areas. However, in some applications, traditional graphs are insufficient to capture the structure and intricacies of the data. In such scenarios, multigraphs arise naturally as discrete structures in which complex dynamics can be embedded. In this paper, we develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs). To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model, defining the notions of signals, filtering, and frequency representations on multigraphs. Leveraging this model, we develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity. The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks

    Deep Learning-Based Low Complexity and High Efficiency Moving Object Detection Methods

    Get PDF
    Moving object detection (MOD) is the process of extracting dynamic foreground content from the video frames, such as moving vehicles or pedestrians, while discarding the nonmoving background. It plays an essential role in computer vision field. The traditional methods meet difficulties when applied in complex scenarios, such as videos with illumination changes, shadows, night scenes,and dynamic backgrounds. Deep learning methods have been actively applied to moving object detection in recent years and demonstrated impressive results. However, many existing models render superior detection accuracy at the cost of high computational complexity and slow inference speed. This fact has hindered the development of such models in mobile and embedded vision tasks, which need to be carried out in a timely fashion on a computationally limited platform. The current research aims to use the technique of separable convolution in both 2D and 3D CNN together with our proposed multi-input multi-output strategy and two-branch structure to devise new deep network models that significantly improve inference speed, yet require smaller model size and achieve reduction in floating-point operations as compared to existing deep learning models with competitive detection accuracy. This research devised three deep neural network models, addressing the following main problems in the area of moving object detection: 1. Improving Detection Accuracy by extracting both spatial and temporal information: To improve detection accuracy, the proposed models adopt 3D convolution which is more suitable to extract both spatial and temporal information in video data than 2D convolution. We also put this 3D convolution into two-branch network that extracts both high-level global features and low-level detailed features can further increase the accuracy. 2. Reduce model size and computational complexity by changing network structure: The standard 2D and 3D convolution are further decomposed into depthwise and pointwise convolutions. While existing 3D separable CNN all addressed other problems such as gesture recognition, force prediction, 3D object classification or reconstruction, our work applied it to the moving object detection task for the first time in the literature. 3. Increasing inference speed by changing the input-output relationship: We proposed a multi-input multi-output (MIMO) strategy to increase inference speed, which can take multiple frames as the network input and output multiple frames of detection results. This MIMO embedded in 3Dseparable CNN can further increase model inference speed significantly and maintain high detection accuracy. Compared to state-of-the-art approaches, our proposed methods significantly increases the inference speed, reduces the model size, meanwhile achieving the highest detection accuracy in the scene dependent evaluation (SDE) setup and maintaining a competitive detection accuracy in the scene independent evaluation (SIE) setup. The SDE setup is widely used to tune and test the model on a specific video as the training and test sets are from the same video. The SIE setup is designed to assess the generalization capability of the model on completely unseen videos
    corecore