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ABSTRACT

Moving object detection (MOD) is the process of extracting dynamic foreground content

from the video frames, such as moving vehicles or pedestrians, while discarding the non-

moving background. It plays an essential role in computer vision field. The traditional

methods meet difficulties when applied in complex scenarios, such as videos with illumi-

nation changes, shadows, night scenes,and dynamic backgrounds. Deep learning methods

have been actively applied to moving object detection in recent years and demonstrated

impressive results. However, many existing models render superior detection accuracy at

the cost of high computational complexity and slow inference speed. This fact has hin-

dered the development of such models in mobile and embedded vision tasks, which need

to be carried out in a timely fashion on a computationally limited platform.

The current research aims to use the technique of separable convolution in both 2D

and 3D CNN together with our proposed multi-input multi-output strategy and two-branch

structure to devise new deep network models that significantly improve inference speed,

yet require smaller model size and achieve reduction in floating-point operations as com-

pared to existing deep learning models with competitive detection accuracy.

This research devised three deep neural network models, addressing the following

main problems in the area of moving object detection:
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1. Improving Detection Accuracy by extracting both spatial and temporal information:

To improve detection accuracy, the proposed models adopt 3D convolution which is more

suitable to extract both spatial and temporal information in video data than 2D convolution.

We also put this 3D convolution into two-branch network that extracts both high-level

global features and low-level detailed features can further increase the accuracy.

2. Reduce model size and computational complexity by changing network structure:

The standard 2D and 3D convolution are further decomposed into depthwise and pointwise

convolutions. While existing 3D separable CNN all addressed other problems such as

gesture recognition, force prediction, 3D object classification or reconstruction, our work

applied it to the moving object detection task for the first time in the literature.

3. Increasing inference speed by changing the input-output relationship: We proposed

a multi-input multi-output (MIMO) strategy to increase inference speed, which can take

multiple frames as the network input and output multiple frames of detection results. This

MIMO embedded in 3Dseparable CNN can further increase model inference speed signif-

icantly and maintain high detection accuracy.

Compared to state-of-the-art approaches, our proposed methods significantly increases

the inference speed, reduces the model size, meanwhile achieving the highest detection

accuracy in the scene dependent evaluation (SDE) setup and maintaining a competitive

detection accuracy in the scene independent evaluation (SIE) setup. The SDE setup is

widely used to tune and test the model on a specific video as the training and test sets are

from the same video. The SIE setup is designed to assess the generalization capability of

the model on completely unseen videos.
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CHAPTER 1

Introduction

1.1 Overview of Moving Object Detection

With the increasing amount of network cameras, produced visual data and Internet users,

it becomes quite challenging and crucial to process a large amount of video data at a fast

speed. Moving object detection (MOD) is the process of extracting dynamic foreground

content from the video frames, such as moving vehicles or pedestrians, while discarding

the non-moving background. It plays an essential role in many real-world applications [1],

such as intelligent video surveillance [2], medical diagnostics [3], anomaly detection[4],

human tracking and action recognition [5, 6].

5

Moving Object Detection

Figure 1.1: Moving Object Detection (Background Subtraction).

Traditional methods [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29] are unsupervised which do not require labeled ground truth for algorithm

development. They usually include two steps: background modeling and pixel classi-
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fication. However, these traditional methods meet difficulties when applied in complex

scenarios, such as videos with illumination changes, shadows, night scenes, and dynamic

backgrounds.

With the availability of a huge amount of data and the development of powerful

computational infrastructure, deep neural networks (DNNs) [30, 31, 32, 33, 34] have

shown remarkable improvements in MOD problems and are developed to replace either

background modeling or pixel classification in traditional methods or to combine these

two steps into an end-to-end network. Existing DNN models are mostly supervised ap-

proaches based on 2D convolutional neural networks (CNNs)[35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52], 3D CNNs [53, 54, 55, 56, 57, 58], 2D sep-

arable CNNs [59], or generative adversarial networks (GANs) [60, 61, 62, 63, 64, 65].

Besides, unsupervised GANs [66, 67] and semi-supervised networks are also pro-

posed [68, 69, 70, 71, 72, 73, 74, 75]. It demonstrates that the DNNs can automatically

extract spatial low-, mid-, and high-level features as well as temporal features, which turn

out to be very helpful in MOD problems. Recently, 3-dimensional convolutional neural

network (3D CNN) was also proposed to learn the spatial and temporal features simultane-

ously, which are more suitable and effective in video-related tasks [54, 55, 57, 76, 77, 78].

1.2 Purpose of the Research

While existing DNN models offer superior moving object detection accuracy, they suffer

from computationally expensive and memory-intensive issues. In particular, big model

size and high computational complexity make it challenging to apply these models to real-

world scenarios, such as robotics, self-driving cars, and augmented reality. These tasks

are usually deployed on mobile and embedded devices, which have limited memory and
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computing resources. Besides, these tasks are delay-sensitive and need to be carried out

in a timely manner, which cannot be achieved by high-complexity deep learning models.

Thus, we aim to design a deep moving object detection model suitable for mobile and

embedded environment, that can achieve faster inference speed and smaller model size

while maintaining high detection accuracy.

In this research, we propose three deep learning models tailored for computation-

resource-limited and delay-sensitive applications : (1) 2D separable CNN - based efficient

neural network; (2) An efficient 3D separable convolutional neural network with a multi-

input multi-output strategy called “3DS MM”; (3) A fast two-branch 3D separable CNN

called “F3DsCNN”.

According to the analysis for supervised methods in [52], we can further categorize

experimental setups into scene dependent evaluation (SDE) setup and scene independent

evaluation (SIE) setup. The difference on data-division strategies between SDE and SIE

setup is shown in Table 5.5 in Chapter 5. In SDE, frames in training and testing sets are

from the same video or video sequences, whereas, in SIE, completely unseen videos are

used for testing. In our experiments, we use both SDE and SIE setup.

1.3 Outline of the Dissertation

The organization of this dissertation is as follows:

In Chapter 2, we introduce existing algorithms for moving object detection and issues

of these existing methods.

In Chapter 3, we explain the principles of the 2D separable convolution and 3D sepa-

rable convolution which lay the foundation for our proposed methods. We also introduced

the performance evaluation metrics used in this research.
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In Chapter 4, we elaborate on our proposed 2D separable CNN - based network in

detail. In this chapter, we devised a new 2D separable CNN -based moving object de-

tection approach with a simple network structure and simplified convolution operations.

The proposed method does not require explicit background modeling and maintenance. It

significantly accelerates inference speed and still achieves high detection accuracy.

In Chapter 5, we discussed our proposed 3D separable CNN with multi-input multi-

output strategy network “3DS MM” in detail. In this chapter, we propose an effi-

cient 3D separable convolutional neural network with a multi-input multi-output strategy

called “3DS MM”. This model is tailored for computation-resource-limited and delay-

sensitive applications. Experimental results show the superior performance of this pro-

posed method.

In Chapter 6, we discussed another proposed 3D separable CNN in two-branch net-

work “F3DsCNN” in detail. In this chapter, we devise a fast two-branch 3D separable

CNN that extracts both high-level global features and low-level detailed features for mov-

ing object detection in computation-resource-limited and delay-sensitive scenarios with

high accuracy.

Chapter 7 summarizes the major contributions of this research and suggestions for

future work.
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CHAPTER 2

Review of Moving Object Detection Methods

2.1 Traditional Methods

The methods for MOD problems have been extensively studied and improved over the

years. These methods can be broadly categorized into: (1) traditional methods (unsuper-

vised learning), and (2) deep learning methods (supervised and semi-supervised learning).

Traditional methods [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29] are unsupervised which do not require labeled ground truth. They

basically consist of two components: (1) background modeling which initializes the back-

ground scene and updates it over time, and (2) classification which classifies each pixel

to be foreground or background. There are many background modeling schemes, such as

the temporal or adaptive filters being applied to build the background like running aver-

age background [10], temporal median filtering [11], and Kalman filtering [12]. Another

way for background modeling is to statistically represent the background using parametric

probability density functions such as a single Gaussian or a mixture of Gaussians [13]. On

the other hand, non-parametric methods directly rely on observed data to model the back-

ground such as IUTIS-5 [14], WeSamBE [15], SemanticBGS [16], and kernel density es-

timation [17]. Sample consensus is another non-parametric strategy used in PAWCS [18],

ViBe [19] and SuBSENSE [20]. In particular, SuBSENSE uses a feedback system to auto-

matically adjust the background model based on the local binary similarity pattern (LBSP)

features and pixel intensities [21]. Eigen-background based on principal-component anal-

ysis (PCA) [22, 23, 24] is also used in background modeling. Further, background sub-
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traction based on robust principal-component analysis (RPCA) [25, 26, 27, 28, 29] solves

camera motion and reduces the curse of dimensionality and scale. However, it is quite

difficult for traditional methods to perform object detection in complex scenarios, such as

videos with illumination changes, shadows, night scenes, and dynamic backgrounds.

2.2 Deep Learning-based Methods

2.2.1 2D CNN-based methods

Deep learning-based methods are mostly supervised and have been recently proposed for

MOD problems [32, 33, 34, 44, 46]. The first work based on CNNs is ConvNet-GT [35],

which replaces the pixel classification component with a well-defined network structure.

The background is estimated by a temporal median filter, then the estimated backgrounds

are stacked with the original video frames to form the input of the CNN that outputs the

binary masks of detected objects. DeepBS [42] utilizes SuBSENSE [20] algorithm to gen-

erate background image and multiple layers CNN for segmentation. Also, a spatial-median

filter is used for post-processing to perform smoothing. Wang et al. [36] proposed a multi-

scale patch-wise method with a cascade CNN architecture called MSCNN+Cascade [36].

Although it achieves good detection performance, the patch-wise processing is very time

consuming. Other multi-scale feature learning-based models such as Guided Multi-scale

CNN [37], MCSCNN [38], MsEDNet [39] and VGG-16 [79] based networks FgSeg-

Net M [40] and FgSegNet v2 [41] were also proposed. FgSegNet S [40] is a 2D CNN

that takes each video frame at its original resolution scale as the input, while its extended

version FgSegNet M [40] takes each video frame at three different resolution scales in par-

allel as the input of the encoding network. FgSegNet v2 is the best-performing FgSegNet
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model in CDnet2014 [80] challenge. Another example, MSFgNet [43], has a motion-

saliency network (MSNet) that estimates the background and subtracts it from the original

frames, followed by a foreground extraction network (FgNet) that detects the moving ob-

jects.

In VGG-PSL-CRF [44], pixel-level semantic features are extracted, then a novel atten-

tion long short-term memory (Attention ConvLSTM) is used to model pixel-wise changes

over time. In Deep Pixel Distribution Learning (DPDL) [45] and Dynamic Deep Pixel Dis-

tribution Learning (D-DPDL) [46], a pixel-based feature called the Random Permutation

of Temporal Pixels (RPoTP) is used to represent the distribution of past observations for a

particular pixel, followed by using a CNN to determine whether each pixel is foreground

or background. In D-DPDL, a dynamic training strategy is used as a compensation, in

which the entries of RPoTP features are randomly repermutated for every training epoch.

Variational Auto-Encoder (VAE) architecture can also be used in video segmentation

[81], which modified VAE architecture built on top of Mask R-CNN for instance-level

video segmentation and tracking was proposed. The method builds a shared encoder and

three parallel decoders, yielding three disjoint branches for predictions of future frames,

object detection boxes, and instance segmentation masks.

2.2.2 3D CNN-based methods

3D convolution is applied to MOD problems to utilize spatial-temporal information in

visual data. In [54], 3D CNN and a fully connected layer are adopted in a patch-wise

method. 3D-CNN-BGS [55] uses 3D convolution to track temporal changes in video se-

quences. This approach performs 3D convolution on 10 consecutive frames of the video,

and upsamples the low-, mid-, and high-level feature layers of the network in a multi-scale

approach to enhance segmentation accuracy. 3DAtrous [56] captures long-term temporal
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information in the video data. It is trained based on a long short-term memory (LSTM) net-

work with focal loss to tackle the class imbalance problem commonly seen in background

subtraction. Another LSTM-based example is the autoencoder-based 3D CNN-LSTM [57]

combining 3D CNNs and LSTM networks. In this work, time-varying video sequences

are handled by 3D convolution to capture short temporal motions, while the long short-

term temporal motions are captured by 2D LSTMs. Although these 3D convolution-based

methods offer accurate detection results, they have high computational complexity.

2.2.3 GAN-based and other methods

Recently, the concept of generative adversarial networks (GAN) is adopted in MOD

problems, such as BScGAN [60], BSGAN [61], BSPVGAN [62], FgGAN [63], BSls-

GAN [64], and RMS-GAN [65]. BScGAN is based on conditional generative adversarial

network (cGAN) that consists of two networks: generator and discriminator. BSGAN [61]

and BSPVGAN [62] are based on Bayesian GANs. They use median filter for background

modeling and Bayesian GANs for pixel classification. The use of Bayesian GANs can

address the issues of sudden and slow illumination changes, non-stationary background,

and ghost. In addition, BSPVGAN [62] exploits parallel vision to improve results in com-

plex scenes. In [66, 67], adversarial learning is proposed to generate dynamic background

information in an unsupervised manner.

2.3 Issues with Existing Methods

However, the performance of all the aforementioned deep learning-based moving object

detection methods comes at a high computational cost and a slow inference speed due to

complex network structures and intense convolution operations. To reduce the amount of
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calculation, our previous work [59] proposed to use 2D Separable CNN which splits the

standard 2D convolution into a depthwise convolution and a pointwise convolution. It dra-

matically increases the inference speed and maintains high detection accuracy. However,

this 2D separable CNN-based network does not exploit the temporal information in the

video input.

While existing DNN models offer superior moving object detection accuracy, they

suffer from computationally expensive and memory-intensive issues. In particular, the

architecture change in 3D CNNs leads to a huge increase in model size and computational

complexity compared to 2D CNNs, making it challenging to apply those models to real-

world scenarios, such as robotics, self-driving cars, and augmented reality. These tasks

are usually deployed on mobile and embedded devices, which have limited memory and

computing resources. Besides, these tasks are delay-sensitive and need to be carried out

in a timely manner, which cannot be achieved by high-complexity deep learning models.

Thus, we aim to design a deep moving object detection model suitable for mobile and

embedded environment, that can achieve faster inference speed and smaller model size

while maintaining high detection accuracy.

Another factor that limits the inference speed is the input-output relationship. The

input-output relationship of existing moving object detection networks has two types: (1)

single-input single-output (SISO), which is widely exploited in 2D CNNs such as FgSeg-

Net S [40] and 2D separable CNN [59]; and (2) multi-input single-output (MISO) which

can be found in 3D CNNs such as 3D-CNN-BGS [55], 3DAtrous [56], and DMFC3D [53].

The disadvantage of SISO and MISO is that they result in a slow inference speed because

only one frame output is predicted in every forward pass. Recently, the X-Net [82] adopts

a two-input two-output network structure, which takes two adjacent video frames as the

network input and generates the corresponding two binary masks. Although it can track
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temporal changes, the network structure is inflexible and the temporal correlation it uti-

lizes is limited. In this research, we propose a multi-input multi-output (MIMO) strategy,

which can take multiple input frames and output multiple frames of binary masks in each

sample. It explores temporal correlations on a larger time span and significantly increases

the inference speed when embedded in 3D separable CNN.

Another issue for supervised methods is the generalization capability of the trained

models on completely unseen videos. Several moving object detection models were

designed and evaluated over completely unseen videos, such as BMN-BSN [49],

BSUV-Net [50], BSUV-Net 2.0 [51], BSUV-Net+SemBGS [50], ChangeDet [52], and

3DCD [58]. Besides, semi-supervised networks were also designed to be extended to

unseen videos. For example, GraphBGS [68] and GraphBGS-TV [69] are based on the re-

construction of graph signals and semi-supervised learning algorithm, MSK [70] is based

on a combination of offline and online learning strategies, and HEGNet [73] combines

propagation-based and matching-based methods for semi-supervised video moving object

detection.

These issues above motivate us to design models that can achieve faster inference

speed, smaller model size, less computational complexity while maintaining high detec-

tion accuracy.

22



CHAPTER 3

Methodology to Improve Network Efficiency

The approaches of building small and efficient neural networks in recent years can be gen-

erally categorized into either compressing pretrained networks or training small networks

directly [83].

In our research, we try to train small networks directly. Depthwise separable convo-

lutions as a factorization was initially introduced in [84] and subsequently used in Incep-

tion models [85] to reduce the computation. Factorized Networks [86], the Xception net-

work [87] also uses factorization methods. Squeezenet [88] uses a bottleneck approach to

design a very small network. Other approaches for obtaining small networks have shrink-

ing, compression based on product quantization, hashing, and pruning, vector quantization

and Huffman coding, distillation and low bit networks.

In this chapter, we elaborate on the rationale of the 2D separable convolution and 3D

separable convolution operation, which are the building blocks of our proposed methods

in the following chapters. In the following sections, we use the default data format “NL-

HWC” in Tensorflow to represent data, which denotes the batch size N, the temporal length

L, the height of the image H, the width of the image W, and the number of channels C.

3.1 2D Convolution vs. 2D Separable Convolution

As shown in Fig. 3.2(a), the standard 2D convolutional layer is parameterized by a convo-

lution filter of size K×K×Ci, where K×K is the spatial dimension of the filter and Ci is the

number of input channels. The computational complexity of the standard 2D convolution
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measured by the number of floating-point multiplications is

K × K ×Ci × Ho ×Wo ×Co. (3.1)

While such convolution effectively extracts features using the 3D filter, it also requires

intensive computation. The separable 2D convolution, on the other hand, splits this into

a depthwise convolution and a pointwise convolution, which drastically reduces compu-

tation and model size. Fig 3.3 shows the filters in standard 2D convolution and filters in

depthwise convolution and pointwise convolution.

Kernel size: 𝐾 × 𝐾 × 𝐶𝑖

Step1: Depthwise convolution Step2: Pointwise convolution

Multiplications: 𝐾 × 𝐾 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖 + 𝐶𝑖 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

Multiplications: 𝐾 × 𝐾 × 𝐶𝑖 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝐾 × 𝐾 × 𝐶𝑖

𝐾 × 𝐾 × 1

1 × 1 × 𝐶𝑖

𝐻

Kernel size: 𝐾 × 𝐾 × 1
Multiplications: 𝐾 × 𝐾 × 1 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖

Kernel size: 1 × 1 × 𝐶𝑖
Multiplications: 1 × 1 × 𝐶𝑖 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝑊

𝐻
𝑊

𝑊𝑜

𝐻𝑜

𝑊𝑜

𝐻𝑜𝑊𝑜

𝐻𝑜 𝐻𝑜

𝑊𝑜

(a)

(b)

Figure 3.2: Illustration of (a) the standard 2D convolution and (b) the 2D separable
convolution.

As shown in Fig. 3.2(b) Step 1, depthwise convolution performs an independent con-

volution on each input channel with a filter of size K × K × 1 without interactions among
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(b) Depthwise Convolution Filters 

(a) Standard 2D Convolution Filters
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Ci

Figure 3.3: Illustration of (a) the standard 2D convolution filter and (b) depthwise
convolution filter (c) pointwise convolution filter.

channels. The required multiplications of the 2D depthwise convolution is

K × K × 1 × Ho ×Wo ×Ci. (3.2)

Following depthwise convolution is the pointwise convolution, as shown in Fig. 3.2(b)

Step 2. It performs a 1D convolution on each depth column1, using a filter of size 1×1×Ci.

This creates a linear projection of the stack of feature maps. If Co filters are used, then the

required multiplications of this 1D pointwise convolution is

1 × 1 ×Ci × Ho ×Wo ×Co. (3.3)

By decomposing the standard 2D convolution into two separate steps, we achieve a
1A depth-column is formed by the voxels at the same spatial location (y, x) across all channels.
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computation reduction of

ratio =
2D separable convolution

2D convolution

=
K × K × Ho ×Wo ×Ci +Ci × Ho ×Wo ×Co

K × K ×Ci × Ho ×Wo ×Co

=
1

Co
+

1
K2.

(3.4)

When the output channels Co is a large number, the first term 1
Co

is negligible. For instance,

if K = 3, then the 2D separable convolution can achieve roughly 9 times less computation

than the standard 2D convolution.

2D separable convolution splits traditional 2D convolution into a depthwise convo-

lution and a pointwise convolution, which drastically reduces computational complex-

ity [59, 83, 89, 90].

3.2 2D Convolution vs. 3D Convolution

As shown in Fig. 3.4(a)[91], an ordinary 2D convolution takes a 3D tensor of size H ×

W × Ci as the input, where H and W are the height and width of feature maps, and Ci is

the number of input channels. In this case, the filter is a 3D filter in a shape of K × K ×Ci

moving in two directions (y, x) to calculate a 2D convolution. The output is a 2D matrix

of size Ho × Wo. If the filter number is Co, the output shape will be Ho × Wo × Co. The

mathematical expression of such 2D convolution is given by

Out[h,w] =
K−1∑
j=0

K−1∑
i=0

Ci−1∑
c=0

f [ j, i, c] × In[h − j,w − i, c] (3.5)

where In represents the 3D input to be convolved with the 3D filter f to result in a 2D

output feature map Out. Here, h, w and c are the height, width, and channel coordinates of

the 3D input, while j, i and c are those of the 3D filter.
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Figure 3.4: Illustration of (a) the 2D convolution with 3D input and (b) the 3D con-
volution with 4D input.

However, for video signal the 2D convolution in Fig. 3.4(a) does not leverage the

temporal information among adjacent frames. 3D convolution addresses this issue using

4D convolutional filters with 3D convolution operation, as illustrated in Fig. 3.4(b). In a

3D convolution, the “input” becomes Ci channels of 3D tensors of size L × H ×W, where

L is the temporal length (i.e. the number of successive video frames). Hence, the input

is 4D and is of size L × H × W × Ci. A 4D convolutional filter of size K × K × K × Ci

moves in 3 directions (z, y, x) to calculate convolutions, where z, y, and x align with the

temporal length, height, and width axes of the 4D input. The output shape is Lo×Ho×Wo.

If the filter number is Co, the output shape will be Lo × Ho ×Wo × Co. The mathematical

expression of the 3D convolution with a 4D input is given by

Out[l, h,w] =
∑K−1

k=0
∑K−1

j=0
∑K−1

i=0
∑Ci−1

c=0
f [k, j, i, c] × In[l − k, h − j,w − i, c] (3.6)

where In represents the 4D input to be convolved with the 4D filter f to result in a 3D
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output Out. Here, l, h, w, and c are the temporal length, height, width, and channel coor-

dinates of the 4D input, while k, j, i and c are those of the 4D filter. If the size of the filter

is K × K × K × Ci, then the indices k, j, i range from 0 to K − 1, and c ranges from 0 to

Ci − 1.

The ability to leverage the temporal context improves moving object detection accu-

racy. However, 3D CNN is rarely used in practice because it suffers from a high com-

putational cost due to the increased amount of computation used by 3D convolutions,

especially when the dataset scale goes larger and the neural network model goes deeper.

Thus, in order to make use of the temporal features, a low-complexity 3D CNN must be

developed.

As shown in Fig. 3.4(a)[91], an ordinary 2D convolution takes a 3D tensor of size

H ×W ×Ci as the input, where H and W are the height and width of feature maps, and Ci

is the number of input channels. In this case, the filter is a 3D filter in a shape of K×K×Ci

moving in two directions (y, x) to calculate a 2D convolution. The output is a 2D matrix

of size Ho × Wo. If the filter number is Co, the output shape will be Ho × Wo × Co. The

mathematical expression of such 2D convolution is given by

Out[h,w] =
K−1∑
j=0

K−1∑
i=0

Ci−1∑
c=0

f [ j, i, c] × In[h − j,w − i, c] (3.7)

where In represents the 3D input to be convolved with the 3D filter f to result in a 2D

output feature map Out. Here, h, w and c are the height, width, and channel coordinates of

the 3D input, while j, i and c are those of the 3D filter.

However, for video signal the 2D convolution in Fig. 3.4(a) does not leverage the

temporal information among adjacent frames. 3D convolution addresses this issue using

4D convolutional filters with 3D convolution operation, as illustrated in Fig. 3.4(b). In a

3D convolution, the “input” becomes Ci channels of 3D tensors of size L × H ×W, where

L is the temporal length (i.e. the number of successive video frames). Hence, the input
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is 4D and is of size L × H × W × Ci. A 4D convolutional filter of size K × K × K × Ci

moves in 3 directions (z, y, x) to calculate convolutions, where z, y, and x align with the

temporal length, height, and width axes of the 4D input. The output shape is Lo×Ho×Wo.

If the filter number is Co, the output shape will be Lo × Ho ×Wo × Co. The mathematical

expression of the 3D convolution with a 4D input is given by

Out[l, h,w] =
∑K−1

k=0
∑K−1

j=0
∑K−1

i=0
∑Ci−1

c=0
f [k, j, i, c] × In[l − k, h − j,w − i, c] (3.8)

where In represents the 4D input to be convolved with the 4D filter f to result in a 3D

output Out. Here, l, h, w, and c are the temporal length, height, width, and channel coor-

dinates of the 4D input, while k, j, i and c are those of the 4D filter. If the size of the filter

is K × K × K × Ci, then the indices k, j, i range from 0 to K − 1, and c ranges from 0 to

Ci − 1.

The ability to leverage the temporal context improves moving object detection accu-

racy. However, 3D CNN is rarely used in practice because it suffers from a high com-

putational cost due to the increased amount of computation used by 3D convolutions,

especially when the dataset scale goes larger and the neural network model goes deeper.

Thus, in order to make use of the temporal features, a low-complexity 3D CNN must be

developed.

3.3 3D Convolution vs. 3D Separable Convolution

2D separable convolution splits traditional 2D convolution into a depthwise convolution

and a pointwise convolution, which drastically reduces computational complexity [59, 83,

89, 90].

In order to utilize temporal features in video data, the idea of separable convolution

can be applied to the standard 3D convolution. As shown in Fig. 3.5 (a), in the standard
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Kernel size: 𝐾 × 𝐾 × 𝐾 × 𝐶𝑖

Step 1. Depthwise convolution

Multiplications: 𝐾 × 𝐾 × 𝐾 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖 + 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

Multiplications: 𝐾 × 𝐾 × 𝐾 × 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝐾 × 𝐾 × 𝐾 × 𝐶𝑖

𝐾 × 𝐾 × 𝐾 × 1 1 × 1 × 1 × 𝐶𝑖

𝐻

Kernel size: 𝐾 × 𝐾 × 𝐾 × 1
Multiplications: 𝐾 × 𝐾 × 𝐾 × 1 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑖

Kernel size: 1 × 1 × 1 × 𝐶𝑖
Multiplications: 1 × 1 × 1 × 𝐶𝑖 × 𝐿𝑜 × 𝐻𝑜 ×𝑊𝑜 × 𝐶𝑜

𝑊

𝐻

𝑊

𝑊𝑜

𝐻𝑜
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𝐿
𝐿𝑜

Step 2. Pointwise convolution

Figure 3.5: Illustration of (a) the standard 3D convolution and (b) the 3D separable
convolution. Red arrows point to effective directions of the convolution calculation of
the 3D filters.

3D convolution, the 4D input of size L × H × W × Ci, is convolved with Co filters of

size K × K × K × Ci, resulting in a 4D output of size Lo × Ho × Wo × Co. The filters

calculate the 3D convolution by moving in the directions of length, height, and width as

shown by the red arrows. The computational complexity of such standard 3D convolution

is K × K × K ×Ci × Lo × Ho ×Wo ×Co.

To simplify the 3D convolution, we decompose it into a 3D depthwise convolution and

a 1D pointwise convolution. As shown in Fig. 3.5 (b) Step 1, the 3D depthwise convolution

adopts Ci independent filters of size K × K × K × 1 to perform a 3D convolution on each

input channel. This procedure is described in (3.9). The required multiplications of such
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3D depthwise convolution is K × K × K × 1 × Lo × Ho ×Wo ×Ci.

Out[l, h,w, c] =
K−1∑
k=0

K−1∑
j=0

K−1∑
i=0

f [k, j, i, c] × In[l − k, h − j,

w − i, c], c = 1, 2, ...,Ci. (3.9)

Afterwards, the output of Fig. 3.5 (b) Step 1 is used as the input of Fig. 3.5 (b) Step

2, where the pointwise convolution adopts a filter of size 1 × 1 × 1 × Ci, performs a

linear projection along the channel axis as shown by the red arrow, and outputs a 3D

tensor of size Lo × Ho ×Wo. This procedure is described in (3.10). Using Co such filters

outputs Co 3D tensors. The required multiplications of such 1D pointwise convolution is

1 × 1 × 1 ×Ci × Lo × Ho ×Wo ×Co.

Out[l, h,w] =
Ci−1∑
s=0

f [s] × In[l, h,w, c − s]. (3.10)

The combination of the 3D depthwise convolution and the 1D pointwise convolution,

called 3D separable convolution, achieves a reduction in computational complexity of

ratio =
3D separable convolution

3D convolution

=

K × K × K × Lo × Ho ×Wo ×Ci
+Ci × Lo × Ho ×Wo ×Co

K × K × K ×Ci × Lo × Ho ×Wo ×Co

=
1

Co
+

1
K3.

(3.11)

With K = 3 and a large Co, the computational complexity can be reduced by roughly

27 times compared to the standard 3D convolution.

This research adopts such 2D separable convolution and 3D separable convolution in

the designed moving object detection networks for the first time. Together with other

proposed techniques such as multi-input multi-output (MIMO) and the structure of two

branches network, they substantially reduce the amount of computation, meanwhile the

3D separable convolution extracts temporal features in the video sequence.
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3.4 Performance Evaluation Metrics

In our research, we evaluate the performance in both efficiency and detection accuracy.

Efficiency

To evaluate the efficiency of our proposed model, the inference speed is measured in

frames per second (fps), the model size is measured in megabytes (MB), the number of

trainable parameters is measured in millions (M), and the computational complexity is

measured in floating point operations (FLOPs).

Detection Accuracy

To measure the detection accuracy, we adopt four metrics: the region-based F-measure, the

structure measure (S-measure) [92], the enhanced alignment measure (E-measure) [93],

and the mean absolute error (MAE) [94].

The F-measure is defined as:

F-measure =
2 × precision × recall

precision + recall
(3.12)

where precision = T P
T P+FP , recall = T P

T P+FN , given the true positive (TP), false positive (FP),

true negative (TN), and false negative (FN).

The S-measure [92] combines the region-aware structural similarity S r and object-

aware structural similarity S o, which is more sensitive to structures in scenes:

S -measure = α × S o + (1 − α) × S r, (3.13)

where α = 0.5 is the balance parameter.
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The E-measure is recently proposed [93] based on cognitive vision studies and com-

bines local pixel values with the image-level mean value in one term, jointly capturing

image-level statistics and local pixel matching information.

We also evaluate the MAE [94] between the predicted output and the binary ground-

truth mask as:

MAE =
1
N

N∑
i=1

|Predi −GTi| , (3.14)

where Predi is the predicted value of the i-th pixel, GTi is the ground-truth binary label of

the i-th pixel, and N is the total number of pixels.
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CHAPTER 4

Proposed Method and Experiments - Using 2D Separable

CNN

4.1 Introduction

With the rise of the Internet of Things, the spread of machine vision, and the large amount

of video data, it is challenging and crucial to process video data at a fast speed. Effi-

ciently reducing redundant information in videos such as the background and extracting

meaningful foreground information like moving vehicles or pedestrians is a crucial step

for video surveillance systems. Recently, deep learning-based moving object detection al-

gorithms demonstrated superior detection accuracy as compared with traditional methods.

However, existing deep models are computationally expensive and memory-intensive.

In this chapter, we demonstrate a new light-weight deep network model using 2D sepa-

rable CNN introduced in Section 3.1 that achieved high detection accuracy, while it signif-

icantly accelerates the detection speed compared with current state-of-the-art deep models.

This chapter is organized as follows. In Section 4.2, we introduce existing algorithms used

for moving object detection. In Section 4.3, we elaborate on our proposed model in de-

tail. Section 4.4 describes our experimental setup and results compared with the current

state-of-the-art models on the CDnet2014 dataset [80]. Section 4.4 concludes the chapter.
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4.2 Proposed 2D Separable CNN-based Deep Model

The proposed network involves an encoder and a decoder shown in Fig 4.6. We elaborate

on the details of our approach in the encoder network and the decoder network.

Figure 4.6: The architecture of the proposed network Illustration of the filters used
in (a) Encoder network (b) Decoder network

Figure 4.7: The architecture of the proposed network Illustration of the filters used
in (a) Encoder network (b) Decoder network

As can been seen in Fig 4.6, we adopt a regular Auto-Encoder (AE) architecture, not

other architectures such as Variational Auto-Encoder (VAE). Usually Auto-encoders work

for data visualization via dimensionality reduction, data denoising, and data anomaly de-
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tection. The most common use of Variational Auto-encoders is for generating new image

or text data. It’s good to use VAE to generate synthetic data that is based on existing

data. In VAE, encoder describes a probability distribution for each latent attribute, and la-

tent encoding variables are assumed to be identically and independently distributed across

both latent dimensions and samples, which is not realistic in many problems with high

dimensional inter and intra-data correlation [95]. For example, in a video sequence, it is

reasonable to expect that the frames would exhibit similar latent representations, so VAE

should allow correlation among latent variables.

In our case, we are more focusing on looking for the small differences between frames

to be able to detect moving objects, so dimensionality reduction and anomaly detection

techniques are more suitable for our jobs. AE model is already enough for the task, we

will not choose VAE. Using VAE would bring more complexity than AE to our job and in

some cases and VAE tend to result in more blurry images in our case.

4.2.1 The encoder network

The encoder network extracts features from the RGB 3-channel input frames, so-called

feature map ‘encoding’ by convolutions with filters, where different filters can capture

different features. The encoder network consists of 8 blocks as shown in Fig 4.7(a). Iter-

atively tuning the configuration during training helps to choose 8 to be the least required

number of blocks to be able to achieve a high prediction accuracy where each block detects

specific features present in the input data. In block 0, the regular convolution with 3D fil-

ters is adopted. 3×3×3×32 represents that the filter is 3×3 spatially, length-3 in the depth

dimension, and the number of filters is 32, resulting in a layer with 32 channels. From

block 1 to block 7, each block contains one depthwise convolution, one batch normaliza-

tion (BN) [85] and one pointwise convolution. For example, in block 1, the depthwise
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convolution (depthwise Conv) adopts 32 filters of dimension 3×3×1 and the pointwise

convolution (pointwise Conv) adopts 64 filters of dimension 1×1×32. The filters of block

2 to block 7 are similarly defined. The notions of depthwise convolution and pointwise

convolution were first proposed in MobileNet [83]. The depth separable convolution re-

places traditional convolution by applying an independent 2D filter for each input channel

followed by pointwise operation using a 1×1×Ci (Ci is the number of input channels)

convolution on each depth-column of the outputs from the depthwise convolution [83].

The effect of this separation is to greatly reduce the amount of computation and model

size [83]. The computational cost can be reduced to 1/Co + 1/K2 of a regular convolution,

where Co is the number of output channels and K is the spatial dimension of the K × K

kernel [83]. In this chapter, for the first time in the literature, we adopt such separated

depthwise and pointwise convolution in a moving object detection network.

4.2.2 The decoder network

Fig 4.7(b) shows our proposed decoder network that expands the encoder output and gener-

ates a binary mask for the detected moving objects. The decoder has 6 blocks. We propose

from block 8 to block 12 each of them consists of one pointwise transposed convolution

and one depthwise transposed convolution. Transposed convolution, informally called de-

convolution, is a backward stride convolution for up-sampling optimally. In block 8, the

pointwise transposed convolution (pointwise TransConv) adopts 512 filters of dimension

1×1×512, and the depthwise transposed convolution (depthwise TransConv) adopts 512

filters of dimension 3×3×1. The filters of block 9 to block 12 are similarly defined. In

block 13, the pointwise transposed convolution adopts one filter of dimension 1×1×32.

We propose to use a regular transposed convolution with 1×1×c (c is similarly defined

as in the encoder network) filter and stride 2 for up-sampling as the pointwise transposed
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convolution, followed by a regular depthwise convolution to perform as a transposed con-

volution in depthwise. Finally, a sigmoid activation function is appended to output a 0/1

binary mask (0 is background, 1 is foreground) with the same spatial dimension as the

input images. For the first time in the literature, we propose the pointwise and depthwise

deconvolution in the decoder network symmetric to the encoder network for computational

efficiency. Table 4.1 shows the details of the input and output shape and configuration in

each layer.

Table 4.1: Proposed network configuration. Encoder consists of Blocks 0 to 7. De-
coder consists of Blocks 8 to 13.

Layer Type / Stride Filter Shape Output Shape Parameters #

240*320*3 (Input Image)

Conv / s=1 3*3*3*32 240*320*32 896

Conv dw / s=2 3*3*32 dw 120×160×128 352

BN 120×160×128 64

Conv pw/ s=1 1*1*32*64 pw 120*160*64 2048

Conv dw / s=1 3*3*64 dw 120*160*64 704

BN 120*160*64 128

Conv pw/ s=1 1*1*64*128 pw 120*160*128 8192

Conv dw / s=2 3*3*128 dw 60*80*128 1408

BN 60*80*128 256

Conv pw/ s=1 1*1*128*128 pw 60*80*128 16384

Conv dw / s=1 3*3*128 dw 60*80*128 1408

BN 60*80*128 256

Conv pw/ s=1 1*1*128*256 pw 60*80*256 32768

Conv dw / s=1 3*3*256 dw 60*80*256 2816

BN 60*80*256 512

Conv pw/ s=1 1*1*256*256 pw 60*80*256 65536

Conv dw / s=1 3*3*256 dw 60*80*256 2816

BN 60*80*256 512

Conv pw/ s=1 1*1*256*512 pw 60*80*512 131072

Conv dw / s=1 3*3*512 dw 60*80*512 5632

BN 60*80*512 1024

Conv pw/ s=1 1*1*512*512 pw 60*80*512 262144

TransposeConv / s=1 1*1*512*512 pw 60*80*512 262656

Conv dw / s=1 3*3*512 dw 60*80*512 4608

TransposeConv / s=2 1*1*512*256 pw 120*160*256 131328

Conv dw / s=1 3*3*256 dw 120*160*256 2304

TransposeConv / s=2 1*1*256*128 pw 240*320*128 32896

Conv dw / s=1 3*3*128 dw 240*320*128 1152

TransposeConv / s=1 1*1*128*64 pw 240*320*64 8256

Conv dw / s=1 3*3*64 dw 240*320*64 576

TransposeConv / s=1 1*1*64*32 pw 240*320*32 2080

Conv dw / s=1 3*3*32 dw 240*320*32 288

TransposeConv / s=1 1*1*32 pw 240*320*1 33

Activation 240*320*1 (Binary Mask)

983105
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block 0
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4.3 Experiments and Analysis

In this section, we evaluate the performance of our proposed deep moving object detection

network on the CDnet2014 dataset [80]. It contains 11 categories of video sequences (such

as baseline, bad weather, dynamic background, camera jitter, etc.), and each category

contains 4 to 6 video sequences (such as highway, office, pedestrians, PETS2006 in the

baseline category). In our experiments, 15 sequences covering 6 categories were selected

for the training and testing. For each video sequence, 200 frames were selected randomly.

The training was performed for every single video sequence using an Intel Xeon 8-core

3GHz CPU processor with an Nvidia Titan RTX 24G GPU. In the training phase, we use

RMSprop optimizer and cross-entropy loss function at a learning rate α = 10−4 over 50

epochs in a batch size of 1. In the testing phase, we test more than 1, 000 frames for each

sequence with training frames excluded.

To evaluate the model performance, we calculate the F-measure between the predicted

binary masks and the ground truth binary masks provided in the CDnet2014 dataset [80].

Table 4.2 compares the F-measure scores and the inference speed of the proposed

model, with the state-of-the-art FgSegNet (FgSegNet 1-scale [40], FgSegNet 3-scale)

described in Section 4.2, and the MobileNet+UNet model which is a MobileNet based

Unet [3], recently proposed for semantic segmentation. We observe that our proposed

model achieves an inference speed of 149.81 fps, more than twice faster than those of the

MobileNet+UNet and the FgSegNet 3-scale, and 1.8 times faster than that of the FgSeg-

Net 1-scale. In terms of detection accuracy, our proposed model achieves an average

F-measure of 0.9718, significantly higher than that of MobileNet+UNet, and only slightly

lower than those of the two FgSegNet models.
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Table 4.2: Comparison of F-measure and inference speed with other models on different categories and sequences.

Category

MobileNet FgSegNet FgSegNet MobileNet FgSegNet FgSegNet

+UNet (3-scale) (1-scale) +UNet  (3-scale) (1-scale)

No.1 0.9698 0.997 0.9975 0.9931 56.02 70.42 80.19 143.35

No.1 0.9737 0.9934 0.9936 0.9839 62.19 66.42 86.28 158.58

No.1 0.0373 0.9743 0.9778 0.9596 51.36 67.28 86.73 153

No.1 0.0796 0.9948 0.9958 0.9714 69.74 72.73 85.98 154.08

No.2 0.9525 0.993 0.9941 0.9839 66.62 66.12 78.99 139.08

No.2 0.6424 0.9945 0.8241 0.9545 63.45 70.57 82.37 152.44

No.2 0.1638 0.982 0.929 0.9619 46.06 70.98 78.19 155.04

No.2 0.8563 0.9733 0.9669 0.9384 56.75 70.64 85.76 147.15

No.3 0.9797 0.9982 0.9982 0.9945 60.42 65.99 84.53 161.29

No.3 0.9606 0.9991 0.9994 0.9964 63.65 67.35 79.94 137.82

No.4 0.7515 0.9911 0.9928 0.9803 49.55 65.22 86.06 161.55

No.4 0.9536 0.9959 0.9969 0.9912 56.95 66.16 81.1 143.88

No.5 0.9215 0.9957 0.9958 0.9834 64.43 72.34 79.05 135.5

No.6 0.8841 0.9645 0.9561 0.9403 51.81 71.35 80.78 160.36

No.6 0.9389 0.9856 0.9887 0.9444 50.43 71.72 78.65 144.09

0.7377 0.9888 0.9738 0.9718 57.96 69.02 82.31 149.81Average

F-Measure Inference Speed (fps) on PC

Proposed model Proposed model
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Table 4.3: Summary of comparison between the proposed model and other models.

F-Measure  Parameters # Flops(millions/s) Model Size (bytes) Inference Speed (fps）

FgSegNet 3-scale 0.9888 15,857,665 16.2 60MB 69.02

FgSegNet 1-scale 0.9738 9,358,593 9.63 36MB 82.31

MobileNet+UNet 0.7377 4,217,397 4.18 16.8MB 57.96

Proposed Model 0.9718 983,105 1.42 3.8MB 149.81

18

Figure 4.8: Summary of Comparison Between the Proposed Model and other Models.

Table 4.3 and Fig 4.8 show the overall comparisons on F-measure, the number of model

parameters, floating-point operations (FLOPs in millions/second), the model space (the

storage space size of weights in megabytes (MB)), and the inference speed. The proposed

model requires the least number of model parameters, the least number of floating-point
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operations, the smallest model storage space size, while it offers the fastest average infer-

ence speed and a competitive moving object detection accuracy in terms of the F-measure.

Fig 4.9 shows the visual results for three sequences (from 15 sequences in the experi-

ment) in three categories: baseline, low frame rate, and dynamic background. Our method

has detected clear backgrounds and refined boundaries in the foreground regions, which is

competitive with the results of FgSegNet 3-scale and FgSegNet 1-scale, and much better

than the result of MobileNet+UNet.

(a)

(b)

(c)

FgSegNet FgSegNet MobileNet

3-scale 1-scale +UNet
Input Ground Truth Proposed Model

Figure 4.9: Comparison results on 3 out of 15 sequences (a) baseline: highway (b)
lowFramerate: turnpike 0 5fps (c) dynamicbackground: canoe . The first column is
input image, the second column is ground truth, third-sixth columns are the proposed
model, FgSegNet 3-scale, FgSegNet 1-scale, MobileNet+UNet respectively.

4.4 Conclusion

In this chapter, we devise an efficient deep network model based on depthwise and point-

wise convolution and deconvolution for moving object detection in surveillance video. The

proposed model uses a simple network structure with simplified convolution operations.

Experimental studies demonstrated the effectiveness of our proposed model.
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CHAPTER 5

Proposed Method and Experiments - 3DS MM

5.1 Introduction

As introduced in Chapter 3.3, 3D separable Convolution [96] has advantages in extracting

temporal information to help further increase detection accuracy better than 2D separable

Convolution.

In this chapter, we propose an efficient 3D separable convolutional neural network

with a multi-input multi-output strategy called “3DS MM”. This model is tailored for

computation-resource-limited and delay-sensitive applications. Compared to state-of-the-

art models, it significantly increases inference speed and reduces model size, meanwhile

increasing detection accuracy or maintaining a competitive detection accuracy. Our key

contributions are as follows:

• We propose a new 3D separable CNN for moving object detection. The proposed

network adopts 3D convolution to explore spatio-temporal information in the video

data and to improve detection accuracy. To reduce computational complexity and

model size, the 3D convolution is decomposed into a depthwise convolution and

a pointwise convolution. While existing 3D separable CNN schemes all addressed

other problems such as gesture recognition, force prediction, 3D object classification

or reconstruction, our work applied it to the moving object detection task for the first

time in the literature.

• We propose a multi-input multi-output (MIMO) strategy. While existing networks
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are single-input single-output, multi-input single output, or two-input two-output,

our MIMO network can take multiple input frames and output multiple binary masks

using temporal-dimension in each sample. This MIMO embedded in 3D separable

CNN can further increase model inference speed significantly and maintain high

detection accuracy. To the best of our knowledge, this is the first time in the literature

that such kind of MIMO scheme is used in the MOD task.

• We demonstrate that the proposed 3DS MM offers overwhelmingly high inference

speed in frames per second (154 fps) and extremely small model size (1.45 MB),

while achieving the best detection accuracy in terms of F-measure, S-measure, E-

measure, and MAE among all models in scene dependent evaluation (SDE) setup

and achieving the best detection accuracy among the models with inference speeds

exceeding 65 fps in scene independent evaluation (SIE) setup. The SDE setup is

widely used to tune and test the model on a specific video as the training and test

sets are from the same video. The SIE setup originally raised in [52] is specifically

designed to assess the generalization capability of the model on completely unseen

videos.

The rest of the chapter is organized as follows. In Section 5.2, we elaborate on our

proposed network in detail. Section 5.3 explains the training and evaluation setup of the

experiments. Section 5.4 describes our experimental results compared to the state-of-the-

art models. Section 5.5 concludes the chapter.

In this chapter, we extend the 2D separable CNN to a 3D separable CNN, which re-

duces the computational complexity compared to standard 3D CNN. Although some exist-

ing works [97, 98, 99, 100] adopt 3D separable CNN to extract high-dimensional features,

none of them applied it to the problem of moving object detection. For example, the 3D

separable CNN in [97] is for hand-gesture recognition, in which the last two layers of
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the network are fully connected layers that output class labels. The 3D separable CNN

in [98] is used for two tasks: 3D object classification and reconstruction. Neither task

utilizes temporal data, hence no temporal convolution is involved. The 3D separable CNN

in [99] is to predict interactive force between two objects, hence its network output is

a scalar representing the predicted force value. This problem essentially is a regression

problem. Besides, the way that the 3D convolution is separated in [99, 100] is differ-

ent from our proposed method. It first conducts channel-wise 2D convolution for each

independent frame and channel, then conducts joint temporal-channel-wise convolution.

In contrast, our proposed 3D separable CNN performs spatial-temporal convolution first,

then performs pointwise convolution along the channel direction.

As introduced in Section 2.3, another factor that limits the inference speed is the input-

output relationship. The input-output relationship of existing moving object detection

networks has two types: (1) single-input single-output (SISO), which is widely exploited

in 2D CNNs such as FgSegNet S [40] and 2D separable CNN [59]; and (2) multi-input

single-output (MISO) which can be found in 3D CNNs such as 3D-CNN-BGS [55], 3DA-

trous [56], and DMFC3D [53]. The disadvantage of SISO and MISO is that they result in

a slow inference speed because only one frame output is predicted in every forward pass.

In this chapter, we propose a multi-input multi-output (MIMO) strategy, which can take

multiple input frames and output multiple frames of binary masks in each sample. It ex-

plores temporal correlations on a larger time span and significantly increases the inference

speed when embedded in 3D separable CNN.

As introduced in Section 2.3, another issue for supervised methods is the generalization

capability of the trained models on completely unseen videos.

In this chapter, we devise a new lightweight 3D separable CNN specifically for mov-

ing object detection in computation-resource-limited and delay-sensitive scenarios. It has
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an efficient end-to-end encoder-decoder structure with a multi-input multi-output (MIMO)

strategy, named as the “3DS MM”. The proposed 3DS MM does not require explicit back-

ground modeling. We evaluate the model over CDnet2014 [80] dataset in an SDE frame-

work with other state-of-the-art models, and we also assess the generalization capability of

the model over CDnet2014 and DAVIS2016 [101] datasets in SIE setups over completely

unseen videos.

The proposed 3DS MM significantly increases the inference speed, reduces the train-

able parameters, computational complexity and model size, meanwhile achieving the high-

est detection accuracy in SDE setup and maintaining a competitive detection accuracy in

SIE setup.

5.2 Proposed 3DS MM Network

The proposed deep moving object detection network shown in Fig. 5.10 is based on two

major designs: (1) the encoder-decoder-based 3D separable CNN and (2) the multi-input

multi-output (MIMO) strategy. This section describes the proposed approach in detail.
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Table 5.4: Proposed network configuration. The encoder consists of blocks 0 to 5,
and the decoder consists of blocks 6 to 8.

Layer Type / Stride (Filter Shape) × Filters Output Shape 

                           

Conv3D / s=[1,1,1]

Conv3D dw / s=[1,2,2]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[1,2,2]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3D dw / s=[2,1,1]

Conv3D pw / s=[1,1,1]

Conv3DTrans pw/s=[3,2,2]

Conv3D dw/s=[1,1,1]

Conv3DTrans pw/s=[1,2,2]

Conv3D dw / s=[1,1,1]

Conv3DTrans pw/s=[1,1,1]

Sigmoid Activation                           

block 0

D
ec

o
d

er

block 6

block 7

block 8

E
n

co
d

er

block 1
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The output shape is in data format “LHWC”, where L is the temporal length, H is the height, W is the width,
C is the number of channels, dw represents “depthwise convolution”, pw represents “pointwise convolution”,
and s represents the strides in temporal length, height, and width.
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Figure 5.10: The architecture of the proposed 3DS MM.
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5.2.1 Encoder-decoder-based 3D separable CNN

As shown in Fig. 5.10, the proposed network is an encoder-decoder-based CNN utilizing

the 3D separable convolution as described in Section 3.3. The network involves six blocks

in the encoder network and three blocks in the decoder network. These block numbers

are selected to provide a good trade-off between the inference speed and the detection

accuracy empirically. Table 5.4 shows the details of the network and the shape of the input

and output in each layer.

The Encoder Network

For each training sample, the input to the encoder network is a set of video frames in a

4D shape of 9 × H × W × 3 without background frame needed, where 9 is the number

of video frames, H and W are the height and width of the video frames, and 3 is the

RGB color channels. In Fig. 5.10, t0, t1, t2, t3, t4... represent different time slots. In the first

step, the standard 3D convolution described in Fig. 3.5(a) is adopted with 32 filters of size

3× 3× 3× 3 to calculate the convolution on nine input frames. The input video frames are

transformed to 32 feature maps in a shape of 9×H×W ×32 at the output. In the following

blocks, each of the output feature maps of each layer is convolved with an independent

filter of size 3 × 3 × 3 × 1 with strides [1, 2, 2] (in the direction of temporal length, height,

width) for depthwise convolution, and then convolved with Co filters of size 1× 1× 1×Ci

with strides [1, 1, 1] for pointwise convolution.

The Decoder Network

The output of the encoder network is fed to the decoder network for decoding to produce

the binary masks of the moving objects.
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Each layer of the decoder network adopts a transposed convolution, which spatially up-

samples the encoded features and finally generates the binary masks at the same resolution

as the input video frames.

The standard transposed convolution is split into a 1D pointwise transposed convolu-

tion and a 3D depthwise transposed convolution. These operations are defined similarly to

the 1D pointwise convolution and the 3D depthwise convolution in the encoder network.

In block 6 shown in Table 5.4, the encoder output of size 2 × H
4 ×

W
4 × 512 is converted to

a tensor of size 6 × H
2 ×

W
2 × 256 using the 1D pointwise transposed convolution with 256

filters of size 1 × 1 × 1 × 512.

By setting strides to be [3, 2, 2] for the temporal length, height and width in the point-

wise transposed convolution, the feature maps are up-scaled by 3 times from 2 to 6 in

the temporal length and enlarged by 2 times in height and width. Then followed by a 3D

depthwise transposed convolution with 256 filters of size 3× 3× 3× 1 and strides [1, 1, 1],

the feature maps are projected to a tensor of size 6 × H
2 ×

W
2 × 256 at the output of block

6. Block 7 is similarly defined. In the final block, the feature maps are projected to a 4D

output of size 6 × H × W × 1, and a sigmoid activation function is appended to generate

the probability masks for 6 successive frames. A threshold of 0.5 is applied to convert the

probability masks to binary masks that indicate the detected moving objects.

5.2.2 MIMO strategy

Fig. 5.11 illustrates our proposed MIMO strategy and how it is different from SISO and

MISO. The temporal-dimension L of a 4D input or output of size L×H×W×C is redefined

as the number of input frames Li and the number of output masks Lo. By applying different

padding and stride values in the convolutions in the neural network, different number of

output masks Lo can be predicted. In our study, we set Li as 9 and Lo as 6. As shown in
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Figure 5.11: Left: Difference between Single-Input Single-Output (SISO), Multi-
Input Single-Output (MISO), and Multi-Input Multi-Output (MIMO). Right: The
proposed MIMO strategy used in the inference process.

Fig. 5.11 (above), in the inference process, two groups of 9 input frames with 3 frames

overlapped can output two successive groups of 6 binary masks.

We also analyze how computational complexity can be reduced from MISO to this

MIMO scheme. Let us consider our proposed network in Table 5.4. With the proposed

MIMO scheme, the output layer in block 8 is of size Lo ×Ho ×Wo × (Co = 1). Since block

8 mainly requires a pointwise convolution, the multiplications required to generate such

output layer is 1 × 1 × 1 × Ci × Lo × Ho × Wo × (Co = 1) = Ci × Lo × Ho × Wo. Denote

the total multiplications from block 0 to block 7 as M0−7, then the overall complexity of

generating Lo binary masks is

M0−7 +Ci × Lo × Ho ×Wo. (5.15)

With the same network structure, if we adopt a MISO scheme, then the output layer is of

size (Lo = 1) × Ho ×Wo × (Co = 1). The multiplications involved in block 8 to generate

such output layer is 1 × 1 × 1 × Ci × (Lo = 1) × Ho ×Wo × (Co = 1) = Ci × Ho ×Wo. To
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generate Lo output binary masks, the overall complexity is

(M0−7 +Ci × Ho ×Wo) × Lo = M0−7 × Lo +Ci × Lo × Ho ×Wo. (5.16)

Therefore, to output the same number of binary masks, MISO requires (5.16) − (5.15) =

(Lo − 1) × M0−7 more multiplications than MIMO.

5.3 Training and Evaluation Setup

Table 5.5: Different data division schemes of scene dependent evaluation (SDE) and
scene independent evaluation (SIE).

To analyze how the proposed model performs, we conducted three experiments illus-

trated in Table 5.5: (1) video-optimized SDE setup on CDnet2014 dataset, (2) category-

wise SIE setup on CDnet2014 dataset, and (3) complete-wise SIE setup on DAVIS2016

dataset. In SDE [52], frames in training and test sets were from the same video, whereas, in

SIE [52], completely unseen videos were used for testing. Further, in category-wise SIE,

the training and testing were done per category over CDnet2014, whereas, in complete-

wise SIE, training and testing were done over the complete DAVIS2016 dataset.
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All the experiments were carried out on an Intel Xeon with an 8-core 3GHz CPU and

an Nvidia Titan RTX 24G GPU. The following sections present the details of the training

and evaluation processes and performance evaluation metrics.

5.3.1 Video-optimized SDE setup on CDnet2014 dataset

The CDnet2014 dataset [80] was used in the experiment. It contains 11 video categories:

baseline, badWeather, shadow, and so on. Each category has four to six videos, resulting in

a total of 53 videos (e.g., the baseline category has sequences highway, office, pedestrians,

and PETS2006). A video contains 900 to 7, 000 frames. The spatial resolution of the video

frames varies from 240 × 320 to 576 × 720 pixels. In our experiments, we excluded the

PTZ (pan–tilt–zoom) category since the camera has excessive motion.

We trained deep learning-based methods DeepBS [42], MSFgNet [43], VGG-PSL-

CRF[44], BSPVGAN [62], RMS-GAN [65], MSCNN+Cascade [36], MsEDNet [39],

FgSegNet S [40], FgSegNet M [40], FgSegNet v2 [41], 2D Separable CNN [59] and our

proposed 3DS MM in the same video-optimized SDE setup, in which a specific model

was trained for each video.

From each video, we selected the first 50% of frames as the training set and the last

50% of frames as the test set. The SISO-based networks and the proposed MIMO-based

3DS MM were using exactly the same frames for training. Suppose that one video con-

tained 100 frames, then for the SISO-based networks, the first 50 frames t0∼t49 were

used for training, and the last 50 frames t50∼t99 were used for testing. For our proposed

3DS MM, a 9-frame window slid over the same first 50% of frames, such as t0∼t8, t1∼t9,

t2∼t10,. . . ,t41∼t49 to form the training set if the stride was 1, and t50∼t99 frames were for

testing. In this way, all the deep-learning-based models were using the same frames for

training. The only difference was that for the proposed network, the first 50% of frames
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were repeatedly utilized through the sliding operation. The traditional unsupervised meth-

ods WeSamBE [15], SemanticBGS [16], PAWCS [18], and SuBSENSE [20] were also

tested on the same last 50% frames for performance comparison.

We used the RMSprop optimizer with binary cross-entropy loss function and trained

each model for 30 epochs with batch size 1. The learning rate was initialized at 1 × 10−3

and was reduced by a factor of 10 if the validation loss did not decrease for 5 successive

epochs.

5.3.2 Category-wise SIE setup on CDnet2014 dataset

In order to evaluate the generalization capability of the proposed 3DS MM, we also run

experiments for the SIE setup. Compared to SDE, in SIE the training and test sets contain

a completely different set of videos. In the category-wise SIE setup, the training and eval-

uation were conducted per category. A leave-one-video-out (LOVO) strategy originally

raised in [52] was applied to divide videos in each category into training and test sets for

CDnet2014 dataset. For example, the baseline category contains four videos, then three

videos (highway, office, PETS2006) were used for training, and the 4th video (pedestrians)

was for testing. This SIE setup was carried out on seven categories, so for each method in

comparison, seven models were trained totally from scratch.

The traditional unsupervised methods WeSamBE [15], PAWCS [18], and SuB-

SENSE [20] were compared in the category-wise SIE setup. We also compared our pro-

posed 3DS MM with the other DNN-based networks such as BMN-BSN [49], BSUV-

Net [50], BSUV-Net 2.0 [51], and ChangeDet [52] which were demonstrated to have great

performance on unseen videos.

We used the RMSprop optimizer with binary cross-entropy loss function and trained

the model for 30 epochs with batch size 5. The learning rate was initialized at 1 × 10−3
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and was reduced by a factor of 10 if the validation loss did not decrease for five successive

epochs.

5.3.3 Complete-wise SIE setup on DAVIS2016 dataset

We also conducted an experiment in complete-wise SIE setup on DAVIS2016 dataset.

Different from the category-wise setup on CDnet2014, the complete-wise setup on

DAVIS2016 refers to the training and evaluation on the whole dataset. In our experi-

ment, 30 videos in DAVIS2016 dataset were used in training, and 10 completely unseen

videos were used for testing. For each method in comparison, only one unified model was

trained from scratch without using any pre-trained model data.

Semi-supervised deep learning-based methods such as MSK [70], CTN [71],

SIAMMASK [72], PLM [75], and HEGNet [73], as well as FgSegNet S [40], FgSeg-

Net M [40], FgSegNet v2 [41], and 2D Separable CNN [59] were trained and tested in

the same SIE setup as our proposed 3DS MM. We used the same training configuration

parameters (optimizer, loss function, epochs, batch size, learning rate, etc.) as those in

Section 5.4.2.

5.4 Experimental Results and Discussion

5.4.1 Ablation study

We first investigated the influence of different components of our proposed 3DS MM

through ablation experiments. In order to quantify the effect of two components “3D sepa-

rable CNN” and “MIMO” in 3DS MM, we conducted four experiments over 10 categories
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of CDnet2014 dataset in SDE setup. The results are shown in Table 5.6. We began with the

standard 3D CNN and a MISO strategy, namely “3D CNN +MISO”. It has an F-measure

of 0.9532, a very low inference speed of 26 fps, approximately 9.13 M trainable parame-

ters, and a computational complexity of 693.31 GFLOPs, which generates 1 output binary

mask. To generate 6 output masks, the GFLOPs need to be multiplied by 6 (×6). We

then replaced the standard 3D CNN by the 3D separable CNN, while the MISO strategy

was retained. For a fair comparison, the 3D CNN and the 3D separable CNN structures

adopted the same number of network layers, and their intermediate layers have the same

output sizes. The resultant “3D separable CNN + MISO” method has a slightly reduced

F-measure, but the inference speed increased from 26 fps to 31 fps. More importantly, the

parameters and FLOPs were drastically reduced, due to the separable convolution opera-

tions. On the other hand, we retained the standard 3D CNN but replaced MISO by MIMO.

In particular, we kept the front part of the network the same and only modify the last layer

to output 6 binary masks instead of a single mask. The resultant method “3D CNN +

MIMO” significantly increased the inference speed (144 fps) compared to “3D CNN +

MISO”.

Finally, the proposed “3D separable CNN + MIMO” method has a superior inference

speed (154 fps) due to the MIMO strategy, as well as the fewest trainable parameters

(∼0.36 M) and FLOPs (∼28.43 G) due to 3D separable convolutions. The above results

have justified the effectiveness of our proposed model design.
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Table 5.6: Ablation study of the proposed 3DS MM.

Methods
Accuracy  ↑ 

(F-measure)

Inference Speed ↑  

(fps)

# Param ↓

(M)

FLOPs↓

(G)

3D CNN + MISO 0.9532 26 ~9.13 ~693.31 (×6)

3D separable CNN + MISO 0.9521 31 ~0.36 ~28.40 (×6)

3D CNN + MIMO 0.9522 144 ~9.13 ~693.97

3D separable CNN + MIMO 0.9517 154 ~0.36 ~28.43

#Param: Number of trainable parameters; M: millions; FLOPs: floating point operations, G: gigaflops; (×6):
six times the FLOPs in order to generate the same number of output masks as the ‘MIMO’ strategy.

5.4.2 Objective performance evaluation

Objective Results in Video-Optimized SDE Setup on CDnet2014

The accuracy comparison of various methods in SDE setup in each video category is

shown in Table 5.7. Each row lists the inference speed, F-measure, S-measure, E-measure

and MAE values for a specific method, each column lists the algorithm category, learn-

ing type (supervised or unsupervised learning), input-output relationship (SISO, MISO

or MIMO), inference speed, GPU type, and F-measure values averaged on test frames

from a certain video category, while the last four columns show the average F-measure, S-

measure, E-measure and MAE values across all video categories. The first four classical

methods are traditional non-deep learning-based methods. These traditional models are

tested on the same last 50% of frames as the other compared models. In the subsequent

rows, the results of deep learning-based models, including our proposed model are ob-

tained by training and testing in exactly the same SDE setup as introduced in Section 5.4.4.

In Table 5.7, we highlight the best value in each column in bold. We observe that our pro-

posed 3DS MM model achieves the highest inference speed at 154 fps, and performs best

in BDW-badWeather, DBG-dynamicBackground, IOM-intermittentObjectMotion, LFR-

lowFramerate, and Turbulance categories in F-measure. It improved the average F-

57



measure by 1.1% and 1.4% compared to methods with the second and third highest average

F-measure values in Table 5.7. It also offers the highest average S-measure, E-measure,

and the lowest average MAE values among all methods.

Objective Results in Category-Wise SIE Setup on CDnet2014

Table 5.8 lists the comparison results in category-wise SIE setup. Each column lists the

inference speed and accuracy metrics values calculated on the unseen video being left out

from each category for testing in the LOVO strategy. The models FgSegNet S [40], FgSeg-

Net M [40], FgSegNet v2 [41], BMN-BSN [49], BSUV-Net [50], BSUV-Net 2.0 [51],

and ChangeDet [52] were trained and evaluated in the same SIE setup introduced in Sec-

tion 5.4.2 as our proposed 3DS MM. Our proposed 3DS MM (with an inference speed

at 154 fps, an F-measure of 0.8499, an S-measure of 0.8632, an E-measure of 0.9445,

and an MAE of 0.0545) outperforms all the other listed methods in inference speed, while

maintaining high detection accuracy by outperforming FgSegNet S, FgSegNet M, FgSeg-

Net v2, BMN-BSN, BSUV-Net, and BSUV-Net 2.0 by 26.6%, 34.8%, 24.9%, 7.2%, 2.7%,

and 3.9% in F-measure, respectively. It achieves similar superiority in terms of S-measure,

E-measure and MAE as well. Although ChangeDet [52] offers relatively better detection

accuracy than our model, the inference speed of our model is 2.6 times that of ChangeDet.

Objective Results in Complete-Wise SIE Setup on DAVIS2016

All the models listed in Table 5.9 were trained and evaluated in the same complete-wise

SIE setup as described in Section 5.4.2. It is more challenging for a model to perform well

in such SIE setup on DAVIS2016 dataset, because (1) the complete-wise SIE setup mixes

30 different kinds of videos from the real-world together for training, and (2) the content

complexity of DAVIS2016 dataset is high. We compared our proposed model 3DS MM
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(with an inference speed at 154 fps and an average F-measure of 0.7317, S-measure of

0.7492, E-measure of 0.8024 and MAE of 0.2089 over 10 test videos) to the state-of-the-

art semi-supervised deep learning-based models MSK [70], CTN [71], SIAMMASK [72],

HEGNet [73], and PLM [75]. It turns out that our proposed model is superior over these

models in inference speed. Besides, our model improved F-measure by 2.5%, 9.6% and

6.5% compared to CTN, PLM and SIAMMASK, respectively, and its F-measure is on

par with HEGNet. Although MSK offers 1.5% higher F-measure than ours, its inference

speed is extremely low. Our proposed model also outperforms the supervised learning-

based models FgSegNet S [40], FgSegNet M [40], FgSegNet v2 [41], and 2D Separable

CNN [59] in F-measure by 10.3%, 11.7%, 10.6%, and 16.5%, respectively. Our proposed

method demonstrates a similar superiority in S-measure, E-measure and MAE values.

Although there are other models in DAVIS Challenge with higher accuracy than our model,

those models are far less efficient and their inference speed is too slow to be applied in

delay-sensitive scenarios.
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Table 5.7: Comparative F-measure, S-measure, E-measure and MAE performance in video-optimized SDE setup on
CDnet2014 dataset.

S-measure ↑ E-measure ↑ MAE ↓

BDW BSL CJT DBG IOM NVD LFR SHD THM TBL Avg Avg Avg Avg

WeSamBE [15] 2 CPU i5 0.8530 0.9293 0.7830 0.7274 0.7256 0.5801 0.6532 0.8492 0.7768 0.7667 0.7644 0.7835 0.8536 0.1423

SemanticBGS [16] 7 Titan 0.8190 0.9488 0.8332 0.9326 0.7742 0.4886 0.7818 0.9050 0.8025 0.6851 0.7971 0.8094 0.8935 0.1002

PAWCS [18] 27 CPU i5 0.8072 0.9277 0.7996 0.8772 0.7628 0.4024 0.6518 0.8719 0.8130 0.6350 0.7549 0.7644 0.8478 0.1453

SuBSENSE [20] 30 CPU i5 0.8539 0.9383 0.8006 0.8011 0.6433 0.5471 0.6375 0.8797 0.7977 0.7722 0.7671 0.7790 0.8598 0.1394

VGG-PSL-CRF [42] 4.9 Titan 0.8869 0.9474 0.9276 0.7190 0.7405 0.7398 0.6105 0.8890 0.8352 0.9137 0.8210 0.8398 0.9157 0.0801

DeepBS [40] 10 Titan 0.8221 0.9460 0.8844 0.8593 0.5962 0.5777 0.5932 0.9116 0.7389 0.8385 0.7768 0.7956 0.8712 0.1184

MSFgNet [41] 83.8 Titan 0.8424 0.9091 0.8167 0.8348 0.7669 0.7973 0.8352 0.9151 0.7822 0.8572 0.8357 0.8545 0.9266 0.0613

BSPVGAN[60] 10 Titan 0.9564 0.9717 0.9747 0.9683 0.9230 0.8873 0.8448 0.9732 0.9570 0.9240 0.9380 0.9466 0.9856 0.0123

RMS-GAN [63] 50 Titan 0.9490 0.9658 0.9624 0.9612 0.9342 0.8812 0.9333 0.9262 0.9510 0.9434 0.9407 0.9490 0.9825 0.0155

MsEDNet [37] 13.6 Titan 0.8975 0.9248 0.9027 0.8902 0.8051 - - 0.9002 0.8621 - 0.8832 0.8897 0.9766 0.0204

MSCNN+Cascade [34] 50 Titan 0.9351 0.9666 0.9612 0.9492 0.8358 0.8837 0.8312 0.9227 0.8764 0.9038 0.9066 0.9190 0.9568 0.0413

FgSegNet_M [38] 69 Titan 0.9307 0.9528 0.9403 0.9136 0.8943 0.8830 0.8897 0.9153 0.9160 0.7964 0.9032 0.9166 0.9789 0.0224

FgSegNet_S [38] 82 Titan 0.9331 0.9608 0.9407 0.9233 0.9045 0.8871 0.9123 0.9197 0.9152 0.7980 0.9095 0.9236 0.9758 0.0241

FgSegNet_v2 [39] 89 Titan 0.9396 0.9680 0.9475 0.9143 0.8985 0.8736 0.9247 0.9152 0.9196 0.8179 0.9119 0.9184 0.9876 0.0112

2D_Separable CNN [57] 149 Titan 0.9165 0.9552 0.9401 0.9324 0.9352 0.8459 0.9255 0.9030 0.9067 0.8936 0.9154 0.9304 0.9858 0.0123

Proposed 3DS_MM 154 Titan 0.9571 0.9704 0.9417 0.9686 0.9637 0.8848 0.9736 0.9432 0.9516 0.9621 0.9517 0.9687 0.9945 0.0067

Method

GANs  (SV, SISO)

(SV, MISO)

F-measure ↑

Traditional Methods (unSV)

Deep CNNs  (SV, MISO)

Accuracy

GPU

Inference 

Speed ↑ 

(fps) 

Algorithms

(Learning type, Input-Output)

3D Separable (SV, MIMO)

2D Separable (SV, SISO)

Multiscale CNNs (SV, MISO)

Deep CNNs  (SV, SISO)

unSV: unsupervised learning, SV: supervised learning, SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input multi-
output. The best value in each column is highlighted in bold. ↑ Larger value of the metric denotes better performance. ↓ Smaller value of the metric
denotes better performance.
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Table 5.8: Comparative F-measure, S-measure, E-measure and MAE performance in category-wise SIE setup for unseen
videos on CDnet2014 dataset.

S-measure ↑ E-measure ↑ MAE ↓

blizzard-

BDW

pedestrians-

BSL

boats- 

DBG

turnpike5fps-

LFR

winterStreet-

NVD

busStation-

SHD

corridor-

THM
Avg Avg Avg Avg

WeSamBE [15] unSV 2 CPU i5 0.8584 0.9569 0.6401 0.9130 0.5900 0.8628 0.8944 0.8165 0.8198 0.9112 0.0723

PAWCS [18] unSV 27 CPU i5 0.6612 0.9511 0.8820 0.9072 0.4610 0.8583 0.6489 0.7671 0.7746 0.8003 0.1789

SuBSENSE [20] unSV 30 CPU i5 0.8501 0.9500 0.6893 0.8531 0.4469 0.8577 0.9129 0.7943 0.7990 0.8432 0.1432

BSUV-Net [48] SV, MISO 6 Titan 0.8195 0.9765 0.9004 0.6802 0.6100 0.9398 0.8350 0.8231 0.8342 0.9109 0.0691

BSUV-Net 2.0 [49] SV, MISO 29 Titan 0.8310 0.9630 0.8750 0.7077 0.6170 0.8012 0.8743 0.8100 0.8301 0.9032 0.0910

BMN-BSN [47] SV, MISO 48 Titan 0.8401 0.9523 0.6400 0.6893 0.6122 0.9211 0.7933 0.7783 0.7894 0.8712 0.1213

ChangeDet [50] SV, MISO 58.8 Titan 0.9484 0.9490 0.9182 0.8492 0.7699 0.7801 0.8350 0.8643 0.8798 0.9484 0.0466

FgSegNet_M [38] SV, MISO 69 Titan 0.5511 0.7209 0.6857 0.2233 0.4200 0.6051 0.3104 0.5024 0.5232 0.6043 0.3812

FgSegNet_S [38] SV, SISO 82 Titan 0.7412 0.6478 0.4045 0.5767 0.4500 0.5244 0.7435 0.5840 0.5987 0.6543 0.3778

FgSegNet_v2 [39] SV, SISO 89 Titan 0.6990 0.6310 0.6189 0.5290 0.4300 0.5415 0.7590 0.6012 0.6281 0.7223 0.2712

Proposed 3DS_MM SV, MIMO 154 Titan 0.8942 0.9165 0.7998 0.9147 0.7856 0.7978 0.8409 0.8499 0.8632 0.9445 0.0545

Accuracy

Method
Learning Type,

Input-Output

Inference 

Speed ↑ 

(fps) 

GPU
F-measure ↑

unSV: unsupervised learning, SV: supervised learning, SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input multi-
output. The best value in each column is highlighted in bold. The second best average accuracy values are also highlighted. ↑ Larger value of the metric
denotes better performance. ↓ Smaller value of the metric denotes better performance.)
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Table 5.9: Comparative F-measure, S-measure, E-measure and MAE performance in complete-wise SIE setup for unseen
videos on DAVIS2016 dataset.

S-measure ↑ E-measure ↑ MAE ↓

camel car-

roundab

out

car-

shadow

cows goat horsejump-

high

kite-

surf

paragliding-

launch

parkour soapbox
Avg Avg Avg Avg

MSK [68] semi-SV, MISO 0.5 Titan 0.7350 0.9260 0.9480 0.8120 0.8140 0.8510 0.4380 0.2290 0.8740 0.8420 0.7469 0.7598 0.8068 0.1900

CTN [69] semi-SV, MISO 4.5 Titan 0.7250 0.7750 0.8670 0.7750 0.7460 0.8660 0.4600 0.2270 0.8820 0.7440 0.7067 0.7123 0.7855 0.2102

PLM [73] semi-SV, MISO 9.5 Titan 0.6130 0.7140 0.7310 0.7410 0.6940 0.7860 0.4560 0.1810 0.8120 0.6300 0.6358 0.6436 0.6975 0.2890

HEGNet [71] semi-SV, MISO 12.5 Titan 0.7490 0.7892 0.7798 0.7792 0.7312 0.7402 0.6843 0.7392 0.8029 0.6500 0.7304 0.7489 0.7837 0.2110

SIAMMASK [70] semi-SV, MISO 78 Titan 0.7480 0.8720 0.9780 0.7720 0.7210 0.6880 0.3260 0.1910 0.8290 0.5470 0.6672 0.6703 0.7182 0.2701

FgSegNet_M [38] SV, MISO 69 Titan 0.6047 0.4892 0.8704 0.5620 0.4009 0.6199 0.6308 0.8639 0.5190 0.5835 0.6144 0.6265 0.7034 0.2803

FgSegNet_S [38] SV, SISO 82 Titan 0.6163 0.5194 0.8940 0.5356 0.4063 0.6273 0.6904 0.8738 0.5345 0.5902 0.6288 0.6398 0.7134 0.2511

FgSegNet_v2 [39] SV, SISO 89 Titan 0.6201 0.5120 0.8744 0.5309 0.4509 0.5940 0.6820 0.8729 0.5029 0.6194 0.6260 0.6379 0.7201 0.2710

2D_Separable CNN [57] SV, SISO 149 Titan 0.5235 0.5286 0.8304 0.5387 0.4701 0.3815 0.4729 0.8163 0.4818 0.6209 0.5665 0.5934 0.6235 0.3723

Proposed 3DS_MM SV, MIMO 154 Titan 0.7495 0.7103 0.7849 0.7039 0.7290 0.6103 0.7012 0.8749 0.7693 0.6835 0.7317 0.7492 0.8024 0.2089

Accuracy

Method
Learning Type,

Input-Output

Inference 

Speed ↑ 

(fps) 

GPU
F-measure ↑

semi-SV: semi-supervised learning, SV: supervised learning. SISO: single-input single-output, MISO: multi-input single-output, MIMO: multi-input
multi-output. The best value in each column is highlighted in bold. The second best average accuracy values are also highlighted. ↑ Larger value of the
metric denotes better performance. ↓ Smaller value of the metric denotes better performance.)
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5.4.3 Accuracy, speed, memory, and computational complexity

Fig. 5.12 displays the detection accuracy metrics in F-measure, S-measure, E-measure and

MAE versus the inference speed of all the compared models in the SDE setup, category-

wise SIE setup, and complete-wise SIE setup. Since we aim at delay-sensitive applica-

tions, we expect our proposed 3DS MM to offer overwhelmingly high inference speed, and

a superior detection accuracy among models with high inference speeds. In Fig. 5.12, we

observe that our proposed 3DS MM surpasses all the other schemes in inference speed in

all three experiment setups. In terms of the F-measure, S-measure, E-measure and MAE,

in the SDE setup our method is the best among all models, while in both the category-wise

and complete-wise SIE setups our method is the best among all models with an inference

speed above 65 fps.
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Table 5.10: The comparison between our proposed method and other deep learning-based methods for speed, trainable
parameters, computational complexity, model size, and accuracy metrics values. The Table is sorted in ascending order
of the inference speed.

F ↑ S↑ E ↑ MAE ↓ F ↑ S↑ E ↑ MAE ↓ F ↑ S↑ E ↑ MAE ↓

MSK [68] 0.5 - - - - - - - - - - - 0.7469 0.7598 0.8068 0.1900

CTN [69] 4.5 - - - - - - - - - - - 0.7067 0.7123 0.7855 0.2102

VGG-PSL-CRF [42] 4.9 ~  48.72 ~3270 G 127 0.8210 0.8398 0.9157 0.0801 - - - - - - - -

BSUV-Net [48] 6.0 - - 116 - - - - 0.8231 0.8342 0.9109 0.0691 - - - -

PLM [73] 9.5 - - - - - - - - - - - 0.6358 0.6436 0.6975 0.2890

DeepBS [40] 10.0 ~ 3.15 ~1750 G 28.46 0.7768 0.7956 0.8712 0.1184 - - - - - - - -

BSPVGAN [60] 10.0 - - - 0.9380 0.9466 0.9856 0.0123 - - - - - - - -

HEGNet [71] 12.5 - - - - - - - - - - - 0.7304 0.7489 0.7837 0.2110

MsEDNet [37] 13.6 ~ 23.29 ~1120 G 95 0.8832 0.8897 0.9766 0.0204 - - - - - - - -

BSUV-Net 2.0 [49] 29.0 ~15.90 ~540 G 110 - - - - 0.8100 0.8301 0.9032 0.0910 - - - -

BMN-BSN [47] 48.0 - - - - - - - 0.7783 0.7894 0.8712 0.1213 - - - -

MSCNN+Cascade [34] 50.0 ~ 10.30 ~318 G 76.35 0.9066 0.9190 0.9568 0.0413 - - - - - - - -

RMS-GAN [63] 50.0 - - - 0.9407 0.9490 0.9825 0.0155 - - - - - - - -

ChangeDet [50] 58.8 ~ 0.13 ~262 G 1.59 - - - - 0.8643 0.8798 0.9484 0.0466 - - - -

FgSegNet_M [38] 69.0 ~ 15.83 ~220 G 60.40 0.9032 0.9166 0.9789 0.0224 0.5024 0.5232 0.6043 0.3812 0.6144 0.6265 0.7034 0.2803

SIAMMASK [70] 78.0 - - - - - - - - - - - 0.6672 0.6703 0.7182 0.2701

 FgSegNet_S [38] 82.0 ~ 8.16 ~199 G 31.20 0.9095 0.9236 0.9758 0.0241 0.5840 0.5987 0.6543 0.3778 0.6288 0.6398 0.7134 0.2511

MSFgNet [41] 83.8 ~ 0.29 ~193 G 1.48 0.8357 0.8545 0.9266 0.0613 - - - - - - - -

FgSegNet_v2 [39] 89.0 ~ 7.49 ~181 G 29.80 0.9119 0.9184 0.9876 0.0112 0.6012 0.6281 0.7223 0.2712 0.6260 0.6379 0.7201 0.2710

Proposed 3DS_MM 154.0 ~ 0.36 ~28.43 G 1.45 0.9517 0.9687 0.9945 0.0067 0.8499 0.8632 0.9445 0.0545 0.7317 0.7492 0.8024 0.2089

SIE 

(complete-wise)

 SIE 

(category-wise)Method
Inference Speed ↑  

(fps) 

# Param ↓

(M)

Model Size ↓

(MB)

FLOPs ↓ 

(G)

SDE

#Param: Number of trainable parameters; M: millions; G: gigaflops; F: F-measure; S: S-measure; E: E-measure; MAE: mean absolute error. The best
value in each column is highlighted in bold. The second best accuracy values are also highlighted. ↑ Larger value of the metric denotes better performance.
↓ Smaller value of the metric denotes better performance.
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18

(a) F-measure vs. Inference speed (b) S-measure vs. Inference speed

(c) E-measure vs. Inference speed (d) MAE vs. Inference speed

Figure 5.12: Accuracy vs. inference speed (in fps) on an NVIDIA Titan GPU of our proposed model and other compared
models in the three experiments (in SDE, category-wise SIE, and complete-wise SIE setup).
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In Table 5.10, we summarize the overall performance including inference speed, train-

able parameters, computational complexity, model size, and detection accuracy of our

proposed 3DS MM and other methods. The table is sorted in an ascending order of the

inference speed. It is evident that the proposed 3DS MM outperforms all the other listed

methods with the highest inference speed at 154 fps, which is increased by 1.7 times and

1.8 times respectively, compared to the second and third fastest methods in Table 5.10. The

computational complexity and the model size of our proposed method are 28.43 GFLOPs

and 1.45 MB, smaller than all the other models in Table 5.10, due to our proposed 3D

separable convolution.

In terms of detection accuracy (F-measure, S-measure, E-measure, and MAE), our pro-

posed model outperforms all other models in SDE setup. In category-wise SIE setup, our

proposed method offers the second best accuracy scores. Although it is slightly worse than

changeDet [52], its inference speed (154 fps) is 2.6 times that of ChangeDet (58.8 fps). In

complete-wise SIE setup, although our model offers slightly worse accuracy scores than

MSK [70], it offers overwhelming superiority in terms of inference speed. The extremely

low inference speed of MSK (0.5 fps) hinders the practical use of this model for delay-

sensitive applications.

The number of trainable parameters of our proposed model (∼0.36 million) is much

less than most of the models in comparison. The reason that ChangeDet [52] (∼0.13

million) and MSFgNet [43] (∼0.29 million) have fewer trainable parameters than ours

is because they use 2D filters and they are shallower networks with fewer convolutional

layers, while our proposed 3DS MM uses 3D filter and a deeper network. Nevertheless,

the inference speeds of ChangeDet and MSFgNet are much slower than ours since they

are both MISO networks. In contrast, our 3DS MM is able to significantly increase the

inference speed due to the proposed MIMO strategy and 3D separable convolution.
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5.4.4 Subjective performance evaluation

In addition to objective performance, we also provide visual quality comparison as shown

in Fig. 5.132, Fig. 5.14, and Fig. 5.15.

Subjective Results in Video-Optimized SDE Setup on CDnet2014

Input                   Ground Truth              Proposed       2D_Separable[57]      FgSegNet_S[38]     FgSegNet-v2[39]       BSPVGAN[60]   MSCNN+Cascade[34]    DeepBS[40]        SuBSENSE[20]        

BSL
(highway)

BDW
(snowFall)

NVD
(streetCorner

AtNight)

IOM
(sofa)

Figure 5.13: Visual comparison of sample results from CDnet2014 dataset in video-
optimized SDE setup. BSL: baseline, BDW: badWeather, NVD: nightVideo, IOM:
intermittentObjectMotion.

In Fig. 5.13, we randomly picked a sample test frame from categories BSL-baseline,

BDW-badWeather, NVD-nightVideos, and IOM-intermittentObjectMotion. We observe

that (1) the proposed 3DS MM provides more details and clearer edges in the detected

foreground objects, such as the car mirrors in “BSL” and “BDW”, and (2) the proposed

method detects more contiguous objects such as the bus in “NVD” and the walking man in

“IOM”. In contrast, the detected binary masks of other methods in comparison have either

blurry edges or missing parts.

2There are some non-ROI (non-region-of-interest) areas shown as gray color regions in the ground truth
images, which were not considered in the training.
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Subjective Results in Category-Wise SIE Setup on CDnet2014

In Fig. 5.14, we randomly select a sample frame from each of the four categories (BSL-

baseline, BDW-badWeather, LFR-lowFramerate, SHD-shadow) of CDnet2014 test results

to show the visual quality of the models in Category-Wise SIE setup. Our proposed model

has a better generalization capability compared to other models. It shows that our pro-

posed model detects clearer shapes of the persons in BSL and SHD, and detects more

details of person legs in SHD. The results of other methods, however, are either noisy,

blurry, or have missing parts. In addition, the proposed model performs better in BDW

and LFR categories with clear and correct shapes, while other models detect excessive or

non-contiguous content.

Input                   Ground Truth          Proposed        FgSegNet_S[38]     FgSegNet_M[38]     FgSegNet_v2[39]       BSUV-Net[48]      WeSamBE [15]        PAWCS [18]         SuBSENSE[20]        

BSL

(pedestrians)

BDW
(blizzard)

LFR
(turnpike5fps)

SHD

(busStation)

Figure 5.14: Visual comparison of unseen sample results from CDnet2014 dataset
in category-wise SIE setup. BSL: baseline, BDW: badWeather, LFR: lowFramerate,
SHD: shadow.

Subjective Results in Complete-Wise SIE Setup on DAVIS2016

In Fig. 5.15, we randomly select four videos (camel, horsejump-high, paragliding-

launch, and kite-surf) from the results of DAVIS2016. Our proposed model detects the

shapes of objects consistently well for all four videos, while the detection results of

2D Separable [59], FgSegNet S [40], FgSegNet v2 [41], and SIAMMASK [72] are either
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camel

horsejump-

high

paragliding-

launch

kite-surf

Input               Ground Truth          Proposed      2D_Separable[57]  FgSegNet_S[38]  FgSegNet_v2[39]        CTN [69]        SIAMMASK [70]        MSK [68]             PLM [73]                   

Figure 5.15: Visual comparison of unseen sample results from DAVIS2016 dataset in
complete-wise SIE setup.

noisy or incomplete. Besides, the detection results of CTN [71], MSK [70], and PLM [75]

for the kite-surf video are less accurate than the proposed model.

5.5 Conclusion

In this chapter, we propose the 3DS MM model for moving object detection. Our model

is designed specifically for memory- and computation-resource-limited environments and

for delay-sensitive tasks. Our model utilizes spatial-temporal information in the video

data via 3D convolution. The proposed 3D depthwise and pointwise convolutions with the

MIMO strategy effectively reduce computational complexity and significantly enhance

the inference speed. In addition, the 3D separable convolution leads to very few trainable

parameters and a small model size. Finally, the defined SDE and SIE experiments demon-

strate that our proposed model achieves superior detection accuracy among all compared

models with high inference speeds suitable for low-latency vision applications.
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CHAPTER 6

Proposed Method and Experiments - F3DsCNN

6.1 Introduction

In this chapter, we extend the way of using 3D separable convolution. Instead of one-

branch Encode-decoder structure in ”3DS MM” in Chapter 5, we propose a fast MOD

algorithm called “F3DsCNN” based on a two-branch network architecture and the 3D

separable convolution. The network extracts both high-level global features and low-level

detailed features. It achieves a fast inference speed of 120 frames per second, suitable for

tasks that need to be carried out in a timely manner on a computationally limited platform

with high accuracy.

The rest of the chapter is organized as follows. In Section 6.2, we elaborate on our

proposed network in detail. Section 6.3 describes our experimental results compared to

the state-of-the-art models. Section 6.4 concludes the chapter.

6.2 Proposed F3DsCNN Network

The proposed deep moving object detection network [102] shown in Fig. 6.16 is based on a

two-branch structure that captures global context and detailed information. While existing

two-branch models [103, 104, 105, 106] adopt 2D convolutions, we adopt 3D convolution

to explore spatial-temporal information. Further, to reduce complexity, we replace the

standard 3D convolution by the 3D separable convolution.
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Figure 6.16: The architecture of the proposed network F3DsCNN.
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6.2.1 Design of proposed network

Two-branch Network

In order to increase detection accuracy, we design a two-branch network for feature ex-

traction. Traditional two-branch methods [104, 105, 106] extract global features from

low-resolution images with deeper neural network, and extract spatial details from full-

resolution images with shallow neural network structures. To reduce computational com-

plexity, the two branches can share the first few layers [103]. Our proposed method is

shown in Fig.6.16. Branch 1 adopts deep inverted residual bottleneck layers to extract

global features, and branch 2 adopts a shallower network to extract lower-level features.

The two branches share layers from point A to B. The advantage of such layer sharing is

that it learns a low-resolution representation from a full-resolution image, which is then

used as the input of global feature extraction in branch 1, and simultaneously this low-

resolution representation encodes the full-resolution image for detailed spatial feature ex-

traction in branch 2. Finally, these two types of features are concatenated and fed into the

decoder.

Inverted Residual BottleNeck with 3D Separable Convolution

In branch 1, we adopt the inverted residual bottleneck module that was originally proposed

in MobileNet-V2 [107]. In an inverted residual bottleneck module [107], the input features

with Cl channels are first expanded to a high-dimensional space with Ch > Cl channels us-

ing a pointwise convolution. Subsequently, a 2D depthwise convolution with nonlinear

activations is performed on each of these Ch channels. Afterwards, another pointwise con-

volution with linear activatons projects the features back onto a low-dimensional space

with Cl channels. The reason for such operations is that it is better to apply nonlinear
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activations in a high-dimensional space than in a low-dimensional space to prevent infor-

mation loss. To utilize spatio-temporal information in video data and to increase detection

accuracy, we propose to replace such 2D separable convolutions in the inverted residual

bottleneck [107] by 3D separable convolutions. The redesigned 3D inverted residual bot-

tleneck first expands the 4D input of size Cl × L×H ×W to a high-dimensional space by a

pointwise convolution with Ch filters of size Cl×1×1×1 (Cl is the low-dimensional input

channel, Ch is the high-dimensional output channel, Ch > Cl). Subsequently, a 3D depth-

wise convolution with a filter of 3× 3× 3 (time × height × width) is performed on each of

the Ch channels, and the output is then projected back to the low-dimensional space using

another pointwise convolution with Cl filters of size Ch × 1 × 1 × 1 with linear activations.

6.2.2 Configuration of proposed network

We use the format of “CLHW” to represent data, which denotes the number of channels

C, the temporal length L, the height of the image H, and the width of the image W.

Table 6.11: The configuration of proposed network F3DsCNN.

Input/Output data format (CLHW): C: Channel, L: Temporal length, H: Image height, W: Image width.

In Table 6.11, for each training sample, the input to the encoder network is a set of con-

secutive video frames in a 4D shape of 3 × 9 × 240 × 320 , where 3 is the RGB color

channels, 9 is the number of video frames, and 240 and 320 are the height and width of the

video frames. In Fig. 6.16, t0, t1, t2, t3, t4... represent different time slots. In the first step,
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standard 3D convolution is adopted with 32 filters of size 3 × 3 × 3 × 3 to calculate the

convolution on nine input frames. The input video frames are transformed to 32 feature

maps in a shape of 32 × 9 × 240 × 320 at the output. In the following blocks, the feature

maps are down-sampled by 9 layers of 3D separable CNN and then separately go through

the 24 layers of 8 consecutive 3D inverted residual bottleneck modules in branch 1 for

deep global feature extraction, and through 8 layers of 3D separable CNN in branch 2 for

shallower feature extraction, and then the outputs of the two branches are concatenated

together to be fed into the decoder. In the decoder, we employ 4 layers of 3D separa-

ble transposed convolution and 1 layer of standard 3D convolution. A sigmoid activation

function is appended at the end to generate the probability masks for 6 successive frames

in a shape of 1 × 6 × 240 × 320.

6.3 Experimental Results and Analysis

To analyze how the proposed model performs, we conducted two experiments: (A) Train-

ing and evaluation on seen videos of CDnet2014 dataset [80], and (B) Training and evalua-

tion on unseen videos of DAVIS2016 dataset [101]. In Experiment (A), frames in training

and test sets were non-overlapped, but from the same video, whereas, in Experiment (B),

videos completely unseen in the training set were used for testing.

To evaluate the performance of our proposed model, the inference speed is measured

in frames per second (fps), and the detection accuracy is measured by F-measure.

We used the RMSprop optimizer with binary cross-entropy loss function and trained

the model for 30 epochs with batch size 5. The learning rate was initialized at 1 × 10−3

and was reduced by a factor of 10 if the validation loss did not decrease for five successive

epochs. Both experiments were carried out on an Intel Xeon with an 8-core 3GHz CPU and
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an Nvidia Titan RTX 24GB GPU. The number of trainable parameters for the proposed

model is 4.34 millions.

6.3.1 Training and evaluation on seen videos (CDnet2014)

The CDnet2014 dataset has 11 video categories which include a total of 53 video se-

quences. In Experiment (A), we excluded the PTZ (pan-tilt-zoom) category since the

camera has excessive motion. The proposed model was trained on the first 50% frames in

each of the 49 videos, and test on the last 50% frames from the same videos.

All the other nine compared deep learning-based methods such as VGG-PSL-

CRF [44], DeepBS [42], BSPVGAN [62], MsEDNet [39], MSCNN+Cascade [36], MS-

FgNet [43], as well as FgSegNet S [40], FgSegNet M [40], and FgSegNet v2 [41] were

trained and tested in the same setup as our proposed model F3DsCNN.

Table 6.12 shows the objective performance. Each column lists the inference speed

in fps and detection accuracy in F-measure values averaged on test frames from a certain

video category, while the last column shows the average F-measure values across all the

10 video categories. We found that our proposed model outperforms the other nine deep-

learning methods by 8.3% on average in F-measure and achieves the highest inference

speed at 120 fps. Fig. 6.13 (a)shows the visual subjective performance of our proposed

model in Experiment (A) on CDnet2014 dataset. We randomly picked a sample test frame

from categories BSL-baseline, LFR-lowFramerate, and NVD-nightVideos. We observe

that the proposed F3DsCNN provides more details and clearer edges in the detected fore-

ground objects, such as the car mirrors in “BSL” and the truck in ”LFR”. Moreover, the

proposed method detects more accurate and contiguous objects such as the bus in “NVD”.

In contrast, the detected binary masks of other methods in comparison have either blurry

edges or missing parts.
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Table 6.12: Comparative F-measure performance for seen videos on CDnet2014 dataset.

BDW BSL CJT DBG IOM NVD LFR SHD THM TBL Avg

VGG-PSL-CRF [42] 4.9 0.8869 0.9474 0.9276 0.7190 0.7405 0.7398 0.6105 0.8890 0.8352 0.9137 0.8210

DeepBS [40] 10 0.8221 0.9460 0.8844 0.8593 0.5962 0.5777 0.5932 0.9116 0.7389 0.8385 0.7768

BSPVGAN[60] 10 0.9564 0.9717 0.9747 0.9683 0.9230 0.8873 0.8448 0.9732 0.9570 0.9240 0.9380

MsEDNet [37] 13.6 0.8975 0.9248 0.9027 0.8902 0.8051 - - 0.9002 0.8621 - 0.8832

MSCNN+Cascade [34] 50 0.9351 0.9666 0.9612 0.9492 0.8358 0.8837 0.8312 0.9227 0.8764 0.9038 0.9066

FgSegNet_M [38] 69 0.9307 0.9528 0.9403 0.9136 0.8943 0.8830 0.8897 0.9153 0.9160 0.7964 0.9032

FgSegNet_S [38] 82 0.9331 0.9608 0.9407 0.9233 0.9045 0.8871 0.9123 0.9197 0.9152 0.7980 0.9095

MSFgNet [33] 83.8 0.8424 0.9091 0.8167 0.8348 0.7669 0.7973 0.8352 0.9151 0.7822 0.8572 0.8357

FgSegNet_v2 [39] 89 0.9396 0.9680 0.9475 0.9143 0.8985 0.8736 0.9247 0.9152 0.9196 0.8179 0.9119

Proposed F3DsCNN 120 0.9712 0.9784 0.9755 0.9721 0.9737 0.8878 0.9718 0.9432 0.9576 0.9581 0.9589

Method
Inference 

Speed (fps) 

F-measure

Table 6.13: Comparative F-measure performance for unseen videos on DAVIS2016 dataset.

camel
car-

roundabout

car-

shadow
cows goat

horsejump-

high
kite-surf bmx-trees parkour soapbox Avg

MSK [68] 0.5 0.7350 0.9260 0.9480 0.8120 0.8140 0.8510 0.4380 0.7360 0.8740 0.8420 0.7976

CTN [69] 4.5 0.7250 0.7750 0.8670 0.7750 0.7460 0.8660 0.4600 0.4800 0.8820 0.7440 0.7320

PLM [73] 9.5 0.6130 0.7140 0.7310 0.7410 0.6940 0.7860 0.4560 0.6840 0.8120 0.6300 0.6861

SIAMMASK [70] 78 0.7480 0.8720 0.9780 0.7720 0.7210 0.6880 0.3260 0.6590 0.8290 0.5470 0.7140

FgSegNet_M [38] 69 0.6047 0.4892 0.8704 0.5620 0.4009 0.6199 0.6308 0.5895 0.5190 0.5835 0.5870

FgSegNet_S [38] 82 0.6163 0.5194 0.8940 0.5356 0.4063 0.6273 0.6904 0.6948 0.5345 0.5902 0.6109

FgSegNet_v2 [39] 89 0.6201 0.5120 0.8744 0.5309 0.4509 0.5940 0.6820 0.5498 0.5029 0.6194 0.5936

Proposed F3DsCNN 120 0.8144 0.8155 0.8456 0.8162 0.8213 0.8721 0.7020 0.8860 0.7060 0.7271 0.8006

Method
Inference 

Speed (fps) 

F-measure
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6.3.2 Training and evaluation on unseen videos (DAVIS2016)

To evaluate the generalization ability of the proposed model, we also conducted Exper-

iment (B) on unseen videos of DAVIS2016 dataset. In this experiment, 30 videos in

DAVIS2016 dataset were used in training, and 10 completely unseen videos were used for

testing. Table 6.13 shows the comparison between the proposed model and publicly pub-

lished deep learning-based methods such as MSK [70], CTN [71], SIAMMASK [72], and

PLM [75] from the benchmark DAVIS2016 challenge [108], as well as FgSegNet S [40],

FgSegNet M [40], and FgSegNet v2 [41] which were trained and tested in the same setup

as our proposed model F3DsCNN.

Input                   Ground Truth           Proposed         FgSegNet_S[38]    FgSegNet_v2[39]     BSPVGAN [60]  MSCNN+Cascade[34]    DeepBS[40]         

BSL
(highway)

LFR

(turnpike_0_5fps)

NVD
(streetCorner

AtNight)

camel

horsejump-

high

bmx-

trees

Input                 Ground Truth           Proposed          FgSegNet_S[38]      FgSegNet_v2[39]   SIAMMASK [70]          MSK [68              PLM [73]                   

(a)

(b)

Figure 6.17: Visual comparison results (a) Experiment (A) on seen sample of CD-
net2014 dataset, (b) Experiment (B) on unseen samples of DAVIS2016 dataset.

Table 6.13 shows the objective performance. We found that our proposed model offers

overwhelmingly faster inference speed at 120 fps. Although the proposed method only
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offers slightly higher F-measure of 0.8006 than that of MSK [70], its advantage in infer-

ence speed at 120 fps is more suitable for mobile and embedded devices. Compared to the

remaining existing methods, the proposed method F3DsCNN enhanced the F-measure by

12.6% on average.

In Fig. 6.13 (b), we randomly selected three videos (camel, horsejump-high, and bmx-

trees) for comparison illustration. Our proposed model accurately and clearly detects the

shapes and details of objects such as the bike and person in ”bmx-trees”, the camel and

the horse in ”camel” and ”horsejump-high”, while the other models hardly detect correct

shapes of objects or can only detect blurry, noisy or incomplete objects.

6.4 Conclusion

In this chapter, we propose the F3DsCNN model for moving object detection. Our model

is designed specifically for environments with limited computing resources and for delay-

sensitive tasks. Our model increases detection accuracy by utilizing the spatial-temporal

information in the video data via 3D convolution, and also by feature fusion via the two-

branch structure. Our model improves the efficiency of the model via 3D separable con-

volution and 3D inverted residual bottleneck module. Moreover, the two experiments con-

ducted on seen videos and unseen videos demonstrate that our proposed model achieves

superior detection accuracy among all compared models with high inference speeds suit-

able for low-latency vision applications.
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CHAPTER 7

Conclusion

7.1 Summary of Major Contributions

Moving object detection (MOD) is an essential step of a video processing pipeline which

extracts dynamic foreground content from the video frames, while discarding the non-

moving background. It plays an important role in many real-world applications. Deep

learning methods have been actively applied in moving object detection and achieved

great performance. However, many existing models render superior detection accuracy

at the cost of high computational complexity and slow inference speed, which hindered

the application on mobile and embedded devices with limited computing resources. We

have proposed three deep learning models, 2D separable CNN, 3D separable CNN with

“MIMO”, and 3D separable CNN in two-branch. These models are real-time models tai-

lored for computation-resource-limited and delay-sensitive applications.

Our key contributions are:

• We propose a new 2D separable CNN for moving object detection. The proposed

network adopts 2D separable convolution to reduce computational complexity and

model size, the 2D convolution is decomposed into a depthwise convolution and a

pointwise convolution. Our work applied it to the moving object detection task for

the first time in the literature.

• We propose a new 3D separable CNN for moving object detection. The proposed

network adopts 3D convolution to explore spatio-temporal information in the video
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data and to improve detection accuracy. To reduce computational complexity and

model size, the 3D convolution is decomposed into a depthwise convolution and

a pointwise convolution. While existing 3D separable CNN schemes all addressed

other problems such as gesture recognition, force prediction, 3D object classification

or reconstruction, our work applied it to the moving object detection task for the first

time in the literature.

• We propose a multi-input multi-output (MIMO) strategy. While existing networks

are single-input single-output, multi-input single output, or two-input two-output,

our MIMO network can take multiple input frames and output multiple binary masks

using temporal-dimension in each sample. This MIMO embedded in 3D separable

CNN can further increase model inference speed significantly and maintain high

detection accuracy. To the best of our knowledge, this is the first time in the literature

that such kind of MIMO scheme is used in the MOD task.

• We propose a new 3D separable CNN model in two-branch structure with Inverted

Residual BottleNeck with 3D Separable Convolution. Branch 1 adopts deep in-

verted residual bottleneck layers to extract global features, and branch 2 adopts a

shallower network to extract lower-level features. We propose to replace the 2D

separable convolutions in the inverted residual bottleneck [107] by 3D separable

convolutions. The redesigned 3D inverted residual bottleneck first expands the 4D

input to a high-dimensional space by a pointwise convolution. Subsequently, a 3D

depthwise convolution is performed on each of the channels, and the output is then

projected back to the low-dimensional space using another pointwise convolution.

• We demonstrate our proposed 2D separable CNN achieves an inference speed of

149.81 fps, more than twice faster than those of the MobileNet+UNet and the

FgSegNet 3-scale, and 1.8 times faster than that of the FgSegNet 1-scale. In terms of
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detection accuracy, our proposed model achieves an average F-measure of 0.9718,

significantly higher than that of MobileNet+UNet, and only slightly lower than those

of the two FgSegNet models.

• We demonstrate that the proposed 3DS MM offers overwhelmingly high infer-

ence speed in frames per second (154 fps) and extremely small model size (1.45

MB), while achieving the best detection accuracy 0.9517 in terms of F-measure,

S-measure, E-measure, and MAE among all models in scene dependent evaluation

(SDE) setup and achieving the best detection accuracy F-measure 0.7317 among

the models with inference speeds exceeding 65 fps in scene independent evaluation

(SIE) setup with Davis dataset. Note: the data selection strategy is different from

2D separable CNN experiment, so the accuracy is not comparable.

• We demonstrate that the proposed F3DsCNN achieves a fast inference speed of 120

frames per second, with high detection accuracy F-measure 0.9589 in scene depen-

dent evaluation (SDE) and 0.8006 in scene independent evaluation (SIE) setup with

Davis dataset. Compared with “3DS MM”, the inference speed is a bit lower, but

the accuracy is higher. It’s still suitable for tasks that need to be carried out in a

timely manner on a computationally limited platform with high accuracy.

7.2 Suggestions for Future Research

We have proposed 2D separable convolution and 3D separable convolution based schemes

for developing the deep learning models in the application of moving object detection. We

have demonstrated that such models and in conjunction with other designed algorithms

such as MIMO or network structures such as two-branch give an improved performance

over traditional based methods and other deep learning based methods.
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As we mentioned in Chapter 1, moving object detection would be the beginning step in

the pipeline of a bigger computer vision task. It provides important cues for numerous ap-

plications in computer vision, for example surveillance tracking or human pose estimation.

So in order to make a bigger computer vision task running in real-time, each module of the

task should be able to achieve beyond real-time. So it’s quite valuable to keep improving

the speed of moving object detection module.

The accuracy of the model could be improved. During our initial research work, the

accuracy performs well for CDnet 2014 dataset, but the accuracy is not the highest in Davis

2016 dataset. One possible direction to explore is to use transformer-based network. The

original transformer network can achieve a decent level of accuracy, but the disadvantage

of transformer-based network is the computation complexity is quite high, and the training

and inference are too slow. But if we use transformer-based network in conjunction with

separable convolution modules, the complexity may be reduced. This could be further

explored.

The methods that are used here would also be applicable to other areas such as low-

level vision. Low-level vision is the pre-processing step for high-level vision. Based on

low-level image processing, low-level vision tasks could be preformed, such as image

matching, optical flow computation and motion analysis. In the Appendix, we provide

some successful experiments results of applying 2D separable CNN based models in low-

level computer vision task called ”demosaicing” which is transferring RAW images to

RGB images.

Another area for further research is to extend this work to video coding. Video Cod-

ing for Machine (VCM), arising from the emerging MPEG standardization efforts1 [109].

Towards collaborative compression and intelligent analytics, VCM attempts to bridge the

gap between feature coding for machine vision and video coding for human vision. A
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possible next generation of video compression standards is machine vision oriented video

compression and hybrid human and machine vision oriented video compression. Some

proposals exist in literature for a unified frame work for content understanding and com-

pression. And our research could be as one kind of the content understanding. So our

model could be combined into the VCM model to detect moving objects and meanwhile

achieving video compression. This area can be explored further.
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APPENDIX A

Other Experiments

Here are some experiments results from participating workshop challenges using the sep-

arable convolution methods in low-level vision tasks:

1. AIM 2019 Challenge on RAW to RGB Mapping [89]

This challenge is to mapping RAW image to RGB image, simulation of the “demosiac-

ing” step in camera pipeline. We proposed a simple pointwise convolution based network

to convert 4 input channels to 3 output channels. The model consists of 7 pointwise con-

volutional layers followed by non-linear activation functions and contains in total 362, 307

parameters. The inference speed is 0.008s/image on Titan GPU.

Figure A.1: Proposed pointwise based neural network.

For 224× 224 images: model input 224× 224× 4 images, model output 224× 224× 3;

For full resolution images like Fig A.2, the image is divided into patches and do prediction.
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Since the training dataset is so big and duplicated, so it’s better to select some valuable

data before training. We suggest use color checker colors as centers and choose those data

which are around the centers.

Figure A.2: Input of the model-RAW image.
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Figure A.3: Output of the model-RGB image.

2. AIM 2020 Challenge on Learned Image Signal [90]

This challenge is also mapping RAW image to RGB image, different from AIM 2019,

the input images are with higher resolution and the dataset is more imbalanced.

We proposed a Pixel-Wise Color Distance (PWCD) model illustrated in Fig A.4. The

model performed pointwise convolution in the LAB color space instead of the RGB one,

and was trained to minimize the CIELAB color difference between the predicted and target

images. This PWCD model is the upgraded version from the method in AIM2019 by using

LAB space rather than RGB space with point-wise convolution.

To balance the input dataset, we use 24 color patches as centers to select 500 images

closest to the centers as training images. Total training images are 24*500*(8/10) = 9600.

Input: 448 × 448 RAW images, output 448 × 448 × 3; Then, transfer all the data to LAB

space rather than RGB space. Loss function is used to minimize CIELAB color difference

values between predicted and ground truth color. Inference speed is 0.04s/image on 24G
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Figure A.4: Output of the model-RGB image.

Titan GPU.
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