198 research outputs found

    MIB for the UDP-Lite Protocol

    Get PDF
    Publisher PD

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Flow-based Adaptive Split Signal Control

    Get PDF
    Over the last 35 years many adaptive traffic signal control systems have been developed presenting alternative strategies to improve traffic signal operations. However, less than 1% of all traffic signals in the United States are controlled by adaptive systems today. The extensive infrastructure necessary including reliable communication and complex calibration leads to a time consuming and costly process. In addition, the most recent National Traffic Signal Report Card indicated an overall grade of D for the nation’s traffic signal control and operations. Recent economic adversity adds to the already difficult task of proactively managing aged signal timing plans. Therefore, in an attempt to escape the status quo, a flow based adaptive split signal control model is presented, having the principal objective of updating the split table based solely on real-time traffic conditions and without disrupting coordination. Considering the available typical traffic signal control infrastructure in cities today, a non centralized system is proposed, directed to the improvement of National Electrical Manufacturers Association (NEMA) based systems that are compliant with the National Transportation Communications for Intelligent Transportation System Protocol (NTCIP) standards. The approach encompasses the User Datagram Protocol (UDP) for system communication allowing an external agent to gather flow information directly from a traffic signal controller detector status and use it to better allocation of phase splits. The flow based adaptive split signal control was not able to consistently yield significant lower average vehicle delay than a full actuated signal controller when evaluated on an intersection operating a coordinated timing plan. However, the research proposes the ability of an external agent to seamless control a traffic signal controller using real-time data, suggesting the encouraging results of this research can be improved upon

    Performance Evaluation of SNMPv1/2c/3 using Different Security Models on Raspberry Pi

    Get PDF
    The Simple Network Management Protocol (SNMP) is one of the dominant protocols for network monitoring and configuration. The first two versions of SNMP (v1 and v2c) use the Community-based Security Model (CSM), where the community is transferred in clear text, resulting in a low level of security. With the release of SNMPv3, the User-based Security Model (USM) and Transport Security Model (TSM) were proposed, with strong authentication and privacy at different levels. The Raspberry Pi family of Single-Board Computers (SBCs) is widely used for many applications. To help their integration into network management systems, it is essential to study the impact of the different versions and security models of SNMP on these SBCs. In this work, we carried out a performance analysis of SNMP agents running in three different Raspberry Pis (Pi Zero W, Pi 3 Model B, and Pi 3 Model B+). Our comparisons are based on the response time, defined as the time required to complete a request/response exchange between a manager and an agent. Since we did not find an adequate tool for our assessments, we developed our own benchmarking tool. We did numerous experiments, varying different parameters such as the type of requests, the number of objects involved per request, the security levels of SNMPv3/USM, the authentication and privacy protocols of SNMPv3/USM, the transport protocols, and the versions and security models of SNMP. Our experiments were executed with Net-SNMP, an open-source and comprehensive distribution of SNMP. Our tests indicate that SNMPv1 and SNMPv2c have similar performance. SNMPv3 has a longer response time, due to the overhead caused by the security services (authentication and privacy). The Pi 3 Model B and Pi 3 Model B+ have comparable performance, and significantly outperform the Pi Zero W

    Secure Network Access via LDAP

    Get PDF
    Networks need the ability to be access by secure accounts and users. The goal of this project is to configure and expand on LDAP configurations with considerations for AAA via TACACS+ and Radius for network equipment. This will provide adequate security for any given network in terms of access and prevent lose of access to devices which happens all to often with locally configured accounts on devices

    Diseño De Red De Comunicación De Datos Para La Institución Educativa Privada Emilio Soyer Cabero Ubicado En El Distrito De Chorrillos, Lima, Perú

    Get PDF
    El presente trabajo de investigación lleva por título “DISEÑO DE RED DE COMUNICACIÓN DE DATOS PARA LA INSTITUCIÓN EDUCATIVA PRIVADA EMILIO SOYER CABERO UBICADA EN EL DISTRITO DE CHORRILLOS, LIMA, PERÚ”, para optar el título de Ingeniero Electrónico y Telecomunicaciones, presentado por el alumno Jhaset Raúl Ortega Cubas. En primer lugar se aborda la realidad problemática observada relacionada con la importancia y necesidad de diseñar una Red de Comunicación de Datos con el fin de dotar a la Institución Educativa Privada Emilio Soyer Cabero de un sistema de transmisión de información mediante la comunicación de todos los dispositivos de red que ésta maneje para ventaja de los trabajadores, docentes y alumnos. La estructura que hemos seguido en este proyecto se compone de 3 capítulos. El primer capítulo comprende el planteamiento del problema, el segundo capítulo el desarrollo del marco teórico y el tercer capítulo corresponde al desarrollo del diseño

    An emergency communication system based on software-defined radio

    Get PDF
    Wireless telecommunications represent an important asset for Public Protection and Disaster Relief (PPDR) organizations as they improve the coordination and the distribution of information among first responders in the field. In large international disaster scenarios, many different PPDR organizations may participate to the response phase of disaster management. In this context, PPDR organizations may use different wireless communication technologies; such diversity may create interoperability barriers and degrade the coordination among first time responders. In this paper, we present the design, system integration and testing of a demonstration system based on Software Defined Radio (SDR) technology and Software Communication Architecture (SCA) to support PPDR operations with special focus on the provision of satellite communications. This paper describes the main components of the demonstration system, the integration activities as well as the testing scenarios, which were used to evaluate the technical feasibility. The paper also describes the main technical challenges in the implementation and integration of the demonstration system. Finally future developments for this technology and potential deployment challenges are presented.JRC.G.6-Digital Citizen Securit

    Diseño e instalación de un sistema de monitorización en tiempo real de servidores GSM para la red de telefonía móvil del ICE.

    Get PDF
    Proyecto de Graduación (Licenciatura en Ingeniería Electrónica). Instituto Tecnológico de Costa Rica. Escuela de Ingeniería Electrónica, 2010.El presente proyecto describe el proceso de diseño y de incorporación de un sistema de monitorización completo y confiable, el cual permita a ERICSSON y en particular al grupo de Operación y Mantenimiento (O&M) a mantener activa y funcional la red GSM del ICE, para que sea capaz de evitar y por lo tanto resolver a tiempo las fallas sin que el usuario final de la telefonía móvil tenga inconvenientes. El desarrollo de este proyecto contempla la programación de scripts y el funcionamiento correcto de un software de monitoreo, en el cual se utiliza el protocolo SNMP y los MIB propietarios para cada equipo dentro de la red y el MPBN (Mobile Packet Backbone Network) de ERICSSON

    Flow Monitoring Explained: From Packet Capture to Data Analysis With NetFlow and IPFIX

    Get PDF
    Flow monitoring has become a prevalent method for monitoring traffic in high-speed networks. By focusing on the analysis of flows, rather than individual packets, it is often said to be more scalable than traditional packet-based traffic analysis. Flow monitoring embraces the complete chain of packet observation, flow export using protocols such as NetFlow and IPFIX, data collection, and data analysis. In contrast to what is often assumed, all stages of flow monitoring are closely intertwined. Each of these stages therefore has to be thoroughly understood, before being able to perform sound flow measurements. Otherwise, flow data artifacts and data loss can be the consequence, potentially without being observed. This paper is the first of its kind to provide an integrated tutorial on all stages of a flow monitoring setup. As shown throughout this paper, flow monitoring has evolved from the early 1990s into a powerful tool, and additional functionality will certainly be added in the future. We show, for example, how the previously opposing approaches of deep packet inspection and flow monitoring have been united into novel monitoring approaches
    corecore