4 research outputs found

    The permeation mechanism of organic cations through a CNG mimic channel

    Get PDF
    Several channels, ranging from TRP receptors to Gap junctions, allow the exchange of small organic solute across cell membrane. However, very little is known about the molecular mechanism of their permeation. Cyclic Nucleotide Gated (CNG) channels, despite their homology with K+channels and in contrast with them, allow the passage of larger methylated and ethylated ammonium ions like dimethylammonium (DMA) and ethylammonium (EA). We combined electrophysiology and molecular dynamics simulations to examine how DMA interacts with the pore and permeates through it. Due to the presence of hydrophobic groups, DMA enters easily in the channel and, unlike the alkali cations, does not need to cross any barrier. We also show that while the crystal structure is consistent with the presence of a single DMA ion at full occupancy, the channel is able to conduct a sizable current of DMA ions only when two ions are present inside the channel. Moreover, the second DMA ion dramatically changes the free energy landscape, destabilizing the crystallographic binding site and lowering by almost 25 kJ/mol the binding affinity between DMA and the channel. Based on the results of the simulation the experimental electron density maps can be re-interpreted with the presence of a second ion at lower occupancy. In this mechanism the flexibility of the channel plays a key role, extending the classical multi-ion permeation paradigm in which conductance is enhanced by the plain interaction between the ions

    METAGUI 3: A graphical user interface for choosing the collective variables in molecular dynamics simulations

    No full text
    Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape

    METAGUI 3: A graphical user interface for choosing the collective variables in molecular dynamics simulations

    No full text
    Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape. Program summary Program Title: METAGUI 3 Program Files doi: http://dx.doi.org/10.17632/wyxjndwkbp.1 Licensing provisions: GPLv3 Programming language: Tcl/Tk, Fortran Journal reference of previous version: METAGUI [1] Does the new version supersede the previous version?: No Nature of problem: Choose the appropriate collective variables for describing the thermodynamics and kinetics of a biomolecular system through biased and unbiased molecular dynamics. Solution method: Provide an environment to compute and visualize free energy surfaces as a function of collective variables, interactively defined. Additional comments: METAGUI 3 is not a standalone program but a plugin that provides analysis features within VMD (version 1.9.2 or higher). [1] X. Biarnés, F. Pietrucci, F. Marinelli, A. Laio, METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations, Computer Physics Communications 183 (2012) 203â211
    corecore