8 research outputs found

    MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images

    No full text
    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL’s performance of was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL’s performance was then examined in the analysis of human mediannerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer’s problems of signal leaking and distorted source time-courses

    MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images.

    No full text
    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses

    Case report: Neural timing deficits prevalent in developmental disorders, aging, and concussions remediated rapidly by movement discrimination exercises

    Get PDF
    BackgroundThe substantial evidence that neural timing deficits are prevalent in developmental disorders, aging, and concussions resulting from a Traumatic Brain Injury (TBI) is presented.ObjectiveWhen these timing deficits are remediated using low-level movement-discrimination training, then high-level cognitive skills, including reading, attention, processing speed, problem solving, and working memory improve rapidly and effectively.MethodsIn addition to the substantial evidence published previously, new evidence based on a neural correlate, MagnetoEncephalography physiological recordings, on an adult dyslexic, and neuropsychological tests on this dyslexic subject and an older adult were measured before and after 8-weeks of contrast sensitivity-based left–right movement-discrimination exercises were completed.ResultsThe neuropsychological tests found large improvements in reading, selective and sustained attention, processing speed, working memory, and problem-solving skills, never before found after such a short period of training. Moreover, these improvements were found 4 years later for older adult. Substantial MEG signal increases in visual Motion, Attention, and Memory/Executive Control Networks were observed following training on contrast sensitivity-based left–right movement-discrimination. Improving the function of magnocells using figure/ground movement-discrimination at both low and high levels in dorsal stream: (1) improved both feedforward and feedback pathways to modulate attention by enhancing coupled theta/gamma and alpha/gamma oscillations, (2) is adaptive, and (3) incorporated cycles of feedback and reward at multiple levels.ConclusionWhat emerges from multiple studies is the essential role of timing deficits in the dorsal stream that are prevalent in developmental disorders like dyslexia, in aging, and following a TBI. Training visual dorsal stream function at low levels significantly improved high-level cognitive functions, including processing speed, selective and sustained attention, both auditory and visual working memory, problem solving, and reading fluency. A paradigm shift for treating cognitive impairments in developmental disorders, aging, and concussions is crucial. Remediating the neural timing deficits of low-level dorsal pathways, thereby improving both feedforward and feedback pathways, before cognitive exercises to improve specific cognitive skills provides the most rapid and effective methods to improve cognitive skills. Moreover, this adaptive training with substantial feedback shows cognitive transfer to tasks not trained on, significantly improving a person’s quality of life rapidly and effectively

    Conectividad funcional y procesos inhibitorios en las recaĂ­das en el consumo de alcohol

    Get PDF
    El consumo crónico de alcohol supone ciertas disfunciones cognitivas, aunque los déficits ejecutivos son centrales y están relacionados con el curso de la enfermedad. Específicamente, el control inhibitorio, cognitivo y conductual o la capacidad de toma de decisiones resultan clave en el éxito terapéutico y mantenimiento de la abstinencia. Estas alteraciones se han asociado a deficiencias en el funcionamiento neural tanto en estados interoceptivos de reposo, como durante procesos cognitivos asociados a la inhibición, el control atencional o la toma de decisiones. Por lo tanto, se plantean los siguientes objetivos en este trabajo: 1. Evaluar en contextos relacionados con la sustancia la toma de decisión léxica y la inhibición motora. 2. Evaluar la actividad psicofisiológica subyacente a procesos léxicos e inhibitorios y en presencia de estímulos asociados a la sustancia. 3. Evaluar la actividad cerebral en reposo en términos de oscilaciones y conectividad funcional..
    corecore