8,177 research outputs found

    Neural Correlates of Opponent Processes for Financial Gains and Losses

    Get PDF
    Objective: Functional imaging studies offer alternative explanations for the neural correlates of monetary gain and loss related brain activity, and their opponents, omission of gains and losses. One possible explanation based on the psychology of opponent process theory suggests that successful avoidance of an aversive outcome is itself rewarding, and hence activates brain regions involved in reward processing. In order to test this hypothesis, we compared brain activation for successful avoidance of losses and receipt of monetary gains. Additionally, the brain regions involved in processing of frustrative neutral outcomes and actual losses were compared in order to test whether these two representations are coded in common or distinct brain regions. Methods: Using a 3 Tesla functional magnetic resonance imaging machine, fifteen healthy volunteers between the ages 22 to 28 were scanned for blood oxygen level dependent signal changes while they were performing a probabilistic learning task, wherein each trial a participant chose one of the two available options in order to win or avoid losing money. Results: The results confirmed, previous findings showing that medial frontal cortex and ventral striatum show significant activation (p<0.001) not only for monetary gains but also for successful avoidance of losses. A similar activation pattern was also observed for monetary losses and avoidance of gains in the medial frontal cortex, and posterior cingulate cortex, however, there was increased activation in amygdala specific to monetary losses (p<0.001). Further, subtraction analysis showed that regardless of the type of loss (i.e., frustrative neutral outcomes) posterior insula showed increased activation. Conclusion: This study provides evidence for a significant overlap not only between gains and losses, but also between their opponents. The results suggested that the overlapping activity pattern in the medial frontal cortex could be explained by a more abstract function of medial frontal cortex, such as outcome evaluation or performance monitoring, which possibly does not differentiate between winning and losing monetary outcomes.Peer reviewedFinal Published versio

    Learning to become an expert : reinforcement learning and the acquisition of perceptual expertise

    Get PDF
    To elucidate the neural mechanisms underlying the development of perceptual expertise, we recorded ERPs while participants performed a categorization task. We found that as participants learned to discriminate computer-generated "blob'' stimuli, feedback modulated the amplitude of the errorrelated negativity (ERN)-an ERP component thought to reflect error evaluation within medial-frontal cortex. As participants improved at the categorization task, we also observed an increase in amplitude of an ERP component associated with object recognition (the N250). The increase in N250 amplitude preceded an increase in amplitude of an ERN component associated with internal error evaluation (the response ERN). Importantly, these electroencephalographic changes were not observed for participants who failed to improve on the categorization task. Our results suggest that the acquisition of perceptual expertise relies on interactions between the posterior perceptual system and the reinforcement learning system involving medial-frontal cortex

    Brain functional abnormality in schizo-affective disorder: an fMRI study.

    Get PDF
    Background.Schizo-affective disorder has not been studied to any significant extent using functional imaging. The aim of this study was to examine patterns of brain activation and deactivation in patients meeting strict diagnostic criteria for the disorder. METHOD: Thirty-two patients meeting research diagnostic criteria (RDC) for schizo-affective disorder (16 schizomanic and 16 schizodepressive) and 32 matched healthy controls underwent functional magnetic resonance imaging (fMRI) during performance of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups. RESULTS: Controls showed activation in a network of frontal and other areas and also deactivation in the medial frontal cortex, the precuneus and the parietal cortex. Schizo-affective patients activated significantly less in prefrontal, parietal and temporal regions than the controls, and also showed failure of deactivation in the medial frontal cortex. When task performance was controlled for, the reduced activation in the dorsolateral prefrontal cortex (DLPFC) and the failure of deactivation of the medial frontal cortex remained significant. CONCLUSIONS: Schizo-affective disorder shows a similar pattern of reduced frontal activation to schizophrenia. The disorder is also characterized by failure of deactivation suggestive of default mode network dysfunction

    Negative Correlation between Brain Glutathione Level and Negative Symptoms in Schizophrenia: A 3T 1H-MRS Study

    Get PDF
    BACKGROUND: Glutathione (GSH), a major intracellular antioxidant, plays a role in NMDA receptor-mediated neurotransmission, which is involved in the pathophysiology of schizophrenia. In the present study, we aimed to investigate whether GSH levels are altered in the posterior medial frontal cortex of schizophrenic patients. Furthermore, we examined correlations between GSH levels and clinical variables in patients. METHODS AND FINDINGS: Twenty schizophrenia patients and 16 age- and gender-matched normal controls were enrolled to examine the levels of GSH in the posterior medial frontal cortex by using 3T SIGNA EXCITE (1)H-MRS with the spectral editing technique, MEGA-PRESS. Clinical variables of patients were assessed by the Global Assessment of Functioning (GAF), Scale for the Assessment of Negative Symptoms (SANS), Brief Psychiatric Rating Scale (BPRS), Drug-Induced Extra-Pyramidal Symptoms Scale (DIEPSS), and five cognitive performance tests (Word Fluency Test, Stroop Test, Trail Making Test, Wisconsin Card Sorting Test and Digit Span Distractibility Test). Levels of GSH in the posterior medial frontal cortex of schizophrenic patients were not different from those of normal controls. However, we found a significant negative correlation between GSH levels and the severity of negative symptoms (SANS total score and negative symptom subscore on BPRS) in patients. There were no correlations between brain GSH levels and scores on any cognitive performance test except Trail Making Test part A. CONCLUSION: These results suggest that GSH levels in the posterior medial frontal cortex may be related to negative symptoms in schizophrenic patients. Therefore, agents that increase GSH levels in the brain could be potential therapeutic drugs for negative symptoms in schizophrenia

    Medial prefrontal cortex and error potentials

    No full text

    Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat.

    Get PDF
    Four experiments examined effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on tests of visual discrimination learning, using a new touchscreen testing method for rats. Anterior cingulate cortex lesions impaired acquisition of an 8-pair concurrent discrimination task, whereas posterior cingulate cortex lesions facilitated learning but selectively impaired the late stages of acquisition of a visuospatial conditional discrimination. Medial frontal cortex lesions selectively impaired reversal learning when stimuli were difficult to discriminate; lesions of anterior and posterior cingulate cortex had no effect. These results suggest roles for the anterior cingulate, posterior cingulate, and medial frontal cortex in stimulus-reward learning, stimulus-response learning or response generation, and attention during learning, respectively

    Brain-state determines learning improvements after transcranial alternating-current stimulation to frontal cortex

    Full text link
    Published in final edited form as: Brain Stimul. 2018 ; 11(4): 723–726. doi:10.1016/j.brs.2018.02.008BACKGROUND Theories of executive control propose that communication between medial frontal cortex (MFC) and lateral prefrontal cortex (lPFC) is critical for learning. 6-Hz phase synchronization may be the mechanism by which neural activity between MFC and lPFC is coordinated into a functional network. Recent evidence suggests that switching from eyes closed to open may induce a change in brain-state reflected by enhanced executive control and related functional connectivity. OBJECTIVE/HYPOTHESIs To examine whether causal manipulation of MFC and lPFC can improve learning according to the brain-state induced by switching from eyes closed to open. METHODS Within-subjects, sham-controlled, double-blind study of 30 healthy subjects, each receiving 6-Hz in-phase high definition transcranial alternating-current stimulation (HD-tACS) applied to MFC and right lPFC prior to performing a time estimation task. RESULTS HD-tACS with eyes open improved learning ability relative to sham, whereas HD-tACS with eyes closed had no significant effect on behavior. CONCLUSION Results suggest a phase-sensitive mechanism in frontal cortex mediates components of learning performance in a state-dependent manner.Accepted manuscrip

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus

    The neural determinants of abstract beauty

    Get PDF
    We have enquired into the neural activity which correlates with the experience of beauty aroused by abstract paintings consisting of arbitrary assemblies of lines and colours. During the brain imaging experiments, subjects rated abstract paintings according to aesthetic appeal. There was low agreement on the aesthetic classification of these paintings among participants. Univariate analyses revealed higher activity with higher declared aesthetic appeal in both the visual areas and the medial frontal cortex. Additionally, representational similarity analysis (RSA) revealed that the experience of beauty correlated with decodable patterns of activity in visual areas. These results are broadly similar to those obtained in previous studies on facial beauty. With abstract art, it was the involvement of visual areas implicated in the processing of lines and colours while with faces it was of visual areas implicated in the processing of faces. Both categories of aesthetic experience correlated with increased activity in medial frontal cortex. We conclude that the sensory areas participate in the selection of stimuli according to aesthetic appeal and that it is the co-operative activity between the sensory areas and the medial frontal cortex that is the basis for the experience of abstract visual beauty. Further, this co-operation is enabled by “experience dependent” functional connections, in the sense that currently the existence and high specificity of these connections can only be demonstrated during certain experiences
    corecore