34 research outputs found

    A track-before-detect labelled multi-Bernoulli particle filter with label switching

    Full text link
    This paper presents a multitarget tracking particle filter (PF) for general track-before-detect measurement models. The PF is presented in the random finite set framework and uses a labelled multi-Bernoulli approximation. We also present a label switching improvement algorithm based on Markov chain Monte Carlo that is expected to increase filter performance if targets get in close proximity for a sufficiently long time. The PF is tested in two challenging numerical examples.Comment: Accepted for publication in IEEE Transactions on Aerospace and Electronic System

    Two-layer particle filter for multiple target detection and tracking

    Get PDF
    This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Random finite sets in multi-target tracking - efficient sequential MCMC implementation

    Get PDF
    Over the last few decades multi-target tracking (MTT) has proved to be a challenging and attractive research topic. MTT applications span a wide variety of disciplines, including robotics, radar/sonar surveillance, computer vision and biomedical research. The primary focus of this dissertation is to develop an effective and efficient multi-target tracking algorithm dealing with an unknown and time-varying number of targets. The emerging and promising Random Finite Set (RFS) framework provides a rigorous foundation for optimal Bayes multi-target tracking. In contrast to traditional approaches, the collection of individual targets is treated as a set-valued state. The intent of this dissertation is two-fold; first to assert that the RFS framework not only is a natural, elegant and rigorous foundation, but also leads to practical, efficient and reliable algorithms for Bayesian multi-target tracking, and second to provide several novel RFS based tracking algorithms suitable for the specific Track-Before-Detect (TBD) surveillance application. One main contribution of this dissertation is a rigorous derivation and practical implementation of a novel algorithm well suited to deal with multi-target tracking problems for a given cardinality. The proposed Interacting Population-based MCMC-PF algorithm makes use of several Metropolis-Hastings samplers running in parallel, which interact through genetic variation. Another key contribution concerns the design and implementation of two novel algorithms to handle a varying number of targets. The first approach exploits Reversible Jumps. The second approach is built upon the concepts of labeled RFSs and multiple cardinality hypotheses. The performance of the proposed algorithms is also demonstrated in practical scenarios, and shown to significantly outperform conventional multi-target PF in terms of track accuracy and consistency. The final contribution seeks to exploit external information to increase the performance of the surveillance system. In multi-target scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information is integrated by using a fixed-lag smoothing procedure, named Knowledge-Based Fixed-Lag Smoother (KB-Smoother). The proposed combination IP-MCMC-PF/KB-Smoother yields enhanced tracking

    A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking

    Get PDF
    [EN]We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management

    Multiple Space Object Tracking Using A Randomized Hypothesis Generation Technique

    Get PDF
    In order to protect assets and operations in space, it is critical to collect and maintain accurate information regarding Resident Space Objects (RSOs). This collection of information is typically known as Space Situational Awareness (SSA). Ground-based and space-based sensors provide information regarding the RSOs in the form of observations or measurement returns. However, the distance between RSO and sensor can, at times, be tens of thousands of kilometers. This and other factors lead to noisy measurements that, in turn, cause one to be uncertain about which RSO a measurement belongs to. These ambiguities are known as data association ambiguities. Coupled with uncertainty in RSO state and the vast number of objects in space, data association ambiguities can cause the multiple space object-tracking problem to become computationally intractable. Tracking the RSO can be framed as a recursive Bayesian multiple object tracking problem with state space containing both continuous and discrete random variables. Using a Finite Set Statistics (FISST) approach one can derive the Random Finite Set (RFS) based Bayesian multiple object tracking recursions. These equations, known as the FISST multiple object tracking equations, are computationally intractable when solved in full. This computational intractability provokes the idea of the newly developed alternative hypothesis dependent derivation of the FISST equations. This alternative derivation allows for a Markov Chain Monte Carlo (MCMC) based randomized sampling technique, termed Randomized FISST (R-FISST). R-FISST is found to provide an accurate approximation of the full FISST recursions while keeping the problem tractable. There are many other benefits to this new derivation. For example, it can be used to connect and compare the classical tracking methods to the modern FISST based approaches. This connection clearly defines the relationships between different approaches and shows that they result in the same formulation for scenarios with a fixed number of objects and are very similar in cases with a varying number of objects. Findings also show that the R-FISST technique is compatible with many powerful optimization tools and can be scaled to solve problems such as collisional cascading

    Advanced signal processing techniques for multi-target tracking

    Get PDF
    The multi-target tracking problem essentially involves the recursive joint estimation of the state of unknown and time-varying number of targets present in a tracking scene, given a series of observations. This problem becomes more challenging because the sequence of observations is noisy and can become corrupted due to miss-detections and false alarms/clutter. Additionally, the detected observations are indistinguishable from clutter. Furthermore, whether the target(s) of interest are point or extended (in terms of spatial extent) poses even more technical challenges. An approach known as random finite sets provides an elegant and rigorous framework for the handling of the multi-target tracking problem. With a random finite sets formulation, both the multi-target states and multi-target observations are modelled as finite set valued random variables, that is, random variables which are random in both the number of elements and the values of the elements themselves. Furthermore, compared to other approaches, the random finite sets approach possesses a desirable characteristic of being free of explicit data association prior to tracking. In addition, a framework is available for dealing with random finite sets and is known as finite sets statistics. In this thesis, advanced signal processing techniques are employed to provide enhancements to and develop new random finite sets based multi-target tracking algorithms for the tracking of both point and extended targets with the aim to improve tracking performance in cluttered environments. To this end, firstly, a new and efficient Kalman-gain aided sequential Monte Carlo probability hypothesis density (KG-SMC-PHD) filter and a cardinalised particle probability hypothesis density (KG-SMC-CPHD) filter are proposed. These filters employ the Kalman- gain approach during weight update to correct predicted particle states by minimising the mean square error between the estimated measurement and the actual measurement received at a given time in order to arrive at a more accurate posterior. This technique identifies and selects those particles belonging to a particular target from a given PHD for state correction during weight computation. The proposed SMC-CPHD filter provides a better estimate of the number of targets. Besides the improved tracking accuracy, fewer particles are required in the proposed approach. Simulation results confirm the improved tracking performance when evaluated with different measures. Secondly, the KG-SMC-(C)PHD filters are particle filter (PF) based and as with PFs, they require a process known as resampling to avoid the problem of degeneracy. This thesis proposes a new resampling scheme to address a problem with the systematic resampling method which causes a high tendency of resampling very low weight particles especially when a large number of resampled particles are required; which in turn affect state estimation. Thirdly, the KG-SMC-(C)PHD filters proposed in this thesis perform filtering and not tracking , that is, they provide only point estimates of target states but do not provide connected estimates of target trajectories from one time step to the next. A new post processing step using game theory as a solution to this filtering - tracking problem is proposed. This approach was named the GTDA method. This method was employed in the KG-SMC-(C)PHD filter as a post processing technique and was evaluated using both simulated and real data obtained using the NI-USRP software defined radio platform in a passive bi-static radar system. Lastly, a new technique for the joint tracking and labelling of multiple extended targets is proposed. To achieve multiple extended target tracking using this technique, models for the target measurement rate, kinematic component and target extension are defined and jointly propagated in time under the generalised labelled multi-Bernoulli (GLMB) filter framework. The GLMB filter is a random finite sets-based filter. In particular, a Poisson mixture variational Bayesian (PMVB) model is developed to simultaneously estimate the measurement rate of multiple extended targets and extended target extension was modelled using B-splines. The proposed method was evaluated with various performance metrics in order to demonstrate its effectiveness in tracking multiple extended targets

    Multi-EAP: extended EAP for multi-estimate extraction for the SMC-PHD filter

    Get PDF
    The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction (MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density (PHD) filter, implemented by the sequential Monte Carlo approach, affords a computationally efficient solution to general multi-target filtering for a time-varying number of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate particles with measurements. The MEE problem is then formulated as a family of parallel singleestimate extraction problems, facilitating the use of the classic expected a posteriori (EAP) estimator, namely the multi-EAP (MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical simulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accurac
    corecore