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Abstract

The multi-target tracking problem essentially involves the recursive joint estimation of

the state of unknown and time-varying number of targets present in a tracking scene,

given a series of observations. This problem becomes more challenging because the

sequence of observations is noisy and can become corrupted due to miss-detections and

false alarms/clutter. Additionally, the detected observations are indistinguishable from

clutter. Furthermore, whether the target(s) of interest are point or extended (in terms of

spatial extent) poses even more technical challenges.

An approach known as random finite sets provides an elegant and rigorous framework

for the handling of the multi-target tracking problem. With a random finite sets formulation,

both the multi-target states and multi-target observations are modelled as finite set valued

random variables, that is, random variables which are random in both the number of

elements and the values of the elements themselves. Furthermore, compared to other

approaches, the random finite sets approach possesses a desirable characteristic of being

free of explicit data association prior to tracking. In addition, a framework is available

for dealing with random finite sets and is known as finite sets statistics. In this thesis,

advanced signal processing techniques are employed to provide enhancements to and

develop new random finite sets based multi-target tracking algorithms for the tracking of

both point and extended targets with the aim to improve tracking performance in cluttered

environments.

To this end, firstly, a new and efficient Kalman-gain aided sequential Monte Carlo

probability hypothesis density (KG-SMC-PHD) filter and a cardinalised particle probability

hypothesis density (KG-SMC-CPHD) filter are proposed. These filters employ the Kalman-

gain approach during weight update to correct predicted particle states by minimising



vi

the mean square error between the estimated measurement and the actual measurement

received at a given time in order to arrive at a more accurate posterior. This technique

identifies and selects those particles belonging to a particular target from a given PHD for

state correction during weight computation. The proposed SMC-CPHD filter provides a

better estimate of the number of targets. Besides the improved tracking accuracy, fewer

particles are required in the proposed approach. Simulation results confirm the improved

tracking performance when evaluated with different measures.

Secondly, the KG-SMC-(C)PHD filters are particle filter (PF) based and as with PFs,

they require a process known as resampling to avoid the problem of degeneracy. This thesis

proposes a new resampling scheme to address a problem with the systematic resampling

method which causes a high tendency of resampling very low weight particles especially

when a large number of resampled particles are required; which in turn affect state

estimation.

Thirdly, the KG-SMC-(C)PHD filters proposed in this thesis perform “filtering” and not

“tracking”, that is, they provide only “point” estimates of target states but do not provide

“connected” estimates of target trajectories from one time step to the next. A new post

processing step using game theory as a solution to this “filtering” - “tracking” problem is

proposed. This approach was named the GTDA method. This method was employed in

the KG-SMC-(C)PHD filter as a post processing technique and was evaluated using both

simulated and real data obtained using the NI-USRP software defined radio platform in a

passive bi-static radar system.

Lastly, a new technique for the joint tracking and labelling of multiple extended targets

is proposed. To achieve multiple extended target tracking using this technique, models for

the target measurement rate, kinematic component and target extension are defined and

jointly propagated in time under the generalised labelled multi-Bernoulli (GLMB) filter

framework. The GLMB filter is a random finite sets-based filter. In particular, a Poisson

mixture variational Bayesian (PMVB) model is developed to simultaneously estimate

the measurement rate of multiple extended targets and extended target extension was
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modelled using B-splines. The proposed method was evaluated with various performance

metrics in order to demonstrate its effectiveness in tracking multiple extended targets.
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Chapter 1

Introduction

1.1 Target Tracking

Target tracking can be defined as the problem of estimating over time the location

and trajectory of an object/target as it moves within a tracking scene using sensor

measurements/observations. Target tracking is of key importance in systems that

perform functions such as surveillance, monitoring, guidance or obstacle avoidance.

Typically, a tracking algorithm takes as input measurements obtained at intervals

from sensors which provide the signals such as sonar, radar, image or video to

output target state estimates at each point in time. The target state estimates

can be such information as the target’s position, velocity, acceleration or other

attributes. The successive estimates obtained from the target tracker yields the

target tracks which describe the path/trajectory of the target.

Target tracking has found its place in a variety of applications including motion-

based recognition, automated security, autonomous vehicles and robotics, oceanog-

raphy, navigation and surveillance, medical imaging and biomedical research,

traffic control, air traffic control, defence, space applications, remote sensing,

computer vision and human–computer interaction [5, 9, 11, 26, 33, 85, 105–

107, 132, 136].

The focus of current research and directions for future research in the field of

engineering include targeted drug release and medicine absorption monitoring in

the medical field, autonomous vehicles (land, aerial and underwater) for military,



1.2 Multi-Target Tracking 2

surveillance and product delivery/shipping, space debris tracking for satellite asset

launch and protection among others. In all these areas, target tracking capability

is vital and having robust and efficient tracking algorithms would be of benefit.

1.2 Multi-Target Tracking

In the 1960’s, prompted by aerospace applications, multi-target tracking (MTT)

was originally employed for target tracking using radar measurements [5]. MTT

concerns the problem of recursively and jointly estimating the state or trajectories

of unknown and time-varying number of targets present in a tracking scene using

sensor measurements. Single-target tracking (STT) is a special case of MTT [143]

where there is only one target, that may or may not be detected by a sensor which

additionally receives a random number of false measurements.

In an MTT setting, the target states or trajectories and the number of targets

vary owing to appearance of new targets and disappearance of exiting targets. The

multi-target tracker receives a random number of noisy measurements which could

be miss-detections and/or false alarms. False alarms are detections whose origin is

not one of the observed targets. Additionally, the multi-target tracker has to deal

with target births and deaths and process measurements from multiple sensors.

To achieve MTT, a number of algorithms have been proposed and used. The

most widely applied of these algorithms are the global nearest neighbour (GNN)

[9, 26], the joint probabilistic data association (JPDA) filter [8, 9, 59], multiple

hypothesis tracking (MHT) [25, 26] and random finite set (RFS) based multi-target

filters [105, 106].

The GNN, JPDA and MHT techniques essentially rely on the same principle in

that they basically keep multiple instances of single target filters for all possible

objects. In other words, they require data association followed by single target fil-

tering. The data association partitions the measurements into potential tracks and

false alarms while filtering estimates the state of the target given its measurement

history [5]. In MTT, this data association problem usually involves ensuring that

the correct measurement is given to each stochastic filter so that the trajectories of
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each target can be accurately estimated, this is referred to as measurement-to-track

association. Once measurement-to-track association is achieved, single target track-

ers such as the Kalman filter or the particle filter are employed to achieve filtering.

The RFS based methods however possess a desirable characteristic of avoiding data

association and focuses on filtering by seeking optimal and suboptimal estimates

of the multi-target state [5].

For completeness, the popular algorithms listed above are briefly described.

The GNN is a refinement of a method called the nearest neighbour (NN) method.

The GNN searches for the best global association, considering all targets and

measurements simultaneously [9]. The JPDA filter [8, 59] is an extension of the

probabilistic data association (PDA) filter [8, 59] (JPDA is for MTT while PDA is for

STT). The JPDA filter uses the same recursion as in the PDA filter for propagating

individual states, except for the calculation of the association probabilities. Joint

association events and joint association probabilities are used in the JPDA filter

in order to avoid conflicting measurement to track assignments in the presence

of multiple targets. The MHT filter [9] adopts what can be called a deferred

data association decision to achieve MTT. In MHT, the strategy is to mitigate

association uncertainty at the current time step by searching over all previous

time steps for all possible combinations of measurement to target associations that

are likely to constitute target tracks or trajectories. This involves the creation of

multiple hypotheses. A hypothesis is the exhaustive association or assignment

of all measurements received, both past and present, to either a single track or

as clutter. In each time step, the MHT filter attempts to maintain a small set of

hypotheses with high posterior probability. When a new set of measurements

arrives, a new set of hypotheses is created from the existing hypotheses and their

posterior probabilities are updated according to Bayes rule.

The RFS approached proposed by Mahler is an emerging technique and provides

a Bayesian framework for the recursive update of the multi-target posterior density.

Under the RFS approach, the targets and the measurements at each time step

are modelled as finite set-valued random variables. A framework is available

for dealing with as well as characterising the relative uncertainties in an RFS
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formulation by using the probabilistic tools of finite sets statistics (FISST) [105].

FISST facilitates an intuitive application of the random finite set theory to MTT

applications by casting the problem into the familiar framework of Bayesian

statistics [104].

1.3 Thesis Outline

The organisation and outline the outline of this thesis is as follows:

In Chapter 2, some of the key challenges of multiple target tracking are in-

troduced. In addition, this chapter features a literature review of the different

state-of-the-art techniques and approaches that have been used to address these

challenges. This chapter further highlights some key drawbacks of these tech-

niques.

In order to aid the reader with the background required for the understanding

of multiple target tracking techniques, Chapter 3 presents key concepts and pre-

liminaries on the concept of Bayesian target filtering, Kalman and particle filter,

importance sampling and random finite sets.

In Chapter 4, a new and efficient sequential Monte Carlo probability hypothesis

density filter is proposed. This new technique employs the Kalman-gain approach

during weight update to correct predicted particle states by minimising the mean

square error between the estimated measurement and the actual measurement

received at a given time in order to arrive at a more accurate posterior. The

technique identifies and selects those particles belonging to a particular target

from a given PHD for state correction during weight computation. Besides the

improved tracking accuracy, fewer particles are required in the proposed approach.

Additionally, an improved resampling technique is developed. The new resampling

method attempts to address a problem associated with systematic resampling.

Simulation results confirm improved tracking performance offered by the newly

developed tracking filter when evaluated with different measures.

Chapter 5 features the introduction of the cardinalised version of the Kalman-

gain aided tracking filter of Chapter 4. The new approach not only propagates
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the PHD but also the probability distribution of target number hence having a

better estimate of the number of targets. Simulated data is used to demonstrate

the performance improvement of this approach.

In Chapter 6, a game theoretic data association technique for multi-target

tracking (MTT) with varying number of targets is investigated. The problem of

target state-estimate-to-track data association has been considered. The KG-SMC-

(C)PHD filter of Chapters 4 and 5 is used to handle the multiple target tracking

aspect to obtain target state estimates. The interaction between target tracks is

modelled as a game by considering the tracks as players and the set of target state

estimates as strategies. Utility functions for the players are defined and a regret-

based learning algorithm with a forgetting factor is used to find the equilibrium of

the game. This technique is applied to both simulated and real radar measurements

from a passive bi-static radar set up. Results from both the simulated data and the

passive radar data demonstrates the effectiveness of the proposed method.

In Chapter 7, a technique for the joint tracking and labelling of multiple ex-

tended targets is investigated. To achieve multiple extended target tracking using

this technique, models for the target measurement rate, kinematic component

and target extension are defined and jointly propagated in time under the gener-

alised labelled multi-Bernoulli filter framework. In particular, a Poisson mixture

variational Bayesian model to simultaneously estimate the measurement rate of

multiple extended targets was developed. In addition, a model for representing

the extension of extended targets using B-splines is proposed. The proposed ex-

tended target tracker is evaluated with various performance metrics in order to

demonstrate the effectiveness of the approach.

Finally, concluding remarks are drawn and possible future research challenges

are discussed in Chapter 8.

1.4 Original Contributions

The contributions of this thesis are mainly on the improvement of the RFS based

multi-target trackers used for both point and extended target tracking. The specific
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contributions of each chapter are supported either by international journal and

conference papers and are outlined below.

Chapter 4

This chapter features a novel particle PHD filter which applies a Kalman-gain based

approach to achieve efficient multi-target filtering with reduced computational

complexity. In addition, an improved resampling technique is presented to aid in

PF methods implementation [45, 46].

1. A. Daniyan, Y. Gong, S. Lambotharan, P. Feng and J. Chambers, “Kalman-

Gain Aided Particle PHD Filter for Multi-target Tracking,” in IEEE Transactions

on Aerospace and Electronic Systems, vol. 53, no. 5, pp. 2251-2265, Oct.

2017.

2. A. Daniyan, Y. Gong and S. Lambotharan, “An improved resampling approach

for particle filters in tracking,” 2017 22nd International Conference on Digital

Signal Processing (DSP), London, 2017, pp. 1-5.

Chapter 5

This chapter presents the cardinalised version of the new particle PHD filter

developed in the previous chapter. This cardinalised version gives a better estimate

of the target number (cardinality).

3. A. Daniyan, Y. Gong and S. Lambotharan, “Multi-target Tracking Using the

Kalman-Gain Particle CPHD Filter,” 2017 (Submitted).

Chapter 6

A new technique for achieving data association using regret matching and game

theory in a multi-target tracking context is developed. Furthermore, the technique

is demonstrated on both simulated data and real passive radar data [43, 44].



1.4 Original Contributions 7

4. A. Daniyan, Y. Gong and S. Lambotharan, “Game Theoretic Data Association

for Multi-target Tracking with Varying Number of Targets,” 2016 IEEE Radar

Conference (RadarConf), Philadelphia, PA, 2016, pp. 1-4.

5. A. Daniyan, A. Aldowesh, Y. Gong and S. Lambotharan, “Data Association

using Game Theory for Multi-target Tracking in Passive Bistatic Radar,” 2017

IEEE Radar Conference (RadarConf), Seattle, WA, 2017, pp. 0042-0046.

Chapter 7

This chapter investigates the use of B-splines and a Poisson mixture variational

Bayesian within the labelled random finite sets context for the joint target state

estimation and track association of multiple extended targets in clutter.

6. A. Daniyan, A. Deligiannis, Y. Gong, and S. Lambotharan, “Bayesian Multiple

Extended Target Tracking Using Labelled Random Finite Sets and Splines,”

IEEE Transactions on Signal Processing, 2017 (Submitted).



Chapter 2

Literature Review

2.1 Introduction

In this chapter, firstly, the challenges associated with MTT are discussed. This is

then followed by a discussion on the relevant attempts to the solution of the MTT

problem. This chapter also reviews certain drawbacks and limitations associated

with these proposed solutions.

2.2 Challenges to Multi-Target Tracking

MTT has been attracting significant interests in many engineering applications.

As a testimony to this fact, RFS based MTT methods have been used in many

applications including [143] radar tracking [135, 149], acoustic source tracking [7,

115], sonar image tracking [39, 79], terrain tracking [127], network based defence

[1], distributed systems tracking [134], vehicle tracking for automatic cruise

control/automatic emergency braking [98], simultaneous localisation and mapping

[110, 111], tracking for robot vision [77], tracking with graph matching [99],

tracking with millimetre-wave images [73], tracking with target amplitude feature

information [38] and sinusoidal components tracking in audio [37]. However,

some issues that are fundamental to the successful realisation of a fully robust and

efficient multi-target tracker in clutter still need further attention. These include:
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i. State and target number estimation (for both point and extended targets)

ii. Data association

iii. Targets giving rise to more than one measurement per time step, and

iv. High computational demand

The tracking of targets in challenging environments can be complex as targets’

motion and environment clutter become non-linear and non-Gaussian. The RFS

approach to Bayesian MTT offers a systematic and rigorous approach which does

not require the association of objects with measurements. To achieve detection

and tracking in such scenarios, RFS based algorithms including the probability

hypothesis density (PHD) and the cardinalised PHD (CPHD) filter, the multi-target

multi-Bernoulli (MeMBer) filter and CMeMBer and the GLMB and LMB recursions

are used. In general, these recursions are computationally intractable. However,

the use of SMC or particle filtering methods provides suboptimal solution to these

recursions. These filters by design are able to simultaneously perform state and

target number estimation for point targets at a very high computational demand.

However, to achieve robust target model representation and data association,

further processing is required with an added computational load. Hence, it is

desirable to have MTT algorithms that give high performance and accuracy at a

significantly reduced computational demand.

In what follows, a literature review of the state-of-the-art methods used to

address some of the MTT challenges mentioned.

2.2.1 Estimation of State and Number of Targets

Multi-target tracking belongs to a class of dynamic state estimation problems

[11, 12, 25]. In MTT targets can appear and disappear randomly in time and this

results in a varying and unknown number of targets and their corresponding states.

Furthermore, not all measurements received by sensors at each time instance are

due to existing targets. The sensor may pick up detections as false alarms due to

clutter or may even miss some detections. As a result, the measurements received
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at each time step are corrupted and consist of indistinguishable measurements that

may be either target-originated or due to clutter. Therefore, the main objective

of MTT is to jointly estimate target states and number of targets from a set of

corrupted measurements.

Furthermore, because there is no particular ordering between measurements

received and target states at each time step in terms of association; both the

received measurements and target states can be represented as finite sets [102–

105]. The modelling of target states and measurements as a RFS allows for the use

of the Bayesian filtering approach (as an optimal multi-target filter) to estimate

the multi-target states in the presence of clutter, missed detections and association

uncertainty [102–105]. Tractable alternatives to the optimal multi-target filters

include the RFS based PHD filter, CPHD filter [100, 103, 105], the MeMBer filter1

and its cardinality-balanced version, the CBMeMBer filter [103, 105, 144]. Both

the CPHD in [100] and the CBMeMBer in [144] have been shown to have better

performance than the MeMBer filter in [105]. The CBMeMBer filter was proposed

specifically to address the pronounced bias in the cardinality estimate of the

MeMBer filter. More details on other tractable RFS based MTT methods can be

found in [22, 113, 137, 138].

The PHD filter is a recursion that propagates the posterior intensity of the RFS

of targets in time [102]. The integral of the PHD is the expected number of targets

in a measurable region, and the peaks of the PHD function provide the estimates

of the target states [100, 103, 105]. The PHD filter is able to track time varying

multiple targets without the need to explicitly associate measurements to tracks.

In the literature, the PHD filter has been implemented in two distinct fashions;

that is, as the Gaussian mixture PHD (GM-PHD) filter [140] and the Sequential

Monte Carlo PHD (SMC-PHD) filter [141]. In the GM-PHD filter implementation,

the PHD is assumed to be a Gaussian mixture (GM) while in the SMC-PHD filter

implementation, the PHD is approximated by a set of weighted particles and does

1The MeMBer filter is a recursion that propagates (approximately) the multi-target posterior
density and is based on the assumption that every multi-target posterior is a multi-target multi-
Bernoulli process [105, 144].
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not need any further assumptions. The SMC-PHD filter is therefore more suitable

for tracking in non-linear and non-Gaussian environments.

In SMC filter design, the choice of importance density function from which

samples are drawn to avoid sample degeneracy and impoverishment is of crucial

importance [55]. Furthermore, in MTT which involves multiple modalities, if

particles are in clusters representing the modes of the posterior, the iterative

process of randomly drawing samples from proposal distributions results in random

fluctuations in the total weight attributed to each mode [108]. In addition, the

errors associated with the estimation of the weights of each mode will increase

in magnitude with time [108]. These errors arise due to the stochastic nature

of drawing samples from the proposal distribution and the stochasticity of the

resampling process [108]. These two processes greatly influence performance of

SMC filters. SMC filters are further affected by how well the state space of targets

is populated with samples. Also, [142] argued that the mean squared error (MSE)

of the SMC-PHD filter is inversely proportional to number of samples. In [55], it

is shown that the optimal importance density function is the posterior. In many

cases it is difficult to sample from the optimal importance density. As an attempt

to solve the importance sampling problem, [108] proposed using an optimised

proposal distribution for SMC filters with multiple modes in general. However, this

approach tends to be problem specific. In [148], the authors proposed the Gaussian

mixture unscented sequential Monte Carlo probability hypothesis density (GM-

USMC-PHD) filter which uses the Gaussian mixture representation to approximate

the importance sampling function and the predictive density functions via the

unscented information filter (UIF). Additionally, [14] and [146] proposed the

auxiliary SMC-PHD (ASMC-PHD) filter and its improved version, the auxiliary

particle PHD (AP-PHD) filter respectively. Both try to use the auxiliary particle

approach to incorporate the measurement into the importance sampling function.

This however involves double computation on the measurement and more samples

are required to populate the state space in order to make the importance sampling

function more viable.
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However, it is also possible to construct suboptimal approximations to the

optimal importance density by using local linearisation techniques [55]. As a

realisation of this, the unscented Kalman particle PHD filter (UK-P-PHD) was pro-

posed in [109] for the joint tracking of multi-targets. It tries to use the unscented

Kalman filter (UKF) in the prediction step. This allowed for inclusion of the latest

measurement to draw particles. Similarly, [96] proposed the Kalman particle PHD

filter for multi-target visual tracking which uses the Kalman filter to construct the

proposal density also in the prediction step. Furthermore, [133] presented an

improvement to the SMC-PHD filter which incorporates the latest measurements

into the resampling step by using the UKF.

Additionally, in the literature are the combined implementation of the GM

and particle PHD filter as a GM particle PHD (GMP-PHD) filter in [36, 147]

and [152] and the Gaussian mixture SMC-PHD (GM-SMC-PHD) in [114]. These

methods attempt to combine the advantages of both GM-PHD and SMC-PHD

filters. The methods give some level of performance improvement without easing

computational burden or the number of particles. Also, it may be possible to

implement the Markov Chain Monte Carlo (MCMC) sampling method in the

update stage of the SMC-PHD filter as a way of asymptotically approximating

the posterior. However, this approach will require even more particles, as these

extra particles will be used to perform some sort of random walk in order to

achieve maximum a posteriori estimate of target states, but no guarantees exist

about it yielding good point estimates [82]. Recently, [153] proposed a data

driven SMC-PHD filter for multi-target tracking. The method tries to segment the

measurements available at each time step into measurements due to persistent

targets and measurements due to new born targets. Again, this does not help

reduce the number of particles but rather, more particles are required to populate

regions of interest.

It is desirable therefore to have an efficient filter that can provide for particle

state correction for any proposal distribution using fewer particles. This gives the

motivation for the contributions of Chapters 4 and 5.
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2.2.2 Data Association

In MTT, not all measurements received by sensors at each time instance are from

existing targets. The sensor may pick up spurious detections due to clutter or

may miss detections. As a result, the measurements received at each time step

are corrupted and consist of indistinguishable measurements that may be either

target-originated or due to clutter. It is therefore crucial in MTT to ascertain which

measurement is due to which target. Data association deals with the problem

of assigning measurements-to-target or target-state-estimates to individual target

tracks [9, 10].

In solving the MTT problem, the most common methods are: i) those that try

to avoid explicit association techniques [128], and ii) those that apply explicit

data association techniques to assign measurements to each track [11]. Those

MTT techniques that avoid explicit associations between measurements and tracks

include the sparse-grid quadrature non-linear filter [78], multi-target particle

filters [131] and RFS method [100, 103, 105]. In the second case, data association

techniques are used to assign measurements to each track and a single target

tracker [9, 103, 105] (for example the Kalman filter (KF) or the particle filter (PF))

is used for that track. In this setting, the number of targets needs to be known and

fixed. Several techniques are used to achieve data association. The most common

data association techniques include the nearest neighbour (NN) [9], the multiple

hypothesis tracker (MHT) [9], and the joint probabilistic data association (JPDA)

filter [9, 59]. In NN, at each time step, the predicted target state is associated with

the closest measurement. MHT however keeps track of, and carries forward, all the

association hypotheses to the next time step and aggregates them over time. The

JPDA finds the association probabilities during each time update by considering all

the targets and the measurements simultaneously and merging many hypotheses

to form a single track hypothesis following a validation process. However, NN,

MHT and JPDA algorithms are more suited to linear update/linear measurement

and Gaussian uncertainty scenarios [34].
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However, in complex MTT scenarios the target dynamics can be non-linear and

even non-Gaussian. For such scenarios, [34] and [35] proposed a measurement-to-

track data association for MTT using game theory. In their approach, a known and

fixed number of targets was considered, and the aim was to use game theory to

assign measurements to individual single target trackers. This approach however

is constrained because the number of targets need to be known.

Having a data association technique robust to nonlinearity in target dynamics

and non-Gaussian scenarios is the focus of Chapter 6.

2.2.3 Extended Target Tracking

In MTT, the aim is to jointly estimate the number and state of multiple targets

present within a tracking volume while maintaining target tracks/history (data

association). This problem becomes even more challenging in the face of missed

detections, false alarms and noisy or corrupted measurements. The MTT problem

can be addressed under a Bayesian formulation where models are used to relate

unobserved states to measurements. A common representation of such models is

to assume that one target produces one measurement per time step, for example,

see [8] and [9]. This is often referred to as the standard measurement or point

target model.

However, with the increasing advances in sensor technology, the proliferation of

high-resolution sensors (for example, video cameras, phased array radars, ground

or marine radar and laser range sensors) in recent years, size of the targets, or

proximity between targets and sensor, can be such that the targets occupy multiple

resolution cells of the sensor giving rise to more than one measurement per time

step. Such targets are termed extended targets (ET). Therefore, the point target

assumption does no longer hold in such scenarios. Scenarios where ETs may appear

include using marine or ground radar to track sufficiently close ships or aeroplanes,

using automotive radar for vehicle tracking or using laser range sensors for person

tracking [95]. Besides, modern applications require extensive and detailed physical

information about targets to achieve tasks including target detection, tracking,
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classification, recognition and identification. In such cases, the idea of ET becomes

even more appealing and useful. Additionally, applications that require tracking a

group of closely spaced targets in formation can benefit from the ET formulation

[88]. This is because the knowledge of the size, shape, and orientation of the

group formation can be crucial in practical applications where recognition and

classification are of importance [88]. Hence, target extension model and other

information (for example, kinematics) for ETs are required for tracking application.

When considering ET measurement models, two main aspects are usually re-

quired and these are i) a model to describe the number of measurements generated

by each ET; ii) a model to capture the target’s spatial distribution. These two

components however depend very much on the type of ET being tracked. For

instance, a target (for example, radar target) can generate measurements from

different scatter points. Another target type may generate just a few measurements

around a scatter point [20]. In any case, the measurements from an ET can be

considered to be such that the detections are geometrically structured.

As for modelling the number of measurements generated by an ET, the authors

in [61] and [62] proposed one such model where the number of ET measurements

are modelled as an inhomogeneous Poisson distribution characterised by a rate

parameter. Knowledge on the distribution of measurements and acquiring a good

estimate of the measurement rate parameter especially in the case of spatially

close extended targets are important to improve performance [64]. The work in

[67] proposed a recursive Bayesian method with exponential forgetting factor to

estimate the measurement rate. However, this method has two limitations. This

method requires choosing an appropriate window size for the forgetting factor as

this is application dependent.

With regards to modelling the target extent (i.e. shape and size) of an ET, this

is possible even in the absence of a specific target structure. This can be achieved

for example by methods including: i) assuming some general parametric shape

such as an ellipse or a rectangle (see for example, [2, 16, 49, 68, 69, 84, 88, 118,

119, 126, 154]) or ii) assuming an arbitrary shape for the ET (see for example,

[18, 30, 70, 75, 86, 87, 94, 145]). For the first approach mentioned (that is,
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assuming a general parametric shape), the most common technique used is the

random matrix method proposed in [84] where the ET extension was modelled

as a symmetric positive definite matrix (the ET is assumed to be elliptical). This

method has been applied in various scenarios in both LIDAR and marine radar

tracking (see for example, [65] and [66]). However, this method has limitations

as its performance depends inherently on the elliptic shape assumption. As for

the approach were the ET shape is assumed to be arbitrary, one of the most

common techniques used in the literature is the star-convex method. This method

is based on the random hypersurface model (RHM) proposed in [15] and [17]

or its alternative, the Gaussian process model of [75] and [145]. Although this

approach provides a systematic way to model different target shapes from ellipses

[16] to arbitrary star-convex shapes [18], it does so at the expense of increased

computational cost.

Once the ET measurement model has been defined, a multi-object tracker can

be implemented together with the ET measurement model to perform state and

target number estimation under the Bayesian formulation. Among the promising

techniques available in the literature to achieve this are the RFS based methods

and the non-RFS based methods. Techniques for achieving ET MTT include use

of the PHD filter (see for example, [66, 68, 101, 151]) and CPHD filter (see

for example, [90, 95, 112]). The PHD filter recursively estimates the first order

moment (intensity function) of a random finite set [105] while the CPHD filter,

in addition to estimating the PHD of an RFS, estimates a truncated cardinality

distribution. It provides a better cardinality estimate as compared to the PHD

filter [6]. The cardinality-balanced multi-target multi-Bernoulli (CB-MeMBer)

filter was proposed specifically to address the pronounced bias in the cardinality

estimate of the MeMBer filter [105, 144]. The CB-MeMBer filter which is a

recursion that propagates (approximately) the multi-target posterior density and

is based on the assumption that every multi-target posterior is a multi-target

multi-Bernoulli process is also RFS based and has been used in ET MTT (see for

example, [93, 150]). However, the PHD, CPHD and CB-MeMBer filters do not

formally estimate target trajectories (perform data association) in their basic forms.
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A post processing step is required to achieve this. To alleviate this problem, the

generalised labelled multi-Bernoulli (GLMB) filter [138] and its computationally

efficient version the labelled multi-Bernoulli (LMB) filter [117] were proposed,

all under the RFS framework. In their approach, they assign distinct labels to

each element of the target set, so that trajectory history of each object can be

naturally identified, without the need for post-processing. The GLMB filter in [138]

and [137] was for solving the multi-object tracking problem under the standard

point-detection likelihood model (that is, when targets generate at most one

measurement per time step. Both filters can in addition to recursively estimating

the target state and the number of targets, provide track association histories (data

association).

As a proposed solution to ET MTT, both the GLMB filter [138] and the LMB

filter [137] have been used to achieve ET MTT [20] and [21]. Recently, the authors

in [20] and [21] proposed a method to achieve this through a recursive Bayesian

rate estimator to compute the measurement rate of each target individually and

sequentially. The authors used the random matrix approach to model the target

extent and formulated expressions for achieving ET MTT under the framework of

GLMB and LMB. This approach requires pre-setting a window size to perform the

measurement rate estimation based on the rate estimation method proposed in

[67]. The authors in [67] noted that the choice of the window size affects how

fast or slow the estimated rate by their method changes to the true rate parameter.

This requirement may mean parameter tuning to obtain the right window size in

some applications. The ET extension model in this approach is restrictive in that

not all ET can be modelled using the elliptical shape.

It is therefore desirable to have an ET multi-target tracker capable of incorporat-

ing models of measurement rate and target extent of arbitrary targets into a tracker

that can estimate extended target states, number of targets and maintain track

association in order to achieve improved tracking performance. This possibility is

investigated in Chapter 7.
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2.3 Summary

This chapter highlighted certain issues associated with MTT. In addition, the chap-

ter presented a literature review of the cutting-edge techniques to addressing the

MTT problem. Furthermore, some of the restrictions and limitations of these exist-

ing techniques were highlighted thereby paving way for the various contributions

of this thesis.

The next chapter discusses some fundamental signal processing and mathemat-

ical concepts that are key to understanding the MTT problem.



Chapter 3

Key Concepts and Preliminaries of

Target Tracking

In this chapter, some key concepts that are fundamental to the idea of MTT are

presented and discussed. Specifically, the idea of Bayesian target estimation, that

is, the Bayesian single/multi-object filter is introduced. This is followed by a

discussion on optimal and suboptimal solutions to the Bayesian filter. Under the

optimal category, the Kalman filter and the extended Kalman filter are presented.

Under the suboptimal category, firstly, the idea of importance sampling is described

followed by a description of the particle filter and its implementation. Thirdly, the

random finite sets concept is introduced along with the mathematical framework

used to handle random finite sets. This is followed by an introduction to the random

finite sets-based probability hypothesis density and its particle implementation.

Also featured in this chapter is the idea of labelled random finite sets.

3.1 Bayesian Target Estimation

The MTT problem relates to that of modelling a dynamical system. Two models

are generally used, the state evolution model and the measurement model.
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State Model

A non-linear system governed by the state evolution model is considered:

xk = fk−1(xk−1, vk), (3.1)

where xk denotes the m-th target state at discrete time k, vk is an independent and

identically distributed (i.i.d.) process noise vector and fk(·) is the nonlinear system

transition function. Then the multi-target state at time k can be written as

Xk = {x1,k, ..., xM,k} ∈ Es, (3.2)

where M is the number of targets present at each time k, and Es denotes the state

space.

Measurement Model

Let the multi-target cumulative measurement set upto timeK be ZK = {Z1,Z2, ...,ZK} ∈

Eo. Measurements consist of both target-originated measurements and false alarms

due to clutter. Then the multi-target measurement set at time k in the measurement

space is:

Zk = {z1,k, ..., zα,k}
⋃

{c1,k, ...cβ,k} ∈ Eo, (3.3)

where α denotes the number of target-originated measurements, β denotes the

number of false measurements and Eo denotes the measurement space. The m-th

target-originated non-linear measurement model is given as:

zk = hk(xk,nk), (3.4)

where hk(·) is a nonlinear function, and nk is an i.i.d. process noise vector.
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3.1.1 Single Target Bayes Filter

The Bayesian approach to target tracking involves recursively computing the

posterior distribution using two stages known as the prediction and update stages

[47]. The prediction stage uses the system model to predict the state probability

density function (pdf) forward from one measurement time to the next. While

the update operation uses the latest measurement to modify the prediction pdf.

It may be recalled from Bayes’ theorem that given the likelihood and prior, the

posterior can be computed. The tracking problem from a Bayesian perspective is to

calculate recursively some degree of belief in the state Xk at time k. Assuming that

the required pdf at time k − 1, p(xk−1|z1:k−1) is available, using the system model

in (3.1), the prediction stage requires computing the prior pdf at time k using the

Chapman-Kolmogorov equation [3]

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.5)

The fact that p(xk|xk−1, z1:k−1) = p(xk|xk−1) has been made use of in (3.5) above

since (3.1) describes a Markov process of order one.

The update stage is where the posterior, p(xk|z1:k) is computed. This requires

updating the prior at time k when a measurement zk becomes available. Applying

Bayes’ rule,

p(xk|z1:k) = p(zk|xk)p(xk|zk−1)
p(zk|zk−1)

, (3.6)

where

p(zk|zk−1) =
∫
p(zk|xk)p(xk|zk−1)dxk−1, (3.7)

is the normalising constant. The reoccurring relation of (3.5) and (3.6) gives rise to

the optimal Bayesian solution. The optimal Bayesian solution solves the problem

of recursively calculating the exact posterior density. The recursive propagation

nature of the posterior density is a solution that is conceptual due to the fact
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that in general, it cannot be analytically determined [3]. Techniques are however

available as analytical solutions to the optimal Bayesian solution.

An optimal technique is an algorithm which analytically solves the optimal

Bayesian solution. An example of such a method is the Kalman filter (KF) [3].

More on how the KF solves the optimal Bayesian solution is discussed in this

chapter. The analytical solution to the Bayesian solution can become intractable.

When this happens, approximation techniques to the optimal Bayesian solution

are required. A suboptimal Bayesian solution is a technique or algorithm that

approximates the optimal Bayesian solution. Such techniques include the extended

Kalman filter (EKF) and sequential Monte Carlo (SMC) methods [3].

3.1.2 Multi-Target Bayes Filter

In Bayesian multi-target estimation, the aim is to recursively estimate at each time

k (using the prediction and update stages) the state of multi-targets Xk ⊂ X.

In the prediction stage, the multi-target state at time k − 1 is assumed to be

distributed according to the density pk−1(·|Z1:k−1), with Z1:k−1 denoting an array of

finite sets of measurements received up to and including time k − 1. Each Zk is

assumed to be generated through a process of thinning of mis-detected objects,

Markov shifts of detected objects, and superposition of false measurements. The

multi-target prediction to time k given k − 1 is given by the Chapman-Kolmogorov

equation

pk|k−1(Xk|Z1:k−1) =
∫
fk|k−1(Xk|Xk−1)pk−1(Xk−1|Z1:k−1)δXk−1, (3.8)

where fk|k−1(·|·) is the multi-target transition kernel, and the integral is the set

integral [105],

∫
f(X)δX =

∞∑
i=0

1
i!

∫
Xi
f({x1, · · · , xi})d(x1, . . . , xi). (3.9)

At time k, a new set of measurements Zk is available and modelled by a multi-

target likelihood function gk(Zk|Xk). Thus, the update stage involves computing
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the multi-target posterior at time k given by Bayes rule

pk(Xk|Z1:k) = gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1)δX

. (3.10)

Both (3.8) and (3.10) above collectively form the multi-target Bayes filter. However,

computing the exact multi-target posterior (that is, (3.10)) is in general numerically

intractable, and therefore approximations are required in order to derive practical

algorithms [105].

3.2 The Kalman Filter

The Kalman filter (KF) can be thought of as a sequential minimum mean square

error (MMSE) estimator of a given signal that is embedded in noise, where the

signal is characterised by a state model [81].

In order to implement the KF as an optimal Bayesian solution to the tracking

problem and using the models in Section 3.1.1 the following highly restrictive

assumptions must hold [3, 81]:

1. Both the state and measurement models of (3.1) and (3.4) must be linear,

and

2. The posterior density of any target xk at every time step k must be Gaussian.

From assumption 2 above, the posterior can then be characterised by a mean and

covariance. And if p(xk−1|z1:k−1) is Gaussian, it can also be proven that p(xk|z1:k)

is also Gaussian given that nk and vk are drawn from a Gaussian distribution with

known parameters [3].

Following assumption 1 above, the state and measurement models of (3.1) and

(3.4) can consequently be rewritten thus:

xk = Fkxk−1 + vk, (3.11)

zk = Hkxk + nk, (3.12)
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Fk and Hk are matrices that define the linear function and are known as state

transition matrix and transformation matrix respectively. The covariance matrices

of nk and vk are Ck and Qk−1respectively; nk and vk have zero mean and statistically

are independent.

The prior, p(xk−1|z1:k−1), posterior given measurement up to time k−1, p(xk|z1:k−1),

and posterior given measurement up to time k p(xk|z1:k), can now be determined

as:

p(xk−1|z1:k−1) = N (xk−1; sk−1|k−1,Mk−1|k−1), (3.13)

p(xk|z1:k−1) = N (xk; sk|k−1,Mk|k−1), (3.14)

p(xk|z1:k) = N (xk; sk|k,Mk|k), (3.15)

where N (x; s,M) denotes a Gaussian density with argument x, mean s and covari-

ance M,

sk|k−1 = Fksk−1|k−1, (3.16)

Mk|k−1 = Qk−1 + FkMk−1|k−1FT
k , (3.17)

sk|k = sk|k−1 + Kk(zk − Hksk|k−1), (3.18)

Mk|k = Mk|k−1 − KkHkMk|k−1, (3.19)

where

Pk = HkMk|k−1HT
k + Ck, (3.20)

Kk = Mk|k−1HT
k P−1

k , (3.21)

and Pk is covariance of the innovation term zk − Hksk|k−1, with Kk being the

Kalman gain. For a matrix B, BT is its transpose.

The KF algorithm to analytically solve the optimal Bayesian solution can now

be formulated thus:
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Prediction

sk|k−1 = Fksk−1|k−1,

Mk|k−1 = Qk−1 + FkMk−1|k−1FT
k ,

Pk = HkMk|k−1HT
k + Ck,

Kk = Mk|k−1HT
k P−1

k ,

Update

sk|k = sk|k−1 + Kk(zk − Hksk|k−1),

Mk|k = Mk|k−1 − KkHkMk|k−1.

With the above recursive algorithm and the earlier restrictive assumptions, no

algorithm can do better than KF in a linear environment [3]. When either of the

two assumptions do not hold, the KF solution becomes intractable, and therefore

an approximation to the optimal Bayesian solution is required [47].

3.2.1 Extended Kalman Filter

The extended Kalman filter (EKF) is an extension of the KF. The algorithm tries

to approximate the optimal Bayesian solution; hence it is a suboptimal Bayesian

solution.

The technique is used when either or both the state and measurement models

of (3.1) and (3.4) are non-linear but assumption 2 for the KF above still holds.

When this is the case, (3.11) and (3.12) will no longer hold and therefore a local

linearisation of (3.11) and (3.12) will be required to describe the non-linearity.

The EKF is based on this approximation and (3.13), (3.14), and (3.15) become:

p(xk−1|z1:k−1) ≈ N (xk−1; sk−1|k−1,Mk−1|k−1), (3.22)

p(xk|z1:k−1) ≈ N (xk; sk|k−1,Mk|k−1), (3.23)

p(xk|z1:k) ≈ N (xk; sk|k,Mk|k), (3.24)
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where

sk|k−1 = fk(sk−1|k−1), (3.25)

Mk|k−1 = Qk−1 + ÂkMk−1|k−1Â
T

k , (3.26)

sk|k = sk|k−1 + Kk(zk − hk(sk|k−1)), (3.27)

Mk|k = Mk|k−1 − KkĤkMk|k−1, (3.28)

and fk(.) and hk(.) are non-linear functions, Âk and Ĥk are local linearisations of

the non-linear functions. The matrices are defined below:

Âk = dfk(x)
dx

∣∣∣∣∣
x=sk−1|k−1

, (3.29)

Ĥk = dhk(x)
dx

∣∣∣∣∣
x=sk|k−1

, (3.30)

Pk = ĤkMk|k−1Ĥ
T

k + Ck, (3.31)

Kk = Mk|k−1Ĥ
T

k P−1
k . (3.32)

The first term in a Taylor series expansion of the non-linear function is used in the

EKF as described above. A recursive implementation of the EKF becomes:

Prediction

sk|k−1 = fk(sk−1|k−1),

Mk|k−1 = Qk−1 + ÂkMk−1|k−1Â
T

k ,

Pk = ĤkMk|k−1Ĥ
T

k + Ck,

Kk = Mk|k−1Ĥ
T

k P−1
k ,
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Update

sk|k = sk|k−1 + Kk(zk − hk(sk|k−1)),

Mk|k = Mk|k−1 − KkĤkMk|k−1,

Since the EKF depends on the linearisation of the KF, its performance depends on

the accuracy of this linearisation and therefore has no optimality properties [81].

3.3 The Particle Filter

Sequential Monte Carlo (SMC) or particle filtering (PF) methods have proven

useful within the past couple of decades in handling target tracking, especially

when the measurements are represented by nonlinear state-space models with

non-Gaussian noise models. The PF has been known by such names as: particle

filter [32], survival of the fittest [80], condensation algorithm [97], sequential

importance sampler [3], multinomial filter [63], and the interacting particle

approximations filter [41, 50]. The filter achieves recursive Bayesian filtering

through implementing MC simulations. The PF method has been applied in a

diverse range of disciplines including control, wireless communications, surveil-

lance, defence, space applications, oceanography, finance, autonomous vehicles,

robotics, remote sensing, computer vision and biomedical research, see for example

[3, 9, 26, 31, 33, 51, 55, 56, 85, 105–107, 132]. The main advantage of SMC

methods lies in their ability to approximate states of non-linear dynamical models

and non-Gaussian noise [54, 55].

When PF methods are used, for example in tracking applications, the goal is to

track and estimate various distributions that emerge in the dynamic state-space

models [89]. To this end, randomly generated samples (particles) are used to

explore the states of the space. The generated samples along with associated

weights are then used to approximate the distributions of interest [89].
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The main idea in PF is to represent the required posterior density function with

a weighted set of random samples and then compute estimates based on these

samples and their weights [121].

3.3.1 PF Implementation

A set of particle {xi
k}Ns

i=1 are introduced to represent the conditional state probability

given by p(xk|z1:k). Each particle represents a potential state for the object [3].

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k), (3.33)

where Ns is the number of particles at time instance k centred around xi
k and

wi
k represents the particle weights. More weight is given to particles of more

importance. The particles are sampled from an importance density q(xk|xi
k−1, zk).

More details on importance sampling are given in the next section. A new filtering

distribution is approximated by a new set of particles with an importance weight

which is given as:

wi
k ∝

p(zk|xi
k)p(xi

k|x1
k−1)

q(xk|xi
k−1, zk) . (3.34)

In the prediction step of the PF, new particles are estimated by propagating

the old samples
{
xi

k−1, w
i
k−1

}Ns

i=1
through the state space model. The correction

step calculates the weights corresponding to the new samples. The samples are

resampled each time the ’effective’ number of importance weights N̂eff falls below

a predetermined threshold value.

N̂eff = 1∑Ns
i=1 (wi

k)2 . (3.35)

The resampling is done such that particles with high weights are redistributed

across the state space replacing particles with low weights to form the new state

space. The new particles are then assigned equal weights. Once new samples

have been obtained the estimated target location can be computed by taking the
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expectation over the weighted samples.

E [p(xk|z1:k)] = N−1
s

NS∑
i=1

wi
kxi

k. (3.36)

The recursion then proceeds to the next time step k + 1. A common problem

associated with the PF is the degeneracy phenomenon, where after a few iterations,

all but one particle will have negligible weight. Resampling techniques are however

available to handle this [121] (see Section 4.4 for details.). Another important

point to note is the choice of importance density to sample from. A wrong choice

may lead to convergence issues with the filter [121]. A common choice of the

importance density is to use the prior

q(xk|xi
k−1, zk) = p(xk|xi

k−1) (3.37)

3.4 The Importance Density Function

In this section the focus is on proposal distributions and their role in SMC methods

in general.

3.4.1 Importance Sampling

Monte Carlo (MC) methods for numerical integration deal with problems of the

form

g =
∫

ℜn
f(y)π(y)dy (3.38)

where π(y) is such that π(y) ≥ 0 and integrates to unity,

∫
ℜn
π(y)dy = 1 (3.39)

is a pdf.

It is also the assumption that it is possible to generateN ≫ 1 samples distributed

according to the probability density π(y). The MC estimate of the integral (3.38)
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is formed by taking the average over the set of samples

ĝ = 1
N

N∑
i=1

f(yi) (3.40)

where N is assumed to be large. However, π(y) is not usually a familiar density

and so it is difficult to generate samples directly from it. When the latter is the

case, the integral of (3.38) can be solved by letting q(y) be a proposal distribution

or importance density which is easy to generate samples and with the assumption

that π(y) > 0 ⇒ q(y) > 0 for all y ∈ ℜn. Under this assumption, (3.38) becomes:

g =
∫

ℜn
f(y)π(y)dy =

∫
ℜn
f(y)π(y)

q(y) q(y)dy (3.41)

An MC estimate is then computed by generating N ≫ 1 samples from q(y) instead

of π(y) and forming a weighted sum

ĝ = 1
N

N∑
i=1

f(yi)w(yi), (3.42)

where w(yi) ∝ π(yi)
q(yi)

are the associated weights [23]. To sum up, importance

sampling makes it possible to sample, with associated weights, from a distribution,

π(y) difficult to sample from by sampling from an alternate distribution, q(y)

known as the proposal distribution.

3.4.2 Importance Densities

Some common choices of importance density in SMC methods are given below:

3.4.2.1 The Transitional Prior (TP)

This is the most popular choice of suboptimal proposal distribution for SMC-

PHD filters and particle filters in general because its implementation is easy and

straightforward [121]. This choice requires sampling from the dynamic prior,

q(xk|xl
k−1, zk) = p(xk|xl

k−1) (3.43)
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3.4.2.2 Extended Particle Filter (EPF)

Given that the measurement model of (3.4) is non-linear, but Gaussian, it is possible

to use a proposal distribution that exploits a linear approximation to the posterior

[108] in the same way as the extended Kalman filter uses a local linearisation

about its estimates. The proposal distribution is then given as:

q(xk|xl
k−1, zk) = N (xk; uk,Ak) (3.44)

where

uk = fk−1(xk−1) + AkHT
k R−1

k (zk − h(fk−1(xk−1))) (3.45)

Hk = ∂h
∂xk

∣∣∣∣∣
fk−1(xk−1)

(3.46)

where Ak and Rk denote state and measurement covariances respectively, and Hk

is the measurement transformation matrix.

3.4.2.3 Unscented Particle Filter (UPF)

As an alternative to the EPF, an unscented transform can be used to calculate the

mean h(fk−1(xk−1)) and covariance Hk by generating sigma points and applying

a transform such that the new generated samples have fk−1(xk−1) as mean and

Pk−1 as covariance. h(fk−1(xk−1)) is then evaluated at each sigma point and Hk is

computed from these samples [108].

3.5 Random Finite Sets

In the multi-target case, varying number of targets are present. Moreover, the

targets can appear and disappear randomly in the state-space. Xk of (3.2) holds for

all targets present in the state space ES at time step k and Zk in (3.3) holds for all

measurements received in the measurement space EO at time k. However, some

measurements zk,j ∈ Zk may not necessarily originate from xk,i ∈ Xk and may be
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due to clutter. Such spurious measurements can be modelled using specific clutter

models [102].

A Random finite set (RFS) Ξ is a finite-set valued random variable, which can

be described by a discrete probability distribution and a family of joint probability

densities [102, 105, 103]. RFS are models used to represent the uncertainty about

the number of elements in multiple target state Xk and measurement state Zk

[102, 105, 103]. With an RFS formulation, both the multi-target states Xk and

multi-target measurements Zk ⊂ Z are modelled as RFS. A framework for dealing

with RFSs is known as finite sets statistics [105] which is based on the notion of

integration/density that is consistent with point process theory [142].

Consider Γk =
{
X1,(k),X2,(k), ...,XM,(k)

}
, where M is the total number of targets

present at time k; and

Xk = Sk(Xk−1)
⋃

Bk(Xk−1) (3.47)

where Sk(Xk−1) and Bk(Xk−1) denote persistent and new born targets respectively.

And Σ(k) =
{
Z1,(k),Z2,(k), ...,ZN,(k)

}
,where N is the total number of targets

present at time k, with

Zk = Ω(Xk)
⋃

Ck (3.48)

where Ω(Xk) denotes the RFS measurement generated by Xk and Ck denotes

measurement due to clutter.

The multiple target Bayesian posterior density can be formulated as:

pΓk|Σ1:k(Xk|Z1:k) ∝ pΣk|Γk
(Zk|Xk)pΓk|Σ1:k−1(Xk|Z1:k−1) (3.49)

where pΓk|Σ1:k(Xk|Z1:k) is the multiple target posterior density, pΣk|Γk
(Zk|Xk) is

the likelihood and pΓk|Σ1:k−1(Xk|Z1:k−1) the prior density. These densities can be

described using a mathematical framework known as finite-set statistics [102, 105,

103].
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3.5.1 Finite-Set Statistics

Finite-set statistics (FISST) represent a mathematical framework which transforms

multisensor-multitarget problems into single-sensor single-target problems. It

bundles all sensors, targets and measurements into a single meta-sensor, single

meta-target and single meta-measurement respectively [104].

3.6 Probability Hypothesis Density

3.6.1 The PHD Filter

The probability hypothesis density (PHD), DΛ, of a given RFS, Λ, is the first order

moment of Λ and is given by [102, 105, 103]:

DΛ(x) = E {δΛ(x)} =
∫
δX(x)PΛ(dX) (3.50)

where E {·} is the statistical expectation operator and δΛ(x) = ∑
y∈Λ δy(x) is the

random density representation of Λ. PΛ is the probability measure of the RFS. The

PHD filter is a recursion of the PHD, Dk|k that is associated with the multi-target

posterior density p(Xk|Zk), and

p(Xk|Zk) ∝ p(Zk|Xk)p(Xk|Zk−1) (3.51)

where p(Zk|Xk) and p(Xk|Zk−1) denote the multi-target likelihood and prior density

respectively.

The prediction formula of the PHD, Dk|k is given as [105, 103]:

Dk|k−1(xk|Zk−1) = γk(xk) +
∫
φk|k−1(xk, xk−1)Dk−1|k−1(xk−1|Zk−1)dxk−1, (3.52)

with the factor

φk|k−1(xk, xk−1) = pS(xk−1)fk|k−1(xk, xk−1) + bk|k−1(xk, xk−1), (3.53)
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where γk(·) is the PHD of the spontaneous birth, pS(·) is the probability of the target

survival, fk|k−1(xk, xk−1) is the single target motion model, and bk|k−1(xk, xk−1) is

the PHD of the spawned targets.

The update formula is given as:

Dk|k(xk|Zk) =
ν(xk) +

∑
z∈Zk

ψk,z(xk)
κk(z) + ⟨Dk|k−1, ψk,z⟩

Dk|k−1(xk|Zk−1) (3.54)

with ν(xk) = 1 − pD(xk), ψk,z(xk) = pD(xk)g(z|xk), and κk(z) = λkck(z); where

pD(xk) and ν(xk) denote the probability of target detection and non-detection for

a given (xk) respectively, g(z|xk) is the measurement likelihood function for the

single target, κk(z) is the clutter intensity, λk is the average number of Poisson

clutter points per scan, and ck(z) is the probability density over the state-space of

the clutter point; ⟨·, ·⟩ denotes inner product and is computed as [105, 103]:

⟨Dk|k−1, ψk,z⟩ =
∫
Dk|k−1(xk|Zk−1)ψk,z(xk)dxk. (3.55)

3.6.2 The Standard SMC-PHD Filter

The PHD filter can be implemented either as in the sequential Monte Carlo (SMC)

fashion (particle-PHD) or as the Gaussian mixture PHD (GM-PHD). The SMC-PHD

filter approximates the PHD using random samples and is more specifically an

effective scheme in non-linear and non-Gaussian scenarios as well as different

noise models [71]. For comparison purposes, the standard SMC-PHD filter of

[141] is briefly presented. The implementation of the standard SMC-PHD filter

usually requires four stages. These stages are briefly presented in Algorithm 1.

From Algorithm 1, Lk−1 and Jk denotes number of particles for existing targets

and new born targets respectively; Lk = Lk−1 + Jk, qk(·|·) and pk(·|·) denotes the

proposal distributions for persistent and new born targets respectively; γk(·) is

the PHD of the spontaneous birth, pS(·) is the probability of target survival and

φk|k−1(x̃l
k, x̃

l
k−1) is as defined in (3.53).

Fig. 3.1 illustrates how particles are used to represent and track targets in the

standard SMC-PHD filter. The state space of two targets populated with particles
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Figure 3.1 Schematic representation of the standard SMC-PHD filter showing the
2D state space of the PHD of two targets populated with particles. The contours
represent the state space of targets. The contour centres and number of centres
represent the mode and cardinality of targets respectively. Boxes A, B and C
represent various stages of the filter. The square shaped and diamond shaped
particles are for target 1 and target 2 respectively. The colours stand for different
particle states. The particles marked with “

√
” in B denote particles with higher

weight for when the latest measurement arrives.
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1: at k=0, Initialise
[{

xl
k, w

l
k

}Lk

l=1

]
.

2: for k = 1 : K do
3: Prediction
4: for l = 1 : Lk do
5: Draw samples for existing targets, x̃l

k|k−1 ∼ qk(·|x̃l
k−1,Zk),

◃ and compute weights, w̃l
k|k−1 = φk|k−1(x̃l

k,x̃l
k−1)

qk(x̃k|k−1|x̃l
k−1,Zk)w

l
k−1

6: end for
7: for l = Lk + 1 : Lk do
8: Draw samples for newborn targets, x̃l

k|k−1 ∼ pk(·|Zk),
◃ and compute weights, w̃l

k|k−1 = γk(x̃l
k)

Jkpk(x̃k|k−1|Zk)
9: end for

10: Update
11: for z ∈ Zk do
12: Ck(z) = ∑Lk

l=1 pD(x̃l
k|k−1)g(z|x̃l

k|k−1)w̃l
k|k−1

13: for l = 1 : Lk do
14: update weight,

w̃i
k =

[
ν +∑

z∈Zk

pD(x̃l
k|k−1)g(z|x̃l

k|k−1)
κk(z)+Ck(z)

]
w̃l

k|k−1

◃ ν = 1 − pD(x̃i
k|k−1)

15: end for
16: end for
17: Resample
18: Compute estimated number of targets, T̂k|k = round

(∑Lk
l=1 w̃

l
k

)
19: Resample Lk particles using resampling techniques such as in [121].

20: return
{

x̃l
k|k−1,

T̂k|k
Lk

}Lk

l=1
≡
{
xl

k, w
l
k

}Lk

l=1
21: end for

Algorithm 1: The Standard SMC-PHD Filter

at time k is shown. In A, during the prediction stage, the PHD is represented

with eight equally weighted particles. In B, as the latest measurement arrives,

the particle weights are updated accordingly. Particles with higher weights are

chosen for resampling. As seen in B, the highly weighted particles are marked with

“
√

” respectively, five particles for the first target and six particles for the second

target. To ensure that the number of particles remains eight for each target, the

particles marked with “
√

” are resampled depending on the size of their weights as

seen in C. Notice that the particle positions remain unchanged and the particles

corresponding to high weights are retained and those with lower weights are

discarded. The estimated state of the targets or the posterior at time k is derived



3.7 Labelled Random Finite Sets 37

from the resampled particles. It is true that populating the state space of the targets

with many more particles will result in more particles falling near the modes of the

state space. This will translate to higher weighted particles and a more accurate

posterior. However, doing this will increase computational complexity.

3.7 Labelled Random Finite Sets

In loose terms, a labelled random finite set is an RFS with corresponding set of

labels. The following notations and definitions are useful concepts in the study of

labelled random finite sets.

Notation 1

For a real-valued function h, its multi-object exponential is

hX ,
∏

x∈X

h(x) (3.56)

with h∅ = 1 by convention. The elements in set X can be of any type for example,

sets, scalars or vectors so long as the function h(·) accepts such arguments.

Notation 2

The generalised Kronecker delta function, and the set inclusion function are

respectively defined as

δY (X) =


1, if X = Y

0, otherwise,
1Y (X) =


1, if X ⊆ Y

0, otherwise,
(3.57)

where both, X and Y can be of any type for example, sets, scalars or vectors.

Definition 1

A labelled RFS X with state space X and discrete label space L, is an RFS on X×L,

such that the labels within each realisation are always distinct. That is, if L(X) is
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the set of unique labels in X, and the distinct label indicator function is defined as

∆(X) =


1, if |L(X)| = |X|

0, if |L(X)| ≠ |X|,
(3.58)

a labelled RFS X always satisfies ∆(X) = 1 [137, 138].

Definition 2

A generalised labelled multi-Bernoulli (GLMB) RFS is a labelled RFS with state

space X and discrete label space L, and is distributed according to [137, 138]

ζ(X) = ∆(X)
∑
c∈C

w(c)(L(X))[p(c)(·)]X, (3.59)

where C is a discrete index set, and w(c)(L) and p(c)(x, ℓ) satisfy the following

∑
L⊆L

∑
c∈C

w(c)(L) = 1, (3.60a)

∫
x∈X

p(c)(x, ℓ)dx = 1. (3.60b)

Definition 3

A labelled multi-Bernoulli (LMB) RFS is a cheaper approximation of the GLMB

RFS. The LMB is a labelled RFS having a state space X and a discrete label space

L, which is distributed according to [117]

ζ(X) = ∆(X)w(L(X))[p(·)]X, (3.61a)

where

w(L) =
∏
ℓ∈L

(
1 − r(ℓ)

) ∏
ℓ∈L

1L(ℓ)r(ℓ)

1 − r(ℓ) , (3.61b)

p(x, ℓ) = p(ℓ)(x), (3.61c)
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with x ∈ X denoting for example, a target state, p(ℓ)(·) and r(ℓ) denoting the

probability density and existence probability respectively of the track corresponding

to label ℓ ∈ L.

3.8 Summary

The KF can solve analytically the optimal Bayesian solution by calculating the

exact posterior density. This provides the overall best performance for tracking in

a linear environment. However, there are some limitations of KF that have been

highlighted in this chapter. These limitations lead to the discussion on EKF as an

approximation to the optimal Bayesian solution (suboptimal Bayesian solution).

The pros and cons of EKF were highlighted. The KF was chosen for implementation

in the STT case while the EKF was not due to reasons already mentioned.

In the next chapter, a new technique is proposed for the effective and efficient

tracking of multiple targets in clutter.



Chapter 4

Kalman-Gain Aided Particle PHD

Filter with Improved Resampling for

Multiple Target Tracking

4.1 Introduction

In this chapter, a new particle filtering technique for efficient MTT is proposed. In

this new method, an SMC-PHD filter with a validation threshold is designed to

select promising particles and to guide them to regions of high likelihood using the

Kalman-gain, irrespective of the importance density function. This method seeks to

minimise the MSE between the estimated measurements due to selected particles

and the actual measurements to achieve a more efficient SMC-PHD filter with

less computational complexity. This allows fewer particles to be used to populate

the state space and at the same time achieve improved tracking performance as

opposed to the standard SMC-PHD filter. Furthermore, the Kalman gain SMC-

PHD filter presented in this chapter is particle filter (PF) based and as with PFs,

it requires a process known as resampling to avoid the problem of degeneracy.

To this end, an improved resampling method for use with SMC methods is also

proposed in this chapter. The new resampling scheme addresses a problem with

the systematic resampling method which causes a high tendency of resampling very
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low weight particles especially when a large number of resampled particles are

required; which in turn affect state estimation.

The remainder of this chapter is organised as follows. In Section 4.2 the multi-

target tracking problem is presented in terms of process and measurement models.

Section 4.3 presents the proposed KG-SMC-PHD filter. Section 4.4 discusses the

new resampling method. Simulation results demonstrating performance improve-

ments of the new multi-target tracker and the new resampling method together

with discussions are presented in Section 4.5. Finally, conclusions are drawn in

Section 4.6.

4.2 Multi-target Tracking Problem Formulation

The MTT problem relates to that of modelling a dynamical system. Two models

are generally used, the state evolution model and the measurement model.

4.2.1 State Model

A non-linear system governed by the state evolution model is considered:

xk = fk−1(xk−1, vk) (4.1)

where xk denotes the t-th target state at discrete time k, vk is an independent and

identically distributed (i.i.d.) process noise vector and fk−1(·) is the non-linear

system transition function. Then the multi-target state at time k can be written as

Xk = {x1,k, ..., xT,k} ∈ Es (4.2)

where T is the number of targets present at time k, and Es denotes the state space.

4.2.2 Measurement Model

Let the multi-target cumulative measurement sequence up to time K be Z1:K :

Z1,Z2, ...,ZK ⊂ Eo. Measurements consist of both target-originated measurements
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and false alarms due to clutter. Then the multi-target measurement set at time k

in the measurement space is:

Zk = {z1,k, ..., zα,k}
⋃

{c1,k, ...cβ,k} ⊂ Eo (4.3)

where {z1,k, ..., zα,k} denotes the target-originated measurement set with number

of measurements, α; {c1,k, ...cβ,k} denotes the false measurement set with the

number of measurements, β and Eo denotes the measurement space. The t-th

target-originated non-linear measurement model is given as:

zk = hk(xk,nk) (4.4)

where hk(·) is a non-linear function, and nk is an i.i.d. process noise vector.

In the next section, the proposed SMC-PHD filter is presented.

4.3 The Proposed SMC-PHD Filter

In the standard SMC-PHD filter, the particles appear to be scattered and it is

difficult to guide particles to regions of interest. The filter’s ability to estimate the

posterior at a given time depends on how densely the state space is populated with

samples and how well the estimated measurements match the actual measurements

received in that time frame. The weights are then updated accordingly. The

SMC-PHD filter does not provide for particle state correction to achieve particle

improvement. In other words, it does not seek to reduce the error between

the actual measurement and the estimated measurements irrespective of the

importance density chosen. The proposed method seeks to address this problem.

The novelty of our approach lies in the technique behind the Kalman filter. The

Kalman filter is a minimum MSE (MMSE) estimator, which in effect seeks to

recursively minimise the mean square error between the estimated measurements

and actual measurements using the Kalman-gain [81]. The Kalman-gain computes

the required correction from the measurement and transforms the correction of

the measurement back to the correction of state. The proposed approach tries
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to apply particle state correction/improvement using the Kalman-gain to guide

validated particles in the SMC-PHD filter to the region of higher likelihood to better

approximate the posterior at each time step.

4.3.1 Measurement Set Partition

Given that Tk targets exist at time k, the measurements received at k may consist

of target-originated measurements (that is, measurements due to persistent

target or new born targets) and clutter. In the standard SMC-PHD filter, all

measurements are used to compute weights to show the significance of all particles

with no attempt to check for errors. Therefore, a measurement set partition is

needed to separate the measurement set into target-originated measurements and

measurements due to clutter. A statistical distance measure and gating technique

is used to achieve this. The second step is to identify promising particles from the

predicted target state using a validation threshold and improve their states using

the Kalman-gain while updating weights as measurement arrives.

At time k, measurements assumed to originate from persistent targets are

identified by computing the square Mahalanobis distance between elements in the

measurement set Zk−1 at time k − 1 and Zk at time k from (4.3) as

d2
i,j,k = (zi

k − zj
k−1)T Σ−1

k (zi
k − zj

k−1), (4.5)

for i = 1, ..., |Zk| and j = 1, ..., |Zk−1|. Σk is the measurement covariance matrix.

For target originated measurements zi
k and zj

k−1 belonging to the same target, the

square Mahalanobis distance d2
i,j,k is χ2 distributed with degree of freedom equal

to the dimension of the measurement vector. Therefore, a unit-less threshold d̃ can

be computed for a given probability using the inverse cumulative χ2 function such

that the Pr[d2
i,j,k ≤ d̃] falls within a given confidence region [11].

Assuming that measurement noise is not too great, and the time increment

is not too large, a target generated measurement in Zk will usually be nearby

some measurement in Zk−1. Assuming that clutter is not too dense and is uncor-
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related frame to frame, a clutter measurement in Zk will usually not be near any

measurement in Zk−1.

Thus d2
i,j,k as defined in (4.5) will tend to be small for some j if zi

k is due to a

target. Likewise, it will tend to be large for all j if zi
k is a clutter measurement.

So for a given i, the measurement zi
k is recorded as a valid target-originated

measurement, żn
k if,

minjd
2
i,j,k ≤ d̃ (4.6)

is satisfied or, otherwise, regarded either as clutter or a potential new born target.

Therefore, the clutter free measurement set at time k is

Żk =
ns⋃

n=1
{żn

k}, (4.7)

where n = 1, · · · , ns and ns =
∣∣∣Żk

∣∣∣, that is, the total number of measurements in

Zk satisfying (4.6).

4.3.2 Validated Particle Selection and Correction

Once the measurement set is partitioned, the selection and correction step follow.

In order to identify those particles to correct, a validation threshold, τ , is used,

which selects particles from the predicted target state that fall under a given

measurement for correction. A predicted particle, x̃l
k|k−1 is selected for correction

if, for each clutter free measurement żn
k ∈ Żk,

g(żn
k |x̃l

k|k−1) ≥ τ, for l = 1, ...,Lk (4.8)

where g(żn
k |x̃l

k|k−1) is the measurement likelihood function; τ is chosen to be

inversely proportional to the total number of samples per persistent target ρ, that

is,

τ ∝ 1
ρ

(4.9)
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Each particle satisfying (4.8) is assumed to be a reasonable candidate for correction

given the current measurement. A large τ will lead to a tighter particle selection

while a smaller value of τ will result in wider particle selection, that is, more

particles will be selected for correction. Once a reasonable candidate x̃l
k|k−1 has

been identified, it’s state is corrected as

x̃l
k = x̃l

k|k−1 + Kk(żn
k − f(x̃l

k|k−1)) (4.10)

Kk = Pk−1HT
k S−1

k (4.11)

S−1
k = Rk + HkPk−1HT

k (4.12)

Pk = Pk−1 − KkHkPk−1 (4.13)

where f(x̃l
k|k−1) is the projection of the predicted state x̃l

k on to the measurement,

Kk is the Kalman-gain, H is the measurement transformation matrix and P is the

state estimation covariance matrix, R is the measurement error covariance matrix,

and S is the innovation covariance matrix.

Therefore, given that the t-th target generated the clutter free measurement

żt,k at time k, and its state is represented by particles {xt,k}ρ
t=1 from the predicted

target state, then, only those particles, {xt,k}s
t=1 satisfying (5.13) will be selected

for correction according to (5.15) where s ≤ ρ. Fig. 4.1 illustrates how particles

representing the state of the PHD of targets are selected for correction as the

measurement originating from the t-th target arrives at time k. From the figure,

in A, during the prediction stage, each of the target states is represented with

eight equally weighted particles. As the latest measurement for each target arrives,

particles with high likelihood are marked with “
√

” as seen in B. The validation

threshold τ of (5.13) is then applied to the likelihood of particles with “
√

”.

Each particle whose likelihood satisfies the threshold condition is selected for

correction. The selected particles are shown with “*” in B. The particle weights are

updated accordingly. Notice from B that for the first target, five particles have high

likelihood but only three from the five were chosen for state correction. Similarly,

for the second target, six particles gave high likelihood but out of which only four

were selected for state correction. The selected particles from B are then corrected
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Figure 4.1 Schematic representation of the proposed SMC-PHD filter showing the
2D state space of the PHD of two targets populated with particles. The contours
represent the state space of targets. The contour centres and number of centres
represent the mode and number of targets respectively. Boxes A, B, C and D
represent various stages of the filter. The square shaped and diamond shaped
particles are for target 1 and target 2 respectively. The colours stand for different
particle states. The particles with “

√
” stand for particles with higher weight for

when latest the measurement arrives. Particles with “*” denote particles selected
for state correction.
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using (5.15) and (5.16) as shown in C. The corrected particles are then resampled

to ensure the number of particles remains eight for each target.

Note, the above measurement set partition approach can be applied under the

following assumptions: that new born targets exist for at least two consecutive

time steps, the manoeuvring of targets is not too abrupt, the sample period δt is

not too large, measurement noise is not too large, clutter is not too dense, and

clutter is not time correlated.

Furthermore, it is emphasised that the proposed KG-SMC-PHD is different from

the GM-PHD in [140] even with the application of the gating technique as will

be demonstrated in the simulation section. This is primarily because the strict

assumption of linearity and Gaussianity condition of [140] is not used.

4.3.3 KG-SMC-PHD Implementation of the PHD Filter

This section presents the initialisation, prediction, update and resample steps of

the KG-SMC-PHD filter.

4.3.3.1 Initialisation Step

At time k = 0, initialise the PHD, Dk|k by a number of particles with associated

weights
{
xl

k, w
l
k

}Lk

l=1
. A particle approximation of the intensity function at time step,

k > 0, can be obtained from a particle distribution at the previous time step using

prediction and update stages.

4.3.3.2 Prediction Step

The predicted PHD, Dk|k−1 is:

Dk|k−1(x̃k|Żk−1) =
Lk∑
l=1

w̃l
k|k−1δ(x − x̃l

k|k−1). (4.14)

Lk−1 and Jk particles are drawn from two proposal densities (chosen from the

possibilities discussed in Sec. 3.4, that is, TP, EPF or UPF) to represent persistent
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and new born targets respectively as:

x̃l
k|k−1 ≈


qk(·|x̃l

k−1, Żk), l = 1, ..., Lk−1

pk(·|Żk), l = Lk−1 + 1, ...,Lk

(4.15)

with corresponding weights:

w̃l
k|k−1 =


φk|k−1(x̃l

k,x̃l
k−1)

qk(x̃k|k−1|x̃l
k−1,Zk)w

l
k−1, l = 1, ..., Lk−1

γk(x̃l
k)

Jkpk(x̃k|k−1|Zk) , l = Lk−1 + 1, ...,Lk

(4.16)

with the term

φk|k−1(xk, xk−1) = pS(xk−1)fk|k−1(xk, xk−1) + bk|k−1(xk, xk−1)

where Lk = Lk−1 + Jk, qk(·|·) and pk(·|·) denote the proposal distributions for

persistent and new born targets respectively; γk(·) is the PHD of the spontaneous

birth, pS(·) is the probability of target survival, fk|k−1(xk, xk−1) is the single target

motion model, and bk|k−1(xk, xk−1) is the PHD of spawned targets; Jk is the number

of particles for new born targets.

4.3.3.3 Update Step

For each żn
k ∈ Żk where Żk is the clutter free measurement set at time k obtained

using (4.5) and (4.6), let

H(żn
k) = κ(żn

k) + Ck(żn
k) (4.17)

Ck(żn
k) =

Lk∑
l=1

pD(x̃l
k|k−1)g(żn

k |x̃l
k|k−1)w̃l

k|k−1, (4.18)

then, for l = 1, ...,Lk, compute the likelihood g(żn
k |x̃l

k|k−1) and verify if (5.13) is

true, correct predicted state by computing x̃l
k using (5.15) then compute (4.18)



4.3 The Proposed SMC-PHD Filter 49

and update the weights using:

w̃l
k =

ν +
∑
ż∈Żk

pD(x̃l
k|k−1)g(żn

k |x̃l
k|k−1)

H(żn
k)

 w̃l
k|k−1 (4.19)

where ν = 1 − pD(x̃l
k|k−1). However, if (5.13) is not satisfied, the predicted state is

not corrected; x̃l
k is computed as x̃l

k = x̃l
k|k−1 and (4.17) and (6.7) are computed

immediately.

The updated PHD, Dk|k is then given as:

Dk|k(x̃k|Żk) =
Lk∑
l=1

w̃l
kδ(x − x̃l

k) (4.20)

4.3.3.4 Resampling Step

i The expected number of targets T̂k|k is computed as:

T̂k|k = round
 Lk∑

l=1
w̃l

k

 (4.21)

where round(·) denotes round to the nearest integer.

ii Lk = ρT̂k|k particles are resampled (ρ corresponds to the number of parti-

cles per existing target) according to the modified systematic resampling

technique below:

- Find all noncontributing weights w̄k from w̃k such that w̄k ∈ w̃k and

replace with ϖ where 0 < ϖ ≪ 1
ρ
. This is to ensure that only weights

belonging to corrected particles are chosen for resampling.

- Then compute cumulative probability c1 = 0, cl = cl−1 + ( w̃l
k

T̂k|k
), l =

2, ..., Lk + Jk

- Draw a starting point u1 from U [0, 1
Lk

]

- For j = 1, ..., Lk,

uj = u1 + L−1
k (j − 1)
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while uj > ci, l = l + 1. End while

xj
k = x̃j

k

wj
k = 1

Lk

iii) Rescale (multiply) the weights by T̂k|k to get
{

xl
k,

T̂k|k
Lk

}Lk

l=1
where wl

k = T̂k|k
Lk

therefore
{

xl
k,

T̂k|k
Lk

}Lk

l=1
≡
{
xl

k, w
l
k

}Lk

l=1
.

The pseudo code of the proposed KG-SMC-PHD filter is described in Algorithm

2.

1: Initialisation
2: Initialise filter parameters as in Sec. 4.3.3.1.
3: Prediction
4: Follow the prediction technique as in Sec. 4.3.3.2.
5: Update
6: Obtain clutter free measurement Żk at time k using (4.5) and (4.6) by

computing:
7: for all zi

k ∈ Zk and zj
k−1 ∈ Zk−1 do

8: if (zi
k − zj

k−1)T Σ−1(zi
k − zj

k−1) ≤ d̃ then
9: żn

k = zi
k

10: end if
11: end for
12: Żk = ⋃ns

n=1 {żn
k}

13: for all żn
k ∈ Żk do

14: for l = 1 : Lk do
15: if g(żn

k |x̃l
k|k−1) ≥ τ then

16: x̃l
k = x̃l

k|k−1 + Kk(żn
k − f(x̃l

k|k−1))
17: Compute (4.17)
18: else
19: x̃l

k = x̃l
k|k−1

20: Only compute (4.17)
21: end if
22: Compute (6.7)
23: end for
24: end for
25: Resample
26: Resample according to the resampling method described in Section 4.4.

Algorithm 2: KG-SMC-PHD filter
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4.4 Improved Resampling Approach for SMC Meth-

ods

Most PF (or SMC) methods generally involve a process for generating and propa-

gating particles, weight assignment and computation and resampling of particles

[53]. The resampling process replaces certain set of particles with another (usually

depending on the particle weights) [53]. The resampling process is crucial in

PF methods in order to avoid a situation where a few set of particles dominate

other particles with their weights; a process known as degeneracy [3, 53, 121].

Having a degenerate set of particles is undesired as this will cause large variances

in the obtained state estimates. Several methods of resampling in PF methods

have been proposed in the literature. These include residual resampling [19, 91],

multinomial resampling [63], stratified resampling [83], systematic resampling

(SR) [32, 53, 83], branching corrections [42], resampling with rejection control

[92]. For more details on surveys and review of resampling methods, the reader

is referred to [28, 52, 53, 76, 89]. The resampling methods listed are sequential

algorithms and the most common are the multinomial, residual, systematic and

stratified resampling techniques [89]. In these algorithms, resampling is performed

from the approximating distributions utilising the latest weights [89]. Among the

most common algorithms listed, the SR method is often more desired due to its

ease of implementation, less computational complexity and less random number

generation [89]. The stratified resampling has the same order of complexity as

the SR (in the order of number of resampled particles required N) but requires

N number of random number generation during implementation while the SR

requires only one random number generation.

In PF methods, very low weight particles are less likely to contribute to the

estimates of an approximating distribution. Therefore, allowing very low weights

to contribute-during resampling-to the approximating distribution estimates could

add to estimation variance leading to poor state estimates especially when the

required number of resampled particles is large. The SR method, despite its
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desirable properties, has a tendency to resample very low weight particles especially

when the required number of resampled particles is large.

The reason for the occurrence of this phenomenon in the SR algorithm is

discussed next and a way to address the problem is explained. The proposed

method is namely the improved systematic resampling (ISR) method.

4.4.1 Problem Formulation

Firstly, a brief overview of the PF stages preceding the resampling stage is given in

order to set a scene for presenting the new algorithm.

Consider a tracking context (either single or multiple target tracking) where at

time k we have a single target state and measurement model respectively given by:

xk = f(xk−1, nk), (4.22)

zk = g(xk, vk), (4.23)

where f(·) and g(·) are nonlinear functions; xk ∈ X is the state of the model

and zk ∈ Z is the measurement with state and measurement space X and Z

respectively; nk and vk are independent and identically distributed white noises.

Assume that an alternate representation of the state, (4.22) is the probability

distribution, p(xk|xk−1) and that of the measurement, (4.23) is the distribution,

p(zk|xk). We aim to sequentially estimate the filtering distribution p(xk|z1:k) in a

recursive manner by computing

p(xk|z1:k) ∝
∫
p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4.24)

Generally, the above cannot be solved analytically therefore approximations (such

as PF methods) are required.

In PF, the distribution p(xk−1|z1:k−1) is approximated by a set of particles with

assigned weights {xi
k−1, w

i
k−1}M

i=1 where M is the number of particles, such that:

p(xk−1|z1:k−1) ≈
∑M

i=1 w
i
k−1δ(xk−1 − xi

k−1), (4.25)
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where δ(·) is the Dirac delta operator. The weights are normalised such that they

all sum up to one. This approximation makes it possible to solve (3), so that

p(xk|z1:k) ∝ p(zk|xk)
M∑

i=1
wi

k−1p(xk|xi
k−1). (4.26)

The expression of (4.26) shows how the approximating distribution of {xi
k−1, w

i
k−1}M

i=1

can be obtained. This is the particle propagation stage as the particle xi
k−1 is prop-

agated in time to give xi
k through importance sampling (see for example, [3] for

more details).

As for weight computation, we draw equally weighted particles from p(xk|z1:k).

However, since this is not possible in most cases, we resort to sampling from an

alternate distribution called the proposal/importance distribution, q(xk) [3, 121,

124]. An example of such distribution is p(xk|xk−1) [121, 124]. Since q(xk) is

different from p(xk|z1:k), the particles drawn from q(xk) need to be weighted in

order to have a correct inference [121, 124]. This can be acheived by recursively

computing

wi
k ∝

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k) wi

k−1. (4.27)

Eq. (4.27) is usually followed by a normalisation to ensure all weights sum to

one. A recursive progression of this expression can lead to degeneracy. This is

an undesired situation where one or few particles have large weights and others

have negligible weights. This in turn causes an increase in weight variances as

measurements are processed. This will lead to a very poor approximation of the

filtering distribution p(xk|z1:k) [89]. This is why the resampling stage is needed

in PF methods. Following particle propagation and weight computation for the

filtering distribution, we now have the approximating distribution at time k given

by {xi
k, w

i
k}M

i=1.

4.4.2 Systematic Resampling

In this section, the SR algorithm is described. An explanation to why the phe-

nomenon described earlier exists is also given.
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SR and sequential resampling methods in general require particles from an

approximating distribution with associated weights. These particles are resam-

pled (usually depending on the weights) to give an estimate of the approximate

distribution.

Assume we have an approximating distribution represented by a set of particles

and associated weights {xi
k, w

i
k}M

i=1. We aim to resample N particles from these set

of particles such that the outcome is the set {xj
k, w

j
k}N

j=1. N can be greater than the

number of propagated particles M but for most applications, it is kept constant,

this means, N = M [89]. The SR method achieves this in what is described next.

The SR method [32, 53, 83] first computes the cumulative sum of the weights

Q1 = w1
k,

Qi = Qi−1 + wi
k, i = 2, · · · ,M. (4.28)

The whole particle set is divided into subpartitions called strata. The first strata is

a random number, U1 generated from the uniform distribution U [0, 1
N

]. The rest

are updated by Un = Un−1 + 1
N

for n = 1, · · · , N . SR compares the cumulative

sum Qi with the updated uniform number Un. A possible implementation of the

SR method is shown in Algorithm 3. The number of times the i-th particle is

Data:
(
{xi

k, w
i
k}M

i=1, N
)

Result: {xj
k, w

j
k}N

j=1
Normalise weight;
Generate random number U ∼ U [0, 1

N
];

Compute cumulative sum of weights Q;
for i = 1 : M do

t = 0;
while Qi > U do

t = t+ 1;
U = U + 1

N
;

end
N(i) = t

end
Algorithm 3: A sample SR algorithm

replicated (resampled) depends on how many times the updated uniform number
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Un falls within the range of (Qi−1, Qi]. For a very low weight, its contribution

to the cumulative sum Q will be small and if the required number of resampled

particles N is small, the increment to the uniform number update 1
N

will be large.

Hence the probability of the i-th particle being resampled is very low if the i-th

particle is very small. Similarly, if the weight of the i-th particle is very small but

N is large, the increment term 1
N

will be very small. Hence the probability of the

uniform number Un falling within the range (Qi−1, Qi] increases. This presents a

high tendency of the very low i-th particle being resampled. Allowing very low

weight particles to contribute to the approximating distribution estimates could

add to estimation variance and this could lead to poor state estimates.

4.4.3 The Improved Systematic Resampling

In the previous section the SR method was introduced. A phenomenon that causes

it to yield poor state estimates of the approximating distribution particularly when

large number of resampled particles is required was also described. This section

presents the proposed improvement to the SR algorithm.

Given that in PF methods, a particle having very low weight is less likely to

contribute (improvement wise) to the estimate of an approximating distribution;

we then propose that, for a very low weight wi
k, we want to be able to reduce the

possibility of the updated uniform number Un falling within the range (Qi−1, Qi]

given the increment term 1
N

for a large N .

To this end, a sort of weight-relowering technique is performed where very low

weights w̃k ⊂ wk are identified and reassigned to a much lower value, ρ such

that 0 < ρ ≪ 1. This is so that for a very low weight w̃i
k, its contribution to the

cumulative sum of weights Q of (4.28) will be very small. A weight is classed as

being very low if the condition

wi
k < τ, ∀i (4.29)

is satisfied, where i = 1, · · · ,M . The threshold τ is chosen such that Pr(wi
k > τ) =

99%. A possible implementation of the ISR method is shown in Algorithm 4.
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Data:
(
{xi

k, w
i
k}M

i=1, N, ρ, τ
)

Result: {xj
k, w

j
k}N

j=1
Check that (4.29) is satisfied in order to identify w̃k;
Apply weight-relowering to w̃k by assigning then the value ρ;
Normalise weight;
Generate random number U ∼ U [0, 1

N
];

Compute cumulative sum of weights Q;
for i = 1 : M do

t = 0;
while Qi > U do

t = t+ 1;
U = U + 1

N
;

end
N(i) = t

end
Algorithm 4: A sample ISR algorithm

(a) SR (b) ISR

Figure 4.2 An illustration of the SR and ISR method. There are four particles with
respective weights w. The very low weight is indicated as w∗(2).

The proposed method is further illustrated and contrasted with the SR method as

shown in Fig. 4.2 for the same set of weights as input. The SR and ISR method are

depicted in Fig. 4.2a and Fig. 4.2b respectively. From Fig. 4.2a, the weight marked

with ‘∗’ is the very low weight. So depending on number of resampled particles

required, N , the increment term, 1
N

can cause the updated uniform number Un

to fall in the range (Q1, Q2]. This become even more likely especially when N is

large. In Fig. 4.2b, after the weight-relowering technique is applied, we see that

the height of the very low weight indicated by ‘∗’ has reduced, hence the updated

uniform number Un, given the increment term, 1
N

is much less likely to fall in the

range (Q1, Q2] even for large N .
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4.5 Simulation Results

This section features two simulation studies. Firstly, the non-linear tracking per-

formance of the proposed KG-SMC-PHD filter is shown. Lastly, the performance

improvement offered by the new resampling technique, the ISR method is demon-

strated.

4.5.1 The KG-SMC-PHD Filter Performance

4.5.1.1 Simulation Context and Filter Parameters

In this simulation, a two-dimensional non-linear range and bearing scenario with

unknown and varying number of targets observed over a cluttered region is con-

sidered. A total of 10 targets enter and exit the scene at various times throughout

the simulation scenario. The measurement region is a half disc of radius 2000m. A

plot of the ground truth (true trajectories) of the targets along with the start and

end positions of each track is shown in Fig. 4.3. The start and end positions are

indicated by a circle and a triangle respectively. The non-linear target dynamics are

described by a nearly constant turn state model driven by white noise acceleration

x̂k = F(ωk−1)x̂k−1 + Γvk (4.30)

ωk = ωk−1 + δtuk−1 (4.31)

where

F(ω) =



1 sinωδt
ω

0 −1−cosωδt
ω

0 cosωδt 0 −sinωδt

0 1−cosωδt
ω

1 sinωδt
ω

0 sinωδt 0 cosωδt


, Γ =



δt2

2 0

δt 0

0 δt2

2

0 δt


.

F(ω) is the transition matrix for nearly constant turn rate, δt denotes the sample

period which is assumed to be 1s in this simulation and Γ denotes the input

matrix. The target state vector xk = [x̂k, ωk]T̄ comprises the planar positions and

velocities given as x̂k = [xk, ẋx, yk, ẏk]T̄ along with turn rate ωk. The variables

(xk, yk) represent the position of the target and (ẋk, ẏk) represent the velocities.
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vk = N (·, 0, σ2
vI) and uk−1 = N (·, 0, σ2

uI) with σv = 10 m/s2 and σu = π/180 rad/s.

[·]T̄ denotes transpose operation.
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Figure 4.3 True target trajectories in the range-bearing plane with start/end
positions for each track shown with ⃝/△.

Targets can appear and disappear in the tracking volume at any time. Target

spawning is not considered in this example. Each persistent target has a probability

of survival, pS(xk−1) = 0.9. The target birth process is modelled as a Poisson

point process with intensity function γk(xk) = 0.3N (·, x́1, Q́) + 0.3N (·, x́2, Q́) +

0.3N (·, x́3, Q́) + 0.3N (·, x́4, Q́) + 0.3N (·, x́5, Q́), where x́1 = [−1000, 0, 200, 0]T̄ , x́2 =

[1000, 0, 1500, 0]T̄ , x́3 = [0, 0, 1500, 0]T̄ , x́4 = [500, 0, 500, 0]T̄ , x́5 = [1500, 0, 1000, 0]T̄

and covariance matrix, Q́ = diag([200, 50, 200, 50, 6(π/180)]T̄ ).

The target-originated measurements are given by the non-linear model

zk =

rk

θk

 + nk (4.32)

with

rk =

∥∥∥∥∥∥∥
1 0 0 0

0 0 1 0

 xk −

xs

ys


∥∥∥∥∥∥∥ , (4.33)

and

θk = arctan
(

[0 0 1 0]xk + ys

[1 0 0 0]xk + xs

)
(4.34)
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where the measurement noise, nk is a zero-mean Gaussian white noise vector with

covariance matrix R =diag([σ2
r , σ

2
θ ]) with σr = 10m and σθ = 0.5 rad. The measure-

ment sensor’s location, [xs, ys]T is at the origin. Clutter is uniformly distributed

over the measurement region of [0, π]× [0, 2000] with a Poisson point process on the

clutter region with a uniform intensity function κk = 3.2 × 10−3(radm)−1 (giving

an average of λ = 20 clutter points per scan). The total number of particles at time

k is

Lk = Lk + Jk, and Lk
∼= ρT̂k|k (4.35)

where T̂k|k denotes the expected number of targets, Lk is the number of particles

for all persistent tracks, ρ denotes number of particles per persistent track and

Jk = ρ
5 is the number of samples per new born track. The probability of detection

pD(xk) is 0.9.

To analyse the estimation error of the filter, the optimal subpattern assignment

(OSPA) proposed in [125] and computation time (CT) are used. The CT is the time

taken to run one iteration of the filter. The OSPA is a standard and well accepted

metric in the MTT literature for evaluating performance of MTT techniques. The

OSPA distance metric enables us to compare multi-target filtering algorithms [125].

The OSPA distance between two arbitrary finite sets, the state set A = {a1, ..., am}

and the ground truth state set B = {b1, ...,bn} is

d̄
(ć)
ṕ (A,B) =



0 if ḿ = ń = 0

Θ(A,B) if ḿ ≤ ń

d(ć)(A,B) if ḿ > ń

(4.36)

where

Θ(A,B) ,
(

1
ń

(
min

π∈
∏

ń

ḿ∑
i=1

d(ć)(ai, bπ(i))ṕ + ćṕ(ń− ḿ)
)) 1

ṕ

(4.37)

∏
ń is the set of permutations with length ḿ on the set {1, ..., ń}. d(ć)(a,b) :=

min{ć, ∥ a − b ∥} is the distance between single target vectors a and b. ć > 0 is the
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cut-off parameter and ṕ ≥ 1 is a unit-less real number. Parameters ć = 300 and

ṕ = 1 were chosen. The cut-off parameter ć determines the relative weighting of

the penalties assigned to localisation and cardinality errors, and ṕ determines the

sensitivity to outliers.

4.5.1.2 Effect of Proposal Distributions

Here, different importance sampling functions, TP, EPF and UPF of Sec. 3.4 are

applied to the SMC-PHD and KG-SMC-PHD filters to observe the effects of each

choice on filter performance. The results obtained are shown in Tables 4.1 and

4.2. The number of particles used in each of the two clutter cases is ρ = 1000.

Tables 4.1 and 4.2 show results averaged over 1000 MC trials for λ = 20 and

λ = 30 with measurement set partition respectively. Overall, using the UPF as a

proposal distribution gives better performance for both filters in terms of low OSPA

distance, but this method incurs the most computational load. This is primarily

due to the generation of sigma points for each particle and the computation that

follows during the unscented transform process. Using both EPF and UPF to

construct the proposal distributions give better performance in terms of yielding

lower OSPA, when compared to using TP. This is because both EPF and UPF

helps to place generated samples ‘under’ measurements as soon as measurements

become available. However, the improvement of using the UPF over EPF is not

too significant in terms of OSPA distance. As a result, the EPF will be used as the

importance sampling function for both filters in our subsequent discussion.

Table 4.1 Filter performance comparison in terms of OSPA distance, computation
time (CT) and PD for λ = 20 and ρ = 1000 with measurement partition.

Filter PD OSPA (m) CT (s)

SMC-PHD
TP (from Sec. 3.4.2.1) 94.85 9.50
EPF (from Sec. 3.4.2.2) 83.17 11.67
UPF (from Sec. 3.4.2.3) 81.72 12.85

KG-SMC-PHD
TP (from Sec. 3.4.2.1) 22.19 10.43
EPF (from Sec. 3.4.2.2) 19.64 13.40
UPF (from Sec. 3.4.2.3) 18.69 14.51
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Table 4.2 Filter performance comparison in terms of OSPA distance, CT and PD for
λ = 30 and ρ = 1000 with measurement partition.

Filter PD OSPA (m) CT (s)

SMC-PHD
TP (from Sec. 3.4.2.1) 111.76 10.63
EPF (from Sec. 3.4.2.2) 105.46 12.15
UPF (from Sec. 3.4.2.3) 103.78 13.40

KG-SMC-PHD
TP (from Sec. 3.4.2.1) 31.56 11.77
EPF (from Sec. 3.4.2.2) 21.70 14.90
UPF (from Sec. 3.4.2.3) 20.15 15.76

4.5.1.3 Varying Number of Particles

For this case, the EPF was chosen as the importance sampling density for both

filters. This is because as discussed earlier, using the EPF gives a lower CT. Tables

5.1 and 4.4 show results of filter performance in terms of number of particles,

OSPA distance and CT obtained for both filters averaged over 1000 MC simulations

for different ρ values when clutter is present with measurement partition. It can

be observed from both tables that the performance of the SMC-PHD filter appears

to deteriorate further with more position and cardinality mismatch (high OSPA

distance) as clutter density increases while the proposed filter is seen to maintain

a consistent performance with improved accuracy in position and cardinality (low

OSPA distance). The CT of the proposed filter however is seen to be higher than

the SMC-PHD filter for a given ρ value. This is due to the particle state correction

step of the proposed filter. However, the number of particles required in terms of

performance level (i.e. low OSPA) by the proposed filter is far less when compared

to the SMC-PHD filter making the proposed filter more efficient.

Fig. 4.4 depicts the average of 1000 MC runs of the true and estimated number

of targets for ρ = 500 with average number of clutter per scan, λ = 20. This result

shows that the KG-SMC-PHD filter is able to estimate properly the number of

targets under such high clutter condition. Fig. 4.5 shows the x and y components

(versus time) of the true trajectories and the KG-SMC-PHD filter estimates. The

plots indicate that the proposed filter with ρ = 500 particles per existing track is

able to properly track all targets and in addition to being able to identify all target
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Table 4.3 Filter performance in terms of number of particles, OSPA distance and
CT for λ = 20 with measurement partition.

Filter ρ OSPA (m) CT (s)

SMC-PHD

50 149.31 0.42
100 100.36 0.86
500 86.38 5.19
1000 83.17 11.67

KG-SMC-PHD

50 44.70 0.72
100 33.29 1.26
500 22.11 6.29
1000 19.64 13.40

Table 4.4 Filter performance in terms of number of particles, OSPA distance and
CT for λ = 30 with measurement partition.

Filter ρ OSPA (m) CT (s)

SMC-PHD

50 154.82 0.47
100 117.88 0.93
500 106.19 5.99
1000 105.46 12.15

KG-SMC-PHD

50 47.15 0.87
100 39.30 1.36
500 25.79 7.02
1000 21.70 14.90

births and deaths while successfully accommodating non-linearities under high

clutter condition.

4.5.1.4 Other Filters

To further demonstrate the performance of the KG-SMC-PHD filter, the proposed

filter was evaluated along with the GM-PHD filter of [140], the GM-USMC-PHD

filter of [148] and the AP-PHD filter in [14] in addition to the standard SMC-PHD

filter. The evaluation is in terms of OSPA distance and CT. For this comparison,

the EPF was used to construct the importance sampling function for both the

KG-SMC-PHD filter and the SMC-PHD filter. The KG-SMC-PHD filter was evaluated

at 500 and 500
5 particles for existing and newborn tracks respectively while 1000
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Figure 4.4 True and KG-SMC-PHD filter cardinality estimates of targets time
averaged over 1000 MC trials with ρ = 500 particles per existing track.

and 1000
5 particles for existing and newborn tracks respectively were used for the

SMC-PHD filter.

The GM-PHD filter was implemented with an extended Kalman filter (EKF). The

maximum number of Guassian terms was set to 100, with the merging (Tm) and

pruning threshold (Tp) set at 10m and 10−3 respectively. A Gaussian component is

considered target-originated if its weight is above 0.4. The estimated number of

targets is given by the sum of weights of the Gaussian mixture.

In the AP-PHD filter implementation, 1000 particles were used per existing

track and 1000
5 particles were used for the newborn track. Each new track ini-

tialisation is measurement driven and each current measurement is associated

with the corresponding highest bidder if the bid is greater than 0.4. The auxiliary

importance sampling [14] process starts with the selection of the measurements

that are well described by the targets’ states extracted from the estimated PHD and

this is achieved using the auction algorithm. Both auctioning and state extraction

is done as in [14].

The GM-USMC-PHD filter uses a Gaussian mixture to approximate the IS

function. The GM implementation of the GM-USMC-PHD filter is similar to the

GM-PHD filter in terms of number of Gaussian components and pruning and

merging thresholds. The number of samples per GM component is set to 1000. The
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Figure 4.5 x and y components (versus time) of the true target trajectories and the
KG-SMC-PHD filter estimates for ρ = 500 particles per existing track.

newborn track initialisation, resampling and state extraction steps follow [148]

and the mean and the covariance of Gaussian is computed using the unscented

information filter [11].

Tables 4.5 and 4.6 show filter performance results averaged over 1000 MC

runs with and without measurement set partition respectively. In both tables,

measurement partition was applied to the KG-SMC-PHD filter. The effect of the

measurement partitioning process can be seen in Table 4.5 as the OSPA distance

improved for the other filters. This is because measurements due to clutter were

discarded and not used in the weight update stages of the filters. Notice also there

is a slight increase in CT from Table 4.5 as compared to 4.6. This reflects the added

CT during the partitioning process. Overall, under high clutter, the KG-SMC-PHD

filter gives a better performance as it maintains low OSPA1 distance. This is mainly

due to our particle state correction technique. Also, in Table 4.5, it can be observed

that with just 500 particles per existing track, the KG-SMC-PHD filter outperformed

all other filters by having lower OSPA distance.

1The OSPA [125] metric measures the combination of both localisation and cardinality distance.
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Figure 4.6 plots the time averaged OSPA distances for all the five filters over

1000 MC trials with measurement set partition. Here, 1000 particles were used

per existing track for the KG-SMC-PHD filter while the parameters of the other

four filters were maintained. As shown in Fig. 4.6, high values of OSPA distance

occurs when new targets are born around time indices k = 10, 20, 40 and 60. It

is observed from the Figure that the SMC-PHD filter gave the least performance

while the proposed filter shows superior performance in terms of average OSPA

distance per target when compared to the other filters under high clutter condition.

The proposed filter achieved this good performance level due to our selective

particle correction technique. Fig. 4.6 further suggests that for our simulation

example, there isn’t a significant difference performance wise between the GM-

PHD, GM-USMC-PHD and the AP-PHD filters as all three filters gave similar level

of performance in terms of average miss-distance per target.

Table 4.5 Filter performance comparison in terms of OSPA distance and CT for
λ = 20 with measurement set partition.

Filter OSPA (m) CT (s)
KG-SMC-PHD 22.11 6.29

SMC-PHD 83.17 11.67
GM-PHD 38.05 2.59

GM-USMC-PHD 35.38 13.58
AP-PHD 33.19 16.99

Table 4.6 Filter performance comparison in terms of OSPA distance and CT for
different filters for λ = 20 without measurement set partition.

Filter OSPA (m) CT (s)
KG-SMC-PHD 22.11 6.29

SMC-PHD 94.66 10.11
GM-PHD 44.93 1.90

GM-USMC-PHD 47.23 12.25
AP-PHD 39.01 14.22
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Figure 4.6 OSPA distance averaged over 1000 MC runs for clutter rate of 20 Poisson
clutter (λ = 20) per scan (ć = 300, ṕ = 1)

4.5.1.5 Further Evaluation

The filter limitations in terms of OSPA distance and number of clutter points,

number of particles and CT as well as general filter performance are now discussed.

Fig. 4.7 plots time averaged 1000 MC trials of the OSPA distance for the SMC-PHD

filter and the KG-SMC-PHD filter against clutter intensities from κk = 0 (radm)−1

to κk = 8 × 10−3(radm)−1, that is, from λ = 0 to λ = 50. Both filters were

implemented with measurement set partition with ρ = 1000. It is observed that the

miss-distance increases for both filters as clutter intensity increases. However, this

increase in OSPA distance is more significant in the SMC-PHD filter implementation

compared to the proposed filter. Fig. 4.7 clearly shows that the proposed filter

outperforms the SMC-PHD filter as it maintains an average OSPA distance of less

than 51m up to clutter intensity of κk = 8 × 10−3(radm)−1 due to the particle state

correction technique in our approach while the SMC-PHD filter starts to exhibit

breakdown from about κk = 6.4 × 10−3(radm)−1 (λ = 40). For this simulation

example, the proposed filter performed well up to λ = 60 and started exhibiting

breakdown at about λ = 65. Note that this time-averaging result is intended as a

guide to provide a broad indication of the performance of the filter and can vary

depending on the application scenario.
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Figure 4.7 Averaged OSPA distances versus varying clutter intensity over 1000
Monte Carlo (MC) trials.

Fig. 4.8 shows the effect of the choice of number of particles on OSPA distance

and CT. As expected, on the right side of the y-axis, the CT increases for both filters

as number of particles increases. It is also observed that for the same number

of particles, the CT of the SMC-PHD filter is always lower when compared to

the proposed approach and the difference in CT for both filters increases with

increase in number of particles. The extra computation load for the proposed filter

is due to the extra particle state correction step of our approach. However, on the

left side of the y-axis, the miss-distance of the proposed technique is seen to be

significantly lower compared to the SMC-PHD filter. Although the performance of

the SMC-PHD filter is seen to improve with increase in number of particles, the

filter did not achieve the accuracy level of the proposed filter even with 10000

particles. In terms of miss-distance, Fig. 4.8 also suggests that the proposed filter

is more efficient as only few a particle (less than 1000) are required to achieve an

OSPA distance of less than 50m while the SMC-PHD filter requires about 10000

particles.

4.5.2 ISR Performance Demonstration

The performance of the proposed ISR method against the SR resampling method is

demonstrated. A 2-D MTT scenario where a total of four targets are tracked using
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Figure 4.8 KG-SMC-PHD and SMC-PHD filter performance evaluation in terms of
OSPA distance and CT versus varying number of particles time averaged over 1000
MC trials for λ = 20.

a nonlinear measurement model is considered. The targets were observed for 100

discrete time steps, that is, k = 1, · · · , 100. The true trajectories of the targets are

shown in Fig. 4.9. The start and end positions are indicated by a triangle and a

square respectively. Filter parameters as in Section 4.5.1.1 are maintained.

The new KG-SMC-PHD filter is used to achieve MTT. The new filter‘s tracking

result is shown in Fig. 4.10. So that at each time k the multiple target approxi-

mating distributions can be obtained and both the SR and ISR can be applied to

perform resampling. After resampling, state estimation and estimation error are

computed before proceeding to the next time k + 1. The OSPA metric described in

Section 4.5.1.1 is used to evaluate the error in the estimation of the approximating

distribution for using the ISR and the SR methods. A high OSPA measure translates

to high estimation error while a lower OSPA measure means lower estimation

error, hence higher accuracy. In addition, the OSPA for each of the methods for

various number of resampled particles required N is observed.

Fig. 4.11a shows OSPA measures versus measurement time. The results were

averaged over 100 Monte Carlo (MC) runs of the tracking filter. The number of

particles used for the tracking filter is 10,000 particles per existing target. Both

ISR and SR methods were implemented concurrently during each MC run. This
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Figure 4.9 Ground truth for target trajectories of four tracks superimposed on the
xy plane over 100 time steps

means that the same approximating distributions were fed into to both resampling

methods at each time k before state estimates were extracted and OSPA computed.

From Fig. 4.11a, it is seen that the ISR method outperforms the SR method by

giving a lower OSPA measure compared to the SR throughout the measurement

time. The poor state estimation for when the SR method is used can be attributed

to very low weights being resampled. Furthermore, with the weight-relowering

technique, the state estimation accuracy is improved for when the ISR resampling

method was used.

Fig. 4.11b shows OSPA measures versus number of resampled particles required.

The results were averaged over 100 MC runs of the tracking filter. The result shows

that both techniques give similar level of performance for when the number of

resampled particles required, N is around 1000 or less. But for larger values of

N , the proposed method performs better than the SR method by having a lower

OSPA measure when compared to the SR method. The result further confirms the

hypothesis that when the SR method is used, the state estimation error is likely to

increase especially for large values of N .
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Figure 4.10 Ground truth for target trajectories of four tracks superimposed on the
xy plane over 100 time steps

4.5.3 Overall Performance Contribution

Comparing the contributions of this chapter, firstly, a partitioning technique was

used on consecutive measurement sets to separate existing targets from clutter and

new born targets. This process primarily serves the function of reducing the number

candidate measurements to use in the weight update stage in the presence of clutter.

A reduced computational burden is thus achieved as the unnecessary computation

on measurements due to clutter is avoided during weight update. Secondly, the

Kalman-gain as a correction technique seeks to achieve minimal variance and

thereby gives better accuracy (in approximating the posterior). Additionally, an

improved resampling method is utilised in resapmling to further improve the

posterior accuracy. As a result, fewer particles are required to populate regions

of interest. Furthermore, the effect of the partitioning process is not apparent

in the no clutter to partition. However, the correction step is needed with or

without clutter. As a whole, the use of the Kalman-gain correction method is the

contribution which gives the main improvement.
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Figure 4.11 (a) Performance in terms of OSPA distance against measurement time
for N = M . (b) Performance in terms of OSPA measure against increasing number
of particles for a constant M = 1000 and varying N from 50 to 10,000.

4.6 Summary

In this chapter, a new and efficient SMC filter, namely the KG-SMC-PHD filter for

MTT which seeks to minimise the MSE between received and estimated measure-

ments at any given time has been proposed. This was achieved by first partitioning

the measurement set into target-originated measurements and clutter for weight

computation and applying the Kalman-gain to selected particles for state correction.

Furthermore, an improved resampling method was proposed to address a resamp-

ing problem that lead to the possibility of poor state estimates in SMC methods.

The overall tracking performance of the KG-SMC-PHD filter was improved because,

i) only target-originated measurements were used for weight computation and

ii) the MSE at each time step was reduced resulting in fewer number of particles

for state estimation. Simulation studies demonstrate that the KG-SMC-PHD filter

algorithm outperforms the standard SMC-PHD filter as well as other alternative

implementations of the PHD filter. Additionally, simulation results showed that the

proposed ISR resampling method outperforms the standard systematic resampling

method particularly when large number of resampled particles are required.

The standard SMC-PHD filter described in Section 3.6.2 and the KG-SMC-PHD

filter proposed in this chapter are able to perform multiple target state estimation

as well as estimate number of targets. However, when the number of targets

large, the variance in the estimated number of targets by both filters increases.

Addressing this problem will mean an even more accurate multi-target tracker
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that can track more targets with better performance when the Kalman-gain aided

technique is applied. The next chapter introduces a multi-target tracker that

achieves this.



Chapter 5

Multiple Target Tracking Using the

Kalman-Gain Particle CPHD Filter

5.1 Introduction

In the previous chapter, a new and efficient SMC-PHD filter for multiple target

tracking was developed. Besides the improvement in tracking accuracy offered

by this method, fewer number of particles are used to achieve this performance

improvement. However, the KG-SMC-PHD filter developed in Chapter 4 and PHD

filters in general can give a high variance in target number. This is because the

PHD recursion propagates cardinality information with only a single parameter (i.e.

mean of the cardinality distribution), and as a result it effectively approximates

the cardinality distribution by a Poisson distribution. So as the number of target

gets higher, so does the mean and consequently the variance since the mean and

variance of a Poisson distribution are equal. As a solution to this problem, the

cardinalised PHD (CPHD) filter was proposed by authors in [100]. The CPHD

filter not only propagates the first order moment of an RFS but also the probability

distribution of the number of targets. Hence, the CPHD filter not only has the

advantages of the PHD filter but also provides a better estimate of the target

number (cardinality).
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In this chapter, a cardinalised version of the work in Chapter 4 is proposed. By

doing so, an MTT technique that not only offers improved tracking performance

with fewer particles but also improved cardinality estimate is developed. This

new filter is named as the Kalman-gain aided cardinalised SMC-PHD (KG-SMC-

PHD) filter. This technique is applied to track multiple targets in nonlinear target

dynamics setting to demonstrate its performance.

5.2 Preliminaries

Assume that the multi-target state is given by Xk = {x1,k, ..., xT,k} ∈ X, where X

denotes the state space. In addition, at each time step, a new target may enter the

tracking scene, and/or an existing target may disappear from the scene or evolve

to another state.

Furthermore, let the set Zk ∈ Z be the multi-target measurement state at time

k where Z denotes the measurement space. The measurement set Zk consists of

measurements due to targets and measurements due to clutter or false alarms.

Since the evolution of the targets and the origin of measurements are uncertain,

both Xk and Zk can be modelled as RFS [102] and [105]. Under the RFS model,

the uncertainty can be handled using finite set statistics (FISST) [102].

In the recursive Bayes multi-target filter, the goal is to use the prediction and

update steps to evaluate the posterior pdf pk|k(Xk|Z1:k) given the corrupted sets of

measurements up to and including time k (Z1:K : Z1,Z2, ...,ZK). As this is difficult

to achieve, Mahler proposed in [102] to propagate only the first-order moments

of the posterior pk|k(Xk|Z1:k), known as the PHD Dk|k(x | Z1:k). Taking the integral

of Dk|k over the state space X yields the expected target number under the state

space [102]. However, authors in [57] highlighted that the PHD filter suffers from

a problem known as target-death where even a single missed detection can lead to

the apparent disappearance of a target. Therefore, they argued for the need for

a PHD type filter which remains first-order in the estimate of states of individual

targets, but which is higher-order in target number. To this end, the work in

[100] proposed a technique which jointly propagates the PHD Dk|k alongside the
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cardinality distribution ρ(n) = Pr(| X |= n) where

ρ(n) = 1
n!

∫
pk|k({x1, . . . , xn}|Z1:k)dx1 . . . xn. (5.1)

where pk|k(·|·) is the multi-target state posterior probability density. This then

forms the basis for the CPHD filter.

5.3 The CPHD Filter

The CPHD filter is a generalisation of the PHD filter Dk|k where both the cardinality

distribution ρk|k(n) and the PHD Dk|k are jointly propagated to achieve better

performance but with a higher computational complexity [100]. Part of the

computational complexity of the CPHD filter is in the computation of an elementary

symmetric function in the update stage (as will be seen later). However, methods

such as the Newton-Girard formulae have been used to achieve this thereby

facilitating the CPHD filter implementation. From here on, the alternative form

of the CPHD proposed in [139] is used. The prediction and update stages of the

CPHD filter are presented next.

5.3.1 Prediction

The CPHD prediction involves computing the predicted PHD Dk|k−1 in the same

manner as the PHD filter (see [102]) alongside the predicted cardinality distri-

bution ρk|k−1(n), which is the convolution of the birth cardinality distributions

ρΓ,k:

ρk|k−1(n) =
n∑

i=0
ρΓ,k(n− i)ρS,k|k−1(i) (5.2)

and surviving target cardinality distribution

ρS,k|k−1(i) =
∞∑
ℓ=i

ℓ!
i!(l − i)!p

i
S(1 − pS)ℓ−iρk−1|k−1(ℓ) (5.3)

where pS is the probability of survival.
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5.3.2 Update

The CPHD update equations for both the PHD Dk|k and the cardinality distribution

ρk|k(n) are given by [100], [139]

ρk|k(n) = Υ0
k[Dk|k−1; Zk](n)ρk|k−1(n)
⟨Υ0

k[Dk|k−1; Zk], ρk|k−1⟩
(5.4)

Dk|k(x) = ⟨Υ1
k[Dk|k−1; Zk], ρk|k−1⟩(1 − pD(x))Dk|k−1(x)

⟨Υ0
k[Dk|k−1; Zk], ρk|k−1⟩

+
∑

z∈Zk

⟨Υ1
k[Dk|k−1; Zk\{z}], ρk|k−1⟩ψk,z(x)Dk|k−1(x)

⟨Υ0
k[Dk|k−1; Zk], ρk|k−1⟩

(5.5)

where ⟨·, ·⟩ denote the dot product operator. The sequence Υu
k [D,Z](n) for u ∈

{0, 1} is defined as:

Υu
k [D,Z](n) =

min(|Z|,n)∑
i=0

(|Z| − i)!ρC,k(|Z| − i)P n
j+u

× ⟨1 − pD,k, D⟩n−(i+u)

⟨1, D⟩n ei (Ξk(D,Z)) (5.6)

with

ψk,z(x) = ⟨1, κk⟩
κk(z) gk(z|x)pD,k(x) (5.7)

Ξk(D,Z) = {⟨D,ψk,z⟩ : z ∈ Z} (5.8)

ei(Z) =
∑

W⊆z,|W|=i

(
Π

ξ∈w
ζ

)
(5.9)

P n
ℓ = n!

(n− l)! . (5.10)

where ei(z) is the elementary symmetric function (ESF) of order i for a finite set z

[105], Zk is the measurement set at time k, gk(·|x) is the single-target measurement

likelihood function given current state x, pD,k(x) is the probability of detection,

κk(·) denotes the intensity of clutter measurements, while ρC,k(n) is the cardinality

distribution of clutter at time k.

The CPHD filter recursion above has been implemented in two distinct fashions.

The first one is a Gaussian mixture CPHD (GM-CPHD) filter [139] which assumes
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linear Gaussian dynamics in target states and birth process. The second one is

the particle CPHD filter [120] which is more suited to non-linear non-Gaussian

target dynamics. The improvement proposed in this chapter is towards the particle

implementation of the CPHD filter.

5.4 The Kalman-Gain-Aided SMC-CPHD Filter

The KG-SMC-CPHD filter seeks to achieve a more accurate posterior by applying

particle state correction in the update stage of the standard SMC-CPHD filter. This

is achieved by using the Kalman gain technique alongside a validation threshold.

The validation threshold is used to identify promising particles belonging to a

target and moving them to regions of higher likelihoods in order to arrive at a

more accurate posterior. To this end, the prediction stage of the KG-SMC-CPHD

filter is first presented followed by the update stage.

5.4.1 Prediction

The KG-SMC-CPHD filter prediction stage is similar to the standard SMC-CPHD

filter (see for example, [120]). Assume at time k−1 that the cardinality distribution

is ρk−1|k−1(n) and that the PHDDk−1|k−1 is given by a set of particles with associated

weights
{
xj

k−1, w
j
k−1

}Lk−1

j=1
.

Predict the cardinality distribution according to (5.2). Predict the PHD Dk|k−1

by drawing Lk and Jk samples with associated weights for existing and new born

targets respectively from two proposal distribution using:

xj
k|k−1 ≈


qk(·|xj

k−1,Zk), j = 1, ..., Lk

pk(·|Zk), j = Lk + 1, ...,Lk

wj
k|k−1 =


pS(xk−1)fk|k−1(xk,xk−1)

qk(xk|k−1|xj
k−1,Zk) wj

k−1, j = 1, ..., Lk

γk(xj
k

)
Jkpk(xk|k−1|Zk) , j = Lk + 1, ...,Lk

(5.11)
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such that

Dk|k−1(x|Zk−1) =
Lk∑
j=1

wj
k|k−1δ(x

j
k|k−1). (5.12)

where qk(·|·) and pk(·|·) denote proposal distributions for surviving and new born

targets respectively, pS(·) is the probability of target survival, Lk = Lk + Jk, γk(·) is

the PHD of the spontaneous birth and fk|k−1(·, ·) is the single target motion model.

5.4.2 Update

Our proposed technique is applied during this stage. In this stage, the PHD is

updated by computing (5.5) and then the cardinality distribution (5.4). To this

end, predicted particles for state correction are identified and selected. A predicted

particle, xj
k|k−1 is selected for correction if, for each clutter free measurement

zk ∈ Zk, the condition below is satisfied:

g(żn
k |xj

k|k−1) ≥ τ, for j = 1, ...,Lk (5.13)

where g(·|·) is the measurement likelihood function; τ is chosen to be inversely

proportional to the total number of samples per persistent target [46]. The term

żn
k is the clutter free measurement such that

Żk =
ns⋃

n=1
{żn

k}, (5.14)

where Żk ⊂ Zk is the set of clutter free measurements obtained using a measure-

ment set partitioning method as in [46]; n = 1, · · · , ns and ns =
∣∣∣Żk

∣∣∣. Each particle

satisfying (5.13) is assumed to be a reasonable candidate for correction given the

current measurement. The state of each particle satisfying (5.13) is corrected as
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follows:

xj
k = xj

k|k−1 + Kk(żn
k − h(xj

k|k−1)) (5.15)

Kk = Mk−1HT
k P−1

k (5.16)

P−1
k = Rk + HkMk−1HT

k (5.17)

Mk = Mk−1 − KkHkMk−1 (5.18)

where Kk and H denotes the Kalman-gain and the measurement transformation

matrix respectively, h(xl
k|k−1) is the projection of the predicted state xj

k on to

the measurement, R is the measurement error covariance matrix, M is the state

estimation covariance matrix, , and P is the innovation covariance matrix.

For each zk ∈ Zk, following particle state correction, (5.8), (5.9), and (5.6) are

computed. Afterwards, the estimated cardinality distribution ρk|k(n) is updated

according to (5.4) and particle weights wj
k|k updated according to (5.5). The

estimated number of targets is obtained as:

Nk =
Lk∑
j

wj
k|k (5.19)

and the particle representation of the PHD Dk|k is given as:

Dk|k(xk|Zk) =
Lk∑
j=1

wj
kδ(x

j
k). (5.20)

5.5 Simulation Results

In this section, the performance of the KG-SMC-CPHD filter is compared with the

SMC implementation of the CPHD filter of [100] and [139] which is tagged the

standard SMC-PHD filter, using simulated data.

Assume a sensor [xs, ys]T̄ located at the origin of the x-y Cartesian coordinate

which generates noisy range-bearing measurements of the targets with false alarms.
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The target-originated measurements are given by the nonlinear model

zk =

rk

θk

 + nk (5.21)

with

rk =

∥∥∥∥∥∥∥
1 0 0 0

0 1 0 0

 xk −

xs

ys


∥∥∥∥∥∥∥ , (5.22)

and

θk = arctan
(

[0 1 0 0]xk + ys

[1 0 0 0]xk + xs

)
(5.23)

where the measurement noise, nk is a zero-mean Gaussian white noise vector

with covariance matrix R =diag([σ2
r , σ

2
θ ]) with σr = 9m and σθ = 0.45 rad. Clutter

is uniformly distributed over the measurement region with a Poisson point pro-

cess giving an average of λ = 20 clutter points per scan; [·]T̄ denotes transpose

operation.

A total of 8 targets entering and exiting the tracking scene with multiple

crossings are considered for a duration of 100 time steps. A plot of the ground

truth (true trajectories) of the targets along with the start and end positions of

each track is shown in Fig. 5.1. The start and end positions are indicated by a circle

and a triangle respectively. The non-linear dynamics of the targets are described

using a nearly constant turn state model given by

xk =



1 0 sinω∆t
ω

−1−cosω∆t
ω

0 1 1−cosω∆t
ω

sinω∆t
ω

0 0 cosω∆t −sinω∆t

0 0 sinω∆t cosω∆t


xk−1 +



∆t2

2 0

0 ∆t2

2

∆t 0

0 ∆t


vk (5.24)

where ωk = ωk−1 + ∆tuk−1, ∆t denotes the sample period which is assumed to

be 1s. The target state vector xk = [xk, ωk]T̄ comprises of planar positions and

velocities given as xk = [xk, yk, ẋx, ẏk]T̄ along with turn rate ωk. The variables

(xk, yk) represent the position of the target and (ẋk, ẏk) represent the velocities.
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vk = N (·, 0, σ2
vI) and uk−1 = N (·, 0, σ2

uI) with σv = 10 m/s2 and σu = π/180 rad/s.
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Figure 5.1 Plots showing the KG-SMC-CPHD filter estimates superimposed on the
true target trajectories. The true start/end positions of the targets are indicated by
⃝/△.

Fig. 5.1 show results from a single MC run of the proposed filter estimates

superimposed on the true target tracks. The figure shows that the filter is able

to track the targets correctly even with multiple target crossings. Fig. 5.3 shows

the plot of target cardinality statistics for the KG-SMC-PHD filter (Fig. 5.3a) and

the KG-SMC-CPHD filter (Fig. 5.3b). It is seen from Fig. 5.3a that although the

KG-SMC-PHD filter is able to correctly estimate the number of targets, the standard

deviation is high. From (Fig. 5.3b), as expected, the KG-SMC-CPHD filter, in

addition to being able to correctly estimate the number of targets, it also had a

much lower standard deviation. This is due to the propagation of the cardinality

distribution jointly with PHD of the targets as opposed to only estimating the PHD

of the targets as in the case of the KG-SMC-PHD filter.

Furthermore, to compare estimation error of the filter to the standard SMC-

CPHD filter, the optimal subpattern assignment (OSPA) proposed in [125] and

execution time (ET) are used. Table 5.1 show filter performance obtained for both
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Figure 5.2 x and y components (versus time) of the true target trajectories and the
KG-SMC-CPHD filter estimates.

filters in terms of number of particles, OSPA distance and ET averaged over 100 MC

simulations for different values of η in the presence of clutter. It can be observed

from table that the accuracy of both the proposed filter and the SMC-CPHD filter

improves as number of particles per existing target increases. This is evident by the

decrease in their respective OSPA distances. The ET of the proposed filter however

is seen to be higher than the SMC-CPHD filter for a given η value. This is due to

the extra particle state correction step of the proposed filter. However, the number

of particles required in terms of performance level (i.e. low OSPA) by the proposed

filter is far less when compared to the SMC-CPHD filter making the proposed filter

more efficient.

Fig. 5.4a shows the OSPA plot (for c = 100 and p = 1) of the KG-SMC-CPHD

filter (red-dashed-line) and the SMC-CPHD filter (solid black line) for the same

targets shown in Fig. 5.1. The parameter c of the OSPA metric is the cut-off

parameter and determines the relative weighting of the penalties assigned to

localisation and cardinality errors, and p determines the sensitivity to outliers.

The number of particles per existing target was set to η = 1000 and the number

of particles for new born target set to η
5 . The proposed filter had lower OSPA

distance measure throughout the tracking time as compared to the SMC-CPHD
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filter. This indicates that the proposed filter has higher accuracy. In Fig. 5.4b the

evaluation of both the filters in terms of number of particles per existing target

and the code execution time is provided. As the number of particles increases, the

ET for both filters increases; which was an expected outcome. However, in this

simulation example, it was noted that for fewer number of particles (< 1000), the

ET of the KG-SMC-CPHD filter was higher than that of the SMC-CPHD filter. This is

perhaps due to the extra computation on the selected particles for state correction.

But for larger number of particles (> 1000), the proposed filter seems to have

a competitive ET when compared to the SMC-CPHD filter. This result suggests

that effect of the extra computation needed for the selective particle correction

on the overall ET of the proposed filter is minimal especially for larger number of

particles.

Table 5.1 Filter performance in terms of number of particles, OSPA distance and
CT for λ = 20.

Filter η OSPA (m) ET (s)

SMC-CPHD

50 57.00 1.1
100 41.41 1.5
500 32.13 4.7

1000 28.49 8.4

KG-SMC-CPHD

50 38.36 2.0
100 33.77 2.4
500 20.79 5.3

1000 15.04 9.0
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Figure 5.3 True and estimated cardinality statistics vs time averaged over 100 MC
trials. (a) KG-SMC-PHD filter (b) KG-SMC-CPHD filter. The red-dot-line denote the
mean cardinality estimates to one decimal place and Std is the standard deviation.
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Figure 5.4 (a) OSPA distance measure against tracking time (b) Execution time
against number of particles per target. Results shown are averaged over 100 MC
trials.

5.6 Summary

This chapter introduced the cardinalised version (KG-SMC-CPHD) of the proposed

SMC-PHD filter of chapter 4 which was called the KG-SMC-PHD filter [46]. The

KG-SMC-CPHD filter was applied to simulated data and results show that the KG-

SMC-CPHD filter had improved cardinality estimate (both in mean and standard

deviation) when compared to the KG-SMC-PHD filter. Furthermore, results showed

that the KG-SMC-CPHD filter when compared to the standard SMC-CPHD filter is

more efficient in terms of the number of particles needed for tracking, execution

time for higher number of particles and accuracy as indicated by the OSPA distance.

Chapters 4 and 5 featured two new and improved point target multi-target

tracking techniques capable of jointly estimating multiple target states and number

of targets. However, these techniques do not provide for explicit data association of

successive target state estimates. To achieve data association with these techniques,

a post processing is required. To this end, the next chapter presents a new approach

to achieving data association for multi-target tracking.



Chapter 6

Game Theoretic Data Association for

Multi-target Tracking with

Application to Passive Radar

6.1 Introduction

In the two preceding chapters, two MTT techniques were proposed for the tracking

of multiple point targets in clutter environment. These techniques are able to

estimate multiple target states as well as number of targets. These techniques

however do not have a framework to associate successive target state estimates.

As a solution to this drawback, this chapter investigates the use of game theory to

develop a data association technique that can be deployed alongside the proposed

KG-SMC-(C)PHD filter of Chapters 4 and 5.

To find target state-estimate-to-track associations, the problem of data asso-

ciation as a game between multiple and varying number of tracks is formulated.

The strategies and utility function of each track are specified. A regret-based

learning algorithm with a forgetting factor or memory is then used to find the

equilibrium of this game. Correlated equilibrium is used as a stable operating

point. Also, the set of correlated equilibria is a generalisation of Nash equilibria

and correlated equilibria are preferable than Nash equilibria since they directly
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consider the ability of agents to coordinate their actions and this coordination

leads to better performance [72].

The game theoretic approach in this chapter involves firstly, using the KG-SMC-

(C)PHD filter to track targets utilising all available measurements to obtain target

state estimates. Then the proposed game theoretic method is used to perform

target state estimate-to-track data association. The key differences between the

proposed approach and [34, 35] are: i) a varying number of targets by using the

SMC-PHD filter is considered, ii) a forgetting factor to avoid accumulating and

keeping the regrets of each player is used. The use of a game theoretic approach

allows for data association, for non-linear, non-Gaussian scenarios. Also, using

game theory, data association is simultaneous rather than sequential as opposed to

other data association algorithms [34, 35].

In addition, the developed game theoretic data association technique in this

chapter is applied to simulated data and deployed in a passive radar application to

demonstrate its performance.

6.2 Problem Formulation

This section presents the MTT problem for varying number of targets. Firstly, the

multi-target state and measurement models are described followed by how target

state estimates are obtained using the KG-SMC-(C)PHD filter.

6.2.1 State Model

Let the non-linear state evolution model of a target be:

xk = f(xk−1, vk) (6.1)

where xk denotes target state at discrete time k, vk is an independent and identi-

cally distributed (i.i.d.) process noise vector and f(·) is the non-linear system

transition function. Then the multi-target state at time k can be written as
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Xk = {x1,k, ..., xM,k} ∈ Es where M is the number of targets present at time

k, and Es denotes the state space.

6.2.2 Measurement Model

The target-originated non-linear measurement model is given as:

zk = hk(xk,nk) (6.2)

where hk(·) is a non-linear function, and nk is an i.i.d. process noise vector.

Measurements consist of both target-originated measurements and false alarms.

The multi-target measurement set at time k in the measurement space is: Zk =

{z1,k, ..., za,k}⋃ {c1,k, ...cb,k} ∈ Eo where a denotes the number of target-originated

measurements, b denotes the number of false measurements and Eo denotes the

measurement space. Then the multi-target cumulative measurement set at time K

is Z1:K = {Z1,Z2, ...,ZK} ∈ Eo.

6.2.3 MTT Using KG-SMC-(C)PHD Filter

6.2.3.1 Initialisation

In the KG-SMC-(C)PHD filter proposed in Chapters 4 and 5, at time k = 1 the PHD

Dk|k is represented by a number of particles with associated weights {xi
k, w

i
k}Lk

i=1.

Lk is the number of all surviving particles at time k. A particle approximation of the

intensity function at time step, k > 1, can be obtained from a particle distribution

at the previous time step using prediction and update stages.

6.2.3.2 Prediction

Apply importance sampling to generate Lk−1 and Jk particles from two proposal

densities (qk(·|·) and pk(·|·)) to represent persistent and new born targets with
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associated weights respectively, with Lk = Lk−1 + Jk, that is,

x̃l
k|k−1 ≈


qk(·|x̃l

k−1, Żk), l = 1, ..., Lk−1

pk(·|Żk), l = Lk−1 + 1, ...,Lk

(6.3)

w̃l
k|k−1 =


φk|k−1(x̃l

k,x̃l
k−1)

qk(x̃k|k−1|x̃l
k−1,Zk)w

l
k−1, l = 1, ..., Lk−1

γk(x̃l
k)

Jkpk(x̃k|k−1|Zk) , l = Lk−1 + 1, ...,Lk

(6.4)

where φk|k−1(x̃k, x̃k−1) = pS(x̃k−1)fk|k−1(x̃k, x̃k−1) + bk|k−1(x̃k, x̃k−1), γk(·) is the

PHD of the spontaneous birth, pS(·) is the probability of the target survival,

fk|k−1(x̃k, x̃k−1) is the single target motion model, and bk|k−1(x̃k, x̃k−1) is the PHD

of spawned targets.

6.2.3.3 Update

For each żn
k ∈ Żk, compute:

H(żn
k) = κ(żn

k) + Ck(żn
k) (6.5)

Ck(żn
k) =

Lk∑
l=1

pD(x̃l
k|k−1)g(żn

k |x̃l
k|k−1)w̃l

k|k−1, (6.6)

where pD(x̃l
k|k−1) is the probability of detection, g(żn

k |x̃l
k|k−1) is the measurement

likelihood function for the single target, and κ(żn
k) = λkck(z) is the clutter intensity,

λk is the average number of Poisson clutter points per scan, and ck(z) is the

probability density over the state-space of the clutter point

Then, for i = 1, ...,Lk, update the weights using:

w̃l
k =

ν(x̃l
k|k−1) +

∑
ż∈Żk

pD(x̃l
k|k−1)g(żn

k |x̃l
k|k−1)

H(żn
k)

 w̃l
k|k−1 (6.7)

where ν(x̃l
k|k−1) = 1 − pD(x̃l

k|k−1) is the probability of target non-detection.
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6.2.3.4 Resample and Clustering

The number of targets at time k is computed as Tk = round
(∑Lk

l=1 w̃
l
k

)
. Lk = ρTk

particles are resampled according to the ISR resampling method proposed in

Chapter 4 to avoid degeneracy. Clustering is performed on resampled particles to

obtain the target state estimates, x̃k.

Therefore, at time k, the output of the KG-SMC-(C)PHD filter is a set of target

state estimates given as: x̃k = {x̃1,k, x̃2,k, · · · , x̃Tk,k} ,where x̃t,k = [xt,k, ẋt,k, yt,k, ẏt,k]T̄ ,

xt,k and yt,k are the x and y positions at time k and ẋt,k and ẏt,k are the velocity in

x and y directions for the tth target respectively. It is the assumption that, each

target, when present generates at most one measurement. Also, most false alarms

have been filtered out during the KG-SMC-(C)PHD filtering. This implies that

the output of the KG-SMC-(C)PHD filter are target state estimates only with no

false alarm. In the case where a false alarm was not filtered, it will be recorded

as a new target. Figure 6.1 shows the different stages in the proposed approach.

Figure 6.1 Block diagram showing various stages of the data association process.

Both target-originated measurements and clutter are obtained from a sensor. The

KG-SMC-(C)PHD filter tracks the targets using these measurements while filtering

out clutter to obtain target state estimates. The proposed game theoretic approach

is then used to associate these target state estimates to various target tracks.
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6.3 Data Association for Varying Number of Targets

Using Game Theory

In this section, how the game between the different tracks is played at each

iteration of the KG-SMC-(C)PHD filter output is explained.

6.3.1 The Game

Consider a game at time k with a set, Ωk of Pk players. The players, Pk are the

tracks for different targets and can vary depending on the estimated number of

targets by the KG-SMC-(C)PHD filter, Tk. Each player wants to assign a new

target state estimate to its existing track. It is said that a new player has joined

the game at time k when Tk > Tk−1 and a player has left when Tk < Tk−1. The

strategy set Sp,k = {0, 1, 2, · · · , Tk} of each player corresponds to the set of target

state estimates from the KG-SMC-(C)PHD filter and they are known to all of

the players at time k. The strategy sp,k ∈ Sp,k allows the player to choose one

target state estimate from the set of all target state estimates or 0 in the case

that the corresponding target does not produce any tracks or disappears from

the tracking scene. Pk is the number of players at time k and corresponds to Tk.

For each player, a utility function is defined as up,k(sp,k, s−p,k) : S −→ R, with

S = S1 × · · · × SP,k where −pk refers to all players except player pk. Uk denotes

the set of utility functions of all the players, that is, Uk = {upk
}Pk

pk=1. The game

Γk(Ωk,Sk,Uk) defined by the set of players Ωk, the strategy set Sk, and the utility

functions Uk is a one shot game played at the end of each iteration of the MTT

tracker and is called the MTT data association game for varying number of targets.

6.3.2 Utility Functions

For the pth player at time k, the utility function similar to [34] is defined as follows:

up,k(sp,k, s−p,k) =


dp,k(sp,k) + µ1gp,k(sp,k, s−p,k), sp,k ̸= 0

µ2, sp,k = 0
(6.8)
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where

dp,k(sp,k) = −
[
(xsp,k − x̃p,k)T Σ−1(xsp,k − x̃p,k) − dmax

]
(6.9)

is the scaled Mahalonobis distance between the track of the pth target at previous

time step, xsp,k := Fxsp,k−1 and the output of the KG-SMC-(C)PHD filter, x̃p,k; dmax

is a constant and it specifies the boundary for the Mahalanobis distance and

−dmax ≤ dp,k ≤ dmax, µ1 > 0 and µ2 > 0 are constants and

F =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.

The function gp,k(sp,k, s−p,k) is defined as

gp,k(sp,k, s−p,k) =


1

Pk−1
∑Pk

l=1
l ̸=p

∥ sp,k − sl ∥l0 , Tk > 1

1, Tk = 1
(6.10)

6.3.3 Equilibrium Points: Correlated Equilibria

In order to find the equilibrium of the MTT data association game for varying

number of targets, correlated equilibrium (CE) [4] as considered in [35] is used.

CE is a generalisation of the Nash Equilibrium, (NE). A probability distribution ϕ

is called a CE if for all players p ∈ Ω and all strategies i, j ∈ Sp, [72]

∑
s∈S:sp=i

ϕ(s)[up(j, s−p) − up(s)] ≤ 0. (6.11)

A CE, ϕ can be considered as a recommendation each player receives ’privately’

from a trusted source. If this source draws a strategy profile s from ϕ and an-

nounces to each player p its own component separately and privately, then the

player p will have no incentive to choose another strategy, assuming that the other

players also conform to the recommendation provided by the source [72]. The CE
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for the MTT data association game for varying number of targets can be reached

using a learning mechanism called regret matching.

6.3.4 Regret Matching with Forgetting Factor

Regret matching (RM) is a type of learning algorithm used in fully distributed

learning [72]. At each time instant, a player may either continue to play the

same strategy as in the previous time instant, or switch to other strategies, with

probabilities that are proportional to how much its regret would have been had it

always made that change in the past. Specifically, let sp,k ∈ Sk denote the strategy

of the pth player in the kth iteration and let the index of sp,k within Sk be n such

that n ∈ {1, · · · , Tk}. Also, let sp,k−1 ∈ Sk−1 be the strategy of the pth player at the

k − 1 iteration and let sp,k−1 have index l such that l ∈ {1, · · · , Tk−1}. Each player

computes the average regret for choosing the nth strategy in the kth iteration

using:

Rp,n(k) = 1
k − 1

k−1∑
l=1

[up,k(n, s−p,k(l)) − up,k(s(l))] (6.12)

rp,n(k) = max {0, Rp,n(k)} , (6.13)

Each player pk can recursively compute the nth component of Rp,k using the

recursion:

Rp,n(k) =
(
k − 2
k − 1

)
Rp,n(k − 1) + 1

k − 1 [(n, s−p,k(k − 1)) − up,k(s(k − 1))] (6.14)

Since the number of players changes with time, the regret in the distant past

becomes irrelevant. As a result, an exponential forgetting factor is introduced, λf

in (6.12) to obtain the regret matching with forgetting factor (RMFF) equation:

R̃p,n(k) = 1
k − 1

k−1∑
l=1

λ
(k−1)−l
f [up,k(n, s−p,k(l)) − up,k(s(l))] (6.15)
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and (6.13) becomes:

r̃p,n(k) = max
{
0, R̃p,n(k)

}
(6.16)

where R̃p,n(k) represent the average pay-off (with exponential forgetting factor)

for the pth player at time k for not having played a different strategy n each time

the strategy l was played in the past; 0 < λf ≤ 1 is the forgetting factor. The

memory of the RMFF equation is given as Λ = 1
1−λf

. The expression r̃p,n(k) in

(6.16) has an interpretation as the measure of the average regret at kth iteration

for not having played the strategy n up to time k. Let βp,n(k) denote the probability

that the pkth player chooses nth strategy. Each player then chooses the nth strategy

that satisfies

arg maxn βp,n(k) (6.17)

where the distribution βp,n(k) is given by

βp,n(k) =


1
α
r̃p,n(k), if l ̸= n

1 −∑
n∈{0,1,··· ,Tk}

n̸=l

βp,n(k), l = n.
(6.18)

The constant α > 0 is a large enough number such that βp,n(k) > 0 and this ensures

that there is always a positive probability of playing the same strategy as in the

previous step [72]. When a new player, p+ joins the game, that is, when Tk > Tk−1,

its own distribution, βp+(k) is started such that β(k) = ∪βp+(k) at that instance.

In regret matching, the correlation in the plays of different players arises from

the commonly observed history. Thus, the history serves as a signal in giving the

private recommendation to each player [72].

6.4 The Passive Bi-static Radar System

In order to demonstrate the performance of the game theoretic data association

(GTDA) method described in the preceding sections, it is applied to real data ob-
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tained from a passive bi-static radar (PBR) experiment. The aim of PBR experiment

was to detect, track and associate target state estimates of moving aeroplanes. The

PBR system was set-up using the NI USRP software defined radio platform with

necessary hardware to record detections from moving aeroplanes. But firstly, some

key steps in setting up the PBR system for the detection of moving aerial targets

are discussed.

6.4.1 System Architecture

The PBR system implementation relies on exploiting a software-defined radio

platform (SDR). The computationally demanding part of the passive radar signal

processing chain is implemented on the software-defined radio FPGA, and the rest

of the radar processing chain, such as target detection, multi-target tracking and

data association have been implemented on the host CPU, (see Fig. 6.2).

6.4.2 Signal Reconstruction and Disturbance Cancellation

The SDR platform is the NI-USRP-2950R, and contains two RF channels that can be

configured as two synchronised receivers that provide the reference signal (as input

from a reference antenna) and surveillance signal (as input from a surveillance

antenna). The antenna for the reference signal has been pointed towards the

direction an FM transmitter. Since the surveillance antenna will not completely

suppress the strong direct signal, a disturbance cancellation operation is performed

on the surveillance signal using least mean square (LMS) adaptive algorithm.

After that, the surveillance and reference signals have been used to perform the

two-dimensional cross-correlation function (2D-CCF) to obtain range -Doppler

map.

6.4.3 Two-Dimensional Cross-Correlation Function (2D-CCF)

The evaluation of the bi-static range-Doppler 2D-CCF is the key step in the PBR

processing chain. It corresponds to the implementation of a bank of matched
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Figure 6.2 PBR System Architecture.

filters, each one tuned to a specific target bi-static Doppler frequency shift.

χ(u,m) =
N−1∑
n=0

xsurv[n]x∗
ref [n− u]e−j2π mn

N (6.19)

where x∗
ref [u] denotes the sampled reference signal, x∗

surv[u] denotes the sampled

surveillance signal and χ(u,m) denote the 2D-CCF. N is Number of integrated

samples, u is the time bin corresponding to time delay τ = u
fs

;where fs is sampling

rate and m is Doppler bin corresponding to Doppler shift fd = mfs

N
.

The 2D-CCF stage serves two important purposes: the generation of sufficient

signal processing gain to allow the targets to be detected above the noise floor and

the estimation of the bi-static range and Doppler shift of the target echoes.
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6.4.4 Target Detection (Order Statistic CFAR)

Having calculated the 2D-CCF correlation surface, target detection is performed by

comparing the magnitude of each range Doppler bins to a threshold. The threshold

for different range Doppler bins will vary according to the estimate of disturbance

and noise for each range - Doppler bin in order to maintain a constant false alarm

rate. The Constant false alarm rate (CFAR) algorithm of choice was the order

Figure 6.3 Order statistic CFAR Algorithm [27].

statistic OS-CFAR [27] and [123], for its robustness against interfering peaks on

the cell under test (CUT). Fig. 6.3 shows the algorithm used for implementing

the OS-CFAR. Cells before and after a CUT are utilised to estimate the noise floor

level around the CUT, by arranging them in ascending order in terms of their

amplitude value and taking only the kth sample to compute the threshold for a

specific probability of false alarm (PF A). Guard cells before and after the CUT

are needed in case the energy of the CUT is dispersed onto adjacent cells. The

threshold for determining whether a target exist in the CUT is computed for a
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specific PF A using the following equation [123]:

PF A = N !(αOS +N − k)!
(N − k)!(αOS +N)! . (6.20)

where αOS is the OS scaling factor, k is the representative sample rank and N is

the total number of background samples.

6.5 Numerical Results

In this section, the performance of the GTDA technique on simulated data is

demonstrated. The tracking and association of the target state estimates of four

targets are considered. These targets enter and exit the tracking scene at various

times. Fig. 6.4 shows the x and y components of each track against time. A

triangular and circular dot denote the start and the end of a track respectively.

Figure 6.4 Ground truth showing the plot of the true x and y components against
time for the four tracks over 100 time steps

Fig. 6.5 shows the average of 100 MC simulations of the KG-SMC-PHD filter

estimates of the target trajectories in both x and y directions superimposed on the

true target trajectories of Fig. 6.4.
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Figure 6.5 KG-SMC-PHD filter estimates superimposed on true target positions in
both x and y direction averaged over 100 MC runs.

To evaluate performance, the root mean squared error (RMSE), track continuity

[40] and computational time (CT) are used. The RMSE is computed individually

for each target as

RMSEt =

√√√√ 1
K

K∑
i=1

(xi
t − x̃i

t)2 (6.21)

where t denotes the tth target, K is the number of KG-SMC-(C)PHD filter iterations

which is same as the time up to now; {xi
t}

K
i=1 denotes the set of ground truth of the

tth target and
{
x̃i

t

}K

i=1
denotes the set of the tth target state estimates after game

theoretic data association.

Table 6.1 show results averaged over 100 Monte Carlo simulations for different

data association algorithms with 1000 number of particles used for the KG-SMC-
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Table 6.1 The performance of the proposed algorithm in terms of RMSE, track
continuity and computation time (CT).

Algorithm
Track continuity (%) / RMSE

CT (s)
Target 1 Target 2 Target 3 Target 4

PDA 94.3 / 3.2 93.9 / 2.9 96.1 / 2.2 96.5 / 2.7 25.0
JPDA 95.3 / 1.1 94.4 / 1.1 96.7 / 0.9 96.0 / 1.0 22.4
GTDA 97.1 / 0.7 98.0 / 0.9 98.2 / 1.0 98.8 / 0.8 19.6

(C)PHD filter. PDA is the probabilistic data association technique [13], JPDA

denote joint-PDA [59] and GTDA is the proposed method. Comparing the three

algorithms, the GTDA gave the best performance both in terms of accuracy and

CT. The JPDA gave a similar level of performance in accuracy when compared

with the GTDA but has higher computational time. This is because in JPDA many

hypotheses are considered and the hypotheses are merged to form a single one

after considering all targets and measurements. The GTDA gave a lower CT and

only half of the regrets of the players were kept (λf = 0.5).

6.6 Experimental Results

This section presents filter and parameter settings, results and discussions from

the PBR experiment.

6.6.1 State and Measurement Models

Let the constant velocity state evolution model of a target be:

x̂k = Fx̂k−1 + wk (6.22)

with

F =

1 δt

0 1

 ,
where F is the system transition function, x̂k = [r̂k, υ̂k]T̄ , r̂k and υ̂k denotes the

bi-static range and bi-static radial velocity respectively, and wk is an independent
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and identically distributed (i.i.d.) process noise vector. Then the multi-target state

at time k can be written as Xk = {x̂1,k, ..., x̂M,k} ∈ Es where M is the number of

targets present at time k, and Es denotes the state space.

Let the target-originated measurement model be:

ẑk = H

r̂k

υ̂k

 + n̂k (6.23)

where H is the transformation matrix, and n̂k is an i.i.d. process noise vec-

tor. Measurements consist of both target-originated measurements and false

alarms. The multi-target measurement set at time k in the measurement space

is: Zk = {ẑ1,k, ..., ẑa,k}⋃ {c1,k, ...cb,k} ∈ Eo where {z1,k, ..., zα,k} denotes the target-

originated measurement set with number of measurements, α; {c1,k, ...cβ,k} de-

notes the false measurement set with the number of measurements, β and Eo

denotes the measurement space. Then the multi-target cumulative measurement

set at time K is Z1:K = {Z1,Z2, ...,ZK} ∈ Eo.

6.6.2 Experimental Set-up

The goal of the PBR experiment was to track aeroplanes that are either passing

through Loughborough town, taking off from or landing at a nearby airport, the

East Midlands Airport (which is 10km away from Loughborough University). In this

experiment, the aim was to use bi-static range and radial velocity measurements

of the aeroplanes obtained from a passive radar set-up to track the aeroplanes and

then associate the target-state-estimates to the various aeroplane tracks using the

GTDA technique. The experiment was carried out on the 7th of July, 2016 on top

the roof of Sir David Davies Building, Loughborough University, UK.

In this experiment, the transmitter of opportunity is an FM transmitter with a

center frequency of 106MHz and located some 6.5km away from the receiver. Fig.

6.6 shows the coverage area of the FM transmitter, the receiver location and the

location of the East Midlands Airport. The passive receive end consists of a National

Instruments SDR platform (the NI-USRP-2950R) and two omni-directional FM
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Figure 6.6 The coverage area of the FM transmitter.

antennas; one is used for the surveillance channel and the other is used for the

reference channel. Figure 6.7 shows the passive receiver setup on the roof top

for Sir David Davis Building, Loughborough University. The SDR platform was

interfaced with LabVIEW to record the raw in-phase and quadrature (I-Q) data for

a duration of 12mins 12secs and processed to obtain the bi-static range and radial

velocity measurements of planes within the surveillance scene. The receiver had

a bi-static range resolution of 937.5m and bi-static radial velocity resolution of

1.4m/s. The system was set to have a maximum detection range of approximately

48km and only detections above an altitude of 100m were considered. During

the duration of the recording, a total of six aeroplanes entered and exited the

detectable region of the receiver. The processed passive radar data were recorded
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Figure 6.7 Passive receiver setup.

as an intensity map with the bi-static radial velocity (in m/s) on the y-axis and the

bi-static range (in km) on the x-axis. CFAR detection was then applied to the raw

intensity map measurements to obtain a binary intensity map to facilitate tracking.

The probability of false alarm used for the CFAR was 1 × 10−4. The intensity maps

of the bi-static range and radial velocity measurements recorded at time = 109s

before and after applying CFAR are shown in Fig. 6.8a and Fig. 6.8b respectively.

In Fig. 6.8b, the colour white indicates detections and black indicates no detection.

It is observed from Fig. 6.8b that the detections are smeared therefore, centroiding

was performed to obtain single point detection before being passed to the tracking

filter.

The tracking filter (the KG-SMC-(C)PHD filter) takes in the centroided CFAR

detections as measurements to perform MTT and output target-state-estimates. the

process noise in (6.22) wk was modelled to be distributed according to N (0, σ2Q),

where σ = 0.02km/s2, the sampling period δt = 1s and

Q =

 δt4

4
δt3

2
δt3

2 δt2

 .
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The measurement noise in (6.23) was modelled as n̂k = N (0, R̂) where R̂ =

diag([σ2
r̂ , σ

2
υ̂]) with σr̂ = 30m and συ̂ = 4.5m/s; where H = diag([1, 1]T̄ ).

(a) Bi-static radial velocity vs bi-static range
intensity map before CFAR.

(b) Bi-static radial velocity vs bi-static range
map after CFAR.

Figure 6.8 Bi-static radial velocity vs bi-static range map obtained from the passive
radar set-up at time = 109s.

6.6.3 Results

Fig. 6.9a and Fig. 6.9b show results obtained from one sample run of the KG-

SMC-(C)PHD filter on the passive radar detections for the whole duration of the

experiment. The number of particles per existing target was set to ρ = 4000 and

the number of particles for new born tracks was set to ρ
5 . In Fig. 6.9a, solid black

lines represent the true flight paths on the bi-static range and radial velocity map,

while the dots represent the filter estimates. The circle and triangle denote the

start and end measurements of the flights. The true flight bi-static range and radial

velocity data were obtained from [58]. Notice from Fig. 6.9a that there are a

total of six targets throughout the duration of the experiment. Three of the targets

having a “C” like trajectory correspond to targets passing over the transmit/receive

set-up of the passive radar. Hence, the upper part of the “C” shape corresponds to

approaching targets and thus have positive bi-static radial velocity and the lower

part of the “C” shape corresponds to receding targets having a negative bi-static

radial velocity. A zero bi-static radial velocity corresponds to when targets are
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Figure 6.9 Tracking filter and GTDA plots: (a) Bi-static radial velocity vs bi-static
range plot showing various true flight paths and tracking filter estimates for the
whole duration of the experiment. Start/End for each target are shown with ⃝/△;
(b) Tracking filter estimates superimposed on true flight positions in both bi-static
range and bi-static radial velocity axis (versus time); (c) Bi-static radial velocity vs
bi-static range plot showing various true flight paths and GTDA data association for
the whole duration of the experiment. Start/End for each target are shown with
⃝/△; (d) True flight positions in both bi-static range and bi-static radial velocity
axis and GTDA data association (versus time) showing target entry and exit.

closest in bi-static range to the transmit/receive set-up. The other three targets

having irregular trajectories correspond to targets taking position after having

taken off or taking position to land at an airport within the detection range of the

receiver. In Fig. 6.9b, the bi-static range and radial velocity of the true flight path

(solid lines) and the tracking filter estimates (dots) versus time are shown. From

this figure the time each target enters and exits the tracking scene can be observed.

In Fig. 6.9c, the bi-static range and radial velocity of the true flight path (black)

and the target-state-estimate after GTDA (coloured) are shown. In Fig. 6.9d, the

bi-static range and radial velocity of the true flight path (black) versus time and

the target-state-estimate after GTDA (coloured) are shown. These results suggest
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that the proposed GTDA technique is able to properly associate the target-state-

estimates of different targets to their corresponding tracks.

6.7 Summary

In this chapter, a data association technique for MTT with varying number of

targets using game theory namely, the GTDA has been proposed. The strategies

and the utility functions of the players were defined, and a regret matching with

forgetting factor was used to find the equilibrium of the game. The proposed

technique was evaluated using both simulated and real data. As for the the

simulated data, the performance of the proposed technique is compared to other

data association algorithms such as the PDA and JPDA. The proposed method

showed better performance in terms of accuracy and computation complexity when

compared to PDA. However, the proposed approach showed similar performance

in terms of accuracy when compared with JPDA but takes less computational time.

Secondly, the effectiveness of the GTDA was further demonstrated on real field

measurements collected by an NI-USRP based PBR system. In the experiment, the

KG-SMC-(C)PHD filter was used to track aeroplanes and the GTDA was used for

track association. Results showed that the GTDA technique was able to successfully

associate the target-state-estimates to various target tracks.

Thus far, new and improved techniques for MTT have been proposed specifically

for tracking point targets, that is, targets that generate at most one detection per

time step and whose detection can be approximated as a point, for example, on the

x and y coordinate. These techniques were able to estimate multiple target states,

number of targets and perform data association of target state estimates. However,

this point target assumption cannot hold for all targets. Some targets can generate

more than one measurement per time step and thus a point representation of

such targets isn’t sufficient. These targets are termed extended targets and are

characterised with some extension parameters. A framework to effectively estimate

the target states, number of targets and association of such targets is the subject of

the next chapter.



Chapter 7

Bayesian Multiple Extended Target

Tracking Using Labelled Random

Finite Sets and Splines

7.1 Introduction

In this chapter, a multiple ET tracking technique using the framework of labelled

random finite set is proposed. This technique is namely, the ET generalised labelled

multi-Bernoulli spline (ET-GLMB-S) filter. In this approach, the measurement rate

of the ETs is modelled as a Poisson mixture and a Poisson mixture variational

Bayesian (PMVB) is used to simultaneously estimate the measurement rate of all

ETs present. Based on [61], the target extent is modelled as a diffuse model of the

measurement generating process such that the target extent is represented by a

spatial probability distribution instead of modelling explicit measurement sources.

B-splines were used to model this spatial probability distribution. The PMVB and

spline approaches are employed in the modified GLMB filter of [138] to achieve

joint recursive estimate of ET state estimate, number of target and targets label

tracking.

The main contributions of these chapter are as follows. Firstly, a variational

Bayesian based method is used to simultaneously estimate the measurement rate
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of targets present. Use of VB avoids explicitly pre-setting a window size and

converges to the true rate parameter given the number of detections. This has the

advantage of maximising an explicit objective, and fast convergence in most cases.

Secondly, the lower bound for our variational Bayesian method is derived to aid

in monitoring convergence. Third, B-splines are used to model the target extent

which will allow for more accurate modelling of targets with arbitrary extensions

rather than the restrictive elliptical model of [20, 21]. Lastly, the prediction and

likelihood update equations for target extension under the B-spline model are

derived.

The remainder of this chapter is organised as follows. Section 7.2 presents

additional notations that would be helpful in this chapter. Section 7.3 presents

some background information on B-Splines. The proposed ET-GLMB-S filter along

with related derivations are introduced in Section 7.4. The simultaneous measure-

ment rate estimator, the PMVB is described and derived in Section 7.5. Section 7.6

contains simulation results highlighting the performance of our proposed technique

followed by concluding remarks in Section 7.7.

7.2 Preliminaries

In addition to the notations and definitions of Section 3.7, the following notation

is added. These notations and definitions are useful in understanding some key

concepts in this chapter.

Notation 3

A bold upper-case letter (X) and bold lower-case letter (x) are used to denote

labelled sets and labelled vectors respectively. Regular upper -case letter (X) and

regular lower-case letter (x) are adopted for unlabelled sets and unlabelled vectors

respectively.
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7.3 B-Splines

This section gives a brief background on B-spline [29, 48, 122]. A B-spline is

a piecewise polynomial function which can be used to represent a curve. Any

arbitrary geometrical, numerical or statistical function can be described by the

B-spline transformation [74]. One can control the shape of any curve by adjusting

the locations of the control points. This movement can be on the entire curve in

which case there is a global effect or on certain part of the curve (i.e. which will

have a local effect) [130]. A key benefit of using B-spline is its local controllability.

That is to say, by applying appropriate control point movements, a curve can be

controlled locally. This feature is useful when approximating/modelling target

extension from the multiple (and stochastic) measurements generated by the

target. This feature is also useful in spline filter implementation [74].

Mathematically, a one-dimensional p-th order B-spline curve S(s) of degree

p− 1 of a certain variable s can be defined as:

S(s) =
np∑
i=1

PiBi,p,t(s) 2 ≤ p ≤ np, (7.1)

where Pi is the i-th control point, np denotes the total number of control points

and t denotes a knot vector consisting of non-decreasing sequence of real valued

numbers, where t = {t1, · · · , tr}, that is, ti ≤ ti+1, i = 1, · · · , τ . The knot vector

t relates the variable x to the control points [29, 48, 122]. The total number of

knots is always greater than the total number of control points [29]. Adding or

removing knots using appropriate control point movement can exactly replicate

the function/curve, which is suitable for implementing filtering algorithms using

splines [116, 129]. Also, a higher-order (three or more) B-spline curve tends to be

smooth and maintains the continuity of the curve. The continuity of the B-spline

curve enables continuous state estimation [116, 129]. The i-th B-spline basis
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functions of a variable s are denoted by Bi,p,t(s) and defined as [29, 48, 122]:

Bi,1(s) =


1 if ti ≤ s < ti+1,

0 otherwise.
(7.2)

Bi,p(s) = s− ti
ti+p−1 − ti

Bi,p−1(s) + ti+p − s

ti+p − ti+1
Bi+1,p−1(s) (7.3)

where variables ti denote knot elements; Bi,p(s) is non-zero in the interval [ti, ti+p].

The basis function Bi,p(s) can have the form 0/0, in which case it assumes 0/0 = 0

[48]. Furthermore,
np∑
i=1

Bi,p(s) = 1 (7.4)

for any value of the parameter s. The basis functions are polynomials of degree

p − 1 [29, 48]. Moreover, a B-spline curve can be open, clamped or closed. An

open B-spline curve is formed if the knot vector does not have any particular

structure, hence the generated curve will not touch the first and last legs of the

control polyline (see Fig. 7.1a). A B-spline is clamped when the curve is tangent

to the first and the last legs of the control polyline (see Fig. 7.1b). This is achieved

by repeating the first knot and the last knot p + 1 times (i.e., of multiplicity

p + 1). A closed B-spline can be formed by repeating some knots and control

points. In this case, the start and the end of the generated curve join together

forming a closed loop (see Fig. 7.1c). This can be obtained by first designing a

uniform knot sequence and then wrapping the first p and the last p control points.

More specifically let P1 = Pnp−p+1,P1 = Pnp−p+2, ...,Pp−2 = Pn−1and Pp−1 = Pnp.

Furthermore, unidimensional splines can be extended to multidimensional splines

by using tensor product spline construction, see [29]. A spline subspace Bij ,pj ,tj
(sj)

is defined for each dimension where sj denotes the variable in the j-th dimension.

Thus, the spline representation of a multidimensional function S(x1, . . . , sm) is
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(b) Clamped spline.
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(c) Closed spline.

Figure 7.1 Plots showing different constructions of B-splines. The control points
are indicated by circles and numbered on the plots.

given as

S(s1, . . . , sm)

=
np∑
i1

. . .
np∑
im

Pi1,...,imBi1,p1,t1(s1) . . .Bim,pm,tm(sm). (7.5)

The construction of the multidimensional spline polynomials above can be done by

solving a corresponding set of linear equations [129, 130]. Moreover, the B-spline

approach has been used in target tracking applications [74, 116, 129, 130] in a

continuous state space primarily because no special assumption on the noises is

required, and it is able to accurately approximate arbitrary probability density or

probability hypothesis density surfaces [130]. In most tracking algorithms, during

the update stage, the states are updated, but in B-spline-based target tracking only

the knots are updated [74, 116, 129].

7.4 Multiple Extended Target Tracking with Labelled

RFS and B-Splines

7.4.1 Problem Formulation

Consider an ET with scattering points along its boundary and within its body such

that it generates measurements along its boundary and within its body. Let the
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labelled set of extended targets at time k be denoted by:

Xk = {(x, ℓ)i,k}|X|
i=1 ,

{
xi,k

}|X|

i=1
(7.6)

where ℓ ∈ L(X) and L(X) is a set of unique labels in X. xi is the labelled augmented

state of the i-th target composed of the kinematic state, extension state and

measurement rate parameter; henceforth (x, ℓ) and x are used interchangeably.

The set of measurements received at time k is denoted

Zk = {zj,k}Mk

j=1 , (7.7)

where Mk is the total number of measurements obtained at time k. The cumulative

measurement sequence up to and including time k is Z1:k : Z1, Z2, · · · , Zk. Note

that the set Z includes both target originated measurements and measurements due

to clutter. Each target, when present can generate one or more measurements. The

measurements due to clutter are assumed to be Poisson distributed in number with

rate parameter γ and having spatial distribution c(·). These clutter measurements

are modelled as being uniformly distributed over the tracking scene. The goal at

each time k is to estimate the labelled set of extended targets Xk given a set of

corrupted measurements Zk.

7.4.2 Extended Target Measurement Model

Here, the extended target measurement model similar to [20] and [21] is pre-

sented. At a given measurement time, let the labelled RFS of multiple extended

targets be X = {x1, ..., xn}. Hence it is assumed that a particular target x ∈ X has

probability of pD(x) of being detected or misdetected with the probability 1−pD(x).

Furthermore, it is assumed that if the extended target x is detected, it generates a

set of measurements D with likelihood g′(D|x). Let D = {D1, ..., Dd} be the set of

target detections. Then the set D is distributed according to (see [105]):

gD(D|X) =
∑

D1⊎···⊎Dd=|X|
g̃(D1|x1) · · · g̃(D|X||x|X|), (7.8)
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where g̃(D|xi) is an RFS distribution defined by

g̃(D|xi) ∝


1 − pD(x) if D = ∅,

pD(x)g′(D|xi) otherwise.
(7.9)

The symbol ⊎ denotes that the summation is taken over all mutually disjoint

subsets of D, such that D1 ∪ · · · ∪D|X| = D. Let the set K, which is independent of

the target detections be a set of clutter measurements and modelled as a Poisson

RFS with rate γ and spatial distribution c(·), hence K is distributed according to:

gK(K) = e−γ[γc(·)]K. (7.10)

Given the above, the set of multi-target measurements, Z, is the union of the set of

target detections and clutter measurements, that is, Z = D ∪ K. Moreover, since D

and K are independent, the multi-target likelihood is given by the convolution

g(Z|X) =
∑
D⊂Z

gD(D|X)gK(Z − D) (7.11a)

=
∑
D⊂Z

gD(D|X)gK(K). (7.11b)

Furthermore, the multi-target likelihood can be expressed as a double summation

over partitions of Z up to |X| + 1, and mappings of measurement groups to targets

as [21, 20]

g(Z|X) = gK(K)
|X|+1∑
i=1

∑
W(Z)∈Pi(Z)
θ∈Θ(W(Z))

[
ψW(Z)(·; θ)

]X
, (7.12a)

= e−γ[γc(·)]Z
|X|+1∑
i=1

∑
W(Z)∈Pi(Z)
θ∈Θ(W(Z))

[
ψW(Z)(·; θ)

]X
, (7.12b)

where Pi(Z) partitions Z into exactly i groups, and Θ(W(Z)) is the set of all

one-to-one mappings θ : L(X) → {0, 1, · · · , |W(Z)|} taking the labels in X to either

a group of measurements in W(Z), or a misdetection. The term ψW(Z)(x; θ) is
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denoted as

ψW(Z)(x; θ) =


1 − pD(x) θ(ℓ) = 0,
pD(x)g′(Wθ(ℓ)(Z)|x)

[γc(·)]Wθ(ℓ)(Z) θ(ℓ) > 0,
(7.13)

where Wθ(ℓ)(Z) is the group of measurements in partition Pi(Z) that was assigned

to label ℓ under the mapping θ, and g′(D|x) is the likelihood that a single extended

target with labelled state x generates measurement D. From (7.12b), it is quickly

observed that computing g(Z|X) requires summation over all partitions of the

measurements, Z. This in general, will be numerically intractable because the sets

of measurement partitions and group-to-target mappings can potentially become

extremely large [20]. The idea of partitioning the measurement set Z is discussed

next.

7.4.2.1 Measurement Set Partition

At time k, consider a set of measurements Zk = {z1,k, z2,k, z3,k} as in Fig. 7.2.

The Figure shows five possible partitions Pi(Z) of the set Z, with each partition

containing non-empty cells W(Z). The index i represents the i-th partition, that

is, Pi(Z). In each partition, say i = 2 (where there are two sub-groups/cells), the

sub-groupings assume that measurements in the same sub-group/cell belong to

the same target or a clutter source.

Furthermore, the number of possible partitions grows as the size of the mea-

surement set increases [64, 66]. Therefore, for a target tracking method to be

computationally tractable, only a subset of the possible partitions needs to be

considered [64, 66]. In addition, these subset of possible measurement partitions

must represent the most likely of all partitions in order to achieve good tracking

performance [64]. To this end, a number of techniques can be used such as a

technique called distance partition was suggested by [64] and another technique

namely subpartition algorithm was also proposed in [64] to better handle the

case of spatially close targets. Two other methods for achieving feasible mea-

surement set partitioning known as the predictive partition and the expectation

maximisation (EM) partition were also proposed in [66]. Moreover, the authors
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in [66] suggests that the distance partitioning, subpartition, prediction partition

and EM (for Gaussian mixtures) partition can all be used together to achieve a

feasible set of partition Pi(Z). Instead of using all four techniques as suggested by

z1,k

z2,k

z3,k

z1,k

z2,k

z3,k

z1,k

z2,k

z3,k

z1,k

z2,k

z3,k

z1,k

z2,k

z3,k

i=1 i=2 i=3

i=4 i=5

Figure 7.2 Possible partitions of a set of three extended targets. Each black dot
represents measurements. The index i represents the i-th partition. In each
partition, say i = 2, the sub-groupings assume that measurements in the same
sub-group belong to the same target.

[66], it is suggested that using the prediction partition of [66] with a variational

Bayesian (VB) technique (for Gaussian mixtures) (see [24] chap. 10) suffices and

offers improved performance in terms of computation. Furthermore, using VB has

the advantage of not knowing the number of clusters and does not suffer from

singularity issues when compared to EM as highlighted in Chapter 10 of [24].

7.4.3 Extended Target State Model

The extended target state of the i-th target at time k with label ℓ is modelled as

the tuple

xi,k , (λi,k, xi,k,Xi,k) (7.14)

where λi,k is the Poisson measurement rate parameter, xi,k is the target kinematic

state (such as position, velocity, acceleration) and Xi,k denotes the target exten-

sion/shape state. The rate parameter is modelled as a gamma distribution, the

kinematic state as a Gaussian distribution and the extent as spatial probability
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distribution characterised by control points of a B-spline function. Since only the

i-th target is considered, the subscript i and the label ℓ are suppressed from here

on. The distribution of the extended target state is given by the density in (7.15).

For simplicity, henceforth the notations for indices is adopted so that (·)k−1, (·)k

and (·)+
k represent (·)k−1|k−1, (·)k|k−1 and (·)k|k respectively.

p(xk−1|Z1:k−1) = p(λk−1|Z1:k−1)p(xk−1|Xk−1, Z1:k−1)

× p(Xk−1|Z1:k−1). (7.15)

The prediction and update stages of the extended target density of (7.15) are

discussed next.

7.4.3.1 Prediction

The predicted density p(xk|Z1:k−1) of an extended target is now computed. To this

end, we solve the Champan-Kolmogorov equation below:

p(xk|Z1:k−1) =
∫
f(xk|xk−1)p(xk−1|Z1:k−1)dxk−1 (7.16)

where f(·|·) denotes the transition density from time k − 1 to k and p(xk−1|Z1:k−1)

is the extended target density at time k − 1. Next, let us assume the transition

density can be written as

f(xk|xk−1) =
∫
f(λk|λk−1)f(xk|xk−1,Xk−1)f(Xk|Xk−1). (7.17)

This equation assumes independence between the kinematic state xk−1 and the

extent state Xk. This approximation is inherited from [84], where it was noted

that this implies restrictions that can be justified in many practical applications.

Relaxing this assumption will mean that χk is dependent on xk−1 which is a
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consideration for future work. Hence, the density of (7.16) yields

p(xk|Z1:k−1) =
∫
p(λk−1|Z1:k−1)f(λk|λk−1)dλk−1

×
∫
p(xk−1|Xk−1, Z1:k−1)f(xk|xk−1,Xk−1)dxk−1

×
∫
p(Xk−1|Z1:k−1)f(Xk|Xk−1)dXk−1. (7.18)

To solve for (7.18), firstly, it is assumed that the density of the measurement rate

can be approximated as

∫
p(λk−1|Z1:k−1)f(λk|λk−1)dλk−1 ≈ GAM(λk;αk, βk),

αk = αk−1

u
, βk = βk−1

u
, (7.19)

where GAM(λk;αk, βk) means λk is gamma distributed and governed by param-

eters αk and βk. The term u > 0 is a scaling term that ensures prediction such

that the expected value of the rate parameter is retained, and its variance is scaled

(increased) by u. In our approach, choosing u such that it is positive suffices

because the rate parameter converges to the true value when the PMVB is used.

The second line of (7.18) captures the kinematic component of the density. The

kinematic density p(xk−1|Xk−1, Z1:k−1) = N (xk−1;mk−1, Pk−1 + Σk−1) and under a

linear Gaussian dynamic model, f(xk|xk−1,Xk−1) = N (xk;Fxk−1, Q+ Σk−1). This

has a closed form solution given by:

∫
N (xk−1;mk−1, Pk−1 + Σk−1)f(xk|xk−1,Xk−1)dxk−1

= N (xk;mk, Pk + Σk),

mk = Fmk−1, Pk = FPk−1F
T̄ +Q. (7.20)

where Σk−1 denotes the covariance of control points. The last component on

the RHS of (7.18) (i.e., the last line) represents the extended target extension

component which is assumed to be a spatial probability distribution. This is
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approximated as

∫
p(Xk−1|Z1:k−1)f(Xk|Xk−1)dXk−1 ≈ Sk(Xk;Pk) , Sk, (7.21a)

where Sk is a d dimensional B-spline curve of order p, degree p− 1, having knots t

and characterised by control points Pk.

The B-spline curve Sk is given as:

Sk =
Nk∑
j1

Pk,j1Bi1,p,t(sj1) · · ·
Nk∑
jd

Pk,jd
Bid,p,t(sd), (7.21b)

Pk = FPk−1 + wk−1, (7.21c)

where the subscript d in (7.21b) denotes the dimension of the control points, Pk,jd

denotes the vector of control points in the d-th dimension and Nk is the number of

control points; wk−1 is an independent and identically distributed (i.i.d.) Gaussian

noise vector with zero mean and covariance Σk−1. The B-spline used here is a

closed spline which can be obtained as described in Section III. The spline has

order p = 4 (degree 3). The knot elements are determined between intervals [a, b]

as [48]:

t =



t1, · · · , tp = a

ti+p = a+ i(b−a)
Nk+p−1 for i = 1, · · · , (Nk − p)

tl−p, · · · , tl = b,

(7.21d)

where l = Nk + p.

The above gives the extended target predicted density p(xk|Z1:k−1) ≈ ET S(xk; ξk)

where ξk = (αk, βk,mk, Pk,Sk,Pk) is an array containing the predicted parameters

which are defined by (7.19), (7.20) and (7.21a).

7.4.3.2 Update

When the set of measurements Zk is available, each extended target needs to

undergo measurement update using feasible subsetsD of Zk. The update procedure
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of a single extended target having a predicted density ET S(·) given D is now

described. It is assumed that an extended target, when present and detected,

generates measurements D and each element of D is generated according to the

measurement model

z̄k = Hxk + vk (7.22)

where matrix H is a transformation matrix and vk is an independent and identically

distributed (i.i.d.) Gaussian noise vector with mean zero and a covariance Σk;

where Σk denotes the covariance of the control points.

Given the predicted density, the aim is to use Bayes rule to compute the posterior

density

p(x+
k |Z1:k) = p(xk|Z1:k−1)g′(D|xk)∫

p(xk|Z1:k−1)g′(D|xk)dxk

(7.23)

The single target likelihood term g′(D|xk) of (7.23) is defined in a similar manner

to [84, 21] as

g′(D|xk) = POIS(|D|;λk)
|D|∏
j=1

N (zj;Hxk,Σk) (7.24)

so that the numerator of (7.23) is

p(xk|Z1:k−1)g′(D|xk) = GAM(λk;αk, βk)N (xk;mk, Pk + Σk)

× SkPOIS(|D|;λk)
|D|∏
j=1

N (zj;Hxk,Σk). (7.25)

Rearranging (7.25) yields

= GAM(λk;αk, βk)POIS(|D|;λk)

× N (xk;mk, Pk + Σk)
|D|∏
j=1

N (zj;Hxk,Σk)

× Sk(Xk;Pk). (7.26)

where the first line captures the measurement rate component, the second line

is the kinematic component and the last line is the extension component. From
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(7.26), given that the measurement rate component is independent of the extension

and kinematic components, and can be treated separately.

As for the measurement rate component, the updated parameters α+
k , β+

k and

λ+
k are obtained using the Poisson mixture variational Bayesian (PMVB) technique

which is described in detail in Section 7.5. The PMVB is initialised using the

predicted αk, and βk as in (7.19), the mixture components C and the number

of measurements from the ETs as obtained from the measurement partitioning

technique of Section (7.4.2.1). The number of mixture components C can be set

to the maximum expected number of components. Setting such a value for C, the

VB model will not over fit the measurements to this number but rather converge to

the true number of components present given the measurements. This is one of

the advantages of the VB method over techniques such EM.

For the kinematic components, the update parameters are given by the follow-

ing:

ẑk = 1
|D|

∑
zk∈D

zk (7.27a)

m+
k = mk +Kk(ẑk −Hmk) (7.27b)

Kk = PkH
TS−1

k (7.27c)

Sk = HPkH
T + 1

|D|
(7.27d)

P+
k = Pk −KkHPk (7.27e)

Σ+
k =

∑
z∈D

(z − ẑ)(z − ẑ)T (7.27f)

As for the extension component, the number of control points are given as

N+
k =


|D|, if |D| < τ

convx(D), if |D| > τ,

(7.28)

where convx(D) denotes those elements of D that form the convex polyline of the

set of measurements D and τ is a suitable threshold. A threshold τ is introduced to

avoid using all the elements of D as control points particularly when |D| and hence
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λk is large. This heuristic is based on the assumption that the ET has scattering

points along its boundary (and within the body of the ET for an ET with large

rate parameter λk). Applying this heuristic especially for a large λk would give the

boundary outline of the ET. The control points are updated as

P+
k =


Pk +Kk(D −HPk), if |Pk| = |D|

(Pk +Kk(Da −HPk)) ∪Db, if |Pk| < |D|
(7.29)

where Da and Db are such that D = Da ∪ Db. This means the detections D are

split into two subsets Da and Db. The elements of Da are elements in D with

high association probabilities to Pk such that |Da| = |Pk|. This is achieved using

the computationally attractive association method proposed in [44]. The control

points update in (7.29) is akin to removal or addition of control points (and knots)

in a B-spline. This translates to controlling the shape of the closed B-spline curve.

7.4.4 ET-GLMB filter with B-splines

Based on the proposed state space and measurement likelihood models presented

above, the ET-GLMB filter with B-splines (ET-GLMB-S) is presented. The proposed

ET-GLMB-S has two main stages (as is common to approximations of the Bayes

multi-object filters), the prediction stage and the update stage. This is akin to

respectively computing (3.8) and (3.10) of the Bayes multi-object filter. Using

Notation 3, (3.8) and (3.10) are rewritten as:

ζk(Xk|Z1:k−1) =
∫
fk(Xk|X)ζk−1(X|Z1:k−1)δX, (7.30a)

ζ+
k (Xk|Z1:k) = gk(Zk|Xk)ζk(Xk|Z1:k−1)∫

gk(Zk|X)ζk(X|Z1:k−1)δX
. (7.30b)

For the purpose of our derivation, the standard birth/death model similar to the

one in [21] and [138] are used for the multi-target dynamics.
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π(X |Z) = π(X)g(Z | X)∫
π(X)g(Z | X)δX (7.32a)

=
∆(X)gC(Z) ∑

c∈C

∑|L(X)|+1
i=1

∑
W(Z)∈Pi(Z)
θ∈Θ(W(Z))

w(c)(L(X))
[
η

(c,θ)
W(Z)( · )

]L(X) [
p(c,θ)(· | W(Z))

]X
gC(Z) ∑

c∈C

∑
L⊆L

∑|L|+1
i=1

∑
W(Z)∈Pi(Z)
θ∈Θ(W(Z))

w(c)(L)
[
η

(c,θ)
W(Z)

]L
(7.32b)

π(X |Z) = ∆(X)
∑
c∈C

|X|+1∑
i=1

∑
W(Z)∈Pi(Z)
θ∈Θ(W(Z))

w
(c,θ)
W(Z)(L(X)) ×

[
p(c,θ)(· | W(Z))

]X
. (7.32c)

7.4.4.1 Prediction

For the prediction step, denote the probability of target survival and target death

from present to next time as pS(x, ℓ) and qS(x, ℓ) = 1 − pS(x, ℓ) respectively. The

birth density is an LMB having weight wB(·), single target densities pB(·, ℓ) and a

label space denoted by Bk. Given that the multi-target posterior is a GLMB of the

form (3.59) with label space Lk−1, the predicted multi-target density at the next

time step is the GLMB with label space Lk = Lk−1 ∪ Bk given by (see for example,

[21, 138])

ζk(X) = ∆(X)
∑
c∈C

w
(c)
k (L(X))

[
p

(c)
k ( · )

]X
(7.31a)

w
(c)
k (L) = wB(L− L)w(c)

S (L ∩ L), (7.31b)

p
(c)
k (xk, ℓ) = 1L(ℓ)p(c)

S (x, ℓ) + (1 − 1L(ℓ))pB(xk, ℓ), (7.31c)

p
(c)
S (xk, ℓ) =

∫
pS(xk, ℓ)f(xk|xk−1, ℓ)p(c)(xk−1, ℓ)dxk−1

η
(c)
S (ℓ)

, (7.31d)

η
(c)
S (ℓ) =

∫ ∫
pS(xk, ℓ)f(xk | xk−1, ℓ)

× p(c)(xk−1, ℓ)dxk−1dxk, (7.31e)

w
(c)
S (J) =

[
η

(c)
S

]J ∑
I⊆L

1I(J)[qS]I−Jw(c)(I), (7.31f)

q
(c)
S (ℓ) =

∫
qS(xk, ℓ)p(c)(xk, ℓ)dxk. (7.31g)



7.5 The MCMC-VB Model for Poisson Distributed Multiple Extended Target
Measurements 122

7.4.4.2 Update

The update equations for the ET-GLMB-S filter is given in (7.32a) - (7.32c) where

w
(c,θ)
W(Z)(L) =

w(c)(L)
[
η

(c,θ)
W(Z)

]L
∑

c∈C

∑
J⊆L

|J |+1∑
i=1

∑
W(Z)∈Pi(Z)
θ∈Θ(W(Z))

w(c)(J)
[
η

(c,θ)
W(Z)

]J ,

p(c,θ)(x, ℓ | W(Z)) = p(c)(x, ℓ)ψW(Z)(x; θ)
η

(c,θ)
W(Z)(ℓ)

,

η
(c,θ)
W(Z)(ℓ) =

∫
p(c)(x, ℓ)ψW(Z)(x; θ)dx, (7.33)

with the term ψW(Z)(x; θ) given in (7.13).

The above prediction and update stages provide the ET-GLMB-S filter. Notice in

both the prediction and update equations that the sum over c ∈ C is to facilitate the

propagation of multiple hypotheses. These hypotheses involve different set of track

labels which arise due to uncertainty in data association seen in the update stage of

the Bayes multi-target filter [117]. Performing this can allow for a more accurate

filtering process albeit at an increased computational effort. An efficient way will

be to use just a single component (as in the Definition 4 above) to propagate the

uncertainty of a single set of track labels. This can save on computational time but

may sacrifice filtering accuracy. This method is called the ET-GLMB-Sr filter.

7.5 The MCMC-VB Model for Poisson Distributed Mul-

tiple Extended Target Measurements

In this section, a technique for jointly estimating the measurement rate per target

for all targets using variational inference is presented.

7.5.1 Context

Multiple extended targets under the measurement model of [61] and [62] are

considered. It is assumed that the target’s proximity to the sensor is such that
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the detections are geometrically structured. Furthermore, recall that the set

of measurements at time k is a union of all target originated measurements

and measurements due to clutter is given by (7.7). At time k, the number of

measurements generated by the i-th target is a Poisson distributed random variable

with rate parameter λk,i. The number of measurements due to clutter is assumed

to be Poisson distributed with rate parameter γk. The set of measurements used to

update the i-th target at time k is denoted as Z(i)
k

1. Let Nk = {N1, N2, · · · , NT } be

set of the number of measurements generated per extended target and Ni =
∣∣∣Z(i)

k

∣∣∣.
Using the measurement model of [62], each element of Nk is Poisson distributed

with rate parameter λ(i)
k . Denote Λk = {λ1, λ2, · · · , λT } to be the set of rate

parameters. Our goal is to jointly estimate at each time k, the measurement rates

parameters which constitute of the elements of set Λk given Z1:k for each extended

target. To this end, a recursive estimator of Λk using a PMVB technique is presented

in Section 7.5.2.

7.5.2 Poisson Mixture

In order to develop the PMVB model for our multiple extended target parameter

estimation technique, the mixture model equations for the Poisson distributed

random variable is derived. Figure 7.3 shows the graphical representation of the

PMVB model.

Suppose that the number of extended target measurements, Zk, of Section

7.5.1 are independent and identically distributed (i.i.d.) and the measurements

are from a Poisson distribution with rate parameter λk,i. From here on,the time

index subscript k is omitted for ease of presentation. For each observable variable

nj, there is a corresponding latent variable yj ∈ Y (where Y = {y1, y2, · · · , yJ})

is comprised of 1-of-C binary vector with elements yjc for c = 1, · · · , C. The

1where Z
(i)
k ≡ W(Z) and W(Z) ∈ P(Z); P(Z)∠Zk. The notation P(Z)∠Zk denotes the chosen

partition of Zk from all most likely feasible partitions Pi(Z) ∀i (note that Pi(Z) ∀i includes other
data associations with significant probabilities)
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π

α β

λ

yj

nj
C

J

Figure 7.3 Graphical model representation of the Poisson mixture model. nj are
observables which are governed by the Poisson distribution parameter λ. The
latent variable yj is a vector with a single component equal to 1 and the rest equal
to 0, indicating cluster assignment of nj. α, β are hyper-parameters of the Gamma
distribution. π indicates the proportional of the components. J and C denote the
number of measurements and number of components respectively.

likelihood function of the Poisson distributed n is defined by

p(n|λ) = λn

n! e
−λ (7.34)

Then the Poisson finite mixture is defined as:

p(n|λ, π) =
C∑

c=1
πcp(n|λc) (7.35)

where each Poisson density p(n|λc) is a component of the mixture and has its own

rate parameter λc; C denote total number of mixture components. πc are the

mixing coefficients with 0 ≤ πc ≤ 1 and
∑C

c=1 πc = 1. The conditional distribution

of the latent variables, Y , given the mixing coefficients, π, is defined as:

p(y|π) =
J∏

j=1

C∏
c=1

πyjc
c . (7.36)

The conditional distribution of the measurement vectors given the component

parameters and latent variables is

p(N|Y,Λ) =
J∏

j=1

C∏
c=1

p(nj|λc)yjc , (7.37)
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To simplify analysis, conjugate priors are used in Bayesian learning and therefore

the Dirichlet distribution is chosen for the mixing coefficients (see Chapter 10 of

[24]) as

p(π) = Dir(π|a0) = C(a0)
C∏

c=1
πa0−1

c , (7.38)

and a Gamma distribution for the rate parameters [60] as

p(Λ) = Gam(Λ|α, β) =
C∏

c=1

βαλα−1
c e−λcβ

Γ(α) , (7.39)

where C(a0) is the normalisation constant for the Dirichlet distribution.

7.5.3 Variational Distribution

Given that the joint distribution of the observed data, latent variables and hidden

parameters from Sec. 7.5.2 is

p(N, Y, π,Λ) = p(N|Y,Λ)p(Y |π)p(π)p(Λ); (7.40)

the aim in variational learning is to find a variational distribution, q(Y, π,Λ), on

the latent variables and hidden parameters such that the variational lower bound

L(q) given by

L(q) =
∫ ∫

q(Y, π,Λ)ln
{
p(N, Y, π,Λ)
q(Y, π,Λ)

}
dπdΛ, (7.41)

is maximised or the Kullback-Leibler (KL) divergence given by

KL(q||p) = −
∫ ∫

q(Y, π,Λ)ln
{
p(Y, π,Λ|N)
q(Y, π,Λ)

}
dπdΛ, (7.42)

is minimised. Note that maximising the lower bound is equivalent to minimising the

KL divergence and the maximum of the lower bound occurs when the KL divergence

vanishes and this occurs when q(Y, π,Λ) equals the posterior distribution p(Y |N).

q(Y, π,Λ) is optimised in the set of probability distributions where the parameters

are independent of each other. The variational distribution q(Y, π,Λ) is factorised
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as

q(Y, π,Λ) = q1(Y )q2(π,Λ) (7.43a)

The log of the optimised factors are:

log q1(Y ) = Eq1 [log p(N, Y, π,Λ)] + const1 (7.43b)

log q2(π,Λ) = Eq2 [log p(N, Y, π,Λ)] + const2 (7.43c)

where const1 and const2 are normalisation constants.

7.5.4 The Variational Learning

Equations (7.43b) and (7.43c) are recursively calculated to perform the VB learn-

ing. We further factorise q2(π,Λ) from (7.43a) as

q2(π,Λ) = qπ(π)qΛ(Λ), (7.44a)

where the optimal distributions for qπ(·) and qΛ(·) are given by

qπ(π) = Dir(π|a), (7.44b)

qΛ(Λ) =
C∏

c=1
Gam(λc|α, β) (7.44c)

The expectation step of the VB model is computed using:

log ρjc = ψ0(ac) − ψ0

(
C∑
c

ac

)

+ (ψ0(αc) − log βc)
J∑

j=1
nj − J(αc

βc

) −
J∑

j=1
log(nj!), (7.45a)

with

rjc = ρjc∑C
c=1 ρjc

(7.45b)
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where ψ0(·) is the digamma function (also known as the polygamma function of

order 0) given by ψ0(a) = d
da

log Γ(a). The VB maximisation step is computed

using:

Nc =
C∑

c=1
rjc, ac = a0 +Nc (7.46a)

αc = α0 +
J∑

j=1
nj, βc = β0 + J (7.46b)

E[λc] = αc

βc

Var(λc) = αc

β2
c

(7.46c)

where Nc denotes the number of measurements generated up to now by a target

with measurement rate λc. After PMVB step, the updated set of α+
k and β+

k are

available as well as the set of the measurement rate, Λ+
k = {λ1, · · · , λC} with

|N+
k | = |Λ+

k |.

7.6 Simulation Example

In this section, the performance of the proposed ET-GLMB-S and ET-GLMB-Sr filters

are compared to the GLMB and random matrix based multiple extended target

tracker of [21] which are referred to here as the ET-GLMB-E filter. Additionally,

the proposed approach is also compared with a filter referred to here as the ET-

GLMB-Em filter where the random matrix in [21] is replaced with the multiple

sub-object method in [70].

7.6.1 Tracking Setup

Two different tracking scenarios are considered. One scenario has four targets

with different measurement rates and the other scenario has three targets also

with different measurement rates. The dynamics of the target centroid is described

using

xk = Fxk−1 + wk, (7.47)



7.6 Simulation Example 128

where xk encapsulates the kinematic components, that is, position and velocity,

wk ∼ N (0, Qk)T̄ is a vector representing the process noise. The transition matrix F

and the process noise covariance matrix Qk are given as

F =

1 δt

0 1

⊗ Id, Qk = σ2

 δt4

4
δt3

2
δt3

2 δt2

⊗ Σk (7.48)

with the sample period δt = 1 and the process noise standard deviation is σ =

2m/s2. Furthermore, the probability of target survival is set to be pS = 0.99. The

initial gamma parameters used in the PMVB were set as α = 0.5 and β = 0.5. The

measurement rate threshold was set as τ = 20.

7.6.2 Performance Metrics

The performance of the proposed filter is evaluated using filter run computation

time (CT) and a metric based on the optimal sub-pattern assignment (OSPA) [125].

The OSPA metric used is similar to the modified (mOSPA) metric proposed in [95].

The mOSPA penalises not only the cardinality and state estimations errors but

also the measurement rate and extension errors. The main difference between the

method here and that in [95] is that (45c) in [95] which was given as

d
(cX)
j,i = min(cX , ||X(j)

k − X̂
(i)
k|k||F ) (7.49a)

was modified to read

d
(cX )
j,i = min(cX ,

1
M

M∑
|r(X (j)

k ) − r(X̂ (i)
k|k)|2). (7.49b)

From (7.49a), X denotes the true positive semi-definite matrix capturing the target

extension and X̂ is its estimate; || · ||F denotes the Frobenius norm and the constant

cX is chosen so that it corresponds to the maximum expected error for the target

extension state. From (7.49b), X denotes the true shape of the target and X̂

denotes its B-spline estimate; r(·) denotes a radial function that maps an angle to

the radius of an arbitrary shape from its centroid (from 0 to 2π, M is the number
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Figure 7.4 Scenario I. True target trajectories (the straight lines) in the x-y plane
with start/end (⃝/△). The true target shape is shown in black line, the B-spline
method in blue dotted line, the multi-sub-object method in red-dash-dotted line
and the random matrix method in purple dash line. All four targets start from the
origin. The target plots shown are at intervals of 20 time steps.

of points r(·) was evaluated at) and it is convenient for representing and learning

abstract shapes; | · |2 denotes the instantaneous error and cX is chosen so that it

corresponds to the maximum expected error for the target extension state. For

brevity, only the section of the mOSPA metric for extended targets that differs from

the one in [95] is presented. Aside from this modification, all other aspects of the

mOSPA are as in [95].

7.6.3 Scenario I (where λk < τ)

In this scenario, four targets with measurement rates less than the measurement

threshold are tracked in a [−300, 300] × [−300, 300] 2D surveillance area. The

measurement rates and the time the targets enter and exit the tracking scene are
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given below:

λ
(1)
k = 5, t

(1)
b = 1, t

(1)
d = 70, (7.50a)

λ
(2)
k = 10, t

(2)
b = 26, t

(2)
d = 80, (7.50b)

λ
(3)
k = 15, t

(3)
b = 51, t

(3)
d = 90, (7.50c)

λ
(4)
k = 20, t

(4)
b = 76, t

(4)
d = 100. (7.50d)

This scenario lasts 100 time steps. The ground truth of the kinematic state of the

targets are shown in Fig. 7.4. In this scenario, two sub-objects were considered for

the ET-GLMB-Em filter.

In this scenario,the performance of the proposed filter was evaluated against

the ET-GLMB-E and ET-GLMB-Em filters in terms of CT and mOSPA measure.

Furthermore, since the targets enter and exit the scene at different times, the

cardinality estimates of both filters were also evaluated. It is assumed that the

clutter distribution is Poisson with uniform intensity. When evaluating the mOSPA

measure and the cardinality, a moderate clutter case was considered where the

average number of Poisson clutter points per scan is γk = 50. As for the CT

performance evaluation, three clutter cases were considered. The first clutter has

an average number of γk = 30 clutter points per scan with pD = 0.8, the second

had γk = 50 with pD = 0.9 and the third case had γk = 100 clutter points per scan

with pD = 0.95. The cardinality estimation is more challenging in the high clutter

case.

The target extent estimate of the ET-GLMB-S filter (blue dotted line), the ET-

GLMB-E (purple dash line) and ET-GLMB-Em (red dashed-dotted line) filters are

shown in Fig. 7.4. The true target extent is shown in black line. As observed

from the figure, the ET-GLMB-S filter is able to give a better estimate of the target

extent, shape and orientation when compared to the other two methods. This

improvement in the target extent estimation is due to our B-spline approach.

Figure 7.5a depicts the averaged mOSPA measures for the filters over 100

Monte Carlo (MC) runs for the case where γk = 50. From the figure, it is observed

that the ET-GLMB-S filter out performs the other three filters with the ET-GLMB-
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Figure 7.5 Scenario I:(a) mOSPA measure against time (b) Number of target
estimation error against time. Results shown are for an average clutter rate of 20
Poisson clutter points per scan over 100 MC runs.

Em filter offering a similar level of performance to the ET-GLMB-Sr filter. The

improved accuracy of the ET-GLMB-S filter when compared to the ET-GLMB-E filter

is due to the proposed B-spline target extent model approach. The ET-GLMB-Em

outperformed the ET-GLMB-E filter because it uses more the one ellipse to estimate

the target extent and is therefore able to estimate the target extension better. The

ET-GLMB-S filter offers a better tracking accuracy when compared to the ET-GLMB-

Sr filter. This is because the implementation of the ET-GLMB-S filter includes

multiple hypotheses propagation during the update stage of the filter. In Fig.

7.5b, the cardinality errors of all four filters are shown. This error measures the

difference between the estimated and true number of multiple extended targets

present to three decimal places. It can be seen that all four filters are able to

estimate the cardinality of the targets with minimal error.

The results obtained for the CT of the filters for the three clutter rates and the

different probability of detections for scenario I are presented in Table 7.1. These

are averaged over 100 MC runs. From the table, it is observed that the ET-GLMB-S

filter and the ET-GLMB-Em filter have almost comparable CT. These two filters

however take more time to compute when compared to the ET-GLMB-E filter for

the scenario considered under the different pD and γk settings. This is due mainly

to the PMVB step required by the ET-GLMB-S filter to estimate the measurement

rates for the targets as the lower bound computation in the PMVB step needs to

converge in each iteration of the ET-GLMB-S filter. The ET-GLMB-Sr filter on the
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other hand gave the least CT when compared to the other two techniques despite

the computation of the PMVB step. This is because the uncertainty of only a single

set of track labels was propagated each time.

Table 7.1 Filter performance comparison in terms of computation time (CT) for
different probability of detection pD and average number of clutter points γk.

Filter
pD, γk

0.8, 30 0.9, 50 0.95, 100
ET-GLMB-E 6.65s 8.02s 9.83s

ET-GLMB-Em 6.90s 9.27s 10.15s
ET-GLMB-Sr 2.62s 3.11s 5.72s
ET-GLMB-S 6.93s 9.25s 10.11s

7.6.4 Scenario II (where λk > τ)

For the second scenario, the case where if λk > τ , only the measurements that

constitute of the convex hull of the targets are used in updating the control points

of the spline was considered . Therefore, in this scenario, three closely spaced

targets that enter and exit the tracking area at the same time but have different

measurement rates were of interest. The measurement rates and the time instants

the targets enter and exit the tracking scene are given below:

λ
(1)
k = 21, t

(1)
b = 1, t

(1)
d = 100, (7.51a)

λ
(2)
k = 30, t

(2)
b = 1, t

(2)
d = 100, (7.51b)

λ
(3)
k = 40, t

(3)
b = 1, t

(3)
d = 100. (7.51c)

This scenario also lasts 100 time steps. The ground truth of the kinematic state of

the targets are shown in the bottom plot of Figure 7.6. The surveillance area is

[−1000, 1000] × [−1000, 1000]. In this scenario, three sub-objects were considered

for the ET-GLMB-Em filter.

In this scenario, the performance of the filters under high clutter (γk = 100)

conditions is highlighted. The focus here is on evaluating only the mOSPA measure

and not the cardinality given that the number of targets is fixed during the entire

time. Particularly, in this scenario, the performance of the filters in terms of their
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Figure 7.6 Scenario II. In the top figure, the true target shape is shown in black
line, the B-spline method in blue dotted line, the multi-sub-object method in red-
dash-dotted line and the random matrix method in purple dash line. All targets
are simulated. The target plots shown are at intervals of 10 time steps.
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Figure 7.7 Scenario II: (a) mOSPA measure against tracking time for γk = 50. (b)
mOSPA measure against tracking time for γk = 100. Results shown are averaged
over 100 MC trials.
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Figure 7.8 Plot showing Poisson rate parameter estimation results for the three
measurement rates of Scenario II.

ability to track closely spaced targets is highlighted. In this scenario, the three

targets are in the closest proximity between time k = 32 and k = 68.

The target extent estimate of the ET-GLMB-S filter (blue dotted line), the ET-

GLMB-E (purple dash line) and ET-GLMB-Em (red dashed-dotted line) filters are

shown in 7.6. The true target extent is shown in black line. As observed from

the figure, the ET-GLMB-S filter is able to give a better estimate of the target

extent, shape and orientation when compared to the other two methods. This

improvement in the target extent estimation is due to our B-spline approach.

Figure 7.7 depicts the averaged mOSPA measures for the filters over 100 Monte

Carlo MC runs for the case of low (Fig. 7.7a) and high (Fig. 7.7b) clutter rates

respectively. In both figures, notice the increase in the estimation error in the

ET-GLMB-Sr, ET-GLMB-Em and the ET-GLMB-E filters particularly during the times

when all three targets are closest. This further highlight the drawback of the
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ET-GLMB-Sr filter where only the uncertainty of a single set of track labels is

propagated during update of the filter.

Table 7.2 RMSE result comparison between the BRE and the PMVB methods.

Method
RMSE

Window size = 10 Window size = 105
BRE 2.11 0.27

PMVB 0.29 0.26

Figure 7.8 shows measurement rate estimation results obtained from applying

the Bayesian rate estimation (BRE) used in [21] and our PMVB method to scenario

II. In Fig. 7.8a, a window size of 10 was used while a window size of 105 was used

in 7.8b (for both methods). The estimated measurement rates appear to be noisy

when a smaller window size is used for the BRE method (as observed from 7.8a).

However, when a larger window size was used for the BRE method for the same

problem, the estimation error reduces (see 7.8b). The proposed PMVB method

however is less sensitive to the pre-set window size. Table II shows the root mean

squared error (RMSE) computed for the two window size cases for both methods.

It is observed that the RMSE for the PMVB relatively small for both cases. However,

the RMSE for the BRE varied greatly for the BRE when different window sizes are

used for the same application.

Overall, our proposed ET-GLMB-S filter has been shown to give improvement

in terms of measurement rate and target extent estimation by giving a lower

mOSPA measure when compared to the ET-GLMB-E and the ET-GLMB-Em filters.

In addition, the ET-GLMB-Sr filter allows for an efficient implementation of the

proposed technique as seen by the CT comparison.

7.7 Summary

This chapter featured the development of a new MTT algorithm for the tracking of

multiple extended targets in clutter. The new algorithm namely the ET-GLMB-S

filter is capable of providing state estimates, number of targets and target labels

(data association) for multiple extended targets in clutter. The algorithm was based
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on the labelled random finite sets framework which estimates multiple targets

states and the number of targets while allowing continuous target tracks (labelling).

The proposed algorithm in addition to estimating extended target kinematics also

jointly estimates target measurement rate and extension. The main advantage of

the proposed algorithms is the use of variational Bayesian approach to estimate

measurement rates and the B-spline to model target extension. Simulation study

was carried out to demonstrate the performance improvement offered by this

method.

7.8 Appendix

7.8.1 Expectation of a Logarithm

Given a random variable x, if there exists a u > 0 such that

Mx(t) , Ey[ext], (7.52)

for |t| < u, then Mx(t) is called the moment generating function (mgf). In terms of

the mgf, the expected value of x is

E[x] = dMx(t)
dt

∣∣∣∣∣
t=0

· (7.53)

Consider the rate parameter λ of a Poisson distribution and let x = log λ; where

λ is gamma distributed with shape parameter α > 0 and rate parameter β > 0.

The pdf of λ is given as

p(λ|α, β) = βα

Γ(α)λ
α−1e−βλ, λ ≥ 0. (7.54)
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The mgf of x is

Mx(t) = E[λt] =
∫
λt βα

Γ(α)λ
α−1e−βλdλ

= βα

Γ(α)

∫ GAM(λ;t+α,β)︷ ︸︸ ︷
λt+α−1e−βλ dλ

= βα

Γ(α)
Γ(t+ α)
βt+α

∫ integral over gamma density which = 1︷ ︸︸ ︷
βt+α

Γ(t+ α)λ
t+α−1e−βλ dλ

= βα

Γ(α)
Γ(t+ α)
βt+α

= Γ(t+ α)
Γ(α)βt

. (7.55)

The expected value of x is

E[x] = E[log λ] = d
dt

(
Γ(t+ α)
Γ(α)βt

)∣∣∣∣∣
t=0

=
( d

dt
Γ(t+ α)
Γ(α)βt

)∣∣∣∣∣
t=0

+
(

Γ(t+ α)
Γ(α)

d
dtβ

−t

)∣∣∣∣∣
t=0

= ψ0(α) − log β, (7.56)

where ψ0(·) is the digamma function.

7.8.2 Variational Lower Bound Derivation

For the variational mixture of Poissons, the lower bound of (7.41) is given by

L =
∑
Y

∫ ∫
q(Y, π,Λ)p(N, Y, π,Λ)

q(Y, π,Λ) dπΛ (7.57a)

= E[log p(N, Y, π,Λ)] − E[log q(Y, π,Λ)] (7.57b)

where from (7.57b) above, we have:

E[log p(N, Y, π,Λ)] = E[log p(N|Y,Λ)] + E[log p(Y |π)]

+ E[log p(π)] + E[log p(Λ)] (7.57c)
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and

− E[log q(Y, π,Λ)] = −E[log q(Y )] − E[log q(π)] − E[log q(Λ)] (7.57d)

The various terms on the RHS of (7.57c) are:

E[log p(N|Y,Λ)] =
C∑

c=1
Mc

E[log λc]
J∑

j=1
nj − JE[λc] −

J∑
j=1

nj!
 (7.58a)

E[log p(Y |π)] =
C∑

c=1

J∑
j=1

rjc log π̃c (7.58b)

E[log p(π)] = log C(a0) + (a0 − 1)
C∑

c=1
log π̃c (7.58c)

E[log p(Λ)] = α0 log β0 − log Γ(α0) +
C∑

c=1
(α0 − 1)E[log λc] − β0E[λc] (7.58d)

where E[log λc] = (ψ0(αc) − log βc), E[λc] = αc

βc
and log π̃c = ψ0(ac) − ψ0(

∑C
c=1 ac).

Similarly, the terms on the RHS of (7.57d) are:

E[log q(Y )] =
C∑

c=1

M∑
j=1

rjc log rjc (7.59a)

E[log q(π)] = log C(a) +
C∑

c=1
(ac − 1) log π̃c (7.59b)

E[log q(Λ)] =
C∑

c=1
(αc − 1)ψ0(αc) + log βc − αc − log Γ(αc). (7.59c)

This completes the variational lower bound derivation. �



Chapter 8

Conclusion and Future Work

The contributions of this thesis along with concluding remarks are summarised in

Section 8.1 followed by suggestions for future work in Section 8.2.

8.1 Conclusions

In this thesis, advanced signal processing methods were employed within the RFS

based filtering adaptation of Bayesian filtering to successfully develop new and

improved multi-target tracking algorithms for cluttered environments. Results

presented herein from both simulation and practice show that the developed

methods are not only valid but feasible and effective approaches to multiple target

tracking. In particular, the proposed algorithms for point and extended multiple

target tracking respectively, offer reliable and computationally efficient solutions

for the joint estimation of target state, target number and target track association of

an unknown and time-varying number of targets observed with imperfect sensors

in the presence of clutter. Furthermore, the proposed techniques were shown

to outperform standard approaches in both simulated and practical scenarios. A

critique of the key contributions of this thesis is given as follows.

In Chapter 4, a new and efficient multi-target SMC filter, namely the KG-

SMC-PHD filter for MTT which seeks to minimise the MSE between received and

estimated measurements at any given time has been proposed. This was achieved

by first partitioning the measurement set into target-originated measurements
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and clutter for weight computation and applying the Kalman-gain to selected

particles for state correction. Besides the improved tracking accuracy achieved

by this method, fewer particles are required to attain high tracking performance,

hence making the proposed filter more efficient. Furthermore, the improved

resampling method was proposed in this chapter addressed a conceptual issue with

the standard systematic resampling method. This meant that the SR method had a

tendency of resampling very low weight particles especially when a large number

of resampled particles are required which in turn lead to poor state estimates in

SMC methods post the resampling process. The proposed ISR method addressed

this issue by implementing a weight re-lowering technique to the weights of

selected particles. The overall tracking performance of the KG-SMC-PHD filter

was improved because, i) only target-originated measurements were used for

weight computation and ii) the MSE at each time step was reduced resulting in

fewer number of particles for state estimation. Simulation studies with dense

clutter demonstrate that the KG-SMC-PHD filter algorithm outperformed the

standard SMC-PHD filter as well as other alternative implementations of the PHD

filter. Additionally, simulation results showed that the proposed ISR resampling

method outperformed the standard SR method particularly when a large number

of resampled particles is required.

The PHD filter and the KG-SMC-PHD filter of Chatper 4 have a pronounced

bias in target number estimation especially when large number of targets are

being tracked. To address this, Chapter 5 introduced the cardinalised version

(KG-SMC-CPHD) of the KG-SMC-PHD filter of chapter 4. The new approach not

only propagate the PHD at each time dwell but also propagates the probability

distribution of target number. The KG-SMC-CPHD filter was applied to simulated

data and results show that the KG-SMC-CPHD filter had improved cardinality

estimate (both in mean and standard deviation) when compared to the KG-SMC-

PHD filter. Furthermore, results showed that the KG-SMC-CPHD filter to be more

efficient when compared to the standard SMC-CPHD filter in terms of the number

of particles needed for tracking, execution time for higher number of particles and

accuracy as indicated by the OSPA distance.
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In principle, both the KG-SMC-PHD filter of Chapter 4 and the KG-SMC-CPHD

filter of Chapter 5 perform target “filtering” and not “tracking”. In other words,

they provide only “point” estimates of target states but do not provide “connected”

estimates of target trajectories from one time step to the next. Chapter 6 inves-

tigated a post processing step using game theory as a solution to this “filtering” -

“tracking” problem. This approach was named the GTDA method. The players in

the game were the trajectories or tracks of the targets. The strategies were the

output of the filter, that is, the target-state-estimates. Each player aims to assign a

new target-state-estimate to its existing track. The utility functions of the players

were defined, and a regret matching with forgetting factor was used to find the

equilibrium of the game. The GTDA method was employed in the KG-SMC-(C)PHD

filter as a post processing technique and was evaluated using both simulated and

real data. As for the simulated data, the performance of the proposed technique

was compared to other data association algorithms such as the PDA and JPDA.

The proposed method showed a better performance in terms of accuracy and com-

putational complexity when compared to PDA. However, the proposed approach

showed similar performance in terms of accuracy when compared with JPDA but

takes less computational time. Secondly, the effectiveness of the GTDA was further

demonstrated on real field measurements collected by an NI-USRP based PBR

system. In the experiment, the KG-SMC-(C)PHD filter was used to track aeroplanes

and the GTDA was used for track association. Results showed that the GTDA

technique was able to successfully associate the target-state-estimates to various

target tracks.

Chapter 7 featured the development of a new MTT algorithm for the tracking

of multiple extended targets in clutter. The new algorithm namely the ET-GLMB-S

filter is capable of providing state estimates, number of targets and target labels

(data association) for multiple extended targets in clutter. The algorithm was based

on the labelled random finite sets framework which estimates multiple targets

states and the number of targets while allowing continuous target tracks (labelling).

The proposed algorithm in addition to estimating extended target kinematics also

jointly estimates target measurement rate and extension. The main advantages of
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the proposed algorithms were the use of a VB approach to estimate measurement

rates and the use B-spline to model target extension. The VB approach allows for

the simultaneous estimation of the measurement rate of multiple targets. B-spline

method offers the flexibility of modelling standard-shaped and arbitrary target

extensions. Simulation study was carried out to demonstrate the performance

improvement offered by this method.

8.2 Future Work

In what follows, interesting directions for future works are explored both in terms

of contributions to theoretical and algorithmic developments. In particular, the

following may be of interest:

⋆ Works in the literature exist characterising the performance limits of the

(C)PHD filter. A characterisation of the developed KG-SMC-(C)PHD filter

would be an addition to the field as it will establish the filter performance

limits as well as indicate filter stability parameters.

⋆ In the utility function of the GTDA method of Chapter 6, it is worth exploring

the characterisation of the feasibility of the equilibrium obtained using the

RMFF particularly in the case when the commonly observed distribution

βp,n(k) converges to a pure equilibrium.

⋆ The miss-distance metric applied in Chapter 7 serves as a basis for further

theoretical investigations. An entropy-based information theoretic approach

may be of particular significance in terms of developing a consistent metric

for ET tracker since it is a well-established theoretical framework which

readily facilitates a principled and impartial investigation.

⋆ In both the RFS and the labelled RFS adaptation of the Bayesian filter for

MTT in this thesis, they have the prediction step in common. This step

includes an RFS of predicted target states which is a union of the RFS of

surviving targets and new born targets. The target birth model used in this
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thesis was context specific. A more general and robust birth model will be a

useful addition to the field.
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