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Abstract—We decompose a probability density function (PDF)
of a labelled random finite set (RFS) into a probability mass
function over a set of labels and a PDF on a vector-valued
multitarget state given the labels. Using this decomposition, we
write the Bayesian filtering recursion for labelled RFSs in an
explicit form. The resulting formulas are of conceptual and
practical interest in the RFS approach to multiple target tracking,
especially, for track-before-detect particle filter implementations.
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I. INTRODUCTION

In a general dynamic multiple object system, objects move,
appear and disappear. It is of interest in many applications,
such as multitarget tracking, to infer the current state of this
dynamic system based on a sequence of measurements over
time. Classic approaches to multiple target tracking are multi-
ple hypothesis tracking (MHT) [1]–[3] and joint probabilistic
data association (JPDA) [4]. The random finite set (RFS)
formulation enables us to model the system using the Bayesian
approach [5]–[7]. Here, the multiobject state is a set whose
elements are single object states and the posterior probability
density function (PDF) contains all the information regarding
the number of targets and their states at the current time step.
Based on this PDF or an approximation, we can estimate the
current multiobject state by an estimator, e.g., the minimum
mean optimal subpattern assignment (MMOSPA) estimator
[8], [9].

In the RFS formulation, the prediction and update steps of
the Bayesian filtering recursion are analogous to the vector-
based case. That is, the prediction step is given by the
Chapman-Kolmogorov equation but replacing the vector inte-
gral by the set integral and the update step consists of applying
Bayes’ rule [10]. Therefore, the (unnormalised) posterior is a
product of the prior PDF times the likelihood. The prediction
step with RFSs is more complicated to perform than in the
vector case as it accounts for changes in the target number as
well as all possible permutations in the multitarget state.

Labels can be attached to single target states in the RFS
formulation [11], [12]. Labels are unique and do not change
with time. At each time step, the current labelled set of
targets is estimated based on the filtering posterior and, due
to the previously mentioned properties of the labels, tracks

are built by linking target state estimates with the same label.
Importantly, including them in the target state simplifies the
set integrals of the prediction step. Basically, the prediction
step amounts to weighted vector-based prediction steps. This
was shown in [12] for two types of posterior approximations
and the radar point detection measurement model.

The contribution of this paper is two-fold. First, we show
that a labelled RFS density can be decomposed into a probabil-
ity mass function (PMF) over the set of labels and a PDF of a
vector-valued multitarget state given the labels. This procedure
resembles the decomposition of a joint PDF over two vector-
valued variables into a marginal PDF and a conditional PDF
[13]. In addition, as we will explain, this idea is in fact
more general and can also be applied to unlabelled RFS
densities. Second, we apply this decomposition to the RFS
Bayesian filtering recursion to obtain formulas that are readily
implementable and are especially convenient for particle filters
(PF) [14] or Markov chain Monte Carlo (MCMC) [15] in
track-before-detect [16]–[19]. In this paper, we use the word
explicit to mean this readily implementable recursion. For
example, an equivalent way to evaluate the posterior PDF is
used in the multitarget PF in [20]–[22]. This paper therefore
connects the PF developed in [20]–[22], which was not derived
explicitly using RFS, to the RFS framework in a clear fashion.
This is of theoretical importance due to the mathematical rigor
of the RFS framework.

This paper is organised as follows. The general Bayesian
filtering recursion for labelled RFS is reviewed in Section
II. The proposed decomposition of a labelled RFS PDF and
the resulting explicit Bayesian filtering recursion are given
in Section III. Section IV provides the proof of the explicit
recursion. Finally, conclusions are drawn in Section V.

II. GENERAL BAYESIAN FILTERING RECURSION

In this paper, labelled RFS densities are denoted as π (·) and
densities over a vector space as π (·), which are referred to as
vector densities. A brief introduction to the RFS framework
with unlabelled and labelled sets can be found in Sections II
and III in [12]. As we only need to consider one prediction and
update step, we omit the time index of the filtering recursion
for notational simplicity.
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At the current step, the collection of target states is given
by the labelled set X = {(x1, l1) , ..., (xt, lt)}, where xj ∈
Rnx and labels lj ∈ L for j ∈ {1, ..., t} with t being the
number of targets. At the previous time step, the labelled set is
X′ = {(x′1, l′1) , ..., (x′t′ , l

′
t′)}, where single target states x′j ∈

Rnx and labels l′j ∈ L′ for j ∈ {1, ..., t′} with t′ being the
number of targets. Therefore, variables X′ and X belong to
the collection of finite subsets of Rnx × L′ and Rnx × L,
respectively. In a labelled set, labels are unique, i.e., no two
targets can have the same label, and they do not change with
time. In addition, to ensure unique labelling L = L′∪B where
B is the space of labels of the new born targets and L′∩B = Ø.

There have been two proposals in the literature to define
labels. Labels in [12] are two-dimensional vectors that contain
the time step when the target is born and a natural number.
Labels in [21] are natural numbers. The latter requires the
assumption that the number of new born targets at each time
step is bounded, which always happens in practice, so that we
can ensure that L = L′ ∪ B [21]. An important property that
we will use in this paper for both cases is that given a set
L ⊆ L of labels, we can arrange it in ascending order to form
vector

−→
L , either using the inherent order of natural numbers

or lexicographical order for vectors [23]. The remainder of
the paper is valid for both labelling approaches taking into
account that symbol < refers to lexicographical order if labels
are vectors. In addition, it is met that if l1 ∈ L′ and l2 ∈ B,
then l1 < l2.

The multiobject transition density g (· |X′ ) encapsulates the
underlying models of target dynamics, births and deaths. At
each time step, targets are observed through noisy measure-
ments. We denote the resulting multitarget likelihood, which
is not a density, as ˜̀(·) and it does not depend on the labels
so we define the unlabelled likelihood ` (·) as

˜̀({(x1, l1) , ..., (xt, lt)}) = ` ({x1, ..., xt}) . (1)

Given the posterior PDF π′ (·), the objective is to compute
the posterior PDF π (·) at the next time step, which integrates
to one using the set integral [12]ˆ

π (X) δX

=

∞∑
t=0

1

t!

∑
l1:t∈Lt

π ({(x1, l1) , ..., (xt, lt)}) dx1:t

= 1 (2)

where l1:t = (l1, ..., lt), x1:t = (x1, ..., xt) and

Lt = L× ...× L︸ ︷︷ ︸
t

denotes t Cartesian products over L. Using the prediction and
update equations of the Bayesian filtering recursion, we get
[5]

ω (X) =

ˆ
g (X |X′ )π′ (X′) δX′ (3)

π (X) = ˜̀(X)ω (X) /ρ (4)

where ρ is the normalising constant

ρ =

ˆ
˜̀(X)ω (X) δX. (5)

The prior ω (·) can be written more explicitly by evaluating
the set integral [12]

ω (X) =

∞∑
t′=0

1

t′!

∑
l′
1:t′∈(L

′)t
′

ˆ
g (X |{(x′1, l′1) , ..., (x′t′ , l

′
t′)} )

× π′ ({(x′1, l′1) , ..., (x′t′ , l
′
t′)}) dx′1:t′ . (6)

We make the usual assumptions: target dynamics are indepen-
dent with a probability γ of survival and transition density
g (· |· ), new born targets are born independently of the rest
with a PDF η (·) and the likelihood does not depend on
the labels. Under these assumptions, the objective of this
paper is to write (3)-(4) in explicit way suitable for computer
implementation. First, we elaborate on (6).

We can write X = S ∪B where S denotes the labelled set
of surviving targets and B the labelled set of new born targets.
As both sets are independent, we can apply the convolution
formula to obtain the PDF of their union [5, page 385]:

ω (X) =
∑
B⊆X

η (B) ξ (X \B) (7)

where \ denotes set subtraction and ξ (·) is the density of S.
We can obtain ξ (·) by

ξ (S) =

ˆ
f (S |X′ )π′ (X′) δX′ (8)

where f (·|·) is the transition density without accounting for
target births and is given by [12, Eq. (25)]

f ({(x1, l1) , ..., (xt, lt)} |{(x′1, l′1) , ..., (x′t′ , l
′
t′)} )

=

t′∏
j′=1

t∑
j=1

[
γg
(
xj
∣∣x′j′ ) δ [lj − l′j′]

+ (1− γ)
(
1− χ{l1,...,lt}

(
l′j′
))]

(9)

if {l1, ..., lt} ⊆ {l′1, ..., l′t′} and there are no repeated elements
in (l1, ..., lt) and (l′1, ..., l

′
t′), otherwise f (·|·) = 0. In addition,

δ [·] is a Kronecker delta and χL (·) is the indicator function
over the set L.

In [12], [24], analytical expressions for π (·) are obtained
for the radar point detection measurement model, which has
a specific type of ` (·), and assuming that the prior is either
generalised labelled multi-Bernoulli (GLMB) or δ-GLMB. In
this paper, we provide an explicit form of the general recursion
(3)-(4) which provides more insight into the meaning of (3)-
(4) and is useful for track-before-detect PF implementations,
see Section III-A.

III. EXPLICIT BAYESIAN FILTERING RECURSION

The explicit Bayesian filtering equations are based on the
following decomposition. Given a labelled RFS density π (·)
and t different labels l1, ..., lt, we define the (vector) PDF

π (x1:t; l1:t) ,
π ({(x1, l1) , ..., (xt, lt)})

Pπ ({l1, ..., lt})
(10)



where

Pπ ({l1, ..., lt}) =

ˆ
π ({(x1, l1) , ..., (xt, lt)}) dx1:t (11)

is the probability of having a labelled set with labels {l1, ..., lt}
and xn:m = (xn, xn+1, ..., xm). Note that, given distinct
labels, by definition, the states and labels in π (·) are ordered
and π (·; l1:t) is a vector density on the target states x1:t such
that ˆ

π (x1:t; l1:t) dx1:t = 1.

In addition,

π (x1:t; l1:t) = π (xσ1 , ...xσt ; lσ1 , ..., lσt) , ∀σ ∈ Ξt (12)

where σ = (σ1, ..., σt) and Ξt contains all permutations of
vector (1, ..., t). As proved in Appendix A, the PMF over the
labels meets ∑

L⊆L
Pπ (L) = 1. (13)

We also want to highlight that decomposition (10)-(11) can
also be applied to more general RFS densities, not only to
labelled RFS densities. In order to do so, we need that the
single target state contains at least two variables, e.g., position
and velocity or unlabelled target state and label. The other
condition is that there is probability zero for repeated elements
over one variable. Then, we obtain an RFS PDF over this
variable (or PMF if it is discrete) and a (vector) PDF over the
other variable as in (10).

Given a set L = {l1, ..., lt} of labels, we only need to spec-
ify π (·) for one ordering of the labels as the rest of the PDFs
can be obtained from it using (12). Without loss of generality,
the vector containing the elements of L arranged in ascending
order is denoted by

−→
L as indicated in Section II. The PMF

Pπ (·) and vector densities π
(
·;
−→
L
)

for L ⊆ L characterise
the labelled RFS density π (·) as both representations contain
the same information. Now, we proceed to write the Bayesian
filtering equations in terms of this decomposition. We recall
that ξ (·) and η (·) represent the density of the survival targets
and new born targets, respectively, and their decompositions
are Pξ (·), ξ (·; ·) and Pη (·), η (·; ·).

Theorem 1 (Prediction). The prior ω (·) is characterised by

Pω (L) =Pξ (S)Pη (N) (14)

ω
(
x1:|L|;

−→
L
)

=ξ
(
x1:|S|;

−→
S
)
η
(
x|S|+1:|L|;

−→
N
)

(15)

where L = S ∪N with S ⊆ L′ and N ⊆ B and

Pξ (S) =
∑
L′⊇S

p (S |L′ )Pπ′ (L′) (16)

ξ
(
x1:|S|;

−→
S
)

=
1

Pξ (S)

∑
L′⊇S

p (S |L′ )Pπ′ (L′)

×
ˆ |S|∏

j=1

g
(
xj
∣∣x′j )π′−→S (x′1:|S|;−→L′) dx′1:|S|

(17)

where

p (S |L′ ) =

{
γ|S| (1− γ)|L

′|−|S| S ⊆ L′
0 otherwise

(18)

and π′−→
S

(
·;
−→
L′
)

denotes the marginal PDF of targets with

labels
−→
S on the density π′

(
·;
−→
L′
)

:

π′−→
S

(
x′1:|S|;

−→
L′
)

=

ˆ
π′
(
x′1:|S|, y1:|L′\S|;

−→
S ,
−−−→
L′ \ S

)
dy1:|L′\S|. (19)

Theorem 1 is proved in Section IV. By using the decom-
position (10) and Theorem 1, we can evaluate ω (·), which
is given by the set integral (6), as the product of two PMFs
over the labels and two vector PDFs. The PMF and PDF that
correspond to the new born targets are given by the model and
the ones that correspond to the surviving targets are given by
(16) and (17). In the PMF of the labels of the surviving targets,
which is given by (16), we go through all the possible labels L′

that can result in S taking into account its transition probability
p (S |L′ ). For the PDF of the surviving targets, which is given
by (17), we go through all the possible labels L′ that can result
in S and apply a usual vector-based prediction step using the
single target dynamic model, which is given by g (· |· ), on
the marginal posterior PDF at the previous time step of the
targets that survive, which is represented by π′−→

S

(
·;
−→
L′
)

. The

density π′−→
S

(
·;
−→
L′
)

corresponds to π′
(
·;
−→
L′
)

but integrating
out the states of the targets that do not survive, whose label
set is L′ \ S. The prior of the surviving targets is a weighted
mixture of the predicted PDFs.

Theorem 2 (Update). The posterior π (·) is characterised by

Pπ (L) = Pω (L) ρL/ρ (20)

π
(
x1:|L|;

−→
L
)

= `
({
x1, ..., x|L|

})
ω
(
x1:|L|;

−→
L
)
/ρL (21)

∀L ⊆ L where

ρ =
∑
L⊆L

Pω (L) ρL

ρL =

ˆ
`
({
x1, ..., x|L|

})
ω
(
x1:|L|;

−→
L
)
dx1:|L|.

Theorem 2 is proved in Section IV. Given L, the update
for the PDF, which is given by (21), is a usual vector-based
update. Equation (20) indicates the probability of having label
set L after processing the current measurement.

A. Practical Importance

Here, we explain why it can be convenient to write the
labelled RFS filtering recursion using Theorems 1 and 2
in track-before-detect PF or MCMC implementations. In a
computer program, at a given time step, we usually have
a maximum number M of targets and N particles, which
are usually stored in two matrices. The first matrix A of
dimensions M × N is used to indicate the labels of the



targets that represent the particles. That is, Ai,j = 1 if the
target with the ith label in ascending order in the jth particle
exists and Ai,j = 0 otherwise. If it exists, its state is stored
in components ((i− 1)nx + 1, j) to (i · nx, j) of matrix B,
whose dimensions are nx ·M ×N . In practice, we just need
that the multitarget state is ordered according to any order of
labels in all particles. For example, if a target dies, we can
allocate the freed memory to a new target as long as we keep
the association for every particle.

In a PF or MCMC algorithm, we draw N particles{
X1, ...,XN

}
from a density and we evaluate π

(
Xi
)

up to
a proportionality constant. Due to the fact that in a computer
we have an ordered list of labels and the multitarget state
particles ordered according to the labels, the particles can be
represented by{(−→

L 1, x11:|L1|

)
, ...,

(−→
LN , xN1:|LN |

)}
where

−→
Li is the vector of labels of Xi arranged in ascending

order and xi1:|Li| their corresponding states. Using (10)-(11),
we can evaluate the posterior as

π
(
Xi
)

= Pπ
(
Li
)
π
(
xi1:|Li|;

−→
Li
)
.

As a result, we can easily evaluate the posterior for the
particles by using Theorems 1 and 2. For example, the PF
in [20]–[22] was designed based on a filtering recursion that
includes PMFs over the labels and multitarget vector densities
given the labels. In particular, we can find analogous PMFs
and PDFs in [21, Sec. II.A] to the ones in Theorems 1 and
2, e.g., p

(
Xk, Ik

∣∣z1:k ), p (Nk+1
)
, p
(
Xk+1

(
Nk+1

) ∣∣Nk+1
)

in [21] correspond to Pπ′ (·)π′
(
·;
−→
L
)

, Pη (·) and η
(
·;
−→
N
)

,
respectively.

We also want to mention that, as indicated by the δ-GLMB
filter, if we use the radar point detection model, the posterior
can be written explicitly as a mixture of products of single
target densities [12]. That is, multitarget densities given the
labels as in (10) can be simplified so it is more convenient to
use the δ-GLMB filter equations directly in this case.

IV. PROOF OF THE RESULT

In this section, we prove Theorems 1 and 2. To do this, in
each subsection of this section, we prove (14)-(15), (16)-(17)
and (20)-(21), respectively.

A. Prior PDF with New Born Targets

In this section we prove (14)-(15). We evaluate (7) for

X = {(x1, s1) , ..., (xr, sr) , (x1+r, n1) , ..., (xr+q, nq)}

where N = {n1, ..., nq} ⊆ B and S = {s1, ..., sr} ⊆ L′ and
s1 < ... < sr < n1 < ... < nq . As these two sets are disjoint,
a condition which was necessary to ensure unique labelling,
and η (·) is equal to zero unless all the labels belong to B,

there is only one term in (7) which is different from zero.
Therefore, we get

ω ({(x1, s1) , ..., (xr, sr) , (x1+r, n1) , ..., (xr+q, nq)})
= ξ ({(x1, s1) , ..., (xr, sr)})
× η ({(x1+r, n1) , ..., (xr+q, nq)}) . (22)

Using (10) and the fact that we are evaluating the density
for s1 < ... < sr < n1 < ... < nq , we obtain

ω ({(x1, s1) , ..., (xr, sr) , (x1+r, n1) , ..., (xr+q, nq)})
= ω

(
x1:|N |+|S|; s1:r, n1:q

)
Pω ({s1, ..., sr} ∪ {n1, ..., nq})

= ω
(
x1:|N |+|S|;

−−−−→
S ∪N

)
Pω (S ∪N) .

Performing the same operation for ξ (·) and η (·) in (22), we
finish the proof

ω
(
x1:|N |+|S|;

−−−−→
S ∪N

)
Pω (S ∪N)

= ξ
(
x1:|S|;

−→
S
)
Pξ (S) η

(
x1+|S|:|N |+|S|;

−→
N
)
Pη (N) .

B. Prior PDF of Survival Targets
In this section, we prove (16)-(17). We evaluate

ξ ({(x1, s1) , ..., (xr, sr)}) in (8) for s1 < ... < sr to obtain

ξ ({(x1, s1) , ..., (xr, sr)})

=

∞∑
t′=r

1

t′!

∑
l′
1:t′

ˆ
π′ ({(x′1, l′1) , ..., (x′t′ , l

′
t′)})

× f ({(x1, s1) , ..., (xr, sr)} |{(x′1, l′1) , ..., (x′t′ , l
′
t′)} ) dx′1:t′ .

(23)

Due to (9), the integral in (23) is different from zero only
if {s1, ..., , sr} ⊆ {l′1, ..., , l′t′}. In addition, the integral is
permutation invariant w.r.t. any combination of labels l′1...l

′
t′ .

There are
r!

(
t′

r

)
possible (ordered) ways of arranging the labels {s1, ..., , sr} ⊆
{l′1, ..., , l′t′}. Therefore, as the integral is permutation invari-
ant, we can select one ordering and multiply by this quantity.
We get (24) on top of the next page.

Using (9) in (24), we get

ξ ({(x1, s1) , ..., (xr, sr)})

=

∞∑
t′=r

1

(t′ − r)!
∑
l′
r+1:t′

γr (1− γ)
t′−r
ˆ r∏

j=1

g
(
xj
∣∣x′j )

× π′ ({(x′1, s1) , ..., (x′t, sr) ,(
x′r+1, l

′
r+1

)
, ..., (x′t′ , l

′
t′)
})
dx′1:t′ . (25)

Applying decomposition (10)-(11), we obtain

ξ ({(x1, s1) , ..., (xr, sr)})

=

∞∑
t′=r

1

(t′ − r)!
∑
l′
r+1:t′

γr (1− γ)
t′−r
ˆ r∏

j=1

g
(
xj
∣∣x′j )

× Pπ′
({
s1, ..., sr, l

′
r+1, ..., l

′
t′
})

× π′
(
x′1:t′ ; s1:r, l

′
r+1:t′

)
dx′1:t′ . (26)



ξ ({(x1, s1) , ..., (xr, sr)}) =

∞∑
t′=r

r!

t′!

(
t′

r

) ∑
l′
t+1:t′

ˆ
π′
({

(x′1, s1) , ..., (x′r, sr) ,
(
x′r+1, l

′
r+1

)
, ..., (x′t′ , l

′
t′)
})

× f
(
{(x1, s1) , ..., (xr, sr)}

∣∣{(x′1, s1) , ..., (x′r, sr) ,
(
x′r+1, l

′
r+1

)
, ..., (x′t′ , l

′
t′)
})

dx′1:t′ . (24)

The integral in (26) is permutation invariant w.r.t.
l′r+1, ..., l

′
t′ , therefore, we can just sum over one order l′r+1 <

... < l′t′ and multiply by the number (t′ − r)! of possible
combinations.

ξ ({(x1, s1) , ..., (xr, sr)})

=
∑

L⊆L:{s1,...,sr}∩L=�

γr (1− γ)
|L|
ˆ r∏

j=1

g
(
xj
∣∣x′j )

× Pπ′ ({s1, ..., sr} ∪ L)

× π′
(
x′1:|L|+r; s1:r,

−→
L
)
dx′1:|L|+r. (27)

We calculate Pξ (·) using (11) and substituting

S = {s1, ..., sr}

and
−→
S = s1:r into (27)

Pξ (S) =
∑

L⊆L:S∩L=�
γ|S| (1− γ)

|L|
ˆ ˆ |S|∏

j=1

g
(
xj
∣∣x′j )

× Pπ′ (S ∪ L)π′
(
x′1:|L|+|S|;

−→
S ,
−→
L
)

× dx′1:|L|+|S|dx1:|S|
=

∑
L⊆L:S∩L=�

γ|S| (1− γ)
|L|
Pπ′ (S ∪ L)

=
∑
L′⊇S

γ|S| (1− γ)|L
′|−|S| Pπ′ (L′)

which finishes the proof of (16).
We calculate ξ

(
x1:|S|;

−→
S
)

using (15) and (27):

ξ
(
x1:|S|;

−→
S
)

=
1

Pξ (S)

∑
L⊆L:S∩L=�

γ|S| (1− γ)
|L|
ˆ |S|∏

j=1

g
(
xj
∣∣x′j )

× Pπ′ (S ∪ L)π′
(
x′1:|L|+|S|,

−→
S ,
−→
L
)
dx′1:|L|+|S|

=
1

Pξ (S)

∑
L′⊇S

p (S |L′ )Pπ′ (L′)

×
ˆ |S|∏

j=1

g
(
xj
∣∣x′j )π′ (x′1:|L′|,

−→
S ,
−−−→
L′ \ S

)
dx′1:|L′|

=
1

Pξ (S)

∑
L′⊇S

p (S |L′ )Pπ′ (L′)

×
ˆ |S|∏

j=1

g
(
xj
∣∣x′j )π′−→S (x′1:|S|;−→L′) dx′1:|S|

which finishes the proof of (17).

C. Update Equation

In this section, we prove Theorem 2. We have from (4)

π ({(x1, l1) , ..., (xt, lt)})
= ` ({x1, ..., xt})ω ({(x1, l1) , ..., (xt, lt)}) /ρ

where we have used that ` (·) does not depend on the labels,
see assumptions in Section II. We use (10) in the previous
equation so that

Pπ ({l1, ..., lt})π (x1:t; l1:t) = ` ({x1, ..., xt})Pω ({l1, ..., lt})
× ω (x1:t; l1:t) /ρ. (28)

Using (5), the normalising constant is

ρ =

∞∑
t=0

1

t!

∑
l1:t

Pω ({l1, ..., lt})

×
ˆ
` ({x1, ..., xt})ω (x1:t; l1:t) dx1:t.

The integral is permutation invariant, w.r.t. any permutation
of the labels. Therefore, we can just use one permutation an
multiply by t!. This gives us

ρ =

∞∑
t=0

∑
L:|L|=t

ˆ
` ({x1, ..., xt})ω

(
x1:t;
−→
L
)
Pω (L) dx1:t

=
∑
L⊆L

Pω (L) ρL.

We obtain Pπ (·) by integrating w.r.t. x1:t on both sides of
(28) and, then, π (·; l1:t) is also obtained from (28), which
completes the proof of Theorem 2.

V. CONCLUSIONS

In this paper, we have obtained an explicit form of the
Bayesian filtering recursion for labelled random finite sets.
This recursion is based on the decomposition of a labelled RFS
density into a PMF over the labels and a PDF over the target
states given the labels. Apart from the theoretical importance
of this contribution, the explicit recursion is useful to develop
multiple target tracking particle filters using labelled random
finite sets in track-before-detect applications, such as in [21].
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APPENDIX A

In this appendix, we prove (13). We calculate the set integral
of density π (·) taking into account (10)-(11)

ˆ
π (X) δX

=

∞∑
t=0

1

t!

∑
l1:t∈Lt

ˆ
π ({(x1, l1) , ..., (xt, lt)}) dx1:t

=

∞∑
t=0

1

t!

∑
l1:t∈Lt

Pπ ({l1, ..., lt})
ˆ
π (x1:t; l1:t) dx1:t

=

∞∑
t=0

1

t!

∑
l1:t∈Lt

Pπ ({l1, ..., lt}) .

As Pπ (·) is permutation invariant w.r.t. l1, ..., lt, we can sum
over the label set {l1, ..., lt} and multiply by t! to get

ˆ
π (X) δX

=

∞∑
t=0

∑
{l1,...,lt}⊆L

Pπ ({l1, ..., lt})

=

∞∑
t=0

∑
L⊆L:|L|=t

Pπ (L)

=
∑
L⊆L

Pπ (L)

= 1

where the last equality follows from (2).
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